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Abstract

During the last decade, entity embeddings have become ubiquitous in Artificial Intel-
ligence. Such embeddings essentially serve as compact but semantically meaningful repre-
sentations of the entities of interest. In most approaches, vectors are used for representing
the entities themselves, as well as for representing their associated attributes. An impor-
tant advantage of using attribute embeddings is that (some of the) semantic dependencies
between the attributes can thus be captured. However, little is known about what kinds
of semantic dependencies can be modelled in this way. The aim of this paper is to shed
light on this question, focusing on settings where the embedding of an entity is obtained
by pooling the embeddings of its known attributes. Our particular focus is on studying
the theoretical limitations of different embedding strategies, rather than their ability to
effectively learn attribute dependencies in practice. We first show a number of negative
results, revealing that some of the most popular embedding models are not able to capture
even basic Horn rules. However, we also find that some embedding strategies are capable,
in principle, of modelling both monotonic and non-monotonic attribute dependencies.

1. Introduction

Vector space embeddings are currently the dominant representation framework in Natural
Language Processing, Computer Vision and Machine Learning. Essentially, these embed-
dings represent each entity of interest as a dense vector in some fixed-dimensional space. In
addition, the attributes that are used to describe these entities are typically also encoded
as vectors. For example, in the case of word embeddings, the entities correspond to words
and the attributes correspond to the contexts in which these words occur, e.g. in the form
of co-occurring words [Mikolov et al., 2013, Pennington et al., 2014], syntactic dependencies
[Levy and Goldberg, 2014, Vashishth et al., 2019] or even full sentences [Devlin et al., 2019].
In inductive knowledge graph embedding, the entities from our framework correspond to the
previously unseen entities for which we want to learn a representation, with the attributes
representing links to known entities [Hamaguchi et al., 2017]. In the case of embedding-
based topic models, the entities correspond to documents and the attributes correspond to
the associated topics and words [Das et al., 2015, Li et al., 2016, He et al., 2017, Xun et al.,
2017, Dieng et al., 2020]. In zero-shot learning, the entities of interest are the category
prototypes and the attributes correspond to semantic attributes of the categories [Lampert
et al., 2013] or associated natural language terms [Frome et al., 2013].

An important advantage of attribute embeddings is that they can implicitly capture
some of the dependencies that hold between the attributes. For instance, the use of em-
beddings for topic modelling stems from the desire to capture topic correlations [He et al.,
2017, Xun et al., 2017]. However, it is currently unclear what kinds of dependencies can be
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captured in this way. Before we can address this question, we first need to clarify what it
means that an embedding captures some dependency. To this end, consider an embedding
model in which σ(a·e) represents the probability that entity e has attribute a, where σ is the
sigmoid function and a and e are the embeddings of a and e. Among many others, the pop-
ular skip-gram word embedding model is of this kind [Mikolov et al., 2013]. Now consider
the attributes parent, female and mother, and the associated dependency that mother ≡
parent∧female. What condition would need to be satisfied for the embedding to capture this
dependency? One possibility is to require that σ(mother ·e) = σ(parent ·e) ·σ(female ·e)
for each vector e in the embedding space Rn. However, this condition can clearly not be
satisfied; e.g. for e = 0 we obtain the condition 0.5 = 0.25. Similarly, it is easy to see
that the condition σ(mother · e) = min(σ(parent · e), σ(female · e)) only admits trivial
solutions. Viewed from this angle, it is clear that popular embedding models are not able
to capture even basic logical dependencies. For this reason, several alternative models have
been proposed, in which attributes are modelled as linear subspaces [Garg et al., 2019],
axis-aligned cones [Vendrov et al., 2016, Özçep et al., 2020], hyperboxes [Vilnis et al., 2018]
or polytopes [Gutiérrez-Basulto and Schockaert, 2018], among others.

In this paper, we follow a different direction, analysing whether embedding models can
capture logical dependencies in a less demanding sense. In particular, we consider the
common setting where the embedding of an entity e has to be learned from its known
attributes, and the aim of the resulting embedding is to infer what other attributes e is
likely to satisfy. We then say that the rule a1 ∧ ... ∧ an → b is captured if an entity which
is known to have the attributes a1, ..., an would be represented by a vector from which the
attribute b would be predicted. Note that different variants of this setting can be considered,
which depend on (i) how exactly entity vectors are constructed and (ii) how the resulting
vectors are used for predicting the attributes of the entity. The aim of this paper is to
analyse, for different variants, whether it is always possible to find an embedding which
captures the rule a1 ∧ ... ∧ an → b iff that rule is entailed by some propositional knowledge
base K. Note that in practice we typically do not have access to such a knowledge base K.
However, the question of whether arbitrary propositional knowledge bases can, in principle,
be modelled by a given embedding strategy is important, because if this is not the case,
then it also means that some (combinations of) dependencies cannot be learned.

In addition to standard propositional entailment, we also look at non-monotonic conse-
quence relations, which is important because attribute dependencies are often defeasible or
probabilistic in nature. For instance, in a topic modelling context, we may assume that a
document containing the word safari is related to the topic nature, and a document con-
taining the word apple is related to the topic food. However, documents containing both
of these words are more likely to be related to technology instead, given that Safari is the
name of Apple’s internet browser. We may thus want that the rule safari→ topic:nature is
captured, while the rule safari ∧ apple→ topic:nature is not.

2. Problem Setting

We assume that each entity is associated with some attributes from a given set A. In the
context of word embeddings, for instance, the set A could be the set of all contexts. Note
that we do not consider knowledge graphs, where entities are described in terms of their
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relationship to other entities, rather than attributes. However, many inductive knowledge
graph embedding models can still be cast as special cases of our framework, with the
attributes then representing links to entities with known (or pre-computed) embeddings.

Embedding and Labelling Functions If an entity e is associated with the attributes
a1, ..., an, we assume that its embedding is given by e = Emb(a1, ..., an) for some embedding
function Emb : 2A → Rm. The embedding functions that we consider in this paper will
rely on pooling attribute vectors. In particular, we consider embedding functions of the
following form: Emb(a1, ..., an) = φ(a1, ...,an) for some pooling function φ, where a ∈ Rm
represents the embedding of attribute a ∈ A. For instance, we may have Emb(a1, ..., an) =
1
n(a1 + ... + an). Let us furthermore assume that we have a function Lab : Rm → 2A that
predicts attributes of entities based on their embeddings. Similar as for Emb, we will assume
that the labelling function Lab relies on a scoring function that compares the embedding
of e with an embedding of the considered attribute. In particular, we consider labelling
functions of the following form: Lab(e) = {b ∈ A |ψ(e, b̃) ≥ λb}. The embedding b̃ of the
attribute b may in general be different from the attribute embedding b that is used for Emb,
similar to how word embedding models learn two types of embeddings for each word. The
scalar λb represents a threshold, which we allow to be attribute-dependent for generality.
For instance, we could have Lab(e) = {b ∈ A |σ(e · b) ≥ 0.5} = {b ∈ A | e · b ≥ 0}.
In the following, we will refer to (φ, ψ) as an embedding strategy and to (Emb,Lab) as an
embedding. Note that the embedding (Emb,Lab) is determined by the embedding strategy
(φ, ψ), together with the embeddings a and ã of the attributes in A.

Consequence Relations The function Lab ◦ Emb can be viewed as a logical conse-
quence relation. In particular, we say that an embedding (Emb,Lab) captures the rule
a1 ∧ ... ∧ an → b iff b ∈ Lab(Emb(a1, ..., an)), i.e. if an entity that is initially associated
with the attributes a1, ..., an would be predicted to have attribute b based on its embed-
ding. Note that under this view, the dependency mother ≡ parent∧ female can be satisfied
for the aforementioned choices of Emb and Lab, for instance by choosing parent = (−1, 1),
female = (1, 1) and mother = (0, 1). However, now the issue is that a number of unwanted
dependencies are also satisfied, such as female→ mother and parent→ mother. Therefore,
rather than treating rules in isolation, the question we are interested in is the following:
given a propositional knowledge base K and a given embedding strategy (φ, ψ), does there
exist a corresponding embedding (Emb,Lab) (or, equivalently, do there exist attribute em-
beddings) such that for all b ∈ A and {a1, ..., an} ⊆ A we have that b ∈ Lab(Emb(a1, ..., an))
iff K |= a1 ∧ ... ∧ an → b holds, where |= is the standard entailment relation from proposi-
tional logic. If this is the case, we say that the embedding strategy (φ, ψ) can simulate K.
In Section 4, we will similarly look at whether non-monotonic consequence relations can
be simulated with embeddings. Throughout this paper, we will assume that the number of
dimensions m can be chosen arbitrarily large, as our focus is on identifying limitations that
exist regardless of dimensionality. An overview of our results is shown in Table 1.

3. Monotonic Reasoning

In Sections 3.1–3.3, we first discuss embedding strategies which are not capable of capturing
certain kinds of propositional knowledge bases. Crucially, these strategies cover many of
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Emb(a1, ..., an) Lab(e) Monotonic Non-mon.

1
n

∑
i ai {b | e · b̃ ≥ λb} 7 7

1
n

∑
i ai {b | d(e, b̃) ≤ θb} 7 7∑

i ai

‖
∑

i ai‖ {b | e · b̃ ≥ λb} 7 7∑
i ai

‖
∑

i ai‖ {b | d(e, b̃) ≤ θb} 7 7

arg maxe

∑
i log σ(e · ai) + κ‖e‖2 {b | e · b̃ ≥ λb} 7 7

arg maxe

∑
i log σ(e · ai) + κ‖e‖2 {b | d(e, b̃) ≤ θb} 7 7

1
n

∑
i ai {b |ReLU(e) · b ≥ 0} 3 3

a1 � ...� an {b | e · b̃ ≥ 0} 3 3

a1 � ...� an {b | e · b ≥ 0} 7 7

max(a1, ...,an) {b |b � e} 3 7

Table 1: Overview showing which type of embeddings are able to model monotonic and
non-monotonic dependencies.

the most popular embedding models. Section 3.4 then discusses embedding strategies which
are capable of modelling arbitrary propositional knowledge bases.

3.1 Averaging Based Embeddings

One of the most natural choices for the embedding function Emb consists in averaging the
attribute embeddings, i.e.:

Embavg(a1, ..., an) =
1

n
(a1 + ...+ an) (1)

This choice corresponds, among many others, to the common strategy of learning sentence
or document vectors by averaging word vectors. It is also closely related to the CBOW
model from Mikolov et al. [2013]. As the labelling function, we first consider the common
choice to model the probability that entity e has attribute a as σ(e · a). However, since
each condition of the form σ(e · a) ≥ δ, with 0 < δ < 1, is equivalent to the condition
e · a ≥ σ−1(δ), we use a simple dot product in the formulation:

Labdot(e) = {b ∈ A | e · b̃ ≥ λb} (2)

where λb ∈ R is a threshold that may in general be attribute-specific. We will use φavg
and ψdot to denote the pooling functions associated with Embavg and Labdot. For the ease
of presentation, throughout the paper, we will similarly use subscripts to link embedding
and labelling functions to their corresponding pooling functions, rather than each time
introducing these notations explicitly. Note that the embedding strategy (φavg, ψdot) also
covers models where a linear transformation is applied to the average of the attribute
embeddings, as is the case for the à la carte method from Khodak et al. [2018].

As the following counterexample shows, not all propositional knowledge bases can be
simulated with embeddings of the form (Embavg,Labdot).
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Counterexample 1. Let K = {a ∧ b → x, c ∧ d → x}. We show that K cannot be
simulated by (φavg, ψdot). Indeed, if a suitable embedding existed, among others the following
inequalities would have to be satisfied:

a + b

2
· x̃ ≥ λx

c + d

2
· x̃ ≥ λx

a + c

2
· x̃ < λx

b + d

2
· x̃ < λx

This is not possible, since the first two inequalities imply (a + b + c + d) · x̃ ≥ 4λ whereas
the last two imply (a + b + c + d) · x̃ < 4λ.

Another natural choice for the labelling function is to rely on Euclidean distance:

Labdist(e) = {b ∈ A | d(e, b̃) ≤ θb} (3)

where θb ≥ 0. It is easy to verify that the knowledge base from Counterexample 1 can
be simulated by choosing a = (−1, 0), b = (1, 0), c = (0,−1), d = (0, 1) and x̃ = (0, 0).
However, as the following counterexample shows, not all knowledge bases can be simulated
using Embavg and Labdist either.

Counterexample 2. Let K = {a ∧ b → x, c ∧ d → x, a ∧ c → y, b ∧ d → y}. We
show that K cannot be simulated by (φavg, ψdist). Indeed, suppose that a suitable embedding
(Embavg,Labdist) existed. From the rules with x in the head, it follows that d2

(
a+b
2 , x̃

)
+

d2
(
c+d
2 , x̃

)
< d2

(
a+c
2 , x̃

)
+ d2

(
b+d
2 , x̃

)
. This is equivalent with:

‖a‖2 + ‖b‖2 + ‖c‖2 + ‖d‖2 + 8‖x‖2 + 2(a · b + c · d)− 4(a + b + c + d) · x̃
< ‖a‖2 + ‖c‖2 + ‖b‖2 + ‖d‖2 + 8‖x‖2 + 2(a · c + b · d)− 4(a + b + c + d) · x̃

which simplifies to a · b + c · d < a · c + b · d. In the same way, using the rules with y in
the head, we find a · b + c · d > a · c + b · d, which is a contradiction.

To illustrate the relevance of these results, let the attributes a1, ..., an correspond to the
words that are observed in a document d, and suppose that other attributes, which are
not observed, correspond to document categories. We may want the embedding model to
capture rules such as tennis ∧ player ∧ won→ cat:sports, meaning that if the words tennis,
player and won appear in a document, then it should belong to the category sports. Our
results show that, in general, such dependencies cannot be captured when Embavg is used
in combination with Labdot or Labdist. For instance, this means that there are theoretical
limitations to the kinds of categories that may be predicted from document embeddings
when using the à la carte method from [Khodak et al., 2018] together with a linear classifier.

3.2 Embeddings as Normalised Averages

Let us now consider the following embedding function, which represents entities using nor-
malised vectors:

Embnorm(a1, ..., an) =
a1 + ...+ an
‖a1 + ...+ an‖

(4)

provided ‖a1 + ... + an‖ > 0, and Embnorm(a1, ..., an) = 0 otherwise. Entity vectors can
then be understood as maximum likelihood estimates, if we view attributes as von Mises-
Fisher distributions, which is a common choice when modelling text [Banerjee et al., 2005,
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Batmanghelich et al., 2016, Meng et al., 2019]. In particular, if p(e|a) is a von Mises-Fisher
distribution with mean a

‖a‖ and concentration parameter ‖a‖, for each a ∈ A, then we have:

Embnorm(a1, ..., an) = arg max
e

n∏
i=1

p(e|ai) s.t. ‖e‖ = 1

= arg max
e

n∑
i=1

e · ai s.t. ‖e‖ = 1

The question of whether propositional knowledge bases can be simulated with Embnorm is
thus relevant for understanding the limitations of von Mises-Fisher based topic models and
document representations [Meng et al., 2019, Batmanghelich et al., 2016]. The following
counterexample shows that not all knowledge bases can be simulated with Embnorm. While
the use of normalised averages is intuitively similar to the averages from Section 3.1, the
counterexample in this case is more involved.

Counterexample 3. Let K = {a∧b→ x, c∧d→ x, a∧c→ y, b∧d→ y, a∧d→ y, b∧c→ y}.
We show that K cannot be simulated by (φnorm, ψdot). Indeed, suppose that a suitable
embedding (Embnorm,Labdot) existed. Then we must have λx > 0 and λy > 0, which follows
immediately from the fact that Embnorm(∅) = 0 while K 6|= > → x and K 6|= > → y. For the
ease of presentation, let us introduce the following abbreviations: yab = a+b

‖a+b‖ and similar

for yac,yad,ybc,ybd,ycd. Consider the hyperplane H defined by H = {e | e·(λxỹ−λyx̃) = 0}.
If e belongs to the positive half-space H+ = {e | e · (λxỹ − λyx̃) ≥ 0}, we have:

e · ỹ ≥ λy
λx

e · x̃

This implies that either e · x̃ < λx or e · ỹ ≥ λy. We thus find in particular that yab and
ycd do not belong to this positive half-space H+. In the same way, we find that yac, ybd,
yad and ybc do not belong to the negative half-space H− = {e | e · (λxỹ − λyx̃) ≤ 0}. Note
that when e1, e2 ∈ H+, we also have e1 + e2 ∈ H+ and e1+e2

‖e1+e2‖ ∈ H
+, and similar for H−.

Since yab,ycd ∈ H−, at least one of a,b must thus belong to H− and at least one of c,d
must belong to H−. Assume for instance that a ∈ H− and c ∈ H−; the other cases follow
by symmetry. From a ∈ H− and c ∈ H−, we find that yac ∈ H−, which is a contradiction.

While we used Labdot in the above counterexample, the result also holds for Labdist. Indeed,
since ‖e‖ = 1, we have d(e, b̃) ≤ θb iff d2(e, b̃) ≤ θ2b iff e · b̃ ≥ 1

2(1 + ‖b̃‖2 − θ2b ). We thus
have that K can be simulated by (φnorm, ψdot) iff it can be simulated by (φnorm, ψdist).

3.3 Sigmoid Based Embeddings

We now turn to the common choice of modelling attribute probabilities using the sigmoid
function, i.e. let us assume that σ(e ·a) represents the probability that entity e has attribute
a. A natural choice for inferring the embedding of e is then to maximise the likelihood of
the observed attributes a1, ..., an:

Embsig(a1, ..., an) = arg max
e

n∑
i=1

log σ(e · ai) + κ‖e‖2 (5)
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where κ > 0 is a constant. This embedding strategy closely corresponds to the skip-gram
model [Mikolov et al., 2013], with two differences. First, the standard skip-gram model does
not include the regularisation term κ‖e‖2. Here, we need to add this term, which amounts
to imposing a Gaussian prior, to ensure that Embsig is well-defined1. Second, the skip-gram
model also includes negative samples. However, since 1 − σ(e · a) = σ(−e · a), negative
samples can be considered as a special case where some of the attributes ai capture the
fact that another attribute bi is not present, by constraining the embedding such that ai =
−bi. The limitations of the embedding function Embsig thus still apply to settings where
negative samples are used. The following counterexample shows that arbitrary propositional
knowledge bases cannot be modelled with Embsig and Labdot.

Counterexample 4. The main idea is to follow the same strategy as in Counterexample 3,
which is possible thanks to the fact that Embsig(a, b) is a conical combination of Embsig(a)
and Embsig(b), provided cos(a,b) > −1. Some care is needed to ensure that the latter
condition is satisfied for various pairs of attributes.

Let K = {a ∧ b→ x, c ∧ d→ x, a ∧ c→ y, b ∧ d→ y, a ∧ d→ y, b ∧ c→ y, a→ zab, b→
zab, a→ zac, c→ zac, a→ zad, d→ zad, b→ zbc, c→ zbc, b→ zbd, d→ zbd, c→ zcd, d→ zcd}.
We show that K cannot be simulated by (φsig, ψdot). Suppose that a suitable embedding
(Embsig,Labdot) existed. Note that ya = αaa and yb = αbb for some αa, αb > 0. Since
we have λzab > 0 (which follows in the same way as λx > 0), it must be the case that
cos(ya, z̃ab) > 0 and cos(yb, z̃ab) > 0, which means cos(a, z̃ab) > 0 and cos(b, z̃ab) > 0,
which implies cos(a,b) > −1. This, in turn, implies that yab is a conical combination of
ya and yb. We similarly have that yac, yad, ybc, ybd and ycd are conical combinations
of the corresponding attribute vectors. Consider again the hyperplane H defined by H =
{e | e · (λxỹ − λyx̃) = 0} from Counterexample 3, and the positive and negative half-spaces
H+ and H−. When e1, e2 ∈ H+, we also have µ1e1 + µ2e2 ∈ H+ for µ1, µ2 ≥ 0, i.e. if
e1 and e2 are in H+ then the same is true for any conical combination of e1 and e2, and
similar for H−. We thus obtain a contradiction in the same way as in Counterexample 3.

In the appendix, we provide a similar counterexample for the strategy (φsig, ψdist). Note
that Counterexample 4 only relies on the fact that Embsig(a1, ..., an) is a conical combination
of a1, ...,an. The same counterexample can thus be used for other embeddings strategies
that rely on a weighted average of attribute vectors with non-negative weights.

3.4 Modelling Monotonic Dependencies with Embeddings

Thus far, we have found that standard embedding strategies are not capable of simulating
even basic sets of Horn rules. It turns out, however, that this limitation can be solved by
adding a non-linearity to the labelling function:

Labrelu(e) = {b ∈ A |ReLU(e) · b ≥ 0} (6)

where the ReLU function is applied component-wise. Note that in the definition of Labrelu
we fixed the threshold at 0 and we fixed a = ã for all a ∈ A, to highlight the fact that this
restricted definition is already sufficient for modelling propositional dependencies.

1. In particular, this ensures that the maximum is attained for a vector with finite coordinates. This vector
may not be unique, however, in which case we assume that an arbitrary maximising vector e is chosen.
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Proposition 1. For any propositional knowledge base K over A, there exist embeddings of
the attributes in A such that b ∈ Labrelu(Embavg(a1, ..., an)) iff K |= a1 ∧ ... ∧ an → b.

Proof. Let mod(K) = {ω1, ..., ωl} be the set of models of K. We define the embedding
a = (xa1, ..., x

a
l+1) of the attribute a as follows:

xai =


1 if i ≤ l and ωi |= a

−δ if i ≤ l and ωi 6|= a

1 if i = l + 1

where δ is a constant which is chosen such that δ > 2|A|. Let e = (y1, ..., yl+1) =
Embavg(a1, ..., an). Let ni be the number of atoms from {a1, ..., an} that are satisfied in
ωi. Then we have yl+1 = 1 and for i ≤ l we have

yi =
1

n
(ni − (n− ni)δ)

In particular, we have yi = 1 if ωi |= {a1, ..., an} and yi < 0 otherwise (since δ > |A| ≥ ni).
We thus have:

ReLU(yi) =

{
1 if ωi |= {a1, ..., an}
0 otherwise

For b ∈ A, we find

ReLU(e) · b =1 + |{ω |ω |= K ∪ {a1, ..., an, b}| − δ|{ω |ω |= K ∪ {a1, ..., an,¬b}|

In particular, we have ReLU(e) · b ≥ 0 iff |{ω |ω |= K ∪ {a1, ..., an,¬b}| = 0, which is
equivalent to K |= a1 ∧ ... ∧ an → b.

Note that the proof can be straightforwardly adapted to other types of non-linearities. For
instance, with sigmoid instead of ReLU, by choosing δ sufficiently large, we can ensure that
σ(yi) is arbitrarily close to 0 when ωi 6|= {a1, ..., an}, and rely on the same argument.

Next we consider the following embedding function:

Embhad(a1, ..., an) = a1 � ...� an (7)

where we write � for the Hadamard product (i.e. the component-wise product of vectors).
In the appendix, we show the following result, using a construction that is very similar to
the one from the proof of Proposition 1.

Proposition 2. For any propositional knowledge base K over A, there exist embeddings of
the attributes in A such that b ∈ Labdot(Embhad(a1, ..., an)) iff K |= a1 ∧ ... ∧ an → b.

Note that in contrast to the setting from Proposition 1, here we allow a 6= ã. It is easy to
see that this additional freedom is necessary, since otherwise any embedding modelling a
rule of the form a → b would also model the reversed rule b → a. Finally, we consider the
embedding strategy that is used in the order embeddings from Vendrov et al. [2016]:

Embord(a1, ..., an) = max(a1, ...,an) Labord(e) = {b ∈ A |b � e}
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where we write max for the component-wise maximum of the vectors and � is the product
order, i.e. (x1, ..., xn) � (y1, ..., yn) iff xi ≤ yi for all i ∈ {1, ..., n}. This embedding model
was proposed to improve how hierarchical relations can be encoded. However, as the next
result shows, it also allows us to simulate other kinds of propositional dependencies.

Proposition 3. For any propositional knowledge base K over A, there exist embeddings of
the attributes in A such that b ∈ Labord(Embord(a1, ..., an)) iff K |= a1 ∧ ... ∧ an → b.

Proof. Let mod(K) = {ω1, ..., ωl} be the set of models of K. If K is inconsistent, we can
simply choose a = 0 for every a ∈ A, with 0 a vector of zeroes of an arbitrary dimension.
Now suppose |mod(K)| > 0. We define the embedding a = (xa1, ..., x

a
l ) of the attribute a as

follows:

xai =

{
0 if ωi |= a

1 otherwise

Let e = (y1, ..., yl) = Embord(a1, ..., an). Then we have yi = 0 if ωi |= {a1, ..., an} and yi = 1
otherwise. We thus have b � e iff ∀i.(xbi = 1)⇒ (yi = 1) iff ∀i.(ωi 6|= b)⇒ (ω 6|= {a1, ..., an})
iff K |= a1 ∧ ... ∧ an → b.

Order embeddings essentially represent each attribute as an axis-aligned cone (where the
vector components are viewed as lower bounds). Other region based embedding models can
be used to model monotonic dependencies in a similar way, including e.g. box embeddings
[Vilnis et al., 2018] and hyperbolic entailment cones [Ganea et al., 2018].

4. Non-Monotonic Reasoning

We now consider a standard ranking-based semantics of default rules [Lehmann and Magi-
dor, 1992]. Let Θ be a stratified knowledge base, i.e. a ranked list of formulas (α1, ..., αk).
Then we say that Θ |= α B β iff there is some i ∈ {0, ..., k} such that α1 ∧ ... ∧ αi ∧ α |= β
and α1 ∧ ... ∧ αi ∧ α 6|= ¬β. The formula α B β intuitively means that “if α holds then
typically also β holds”. This semantics of default rules can equivalently be characterised
in terms of the maximum a posteriori (MAP) consequences of a probabilistic model, i.e.
α B β is inferred iff β is true in the most probable models of α [Kuzelka et al., 2016].

Example 1. Consider the following stratified knowledge base:

Θ = (¬cat:technology ∨ ¬cat:food, apple ∧ safari→ cat:technology, apple→ cat:food)

It can be verified that Θ |= apple B cat:food and Θ |= apple ∧ safari B cat:technology, while
Θ 6|= apple ∧ safari B cat:food.

We now analyse whether an embedding can be found such that b ∈ Lab(Emb(a1, ..., an))
iff Θ |= a1 ∧ ... ∧ an B b. Clearly, embedding strategies which cannot be used to simulate
monotonic reasoning cannot be used to simulate this form of non-monotonic reasoning
either. This is because we can choose Θ1 = (α1), where α1 is the conjunction of all formulas
in a propositional knowledge base K. However, we find that the strategy (φavg, ψrelu) can
be used to model non-monotonic attribute dependencies.
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Proposition 4. For any stratified knowledge base Θ over A, there exist embeddings of the
attributes in A such that b ∈ Labrelu(Embavg(a1, ..., an)) iff Θ |= a1 ∧ ... ∧ an B b.

Proof. Let Θ = (α1, ..., αm) and let ω1, ..., ωl be an enumeration of all interpretations over
A. To define the embeddings a = (xa1, ..., x

a
l ), we use the mapping µ defined by µ(ω) =

max{i |ω |= α1 ∧ ... ∧ αi}, where we assume µ(ω) = 0 if ω 6|= α1. We define:

xai =

{
δ2µ(ωi) if ωi |= a

−δ(1+2µ(ωi)) otherwise

where δ is chosen such that δ > 2|A|. Let e = (y1, ..., yl) = Embavg(a1, ..., an). Similar as in
the proof of Proposition 1 we then find yi < 0 iff ωi 6|= {a1, ..., an}, i.e.:

ReLU(yi) =

{
δ2µ(ωi) if ωi |= {a1, ..., an}
0 otherwise

For b ∈ A, we find that ReLU(Embavg(a1, ..., an)) · b is given by∑
ωi|={a1,...,an,b}

δ4µ(ωi) −
∑

ωi|={a1,...,an,¬b}

δ(1+4µ(ωi))

We thus have ReLU(Embavg(a1, ..., an)) · b ≥ 0 iff∑
ωi|={a1,...,an,b}

δ4µ(ωi) ≥
∑

ωi|={a1,...,an,¬b}

δ(1+4µ(ωi)) (8)

Let m+ = max{µ(ωi)|ωi |= {a1, ..., an, b}} and m− = max{µ(ωi)|ωi |= {a1, ..., ab,¬b}},
where we define m− = −1 if {a1, ..., an,¬b} is inconsistent (i.e. if b = ¬ai for some i). Then
we have that Θ |= a1 ∧ ... ∧ an B b is equivalent to m+ > m−. If m+ > m−, we find∑

ωi|={a1,...,an,b}

δ4µ(ωi) ≥ δ4m+
= δ3 · δ1+4(m+−1) > δ · δ1+4(m+−1) > 2|At| · δ1+4(m+−1)

≥ 2|At| · δ1+4(m−) ≥
∑

ωi|={a1,...,an,¬b}

δ(1+4µ(ωi))

Conversely, if m+ ≤ m− we find∑
ωi|={a1,...,an,b}

δ4µ(ωi) ≤
∑

ωi|={a1,...,an,b}

δ4m
+ ≤ 2|At| · δ4m+

< δ · δ4m+
= δ1+4m+ ≤ δ1+4m−

≤
∑

ωi|={a1,...,an,¬b}

δ(1+4µ(ωi))

where the last step relies on the fact that m+ ≤ m− implies m− ≥ 0 and thus there must be
some ωi such that ωi |= {a1, ..., an, b}. We thus have that Θ |= a1 ∧ ...∧ an B b is equivalent
to m+ > m−, which is equivalent to (9) and ReLU(Embavg(a1, ..., an)) · b ≥ 0.

In the appendix we show the following result, using a similar construction.
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Proposition 5. For any stratified knowledge base Θ over A, there exist embeddings of the
attributes in A such that b ∈ Labdot(Embhad(a1, ..., an)) iff Θ |= a1 ∧ ... ∧ an B b.

Finally, we show that the combination Embord and Labord cannot be used to model non-
monotonic dependencies. A similar limitation arises for all approaches which learn embed-
dings by taking the intersection of region-based attribute representations.

Counterexample 5. Let Θ = (a ∧ b → ⊥, a → x). To simulate Θ with an embedding of
the form (Embord,Labord), we need x � a and x 6� max(a,b). However, this is impossible
since a � max(a,b).

5. Concluding Remarks

It remains poorly understood how we can design embedding models to encourage different
kinds of dependencies to be captured (with the problem of embedding hierarchies being a
notable exception [Vendrov et al., 2016, Nickel and Kiela, 2017, Ganea et al., 2018]). The
analysis presented in this paper provides a step towards such an understanding. The abil-
ity of the ReLU-based labelling function to model monotonic and non-monotonic attribute
dependencies seems of particular interest, given how close it stays to standard embedding
models. While we have focused on propositional dependencies, our results also have im-
plications for knowledge graph embedding. For instance, bilinear models can be viewed as
instances of the sigmoid based embedding strategy, where attributes represent links to other
entities. The attribute vectors then depend on the embeddings of other entities, which are
iteratively updated. This makes it possible to capture certain types of relational dependen-
cies. Developing a better understanding of which types of relational dependencies can be
modelled in this way is an important avenue for future work. However, the results presented
in this paper already show that such models are not able to capture arbitrary dependencies.
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Appendix A. Counterexample for Embsig with Labdist

Let K be defined as in Counterexample 4, and let us again use the abbreviations of the
form yab and ya. We show that there must always exist a hyperplane H that separates
yab and ycd, on the one hand, from yac, yad, ybc and ybd, on the other hand. The fact
that K cannot be modelled using Embsig(a) and Labdist then follows in the same way as in
Counterexample 4.

Let us write Sx for the hypersphere around x̃ of radius θx, i.e. Sx = {e | d(e, x̃) ≤ θx},
and let Sy similarly be the hypersphere around ỹ of radius θy. If d(x̃, ũ) ≥ θx + θy, then
we can simply define H as any hyperplane that separates Sx and Sy. If d(x̃, ũ) < θx + θy,
then we choose H as the unique hyperplane that contains the intersection of the boundaries
of Sx and Sy, noting that this boundary cannot be empty, since yab,ycd ∈ Sx \ Sy and
yac,yad,ybc,ybd ∈ Sy \ Sx, meaning that we cannot have Sx ⊆ Sy or Sy ⊆ Sx. Moreover,
since yab,ycd ∈ Sx \ Sy and yac,yad,ybc,ybd ∈ Sy \ Sx, in both cases we clearly have that
H separates yab,ycd from yac,yad,ybc,ybd.

Appendix B. Proof of Proposition 2

Let mod(K) = {ω1, ..., ωl} be the set of models of K. We define the embeddings a =
(xa1, ..., x

a
l+1) and ã = (x̃a1, ..., x̃

a
l+1) of the atom a as follows:

xai =


1 if i ≤ l and ωi |= a

0 if i ≤ l and ωi 6|= a

1 if i = l + 1

x̃ai =


1 if i ≤ l and ωi |= a

−δ if i ≤ l and ωi 6|= a

1 if i = l + 1
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where δ is a constant satisfying δ > 2|A|. Let us write Embhad(a1, ..., an) = y = (y1, ..., yl+1).
Then we clearly have:

yi =

{
1 if ωi |= {a1, ..., an}
0 otherwise

For b ∈ A, we find

y · b̃ = 1 + |{ω |ω |= K ∪ {a1, ..., an, b}| − δ|{ω |ω |= K ∪ {a1, ..., an,¬b}|

Note that we have y · b̃ ≥ 0 iff |{ω |ω |= K∪{a1, ..., an,¬b}| = 0, since we assumed δ > 2|A|.
We have |{ω |ω |= K ∪ {a1, ..., an,¬b}| = 0 iff K ∪ {a1, ..., an} |= b iff K |= a1 ∧ ...∧ an → b.
In particular, we have:

(Embhad(a1, ..., an) · b̃ ≥ 0) ⇔ (K |= a1 ∧ ... ∧ an → b)

Appendix C. Proof of Proposition 5

Let Ω = (α1, .., αm) and let ω1, ..., ωl be an enumeration of all interpretations over A. We
define the embedding a = (xa1, ..., x

a
l ) as follows:

xai =

{
1 if ωi |= a

0 otherwise

To define the embedding ã = (x̃a1, ..., x̃
a
l ), we use the mapping µ defined by µ(ω) =

max{i |ω |= α1 ∧ ... ∧ αi}, where we assume µ(ω) = 0 if ω 6|= α1:

x̃ai =

{
δ2µ(ωi) if ωi |= a

−δ(1+2µ(ωi)) otherwise

where δ is a constant which is chosen such that δ > 2|A|. Let us write Embhad(a1, ..., an) =
y = (y1, ..., yl). Note that we have:

yi =

{
1 if ωi |= {a1, ..., an}
0 otherwise

For b ∈ A, we find

y · b̃ =
∑

ωi|={a1,...,an,b}

δ2µ(ωi) −
∑

ωi|={a1,...,an,¬b}

δ(1+2µ(ωi))

We thus have y · b̃ ≥ 0, i.e. b ∈ Labdot(y), iff∑
ωi|={a1,...,an,b}

δ2µ(ωi) ≥
∑

ωi|={a1,...,an¬b}

δ(1+2µ(ωi)) (9)
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Let m+ = max{µ(ωi)|ωi |= {a1, ..., an, b}} and m− = max{µ(ωi)|ωi |= {a1, ..., an,¬b}},
where we define m− = −1 if {a1, ..., an,¬b} is inconsistent (i.e. if b = ¬ai for some i). Then
we have Θ |= a1 ∧ ... ∧ an B b iff m+ > m−. If m+ > m−, we find∑

ωi|={a1,...,an,b}

δ2µ(ωi) ≥ δ2m+
= δ · δ1+2(m+−1) > 2|A| · δ1+2(m+−1) ≥ 2|A| · δ1+2(m−)

≥
∑

ωi|={a1,...,an,¬b}

δ(1+2µ(ωi))

Now, conversely, suppose m+ ≤ m−. Then we have∑
ωi|={a1,...,an,b}

δ2µ(ωi) ≤
∑

ωi|={a1,...,an,b}

δ2m
+ ≤ 2|A| · δ2m+

< δ · δ2m+
= δ1+2m+ ≤ δ1+2m−

≤
∑

ωi|={a1,...,an,¬b}

δ(1+2µ(ωi))

where the last step relies on the fact thatm+ ≤ m− impliesm− ≥ 0, and hence {a1, ..., an,¬b}
must be consistent. We thus have that m+ > m− is equivalent to

∑
ωi|={a1,...,an,b} δ

2µ(ωi) ≥∑
ωi|={a1,...,an¬b} δ

(1+2µ(ωi)), which is equivalent to b ∈ Labdot(Embhad(a1, ..., an)).
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