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Abstract: To model a true three-dimensional (3D) display system, we introduced
the method of voxel molding to obtain the stereoscopic imaging space of the
system. For the distribution of each voxel, we proposed a four-dimensional (4D)
Givone–Roessor (GR) model for state-space representation—that is, we established
a local state-space model with the 3D position and one-dimensional time coordi-
nates to describe the system. First, we extended the original elementary operation
approach to a 4D condition and proposed the implementation steps of the realiza-
tion matrix of the 4D GR model. Then, we described the working process of a true
3D display system, analyzed its real-time performance, introduced the fixed-point
quantization model to simplify the system matrix, and derived the conditions for
the global asymptotic stability of the system after quantization. Finally, we provided
an example to prove the true 3D display system’s feasibility by simulation. The
GR-model-representation method and its implementation steps proposed in this
paper simplified the system’s mathematical expression and facilitated the microcon-
troller software implementation. Real-time and stability analyses can be used
widely to analyze and design true 3D display systems.

Keywords: True 3D display system; method of voxel molding (MVM); Givone–
Roessor (GR) model; asymptotic stability; Bounded-Input Bounded-Output
(BIBO) stability; real-time display

1 Introduction

In recent years, with advances in optical and computer technology, stereoscopic display technology has
undergone accelerated development. As a result, people are pursuing a more realistic display effect from the
traditional two-dimensional (2D) display to three-dimensional (3D) display [1]. Among these developments,
the most representative display is the true 3D display system.

For a true 3D display system, each voxel’s brightness and color should be controllable, and the relative
spatial positional relationship between voxels should also be truly embodied. These goals require finding a
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suitable model to build a state space for the true 3D display system. Furthermore, the implementation steps
and the results of performance analyses must be detailed.

In multidimensional system theory, the Givone–Roessor (GR) [2] and Fornasini-Marchesini (FM) models
[3] are two widely used local state-space models. Both have been employed in the state-space modeling of
multidimensional systems, including wireless sensor networks [4–8]. Compared with the FM model, the GR
model can quantitatively express each dimension’s variables and then be used to analyze each dimension’s
influence on the entire system. Therefore, we established a 4D GR model by introducing 3D position
coordinates and one-dimensional (1D) time coordinates to model the system’s state space.

Galkowski [9] used the forward transfer operator to represent the transfer function and obtain the system
implementation matrix through the matrix transformation for implementing the state-space model. The concept
is simple and easily calculable. It can also be used to evaluate the influence of coefficient values on the
realization matrix in implementing a multidimensional system. This flexibility, however, also can result in
an infinite number of possible intermediate operations in constructing the feature matrix, making it difficult
to obtain a general algorithm. Moreover, this method is not easily implemented by a computer program. Xu
et al. [10] used the unit retardation factor to represent the transfer function and introduced the elementary
operation approach (EOA) to give the implementation method of the system implementation matrix. In this
method, however, only one order can be reduced in each supplementary operation. Although it is possible
to increase the supplementary operation’s efficiency by some decomposition, only a few transfer functions
can be applied to this decomposition method. The matrix method is also used to obtain a GR model with a
lower order of the matrix [11], but it cannot be used to analyze the coefficient value's influence on the
implementation matrix. Xiong [12] proposed an improved 3D EOA algorithm. Through matrix operation,
the state-space model of the GR model can be obtained from the transfer function, and the order of the
model is significantly reduced. In this paper, the EOA algorithm is extended to four dimensions and applied
to the modeling and implementation steps of a true 3D display system.

When a true 3D display system works, one needs each voxel to transfer the information to the
microcontroller as soon as possible for data analysis; thus, it has high real-time and stability
requirements. Therefore, one must analyze the real-time functionality and stability of the GR model.
Kokil [13] and Xin et al. [14] introduced 2D discrete system stability. However, if it is directly extended
to multidimensional systems, many limitations still exist. Agathoklis et al. [15] introduced the bounded-
input, bounded-output stability of the traditional multidimensional system, but the practical application
still has many limitations. In a true 3D display system with a finite size, the voxel calculation results
often must be quantified to achieve the perfect display effect. Therefore, in the present study, we
introduced a quantitative model to obtain the necessary and sufficient conditions for the true 3D display
system’s stability after quantization, and then provided an example to verify the model.

2 Establishment of GR Model with Method of Voxel Molding

2.1 Method of Voxel Molding

When a true 3D display system is working, a full-body cylinder-voxel space composed of several
spatially discrete voxels will exist. It can be imagined that this space is a flask mold, and each voxel in
the interior is sand. The sand in a sandbox has a unique 3D space coordinate and a 1D time coordinate.
The 3D mathematical model of the displayed object is considered to be a mold. We assume that upon
putting the mold into the sandbox, the mold will replace the sand’s space in the original sandbox and
form a mold cavity. Based on this assumption, we proposed a 3D model voxel generation method—that
is, the method of voxel molding (MVM).

We converted the original space’s image data to voxels according to the display’s requirements, which
conform to the display unit's geometric characteristics. Then we inputted the voxels to the display unit for
calibration and calculation.
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In the cylinder space generated by an LED screen’s rotation, if each voxel’s coordinates generated at a
certain angle (such as 3�) are ðx; y; zÞ, then the time corresponding to each voxel is t0; t1; t2; t3;…; tn.

Assuming that the 3D model from the acquisition module is stored in the form of a point cloud, the
MVM steps are as follows:

1. We put the 3D model into the voxel space, and the edges of the model coincided with or approximated
some voxels in the space, as shown in Fig. 1.

2. The voxel ðxi; yj; zkÞ with the same time t 2 t0; t1; t2; t3;…; tn½ �f g was set as A ¼ fðxi; yj; zk ; tnÞg, that
is, A1 ¼ ðxi; yj; zk ; t1Þ, A2 ¼ ðxi; yj; zk ; t2Þ, …, An ¼ ðxi; yj; zk ; tnÞ.

3. We reflected the voxels’ data to the LED screen to obtain a set of 3D coordinates.

2.2 Establishment of GR State-space Model

The 3D position coordinates are combined with 1D time coordinates to create a 4DGR state-spacemodel:

xhðn1 þ 1; n2; n3; tÞ
xvðn1; n2 þ 1; n3; tÞ
xlðn1; n2; n3 þ 1; tÞ
xtðn1; n2; n3; t þ 1Þ

2
6664

3
7775 ¼

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

2
6664

3
7775

xhðn1; n2; n3; tÞ
xvðn1; n2; n3; tÞ
xlðn1; n2; n3; tÞ
xtðn1; n2; n3; tÞ

2
6664

3
7775þ

B1

B2

B3

B4

2
6664

3
7775uðn1; n2; n3; tÞ;

yðn1; n2; n3; tÞ ¼ Cxðn1; n2; n3; tÞ þ Duðn1; n2; n3; tÞ;

(1)

Figure 1: Schematic of 3D mold in voxel space
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where

xðn1; n2; n3; tÞ ¼ ðxhT ðn1; n2; n3; tÞ; xvT ðn1; n2; n3; tÞ; xlT ðn1; n2; n3; tÞ; xtT ðn1; n2; n3; tÞÞ
¼ ðxhT ðn1; n2; n3; tÞ; xvT ðn1; n2; n3; tÞ; xlT ðn1; n2; n3; tÞ; xtT ðn1; n2; n3; tÞÞ;

and n1 2 Z, n2 2 Z, n3 2 Z, and t 2 Z. The vectors xh 2 Ra, xv 2 Rb, xl 2 Rc, and xt 2 Rd are the vectors of
the x-, y-, z-, and time t-axis, respectively. The input vector u 2 Rp and the output vector y 2 Rq, A1 2 Ra�a,
A2 2 Ra�b, A3 2 Ra�c, A4 2 Ra�d, A5 2 Rb�a, A6 2 Rb�b, A7 2 Rb�c, A8 2 Rb�d, A9 2 Rc�a, A10 2 Rc�b,
A11 2 Rc�c, A12 2 Rc�d, A13 2 Rd�a, A14 2 Rd�b, A15 2 Rd�c, A16 2 Rd�d, B1 2 Ra�p, B2 2 Rb�p,
B3 2 Rc�p, B4 2 Rd�p, C 2 Rq� aþbþcþdð Þ, and D 2 Rq�p.

Assuming that

A ¼
A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

2
664

3
775,

and letting r denote the order of the matrix, then r ¼ aþ bþ cþ d.

B ¼ BT
1 ;B

T
2 ;B

T
3 ;B

T
4

� �T
. For the single input single output (SISO) system, p ¼ q ¼ 1; for the multiple

input multiple output system, p > 1, q > 1. The voxel causal linear process in the first octant can be
expressed in this model.

Considering the voxel space of size N1 � N2 � N3, the display of each voxel is a linear process. Because
the 3D mathematical model must be observable and realizable, the entire voxel space display is a process of
linear causality in the first octant. The state-space model can represent the causality in the first octant.

3 Implementation Steps of GR Model with EOA Transformation

We performed EOA transformation to simplify the implementation of the GR model to the
supplementary and transformation operations of the multidimensional characteristic polynomial matrix.
This method featured easy calculation and could be used analyze the coefficient correlations on the
system implementation matrix. We proposed a 4D EOA transformation and obtained the state-space
model of the GR model through matrix operation.

3.1 Elementary Transformation of Matrices

Numerous elementary transformations of matrices are needed for obtaining the state-space matrix.
Several of these transformations are defined below.

LetM denote a matrix and the following four kinds of row (column) transformations for a matrix denote
the elementary row (column) transformations of a matrix.

1. swaprow M ; i; jð Þ: Exchange the elements in the ith and jth rows of matrix M .

2. addrow M ; i; j; kð Þ: Multiply all the elements in the ith row of matrix M by k, and add them to the
corresponding elements in the jth row.

3. swapcol M ; i; jð Þ: Exchange the elements in the ith and jth columns of matrix M .

4. addcol M ; i; j; kð Þ: Multiply all the elements in the ith column of matrix M by k, and add them to the
corresponding elements in the jth column.

In addition, define augment MÞð ¼ 1 0
0 M

� �
:
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3.2 4D EOA Transformation

Next, we implemented the matrix transformation for the 4D GR model in the SISO case (p ¼ q ¼ 1) as
follows:

Let Z ¼ diagfz1Ia; z2Ib; z3Ic; z4Idg and define

M ¼ x BT

CZð ÞT Ir � AZð ÞT
� �

¼

x B1 B2 B3 B4

C1z1 Ia � ðA1z1ÞT �ðA5z1ÞT �ðA9z1ÞT �ðA13z1ÞT
C2z2 �ðA2z2ÞT Ib � ðA5z2ÞT �ðA10z2ÞT �ðA14z2ÞT
C3z3 �ðA3z3ÞT �ðA7z3ÞT Ic � ðA11z3ÞT �ðA15z3ÞT
C4z4 �ðA4z4ÞT �ðA8z4ÞT �ðA12z4ÞT Id � ðA16z4ÞT

2
6666664

3
7777775
;

(2)

M0 ¼ x 1
nðz1; z2; z3; z4Þ dðz1; z2; z3; z4Þ

� �
: (3)

As shown in Y. Xiong [12], the 4D GR model’s implementation problem is to convertM0 into matrixM
by supplementing operations and elementary transformation without changing the determinant value.

The matrix M requires the following properties:

1. The first element on the diagonal can only be x.

2. Other elements on the diagonal can only be 1D linear polynomials about variables zk ; k 2 f1; 2; 3; 4g,
and the constant term can only be 1.

3. In addition to the first line, the off-diagonal element can only be a linear monomial about variables
zk ; k 2 f1; 2; 3; 4g.

4. In addition to x, the elements of the first row are constant terms.

5. The elements of the same row can only contain the same elements zk ; k 2 f1; 2; 3; 4g, and from the
second row all the rows are arranged in the order z1; z2; z3; z4.

6. The first element x on the diagonal is just a symbol, not a variable. During transformation, the
position and expression of x cannot be changed.

The specific steps of the EOA transformation are as follows:

Step 1: Let any four-dimensional polynomial with no constant term be p0ðz1; z2; z3; z4Þ. One of the
variables zk ; k 2 f1; 2; 3; 4g can be decomposed into the following form:

p0ðz1; z2; z3; z4Þ¼p1ðzkÞþp2 z1;…; zk�1; zkþ1;…; z4ð Þþzkp3ðz1; z2; z3; z4Þ; (4)

where p1 zkð Þ is a 1D linear polynomial containing only zk ; p2ðz1;…; zk�1; zkþ1;…; z4Þ is a 4D
linear polynomial without zk . p1 zkð Þ, p2ðz1;…; zk�1; zkþ1;…; z4Þ, and p3ðz1; z2; z3; z4Þ do not include a
constant term.

Letting d̂ðz1; z2; z3; z4Þ ¼ dðz1; z2; z3; z4Þ � 1, the initial matrix M0 is

M0 ¼ x 1
nðz1; z2; z3; z4Þ 1þ d̂ðz1; z2; z3; z4Þ

� �
: (5)

Let p̂ ¼ d̂ðz1; z2; z3; z4Þ, q̂ ¼ d̂ðz1; z2; z3; z4Þ. According to Eq. (4), x and y are decomposed into
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p̂ ¼ p1 þ p2 þ z1p3,

q̂ ¼ q1 þ q2 þ z1q3; (6)

where p1 and q1 are 1D linear monomials that contain only z1; p2 and q2 are 3D linear polynomials that
do not contain z1; and p3 and q3 are 4D polynomials.

The following operations are then performed:

M1 ¼ augmentðM0Þ ¼ addrowðM1; 3; 2;�z1Þ ¼ addcolðM1; 3; 2; p3Þ ¼

addcolðM1; 3; 1; q3Þ¼
x 1 0

q1 þ q2 1þ p1 þ p2 �z1
q3 p3 1

2
64

3
75: (7)

Then, the new rows generated by each operation in p3, q3, andM1 are sequentially operated so that terms
with z1 in M1 become linear monomials concerning z1.

Each row inM1 performs the same operation on the variables z1, z2, z3, and z4 in turn, so that the diagonal
elements other than x in M1 are all 4D linear polynomials with the constant term of 1.

Step 2: Assume that the matrix M1 obtained through Step 1 is

M1 ¼
x 1 0

a1z1 þ a2z2 þ a3z3 þ a4z4 1þ b1z1 þ b2z2 þ b3z3 þ b4z4 c1z1 þ c2z2 þ c3z3 þ c4z4
� # 1

2
4

3
5; (8)

where * and # are both linear polynomials; ai, bi, ci, and di are all coefficients, and i = {1,2,3,4}.

Convert matrix M1 obtained in the first step to M2 so that the diagonal elements in M2 except x are 1D
linear polynomials with a constant term of 1, and the non-diagonal elements except the first row are all linear
monomials about the variables zk ; k 2 f1; 2; 3; 4g.

Perform the following operation on M1 in Eq. (8):

M2 ¼ augmentðM1Þ !M2 ¼ addrowðM2;4;2;�1Þ !
M2 ¼ addcolðM2;4;1;a2z2Þ !M2 ¼ addcolðM2;4;2;b2z2Þ !

M2 ¼ addcolðM2;4;3; c2z2Þ ¼

x 1 0 0

a1z1 þ a3z3 þ a4z4 1þ b1z1 þ b3z3 þ b4z4 c1z1 þ c3z3 þ c4z4 �1

� # 1 0

a2z2 b2z2 c2z2 1

2
6664

3
7775:

(9)

In the same row, perform similar operations on variables z3 and z4. Then, matrix M2 is finally obtained
and the first three elements of the second row in M2 are a1z1, 1þ b1z1, and c1z1, respectively; the remaining
elements are −1:

M2 ¼

x 1 0 0 0 0
a1z1 1þ b1z1 c1z1 �1 �1 �1
� # 1 0 0 0

a2z2 b2z2 c2z2 1 0 0
a3z3 b3z3 c3z3 0 1 0
a4z4 b4z4 c4z4 0 0 1

2
6666664

3
7777775
: (10)
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Step 3: Through appropriate row and column transformations, each row inM2 is arranged in the order z1,
z2, z3, and z4, and all of the 1D linear polynomial elements are moved to the diagonal position. Then, the term
−1 is eliminated through column transformation. Finally, matrix M3 is obtained:

M3 ¼

x 1 0 1 0 0
a1z1 1þ b1z1 c1z1 b1z1 b1z1 b1z1
� # 1 # # #

a2z2 b2z2 c2z2 1þ b2z2 b2z2 b2z2
a3z3 b3z3 c3z3 b3z3 1þ b3z3 b3z3
a4z4 b4z4 c4z4 b4z4 b4z4 1þ b4z4

2
6666664

3
7777775
; (11)

and matrices A, B, and C are derived from Eq. (11).

3.3 Example

A strict causal transfer function is expressed as follows:

Hðz1; z2; z3; z4Þ ¼ z1 þ z1z2 þ z1z3 þ z1z4
1þ z1z2 þ z1z3 þ z2z3 þ z1z4

; (12)

and, due to the strict causality, D ¼ Hð0; 0; 0; 0Þ ¼ 0.

The initial matrix is constructed as follows:

M0 ¼ x 1
z1 þ z1z2 þ z1z3 þ z1z4 1þ z1z2 þ z1z3 þ z2z3 þ z1z4

� �
and (13)

transformed to give

M1 ¼ augmentðM0Þ ! M1 ¼ addrowðM1; 3; 2;�z1Þ ! M1 ¼ addcolðM1; 3; 1; z2 þ z3 þ z4Þ !
M2 ¼ augmentðM1Þ ! M2 ¼ addrowðM2; 4; 2;�z2Þ ! M2 ¼ addcolðM2; 4; 2; z3Þ !
M3 ¼ augmentðM2Þ ! M3 ¼ addrowðM3; 5; 2;�1Þ ! M3 ¼ addcolðM3; 5; 4;�z2Þ !
M4 ¼ augmentðM3Þ ! M4 ¼ addrowðM4; 6; 3;�1Þ !
M4 ¼ addcolðM4; 6; 1; z3 þ z4Þ ! M4 ¼ addcolðM4; 6; 2; z3 þ z4Þ !
M5 ¼ augmentðM4Þ ! M5 ¼ addrowðM5; 7; 6;�1Þ !
M5 ¼ addcolðM5; 7; 1; z4Þ ! M5 ¼ addcolðM5; 7; 2; z4Þ !
M5 ¼ swaprowðM5; 4; 5Þ ! M5 ¼ swapcolðM5; 4; 5Þ !

.

Then,

M ¼

x 1 0 1 0 0 0
z1 1 �z1 0 0 �z1 �z1
z2 z2 1 z2 0 0 0
0 0 0 1 �z2 0 0
0 z3 0 z3 1 0 0
z3 z3 0 z3 0 1 0
z4 z4 0 z4 0 0 1

2
666666664

3
777777775

(14)

is obtained.

According to Eq. (2), a ¼ 1, b ¼ 2, c ¼ 2, and d ¼ 1. Therefore, the order of the realization matrix is
r ¼ 6. Then,
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A ¼

0 �1 0 �1 �1 �1
1 0 0 0 0 0
0 �1 0 �1 �1 �1
0 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

2
6666664

3
7777775
;B ¼

1
0
1
0
0
0

2
6666664

3
7777775
; (15)

C ¼ 1 1 0 0 1 1½ �;D ¼ 0;

are obtained. At time t, and letting the control variables

uðn1; n2; n3Þ ¼

n1 þ 5
0

n2 þ 10
0
0
0

2
6666664

3
7777775
; (16)

the distribution of variables in the 3D volume space at t is simulated. The results are shown in Fig. 2.

4 Performance Analysis of GR model

We then studied the real-time performance and stability of the true 3D display system from the GR
model’s state-space matrix perspective.

4.1 Real-time Analysis

4.1.1 Working Process of True 3D Display System
In the GR model, ðn1; n2; n3Þ are the coordinates of the voxel in space, and t represents the sampling time

index. x n1; n2; n3; tð Þ, y n1; n2; n3; tð Þ, and u n1; n2; n3; tð Þ are the state, output, and input vectors of the voxel,
respectively. At time t, voxel ðn1; n2; n3Þ sends vector xh n1 þ 1; n2; n3; tð Þ to voxel ðn1 þ 1; n2; n3Þ,
xv n1; n2 þ 1; n3; tð Þ to voxel ðn1; n2 þ 1; n3Þ, and xl n1; n2; n3 þ 1; tð Þ to voxel ðn1; n2; n3 þ 1Þ. Then, we
calculated the output vector y n1; n2; n3; tð Þ.

In information processing, the problem of communication delay has always been difficult to solve [16].
For a true 3D display system with high real-time requirements and large scale, the communication between
voxels will be seriously delayed, which is not conducive to the microcontroller’s data calculation and
analyses. Therefore, changing the system matrix to satisfy the real-time requirements of the system is critical.

4.1.2 Implementation of Delayed Response
In model (1), if matrices A1, A2, A3, A5, A6, A7, A9, A10, and A11 are all zero, the substate vector

xh n1 þ 1; n2; n3; tð Þ of voxel ðn1 þ 1; n2; n3Þ in the x-axis direction, xv n1; n2 þ 1; n3; tð Þ of voxel
ðn1; n2 þ 1; n3Þin the y-axis direction, and xl n1; n2; n3 þ 1; tð Þ of voxel ðn1; n2; n3 þ 1Þ in the z-axis
direction are only related to xtðn1; n2; n3; tÞ. Thus, it is not necessary to calculate the substate vectors for
voxel ðn1; n2; n3Þ at time t. The substate vector xtðn1; n2; n3; t þ 1Þ is used only by voxel ðn1; n2; n3Þ, and
we perform this calculation process at time t þ 1. In this way, substate vectors xh n1 þ 1; n2; n3; tð Þ,
xv n1; n2 þ 1; n3; tð Þ, and xl n1; n2; n3 þ 1; tð Þ cannot be calculated at time t, and thus there is no delay in
data communication. Model (1) is then changed to
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Figure 2: Simulation results in 3D space
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xhðn1 þ 1; n2; n3; tÞ
xvðn1; n2 þ 1; n3; tÞ
xlðn1; n2; n3 þ 1; tÞ
xtðn1; n2; n3; t þ 1Þ

2
664

3
775 ¼

0 0 0 A4

0 0 0 A8

0 0 0 A12

A13 A14 A15 A16

2
664

3
775

xhðn1; n2; n3; tÞ
xvðn1; n2; n3; tÞ
xlðn1; n2; n3; tÞ
xtðn1; n2; n3; tÞ

2
664

3
775þ

B1

B2

B3

B4

2
664

3
775uðn1; n2; n3; tÞ: (17)

4.2 Stability Analysis

4.2.1 Quantitative Model
In a true 3D display system, each state component represents the gray value in a specific direction that

must be controlled between (0,255). Therefore, the calculation results of each voxel must be quantized after
being transmitted to the microcontroller.

Since the display systemmay have dimensions of different sizes, or there may be a direction that requires
higher accuracy, the calculation accuracy in each direction will be different when voxels are transmitting
information. In this case, the following quantitative model is adopted:

xh n1 þ 1; n2; n3; tð Þ� � ¼ Qch A1 A2 A3 A4½ �x n1; n2; n3; tð Þ þ B1½ �U n1; n2; n3; tð Þ½ �;
xv n1; n2 þ 1; n3; tð Þ½ � ¼ Qcv A5 A6 A7 A8½ �x n1; n2; n3; tð Þ þ B2½ �U n1; n2; n3; tð Þ½ �;
xl n1; n2; n3 þ 1; tð Þ� � ¼ Qcl A9 A10 A11 A12½ �x n1; n2; n3; tð Þ þ B3½ �U n1; n2; n3; tð Þ½ �;
xt n1 þ 1; n2; n3; tð Þ½ � ¼ Qp A1 A2 A3 A4½ �x n1; n2; n3; tð Þ þ B4½ �U n1; n2; n3; tð Þ½ �:

(18)

In this model, Qch, Qcv, Qcl, and Qp denote the quantization operators of the x-, y-, z-, and t-axis,
respectively.

4.2.2 Asymptotic Stability
In this paper, we studied the global asymptotic stability based on the 4D quantization model. Assuming

that the volume space of the display system is N1 � N2 � N3, then n1 2 0;N1 � 1½ �, n2 2 0;N2 � 1½ �, and
n3 2 0;N3 � 1½ �. First, the following conclusion is given.

Model (18) is asymptotically stable if and only if

x t þ 1ð Þ ¼ Qp A16x tð Þ½ � (19)

is asymptotically stable.

The detailed proof is shown in Yang et al. [17].

4.2.3 Example
The following is a concrete example of a true 3D display system. Let the GR model of a true 3D display

system with a size of 4� 4� 4 be expressed as follows:

xhðn1 þ 1; n2; n3; tÞ
xvðn1; n2 þ 1; n3; tÞ
xlðn1; n2; n3 þ 1; tÞ
xtðn1; n2; n3; t þ 1Þ

2
664

3
775 ¼

0 0 0 0:5
0 0 0 0:5
0 0 0 0:5
0:5 0:5 0:5 0:375

2
664

3
775

xhðn1; n2; n3; tÞ
xvðn1; n2; n3; tÞ
xlðn1; n2; n3; tÞ
xtðn1; n2; n3; tÞ

2
664

3
775þ

0
0
0
1

2
664

3
775Uðn1; n2; n3; tÞ; (20)

where 0 � n1 � 4, 0 � n2 � 4, 0 � n3 � 4, and Uðn1; n2; n3; tÞ ¼ 1 0 � t � 5
0 else

�
.
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As explained in Section 4.2.2, system (20) is asymptotically stable if and only if the system

x t þ 1ð Þ ¼ Qp A16x tð Þ½ � (21)

is asymptotically stable.

The Euclidean norm of state vectors of voxels 4; 4; 4ð Þ and 1; 1; 1ð Þ are obtained by simulation,
represented by p1 and p2, respectively. The simulation results are shown in Fig. 3.

As shown in Fig. 3, after some time, the state vectors of voxels 4; 4; 4ð Þ and 1; 1; 1ð Þ tended to be 0,
whereas the state vector of voxel 4; 4; 4ð Þ reached 0 later than that of voxel 1; 1; 1ð Þ. This confirmed the
causality of the system in the first octant.

5 Conclusions

For the modeling and analyses of a true 3D display system, we established a 4D GRmodel by combining
the 3D azimuth coordinates and 1D time coordinates of voxels in the imaging space. Therefore, we obtained
the state-space expression of the true 3D display system. We then proposed the implementation steps with 4D
EOA transformation for the GR model’s realization matrix; after describing the system working process, we
analyzed the real-time and stability performance of the true 3D display system. By simplifying the system
matrix, we derived the conditions for the global asymptotic stability of the system. Experimental results
showed that in a true 3D display system with a size of 4� 4� 4, the state vector of the voxel point
converged to 0, and thus was asymptotically stable. The proposed GR-model-representation method and
its implementation steps for a true 3D display system could simplify the system’s mathematical
expression and facilitate microcontroller software implementation. Real-time and stability analyses can be
applied widely in the analysis and design of true 3D display systems.
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Figure 3: Euclidean norm of voxel 4; 4; 4ð Þand 1; 1; 1ð Þ state vectors in true 3D display system of size 4� 4� 4
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