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Summary

Humans sample visual information by making eye movements towards different parts of their 

surroundings. Understanding what guides this sampling process is an important goal of vision 

science, and the present thesis is a contribution to this endeavour. Chapter One provides an  

overview  of  factors  influencing  human  eye  movements,  which  are  typically  divided  into 

bottom-up (stimulus-dependent) and top-down (observer-dependent) processes. One of the 

challenges  in  studying  these  factors  stem  from  the  fact  that  they  are  often  difficult  to 

operationalize  in  a  precise,  unambiguous  way.  This  is  particularly  problematic  for  semantic 

information  contained  in  visual  scenes  (‘image  meaning’),  a  top-down  factor  which  is  the 

backbone of the recently proposed framework for understanding human eye movements: the 

meaning  maps  approach.  Chapter  Two  evaluates  this  approach  and  demonstrates  that 

meaning maps – a crowd-sourced method designed to quantify the distribution of meaning in 

natural scenes – might be sensitive to complex visual features, rather than meaning. Chapter  

Three builds on that finding and shows that contextualized meaning maps, the most recent 

variant of the original meaning maps, share the limitations of their predecessors. Chapter Four  

adopts a novel perspective on eye-movement control and focuses on the interactions between 

image features (a bottom-up factor) and prior object-knowledge possessed by an observer (a 

top-down factor). Specifically, it shows that the same stimuli – black and white, Mooney-style 

two-tone images – are looked at differently  depending on whether the observer possesses 

object-knowledge that enables them to bind images into coherent percepts of objects. The 

final  chapter  summarizes  the  thesis  and  maps  the  future  directions  for  studies  on  eye 

movements. Taken together, findings reported here indicate that while top-down factors such 

as prior object-knowledge play a crucial role in guiding human gaze, the tools to study them 

offered by the meaning maps approach still need to be improved.
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Chapter One – general introduction

Eye movements and vision
Eye movements are integral to our ability to see. Our visual system is structured in such a way 

that we can see fine detail only in a small patch in the centre of our visual field called the fovea.  

The resolution drops off rapidly as a stimulus moves away from central vision  (Anstis, 1974; 

Rosenholtz, 2016; Sloan, 1961; Stewart, Valsecchi, & Schütz, 2020). This restriction of our visual 

system is  thought to be due to the metabolic  costs  of  high-resolution perception,  and the 

spatial constraints of the human skull  (Akbas & Eckstein, 2017; Schwartz, 1994). A brain that 

would allow us to enjoy the same amount of detail found in the fovea in all locations of the 

visual field, would have to be much larger than it is now. Humans and many other visually-

oriented animals have found an elegant and efficient way that allows combining a large visual 

field with high-acuity vision: we use saccades – rapid, stereotypical eye movements – to orient  

the high-resolution part of our visual system successively to different parts of a visual scene. 

Information about these small scene parts is extracted during fixations – short periods in which 

the eyes are relatively stable – and this local information is used to gradually build up the scene 

representation that we consciously experience  (Rolfs,  2015; Wurtz,  Joiner, & Berman, 2011). 

Thus, due to the structure of our visual system, human vision depends on eye movements. How 

the  brain  decides  where  to  look  is  therefore  an  important  question  that  has  attracted 

considerable attention from a wide range of different fields, ranging from cognitive psychology 

and  neuroscience  to  computer  science  and  machine  vision. This  thesis  is  a  part  of  this 

interdisciplinary  endeavour.  It  makes  a  contribution  towards  understanding  human  eye-

movements control in the context of natural-scene viewing – the situation when individuals 

look at static depictions of real-world environments or objects (e.g., a photograph). 

Studying eye movements: in the lab and in the wild

Studying  oculomotor  behaviour  involves  recording  the  eye  movements  of  individuals.  The 

current eye-tracking technology allows these recordings in two different settings. In the first 

setting,  participants  wear  eye-tracking  glasses  and move  around in  the  environment  in  an 

unconstrained fashion (e. g., walk down the street; Foulsham et al., 2011) or perform real-world 
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tasks requiring complex motor activity, e. g. make a sandwich  (Hayhoe et al.,  2003) or play 

cricket  (Land & McLeod, 2000). In the second setting, eye movements are recorded in the 

laboratory, where the participants – frequently called ‘observers’, in line with the convention 

used in vision science – look at stimuli  displayed on a computer screen.  The key difference 

between both settings pertains to the extent to which the participants can control the visual 

input in ways other than by their eye movements. In the first setting, participants control the  

possible  inputs  that  are  then  explored  by  eye  movements.  In  the  second  setting,  this  is  

controlled by the experimenter. While the first, ‘real world’, setting is ideal to investigate the 

overall sampling strategy of the organism, it provides challenges when a researcher wants to  

isolate the distinct contribution of the eye movements to that strategy.

This thesis  describes experiments conducted in a laboratory.  Such setting has a number of 

advantages compared to  the first  approach.  The  laboratory-based studies  enable  exposing 

observers  to  a  large  range  of  stimuli,  including  artificial  stimuli,  which  are  unlikely  to  be  

encountered  in  the  real  world.  Moreover,  a  laboratory-based  approach  provides  far  more 

control over stimulus properties and enables studying eye-movement behaviours which are 

uncommon in everyday life, such as making saccades in the direction opposite to the direction 

indicated by a visual cue (antisaccade task; Hallett, 1978).

Despite  these  advantages,  lab-based  studies  have  been  criticized  because  of  the  lack  of 

ecological validity  (Foulsham & Kingstone, 2017; Tatler, Hayhoe, Land, & Ballard, 2011b). This 

critique was targeted predominantly at studies that used a similar approach to the experiments 

described in Chapters One and Two of this thesis, in which observers viewed photographs of  

natural  scenes  on  a  computer  screen.  Such  situation  creates  the  conditions  for  visual 

exploration which differ a lot from a major part of everyday human experience. Specifically, the 

laboratory-based studies impose strong constraints on what the observer is allowed to do – for 

example, they usually cannot move their head. Next, usually, the onset of images presented in 

experiments is sudden, which, again, is uncommon ‘in the wild’ and is known to affect visual  

processing  (Dorr, Martinetz,  Gegenfurtner, & Barth,  2010; see also Wu et al.,  2013).  Further 

aspects of viewing images in a laboratory which makes this situation different from exploring 

visual  environment  naturally  are  the  fact  that  images  are  framed  by  the  screen  (which 
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introduce viewing biases; Bindemann, 2010) and the lack of binocular depth cues resulting from 

the two-dimensionality of images.

Indeed, there are cases when individuals exhibit  different behaviours in the lab and ‘in the 

wild’. A striking example here is the finding that while people have a strong tendency to direct 

their eyes at faces on images (Cerf, Paxon Frady, & Koch, 2009; Flechsenhar & Gamer, 2017), in 

the real world they rather avoid looking at strangers directly and resort to monitoring other  

people’s  behaviour  by  means  of  covert  attention  (Dosso,  Huynh,  &  Kingstone,  2020).  This 

finding  clearly  warrants  caution  when  generalising  from  lab-based  effects  to  real-world  

behaviour. Note, however, that this example pertains only to a specific kind of stimulus and a  

specific effect. It is not clear whether similar caveats exist for more general effects.

The  concerns  regarding  lab-based  eye-movement  studies  are  particularly  pressing  if  it  is 

assumed that investigating real-world situations, which involve acting in the environment and 

interacting with it by means of a whole body, is the main goal of research on eye movements in 

natural-scene viewing.  However,  this  definition of  what constitutes  a ‘real-world situations’  

does not take into account the fact that looking at a screen with rapidly changing images is a  

common human activity, at least in industrialised societies, where the access to computers, 

television sets and smartphones is ubiquitous. Despite the availability of technology that allows 

studying eye movements in real-world settings,  the ubiquity of this  image-viewing situation 

keeps fuelling the interest in both basic and applied research on this process. Furthermore, 

photographs in laboratory-based eye-tracking experiments can be viewed as stimuli in and of  

themselves, and not just the imperfect proxies of the real-world environments. For example, 

when treated as such, they have been proven to be useful tools for revealing the individual 

differences in gaze behaviour related to cultural origin  (Chua, Boland, & Nisbett, 2005; Goh, 

Tan,  &  Park,  2009) or  personality  traits  (De  Haas,  Iakovidis,  Schwarzkopf,  & Gegenfurtner, 

2019).  For  instance,  a  recent  study  by  de  Haas  and  colleagues  (2019) demonstrated  that 

individuals  exhibit  large  and robust  differences  in  the  amount  of  time  they  spend fixating 

elements of scenes possessing certain semantic attributes, like ‘being text’,  ‘being related to 

motion’ or ‘being a face’. Moreover, the proportion of first fixations after image onset made by 

individuals towards faces was correlated with their face recognition skills.
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Eye movements and attention

Before proceeding to outlining the possible  ways of addressing  the question of what guides 

human gaze in natural-scene viewing, it is worthwhile asking a meta-question: what does one 

really  investigate,  when  investigating  human  gaze?  One  typical  answer  would  be  that  eye 

movements provide a means to index ‘spatial attention’. The tight coupling of gaze location 

and the  locus  of  attention  is  both  an  intuition  common  among  laymen  (Guterstam,  Kean, 

Webb, Kean, & Graziano, 2019) and a well-supported empirical finding  (Deubel & Schneider, 

1996).  However, there are  two reasons for which I  refrain  from using the term ‘attention’ 

when  referring to gaze position in this  thesis.  First,  attention can operate at the locations, 

which are not fixated: the distinction between overt (i.e., operating at the fixated location) and 

covert (operating at the location which is not fixated) attention is one of the cornerstones of 

cognitive  psychology  (Posner,  1980).  Therefore,  even  if  eye  movements  and  attention  are 

often linked, equating changes of gaze position with changes of the locus of attention is not 

always  justified.  Second,  even in  cases  when the  locus  of  spatial  attention  and a  fixation-

location  are  aligned,  there  are  still  many possible  types of  attention to be considered,  for 

example object-based attention  (Duncan, 1984; Egly, Driver, & Rafal, 1994) or features-based 

attention (Maunsell & Treue, 2006; Rossi & Paradiso, 1995). More generally speaking, there is 

an  abundance  of  theories  of  attention  (Logan,  2004),  so  this  term  can  be  interpreted  in 

different ways, depending on the theory of attention, to which a reader subscribes. Therefore,  

considering  the  allocation  of  fixations  as  a  sampling  process,  carries  fewer theoretical 

assumptions  and  is  better  grounded  in  the  data  than  using  the  term  ‘attention’.  This 

terminological choice is shared by the majority of authors, who I cite in this thesis (albeit not by 

all of them – for example, see Bylinskii et al., 2015 or Henderson, 2020).

Bottom-up vs. top-down dichotomy: an overview

Focusing on the role the eye movements play in  vision – propelled and propagated by  an 

approach to studying vision called  active vision  (Berman & Colby,  2009; Gilchrist  & Findlay, 

2001) –  led  to  recognising  that  understanding  this  sampling  process  is  essential  for 

understanding  the  primate  visual  system.  Therefore,  answering  the  questions  about  what 

guided eye movements became an object of intensive investigation. In almost all of the works, 

5



which I cite in this thesis, the factors that are thought to guide eye movements are divided into 

two  broad  categories.  The  first  category  encompasses  image-computable  visual  features, 

which are processed in a bottom-up manner. The second category relates to internal states of 

the  observer,  influencing  stimulus  processing  in  a  top-down way.  This  ‘bottom-up  vs.  top-

down’ dichotomy is not specific to this particular research field; it rather reflects the historic 

development of how researchers think about perception in domains such as psychology, vision 

science,  and philosophy  (Cavanagh, 2011;  Firestone & Scholl,  2015;  Pylyshyn,  1980; Teufel  & 

Nanay, 2016) but see Awh, Belopolsky, & Theeuwes, 2012).

However, before proceeding to that review, it  must be noted that the dichotomy between 

bottom-up  and top-down processes  does  not  capture  the  nature  of  all  factors  influencing 

oculomotor  behaviour.  In  many  studies,  the  additional  factors,  considered  separately,  are 

spatial biases (for example,  see Kollmorgen et al.,  2010 or Benjamin W. Tatler et al.,  2005). 

Spatial biases are tendencies to fixate certain scene regions more than others. The most well-

known bias is the centre bias: observers have the tendency to fixate central image region more 

often than the regions closer to image edges  (Tatler & Vincent, 2008). This bias is especially 

prominent  at  the  beginning  of  image  viewing  which  might  indicate  that  it  is  a  part  of  an  

involuntary  response  elicited  by  sudden  image  onset  (Bindemann,  2010;  Rothkegel, 

Trukenbrod, Schütt,  Wichmann, & Engbert, 2017).  Its persistence throughout image viewing 

might, in turn, reflect the fact that interesting objects on photographs tend to be located in  

their  central  region  (Tseng  et  al.,  2009,  but  see  Benjamin  W.  Tatler,  2007).  A  second,  less 

prominent, bias is a leftwards bias: the tendency to direct more fixations towards the left-hand 

side of an image (Nuthmann & Matthias, 2014). It has been hypothesized that this bias – at least 

in samples from Western cultures – is related to the fact that observers read texts starting from 

the  left-hand  side  (Foulsham,  Gray,  Nasiopoulos,  &  Kingstone,  2013).  An  alternative,  less 

culture-specific, explanation of this bias is that it originates from the hemispheric asymmetries 

in the brain’s attentional system (Ossandón, Onat, & König, 2014).

Bottom-up processing, visual features, and saliency models

The idea that image features can guide eye movements is rooted in the Feature Integration 

Theory, an influential theory of attention proposed by Treisman and Gelade  (1980). In brief, 

according to this theory, different low-level features of the input – such as colour or orientation 
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– are analysed in parallel and combined into a ‘master map’  (A. Treisman & Gormican, 1988). 

This map codes for the ‘interestingness’ or ‘saliency’ of each location in the visual field based 

on the low-level features in that area. Feature Integration Theory posits that attention – like a 

spotlight  –  serially  visits  the most  salient  locations  on the  master  map  and integrates  the 

features encountered there into objects. 

The concept of a saliency map easily lends itself to computational modelling. This fact, together 

with  a  wider  access  to  modern  computers,  sparked  an  outpouring of  attempts  to  build 

computational models of attentional selection  (Itti & Koch, 2000, 2001; Itti,  Koch, & Niebur, 

1998; Koch & Ullman, 1987). The core assumption of these models was that attention operates 

like an outlier detector: it is attracted to locations which are salient because they are distinct 

from the surroundings in terms of their visual properties. This assumption, as well  as many 

other aspects of these early models, were derived from experimental results obtained using 

electrophysiological  and  behavioural  methods  (Itti  &  Koch,  2000;  Koch  &  Ullman,  1985). 

Therefore,  the early  saliency  models  were aimed at  modelling  one specific,  highly  abstract 

process: pre-attentive selection of locations within the visual field for attentional inspection. 

In the early days of saliency modelling, researchers  attempting to compare the predictions of 

saliency models to human behaviour struggled due to the challenging task of operationalizing 

pre-attentive visual selection  (Wloka, Kotseruba, & Tsotsos, 2017). These difficulties led to a 

gradual shift towards modelling the spatial distributions of fixations on visual stimuli such as 

images (for example,  see Itti et al., 1998). This problem turned out to be more tractable, and 

the  models  built  to  predict  the  location  of  fixations  could  be  more  readily  evaluated and 

compared with each other (Borji & Itti, 2013; Kümmerer et al., 2020) than their more ambitious 

predecessors. A side-effect of this shift towards modelling eye movements rather than pre-

attentive selection was a gradual change of meaning of the word saliency – it drifted towards 

indicating  any  image  property  (indexed  by  a  model)  that  is  predictive  of  human  fixations 

(Schütt, Rothkegel, Trukenbrod, Engbert, & Wichmann, 2019).

Initial  studies that tested predictions about the relationship between fixation locations and 

image features, which were derived from the derived from the saliency modelling framework, 

yielded promising results  (Einhäuser & König, 2003; Krasovskaya & MacInnes, 2019; Krieger, 
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Rentschler, Hauske, Schill, & Zetzsche, 2000; Kümmerer et al., 2020; Reinagel & Zador, 1999). 

For instance, the models correctly predicted differences in visual  properties of regions that 

were fixated compared to those that were not fixated  (Reinagel & Zador, 1999), and their 

predictions  regarding  the  locations  of  fixation  were  consistently  better  than  chance 

(Kümmerer et al., 2020). Moreover, the models carried the potential to be developed further 

and, in consequence, be able to account for even a larger share of human behaviour  (Itti & 

Koch,  2001;  Krasovskaya & MacInnes,  2019).  This  potential  was mainly  due to the map-like 

format  of  the  predictions  they  generate  –  it  made  it  easy  to  extend  the  models  by 

implementing mechanisms operating ‘on top’ of the maps generated by the models, in order to 

account for additional processes guiding oculomotor behaviour without sacrificing the main 

advantage of  the map-like  format,   that  is,  the  ease with which  model  predictions  can be 

compared against human data (for example, see Adeli et al., 2017; Torralba et al., 2006).

This initial enthusiasm was curbed by a string of studies highlighting both the limitations of  

saliency  models  and  problems  with  the  theoretical  framework  within  which  they  were 

conceptualised  (Tatler, Hayhoe, Land, & Ballard, 2011a). Here, I list  four such issues, some of 

which are further explored in the next sections of this thesis.  First, observers performing a 

visual tasks, when it  is necessary, are able to ‘decouple’ their gaze from the visual features 

highlighted as salient by the models. In other words, they are able to ignore saliency, if  this if 

necessary  to  perform  a  given  task (Einhäuser,  Rutishauser,  &  Koch,  2008;  Foulsham  & 

Underwood, 2007). Second, specific classes of stimuli – for example, social signals such as faces 

– tend to strongly attract fixations, an effect not modelled by early saliency models (Cerf et al., 

2009; Flechsenhar & Gamer, 2017).  Third, it has been demonstrated that the predictive power 

of saliency models is moderate at best, especially when they are test on a wide range of natural 

scene stimuli  (Kümmerer et al., 2020).  Fourth, the idea that fixations should land primarily on 

visually salient image-locations results in predictions, which are counter-intuitive and turned 

out to be inaccurate. For example, individuals viewing scenes should direct their gaze at the 

sources of light because they are much brighter than their surroundings and thereby highly 

salient.  Another  example  is  the  model  prediction  that  fixations  should  frequently  land  on 

object edges, because they are indicated by highly salient sudden changes in image-feature 

values (colour, for example). However, it is now known that human observer do not exhibit 

either  of  these  two  predicted  behaviours  (Nuthmann  &  Einhäuser,  2015;  Nuthmann  & 
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Henderson, 2010; Nuthmann, Schütz, & Einhäuser, 2020; Stoll, Thrun, Nuthmann, & Einhäuser,  

2015; Vincent, Baddeley, Correani, Troscianko, & Leonards, 2009).

In order to address these shortcomings, more recently developed models took three different 

approaches.   First,  some  researchers  tried  to  improve  saliency  models  by  incorporating 

characteristics of the human visual system,  which earlier attempts had  ignored (Adeli et al., 

2017;  Bruce,  Bruce,  Tsotsos,  &  Tsotsos,  2009;  Zhang et  al.,  2008).  A  good example  of  this 

approach is the Adaptive-Whitening Saliency (AWS) model, which I use in Chapter Two of this 

thesis  (Garcia-Diaz,  Fdez-Vidal,  Pardo,  &  Dosil,  2012;  Garcia-Diaz,  Leboran,  et  al.,  2012).  It 

implements  a  biologically-inspired  mechanism,  which  removes  correlations  between  maps 

indexing the distributions of different visual features (whitens the image representation used 

by  the  model).  Implementing  this  mechanism  results  in  the  model  being  able  to  predict 

fixations better than the previous models. This example is part of a line of research that is  

actively pursued by a number of research groups, with novel models that implement ever more 

sophisticated biologically-inspired mechanisms being constantly  proposed  (for  example,  see 

Berga & Otazu, 2018 or Uejima et al., 2020).

A  second  approach  in  the  development  of  saliency  models  involved  moving  away  from 

biologically-inspired principles, with the sole aim of maximizing the model’s predictive power 

(Wloka et al., 2018). The Graph-Based Visual Saliency (GBVS) model I use in Chapter Two (Harel, 

Koch, & Perona, 2007) is an example of this approach. This model relies on detecting ‘outliers’ 

on maps that index different image features similar to the earlier saliency models. However, 

the  way  in  which  these  maps  are  combined  is  derived  from  graph  theory  –  a  branch  of 

mathematics – rather than biology or psychology. 

In the most recent developments of  saliency modelling, the models move even further away 

from  the  initial  notion  of  saliency.  These  models  are  purely  data-driven.  The  first  model 

developed in this line of research was the one by Kienzle, Wichmann, Schölkopf, and Franz 

(2007).  These authors collected eye-tracking data for a set of natural  scenes and extracted 

image-patches around the locations fixated by human observers. They used these patches to 

train a machine learning algorithm which served as a basis for predicting fixation locations in 

novel  images.  This  initial  attempt  inspired  further  development  of  data-driven,  machine-
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learning based saliency models. The latest developments within this line of research are models 

based on training of deep neural networks (Kümmerer, Wallis, Gatys, & Bethge, 2017; Thomas, 

2016).  These models  outperform all  their  predecessors  by  a  large margins.  I  use  two such 

models  in  Chapter  Two,  and they are  described in  greater  detail  there.  In  general,  models 

belonging to that class capitalize on two properties of deep neural networks: their ability to 

reliably extract vast numbers of visual features from images and the relative ease with which  

these networks can be fine-tuned to specific applications  (Krizhevsky,  Sutskever,  & Hinton, 

2012; Storrs & Kriegeskorte, 2019). The first of these properties is acquired by a network during 

training,  that  is,  gradual  adjusting  of  the  network’s  parameters  which  is  guided  by  an 

optimization process aiming at maximizing performance in a given task. The second property is 

related to the fact that parts of such a trained network can serve as a mechanism for extracting  

visual  features  which  are  then  applied  in  some  other  task.  For  example,  for  an  object  

recognition  task,  training  would  require  providing  a  network  with  a  large  set  of  labelled 

images, and a goal of the optimization process would be to minimize the number of images 

from this set that are labelled by the network incorrectly  (Simonyan & Zisserman, 2015). Once 

properly  trained,  the  network acquires  sensitivity  to different  visual  features  which  enable 

correct labelling of novel images. Next, the part responsible for extracting these features can 

be ‘transplanted’ to another network which, after training on appropriate data, can predict 

where people look at images (see Chapter Two). Importantly, the first, ‘original’ training equips 

the network with a sensitivity to a vast number of features, and the second one requires much  

less data.

Saliency models – evaluation metrics

A side-product of the intense research into saliency models was the development of methods 

for  evaluating  and comparing  their  performance.  The  problem of  model  evaluation  comes 

down to  the  question  of  how well  a  smooth  distribution  over  an image –  a  saliency  map 

produced by a model – predicts the distribution of discrete fixation-points on that image. There 

are  many  model-performance  metrics,  which  address  this  issue  and  their  properties  are 

thoroughly characterized (Bylinskii, Judd, Oliva, Torralba, & Durand, 2016; Kümmerer, Wallis, & 

Bethge, 2015; Wilming, Betz, Kietzmann, & König, 2011). In this thesis, I relied on two of them: 

sAUC (in Chapter Two) and correlation (in Chapter Two, Three, and Four). 
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The abbreviation sAUC stands for ‘shuffled area under the curve’, where the ‘curve’ refers to a 

receiver operating characteristic (ROC) curve. This measure is derived from signal detection 

theory. To calculate sAUC (Tatler et al., 2005; Zhang et al., 2008), a saliency map is thresholded 

at different values. For each threshold, the true positive rate is calculated as the proportion of 

fixation points which fall within map regions having values higher than the threshold. The false  

positive  rate  is  calculated in  an equivalent  way.Note that  for  predictions  of  a  hypothetical 

saliency model that  would be devoid of  any predictive power (that  is,  a model  completely 

unable to discriminate between fixated and not fixated image locations) the sAUC value would 

amount to 0.5. For a perfect saliency model, in turn, it would amount to 1. Importantly  false 

positives in sAUC are not based on fixations from the image, for which model predictions are 

generated.  Rather,  fixations  from  other  images,  usually  presented  as  part  of  the  same 

experiment,  are  considered.  The  reason  for  this  procedure  relates  to  the  centre  bias,  the 

tendency to allocate more fixations to the central regions of an image (Tatler, 2007). Models, 

which treat central image regions as more salient irrespective of their content, can therefore 

increase their predictive power compared to models, which do not up-weight central regions, 

without increasing their sensitivity to image-properties relevant for eye movements. Because 

of the centre bias, fixations of images other than the one, for which a prediction is generated, 

should  clustered  around  the  image  centre  without  being  related  to  image  properties. 

Therefore,  using such fixations to calculate false positive rates,  as done in sAUC, penalises 

models that rely too much on biases when generating predictions. 

The second measure I use in all empirical Chapters of this thesis is Pearson's linear correlation 

coefficient, dubbed correlation (Bylinskii et al., 2016). This metric is calculated by generating a 

2D Pearson’s  linear  correlation for  two smooth distributions over an image  (typically,  both 

derived from fixations or one derived from fixations and the other being model predictions). It  

measures the degree of linear dependence between them. Conceptually, each distribution is 

treated as a variable with values arranged according to the same pixel grid, which allows to  

establish  a  one-to-one mapping  between values of  both  variables  which  makes  calculating 

correlation easy  (Wilming et al.,  2011).  In this thesis,  I  rely on Matlab implementation of 2D 

correlation provided in corr2 function.  Correlation can be used either to assess the predictive 

power of a saliency model (when calculated for smoothed human fixations and saliency map, 

as  in  Chapters  One and Two)  or  to  quantify  the similarity  between two sets  of  smoothed 
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human fixations (as in Chapter Three). Correlation has the advantage of being easy to compute 

and intuitive. Additionally, it is symmetric (commutative): a correlation between distributions A 

and B is no different from the correlation between B and A. This property makes correlation 

particularly  suitable  for  comparing  fixation  maps,  where  the  measure  of  their  similarity  is 

needed, not a ‘unidirectional’ information about how well one predicts the other. 

To  summarize,  bottom-up  approaches  to  oculomotor  control  inspired  a  large  body  of 

experimental work and a rich toolbox of computational models, some of which predict human 

gaze exceptionally well. Furthermore, the maturation of the field of saliency modelling resulted 

in the establishment of standard metrics for model comparison. The idea that the brain uses a 

map-like representation of the visual field to code the ‘interestingness’ of different locations 

has not been disproved until today.  Currently, however, it is believed that such representation 

take into account not only the feature-based saliency but also other factors determining the 

importance of certain locations, such as the influence of a task (Bisley & Mirpour, 2019; Zelinsky 

& Bisley, 2015).

Top-down processing, task, and free viewing

Arguably, the most widely studied top-down factor, which can affect human eye movements is 

the necessity to perform a task, i.e.,  to sample visual information from a scene in order to  

accomplish  a  certain  goal  (Castelhano,  Mack,  &  Henderson,  2009;  Henderson,  Shinkareva, 

Wang, Luke, & Olejarczyk, 2013; Yarbus, 1967). When the task is well-specified – for example, 

when it  involves searching for a specific object in a scene – observers tend to restrict their  

fixation locations to scene regions which have a high probability of containing the target object  

(Pereira  &  Castelhano,  2019;  Torralba  et  al.,  2006).  Importantly,  the  characteristics  of 

oculomotor  behaviour  change as  the function  of  task  specification  even when the  viewed 

stimulus remains the same (Mills, Hollingworth, Van der Stigchel, Hoffman, & Dodd, 2011). This 

observation illustrates that humans can flexibly deploy their knowledge about the task and the 

environment – the factor which is intrinsic to them, and not to the visual input – to guide their 

gaze. 

Apart from search tasks, many scenes-viewing studies involve less-constrained tasks, such as 

memorization  (Foulsham  &  Underwood,  2008;  Schütt  et  al.,  2019;  Tatler  et  al.,  2005) or 
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aesthetic  judgements  (Nuthmann  &  Henderson,  2010).  An  extreme  example  of  a  loosely 

defined task is  free viewing,  in which observers are told to look at  the image without any  

further  instruction.  Free  viewing  has  been  criticised  for  leaving  too  much  freedom  to 

observers,  which  might  result  in  different  observers  adopting  different  viewing  strategies 

which is effectively equivalent to performing different tasks (Tatler et al., 2005). Despite these 

concerns,  free  viewing  has  been  routinely  used  in  eye  movements  studies  (Koehler,  Guo, 

Zhang,  &  Eckstein,  2014),  including  the  studies  reported  in  this  thesis.  Moreover,  the 

unconstrained nature of this approach is often also seen as an advantage: the basic notion is  

that,  without  instructions  to  perform a  task,  observers  move  their  eyes  because  they  are 

motivated by the intrinsic drive to seek information about in the environment (Baranes et al., 

2015; J. Gottlieb, 2012; but see Benjamin W. Tatler et al., 2011). This idea therefore suggests that 

free viewing elicits spontaneous, naturalistic behaviour, comparable to the one  exhibited in 

real-world situation in which someone looks at the world without any specific purpose other 

than to gain information.

While a task can significantly affect gaze control, it is not the only top-down factor capable of 

doing that.  Numerous eye tracking studies demonstrated that humans exhibit many strong 

tendencies to look at certain kinds of image content, such as texts (Cerf et al., 2009; Wang & 

Pomplun, 2012),  content related to social interactions, such as faces  (Flechsenhar & Gamer, 

2017;  Rösler,  End,  &  Gamer,  2017),  the  presence  of  animals  (Drewes,  Trommershäuser,  & 

Gegenfurtner,  2011),  or  content  eliciting  strong  emotions  (Pilarczyk  &  Kuniecki,  2014).  As 

alluded to in the previous sections, the fact that observers looked at these image regions and  

that this behaviour was not predicted by saliency models has been often treated as evidence 

against the bottom-up, saliency-based theories of oculomotor control,  and in favour of the 

existence  of  top-down  influences  on  gaze  behaviour  (for  the  criticism  of  this  approach, 

explaining why strong conclusions might be premature  here, see the ‘Beyond a dichotomy’ 

section of this Chapter). 

In addition to the suggestion that specific stimulus classes have effects on eye movements, a  

number of studies suggested a more generalised effect of top-down processing, namely that 

eye movements might be guided by the representations of objects or by proto-objects (feature 

clusters indexed by peripheral  vision as having a high chance for  being an object;  Rensink, 
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2000). Two kinds of experimental findings led to this suggestion. Firstly, maps indexing object 

locations were demonstrated to predict fixations better than sophisticated biologically-inspired 

saliency models  (Stoll et al.,  2015). Secondly, fixations usually land on the central regions of 

objects  (Anderson & Donk, 2017; Foulsham & Kingstone, 2013; Nuthmann & Henderson, 2010; 

Pajak  &  Nuthmann,  2013).  This  so-called  preferred  viewing-position  effect  contrasts  with 

predictions of the traditional saliency-based approach: that saliency should be highest at the 

edges of objects, where the sharp changes in values of visual features occur. In Chapter Four, I 

discuss the relationship between object representations and visual features in a greater detail.

Scene Meaning

The  picture,  which  emerges  from  these  studies,  is  that  human  eye  movements  are 

predominantly control by the top-down factors. This conception is expressed in the cognitive 

relevance theory (Henderson, Malcolm, & Schandl, 2009), which posits that image features are 

largely irrelevant for oculomotor control, because it either operates at the level of semantic 

interpretations of the visual input or strongly relies on knowledge-based predictions about the 

possible semantic content of the scene (Henderson, 2017). This idea gave rise to meaning maps 

(Henderson & Hayes, 2017), a method of quantifying the distribution of semantic content in 

visual scenes. The proponents of this method claim that meaning – as measured by meaning 

maps – guides human gaze. In the Chapters One and Two, I report experimental findings, which 

serve as the basis for a critique of this claim. Here, I provide a more general overview of this  

topic and highlight several themes related to it, which I will revisit at various points throughout  

this thesis.

‘Meaning’  or  ‘semantics’  are  of  interest  to  many  disciplines,  ranging  from  philosophy  to 

cognitive  linguistics.  This  ubiquity  makes  the  attempt  to  provide  a  general  and  precise 

definition of meaning difficult. However, within cognitive psychology and neuroscience, there 

is an emerging consensus regarding how to understand meaning  (Constantinescu, OReilly, & 

Behrens, 2016; Huth, De Heer, Griffiths, Theunissen, & Gallant, 2016; Kumaran, Summerfield, 

Hassabis, & Maguire, 2009; Mirman, Landrigan, & Britt, 2017; Sadeghi, McClelland, & Hoffman, 

2015).  According  to  this  consensus,  meaning  of  a  certain  concept  (where  the  concept  is  

understood as a noun or a verb) is its location in an abstract, multidimensional space occupied 

by other concepts, a so-called conceptual space. The fact that concepts share the same space 
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implies that is possible to measure the degree of relatedness or the distance between different 

concepts. Intuitively, in this space concepts such as ‘cooking’ and ‘kitchen’ are close to each 

other, but far from ‘car’ and ‘driving’, which, in turn are close together. 

Only  a  subspace  of  conceptual  space  understood in  that  way  is  directly  relevant  to  visual 

scenes. This subspace is determined by two inherent characteristics of scenes. Firstly, scenes 

can contain  only those entities,  which can be depicted visually.  For  example,  concepts like 

‘failure’ or  ‘destiny’ do  not  meet  this  criterion  but  ‘cat’ does  (Crutch  & Warrington,  2005; 

Mkrtychian et al., 2019). Secondly, a single scene is not able to capture a sequence of steps 

involved in activities like, for example, ‘cooking’. Of course, a scene still can depict a person 

who cooks but this is different from depicting ‘cooking’ itself. These two properties of scenes 

narrow down the space of concepts to the subspace of concrete nouns, which directly refer to  

objects. Therefore, in natural scenes, meaning is necessarily object-based, although it must be 

noted that i) objects in this context are understood very broadly, and scene elements typically  

belonging  to  the  background  –  such  as  sky  –  are  treated  as  objects  too  (Sadeghi  et  al., 

2015) and ii) objects in the scene still remain in the relationships to the remaining parts of the 

space; they are not isolated in any sense.

The way in which the human mind organizes knowledge about objects, and the relationships 

between  mental  representations  of  different  objects  are  the  topics  of  active  investigation 

(Cichy, Pantazis, & Oliva, 2014; Clarke & Tyler, 2014; Kriegeskorte, Mur, & Bandettini, 2008). The 

dominant approach in this research area involves testing how well different formal models of 

knowledge  structure  can  account  for  experimental  results  obtained  via  behavioural  or 

neuroimaging methods. These models are very diverse, and range from simple, hierarchical 

structures  of  categories  (in  which,  for  example,  birds  and  mammals  are  sub-categories  of  

animals, see a landmark study by Cichy et al., 2014) to complex multidimensional spaces based 

on  data  provided  by  individuals  performing  different  behavioural  tasks  (Devereux,  Tyler, 

Geertzen, & Randall, 2014; Hebart, Zheng, Pereira, & Baker, 2020; McRae, Cree, Seidenberg, & 

Mcnorgan,  2005).  This  general  conceptualization  of  ‘meaning’  provides  a  good  backdrop 

against which different use-cases (or ways of understanding) of that term, coming from the 

literature on natural-scene viewing, can be presented. In Chapter Two, I enumerate specific 
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examples of such use-cases derived from different studies and in the following sections focus 

on three more general ones. 

Meaning related to object-context consistency

Objects can be semantically more or less consistent with the scene in which they are presented 

(Biederman, Mezzanotte, & Rabinowitz, 1982). A good example of a semantically inconsistent 

object  is  a  shoe  on  a  bathroom  sink.  Such  objects  are  known  to  strongly  attract  human 

fixations  (Mackworth & Morandi,  1967) and this  effect  is  routinely  cited  as  an  example  of 

semantic  influence  on  eye-movement  (Coco  et  al.,  20202019;  Võ  et  al.,  2019;  Williams  & 

Castelhano,  2019).  Object-scene inconsistency can be described in  terms of  the conceptual 

space under the assumption that objects, which are typical for a given context (for example, 

the context of a bathroom) are clustered together  (Rose & Bex, 2020). Any object, which is 

located far from the cluster that defines the scene, is semantically inconsistent with the scene 

(although note that the relationship between typicality of an object for a given context and the 

location of this objects in the conceptual space is not necessarily a straightforward one). This 

understanding of meaning is further discussed in Chapters One and Two. 

 

Meaning related to object individuation and recognition

The implicit  assumption behind the notion of  meaning described above is  that objects in a 

scene can be individuated. In the study described in Chapter  Four, I used two-tones images: 

stimuli which are meaningless when viewed for a first time but become meaningful after the 

observers acquire relevant prior object-knowledge. The initial meaninglessness of these images 

to observers can be understood as the inability to segment them into objects, which are linked 

to concepts in semantic space.  Acquiring relevant object-knowledge, in turn,  enables these 

processes.  This  dependence  of  scene  meaningfulness  on  the  knowledge  possessed  by 

observers highlights the fact that object individuation and recognition in this case cannot be 

achieved solely by processing image-features. Instead, these processes require the interaction 

between image features and object- knowledge. I elaborate on this point in Chapter Four. 

16



Meaning as measured by meaning maps

A third way of understanding scene meaning present in this thesis is the one derived from the 

cognitive  relevance  theory  (Henderson  et  al.,  2009) and  embodied  in  the  meaning  maps 

approach  (Henderson, Hayes, Peacock, & Rehrig, 2019).  It assumes that ‘scene meaning’ is a 

property,  which is  smoothly distributed over a scene and can be inferred simply by asking 

humans to rate the meaningfulness of image regions (for more details of this rating procedure 

see below). This perspective therefore takes a ‘whatever works’ approach, and makes no a 

prior assumptions about how meaning is constituted other than that human observers are able 

to  rate  the  amount  of  meaning  present  in  image  parts.  What  comes  at  the  expense  of 

theoretical precision is the spatial nature of image meaning: meaning as measured by meaning 

maps is expressed in the format of a map, which is convenient from a practical perspective 

because it allows comparing meaning maps to saliency maps generated by saliency models  

(Henderson & Hayes, 2017, 2018). This conceptualisation of scene meaning advocated by the 

meaning maps approach is,  however,  hard to reconcile  with the idea of  conceptual  space: 

concepts within this space cannot be ranked as more or less meaningful in and of themselves.  

Yet, the assumption of ‘ranked’ meaningfulness lies at the core of the meaning maps approach. 

This point is revisited in the final Discussion section. 

 

Meaning maps are the core tool for measuring the kind of meaning described above. They are 

constructed from ratings  of  the  meaningfulness  of  local  image  patches  provided by  many 

individuals.  These ratings are combined into  a  smooth distribution over an image. Meaning 

maps come in two different versions, both of which have been evaluated for this thesis (see  

Chapters Two and Three for more details); the points made here are equally relevant for both 

of them. As alluded to above, meaning maps rest on the assumption that ratings provided by 

humans index cognitive processes related to the semantic analysis of the scene. While meaning 

maps have been used in numerous studies (reviewed in Henderson, 2020, and in Henderson et 

al.,  2019), this central assumption (and the more general claim that meaning maps measure 

‘image meaning’) has never been critically evaluated. Chapters  Two and Three of the current 

thesis fill this gap in the literature by scrutinising these assumptions, and demonstrating the 

limitations of this method. 
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In sum, the top-down factors that influence human gaze control can be divided into two broad 

categories: one category of effects, which are task-related, and a second category of factors 

that exert their influence independently of any task (social signals, texts, object etc.). The top-

down effects belonging to the second category have been demonstrated in studies aiming at 

demonstrating the limitations of saliency models (I discuss this issue in the next section). In 

other words, these studies were not guided by a general theory of top-down influences on 

oculomotor control and, to date, a theory that binds different experimental results together 

and is able to generate novel hypotheses is largely missing. The meaning maps approach had 

the ambition for being such theory. However,  the experimental  results,  which I  describe in 

Chapters Two and Three, seriously challenge its potential. 

Beyond a dichotomy
The bottom-up vs. top-down dichotomy dominates the literature on natural-scene viewing and 

eye movements (Berga & Otazu, 2020; Henderson et al., 2019). It has been used as a conceptual 

framework for investigating various topics within that field, for example eye movements of 

patients with different impairments of visual processing  (Charles Leek, Patterson, Paul, Rafal, 

& Cristino, 2012; Fellrath & Ptak, 2015; Ossandón et al.,  2012),  similarities of eye-movements 

between different species (Wilming et al., 2017), and developmental trajectories of changes in 

oculomotor  behaviour  (Franchak,  Heeger,  Hasson,  &  Adolph,  2016;  van  Renswoude, 

Raijmakers, & Visser, 2020). Despite its popularity, however, this dichotomy has a number of 

serious conceptual limitations and comes with methodological difficulties. Many studies that 

were  inspired  by  this  dichotomy  attempted  to  quantify  the  unique  influences  of  factors 

belonging to either of the two components by comparing the predictive power of different  

operationalisations  of  ‘bottom-up’  and  ‘top-down’  factors  in  different  conditions.  The 

conclusions of these studies hold only to the extent to which the specific operationalisation on 

which  they  rest  are  a  good proxy  for  the  underlying  construct  (see  Chapter  Four for  the 

elaboration of this point). 

A more fundamental problem that I will revisit at various points throughout this thesis is the 

fact that the ‘high-level’ content of a scene usually supervenes on certain, very specific visual 

features. This issue complicates meaningful operationalisations that tease apart bottom-up and 
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top-down components. For example, locations of objects which people find interesting (and, 

thereby, ‘worth’ fixating) can be predicted with a reasonable accuracy with saliency models,  

which  exclusively  index  local  visual  features  and  are  therefore  blind  to  information  about 

objecthood (Elazary & Itti, 2008; Masciocchi, Mihalas, Parkhurst, & Niebur, 2009). In Chapters 

Two and Three I demonstrate that this limitation haunts even the meaning maps approach, 

which can be considered one of the more sophisticated operationalisations of semantic scene 

content.  Specifically,  instead  of  measuring  image  meaning,  these  maps  might  measure 

complex visual features and owe their ability to predict fixation locations to the fact that these 

features  typically  are  the  carriers  meaning.  In  this  sense,  they  are  very  similar  to  saliency 

models that are based on deep neural networks but lack their ease of use and automation.

Most studies that are inspired by the bottom-up vs. top-down dichotomy implicitly assume that 

it is possible to independently examine the respective influence of these components on eye 

movements. They therefore treat the correlation between ‘high-level’ factors and local visual 

features as a nuisance impeding their experimental separation. A broader perspective emerges 

once  we  consider  a  non-dichotomous approach  (for  example,  see  Borji  &  Tanner,  2016  or 

Nuthmann et al., 2020). The limitations of the dichotomy, as well as its over-simplistic nature, 

has been already pointed out by other authors. For example, Awh, Belopolsky, and Theeuwes 

( 2012; see also Wolfe & Horowitz, 2017) describe variants of a visual search-task, in which this 

dichotomy is not able to account for all aspects of human performance. Further arguments for 

the need of a more nuance approach to discussions about top-down and bottom-up aspects of  

perception come from the literature on object perception  (Driver, Davis,  Russell,  Turatto, & 

Freeman, 2001; Teufel & Fletcher, 2020). One of the themes, which emerge from this literature 

(reviewed  in  Chapter  Four),  is  that  image-computable  features  and  mental  object-

representations formed by observers remain in a complex relationship (Nuthmann et al., 2020). 

Specifically,  for  the representation of  objects to arise,  an interaction between prior  object-

knowledge and early visual mechanisms must take place: a process I have labelled knowledge-

driven perceptual organization. This object-as-interaction way of thinking has been successfully 

used in behavioural task (also with combination with neuroimaging) and allowed for gaining 

new insights into how the brain processes visual information  (Chang, Baria, Flounders, & He, 

2016; Flounders, González-García, Hardstone, & He, 2019; González-García, Flounders, Chang, 

Baria, & He, 2018; Gorlin et al.,  2012; Teufel, Dakin, & Fletcher, 2018; Teufel et al.,  2015). For 
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example,  Teufel  and  colleagues  (Teufel  et  al.,  2018) demonstrated  that  forming  an  object 

representation  facilitates  perceptual  processing  of  local  image-features,  on  which  this 

representation supervenes. 

Given the  important  role  of  objects  in  eye-movements  guidance  (Nuthmann &  Henderson, 

2010; Nuthmann et al., 2020; Pajak & Nuthmann, 2013), it is therefore likely that knowledge-

driven  perceptual  organization  affects  eye  movements  as  well.  In  Chapter  Four,  I  report 

experiments  exploring  this  possibility  and  demonstrating  that  acquiring  object-knowledge 

necessary for  binding image features into objects  indeed changes many aspects  of  human 

oculomotor behaviour.
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Chapter  Two  –  meaning  maps  and  saliency 

models  based  on  deep  convolutional  neural 

networks  are  insensitive  to  image  meaning 

when predicting human fixations

Introduction
As highlighted in  the  previous  Chapter,  a long-standing  hypothesis  suggests  that  semantic 

content  of  image  regions is  important  in  guiding  eye movements.  Recent  work  presented 

meaning maps (MMs) as a tool to test this hypothesis  (Henderson & Hayes, 2017, 2018). This 

technique  aims  to  index  the  spatial  distribution  of  meaning  across  an  image,  which  has 

potential  applications  far  beyond  eye-movement  research.  In  this  Chapter,  I assess  and 

challenge central assumptions of this novel tool.

A classic finding in eye-movement research shows that the specific task of an observer has an 

influence  on  where  they  direct  their  eyes  (Yarbus,  1967;  Hayhoe  &  Ballard,  2005).  But  in 

everyday  life,  we frequently  move  our  eyes  without  any  goal  other  than  to  explore  the 

environment. In the lab, this  behaviour is examined in free-viewing paradigms, during which 

eye movements are recorded while images are viewed without an explicit task (Koehler, Guo, 

Zhang, & Eckstein, 2014, but see Tatler, Hayhoe, Land, & Ballard, 2011). To explain what guides 

eye movements during free viewing, two opposing accounts have been put forward. Both are 

described in greater detail in the previous Chapter; here, they are presented only briefly. 

According to the first account, eye movements are guided primarily by image characteristics 

(Borji, Sihite, & Itti, 2013; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). Potential support 

for this view comes from saliency models: algorithms, which exclusively use visual features of  

an image to predict human fixations. Although early models, which used only simple features  

such  as  local  intensity  or  colours (Itti  &  Koch,  2000),  are  now  deemed  only  moderately 
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successful  (Bylinskii  et  al.,  2014),  more  recent  saliency  models  achieve  a  remarkably  high 

performance  (Kümmerer,  Wallis,  Gatys,  &  Bethge,  2017).  These  models  harness  deep 

convolutional  neural  networks  –  biologically  inspired  machine  learning  algorithms,  that 

somewhat resemble the human visual system  (Kietzmann et al.,  2019). However, even such 

models rely solely on visual features, albeit high-level ones.

In contrast to the idea underlying saliency models, several authors have argued that during free 

viewing,  eye  movements  are  mainly  guided  by  the  semantic  content  of  the  visual  scene 

(Henderson, Malcolm, & Schandl, 2009; Nyström & Holmqvist, 2008; Onat, Açik, Schumann, & 

König,  2014;  Rider,  Coutrot,  Pellicano, Dakin,  & Mareschal,  2018;  Stoll,  Thrun,  Nuthmann,  & 

Einhäuser,  2015). This  perspective  differs  fundamentally  from  the  saliency-based  approach. 

Attributing meaning to certain parts of the scene is impossible without prior knowledge of the  

world,  i.e.,  a  factor that is  independent of the visual  input  (Hegde & Kersten, 2010;  Teufel, 

Dakin,  &  Fletcher,  2018).  Consequently,  the  notion  that  semantic  content  guides  eye-

movements is inconsistent with the idea that the allocation of fixations is dependent solely on 

the distribution of image features. Given that meaning is not image-computable, the notion 

that  semantic  content  guides  eye-movements  is  inconsistent  with  the  idea  that  the  eye-

movements are dependent solely on the distribution of image features.

A string of recent studies has focused on providing  support for the role of meaning in driving 

eye movements (Hayes & Henderson, 2019; Henderson & Hayes, 2017, 2018; Henderson, Hayes, 

Rehrig,  &  Ferreira,  2018;  Peacock,  Hayes,  &  Henderson,  2018).  These  studies  (reviewed  in 

Henderson, Hayes, Peacock, & Rehrig, 2019) are based on a novel technique called meaning 

maps  (MMs).  A  MM  for  a  given  image  is  created by  breaking  it  down  into  small  isolated 

patches, which are rated for their meaningfulness independently from the rest of the visual 

scene. These ratings are pooled together into a smooth map, which is supposed to capture the 

distribution of meaning across the image. Compared to outputs from a simple saliency model 

(GBVS, Harel et al., 2006), MMs were more predictive of human fixations. On that basis it has 

been claimed that meaning guides human fixations in natural  scene viewing  (Henderson & 

Hayes, 2017, 2018). In the present Chapter, I examined central predictions of this claim.
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First, if MMs measure meaning and if meaning guides human eye-movements, MMs should be 

better in predicting locations of fixations than saliency models because these models rely solely 

on  image  features.  Therefore,  I compared  MMs  to  a  range  of  classic  and  state-of-the-art 

models. I replicate the finding that MMs perform better than some of the most basic saliency 

models. Contrary to the prediction, however, DeepGaze II (DGII;  Kümmerer, Wallis, & Bethge, 

2016;  Kümmerer  et  al.,  2017),  a  model  based  on  a  deep  convolutional  neural  network, 

outperforms MMs.

A second prediction is that if MMs are sensitive to meaning and if meaning guides human gaze, 

differences in  eye movements  that  result  from changes in  meaning should  be  reflected in 

equivalent differences in MMs. I probed this prediction experimentally using a well-established 

effect: the same object, when presented in an atypical context (e.g., a shoe on a bathroom 

sink) attracts more fixations than when presented in a typical context because of the change in  

the  semantic  object-context  relationship  (Henderson,  Weeks,  &  Hollingworth,  1999; 

Öhlschläger & Võ, 2017). Replicating previous studies, image regions attracted more fixations 

when they contained context-inconsistent compared to context-consistent objects. Crucially, 

however, MMs of the modified scenes did not attribute more 'meaning' to these regions. DGII  

also failed to adjust its predictions accordingly.

Together, these findings suggest that semantic information contained in visual scenes is critical 

for the control of eye movements. However, this information is captured neither by MMs nor  

DGII.  I suggest that similar to saliency models, MMs index the distribution of visual features 

rather than meaning.

Method

I conducted a single experiment in which human observers free-viewed natural scenes while 

their  eye-movements  were  being  recorded.  The  obtained  data  was  analysed in  two 

complimentary ways. First,  I compared how well MMs and different saliency models predict 

locations of human fixations in natural scenes. Subsequently, I assessed the sensitivity of MMs 

and the best-performing saliency model to manipulations of scene meaning. The data, the code 
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to create MMs, and all openly available resources used in the study  described in the present 

Chapter can be accessed via the links provided in the Supplement (see page 37).

Fig. 1. Illustration of sample stimuli in (a) the Consistent and (b) the Inconsistent condition with  

the Critical Region outlined in yellow and (c, d) human fixations recorded in both conditions. In  

this example, a hair brush on a bathroom sink (a) – an object consistent with the scene context –  

has been exchanged for a shoe (b) to introduce semantic inconsistency.

 

Stimuli

I used images from two conditions of the  SCEGRAM database  (Öhlschläger & Võ, 2017): the 

Consistent  and the  Semantically  Inconsistent  conditions  (called  ‘Inconsistent’  here).  In  the 

Consistent condition (used in both analyses), scenes contain only objects that are typical for a 

given context.  In the Inconsistent  condition (used only  in  the second analysis),  one of  the 

objects is contextually inconsistent. For example, a hairbrush in the context of a bathroom sink 

from the Consistent condition is replaced with a flip-flop in the Inconsistent condition (see Figs.  

1a  and 1b).  Such  changes  in  object-context  relationship  alter  the  meaning  attached to  the 

manipulated object. For every scene, I indexed the location of the consistent and inconsistent 

objects with the superimposed bounding boxes for both objects (see Figs. 1a and 1b). I refer to 

this  location  as  the  Critical  Region,  because  it  is  the  only  part  of  the  image  that  changes  
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between Consistent and Inconsistent conditions. I used 36 selected scenes in both conditions 

(72 photographs in total, listed in the Supplement  to  the present Chapter together with the 

selection criteria).  I also replicated the main finding of the first analysis in an additional set of  

30, very different, images (reported in the Supplement). 

Procedure

The  procedure  consisted  of  3  blocks,  interleaved  with  breaks.  Each  participant  viewed  all 

images from both conditions (Consistent and Inconsistent – no counterbalancing was applied) 

and was instructed to ‘look carefully’ at each of them. Experimental blocks began with an eye 

tracker  calibration/validation.  Within  each  block,  observers  free-viewed  a  series  of  24 

photographs  from  both  SCEGRAM  conditions,  each  for  7  seconds.  After  image  offset, 

observers  were required to press  a button to view the next  image.  Then,  a  fixation point 

appeared centrally on a screen and once observers fixate on it (as determined online by their  

eye-trace), the actual image was displayed. Before starting the experiment, observers viewed a 

sample  image  in  an  identical  regime  to  familiarize  themselves  with  the  procedure.  Each 

stimulus was shown once and the order of presentation was fully randomized. The stimuli were 

presented against a uniform grey background and had a width of 688 pixels and a height of 524 

pixels, which subtended approximately 19.7 and 15 degrees of visual angle, respectively.  My 

choice of task (free viewing) and stimulus parameters for size (measured in degrees of visual 

angle – note that to to achieve this, the absolute size of the stimuli had to be modified which 

resulted in a slight change in their aspect ratio: from 1.33 to 1.31) and presentation time were 

adopted from the original study developing the SCEGRAM stimuli  (Öhlschläger & Võ, 2017). 

These design characteristics fall within the typical range used in this literature (e.g. Wilming et 

al., 2017).

Observers

20 volunteers (3 male;  mean age 19.4) recruited from the Cardiff University  undergraduate 

population took part in the study. All reported normal or corrected-to-normal vision, provided 

written  consent,  and  received  course  credits  in  return  for  participation.  The  study  was 

approved  by  the  Cardiff  University  School  of  Psychology  Research  Ethics  Committee.  The 

primary units of interest in  my analyses were the distributions of fixations over images. The 
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number of observers  I recruited guarantees that including more observers would not change 

these distributions significantly (demonstrated in the Supplement to the present Chapter). 

Apparatus

The study was conducted in a dimly lit  room. SCEGRAM images from both conditions were 

presented on an LCD monitor (Iiyama ProLite B2280HS, resolution 1920 by 1080 pixels, 21 inches 

diagonal). Chin and forehead rests were used to ensure that observers maintained the constant 

distance of 49 cm from the screen. Their eye movements were recorded with the frequency of  

500 Hz using an EyeLink 1000+ eye tracker placed on a tower mount. The experiment was  

controlled  by  custom-written  Matlab  (R2017a  version)  scripts  using  Psychophysics  Toolbox 

Version 3 (Kleiner, Brainard, & Pelli, 2007).

Fig.  2.  Illustration of  the stimuli  and procedure used for  creating meaning maps.  (a)  Grids  of  

equally spaced circles were used to cut images into fine and coarse patches (only the latter are  

illustrated here). The red circle indicates a sample patch in the grid. (b) Here, the sample patch is  

highlighted in one of the scenes from the Consistent condition. (c) Patches were presented in  

isolation and rated for their meaningfulness by three independent observers on a scale from 1 to  

6. The panel has illustrative purpose only – the scale presented to observers included additional  

labels (ranging from ‘Very Low’ to ‘Very High’). (d) Illustration of a meaning map with greyscale  

values  indicating  ‘meaningfulness’.  (e)  Simplifying  illustration  of  how  meaning  maps  are  
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generated from ratings. For simplicity sake, only two patches are shown (step 1). Each patch is  

rated in isolation (step 2; here only one rating per patch is shown). All pixels within an image area  

are then assigned average rating values, taking into account all ratings for patches that overlap  

with this area (step 3). For the area of the original patch (step 4), all pixels are then averaged and  

the resulting value is assigned to the centre of the patch (step 5). Finally, the patch centres were 

used as interpolation nodes for thin-plate spline interpolation producing a smooth distribution of  

values over the image (not illustrated). This procedure was conducted separately for the fine and  

coarse grid, and the meaning map for a given image was created by averaging the two outcomes  

and normalizing the result to a range between 0 and 1. 

Creating MMs

To create MMs for my stimuli, I followed the procedure described by Henderson & Hayes (2017, 

2018; for details see Fig. 2). Each image was segmented into partially overlapping patches of 

two sizes: fine patches had a diameter of 107 pixels (3 degrees of the visual angle, or 16 % of the  

image width), coarse patches of 247 pixels (7 degrees or 36% of the image width) (Fig. 2a and 

b). Their centres were 58 pixels (fine) and 97 pixels (coarse) apart from each other.

Next, I collected meaningfulness ratings from human subjects for all patches. Each patch was 

presented in isolation and rated for its meaningfulness on a 6 point Likert scale (Fig. 2). As in 

Henderson and Hayes (2017), I used a Qualtrics survey completed by naive observers recruited 

via  the  crowdsourcing  platform  Amazon  Mechanical  Turk  (see  Supplement  for  eligibility 

criteria).  Each  participant  provided  ratings  for  305  or  303  patches  of  both  sizes  (selected 

randomly from all images), on average spent approximately 14 min on the task, and received 

2.18 USD as remuneration. In total, 69 individuals were used as raters, with three individuals 

rating each individual patch. The collected ratings were then used to create MMs (see Fig. 2).

When creating MMs for images from both conditions,  I exploited the fact that photographs 

from the Consistent and Inconsistent conditions differ only in the Critical Region (the part of 

the image containing the manipulated object) while the remaining parts overlap.  I collected 

meaningfulness  ratings  for  the patches belonging to overlapping areas only  once,  and the 

separate sets of ratings for Consistent and Inconsistent condition were collected only for those 
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patches that contained at least one pixel belonging to the Critical Region. In total, the number 

of patches rated in the study amounted to 7013: 4840 fine patches (of which 520 belonged to 

the images from the Inconsistent condition) and 2173 coarse patches (445 Inconsistent).

Saliency models

In the first analysis, I compared predictive performance of MMs to four saliency models of 

different complexity. The first two models – GBVS  (Harel et al., 2006) and AWS  (Garcia-Diaz, 

Fdez-Vidal, Pardo, & Dosil, 2012) – rely on simple visual features, such as local colors and edge 

orientations, and share the assumption that fixations land on image regions distinct from their 

surroundings  in  terms  of  values  of  these  features.  By  contrast  to  GBVS,  AWS  includes  a 

statistical whitening procedure to improve performance. Both these models were previously  

used  to  estimate  the  influence  of  image  features  relative  to  cognitive  factors  on  the 

deployment of fixations: GBVS in the previous studies with MMs, AWS elsewhere (Stoll et al., 

2015).

Two other models that I compared to MMs – Intensity Contrast Features (ICF) and DeepGaze II 

(DGII) – were designed in a data-driven manner  (Kümmerer et al., 2017). Both have the same 

architecture, consisting of a fixed network that extracts sets of features from images and a  

readout  network  that  is  trained on  human fixations  to  combine  the  features in  a  way  to 

maximize the models’ predictive power.  While the fixed network of ICF extracts only simple 

visual  features (local  intensity and contrast),  DGII is tuned to features extracted by a deep 

convolutional neural network pre-trained for object recognition (VGG; Simonyan & Zisserman, 

2015).  The key characteristic  of these models that distinguishes them from models such as 

GBVS and AWS is  that  they have been trained on human fixations.  Specifically,  during the 

training phase, the read-out network receives its respective features as an input, generates a 

prediction  about  where  human  observers  will  look  in  the  image,  and gradually  adjusts  its 

parameters based on feedback comparing its prediction to human fixation data to maximise 

the predictive power of each model.

The predictions of all four models were obtained by running Matlab (for GBVS and AWS) or 

python (for DGII and ICF) scripts provided by  models’ authors. These scripts  did not require 
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providing any parameter values and their predictions – as all  having a form of smooth maps that 

predict the probability of image regions to be fixated – could be used in my analyses directly. 

Human  observers  have  the  tendency  to  look  at  the  centre of  images  (Tatler,  2007),  and 

therefore this probability is usually higher in the central region of the image. This ‘centre bias’ 

has important consequences for the evaluation of saliency models. Their performance differs 

depending on whether they are evaluated using a metric expecting some form of this bias or  

not (Kümmerer, Wallis, & Bethge, 2018). Here, for the sake of simplicity,  I do not incorporate 

centre bias in the models or in the MMs (unlike the original authors) and use an appropriate  

metric for this situation (see Performance metrics section).

Data pre-processing

Fixation locations from the eye tracker recordings were extracted using the algorithm provided 

by  the  device  manufacturer  operating  with  the  default  parameter  values.  This  algorithm 

analyses  the  stream  of  incoming  data  about  eye  position  and  segments  it  into  events 

(saccades, fixations, and blinks) in real time. Its core is the mechanism for detecting saccade 

onsets  and  offsets  which  relies  on  thresholds  for  velocity,  acceleration,  and  motion  (eye 

displacement) applied to subsequent data samples. These thresholds have the values of 30 

degrees of visual angle per second (deg/s), 8000 deg/sec2, and 0.15 deg, respectively. Using this 

algorithm,  I obtained a discrete distribution of fixations on each image (see Fig. 1c and 1d). 

Then, in line with the previous MMs studies,  I smoothed these discrete distributions with a 

Gaussian filter with a  cut-off frequency of -6 dB, using the function provided by  Bylinskii and 

colleagues (2014). 

Next, smooth distributions from fixations, models, and MMs were separately normalized to a 

range from 0 to 1 for each image. Finally, for each scene, histograms of all distributions from 

both conditions were matched to histograms of smoothed fixations from Consistent condition 

using the Matlab  imhistmatch function, as in the original MMs studies. Histogram matching 

makes distributions directly comparable as it ensures that they differ only with respect to their 

shape, and not their total mass. 
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Performance metrics

To  compare  the  ability  of  MMs  and  models  to  predict  locations  of  human  fixations  in  

Experiment 1,  I use two well-established metrics  (Bylinskii,  Judd, Oliva,  Torralba,  & Durand, 

2016):  Correlation and Shuffled Area Under ROC curve  (sAUC;  Zhang et al.,  2008) with the 

implementations provided by Bylinskii and colleagues (2014).

Correlation, used in the previous studies on MMs, is calculated as Pearson's linear correlation 

coefficient  between  a  smoothed  distribution  of  observers’  fixations  over  the  image  and 

predictions of a saliency model or MMs.  I additionally used sAUC (Zhang et al., 2008), which, 

unlike Correlation, guarantees that the measured differences in performance between models 

are driven by their sensitivity to factors guiding fixations, and not by the degree to which they 

include human  centre bias in their predictions, even implicitly  (Kümmerer, Wallis, & Bethge, 

2015; Kümmerer et al., 2018).

Comparing meaning maps and saliency models – results
In the first analysis,  I compared performance of four saliency models to MMs in predicting 

human fixations in the Consistent condition, i.e., when viewing typical scenes with no obvious 

object-context inconsistencies (Tab. 1, Fig. 3). If human gaze is guided by meaning, and if MMs 

provide  an  index  for  the  distribution  of  meaning,  I would  expect  MMs  to  outperform  all 

saliency models because these models are based solely on image features. Please note that for 

the sake of  this  comparison,  I  aggregated fixations from all  observers  for  each image and 

analyzed the data on a per-image basis. 
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Fig. 3. Performance of MMs and saliency models in predicting human fixations according to (a)  

Correlation and (b)  sAUC metrics.  Note that  according to both metrics  DGII  predicted  human  

fixations better than MMs. Asterisks indicate p-values from statistical tests comparing MMs to  

different models (reported in Table 1.): * indicates p ≤ .05, ** p ≤ .01, *** ≤ .001 and ‘n.s.’ indicates  

the lack of statistical significance. Grey lines connect values obtained for individual images. Black  

vertical bars indicate 95% confidence intervals for the medians.

Predictive power

Correlation and sAUC values obtained for MMs and for each of the models were compared 

using Bonferroni-corrected paired Wilcoxon tests (Fig. 3; Tab. 1). I  used non-parametric tests 

because  for  some  of  the  distributions  a  visual  inspection  of  Q-Q  plots  indicated  that the 

assumptions  of  normality  might  be   not  met.  For  the  same  reason I  chose a  median as  a 

measure  of  centrality  (I  calculate  confidence  intervals  for  median  using  a  bootstrapping 

method – see details in the Supplement). Additionally, I calculated Jeffreys–Zellner–Siow (JZS) 

Bayes Factor  (Rouder et al.,  2009) to quantify the evidence for (or against) the differences 
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between models and MMs (Tab. 1).  While deviations from normality can be problematic for 

Bayes factor  analyses,  they are most  likely  not an issue in the current situation:  the Bayes 

factors  for  the  key  finding  are  large  and  the  deviations  from  normality  are  small.   When 

interpreting BF values, I adopted a convention that only BFs greater than 3 (and, consequently, 

smaller than 1/3) are interpreted as informative. This convention, although subjective (which is 

inevitable when using BFs), is frequently adopted in the literature (Jarosz & Wiley, 2014).

As shown in Tab. 1 and on Fig. 3,  according to both measures, MMs outperformed GBVS in 

predicting human fixations, thereby replicating the results of Henderson and Hayes (2017, 2018) 

using  new  images  and  new  participants.  Contrary  to  expectations,  however,  both  metrics 

indicated that DGII predicted fixations better than MMs. Furthermore, performance of AWS 

and MMs did not differ significantly irrespective of the metrics. Finally, MMs outperformed ICF 

according to Correlation, but not sAUC. In fact, for the latter metric, JZS-Bayes Factor indicated 

support for the null hypothesis. When interpreting sAUC scores, be mindful that values of 0.5 

indicate chance performance (see Chapter One for details). 

Table 1. Comparison of Predictive Power of Saliency Models and MMs Using Correlation and 

sAUC. 

Model Median  of 

prediction 

values  with 

95% 

confidence 

intervals 

Median  of  differences 

from  MMs  with  95% 

confidence intervals

W 

statistic

p-value

(Bonferron

i-

corrected)

JZS  Bayes 

Factor

Correlation

DGII 0.83  [0.78, 

0.87]

0.07 [0.03, 0.11] 526 0.00738 32.26

MMs 0.77  [0.72, 

0.81]

– – – –

AWS 0.73  [0.67, 

0.76]

-0.06 [-0.12, -0.01] 192 0.10412 1.48

ICF 0.68  [0.61, -0.12 [-0.18, -0.06] 144 0.00936 16.90
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0.71]

GBVS 0.62  [0.56, 

0.68]

-0.11 [-0.26, -0.05] 94 < .001 396.96

sAUC

DGII 0.79  [0.77, 

0.82]

0.06 [0.05, 0.08] 662 < .001 > 1000

MMs 0.73  [0.69, 

0.76]

– – – –

AWS 0.75  [0.72, 

0.77]

0.02 [0.01, 0.04] 490 0.0507 0.60

ICF 0.74  [0.70, 

0.76]

0.01 [-0.01, 0.02] 383 1.00 0.19

GBVS 0.64  [0.60, 

0.66]

-0.10 [-0.12, -0.08] 13 < .001 > 1000

Semi-partial correlations

Because predictions of models and MMs overlap, I quantified their distinct predictive power 

using semi-partial correlations. I conducted these analyses for GBVS (used in the original MMs 

studies) and DGII (the only model which markedly  outperformed MMs).  For each scene from 

the Consistent condition, I calculated two semi-partial correlations with the distribution from 

smoothed  fixations:  one  for  MMs  while  controlling  for  GBVS,  and  one  for  GBVS  while 

controlling for MMs (see Fig. 4). Consistent with findings by Henderson and Hayes (2018), MMs 

explain  more  unique  variance  than  GBVS  (Fig.  6a),  as  indicated  by  the  significantly  higher 

coefficients in the former than the latter case (mean difference 0.28, 95% confidence interval 

(CI) [0.17, 0.39]; paired t-test, t(35) = 5.22, p < 0.001). Interestingly, the identical analysis with 

DGII  revealed  that  DGII  explained  significantly  more  unique  variance  than  MMs  (mean 

difference 0.15, 95% CI [0.07, 0.24]; t(35) = 3.60, p < 0.001, see also Fig. 4b). 
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Fig. 4. Comparison of semi-partial correlations with smoothed human fixations for (a) MMs and  

GBVS and for (b) MMs and DGII. The obtained coefficients were significantly higher when assessing  

MMs while controlling for GBVS compared to when assessing GBVS when controlling for MMs. The  

opposite was true for the analyses with DGII. All figure characteristics are as in Fig. 3. except that  

means instead of medians are presented.

Internal replication

To demonstrate the generalizability of  my conclusions beyond SCEGRAM images, I replicated 

the main results with a different stimulus set (see the Supplement).

Comparing meaning maps and saliency models – discussion

If human gaze is guided by meaning, and if MMs index the distribution of meaning across an 

image, MMs should outperform saliency models that are exclusively based on image features. 

My first  analysis  showed that  this  prediction does not hold.  In fact,  DGII  generated better 

predictions and explained more unique variance than MMs. Therefore, at least one of the two 

premises of  my prediction  does not hold: either human eye-movements are not sensitive to 

meaning or MM do not index meaning. The second analysis allowed us to distinguish between 

these alternatives.
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Analysing the effects of semantic inconsistencies within 

scenes – method

In  the  second  analysis,  I  assessed  how  human  observers,  DGII,  and  MMs  respond  to 

experimental changes in meaning induced by altered object-context relationships. I used eye-

movement data from both the Consistent and the Inconsistent condition.  These conditions 

differed solely in the Critical Region, an area that either contained an object that was either 

consistent with the scene context or induce semantic conflict. For each scene, I calculated the 

mass  of  the  distributions  of  human  gaze,  DGII,  and  MMs  falling  into  the  Critical  Region,  

respectively, and divided it by the Region’s area for normalization. My primary interest was the 

comparison between conditions: to the extent to which humans, DGII, and MMs are sensitive 

to meaning, they should fixate more (humans) or predict more fixations (DGII and MMs) on the 

Critical Region in the Inconsistent than the Consistent condition. 

Analysing the effects of semantic inconsistencies within 

scenes – results

My comparison  indicated  that,  as  predicted,  observers  fixated  more  on  inconsistent  than 

consistent objects (Fig. 5a). By contrast, behavior of both MMs and DGII did not change across  

conditions (Fig. 5b and c). These impressions were confirmed by a 2x3 ANOVA, with condition 

(Consistent vs.  Inconsistent) as a within-subjects factor  and the  distribution source (human 

fixations vs. MMs vs. DGII) as a between-subjects factor. I found a statistically significant main 

effect of distribution source, F(2, 105) = 13.09, p < 0.001, ω2 = 0.16 and condition, F(1, 105) = 7.41 

p = 0.0076, ω2 = 0.005. These main effects were qualified by a significant interaction, F(2, 105) = 

16.90, p < 0.001, ω2 = 0.026. Tukey post-hoc tests showed that human observers looked more at 

the Critical Regions in the Inconsistent, than the Consistent condition, t(105) = -6.22, p < 0.001. 

In contrast, no significant differences between conditions were found for DGII, t(105) = -0.09 p 

= 1.0, and MMs, t(105) = 1.60 p = 0.6028. Comparisons within conditions indicated that human 

fixations differed from MMs in the Inconsistent condition, t(129.91) = 5.78 p < 0.001, but not the 

Consistent condition,  t(129.91)  = 2.16 p = 0.2662.  A significant  difference between DGII  and 
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human fixations was detected in both Consistent, t(129.91) = -2.96 p = 0.0420, and Inconsistent 

conditions, t(129.91) = -5.79 p < 0.001.

Fig.  5.  Normalized distribution  mass  falling  within  Critical  Regions  in  both  conditions  for  (a)  

smoothed human fixations, (b) MMs, and (c) DGII. All figure characteristics are as in Fig. 3. 

Additionally,  conditions differed regarding the number of fixations per image, t(35) = 5.67 p < 

0.001. On average,  there were 6% fewer fixations in the Inconsistent condition.  This excludes 

the  possibility  that  higher  number  of  fixations  in  this  condition  might  drive  the  observed 

increase in the distribution mass falling within the Critical Regions.

Any systematic differences in object size between Consistent and Inconsistent conditions also 

could affect my results because larger objects may attract more fixations solely because they 

occupy a larger image area. However, this factor was minimized by showing each object in a 

consistent  and an inconsistent  context.  Yet,  the same object  might  be shown in  a  slightly 

different position in the two conditions and might therefore occupy slightly different amounts 

of the image. This was, however, not the case: the JZS Bayes Factor of 4.26 indicated that the 

two conditions did not differ in the size of the bounding boxes of each manipulated object 

(objects in the Inconsistent condition were on average 1562.28 pixels larger; 95% confidence 

interval: [-2582.74, 5707.29]).
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Next, please note that I employed a within-subject design, which might have led to carry-over  

effects: observer viewing a given scene in the Inconsistent condition first could be biased to 

look at the Critical Region in the Consistent condition when they viewed the same scene for a  

second time. Note that even if this unwanted phenomenon occurred despite a randomised 

order of stimuli presentation, it could only decrease the magnitude of the effects of interest.

Finally,  it  is  possible  that  my observers  implicitly  engaged  in  a  task.  Specifically,  once  the 

observers  realized  that  the  stimuli  contain  object-context  inconsistencies,  they  might  have 

started actively searching for them. Engaging in this semantic oddball-search task would result 

in  very  different  spatial  distributions  of  fixations  compared  to  the  ones,  which  would  be 

obtained during free-viewing. This prediction was not supported by my findings: I replicated my 

main experiment in a different set of observers with images that did not contain semantic 

inconsistencies,  and found that DGII  still  predicted fixation locations better than MMs. This 

separate data set, therefore, suggests that observers did not engage in an oddball search task 

and that the superiority of DGII is not specific to SCEGRAM images only (details to be found in 

the Supplement).

To  summarize,  semantic  changes  induced  by  altering  object-context  relationships  elicited 

changes in distributions of  human fixations,  but neither MMs nor DGII  could predict  them. 

These  results  suggest  that  both  models  might  be  sensitive  to  image  features,  which  are 

frequently correlated with image meaning, rather than to meaning itself.

Discussion

A long-standing debate in visual perception concerns the extent to which visual features vs. 

semantic content guide human eye-movements in free viewing of natural scenes. To distinguish 

these hypotheses, indexing the distributions both of features and meaning across an image is 

critical. While image-based saliency models have been used to index features for two decades, 

measuring semantic importance has been difficult until  meaning maps (MMs) have recently 

been proposed. Here, I assessed the extent to which MMs indeed capture the distribution of  

meaning across an image. First, I demonstrate that despite the claims about the importance of 
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meaning as measured by MMs for gaze control, MMs are not better predictors of locations of 

human fixations than at least some saliency models, which are based solely on image features.  

In fact, DeepGaze II (DGII), a model using deep neural network features, outperformed MMs. 

Second,  I  assessed the sensitivity  of  human eye-movements,  MMs,  and DGII  to changes in 

image meaning induced by violations of typical object-context relationships. Observers fixated 

more often on regions containing objects  inconsistent  with scene context  (thus replicating 

previous findings) but these regions were not indexed as more meaningful by MMs, or as more 

salient by DGII.  Together, these findings challenge central  assumptions of MMs, suggesting 

that they are insensitive to the semantic information contained in the stimulus. 

The good performance of DGII in predicting human gaze might be attributable to the high-level 

features it extracts from images. Three other models, which use low-level features, failed to 

decisively outperform MMs. However, unlike two of them (GBVS and AWS), DGII is trained with 

data on human fixations to optimize performance (Kümmerer et al., 2016, 2017).  Yet, training 

alone cannot explain the difference in performance. The third low-level feature model (ICF) is 

trained in the same way  (Kümmerer et al., 2017) but still achieves a lower performance than 

DGII.  These findings suggest that feature type is indeed critical for a model’s  performance. 

Importantly,  however,  while  DGII  uses  high-level  features  transferred  from  a  deep  neural  

network trained on object recognition (Simonyan & Zisserman, 2014), this is not equivalent to 

indexing meaning. Rather, the good performance of DGII is likely due to meaning supervening 

on, or correlating with, some of the features indexed by this model.

Correlation  between  visual  features  and  meaning  as  the  source  of  good  performance  in 

saliency models  has already been considered by the authors of  MMs  (Henderson & Hayes, 

2017).  My findings  suggest  that  MMs  might  share  this  characteristic  with  saliency  models. 

Specifically, the ratings used to construct MMs might be based on visual properties in such a  

way that highly structured patches that contain high-level features receive high ratings. These 

features often correlate with meaning, but in and of themselves do not amount to meaning. 

According to this interpretation, both DGII and MMs index high-level features. Their success in 

predicting human  behaviour derives from the typically strong correlation between high-level 

features and meaning, with a higher correlation for the features extracted by DGII than MMs. 
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An alternative interpretation of the finding that DGII outperforms MMs is that image features 

rather than meaning guide human fixations. However, this interpretation is inconsistent with 

my second analysis. Here, observers clearly exhibited sensitivity to meaning, as indicated by 

changes in gaze-patterns elicited by introducing semantic inconsistencies into the images. This 

experimental manipulation targets a type of meaning that is based on how objects relate to the 

broader context in which they occur. While specific, it is precisely this kind of meaning that is of 

high theoretical  importance in eye-movement research (Henderson,  2017;  Henderson et al., 

2009). Natural scenes are by definition composed of multiple objects, and the physical and 

semantic relationships between these objects as well as their relationship to the scene gist,  

determine the meaning of a scene (Kaiser et al., 2019; Malcolm et al., 2016; Võ, 2021). Thus, the 

fact  that  MMs are  not  sensitive  to  the  meaning  derived from object-context  relationships 

seriously limits their usefulness.

It  is, however, possible  that – as has been already suggested (Henderson et al., 2018) – MMs 

capture some form of ‘local’ meaning that is important for oculomotor control. Evaluating my 

results in this respect is complicated by the correlation between features and meaning (Elazary 

& Itti, 2008), which I already alluded to above. Yet, at the very least, the fact that MMs do not  

consistently outperform even simple saliency models such as AWS that by design rely on low-

level image features warrants caution. This finding indicates that either the purported kind of  

meaning indexed by MMs is not of primary importance for guidance of eye-movements, or that 

it is almost perfectly correlated with the features indexed by the models. 

A similar issue relates to DGII: while my study shows that this model does not index meaning 

derived from object-context relationships, one might argue that it acquires sensitivity to some 

(local)  form  of  meaning  by  virtue  of  being  trained  on  human  data.  Specifically,  if  eye-

movements are guided by the semantic  content of images, then training on eye-movement 

data might lead to developing ‘meaning-sensitivity’ in the model. While this scenario cannot be 

ruled out for the same reasons as in the case of MMs, recall that the ICF model – which uses  

simpler  features  than  DGII  –  is  also  trained  on  human  data  but  fails  to  reach  the  high 

performance of DGII.  Therefore, if  the high performance of DGII is based on some form of  

‘local’ meaning, then it is not training per se that leads to the development of this meaning but 

an interaction of training and specific features. 
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These  considerations indicate  the urgent  need for  developing  a  more nuanced conceptual 

approach and terminology to capture the intricacies of different types of ‘meaning’, and a more 

appropriate language to talk about the relationship between ‘features’ and ‘meaning’. Without 

a clearer theoretical framework, it will be difficult to experimentally settle debates regarding 

the role of ‘meaning’ in natural-scenes perception.

In any case, the insensitivity to  semantic inconsistencies  reveals inherent limitations of both 

MMs and DGII. The way in which MMs are constructed implicitly assumes that meaning is a 

local image-property, which is not true for object-context (in)consistency. This limitation may 

potentially  be  alleviated  by  ‘contextualized  MMs’  (Peacock,  Hayes,  &  Henderson,  2019),  a 

recently suggested modification of the ‘standard’ MMs. These novel maps are created from 

meaningfulness ratings by observers who see the whole scenes from which the to-be-rated 

patches were derived (the next Chapter of this thesis is dedicated to assessing them). DGII, in 

turn, does not explicitly encode semantic information, and was not trained on the relationship 

between eye movements and semantic (in)consistency. But its failure highlights an opportunity 

to improve saliency models by incorporating semantic relationships (Bayat et al., 2018).

Taken together,  my results suggest that, contrary to their  core promise as a methodology, 

meaning maps (MMs) do not offer a way to measure the spatial distribution of meaning across  

an image. Instead of meaning per-se,  they seem to index high-level  features that have the 

potential to carry meaning in typical natural scenes. They share this characteristic with state-of-

the-art saliency models, which are easier to use, do not require human annotation, and yet 

predict locations of human fixations better than MMs.

Supplement to Chapter Two

Internal replication

I replicated the finding that DGII outperforms MMs in predicting human fixations in a separate  

experiment with a different set of stimuli  and  new observers.  This second experiment was 
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identical to the first one except for the stimuli, the number of observers (21 instead of 20), and 

the number and the duration of images presented. 

Methods

I used 30 photographs from Corel Photo Library depicting mainly single animals. The images 

were converted to grayscale and resized to 788 by 526 pixels (22.5 by 15 degrees of visual 

angle). I presented them for 3 seconds each, in blocks of 10. 21 new observers took part in the 

study (1 male, mean age 19.05). To create MMs, the images were fragmented into 4200 fine and 

1620  coarse  patches  in  total.  Each  rater  recruited  via  Amazon  Mechanical  Turk  rated  291 

patches.  Because  DGII  requires  RGB  images  as  input,  to  generate  model’s  predictions  I 

converted the stimuli to RGB by copying greyscale pixel values to the three color channels.

Results

DGII again outperformed MMs in predicting human fixations (see Table S1). 

Table S1. Comparison of Predictive Power of Saliency Models and MMs Using Correlation and 

sAUC – Internal Replication

Model Median  of 

prediction  values 

with 95% CIs

Median  of 

differences 

from MMs with 

95% CIs

W 

statistic

p-value

(Bonferroni

-corrected)

JZS  Bayes 

Factor

Correlation

DGII 0.86 [0.71, 0.89] 0.11 [0.04, 0.17] 386 0.0042 6.34

MMs 0.74 [0.62, 0.80] – – – –

sAUC

DGII 0.75 [0.73, 0.78] 0.04  [0.02, 

0.06]

409 < .001 63.52

MMs 0.70 [0.68, 0.74] – – – –
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Number of observers

I tested if fixations from 20 observers who viewed images in  my experiment are sufficient to 

closely approximate the theoretical  ground truth distributions of fixations which would have 

been obtained from an infinite number of observers. Visual inspection of the data revealed that 

including  fixations  from  about  10  observers  results  in  distributions  which  remain  virtually  

unchanged when fixations from more observers are added. This observation was confirmed by 

a more formal analysis. For each observer, I randomly selected a subset of 12 other observers 10 

times and calculated how well smoothed fixations from these subsets predict fixations of the 

observer for each image using correlation. Averaging all the obtained values over observers 

and subsets  resulted in  an estimate  of  how well  12  observers  predict  fixations  of  a  single 

observer viewing a given image. The value obtained for all  SCEGRAM images amounted to 

0.835 (SD = 0.094). Next, again for each observer viewing each image, I calculated how well  

their fixations can be predicted using fixations of the remaining 19 observers. The average of 

the obtained values equaled to 0.840 (SD = 0.097). This number is close to the value obtained  

for 12 observers, thus indicating that the underlying distributions of fixations are similar, and 

that increasing the number of observers would not affect them substantially.

SCEGRAM scenes

I  used  SCEGRAM  photographs  from  two  conditions:  Consistent  and  (Semantically) 

Inconsistent. These photographs are divided into quadruples: object A in scene A (scene and 

object are consistent),  object A in scene B (scene and objects are inconsistent), object B in  

scene B, and object B in scene A. In order to avoid potential distortions of the results, in  my 

experiment I included only these quadruples in which both manipulated objects do not contain 

any digits or text observers might be trying to read. Applying this selection criterion resulted in 

retaining the following SCEGRAM scenes: 1-4, 7, 8, 11, 12, 17, 18, 21, 22, 27, 28, 33-44, 47-50, 55, 56, 

59-62.

Eligibility criteria for Amazon Mechanical Turk raters

Raters  who  rated  the  meaningfulness  of  image  patches  had  to  meet  the  following 

requirements: they had to have an approval rating grater than 96%, be located in the United 
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States,  have more than 500 tasks  (‘HITs’)  approved,  and not  have completed the task  for  

images from a given set of images (SCEGRAM or from the replication) before. 

Statistical software 

All statistical analyses were conducted in R (R Core Team, 2016) with the help of functions from 

the following packages: BayesFactor (Morey & Rouder, 2015), jmv (The jamovi project, 2019), 

ppcor (Kim, 2015), and boot (Canty & Ripley, 2019; Davison & Hinkley, 1997).

Confidence intervals for medians

All confidence intervals for medians were calculated using adjusted bootstrap percentile (BCa) 

method with 10000 bootstrap replicates, implemented in R package boot (Canty & Ripley, 2019; 

Davison & Hinkley, 1997).

Openly available materials

Deep Gaze II and ICF: https://deepgaze.bethgelab.org/

AWS: http://persoal.citius.usc.es/xose.vidal/research/aws/AWSmodel.html

GBVS: http://www.vision.caltech.edu/~harel/share/gbvs.php

SCEGRAM database: https://www.scenegrammarlab.com/research/scegram-database/

Code for creating MMs used in this paper: DOI: 10.5281/zenodo.3490592 

Data from this study: DOI: 10.5281/zenodo.3490434 
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Chapter Three – human eye-movements are 

not guided by meaning as measured by 

contextualised meaning maps

Introduction
In the previous Chapter, I demonstrated that even when observers view images without a task, 

the  spatial  allocation  of  fixations  can  be  by  guided  by  factors  which  are  not  captured by 

saliency models, namely, semantic content of the visual scene (see Henderson et al., 2019; Wu 

et al., 2014 for reviews). It seems fair to say that, to date, there is no conceptual framework to 

capture precisely what authors refer to when they talk about the semantic content, or meaning 

in images. With respect to oculomotor control, these terms are used to label factors such as 

identifiability of the depicted objects (Luke & Henderson, 2016; Pilarczyk & Kuniecki, 2014; see 

also Williams & Castelhano, 2019), specific properties of objects (Xu, Jiang, Wang, Kankanhalli, 

& Zhao, 2014), image parts best conveying the information of the whole image  (Nyström & 

Holmqvist,  2008),  or  social  signals  such  as  the  presence  of  human  faces  (Rider,  Coutrot, 

Pellicano, Dakin, & Mareschal, 2018).  

There is, however, one well-studied effect in eye movement research, for which the notion of 

semantic content, or meaning is more clearly defined. Specifically, objects can be more or less 

semantically  consistent  with  the  scene,  within  which  they  appear,  and,  as  shown  in  the 

previous  Chapter,  the  extent  of  object-scene  consistency  has  an  effect  on  eye  movement 

behaviour.  For  instance,  in  one  of  the  seminal  studies  (Loftus  &  Mackworth,  1978),  one 

example stimulus showed a farmyard scene either with a (semantically consistent) tractor, or a 

(semantically inconsistent) octopus. Inconsistent objects such as the octopus were looked at 

earlier, attracted more fixations, and were inspected for longer in comparison to consistent 

objects.  While  mixed  results  have  since  been  found  with  respect  to  the  timing  of  eye 

movements  (or, more precisely, with respect to the existence of semantic processing outside 

foveal vision that might be indicated by the earlier fixations to inconsistent objects; Wu, Wick, 
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et al., 2014), there is robust evidence demonstrating that object-scene inconsistencies lead to 

more and longer  fixations  (Coco,  Nuthmann,  & Dimigen,  2020;  Friedman, 1979;  Henderson, 

Weeks, Phillip A., & Hollingworth, 1999).

Two types of mechanisms are thought to underpin these effects: first, scene context influences 

object processing (Bar, 2004; Kaiser, Quek, Cichy, & Peelen, 2019) and objects that are viewed 

in inconsistent contexts are processed less effectively (Biederman, Mezzanotte, & Rabinowitz, 

1982; Munneke, Brentari, & Peelen, 2013). Consequently, more fixations towards, and longer 

inspection  times  of  inconsistent  objects  are  thought  to  reflect  the  increased  processing 

resources needed to process these stimuli  (Bonitz & Gordon, 2008; De Graef, Christiaens, & 

D’Ydewalle, 1990).

A  second,  and  possibly  complementary,  explanation  for  the  effects  of  object-scene 

inconsistencies on eye movements is based on the notion that inconsistent objects are ‘more 

informative’  (Loftus  &  Mackworth,  1978),  ‘semantically  informative’  (Henderson,  2011; 

Henderson et al.,  1999),  or  ‘contain  greater  meaning’  (Peacock,  Hayes,  & Henderson, 2019, 

page 6). According to this idea, the oculomotor system drives fixations towards inconsistent 

objects in an effort to maximise extraction of ‘meaning’ from a scene.

This  second  interpretation  has  recently  gained  increased  attention,  in  particular  with  the 

development of  meaning maps,  a  method to quantify  the spatial  distribution of  ‘meaning’ 

across  an  image  described  in  the  previous  Chapter (Henderson  &  Hayes,  2017,  2018).  To 

reiterate, meaning maps are created by first partitioning an image into many circular, partially-

overlapping patches. These patches are then presented to individuals (called raters) who view 

them without knowing the scene from which they were extracted, and are asked to rate their  

meaningfulness on a Likert scale. Finally, these ratings are combined into a smooth distribution 

over the image to create a map. ‘Meaning’ indexed by this method has been demonstrated to 

be  a  better  predictor  of  fixations  than  a  simple  saliency  model,  a  finding  that  has  been 

interpreted as evidence to suggest that semantic information rather than image-computable 

features  control  eye  movements  (Henderson  &  Hayes,  2017,  2018).  The  meaning  maps 

approach  is  rapidly  gaining  in  popularity  and  these  maps  have  been  used  to  study  eye 

movements in contexts such as virtual reality (Haskins, Mentch, Botch, & Robertson, 2020) or 
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mind-wandering  (Krasich,  Huffman,  Faber,  &  Brockmole,  2020;  Zhang,  Anderson,  &  Miller, 

2020).

The previous Chapter tested key assumptions underpinning MMs, and compared them to a 

wider range of saliency models.  This comparison has highlighted a number of limitations (see 

also  Pedziwiatr  et  al.,  2021).  One  of  these  issues  relates  to  semantic  object-scene 

inconsistencies: contrary to the idea that inconsistent objects attract fixations because they are 

richer  in  meaning,  meaning  maps  in  their  originally  proposed  form  do  not  ascribe  more 

meaning to scene regions occupied by  objects  that  are  inconsistent  with the global  scene 

context compared to consistent objects presented in the same region and matched in terms of 

low-level features. Moreover,  meaning maps were outperformed in the prediction of fixation 

locations by Deep Gaze II, a saliency model based on a deep neural network (Kümmerer, Wallis, 

& Bethge, 2016; Kümmerer, Wallis, Gatys, & Bethge, 2017). Together, the results of this study 

led to the conclusion that MMs do not index semantic information per se, but high-level visual 

features that are highly correlated with semantics. In this respect, the original form of MMs are 

similar to modern saliency models.

It seems plausible to assume that many of the limitations of the original approach stem from 

the fact that MMs ignore the global context of the scene – recall that they are created from 

ratings of  isolated,  ‘context-free’  image patches.  To overcome these issues,  contextualised 

meaning  maps  have  recently  been proposed  (Peacock  et  al.,  2019).  They  differ  from  their 

predecessors in one important detail: during rating, each patch is presented alongside the full 

scene from which it originated, so raters have access to global scene-context when assessing 

the meaningfulness of the patch. Given the critical importance of context in scene semantics 

(Biederman et al., 1982; Võ, Boettcher, & Draschkow, 2019), the contextualised meaning maps 

that  are  created  from  such  context-sensitive  ratings  might  be  better  suited  to  quantify  

semantic information within the visual scene.

In the  present Chapter, I applied the same straightforward but critical test to contextualised 

meaning maps, to which the original meaning maps were subjected: I assessed the extent to 

which they are sensitive to semantic object-scene inconsistencies, assigning higher ‘meaning’ 

to inconsistent objects, and – consequently – predicting increased fixations on such objects. To 
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that end, I created contextualised meaning maps for two types of indoor scenes: each scene 

either contained a semantically consistent object such as a hair brush on a bathroom sink, or  

this object was replaced with an inconsistent object such as a shoe on the sink. Analysing these 

maps and comparing them to fixation-patterns of human observers viewing the corresponding 

scenes  revealed  that  the  maps  are  not  able  to  predict  the  gaze  changes  elicited  by  the 

manipulation  of  semantic  object-context  consistency.  Moreover,  this  experiment  provided 

initial  evidence  that  contextualised  meaning  maps  might  attribute  less meaning  to  scene 

regions that contain inconsistent compared to consistent objects. Given this surprising result, 

in a second experiment, I asked a large number of raters to provide meaningfulness ratings for 

a carefully controlled set of image patches. The results of this second experiment suggest that  

objects that are semantically inconsistent with the global scene are judged as less meaningful 

than consistent objects. This finding is diametrically opposed not only to the predictions of the 

meaning maps approach but also – when taken at face value – to the more general assumption 

that semantically inconsistent objects are ‘more meaningful’. In addition to these main findings, 

my sample  of 122 individuals  provided the means to reveal a substantial between-individuals 

variability in meaningfulness ratings. Overall, my results presented in the Chapter challenge the 

meaning  maps  approach  but  point  towards  new  directions  for  research  on  individual 

differences in scene perception.

Experiment 1 – Methods

The main goal of Experiment 1 was to compare contextualised meaning maps and human eye-

movements. In particular, I was interested in the extent to which contextualised meaning maps 

and fixations respond to local changes in semantic information within a scene, resulting from 

the presence of objects that are semantically consistent vs. inconsistent with the overall scene-

context. 

Stimuli

I used the same stimuli  as in the previous  Chapter: photographs of 36 indoor scenes, taken 

from the openly available dataset SCEGRAM (Öhlschläger & Võ, 2017).  To remind, each scene 
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was  photographed  in  two  conditions:  Consistent  and  (semantically)  Inconsistent  which 

resulted in two images per scene (72 images in total). Images from the Consistent condition 

contained only objects typically found in certain contexts. In the Inconsistent condition, one of 

these objects was replaced with an object unusual in the context provided by the whole scene, 

thus introducing a semantic inconsistency. For example, in one of the scenes, a hair brush on a 

bathroom sink (Consistent condition) was replaced with a flip-flop (Inconsistent condition) – 

see Fig. 1b. The SCEGRAM dataset is construct in such a way that, across scenes, consistent and 

inconsistent  objects are matched for  low-level  properties  (Öhlschläger & Võ,  2017).  In each 

scene,  consistent  and  inconsistent  objects  occupy  the  same  image  locations,  and  the 

superposition of the bounding boxes of both conditions constituted what I here call a Critical 

Region.  These  Critical  Regions  are  important  for  the  data  analyses  I  report  further  below 

because they contain the only image regions that differ between conditions. Please refer to the 

previous Chapter for more details.

Observers

I used the same eye-tracking data as in Chapter Two – no new observers were recruited for the 

present Experiment.

Eye-movement data

In this Chapter I used the same eye-movement data as in the previous one. Therefore, here, I 

report only the key characteristics of its collection and pre-processing, asthey are described in 

detail  in  the  previous  Chapter.  For  all  72  images,  I  collected  eye-tracking  data  from  20 

observers. Each observer free-viewed the full set of images displayed in a random order while  

their eyes were tracked with an EyeLink 1000+  eye-tracker. The images had a width of 688 

pixels and a height of 524, corresponding to, respectively, 19.7 and 15 degrees of a visual angle. 

Each image was presented for 7 seconds, which is similar to the presentation duration of 8 s 

used in the original contextualised meaning maps study (Peacock et al., 2019). To analyse the 

eye-movements data, fixation locations were extracted from raw eye-tracker recordings using 

a standard EyeLink algorithm. The discrete  fixations on each image were transformed into 

continuous  distributions  by  means  of  Gaussian  smoothing  (filter  cut-off  frequency:  -6  dB; 
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implemented in Matlab – see Kümmerer et al., 2020) followed by a normalization to the [0-1] 

range.

Creating contextualised meaning maps – overview

The procedure of creating contextualised meaning maps is almost exactly the same as that 

used to generate the original  meaning maps.  I  closely followed the procedure described in 

detail  in  previous  publications  (Henderson &  Hayes,  2017,  2018;  Pedziwiatr  et  al.,  2021).  In 

summary, a pre-defined grid is used to segment the image into circular, partially overlapping 

patches (Fig. 1 A). Next, in a crowdsourced online experiment, each patch is presented next to 

the image from which it was derived, and human raters are asked to rate the meaningfulness  

of the patch. Presenting the full  image next to the patch ensures that the rater knows the 

context  when  providing  their  responses  (Fig.  1B;  see  this  figure  for  details  of  the  rating 

procedure itself). The presence of context is the only element differentiating contextualised 

meaning maps from their  predecessors,  meaning maps.  Each individual patch  was rated by 

three  individuals.  They  were  instructed  in  the  same  way  as  in  the  original  contextualised 

meaning maps study: to rate how "meaningful" they think scene patch is. In a third step, the 

ratings from individual  patches are combined into a smooth distribution over the image by 

means  of  averaging  and  interpolation  (Fig.  1C).  For  each  image,  these  three  steps  are 

conducted twice: once for bigger ‘coarse’ patches and once for smaller ‘fine’ patches. Then, 

the  maps  resulting  from coarse  and fine patches  are  averaged.  Finally,  the  regions  of  the  

average  map,  which  are  close  to  the  edges  are  down-weighted  (Fig.  1D;  see  Creating  

contextualised  meaning  maps  –  modelling  centre-bias  section  for  details).  This  manipulation 

accounts for the centre-bias of human eye-movements, i.e., the tendency to look more at the 

central  region of  an image  (Tatler,  2007).  Note that  in the study described in the previous 

Chapter, the centre bias model was not included in the meaning maps. I did include it here 

because I  was primarily  interested in replicating the steps from the original  contextualised 

meaning maps article  (where the bias was included), rather than in comparing the maps to 

saliency models regarding their predictive power, as I did in the previous Chapter (to remind, 

this comparison might be affected by the presence of the centre-bias model in the maps).
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Fig. 1. Generating contextualised meaning maps.

A) Grid used to segment images into coarse patches. Grey rectangle represents image area.  B)  

Sample stimuli from the patch-rating task used for creating contextualised meaning maps. The  

patch, which raters were asked to rate for its meaningfulness, was always presented next to the  

image from which it originated to provide the relevant context. A green circle on the context  

image indicated the location of the patch. Both panels show the same scene in the Consistent  

(upper part of the panel) and the Inconsistent (lower part) condition. The images on both panels  

differ only with respect to the object shown in the patch. The hair brush on the upper part is a  

semantically consistent object for a bathroom scene, the shoe on the lower parts is semantically  

inconsistent. In the task, raters were asked to assess the meaningfulness of the patches by means  

of selecting a value on a six-point rating scale.  C) Simplified schematic illustration of combining  

patch ratings into contextualised meaning maps (to be read from the top to the bottom).  For the  

sake  of  simplicity,  the  illustration  includes  only  two  patches  of  a  single  size,  and  each patch  

received only one rating.  Rating values assigned to different image regions in  the subsequent  

steps of the procedure are reflected by the intensity of grey colour. Points P 1 and P2 serve as nodes  
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for thin plate spline interpolation (not shown), which is the final stage of ratings processing. For a  

more detailed description of the procedure, please refer to the previous Chapter.  D) Centre bias  

model used in contextualised meaning maps. To account for the human inclination to allocate  

fixation  predominantly  to  central  image-regions  (a  so-called  centre  bias),  creating  in  

contextualised meaning maps includes assigning different weights to different pixels of the maps  

depending on their location. This re-weighting is done by convolving the maps with a model of  

centre bias shown on this panel, in which brighter pixels indicate higher pixel-weights.

Creating contextualised meaning maps – parameter value selection

When creating contextualised meaning maps for my stimuli, the aim was to match as closely as  

possible the procedure used in the original study by Peacock and colleagues (2019). My images, 

however, differed in size from the stimuli used in that study and were viewed from a different 

distance during the eye-movements data collection. In order to account for these differences, I  

matched the two studies with respect to the size of coarse and fine patches in degrees of visual 

angle (deg), and with respect to patch density of coarse and fine patches expressed in the 

number of patches per square degree of visual angle (p/deg2). Under the constraint that the 

centres of each two adjacent patches have to be equidistant horizontally and vertically, these 

four values fully specify the grids necessary for creating contextualised meaning maps. In terms 

of absolute values, matching the two studies with respect to these parameters was perfect for  

patch diameter and resulted in 5.26 deg (coarse patches) and 2.26 deg (fine patches), which 

corresponded  to  187  pixels  and  79  pixels,  respectively.  The  patch  densities  closest  to  the 

original I could possibly achieve were 0.56 p/deg2 and 0.21 p/deg2 (compared to 0.57 p/deg2 and 

0.2 p/deg2 in the original study). Given the size of my stimuli, these values correspond to 63 

coarse and 165 fine patches per image. The resulting grid for creating coarse patches is shown 

on Fig. 1a.

Creating contextualised meaning maps – data collection

The procedure described in the previous sections resulted in a total of 16 416 patches (4 536 

coarse and 11 880 fine patches). As described in detail in the caption for Fig. 1, each patch was  

rated for its  meaningfulness by three human raters on a 6 point Likert-scale.  Patches were 

divided into 54 blocks of 304 patches each, and each block was assigned to three different 

raters (see details below).
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Recall that each scene exists in a Consistent and an Inconsistent version, differing only with 

respect to the identity of a single object. If the raters were to view the same scene in both 

conditions, there would be a high chance that they guess the main focus of the study and, in 

turn, adjust their rating strategy (by, for example, conditioning the rating values assigned to 

patches on the presence – or absence – of the semantic inconsistency in the context image).  

Such  situation would invalidate  my results  because the raters  would be performing a  task 

different than intended. To prevent that from happening, I assigned patches to blocks in such a 

way that each rater never saw a scene in both the Consistent and Inconsistent conditions. 

Specifically,  I  created two sets of  blocks.  First  one contained half  of  the patches from the 

Consistent condition and half  from the Inconsistent,  with the patches in both these halves 

derived  from  different  scenes.  The  other  set  of  blocks  contained  the  remaining  patches. 

Because of  this  division,  raters  were never exposed to the same scene in  both conditions. 

Within each set of blocks, patches were allocated to blocks randomly.

Each block was rated by three unique raters, and 162 raters were recruited in total. The order of 

patch-presentation was randomised for each rater separately. Data collection was conducted 

online. The raters were recruited using the crowdsourcing platform Prolific (www.prolific.co) 

and the patch-rating task was implemented as a Qualtrics survey (Qualtrics, Provo, UT). All my 

raters had to meet the following eligibility criteria: they had to be of U.S. nationality (as in the 

original contextualised meaning maps study), they had to have submitted at least 100 tasks to 

Prolific before, had to have an approval rate of 95% or more, and had to use a laptop or a 

personal computer to complete the task. They were financially reimbursed for their time and 

were allowed to participate in my study only once.

Creating contextualised meaning maps – modelling centre-bias

Recall that the final step of creating contextualised meaning maps involves reweighting the 

map with a model of centre bias. Such models have the form of smooths distributions over the  

image,  with  higher  values  clustering  closer  to  image  centre  (Clarke  &  Tatler,  2014).  When 

creating contextualised meaning maps I followed the original authors and relied on a model 

provided with the saliency model GBVS  (Harel, Koch, & Perona, 2007) (to be precise, on the 

inverse  of  centre-bias  model  included  in  invCenterBias.mat file,  which  I  inverted-back  by 
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subtracting it from one). This model is shown on Fig. 1d. The effects of applying it are illustrated 

on Fig. 2d and e. 

Creating contextualised meaning maps – histogram matching

For each image, I matched the histogram of its contextualised meaning map to the histogram 

of the distribution obtained by smoothing human-fixations registered on this image. This was 

done  using  imhistmatch Matlab  function.  Histogram  matching  –  also  used  in  the  original 

meaning maps studies –  ensures that values from both distributions are directly comparable 

because they have been aligned to the same scale (see Fig. 2b, c, d).

Fig. 2 Contextualised meaning maps – illustration.

A) Singles scene from the Consistent condition of my study, with fixations registered on it marked  

with red dots. B) Smoothed fixations from panel A). The histogram of this distribution served as a  

reference to which the histogram of the contextualised meaning map was matched (see next  

panel).  This procedure ensures the comparability of values from both distributions by aligning  

these values to the same scale. C) ‘Raw’ map for the scene from panel A). Since this map has not  

been subjects to histogram matching, colour-values on it are not comparable to values on the  

remaining  panels.  D)  The  map  from  panel  C),  after  histogram-matching  but  before  including  

centre bias.  Contextualised meaning maps were better predictors of fixations before including  

centre  bias  in  them  than  afterwards  (see  Soundness check:  general  predictive  power  of 

contextualised  meaning  maps section).  E)  The  map  from  panel  D),  with  centre  bias  model  

included. Such maps are used in all my analyses, unless otherwise stated.
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Data analysis software

Data from this study was handled using Matlab R2020a (Mathworks Inc., Natick, MA) and R (R 

Core Team, 2020). In particular, I relied on the R packages belonging to the tidyverse collection 

(Wickham et al., 2019); for pre-processing and plots generation, as well on packages jmv (The 

jamovi project, 2020; for running ANOVAS). Other R packages I used are cited in the relevant 

places in the text.

Data and code availability

The  eye  movement  data  used  in  this  study  are  openly  accessible  via  the  following  link: 

https://zenodo.org/record/3490434). SCEGRAM stimuli are available under the following link: 

https://www.scenegrammarlab.com/research/scegram-database/.

Experiment 1 – Results

Soundness check: general predictive power of contextualised meaning maps

I  tested  how  well  the  patterns  of  human  fixations  on  images  could  be  predicted  by  the  

contextualised meaning maps I created. To quantify their predictive power, I applied a standard 

technique  (Bylinskii,  Judd,  Oliva,  Torralba,  &  Durand,  2016),  used  also  by  Peacock  and 

colleagues  (2019):  for  each  image,  I  calculated  the  correlation  between  its  contextualised 

meaning map and smoothed fixations registered on this image. For images from the Consistent 

condition, the average correlation amounted to 0.60 (SD = 0.17).  The average percent of the 

explained variance in the eye-movement data amounted to 39%. In the Inconsistent condition, 

contextualized  meaning  maps  performed  slightly  worse  (M  =  0.57,  SD  =  0.20,  37%  of  the 

variance explained).    Additionally,  I  investigated the effects  of  removing centre  bias  from 

contextualised  meaning  maps  and,  interestingly,  found  that  contextualised  meaning  maps 

performed better without it (Consistent: M = 0.71, SD = 0.13, 52% of the variance explained;  

Inconsistent: M = 0.66, SD = 0.17, 47% of the variance explained). This might be related to the 

fact that in SCEGRAM scenes, the content fixated by observers was distributed more uniformly 

than the specific model of a centre bias included in contextualised meaning maps assumes (see 

example in Fig. 2).
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Either way, all these results are similar to what is reported in the original study (where the 

maps explained 40% of the variance in human data) and thus provide an important soundness 

check  for  my  study.  A  lower  quality  of  predictions  in  my  study  than  in  the  original 

contextualised meaning maps study (Peacock et al., 2019) could have indicated that either the 

procedure of creating contextualised meaning maps is sensitive to aspects of the design which 

were different between my study and the original study (such as absolute image size), or that  

there were some technical problems with my implementation of it.  

Sensitivity of contextualised meaning maps and eye movements to semantic 

manipulations

In the first key part of my analysis, I compared contextualised meaning maps and smoothed 

human-fixations with respect to their sensitivity to semantic manipulations. For this analysis, I  

focused on Critical Regions – image regions which, depending on the condition, contained a 

semantically consistent or inconsistent objects (see Stimuli section for details). For each scene, 

I first performed histogram matching (see previous section) and then calculated the mass of 

each distribution  (contextualised meaning maps and smoothed fixations)  falling within  the 

Critical Region and divided that value by the Region’s area for normalisation (see Fig. 3). These  

values  were  then  analysed  using  a  mixed  2×2  ANOVA  with  the  condition  (Consistent  vs. 

Inconsistent) as a within-subjects factor and the distribution source (contextualised meaning 

maps vs. smoothed fixations) as a between-subjects factor. Please note that here a ‘subject’  

indicates a single scene. Such an approach is typical for studies comparing fixation-prediction 

methods and is grounded in the observation that different observers agree to a large extent in  

their selection of fixation targets in images (De Haas, Iakovidis, Schwarzkopf, & Gegenfurtner, 

2019). This analysis revealed that both the distribution sources and conditions, differed from 

each other statistically (distribution source:  F(1, 70) = 23.05, p < 0.001, ω 2 = 0.22; condition: F(1, 

70) = 5.34, p = 0.0238, ω2 ≈ 0). Importantly, however, these main effects were qualified by an 

interaction (F(1, 70) = 23.83, p = p < 0.001, ω2 = 0.02). Tukey post-hoc test showed that human 

eye-movements  were sensitive  to the change in  semantic  relationship  between object  and 

scene, as indicated by the fact that more mass of the smoothed-fixations distribution fell within 

the  Critical  regions  in  the  Inconsistent  condition  compared  to  the  Consistent  condition 
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(Consistent – Inconsistent: M = -0.09, SE = 0.02, p < 0.001). The same comparison, however, did 

not yield statistically significant differences for the contextualised meaning maps (M = 0.03, SE 

=  0.02,  p  =  0.2737),  suggesting  that  the amount  of  ‘meaning’  they assigned to the Critical 

Region did not differ between conditions.

Recall that one step in creating contextualised meaning maps involved averaging the two maps 

derived from the coarse patches and the fine patches. I repeated my mixed ANOVA analysis 

separately for the coarse and fine maps. The pattern of results of the ANOVA for both fine and 

coarse patches was similar to that reported in the previous section (fine patches: distribution 

source: F(1, 70) = 32.64, p < 0.001, ω2 = 0.26, condition: F(1, 70) = 0.08, p = 0.7769,  interaction: 

F(1, 70) = 31.56, p <  0.001, ω2 = 0.04; coarse patches: distribution source: F(1, 70) = 41.85, p < 

0.001, ω2 = 0.3; condition:   F(1, 70) = 3.71, p = 0.0581; interaction: F(1, 70) = 5.87, p = 0.018, ω 2 = 

0.01). Importantly, however, I obtained an unexpected outcome in the post-hoc tests for the 

fine patches maps:  this  analysis  revealed that  fine maps attributed  less meaning to Critical 

Regions in the Inconsistent condition than the Consistent condition (M = 0.08, SE = 0.02,  p = 

0.0019). Coarse maps did not exhibit this puzzling tendency; the pattern of results for them 

was the same as in the first analysis (post-hoc for contextualised meaning maps: M = 0.01, SE = 

0.03, p = 0.9851).

Additionally, as a side note to my main considerations, I examined the temporal  evolution of 

the influences of semantic inconsistencies on eye-movements. Other studies, also comparing 

fixations  on  consistent  and  inconsistent  objects  which  occupied the  same  image  location, 

yielded conflicting findings regarding whether the inconsistent objects are fixated earlier or not 

(see Wu, Wang, et al., 2014 for review). To help to clarify this issue, I conducted an additional 

analysis of my eye-movements data, in which I compared the ordinal numbers of first fixations 

landing  within  the  Critical  Regions  between  out  experimental  condition.  This  comparison 

revealed that it took observers 5.03 fixations on average to look at the inconsistent objects for  

a first time, and 5.97 for consistent (data pooled over scenes and over observers). The finding 

that the inconsistent objects are not fixated immediately after image onset but still earlier than 

consistent replicates the results of a recent study  by Coco,  Nuthmann and Dimigen  (2019). 

These  authors  supplemented  gaze  recordings  with  electroencephalography  (EEG)  and 

concluded that object semantics can be at least partially accessed via peripheral vision. 
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To  summarize,  human  eye-movements  changed  in  response  to  local  changes  in  semantic 

information: inconsistent objects attracted more fixations than the consistent ones, and were 

fixated earlier. The analogous effect was not detected for contextualised meaning maps and 

for their coarse component: I did not find the differences between conditions for neither of the 

two. For fine component of contextualised meaning maps, introducing semantic inconsistency 

to  a  scene  region  elicited  a  change  in  the  amount  of  ‘meaning’  ascribed  to  this  region. 

Intriguingly,  however,  it  had the opposite  direction.  That  is,  contrary  to  predictions of  the 

meaning maps approach,  the fine maps ascribed less meaning to scene regions when they 

contained inconsistent objects.

Fig. 3 Comparison of eye movements data and contextualised meaning maps
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For each scene in  each condition,  for  smoothed fixations and for  the  contextualised meaning  

maps, I calculated the amount of distribution-mass falling within the Critical Region (the region, in  

which  the  manipulated objects  were  located)  divided by  the  Region’s  area.  Comparing  these  

values between conditions revealed that observers tend to fixate the Critical Regions more when  

they contained semantic inconsistencies (Inconsistent condition), as compared to the situation  

when  they  did  not  (Consistent  condition;  left  plot).  This  effect  was  not  predicted  by  

contextualised meaning maps (right plot), as they did not attribute more ‘meaning’ to semantic  

inconsistencies.  Each grey line indicates a single scene, black  oblique  lines connect the means,  

black vertical lines indicate standard errors.  Grey lines indicate single images; black vertical bars  

indicates means with 95% confidence intervals.

Sensitivity of patch ratings to semantic manipulations

It should be noted that transforming patch ratings into contextualised meaning maps involves 

a number of steps, some of which include non-linear transformations. In order to exclude the 

possibility that these steps mask real between-conditions differences in the full maps and in 

their  coarse  components,  or  unintentionally  introduce  incidental  between-conditions 

differences in the fine components, I conducted two analyses on the raw rating data. In the 

first analysis, I selected all patches, which had an overlap of at least one pixel with the Critical  

Regions, and discarded the remaining patches. The ratings for patches from each condition 

were averaged for each scene, separately for coarse and fine patches. Averaging allowed us to 

account  for  between-scene  differences  in  the  number  of  patches  overlapping  with  Critical 

Regions  and  guaranteed that  the  data  from each  scene  had an  equal  contribution  to  the 

subsequent  analyses.  A  comparison  of  these  average  ratings  between  conditions  did  not 

provide any evidence to suggest that between-condition differences were present in the raw 

data but were masked in the processes of assembling contextualised meaning maps (see Table 

1 rows 1 and 4 and Fig. 4).

Note, however, that in this analysis, I included all patches with at least one pixel overlap with  

the Critical Regions. These regions were derived from the bounding boxes of the objects (see 

Stimuli and eye-movements data section for details). Consequently, some patches showed only 

small parts of the manipulated objects, or none at all. Averaging ratings for such patches with  
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those  that  clearly  depict  the  manipulated  objects  might  cover  subtle  effects.  I  therefore 

repeated my analysis of ratings with more stringent criteria for patch inclusion. In order for a 

given patch to be included in this second analysis, the percentage of its area overlapping with a 

Critical Region (dubbed Overlap Percentage henceforth) had to be above a certain threshold 

(see Table 1 and Fig.  4). For patches of each size, I tested two threshold values. These values 

were selected as 34th and 67th percentiles of all  above-zero Overlap Percentage values. The 

motivation  for  using  percentiles  to  determine  the  thresholds  was  to  make  sure  that  the 

consecutive analyses differ from each other by approximately the same percentage of retained 

patches: while in the first analysis I included 100% of patches which had above-zero Overlap 

Percentage,  the  thresholds  resulted  in  including  66%  (for  34th percentile)  and 33%  (for  67th 

percentile) of them. For each threshold and each scene, I  averaged ratings of the retained 

patches,  separately for each combination of  experimental  condition and patch size. Next,  I 

compared these per-scene values between conditions (see Table 1 for full results). Only one of 

the resulting tests reached statistical significance:  for the most conservative threshold,  fine 

patches from the Inconsistent condition were rated as  less meaningful than their equivalents 

from the Consistent one.  The magnitude of  this  difference was small:  it  amounted to  0.28 

points, which corresponded to 5.6% of the full range of the rating scale (spanning from 1 to 6).
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Fig. 4 Comparison of patch ratings between conditions – visualization.

For each scene in each condition, I averaged ratings from patches, which covered some parts of  

the  Critical  Regions,  separately  for  coarse  and  fine  patches.  I  then  subtracted  the  values  for  

Inconsistent from Consistent. Averages of these per-scene differences are presented on this figure,  

together with their 95% confidence intervals. For each patch-size, I conducted this analysis three  

times, including all patches overlapping with the Critical Regions, or only the top 66% and top 33%  

of  patches  ordered  by  the  amount  of  their  overlap  with  Critical  Regions.  As  a  result,  the  

subsequent  analyses  were  restricted  to  patches  presenting  larger  parts  of  the  manipulated  

objects. In all analyses, patches derived from the Inconsistent condition had the tendency to be  

rated as less meaningful than patches form the Consistent condition but this unexpected effect  

was statistically  significant only for  those fine patches,  which shared the largest  overlap with  

Critical Regions (see Table 1).

Table 1:  Comparison of patch ratings between conditions – statistical results
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Patch 

size

Percent of 

patches 

having 

above-

zero 

Overlap 

Percentag

e included

Patch inclusion 

threshold: 

minimal 

Overlap 

Percentage

Number 

of 

included 

scenes1

Mean difference in 

ratings (Inconsistent 

– Consistent) with 

95% confidence 

intervals

Paired t-test results2

Coarse

100%  >0 36 -0.04 [-0.18, 0.09 t(35) = -0.63, p = 0.530

66% 0.07 35 -0.07 [-0.25, 0.11] t(34) = -0.78, p = 0.440

33% 0.21 27 -0.06 [-0.36, 0.25] t(26) = -0.38, p = 0.705

Fine

100%  >0 36 -0.02 [-0.13, 0.1] t(35) = -0.33, p = 0.747

66% 0.18 36 -0.05 [-0.21, 0.11] t(35) = -0.63, p = 0.533

33% 0.56 30 -0.28 [-0.54, -0.01] t(29) = -2.13, p = 0.042

1 Because some scenes had small Critical Regions, for more conservative thresholds none of the 

patches derived from them had an Overlap Percentage high enough to be included in  the  

analysis.
2 I did not apply any correction for multiple comparisons here.

In  my  first  experiment,  I  used  a  dedicated  image  data  set  to  evaluate  the  sensitivity  of 

contextualised meaning maps and human eye movements to manipulations of the semantic 

relationship  between  objects  and  scenes.  As  expected,  human  observers  looked  more  at 

objects  that  are  semantically  inconsistent  with  the  scene  context  compared  to  consistent 

objects. Contrary to predictions of the meaning maps approach, however, my results indicate 

that  contextualised  meaning  maps  assign  similar  ‘meaning’  to  consistent  and  inconsistent 

objects. This insensitivity to manipulations of semantic object-scene relationships was present 

already at the level of the raw rating data. It therefore seems unlikely that it is merely due to  

the way in which ratings are combined into contextualised meaning maps. When I split the 

analyses of contextualised meaning maps or the raw data by the size of the patches (fine vs.  

coarse), there was, however, a slight indication that the effects of semantic inconsistencies on 

meaningfulness ratings and on eye-movements might go in opposite directions. Specifically, 
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when  I  only  considered  the  contextualised  meaning  maps  resulting  from  ratings  of fine 

patches, the maps assigned  less  ‘meaning’ to the Critical Region, which was defined by the 

bounding boxes of the consistent/inconsistent objects. A similar effect was observable in the 

raw data of small patches (here called fine) that contained large parts of, or whole objects:  

those patches depicting objects that are inconsistent with the scene context were rated as less  

meaningful than the patches depicting consistent objects. If confirmed, this finding would not 

only challenge the meaning maps approach but would contrast starkly with typical explanation 

of  the semantic inconsistency effect in eye-movement research  which assumes that human 

observers  look  more  at  semantically  inconsistent  objects  because  the  object-scene 

inconsistency results in these objects being semantically more informative or conveying larger 

amounts of ‘meaning’  (Henderson, 2011;  Henderson et al.,  1999; Loftus & Mackworth, 1978; 

Peacock et al., 2019). Given that the evidence of my first experiment was patchy and, at best,  

preliminary,  I  decided  to  conduct  a  second,  more  targeted  experiment.  I  considered  two 

hypotheses for why I found the effect only for a subset of fine patches. Firstly, it  could simply 

be a false positive. Secondly, there might be a general but subtle tendency to rate semantic 

inconsistencies as less meaningful,  but the subtlety of  this  effect might have meant that it  

could not be detected in ratings of coarse patches because of their low number. To adjudicate  

between these two hypotheses,  I  conducted Experiment 2.  In  this  experiment,  I  created a 

single,  well-controlled  set  of  coarse  patches  derived  from  scenes  with  consistent  and 

inconsistent objects, and collected ratings for them from multiple raters.

Experiment 2 – Methods

Stimuli and design

In this experiment, I used the same 72 photographs (of 36 scenes) as in Experiment 1. For each  

scene,  I  manually  selected  two  coarse  patches  that  fully  contained  the  consistent  and 

inconsistent  objects  (see  Fig.  5).  The  locations  of  these  patches  were  the  same  in  both 

conditions but their content changed. These patches were dubbed Con and Incon. Con-patches  

were derived from scenes in the Consistent condition, Incon in the Inconsistent condition. In 

this experiment, I were primarily interested in the ratings associated with these two types of 

patches. Con- and Incon-patches were presented interleaved with other patches to mimic the 
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circumstances of a rating task used for creating contextualised meaning maps. The rationale 

for this interleaved presentation is explained in more detail at the end of the next paragraph.

When creating the set of additional patches,  I  relied on the ratings from Experiment 1 and 

selected six patches from each scene (see Fig.  5):  two patches,  which received the lowest 

meaningfulness ratings (dubbed L),  one, which received the highest (dubbed H),  and three 

patches,  for  which  the  ratings  were  midway  between  these  extremes  (dubbed  M).  This 

selection was carried out as follows. For each scene, I took all the coarse patches that did not 

overlap  with  the  Critical  Region.  For  each  location  occupied  by  these  patches,  I  averaged 

ratings across the Consistent and Inconsistent conditions. I sorted the patches according to 

these average ratings in an increasing order and selected two from the bottom (L), one from 

the top (H), and the three closest to the median (M). Therefore, I selected eight patches for 

each  scene in  total:  six  patches,  which  were  identical  between conditions  with  respect  to 

content (L, M, and H), and two patches, which differed (Con and Incon). Recall that my main 

goal was to compare ratings for the last two patches for each scene. The purpose for including 

the remaining patches in the patch-rating task was to ensure that raters have the opportunity 

to use all values from the meaningfulness-rating scale. Additionally, I wanted all the values to 

be used approximately equally frequently. Since I expected Con- and Incon-patches to be rated 

rather high, I included only one H-patch but two L-patches in order to maintain this intended 

balance.

For stimulus presentation, each L-, M-, and H-patch was paired with the full images from both  

conditions. In contrast, Con- and Incon-patches were paired only with either the consistent or 

the inconsistent scenes,  respectively.  This  resulted in a set of  504 patch-contexts  pairs (36 

scenes x 2 conditions x 6 L/M/H-patches + 36 Con-patches + 36 Incon-patches). I split this set  

into  two  equally  large  subsets,  each  containing  half  of  the  patch-context  pairs  from  one 

condition and half from the other in order to avoid the situation that raters would be exposed  

to the same scene in both conditions.
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Fig. 5 Stimuli used in Experiment 2.

A,  B) In the second experiment, I  tested the hypothesis that in the patch-rating task used for  

creating contextualised meaning maps, patches depicting semantically inconsistent objects tend  

to be rated as less meaningful than their counterparts which depict consistent objects. To this  

end,  for  each  scene,  I  selected  two  patches,  which  contained  the  consistent  (Con)  or  the  

inconsistent (Incon) object, with the intention to compare the ratings they would receive. Testing  

my hypothesis, however, required mimicking the overall context in which the ratings were being  

provided  when  collecting  data  for  contextualised  meaning  maps.  Therefore,  I  additionally  

included six patches, which did not differ depending on whether the scene contained inconsistent  

object  or  not.  These  patches  –  according  to  the  ratings  they  received  when  creating  

contextualised meaning maps for this scene – were either low in meaning (labelled L on the figure,  

two patches), high (H, one patch) or midway between these extremes (M, three patches). Some  

of the patches that were selected were close to image edges and were therefore clipped. [add or  

not: in the experiment,] A pool of raters viewed these patches paired with either the Consistent  

and Inconsistent context and provided meaningfulness ratings.

Sample-size justification

I planned to compare ratings for Con- and Incon-patches after averaging them per-rater and,  

therefore, treating data provided by each rater as two repeated measurements that I would  

compare using a paired t-test. Initially, I planned to resort to the analysis of statistical power to 

determine the number of  raters to be recruited for  Experiment 2.  Following the logic that 

contextualised meaning maps were conceived as a method of predicting fixation-distributions, 
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I  tied  my  power  analysis  to  the  magnitude  of  the  effect  of  object-context  inconsistencies 

observed  in  the  eye-movements  data.  This  effect  was  quite  big  and,  in  consequence,  the 

calculated required sample size was small.  Given how surprising the preliminary findings of 

Experiment 1 were, however, I decided that smaller effect sizes, which would require larger 

sample sizes, would be also interesting. Ultimately, I therefore decided not to determine my 

sample-size  by  means  of  power-analysis  but  instead  by  considering  feasibility  constraints, 

namely,  the  amount  of  resources  I  deemed  reasonable  for  running  Experiment  2.  These 

considerations resulted in the recruitment of 140 raters, out of which 18 were excluded (see the 

Rater inclusion criteria and inter-rater agreement section). The final sample-size of 122 raters 

allowed detecting effects having the magnitude of Cohen’s Dz = 0.32 with 95% power, when 

using paired, two-tailed t-test and when adopting a significance level of 0.05 (as indicated by 

the G-Power software; Faul et al., 2007). 

Collecting meaningfulness ratings

Data collection was conducted identically to Experiment 1. I used the same patch-rating task 

(with the order of stimuli presentation randomized individually for each rater) and the same 

method of recruiting raters (Prolific platform).

Rater inclusion criteria and inter-rater agreement

I assumed that raters, who followed the task instructions, would agree in their ratings to a 

large degree. For example, I assumed that they would consistently rate M-patches higher than 

L-patches.  Following  that  logic,  I  excluded raters,  whose  ratings  vastly  disagreed with  the 

ratings provided by the majority of participants. I operationalized this idea by first measuring 

the agreement of ratings within each possible pair of raters who had viewed the same subset 

of patches using Krippendorff’s α (Hayes & Krippendorff, 2007). Values of α span from negative 

values  to  1,  where  1  indicates  perfect  agreement,  0  indicates  the  degree  of  agreement 

achievable by chance, and the negative values indicate systematic disagreement. I calculated 

pairwise α for my raters using the function kripp.alpha from the R package irr (Gamer, Lemon, 

Fellows, & Singh, 2019), with the option  scaleType set to 'interval' to indicate that my raters 

were using an interval scale. Next, for each rater, I averaged the α values from all pairs to which 

this rater belonged. These per-rater average α values (dubbed Rα from now on) indicated the 
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degree to which a given rater agreed with other raters who rated the same subset of patches. I  

visually inspected the histogram of Rα values calculated for all raters and decided that in my 

final sample, I would include only raters having Rα larger than 0.4. This resulted in excluding 18 

raters  and  retaining  122.  The  average  Rα  for  the  retained  raters  was  0.70  (SD  =  0.06). 

Additionally, I calculated Rα values for the excluded raters, using only data provided by them. 

These values indicated the agreement being close to the chance level (mean = -0.06, SD = 0.20) 

which means that these raters were most likely responding at random, rather than using a 

common rating-strategy, consistently differentiating them from the majority of my sample.

Experiment 2 – Results

Patches that were identical between condition (L, M, and H)

As a soundness check, I first tested whether L, M, and H-patches were rated as low, medium 

and high in meaning, respectively. I used Page's test, a non-parametric, rank-based statistical 

test assessing the ordering of values obtained in repeated measurements  (Page, 1963), and 

compared the null  hypothesis that there were no differences between ratings for all  three  

types of patches against the alternative stating that L-patches (mean rating M = 1.5, SD =  0.58)  

were rated lower than M-patches (M = 2.5, SD = 0.64) which, in turn, were rated lower than H-

patches (M = 4.6, SD = 0.72). I conducted it separately for patches from the Consistent and the  

Inconsistent  conditions.  In  both  cases  the results  were identical  (L  =  1708,  p  <  0.001)  and 

indicated that the pattern of obtained results matched my expectations.

To evaluate whether the presence of consistent or inconsistent objects in a scene affects the 

ratings  for  all  patches  in  that  scene,  I  analysed whether  ratings  for  L-,  M-,  and H-patches  

differed between consistent and inconsistent  conditions.  For  each rater,  I  averaged ratings 

provided for each patch type per condition (see Fig. 6), and analysed the averages with a 2×3  

repeated-measures  ANOVA  (with  a  Greenhouse-Geisser  correction)  with  the  two  within-

subjects  factors  Condition  (Consistent  and  Inconsistent)  and  Patch-Type  (L-,  M-,  and  H-

patches). As expected based on the preceding analysis, this analysis also showed that ratings 

differed according to patch type, as indicated by a main effect for this factor (F(1.33, 160.45) =  
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1376.33,  p < 0.001). The other main effect and the interaction showed no significant differences  

(Condition: F(1, 121) = 0.56, p = 0.457; interaction: F(1.33, 160.67), p = 0.5).

Fig. 6. Meaningfulness ratings obtained for L-, M-, and H-patches, averaged per rater over scenes  

and  segregated  by  condition.  Brighter  colours  indicate  mean  ratings  from  the  Consistent  

condition, darker from the Inconsistent. On the right-hand side, density plots are shown. 

In the final analysis of the L-, M-, and H-patches, I focussed on potential differences between  

individual scenes. The previous analyses reported in this section averaged patch ratings per 

rater  over  scenes.  In  my  final  analysis,  I  took  a  different  approach  and  compared  ratings 

provided for individual L-, M-, and H-patches across conditions. Individual patches were rated 

by a separate set of raters in the Consistent and Inconsistent conditions (see section  Stimuli  

and design). I therefore used a between-subjects Welsh test to compare the ratings for each 

patch individually across conditions and found statistically significant differences only for 16 out 

of 216 patches. These patches constituted 7.4% of all L-, M-, and H-patches and were derived 

from different scenes. Therefore, in the vast majority of cases, the condition from which the 

context image was derived did not influence the ratings for individual  patches. In fact,  the 

number  of  detected differences is  close to the level  expected by chance,  and none would 
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survive correction for multiple testing. Moreover, the few differences that arose did not come 

consistently from the same scenes and did not show consistent directionality (in 6 out of 16 

cases  where  the  differences  were  statistically  significant,  patches  associated  with  the 

Inconsistent context were rated higher).

Overall, these analyses have two implications: first, they indicate that the task was successful in 

generating meaningful ratings, as suggested by the expected ordering of values for L-, M-, and 

H-patches. Second, exchanging a single object that is semantically consistent with the scene for 

an inconsistent object  does not  have general  effects  on the rating of  patches that do not 

contain the manipulated object, neither on average nor on a scene-by-scene level.

Patches that were manipulated between conditions (Con and Incon)

The  main  focus  of  Experiment  2  was  to  assess  whether  objects  that  are  semantically 

inconsistent  with  the  scene  context  are  rated  differently  with  respect  to  the  amount  of 

meaning they convey compared to consistent object. To address this question, I used a similar  

approach to that employed for the analysis of the ratings for L-, M-, and H-patches. I averaged 

ratings provided by each rater, separately for all  Con- and all  Incon-patches, and compared 

them with a paired-samples t-test. In line with the preliminary findings of Experiment 1, and in 

direct opposition to previous assumptions (Henderson, 2011; Henderson et al., 1999; Loftus & 

Mackworth, 1978; Peacock et al., 2019), the results demonstrate that semantically inconsistent 

objects are rated as less meaningful compared to consistent objects (t(121) = 5.87, p <  0.001, 

mean of the differences: M = -0.21, 95% confidence interval [-0.14, -0.28], effects size = 0.53 (Dz). 

To assess the contribution of the consistent vs. the inconsistent condition to this effect in a 

subject-by-subject  approach,  I  ordered  the  raters  by  the  difference  between  their  average 

rating for Con- and Incon-patches. As shown in Fig. 7, this difference seems to be largely due to 

changes  in  ratings  of  inconsistent  patches:  while  there  was  no  clear  subject-by-subject 

difference in  the  ratings  for  Con-patches,  raters  who contributed to  the  group-level  effect 

showed decreased ratings for D-Incon patches.

This impression was corroborated by a statistical analyses that showed a significant correlation 

between Con/Incon differences and the Incon ratings (r(111) = .49 [.33; .62], p < 0.001), but no 
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such relationship for Con ratings (r(110) = 0.01 [-.17; .20], p = 0.885). Note that - for each analysis 

separately – I excluded points which had a Cook’s distance higher than 3 times the mean Cook 

distance for all points. For Con ratings, this exclusion threshold amounted to 0.02 (0.03 for 

Incon) and resulted in 10 exclusions (9 for Incon). Data without the excluded points is shown 

on Fig 7. I applied these exclusion criteria because the initial inspection of the data suggested 

that, in each case, the effects might be driven by a small number of points, which would have a 

disproportionately large influence on regression. However, repeating the analyses with all the 

data included resulted in the same pattern of outcomes (Con: r(120) = -.09, p =  0.342; Incon: 

r(111) = 0.49 [.33; .62], p < 0.001).

These findings suggest that there is high consistency across rater regarding their evaluation of 

the  meaningfulness  of  objects  that  are  semantically  consistent  with  their  scene  context. 

Ratings for inconsistent objects, in contrast, revealed substantial variability in raters behaviour. 

Different individuals tended to rate these objects as either lower, similar, or higher in meaning 

than the consistent objects. Ultimately, this difference not only offers interesting insights into 

individual differences but also suggests that the group-level effect is mainly driven by changes 

in the ratings of inconsistent objects.
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Fig. 7 Meaningfulness ratings obtained for Con- and Incon-patches.

For each rater,  I  averaged ratings provided for Con-patches (light-green points) and for Incon-

patches (dark-green points). Next, I subtracted the average ratings for Incon-patches from Con-

patches  and  ordered  the  raters  according  to  these  difference  scores.  The  ratings  for  Incon-

patches, but not for Con-patches, increase along this axis. Regression analyses conducted for both  

types  patches  separately  confirmed  this  impression:  the  correlation  between  Con/Incon  

differences and ratings was significant for the Incon-patches, but not for Con- (see regressions  

lines on the plot).  Therefore, the tendency to rate Incon-patches as less meaningful than Con-

patches varied substantially across raters. Please note that this figure was generated using data  

not containing points identified as outliers based on their Cook’s distance (see the main text).  

My final  analysis  focused on the individual  scenes,  rather  than individual  raters,  comparing 

ratings for Con- and Incon-patches derived from the same scenes. To that end, for each scene, I  

conducted a separate between-subjects Welsh test comparing ratings received by Con- and 

Incon- patches, similar to the analysis conducted for L/M/H-patches. Without the correction for  

multiple comparisons, 15 out of 36 of these tests yielded statistically significant results (this 

number was reduced to 3 after applying the correction). Out of these 15 cases, in 14  (39% of all 

scenes)  the  Incon-patch  was  rated  as  less  meaningful  than  the  Con-patch.  Therefore,  the 

tendency of Incon-patches to be rated as less meaningful than Con-patches was observable at 

the level of scenes too, which corroborates the finding from the rater-level analysis.

Discussion
In this  Chapter, I tested the hypothesis that objects, which are semantically inconsistent with 

the scene context, strongly attract human fixations because they are more informative (carry 

more ‘meaning’). In different forms, this hypothesis has been proposed by a number of authors 

for at least four decades (Henderson, 2011; Henderson et al., 1999; Loftus & Mackworth, 1978; 

Peacock et al.,  2019) but has recently  gained increasing attention with the development of 

meaning maps, a novel tool to index the distribution of ‘meaning’ across an image (Henderson 

&  Hayes,  2017,  2018).  Of  particular  interest  are  contextualised  meaning  maps,  a  recently 

proposed variant  of  the original  technique.  The distribution of  ‘meaning’  indexed by these 

maps  is  based  on  aggregating  crowd-sourced  judgements  about  the  meaningfulness  of 
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multiple  image-patches  cut  from  an  image.  Importantly,  when  providing  meaningfulness 

ratings for the patches, the individuals view the full scenes from which the patches have been 

derived. By contrast to the original meaning maps, the raters can therefore take the scene 

context into account when evaluating the meaningfulness of image parts. In a first experiment, 

I created contextualised meaning maps for images of scenes with objects, which are either  

semantically consistent or inconsistent, and compared them to eye-movement data for the 

same stimuli.  While  observers tended to look more at  inconsistent compared to consistent 

objects, contextualised meaning maps did not attribute higher amounts of ‘meaning’ to the 

former  than  the  latter.  Even  more  surprising,  my  first  experiment  provided  preliminary 

evidence  to  suggest  that  the  same  scene  location  might  even  be  indexed  as  less  rich  in 

‘meaning’ when it contains semantic inconsistencies. In a second experiment, I asked 122 raters 

to provide  meaningfulness ratings for a carefully controlled set of image patches, including 

patches that showed semantically consistent or inconsistent objects. The results of this second 

experiment  indicate that  humans  have  a  tendency  to  judge  objects  that  are  semantically 

inconsistent with the scene as less meaningful than their consistent counterparts. 

 

The  tendency  of  human  observers  to  look  more  at  semantically  inconsistent  objects  is 

considered to be a prototypical example of semantic influences on eye movements.  Previous 

explanations of this effect implicitly or explicitly assumed that semantic inconsistency increases 

the  amount  of  semantic  information,  or  ‘meaning’  that  is  conveyed  (Henderson,  2011; 

Henderson et al., 1999; Loftus & Mackworth, 1978; Peacock et al., 2019). This interpretation has 

been strongly expressed within the recently developed meaning maps approach (Henderson & 

Hayes,  2017;  Henderson  et  al.,  2019).  In  contrast  to  this  notion,  my  direct  evaluation  of 

contextualised meaning maps  suggests that, while showing an overall good ability to predict 

human  gaze  patterns,  they  are  unable  to  predict  influences  of  semantic  inconsistencies, 

showing no difference between consistent and inconsistent conditions. At the most basic level, 

my findings therefore  show that contextualised meaning maps fail  to capture  at  least  one 

critical  factor  that  guides  eye-movement  control.  It  might  be  that  contextualised  meaning 

maps, similarly to the original meaning maps, index complex local features that often act as 

carriers of semantic information in visual scenes, but fail to directly measure ‘meaning’ per se – 

see  previous  Chapter.   Note  that the  raters  were  instructed to  base  their  meaningfulness 

judgements on 'how informative or recognizable' they think an image patch is and this explicit 
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reference to recognizability could encourage the raters to implicitly considering the presence 

(or absence) of complex, object-related features in the patch when providing the judgement. 

The conclusion that meaning maps and contextualised meaning maps do not measure meaning 

is rooted in a specific notion of meaning, focusing on the degree to which certain objects are 

probable for certain contexts (see Loftus & Mackworth, 1978). This definition captures at least 

one way, in which semantic processing is relevant to oculomotor control, as demonstrated in  

my study and many other  cited here. While  this  definition pin-points  the nature  of  object-

context  inconsistencies  and  was  useful  for  revealing  the  limitations  of  the  meaning  maps 

approach, it has its own limitations, too. Most importantly, it does not highlight (but does also 

not  preclude)  the  fact  that  different  objects  can  be semantically  related to  each  other  to 

different degrees. For example, consider a corkscrew, a fork, and a knife. Intuitively, while all  

three are highly consistent with the contexts of a kitchen, the fork and the knife are more  

closely  related  to  each  other  than  any  of  them  is  to  the  corkscrew.  Such  a  relational 

understanding of ‘meaning’ has already provided interesting insights into human oculomotor 

control (reviewed in Wu, Wick, et al., 2014; see also Boettcher et al., 2018). For example, it has 

been demonstrated that,  during scene viewing, consecutive fixations tend to land on objects 

which are semantically related to each other (Hwang, Wang, & Pomplun, 2011; Wu, Wang, et al., 

2014).  Note  that  this  relational  conceptualization  of  meaning  is  distinct  from  the 

conceptualization proposed by the meaning maps approach: the former  abandons the idea 

which is the core of the latter, namely, that ‘meaning’ is gradual (that is, high for some objects 

and low for others) and, consequently, directly comparable to saliency (which also might be 

high or low for different image regions).  Looking from a broader perspective, it is becoming 

increasingly clear that there are a number of areas in vision research, in which the notion of  

‘meaning’ is in dire need for conceptual clarification.  The particularly pressing problem in the 

current context is the idea that ‘meaning’ is a unitary concept.  The distinction between ‘prior-

probabilities  meaning’  and ‘relational  meaning’  suggests  that,  in  fact,  it  might  be not.  The 

possibility  that  there  might  be  several  subtypes  of  meaning  that  are  important  for  eye 

movements has recently already been suggested by other authors (Henderson, Hayes, Rehrig, 

&  Ferreira,  2018;  Williams  &  Castelhano,  2019).  In  line  with  this  idea,  while  contextualised 

meaning maps and patch ratings might measure one type of meaning, they might ignore other 

types. The critical question then is what type of meaning, or what information, the patch-rating 
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task provides access to. Answering this question is impeded by the fact that it is far from clear 

what raters are doing when asked to provide meaningfulness judgments for image patches. 

Currently, participants are a black box with respect to their meaningfulness judgments, and it is 

unclear what information is taken into account or what processes lead to different ratings. A 

related  difficulty  concerns  the  possible  dependence  of  ratings  on  the  specifics  of  the 

instructions given to raters. While my study did not address this question, it seem plausible that 

changing the instructions might affect meaningfulness rating. In both experiments, I modelled 

my instructions on those used in the original contextualised meaning maps study by Peacock 

et. al (2019). These instructions do not provide strong guidance as to the raters’ task, because 

the intention was to compare the contextualised meaning maps created from these ratings to 

eye-movements  measured  during  free-viewing,  a  similar,  weakly-constrained  context. 

However, it is possible that for a more precisely defined task, raters’ behaviour would be very 

different.  For instance, imagine observers would have been told that the images in the study 

show crime scenes. It seems possible if not likely that raters would pick out the semantically 

inconsistent  objects  as  being  particularly  meaningful  in  this  context.  These  considerations 

illustrate not only the potential sensitivity of the patch-rating task to the changes in instruction 

but also how drastically the amount of ‘meaning’ carried by different image parts can change as 

a function of a context.

Given the limitations of human rating data, current developments in computational approaches 

might provide a more fruitful or, at least, complementary alternative that could contribute to a 

better  understanding  of  the  role  of  high-level  factors  in  eye-movement  control,  including 

semantic information and ‘meaning’. A number of authors have attempted to develop indices 

of these high-level aspects of visual input by applying techniques to images that have originally  

been developed in natural-language processing (Hwang et al., 2011; Lüddecke, Agostini, Fauth, 

Tamosiunaite, & Wörgötter, 2019; Rose & Bex, 2020; Treder, Mayor-Torres, & Teufel, 2020), in 

particular  in  the  field  of  distributional  semantics  (Harris,  1954).  While,  of  course,  these 

computational  methods  come  with  their  own  limitations,  they  have  a  number  of  key 

advantages over human rating data. To begin with, they are comparably inexpensive, fast, and 

easy to use, and can comfortably be applied to large image data sets due to their automation.  

More importantly,  if  used wisely, computational tools have the potential to be less opaque 

compared to human rating data, and might be more amenable to detailed analyses of which 
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specific statistical aspect of high-level scene contents contributes to eye-movement control. 

For  instance,  the  finding  that  humans  look  more  and  longer  at  ‘semantically’  inconsistent 

objects might be based purely on a statistical analysis of object co-occurrences in visual scenes 

(Wang, Hwang, & Pomplun, 2010).  Not surprisingly,  recent analyses of image datasets with 

more  than  20000 images  indicate  that  different  scene  categories  indeed  show  a  highly 

consistent clustering of object types  (Treder et al., 2020), and the oculomotor system might 

exploit these regularities for outlier detection. This interpretation of the influence of object-

scene inconsistencies on eye movements is similar in spirit to earlier notions of saliency (Bruce 

& Tsotsos, 2009), but transfers this idea from a low-level (feature-based) to a high-level (object-  

and  scene-based)  analysis  of  the  visual  input.  While  –  most  likely  –  being  an  important 

contributor,  co-occurrence per  se does  not  necessarily  amount  to  a  semantic  relationship 

between  objects,  or  ‘meaning’.  And  some  computational  approaches,  such  as  the  one 

developed by Treder and colleagues  (2020), might have the potential to determine whether 

oculomotor control relies purely on basic co-occurrence or transforms these raw data further 

into a type of information that is closer to what I might label ‘meaning’.

The caveat to bear in mind when interpreting all my results is that eye-movements data and 

meaningfulness ratings were collected from different people. However, at least at the level of 

between-group comparisons, I observed that introducing semantic inconsistency to a certain 

scene region elicits the increase in the number of fixations registered on this region and, at the  

same time, the decrease in the meaningfulness ratings provided for this region. Interestingly, 

this decrease was underpinned by a considerable variability in ratings revealed in Experiment 2: 

while the majority of raters, on average, rated patches from the Inconsistent condition as less 

meaningful than the patches from the Consistent condition, a small number of raters rated 

both kinds of patches as almost equally meaningful, or even had a reversed tendency. On the 

one hand,  this  high variability  severely limits the usefulness  of  the patch-rating task for  its 

original  purpose.  Recall  that creating contextualised meaning maps involves averaging and 

pooling the ratings provided by different raters. These procedures implicitly assume that the 

raters are interchangeable with each other and my results clearly show that they are not. On 

the other hand, the high variability in responses makes this task a potentially interesting tool  

for indexing individual differences (Hedge, Powell, & Sumner, 2018). While currently the clarity 

regarding the processes underpinning the selection of rating values is lacking, further research, 
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combining the patch-rating task with other measures, might shed more light on this issue, and 

–  thereby – on how different individuals process the content of natural scenes. This topic is still 

understudied  in  the  context  of  eye  movements,  despite  the  evidence  showing  that  such 

individual differences exist  (De Haas et al.,  2019; see also Kröger et al.,  2020). For example, 

humans exhibit idiosyncratic biases regarding the kinds of semantic information contained in 

scene-regions fixated first and these biases are linked to other characteristics of individuals (De 

Haas et al., 2019). First fixations might reveal differences in more involuntary processes related 

to scene  processing, so the patch-rating task can supplement them by offering insights into 

more deliberative ones. Importantly, the patch-ratings and eye movements, as shown in my 

study, are not always in concordance with each other.

To summarize, in my first experiment, introducing a semantic inconsistency to a scene region 

by replacing a semantically consistent object with one that is semantically inconsistent did not 

change the amount of  meaning attributed to this  region by contextualised meaning maps, 

despite  increasing  the  number  of  human-fixations  landing  on  this  region.  Therefore,  even 

though the maps predicted human fixations well for scenes containing only typical objects, the 

‘meaning’  they  measure  was  not  able  to  account  for  semantic  influences  on  human  gaze 

allocation linked to object-context inconsistencies. In fact, data from this experiment provided 

preliminary evidence suggesting that people might have the tendency to treat semantically 

inconsistent  objects  as  less  meaningful  than  their  consistent  counterparts.  The  second 

experiment  corroborated  this  conclusion:  individuals  performing  a  patch-rating  task  –  the 

backbone of contextualised meaning maps – indeed had the inclination towards rating image-

patches  depicting  inconsistent  objects  as  less  meaningful.  The  strength  of  this  inclination, 

however, varied substantially across individuals. Results of both my experiments may serve as a 

springboard  for  the  much-needed in-depth  discussions  about  the  meaning  maps  approach 

which  inspired  my  study  and,  more  generally,  the  role  of  semantic  information  in  human 

oculomotor control and individual differences in processing it.
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Chapter Four – knowledge-driven perceptual 

organisation reshapes information sampling 

via eye-movements

Introduction
Both previous Chapters  highlighted the  intricate  and complex relationship  between image-

computable  features  and  semantic  information,  which  is  carried  primarily  by  objects  (see 

Chapter One). While features are necessary for visual object representations to arise, they are 

often not sufficient. Indeed, a growing number of studies suggests that in order for object  

representations to emerge,  prior object-knowledge has to flexibly  interact with early  visual 

mechanisms  (Christensen,  Bex,  & Fiser,  2015;  Flounders,  González-García,  Hardstone,  & He, 

2019; Hsieh, Vul, & Kanwisher, 2010; Lengyel et al., 2019; Neri, 2017; Ongchoco & Scholl, 2019;  

Teufel,  Dakin,  &  Fletcher,  2018). In  effect,  prior  object-knowledge  reorganizes  sensory 

processing  of  low-level,  image-computable  features  in  order  to  carve  up  the  inputs  into 

meaningful units (Teufel & Fletcher, 2020). While these object-oriented effects of information 

sampling  are  well-established,  the  current  literature  provides  little  consensus  as  to  what 

specific aspect of  objects  influence programming of  eye movements  (Borji  & Tanner,  2016; 

Federico & Brandimonte, 2019; Henderson, Malcolm, & Schandl, 2009; Nuthmann, Schütz, & 

Einhäuser,  2020;  Van  der  Linden,  Mathôt,  &  Vitu,  2015).  The  present  Chapter assesses 

implications resulting from this novel conceptualisation of objecthood for the understanding of 

information sampling via eye movements in human observers.

Conventional accounts of object perception in both biological and machine vision are feature-

based   (Kourtzi  &  Connor,  2011;  Kriegeskorte,  2015;  Lee,  2015;  Marr  &  Nishihara,  1978): 

extraction of visual boundaries or edges formed by feature dissimilarities in images is thought 

to be among the core processes involved in segmenting a figure from its background. The  

extracted  features  provide  the  input  to  a  hierarchical  system  of  down-stream  visual 

mechanisms, which combine them into object representations. Recent developments in object 
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perception, however, demonstrate that the relationship between image-computable features 

and object representations is substantially more complex than advocated by this conventional 

account.  This  complexity  is  often  concealed  by  the  fact  that  object  locations  are  strongly  

correlated with clusters of specific features, such as edges  (Elazary & Itti, 2008; Masciocchi, 

Mihalas, Parkhurst, & Niebur, 2009). Yet, this correlation should not be mistaken for causation. 

Disregarding cases of hallucinations  (Horga & Abi-Dargham, 2019; Teufel et al.,  2015), image-

based features are clearly necessary for visual object representations to arise. That they are not 

sufficient,  however,  is  demonstrated  by  work  indicating  that  identical  images  can  lead  to 

categorically different object representations depending on the observer’s prior knowledge. In 

these  cases,  prior  object-knowledge  effectively  generates  objecthood  by  flexibly  guiding 

extraction,  processing,  and  organisation  of  lower-level  features  (Christensen  et  al.,  2015; 

Christensen, Bex, & Fiser, 2019; Flounders et al., 2019; Hsieh et al., 2010; Lengyel et al., 2019;  

Neri, 2017; Ongchoco & Scholl, 2019; Teufel et al., 2018).

The  most  influential  early  models  of  information  sampling  via  eye-movements  (saliency 

models) have  largely  disregarded objects,  arguing  that  programming  of  eye-movements  is 

controlled by an analysis of low-level features such as luminance, colour, and orientation (see 

Chapter  One).  According to these early  accounts,  the visual  system computes a number of 

maps on the basis of featural analyses, which highlight areas in the image that attract fixations 

(Zelinsky & Bisley, 2015). Over the past decade, however, a number of studies have emphasised 

the  importance  of  “objects”  or  “semantic  information”  in  guiding  information  sampling 

(Einhauser, 2013; Henderson & Hayes, 2017; Nuthmann & Henderson, 2010; Pajak & Nuthmann, 

2013; Rider, Coutrot, Pellicano, Dakin, & Mareschal, 2018; Stoll, Thrun, Nuthmann, & Einhäuser,  

2015). In one of the early studies, Einhäuser and colleagues (2008) found that maps of object 

locations  outperform  maps  derived  from  low-level  feature  models  in  predicting  human 

fixations. Moreover, human observers show a tendency to look at the centre of objects rather 

than  their  edges,  contrasting  with  predictions  from  (some)  low-level  feature  models 

(Nuthmann & Henderson, 2010; Pajak & Nuthmann, 2013; Stoll et al., 2015). These effects have 

been interpreted as demonstrating the importance of objects in oculomotor control.  An even 

more ambitious approach is based on a novel technique called meaning maps  (Henderson & 

Hayes, 2017). Such maps are created by segmenting a visual scene into small, isolated patches, 

which are rated for  their  meaningfulness independently  from the rest of  the image. These 
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ratings are pooled together into a smooth map, which is supposed to capture the distribution 

of  meaning  across  the  image.  Meaning  maps  are  better  at  predicting  human  fixations  in 

comparison to a low-level feature model (GBVS;  Harel, Koch, & Perona, 2007), a finding that 

has been used as evidence to suggest that eye-movements are controlled by the semantic 

properties of images (Henderson & Hayes, 2017).

The notion that eye-movements are controlled by object locations, or by the meaning of image 

parts has not remained unchallenged. For instance, a careful psychophysical study has recently  

suggested that the tendency of human observers to focus on the centre of objects might be 

controlled by a relatively simple process that programs eye-movements towards homogeneous 

luminance surfaces on the basis of luminance-defined edges  (Kilpelaïnen & Georgeson, 2018; 

see also Van der Linden et al., 2015). More generally, a potential limitation of almost all previous 

studies  that  aim to show the contribution  of  objects,  or  semantic  meaning to oculomotor 

control is their reliance on a comparison to models that calculate low-level feature maps as 

their null hypothesis. The specific choice of model has been shown to be critical, with changes 

in the model sometimes demanding dramatic reversals in interpretation  (Borji,  Sihite, & Itti, 

2013; Pedziwiatr, Kümmerer, Wallis, Bethge, & Teufel, 2021). 

Independently of the favoured interpretation of these findings, there is a more fundamental 

aspect  that  is  easily  overlooked.  The emphasis  on contrasting outputs  of  low-level  feature 

models  with  “objects”  or  “semantics”,  and  the  tendency  to  conceptualise  these  as 

categorically different interpretations,  has concealed a fundamental  similarity between low-

level  models  and those  studies  that  have  aimed at  showing  the  importance  of  objects  or 

semantic meaning in oculomotor control.  Specifically,  comparable to how low-level  models 

deal with simple features, these studies implicitly treat “objects” or “semantic information” as 

image-computable properties. This notion is also the basis for state-of-the-art computer vision 

models  that  aim  to  predict  human  fixations:  these  models  use  deep  convolutional  neural 

networks trained on object recognition in order to extract high-level features that are directly 

computed from the image (Kümmerer, Wallis, Gatys, & Bethge, 2017b; Thomas, 2016). In other 

words, rather than providing diametrically opposed interpretations, the different approaches in 

the current eye-movement literature can be understood as lying on a continuum, with their  

position being defined by the features they emphasise. This notion is made explicit in a recent 
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study by Schütt and colleagues (Schütt, Rothkegel, Trukenbrod, Engbert, & Wichmann, 2019). 

The authors  explicitly  conceptualised objects  as high-level  features that are computed in  a  

bottom-up fashion and contrasted their contribution to the guidance of eye-movements with 

the contribution of low-level features. 

While the theoretical precision of the study by Schütt and colleagues is exceedingly helpful in 

clarifying the different positions, conceptualising objects as high-level features conflicts with 

current developments in object perception.  Two aspects of the complex relationship between 

features and objects are particularly relevant: first, a number studies demonstrate that features 

are not necessarily sufficient for object representations to arise. Rather, objecthood emerges 

as a consequence of the interaction between current visual input and prior object-knowledge. 

Second, once object representations have been generated, top-down influences re-shape the 

way in which even some of the earliest cortical mechanisms process low-level visual features 

(Christensen et al., 2015, 2019; Flounders et al., 2019; Hsieh et al., 2010; Lengyel et al., 2019; Neri,  

2017; Ongchoco & Scholl, 2019; Teufel et al., 2018). For instance, psychophysical studies show 

that early feature-detector units are sharpened for currently relevant input based on top-down 

influences from object representations that emerge as an interaction between input and prior  

object-knowledge (Teufel et al., 2018). The re-shaping of information processing is detectable in 

early retinotopic cortices (Flounders et al., 2019; Hsieh et al., 2010). Overall, these findings thus 

cast  serious  doubt  on  the  notion  that  the  human  visual  system  computes  image  features 

independently of the inferred object structure of the environment  (Neri, 2017), regardless of 

whether they are low- or high-level. 

This  novel  perspective  of  object  perception  has  fundamental  implications  for  the 

understanding of information sampling via eye movement. First, if objecthood emerges from 

the  interaction  of  prior  knowledge  and  image-computable  features,  then  the  question  of 

whether objects guide eye movements cannot be answered by an approach that exclusively 

focuses on how the oculomotor system carves up image-computable feature space, regardless 

of whether the considered features are low- or high-level. Second, the novel perspective of 

object  perception means that a full  understanding of  the role  of  objects  in eye-movement 

control  has  to move away from regarding feature  space as  static,  taking into account  the 

plasticity  of  low-level  sensory  processing  introduced  by  dynamic  interactions  with  object 
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representations. Here I address both of these limitations. I analysed gaze data from human 

observers viewing two-tone images. On initial viewing, two-tone images are experienced as a 

collection of meaningless black and white patches. After gaining relevant object knowledge, 

however,  the  observers’  visual  system  organises  the  sensory  input  into  meaningful  object 

representations. I demonstrate that this knowledge-driven perceptual organization of inputs 

substantially re-shapes eye-movement patterns, with the selection of fixation locations being 

driven by a combination of image-computable features and the knowledge-dependent object 

representations. In summary, I show that a fundamental human visual behaviour – information 

sampling via eye movements – is guided by object representations that emerge when prior 

object-knowledge  restructures  sensory  input,  rather  than  being  based  solely  on  image-

computable features, regardless of whether they are low- or high-level. 

Two-tone images 

The  history  of  using  stimuli  similar  to  two-tones  images  in  psychology  dates  back  to  1957 

(Mooney,  1957),  when  Mooney  used  black  and  white  images  of  human  faces  in  a  test 

measuring  ‘closure’:  the  ability  to  spontaneously  perceptually  bind  image-features  into  an 

object.  In this test,  as well  as in its revised version proposed recently  (Verhallen & Mollon, 

2016), observers have to look at two-tone face until they decide if they can recognize it as a 

face or not (therefore, this test, although designed to measure ‘closure’, is also sensitive to  

individual  differences  in  face  processing).  Because  of  this  study  by  Mooney,  it  became 

customary among researchers to call black-and white, degraded images ‘Mooney images’. This 

name, however, is misleading. It suggests that these images – similarly to Mooney faces – can  

be  recognised  spontaneously,  while  the  purpose  of  creating  them  is  often  opposite: 

researchers do not want them to be recognisable for observers who have not been exposed to  

their templates before. Therefore, to avoid this confusion, in this Chapter I refrain from using 

the term ‘Mooney images’ and use ‘two-tone’ images instead. 

Thus far, two-tones images have been used mainly to investigate object perception (Flounders 

et al., 2019; González-García, Flounders, Chang, Baria, & He, 2018; Moore & Cavanagh, 1998), 

individual differences (Teufel et al., 2015; Tulver, Aru, Rutiku, & Bachmann, 2019), and memory 

and learning (a so-called one-shot learning; Ishikawa & Mogi, 2011). Importantly, they were also 
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used in eye-tracking studies (M. E. M. Król & Król, 2018; M. Król & Król, 2019; Loth, Gómez, & 

Happé, 2010). I refer to these studies later in this Chapter. 

Experiment 1 – Methods
Overview
In Experiment 1, observers viewed two-tone images while their eye movements were recorded. 

Two-tones are derived from photographs of  natural  scenes (‘templates’)  by smoothing the 

image, and binarising pixel values around a threshold. Each two-tone appears as meaningless 

patches on initial viewing. Once an observer has acquired relevant prior object-knowledge by 

viewing the corresponding template,  however,  processes of  perceptual  organization in the 

visual system bind the patches of the two-tone image into a coherent percept of an object (see 

caption of Fig. 1 for instructions of how to experience the effect).

Two-tone images provide a tool to manipulate object perception without changing the visual 

features of the stimulus. They are therefore ideally suited to test the hypothesis that human 

oculomotor control is determined by object representations that are not constituted by image-

computable  features  but  emerge  via  an  interaction  between  features  and  prior  object-

knowledge. According to this idea, eye movements in response to two-tone images should be 

determined by the observer’s subjective object percept rather than the objectively measurable 

features.  Specifically,  when  an  observer  binds  a  given  two-tone  into  a  meaningful  object 

percept, patterns of fixations should be more similar to those measured in response to the 

corresponding  template,  compared  to  when  the  two-tone  image  was  perceived  as 

meaningless.

To test these predictions, I recorded eye-movements of 36 human observers who viewed two-

tone  images  before  (Before  condition)  and  after  (After  condition)  being  exposed  to  the 

relevant  templates  (Template  condition)  –  see  Fig.  1.  In  the  Before  condition,  observers 

perceive two-tone images as meaningless black and white patches. In the After condition, they 

have received the relevant object-knowledge to bind patches into meaningful object percepts. 

It is critical to note that any potential differences in eye movements between the Before and 

the After conditions cannot be explained by image-computable features because these are 
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identical across conditions. The only aspect that has changed is the prior object-knowledge 

that observers have access to.

Observers
In this study, the primary unit of analysis was not a single observer, but the distribution of 

fixations on a single image (pooled across  observers).  Therefore,  I  selected the number of 

observers based on the estimated approximation of my empirical fixation distributions to the 

theoretical distributions, obtained from the population of infinitely many observers. Previous 

work has shown that fixations from 18 observers provide a sufficiently good approximation,  

and that further increasing the number of observers results only in marginal improvements 

(Judd,  Durand,  &  Torralba,  2012).  I  therefore  set  my  minimal  number  of  observers  to  18. 

However, one of my analyses required splitting my sample into two groups and I therefore 

recruited 36 observers in total, ensuring sufficient amounts of data in each groups after the 

split.  All  participants  were  Cardiff  University  students,  had  normal  or  corrected-to-normal 

vision, participated in the study voluntarily,  and received either money or study-credits as a 

reimbursement.  This  experiment  (as  well  as  the  other  two  reported  in  thisChapter)  was 

approved by the Cardiff University School of Psychology Research Ethics Committee.

Stimuli
I used 30 pairs of images, where each pair consisted of a two-tone and its template. These 

stimuli were a subset of stimuli used in previous studies (Teufel et al., 2015) and the details of 

selecting templates  and deriving the two-tones from them can be found in  the respective 

article.  In  brief,  template  images  –  predominantly  photographs  of  animals  in  their  natural  

environments – were taken from the Corel Photo library. In order to derive the two-tones,  

templates were smoothed and binarized. A good two-tone image should be perceived as a 

collection of meaningless patches prior to seeing its template but observers should be able to 

easily  bind the stimulus into a  coherent  percept  of  an object  after  they see the template.  

Extensive tests on naïve observers were conducted to select both the template images, and 

the parameters of smoothing and binarization that guarantee that the created two-tones have 

these desired properties.
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Experimental setup

The  experiment  was  conducted  in  a  dark  testing  room.  Participants  sat  56  cm  from  the 

monitor,  with  their  head  supported  by  a  chin  and  forehead.  Their  eye-movements  were 

recorded using an EyeLink 1000+ eye-tracker placed on a tower mount and working with the 

sampling frequency of 500 Hz. The procedure was programmed in Matlab R2016b (Mathworks, 

Natick, MA) with the Psychophysics Toolbox Version 3 (Brainard, 1997; Kleiner, Brainard, & Pelli, 

2007). Images were presented centrally on the screen, against a mid-grey background. They 

measured  21.9  degrees  of  the  visual  angle  (788  pixels)  horizontally  and  14.6  (526  pixels) 

vertically. Templates were presented in greyscale.

Procedure

Fig. 1. Experiment 1 – Outline of a single experimental block and sample two-tone image.

In  each  block,  observers  free-viewed  three  two-one  images  while  their  eye  movements  were  

recorded (Before condition).  After  presentation of  each image,  they were asked to provide a  

rating of its perceived meaningfulness by adjusting a visual analog scale. This task was included as  

a manipulation check. Next, the grayscale templates of these three two-tones were presented  

while recording eye movements (Template condition). In order to ensure that observers acquired  

the relevant object-knowledge essential to bind the two-tone image into a meaningful percept, in  

the  next  part  of  the  block,  observers  viewed  the  two-tones  gradually  blended  with  their  
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templates multiple times (Resolving phase).  The After condition formed the final part of each  

block. It was identical to the Before condition in all aspects except for the order of presentation of  

the two-tone images, which was randomized for each condition. The whole experiment consisted  

of 10 blocks (30 two-tones in total) and throughout each block, the eye movements of observers  

were  being  recorded.  In  the  upper-right  corner  of  the  figure,  a  sample  two-tone  image  is  

presented (copyrights owner: author C. T.). For a naive viewer, this image appears as meaningless  

black and white patches. To be able to perceptually organize it into a meaningful percept, the  

reader is  advised to first  carefully  look at  the template image from which this  two-tone was  

derived, presented on Fig. 2. This two-tone image was not used in the study.

The experiment consisted of ten blocks – a single block is schematically illustrated  in Fig. 1. 

Before  the  start  of  the  procedure,  a  13-point  eye-tracker  calibration  and  validation  was 

conducted.  Each  block  started  with  the  Before  condition,  in  which  three  two-tones  were 

presented in sequence, each for 3 seconds. Observers were instructed to carefully look at these 

images. Each of the two-tones was preceded with a centrally located fixation-dot displayed for 

1  second and followed by  a  screen with  a  visual  analog  scale  (‘slider’) used for  collecting 

meaningfulness ratings. Observers adjusted the scale by pressing two buttons on a computer  

keyboard (‘z’ and ‘m’) and used the space bar to confirm their response. Then, a blank screen  

was displayed for  one  second.  After  providing a  rating  for  the third  two-tone,  the Before 

condition was finished. It was followed by the Template condition, in which template images 

were displayed – again, each for 3 seconds, preceded by a fixation dot. In order to proceed to 

the next part of the experiment, the Resolving phase, observers had to press the space bar. It 

consisted of six cycles of dynamic blending between two-tones and their templates. Each cycle 

began  with  the  presentation  of  a  template  image  for  two  seconds.  Then,  it  was  linearly  

blended into the corresponding two-tone. During the blending, the value of each pixel was the 

weighted average of values from two-tone and template, and the weights – always summing to 

one  –  were  changing  dynamically.  The  full  transition  from  template  to  two-tone  was 

accomplished after 4 seconds. The two-tone remained on the screen for 2 seconds and then 

was blended-back into the template, remaining on the screen for another 2 seconds. Each of 

the three image-pairs used in a block was presented in two such blending cycles, but never 

twice in a row. The subsequent cycles of blending were separated with a 500 ms period, in 

which a blank screen was presented. Each block ended with the After condition, which was 
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identical to the Before condition except that images were presented in a newly randomized 

order. Observers had a break after each two blocks, and the eye-tracker was re-calibrated after  

each break. For each observer, images were assigned to blocks randomly and were presented 

in  a  pseudo-random  order  within  each  block.  The  pseudo-randomization  ensured  that  the 

image  shown  last  in  the  resolving  phase  was  never  presented  at  the  beginning  of  After  

condition. The total time of the experiment was about 50 minutes.

The  experiment  began  with  instructions,  which  were  delivered  both  verbally  by  the 

experimenter  and  written  on  the  screen.  The  instructions  were  accompanied  by  a  visual  

illustration of the key elements of the procedure: observers viewed a single two-tone image 

(not used in the actual experiment) and were asked to rate its meaningfulness on the visual  

analog scale. Second, they viewed its blending with the corresponding template. Finally, they 

viewed the same two-tone and were again asked to provide the meaningfulness rating.

Data pre-processing and analysis methods
The  default  EyeLink  algorithm  was  used  to  extract  fixation-locations  from  the  eye-trace 

recordings. Further data pre-processing was done in Matlab. For each image, I discarded the 

first fixation, because first fixations were directed at the fixation-dot presented before image 

onset.  I  also  discarded  fixations  not  landing  within  the  image-boundaries.  Further  details 

regarding data exclusions can be found in the Data exclusions section of the Appendix. For each 

image in each condition, I generated heatmaps (see examples on Fig. 3E) by first smoothing the 

discrete distribution of fixation with a Gaussian filter with a cutoff frequency of –6dB and then 

normalizing the smoothed distribution to the zero-one range.

The majority of my analyses focused on the similarity between two heatmaps. To quantify this 

similarity, I used Pearson’s linear correlation coefficient calculated using the Matlab function 

corr2.  This  measure  has  previously  been  used used in  the  literature  (Bylinskii,  Judd,  Oliva, 

Torralba,  &  Durand,  2016;  Wilming,  Betz,  Kietzmann,  &  König,  2011),  and its  values  have  a 

straightforward interpretation.  Specifically,,  values ranged between zero and one, with one 

indicating  that  two heatmaps  are  identical  and zero indicating  a  maximal  dissimilarity.  For 

statistical  comparisons,  I  primarily  relied  on  standard  null  hypothesis  significance  testing 
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techniques  implemented  in  R  (R  Core  Team,  2020) and  Matlab.  Because  the  majority  of 

statistical  comparisons  I  report  here  were  conducted  within-subjects  (with  single  images 

serving as the ‘subjects’), the t-tests reported throughout the text are the paired ones, unless 

otherwise stated. In order to assess the amount of evidence for a lack of a difference between 

groups of measurements,  in some instances these analyses were supplemented  with  Bayes 

factors calculated using bayesFactor R package  (Morey & Rouder, 2018).

Experiment 1 – Results
In the following part of this Chapter, I report several analyses of data from Experiment 1. First,  

the  comparison  of  meaningfulness  ratings  provided  by  observers  in  the  Before  and  After 

conditions. Second, two different analyses of spatial distributions of fixations: one focused on 

overall similarity and one relying on regions of interests. Third, I repeat these analyses but for 

fixations after image onset only. Fourth, I report an attempt to disentangle the contributions of 

image features and object representations to gaze guidance in the After  condition.  Fifth,  I 

demonstrate that the key effects found in the gaze-pattern similarity analysis are observable 

also between subjects. Finally, I analyse how different aspects of oculomotor behaviour change 

between experimental conditions. 

Manipulation check: prior object-knowledge changes perceived meaningfulness 
of two-tone images
In the Before and After conditions, observers rated the perceived meaningfulness of two-tone 

images. These ratings suggested that the perceptual experience of observers differed between 

these two conditions (see Fig. 2B and C). Averaging the ratings per image and comparing the 

obtained  values  between  conditions  revealed  that  the  same  images  presented  in  After 

condition were perceived as more meaningful than when presented in the Before one (t(29) = 

23.84, p < 0.001; mean difference Mdiff = 0.36, 95% confidence interval CI = [0.4, 0.33]). The same 

pattern of results held when the ratings were averaged per observer: again, they were higher  

in the After condition compared to the Before condition (t(35) = 14.42, p < 0.001; Mdiff = 0.37, 

95% CI = [0.42, 0.31]). These results suggest that observers are able to bind two-tone images 

into  meaningful  object  representations  after  –  but  not  before  –  acquiring  relevant  prior-

knowledge.
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Fig. 2. Sample template image and image meaningfulness ratings.

A) Template of the two-tone image from Fig. 1 (image copyrights owner:  Christoph Teufel). B), C)  

Meaningfulness ratings for two-tone images provided a manipulation check. As expected, two-

tone images were rated as more meaningful in the After than the Before condition, both when the  

ratings  were  averaged  per  observer  (B)  and  per  image  (C).  This  finding  demonstrates  that  

acquiring relevant object-knowledge changes perception. Asterisks on plots indicate p-values:  *** 

indicates p ≤  0.001, ** indicates p ≤ 0.01, * indicates p ≤ 0.05, and 'n.s.’  indicates the lack of  

statistical significance. Confidence intervals were Black horizontal bars indicate means. They are  

surrounded with 95% confidence intervals for within-subjects designs, calculated using Cousineau-

Morey method  (Cousineau, 2011; Morey, 2008). These conventions are used in all  the remaining  

figures.

Knowledge-dependent object representations control the spatial distributions 
of fixations
Observers perceived meaningful objects in the After but not the Before condition despite the 

stimuli  being  identical  in  both  conditions.  In  the  After  condition,  the experienced  object 

representations  were  similar  to  those  of  the  template  images.  The  spatial  distribution  of 

fixations in the After condition should therefore resemble that from the Template condition, if 

knowledge-dependent object representations drive eye movements. I therefore compared the 

similarities of heatmaps between two pairs of conditions: Template-Before (mean correlation 

M = 0.72, SD = 0.13) and Template-After (M = 0.9, SD = 0.07) – see Fig. 3A. As predicted, I found  

a higher similarity between Template-After than Template-Before (t(29) = 8.39, p < 0.001; Mdiff = 

0.18, 95% CI = [0.14, 0.22]).  This result suggests that gaze patterns in response to two-tone 

images resemble eye movements from the templates to a larger degree when the two-tones 
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were perceived as containing meaningful objects, as compared to when they were perceived as 

meaningless patches.

The distribution of fixations on images is  not only determined by the characteristics of the 

visual input but also by general factors that are independent of image-specific content. One  

important general factor that is known to influence oculomotor control is the centre bias, a 

tendency of humans to visually inspect the centre of an image rather than regions closer to the 

edges  (Tatler,  2007).  A  meaningful  evaluation  of  the  difference  in  similarities  between 

Template-Before and Template-Before therefore requires a baseline that takes this centre bias 

into  account.  I  modelled  a  centre  bias  for  my  data  by  creating  a  single  heatmap  from all  

fixations registered throughout the experiment.  This heat map (labelled ‘Centre’)  was then 

correlated with each individual heatmap from the Template condition. I found a statistically 

robust  difference  between  the  Template-Centre  and  Template-Before  similarity  scores 

(Template-Centre: M = 0.64, SD = 0.16 ; Template-Before: M = 0.72, SD = 0.13; t(29) = 2.40, p = 

0.023 ; Mdiff = 0.08, 95% CI = [0.14, 0.01]). Importantly, however, this difference was small (0.08 

on average) suggesting that a general centre bias explained most (but not all) of the similarity  

between Template and Before.
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Figure 3. Results of Experiment 1.

A) The similarities of heatmaps from template images to heatmaps from two-tones, where the  

two-tones were viewed either in Before or in After condition. The patterns of fixations on the  

same  two-tone  images  differed  between  the  experimental  conditions  with  respect  to  their  

similarity to patterns from templates. Specifically, after acquiring prior knowledge necessary for  

triggering  knowledge-driven  perceptual  organization,  when  the  observers  were  able  to  

perceptually organize the two-tones into coherent percepts of objects,  their  gaze patterns on  

two-tones became more similar to the gaze patterns registered on the corresponding template  

images. This effect is illustrated for a single two-tone and its template on panel E. B) Percentage of  

fixations landing within the regions of interests (ROIs) in each condition. ROIs were defined for  

template images and covered their most informative parts, like the heads of depicted animals. It  

can be seen that the parts of two-tones encompassed by ROIs attracted more fixations in After  

condition than in the Before, which was consistent with the hypothesis that in After condition the  

eye-movements were guided by the representations of objects.  C,  D) The same analyses as on  

panels A and B but conducted including only first fixations from After condition. In both analyses,  

the effects of knowledge-drive perceptual organization – albeit weaker – were still evident, which  

indicated  that  they  occurred  fast  enough  to  influence  already  the  first  eye-movement  of  

observers. E) Sample heatmaps illustrating the distributions of fixations in all three conditions of  

Experiment 1. Top:  heatmp from a two-tone image viewed in Before condition. Middle: heatmap  

from the template of this two-tone. Bottom: heatmap from the same two-tone as on top but  

from After condition. These maps were created from all fixations registered on the images. The  

values  of  all  three  maps  were  jointly  normalised  to  zero-one  range,  so  colour  values  are  

comparable between panels.

Changes to the spatial distribution of fixations are specific to image content
The  analyses  of  heatmap  similarities  shows that  the  distributions  of  fixations  on two-tone 

images becomes more similar to the distributions from their templates after observers have 

had access to prior object-knowledge. This result  suggests that object representations that 

emerge when the features of two-tones interact with prior object-knowledge contribute to 

eye-movement control. To provide further support for this interpretation, I assessed in a more 

fine-grained manner the extent to which changes in fixation patterns related directly to object 

representations. For this analysis, I exploited two facts. First, template images depicted either 
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animals only (25 images), animals and humans (2 images) or humans only (3 images). Second,  

animal and human heads are known to attract fixations in natural scenes (Cerf, Paxon Frady, & 

Koch, 2009; Drewes, Trommershäuser, & Gegenfurtner, 2011). If the specific characteristics of 

knowledge-dependent object representations are important in the changes I observe between 

Before and After conditions, image regions that contain heads should attract more fixations in 

the After (and Template) conditions than in Before.

I  tested  this  hypothesis  by  means  of  a  regions-of-interest  (ROIs)  analysis.  First,  on  each 

template, we manually labelled each pixel associated with a head of an animal or a human. For 

both the template and its associated two-tone image, the resulting mask served as the ROI (no 

‘buffer’ was added around the masks). The masks covered 9% of image area on average (SD = 

12%,  median  =  3%).  For  each  image  and  condition,  I  calculated  the  percentage  of  fixations 

landing within the ROI by calculating what fraction of all fixations from a given image landed 

within the ROI (see Fig. 3B). The results showed an increase in the percentage  of fixations 

landing within ROIs in the Before compared to the After condition, indicating that changes in  

fixations were object-specific (Before: M = 30%, SD = 24; After: M = 44%, SD = 25; t(29) = 8.64, p  

< 0.001; Mdiff = 0.14, 95% CI = [0.1, 0.17]). In the Template condition, even more fixations landed 

within the ROI compared to After (Template: M = 54%, SD = 25; t(29) = 6.02, p < 0.001; Mdiff = 0.1, 

95% CI = [0.06, 0.13]).  Overall,  the ROI analysis provide clear evidence to suggest that the 

influence  of  knowledge-dependent  object  representations  on  fixation  patterns  is  object 

specific.

Changes to the spatial distribution of fixations occur shortly after image onset
In order to assess whether the influence of knowledge-dependent object representations on 

oculo-motor control requires time to emerge or is present early on, I repeated my previous 

analyses  but,  instead  of  including  all  fixations  for  each  image  and  condition,  I  focused 

exclusively on first fixations. Interestingly, this restriction did not change the overall pattern of  

results  (see Fig.  3  C  and D),  suggesting that even first  fixations were influenced by object 

representations  that  emerged  as  a  consequence  of  the  observer’s  prior  knowledge. 

Specifically,  the  statistical  analysis  showed  that  for  first  fixations,  the  similarity  between 

Template and After was higher than for Template and Before (Template-After: M = 0.74, SD = 

0.15; Template-Before: M = 0.62, SD = 0.17; t(29) = 4.91, p <  0.001; Mdiff = 0.12, 95% CI = [0.07, 
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0.17]).  This  conclusion was corroborated by an ROI analysis  of  first  fixations:  similar  to the 

results obtained when all fixations analysed, the percentage of first fixations landing on ROIs 

was higher in After than in Before, and also higher in Template than in After (Before: M = 34%, 

SD = 34; After: M = 40%, SD = 35; Template:  M = 60%, SD = 32; Before-After:  t(29) = 3.61, p =  

0.001; Mdiff = 0.06, 95% CI = [0.09, 0.03]; Template-After: t(29) = 6.41, p < 0.001; Mdiff = 0.2, 95% CI 

=  [0.27,  0.14]).  Taken together,  these results  provide evidence to suggest  that  knowledge-

dependent  object  representations  emerge  fast  enough  to  influence  even  the  first  eye-

movements after stimulus onset.

Knowledge-dependent object representations and image features act in 

synergy

I  demonstrated  that  object-representations  formed  at  the  basis  of  prior  knowledge  were 

affecting gaze control. This demonstration, however, did not reveal much about the role image 

features  may  play  in  this  process.  To  shed  some  light  on  this,  I  compared  the  distinct 

contributions of features and objects to eye-movements guidance. I relied on the fact that the  

features of the two-tone images remained unchanged while I  manipulated the presence of  

representation  of  objects.  Additionally,  I  adopted  three  simplifying  assumptions.  Firstly,  I 

assumed that eye-movements in  the Before condition, when the representations of objects 

were not yet formed,  were mainly  driven by  the visual  features of  the stimuli.  Secondly,  I  

assumed that  in  the  Template  condition,  object  representations  played a  dominant  role  in 

determining  fixation  locations.  Thirdly,  I  assumed that  in  the  After  condition,  both  factors 

contributed  to  the  oculomotor  control:  stimuli  features  were  the  same  as  in  the  Before 

condition but objects representations were identical to the ones from Template condition.

Resting on these three assumptions, for each image I generated a series of new heatmaps. 

Each new heatmap was a linear combination of the heatmaps from the Before condition and 

the  Template  condition,  using  the  formula:  wTemplate*heatmapTemplate  +  wBefore*heatmapBefore, 

where  w  is  a  weight  for  the  heatmap  indicated  by  the  subscript.  Incorporating  the 

normalization assumption (wTemplate + wBefore = 1), I created a continuum of heatmaps spanning 

between the two extremes of being fully determined by the Template heatmap to being fully 

determined by the Before heatmap. This continuum was uniformly sampled with a step-size of 
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0.05, with each sample being a distinct heatmap. I assessed the similarity of each of these new  

heatmaps to the heatmap from the After condition. Note that the heatmaps resulting from 

linear combinations always incorporated all fixations. To capture potential temporal changes in 

the balance of ‘objects’ and ‘features’, I compared these combined heatmaps to the heatmaps 

of only the first fixations, or of all fixations from the After condition.

The pattern of results suggests that fixations are guided synergistically by two factors, namely, 

the image-computable features of the two-tone image and the object representation resulting 

from the interaction between features and prior knowledge (see Fig. 4). This observation was 

corroborated  by  a  statistical  analysis.  The  optimal  linear  combinations  for  first  fixations 

(wTemplate  =  0.4;  wBefore  =  0.6)  were  significantly  more  similar  to  heatmaps  from  the  After 

conditions than either the Template or the Before conditions (Optimal-After vs. Before-After: 

t(29) = -2.67, p = 0.012; Mdiff = 0.03, 95% CI = [0.04, 0.01]; Optimal-After vs. Template-After: t(29) 

= 5.70, p < 0.001; Mdiff = 0.11, 95% CI = [0.15, 0.07]). For the linear combination for the remaining 

fixations (wTemplate = 0.65; wBefore = 35), the same pattern of results was observed (Optimal-After 

vs. Before-After: t(29) = 6.49, p <  0.001; Mdiff = 0.09, 95% CI = [0.12, 0.06]; Optimal-After vs. 

Template-After: t(29) = 5.48, p < 0.001;  Mdiff = 0.05, 95% CI = [0.06, 0.03]).

This  finding  suggests  that  the  two-tone  features  and  object  representation  worked  in  a 

synergistic manner when guiding eye movements. The contribution of these two factors varied 

over viewing-time with features playing a larger role in first fixations than for later fixations, for 

which object representations were dominant. 
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Figure 4.  Similarities of heatmaps from the After condition to different linear-combinations of  

heatmaps  from  the  Template  and  Before  conditions. A)  Similarities  obtained  when  only  first  

fixations from the Before condition are considered. B) The same analysis but for all the remaining  

fixations  (i.e.,  without first) from After condition.  The weights of the linear  combinations for  

which the similarity is maximal (indicated by the dotted vertical lines) are shifted more strongly to  

the left for first fixations than for the remaining fixations, demonstrating that the influence of the  

features of the two-tone image is stronger at the beginning of viewing compared to later on.

Effects of knowledge-dependent object representations are observable despite 

the high similarities of gaze-patterns between After and Before conditions

The analyses reported in the preceding section revealed that  the average similarity between 

heatmaps from Before and After conditions amounted to 0.83 (SD = 0.06) for first fixations and 

to 0.86 (SD = 0.08) for the remaining ones. These values can be interpreted as indicating a 

rather  high similarity between these conditions which, at first glance, might seem difficult to 

reconcile with the idea that knowledge-dependent object representations are an important 

factor in determining the distribution of fixations in the After but not in the Before condition.  

However,  interpreting the  aboslute correlation values  obtained when measuring similarity of 

fixations patterns in these two conditions requires providing a meaningful context. For this 

purpose,  I  randomly  split  my  sample  of  36  observers  into  two  equally  large  groups,  and 

compared the similarity of fixation patterns in the Before-After pair to the Before-Before and 

After-After  pairs.  If  object  representations  affect  oculomotor  control,  then  the  similarity 

between fixation patterns for the Before-After pairs should be lower than the similarity for the 

Before-Before  and  the  After-After  pairs.  The  results  of  my  analysis  confirmed  these 

expectations. Specifically,  the similarity between heatmaps from the Before-After pairs was 

lower than the similarities from the Before-Before and the After-After pairs (Before-Before: M = 

0.94, SD = 0.02; Before-After: M = 0.84, SD = 0.07; After-After: M = 0.95, SD = 0.02; Before-

Before vs. Before-After: t(29) = 7.76, p < 0.001; Mdiff = 0.1, 95% CI = [0.12, 0.07]; After-After vs. 

Before-After: t(29) = 8.43, p <  0.001; Mdiff = 0.11, 95% CI = [0.13, 0.08]). This finding provides 

further  evidence  for  the  influence  of  knowledge-dependent  object  representations  in 

oculomotor control.  Note that while I  refer to this  analysis  as a between-groups analysis,  I  

relied on paired t-tests. The reason for this choice of test is the fact that the unit of analysis still  
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is a single image. In order to warrant that the outcome of this analysis did not depend on a  

specific composition of  the two groups,  I  repeated the split  20 times,  each time assigning 

observers to the groups randomly. For each spilt, I obtained the same patterns of results which 

indicates the robustness of the effects in question.

Knowledge-dependent object representations affect multiple characteristics of 

oculomotor behaviour

A previous study investigating eye movements of observers viewing unresolved and resolved 

two-tones found that  observers made fewer fixations when viewing resolved images, while 

these fixations were longer and landed closer to each other (M. Król & Król, 2019; see also Loth 

et al., 2010). To check if the same pattern is present in my data, I compared my experimental 

conditions with respect to the three characteristics of oculomotor behaviour analysed in the 

aforementioned  study:  number  of  fixations,  average  fixation  duration  (in  seconds),  and 

average euclidean distance between consecutive fixations (interfixation distance, in degrees of 

visual angle). All these characteristics were calculated per-image and their average values were 

compared  between  conditions  (see  Fig.  5).  In  the  Before-After  comparison,  for  the  After 

conditions I found the decrease in the number of fixations (Before: M = 281.37, SD = 13.22; After: 

M = 240.1, SD = 19.32; t(29) = 12.76, p < 0.001; Mdiff = 41.27, 95% CI = [34.65, 47.88]), increase in 

the fixation duration  Before:  M = 0.28, SD = 0.01;  After:  M = 0.3, SD = 0.02; t(29) = -8.22, p < 

0.001; Mdiff = -0.02, 95% CI = [-0.03, -0.02], and decrease in interfixation distance (Before: M = 

4.09, SD = 0.45; After: M = 3.34, SD = 0.55; t(29) = 11.24, p < 0.001; Mdiff = 0.75, 95% CI = [0.61, 

0.89]). In the After-Template comparison, I did not find statistically significant effects for any of 

the three characteristics I analysed  (number of fixations:  t(29) = -0.50, p = 0.621; Mdiff = -2.67, 

95% CI = [-13.58, 8.25]; fixation duration: t(29) = -0.24, p = 0.816; Mdiff = 0, 95% CI = [-0.01, 0.01]; 

interfixation distance: t(29) = 0.32, p =  0.755;  Mdiff = 0.04, 95% CI = [-0.19, 0.27]; descriptive 

statistics for the these three respective characteristics for Template condition: M = 242.77, SD = 

31.76;  M = 0.3, SD = 0.03;  M = 3.3, SD = 0.96).
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Fig.  5 Number  of  fixations  (A),  fixation  duration  (B),  and  interfixation  distance  measured  in  

degrees  of  a  visual  angle  (C).  All  three  were  calculated  per  image  and  compared  between  

conditions.

In  summary,  my results  replicate  findings reported by  Król  and Król  (2019).  These  authors 

interpreted such pattern of results to be in line with their “economies of experience” approach 

(M. E. M. Król & Król, 2018).  According to this approach, the deployment of prior knowledge 

results  in  the  optimization  of  different  aspects  of  stimulus  processing,  including  the 

optimization of the eye-movements which results in sampling information primarily from image 

regions containing objects. This interpretation is consistent with the idea that while observers 

in the Before condition explore the whole stimulus, in the After condition, they rather extract 

information (‘exploit’) only from selected parts of it. To acquire further evidence for this claim, I 

resorted to  entropy –  an  abstract  construct  derived from physics  and  associated with the 

amount of ‘disorder’ in a given system. Entropy calculated for a heatmap  indexes the extent to 

which  observer’s  behaviour  can  be  described  as  exploratory  (Gameiro,  Kaspar,  König, 

Nordholt, & König, 2017; Kaspar et al., 2013),  with higher values indicating more exploratory 

behaviour.  Specifically, I  estimated the normalized entropy of  each  heatmap (see Fig.  6A). 

Normalized entropy quantifies the spread of a given heatmap in a way which is indifferent to  

the heatmap’s specific shape. This measure has values ranging from zero to one, with higher 

values indicating a larger spread (please refer to Appendix for details).  As expected, entropy 

was the lowest in Template condition,  increased in After condition,  and was the highest in 

Unresolved (Before: M = 0.56, SD = 0.05; After: M = 0.48, SD = 0.06;  Template: M = 0.42, SD =  

0.07; Before-After: t(29) = 10.70, p < 0.001; Mdiff = 0.09, 95% CI = [0.07, 0.1]; After-Template: t(29) 

= 6.59, p < 0.001; Mdiff = 0.06, 95% CI = [0.04, 0.07]).

Taken together, the three gaze characteristics analysed thus far indicate that in After condition 

(that  is,  after  acquiring  prior  object-knowledge),  observers  viewing  two-tones  fixated  only 

selected image regions, instead of exploring the whole stimulus like in the Before condition. In 

the  Template condition, this pattern was even more evident.  Following up on that finding, I 

hypothesised  that  in  the  Before  condition  each  observer  exhibited  more  idiosyncratic 

behaviour  than in the After condition because the only factor guiding gaze common for all 

observers  were the image features; in the After and Template condition, an additional such 
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factor  was present, namely, object knowledge. Therefore, I  expected that acquiring object-

knowledge resulted in observers exhibiting a more homogenous gaze behaviour. To test that, I 

quantified between-observers consistency, that is, the extent to which different observers tend 

to fixate the same image-locations (see Fig. 6B). I measured it using a method used previously 

in the literature (Lyu et al., 2020): by averaging the values obtained after calculating for each 

observer how similar the heatmap created from their fixations was to the heatmap created 

from  the  fixations  of  all  the  remaining  observers.  Comparing  consistency  revealed  that  it  

increased both between Before and After conditions and between After and Template (Before: 

M = 0.66, SD = 0.05; After: M = 0.7, SD = 0.05; Template: M = 0.76, SD = 0.05; Before-After: t(29)  

= 3.96, p < 0.001;  Mdiff = 0.04, 95% CI = [0.06, 0.02]; After-Template t(29) = 6.96, p < 0.001; Mdiff = 

0.06, 95% CI = [0.07, 0.04]), thus confirming my predictions. Summarising, the analysis of the 

different gaze characteristics, in line with the ROI-based analyses, indicate that when object 

representations can be formed (that is, in Template and After conditions), observers primarily  

attend to  image  locations  containing  objects  and  the gaze patterns  of  different  observers 

become more similar to each other.   

Fig. 6 Normalized entropy and between-observers consistency.

A) Normalized entropy of fixation distributions (in arbitrary units), measuring their spread. Higher  

values indicate more exploratory behaviour of observers.  B) Between-observers consistency in  

selecting fixation targets measured by how similar (on average) fixations of a single observer  

were to fixations of all the remaining observers pooled together.

Experiment 1 – Discussion
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In Experiment 1, I measured eye-movements in response to two-tone images. These stimuli are  

derived by manipulating so-called template images – grayscale photographs of objects – in 

such a way that, on initial viewing, two-tones are experienced as (relatively) meaningless black-

and-white patches. Once the observer has acquired relevant prior object-knowledge, however, 

perceptual  organization  processes  in  the  visual  system  bind  the  patches  into  a  coherent 

percept of an object. I demonstrate that, when a two-tone image is perceived as showing a 

coherent object rather than meaningless patches, fixation patterns are more similar to those 

measured in response to the original template. Moreover, between groups of observers, the 

same two-tone images lead to a lower similarity in fixation patterns if one group perceives the 

stimuli  as  meaningless  patches and the other  as  coherent  objects,  compared to when the 

presence of object representations is consistent across groups. Overall, these results suggest 

that object representations that are not fully determined by the image-computable aspects of 

the stimulus but depend on the observer’s prior object-knowledge have an important influence 

on eye movements.

As a potential alternative explanation for the results of Experiment 1, it could be argued that  

the  observed  change  in  fixation  patterns  was  caused  by  a  memory  process  unrelated  to 

perceptual organization. Specifically,  it  has been suggested that eye movements preformed 

during memory retrieval of an image resemble the eye movements performed when seeing this 

stimulus for the first time  (Noton & Stark, 1971; see Wynn et al.,  2019 for a recent review). 

Therefore, it is possible that viewing of two-tone images in the After condition acted as a cue  

that  triggered  the  retrieval  of  the  corresponding  template,  and  that  this  retrieval  was 

accompanied by the  re-enactment of gaze  behaviour from the Template condition. A closely 

related alternative explanation of my results from Experiment 1 is that memory-retrieval  of  

template  images  resulted  in the  observers  voluntarily  directing  their  gaze  towards  display 

locations  they  remembered  from  the  Template  condition  to  be  occupied  by  the  objects. 

According to both of these explanations, the factor driving the changes in eye movements in 

the After condition was the objects-to-locations mapping remembered by the observers from 

the  Template  condition,  rather  than  the  perceptual  organization  induced  by  prior  object-

knowledge. Specifically, the observers might fixate display-locations overlapping with objects 

in the templates because of processes related to retrieving templates from memory, and not 
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because of their visual system organised the two-tone images into meaningful scenes based on 

prior knowledge. To exclude these alternative interpretations, I conducted Experiment 2.

Experiment 2
Experiment 2 was identical to Experiment 1 in all aspect except that the template images were 

mirror-flipped along the vertical axis (in the resolving phase, when the blending of two-tones 

and templates was  presented,  both images were mirror-flipped).  Consequently,  the  screen 

locations  occupied  by  objects  differed between the  Template  condition  and the  remaining 

conditions. If, when viewing two-tones in the After condition, observers merely revisited the 

parts of the display, which contained objects during the presentation of template images, I 

would expect a high similarity between heatmaps from the After and Template conditions, 

despite the lack of overlap in spatial location of objects in these two conditions. If, however,  

the  effects  observed  in  Experiment  1  were  attributable  to  knowledge-dependent  object 

representations,  I  would  expect  the  similarity  between  After  and  Template  to  be  low. 

Moreover, the similarity should increase when the heatmaps from the mirror-flipped templates 

would be flipped back to align the object locations between template and two-tone images.  

Experiment 2 – Method
The design of Experiment 2 was identical to that of Experiment 1 except that the template 

images were presented mirror-flipped from left to right during all parts of the experiment (i.e., 

during instructions, the blending phase, and the Template condition). This condition is labelled 

Flipped Template.  A separate  set  of  18  Cardiff University  students  (mean age 19.5  years,  5 

males), who had not participate in Experiment 1, served as observers.

Experiment 2 – Results and Discussion

Memory-retrieval of objects-to-locations mapping does not explain changes in 
eye movements

Similar to Experiment 1, the meaningfulness ratings provided by the observers after viewing 

each  two-tone  were  higher  in  the  After  condition  than  the  Before  condition  both  when  I 
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averaged them per observer (t(17) = 6.62, p < 0.001; Mdiff = 0.24, 95% CI = [0.31, 0.16]) and per 

image (t(29) = -16.74, p <  0.001;  Mdiff = -0.24, 95% CI = [-0.27, -0.21]). This result indicates that 

observers were able to bind the two-tone images into meaningful percepts despite viewing 

mirror-flipped templates. The analysis of the eye-movements data was inconsistent with the 

objects-to-locations hypothesis but provided support for the idea that knowledge-dependent 

object representations influence eye movements (see Fig.  7). In particular, by contrast to the 

analogous analysis  in Experiment 1,  heatmap similarities did not differ when comparing the 

Flipped Template-Before pair vs. the Flipped Template-After pair (Flipped Template-Before: M = 

0.46, SD = 0.22; Flipped Template-After: M = 0.48, SD = 0.22; t(29) = 1.45, p = 0.158;  Mdiff = 0.03, 

95% CI = [-0.01, 0.06]). A Bayes factor (BF) of 0.5 suggested that this difference is rather unlikely 

to exist.  Moreover, the similarity in heatmaps between Flipped Template and After increased 

after flipping-back the heatmaps of the Flipped Template condition, that is, spatially aligning 

the two-tone and templates (Template-Before: M = 0.68, SD = 0.15; Template-After M = 0.8, SD  

= 0.11; t(29) = 7.77, p < 0.001; Mdiff = 0.13, 95% CI = [0.09, 0.16]).

Summarising, the results of Experiment 2 suggest that when observers view two-tones After 

that they experience as containing meaningful objects (After condition), their eye movements 

are  guided by  knowledge-dependent  object  representations.  This  finding  thus  excludes  an 

interpretation of my results in terms of an objects-to-locations mapping, where retrieval of 

information regarding the locations occupied by objects in the Template condition determines 

fixations.
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Fig. 7. Results of Experiment 2. 

The plot shows the similarities between heatmaps from the resolved two-tones to heatmaps from  

the mirror-flipped templates before (panel A) and after (panel B) ‘flipping them back’ to realign  

the locations of objects. The increase in similarities  observed on panel B (but not present on A) 

indicates that  in  the  After  condition,  observer  were  not  merely  revisiting  display-parts  they  

remembered as containing objects – in such case, the flipping-back would result in the decrease in  

the similarities. Instead, the fixations of observers were directed at objects on the two-tones.

In a final experiment, I addressed two further alternative explanations. First, it is possible that  

during the blending phase, observers learn to associate specific image-features in the two-tone 

images  with  the  objects  from the  templates.  When viewing  two-tone  images  in  the  After 

condition, these feature-object associations might guide fixations towards these specific visual 

patterns, irrespective  of  transformations such as those introduced by flipping (for instance, 

changes in the relative location on screen, or mirroring). While this possibility might seem not 

seem intuitively plausible, there is evidence suggesting that associative learning processes are 

an  important  factor  in  oculomotor  control  (Alfandari,  Belopolsky,  &  Olivers,  2019).  A  final 

alternative explanation of my results from both Experiment 1 and 2 relates to potential order 

effects. It is possible that the changes in fixation patterns between Before and After conditions  

resulted  from  viewing  two-tones  for  a  second  time,  rather  than  from  knowledge-based 

perceptual organization. In other words, observers might sample information from different 

image regions on second compared to first viewing, irrespective of the kind of information they 

acquire in the meantime. Therefore, I conducted a final experiment to exclude the possibility 

that  (i)  feature-objects  associations  or,  (ii)  any  order  effects  could  explain  the  effects  of 

Experiments 1 and 2.

Experiment 3
Experiment  3  adopted  the  same  procedure  as  the  previous  experiments  except  that  the 

templates from Experiment 1 (‘original templates’) were replaced with different images that 

were unrelated to the two-tones (‘dummy templates’). This experimental design allowed us to 

test whether feature-object associations provide a plausible explanation for the findings of 

Experiment 1 and 2. Specifically,  observers might associate certain features in the two-tone 
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images  with  objects  in  the  templates  during  the  resolving  phase.  When viewing  two-tone 

images in the Resolving condition,  these feature-object associations drive fixations towards 

image  locations  in  the  two-tones  that  overlap  with  objects  in  the  respective  templates. 

Importantly, these effects should be observable despite the fact that observers did not acquire 

the prior-knowledge required to bind the patches of  the two-tones into a coherent object 

percept. The design also allowed us to address the issue of order effects, because, despite the 

modification in the design, each two-tone was still viewed by observers twice.

Experiment 3 – Method
Experiment  3  was  completed  by  20  observers  (mean  age  19.55,  5  males) who  did  not 

participate in the previous two experiments. Again, they were Cardiff University students.

The procedure closely resembled the one from both previous experiments. The only difference 

was that in each block, in  the Template condition and in the resolving phase, instead of the 

templates from which the two-tones presented in this block were derived (‘original templates’,  

like in Experiments 1 and 2), different images – ‘dummy templates’ – were presented. Each two-

tone had a unique dummy template paired with it and this pairing was fixed throughout the  

experiment (that is, for all observers). Crucially, for each two-tone, a dummy template paired 

with it was an original template of some other two-tone, also presented in the experiment. The 

assignment  of  stimuli  to  experimental  blocks  was  pseudo-randomized  for  each  observer 

individually. Crucially, the pseudo randomization was always done in a way that guaranteed 

that dummy templates presented in any given block were the original templates of two-tones 

presented in the preceding block. This was to ensure that the images belonging to any given 

triplet of a dummy template, a two-tone paired with this dummy template, and the original 

template of this two-tone were always viewed by the same observers. For the same reason, I 

undertook two further steps. First,  I always discarded fixations registered on the two-tones 

presented in the last experimental block, because the original templates of these two-tones 

were never presented to a given observer. Second, in the first block, which, obviously, was not 

preceded by any other block, the dummy templates were always the same (they were not 

related to any of the two-tones and fixations on them were discarded); only the two-tones 

were different in each run of the procedure. With 20 observers in total,  after taking into the 
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account discarding fixations in the first and last block, for each two-tone (viewed in Before and 

After condition) and its dummy and original templates, I retained fixations from 18 observers.

Experiment 3 – Results

Lack of relevant object-knowledge prevents the emergence of 
knowledge-dependent object representations

The analysis of meaningfulness ratings demonstrated that, as expected, observers were not 

able to bind the two-tone images into coherent object percepts even in the After condition 

(see  Fig.  8A  and  B).  In  particular,  the  differences  in  ratings  between  Before  and  After 

conditions were not statistically significant, both when the data were averaged per observer 

(t(19) = 1.49, p = 0.152; Mdiff = 0.02, 95% CI = [-0.01, 0.06]) or per image (t(29) = 1.97, p = 0.058; 

Mdiff =  0.02,  95% CI  =  [0,  0.05]).  In  the former  case,  Bayes factor  analysis  suggested weak 

evidence for the lack of differences (BF = 0.6), while in the latter no clear conclusions could be  

drawn (BF = 1.07). Taken together, these results suggest that when the two-tones were viewed 

for a second time, they were as meaningless as when they were seen for the first time.

Memory-retrieval of feature-object associations might lead to small 
changes in eye movements but cannot explain key findings of 
Experiments 1 and 2

Experiment 3 was  designed to test the idea that the effects observed in the two previous 

experiments might be explainable by an association between features in two-tones and object 

locations on templates. The analysis of eye-movement data revealed that there was evidence 

to suggest that,  indeed, such an association might take place and might guide oculomotor 

control to a limited extent. Specifically, the similarity in heatmaps in the Dummy Template-After 

pair  was  higher  compared  to  the  Dummy  Template-Before  pair  Before  (see  Fig.  8C).  This 

increase in similarity, although significant in a statistical sense, was small (Template-Before: M = 

0.46, SD = 0.21; Template-After: M = 0.52, SD = 0.22; t(29) = 4.70, p < 0.001; Mdiff = 0.06, 95% CI = 

[0.03, 0.08]). I resorted to equivalence tests (Lakens, Scheel, & Isager, 2018) to assess whether 

the  effect  was  of  a  comparable  size  as  the  analogous  increase  in  similarities  observed  in 

Experiment 1 (between the Template-Before and Template-After pairs). In essence, these tests 

evaluate whether the size of an observed effect falls in a specified range of effect sizes, which 

102



are judged by the researcher to be too small as to be of interest (and are ‘practically’ equivalent 

to  zero,  hence  the  name).  Here,  I  relied  on  the  “two  one-sided  tests”  (TOST)  procedure 

(Shuirmann, 1987) implemented in R package TOSTER (Lakens, 2017; Lakens et al., 2018). This 

procedure requires specification of an upper and a lower bound of the range of effect sizes, 

and tests two null hypotheses: that the observed effect is smaller than the lower bound and  

greater than the upper bound. When both are statistically rejected, it can be concluded that 

the observed effect falls within equivalence-region defined by the bounds and, therefore, is 

equivalent to zero. I used TOST to determine whether the increase in similarities observed in 

Experiment 3, when compared with the analogous increase from Experiment 1, was statistically 

equivalent to the lack of an effect. Specifically,  I  tested if  the magnitude of the increase in 

similarities  from  Experiment  3  fell  within  the  equivalence  region  with  an  upper  bound 

determined  by  the  lower  bound  of  the  95%  confidence  interval  of  the  mean  increase  in  

similarities in Experiment 1 (equal to 0.14). The lower bound – irrelevant here – was set to – 0.14  

to make the equivalence region symmetrical around zero. Note that here, I were not using any  

standardised effect sizes, but operated on raw values,  derived directly from the data. With 

these upper and lower bounds, the effect from Experiment 3 was statistically equivalent to 

zero according to the equivalence tests (t(29) = 6.685, p < 0.001). This result indicates that the 

processes responsible for changing gaze-patterns between the Before and After conditions in 

Experiment 3 most likely could not be responsible for the analogous changes in Experiment 1.

The key findings of Experiment 1 and 2 cannot be attributed to order 
effects

The  second reason  for  conducting  Experiment  3  was  to  exclude  the  possibility  that  order 

effects could explain the key findings of Experiment 1 and 2. In particular, I wanted to address 

the concern that viewing the same two-tones for a second time changed fixation patterns in 

such a way so that they started to resemble the patterns from the (original) templates. Recall 

that in each block of Experiment 3, the images used as dummy templates were the original 

templates of the two-tones presented in a previous block. This design allowed us to record, in  

the same observers, fixation patterns for the original templates as well as for two-tone images  

viewed twice without prior object-knowledge (Before and After conditions, respectively). If the 

findings in the previous experiments resulted from the fact that two-tones were viewed for the 
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second time, I would expect that the fixation patterns in the After condition were more similar 

to  the  patterns  recorded  in  response  to  the  original  template  compared  to  the  similarity 

between Before  and the original  template.  Importantly,  these changes  in  fixation  patterns 

would occur despite the fact that observers did not acquire any relevant object knowledge 

between the two two-tone image conditions.

The results are inconsistent with this ‘second-viewing’ hypothesis (see Fig.  8D). I  calculated 

heatmaps similarities between the original templates and the corresponding two-tones viewed 

in Before and After conditions and found that these similarities did not differ significantly in a 

statistical sense (Template-Before M = 0.64, SD = 0.15; Template-After M = 0.64, SD = 0.14; t(29) 

= 0.22, p =  0.83; Mdiff = 0, 95% CI = [-0.03, 0.03]). Moreover, a Bayes factor analysis provided 

direct evidence to support a lack of a difference (BF = 0.2).

Figure 8. Results of Experiment 3.

A, B) Meaningfulness ratings averaged per  observer (A) and per  image (B).   C) Comparison of  

heatmap similarities between two-tones (viewed in Before and After conditions) and their dummy  

templates, that is, unrelated images.  D) Comparison of heatmap-similarities between two-tones  

(viewed in Before and After conditions) and their original templates.

Discussion
Control  of  eye  movements  is  typically  considered  within  a  dichotomy  between  bottom-up 

processing of low-level features and top-down control via factors such as an observer’s high-

level  object  representations  (see  Chapter  One).  In  the  current  Chapter,  I abandoned  this 
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simplifying framework in light of  emerging evidence highlighting the complex and intricate 

relationship  between  features  and  high-level  object  representations.  I recorded  eye 

movements in response to so-called two-tone images – clusters of black and white patches 

derived from images of natural scenes called templates. When viewed by naive observers, two-

tone images appear as meaningless patches. After the observer is exposed to the template and 

thereby  acquires relevant  object-knowledge,  these  patches  are  bound  into  coherent  and 

meaningful percepts of objects. As a result,  two-tone images provide a means to study the 

intricate interplay between prior object-knowledge and image-computable features in bringing 

about object representations. In this study, observers viewed two-tones images twice: before 

(Before condition) and after (After condition) viewing the templates (Template condition). In 

all three conditions, their eye movements were recorded. Across three experiments and on a 

number of different metrics, fixation patterns on the two-tone images differed substantially 

depending  on  whether  observers  were  able  to  bind  images  into  meaningful  percepts  of 

objects. In particular, fixations patterns were more similar to the patterns on templates, more 

focussed  on  pre-specified  regions  of  interest,  less  dispersed,  and  more  consistent  across 

observers when the same two-tone images were organised into object percepts compared to 

when they were not. Importantly, these effects were evident from the first moments of image 

viewing.  My results  contribute  to  the  mounting  body  of  evidence  that  knowledge-driven 

perceptual  organisation  of  visual  features  into  object  representations  fundamentally  alters 

processing of these feature (González-García et al., 2018; Ongchoco & Scholl, 2019; Teufel et al.,  

2018). Specifically, I demonstrate that the emergence of objecthood determines which features 

are selected for further inspection by means of fixations.

The typical approach to distinguish between the two factors of the dichotomous framework 

outlined above is (i) to compute a saliency maps based on certain features of images used in 

the experiment, (ii) to generate a map of semantically important regions or object locations in 

these images, and (iii) to assess which of the two maps better predicts human fixations  (for 

example, see Henderson, 2017; see also Pilarczyk & Kuniecki, 2014 and; Rider et al., 2018). To the 

extent to which one of the two different types of maps better explains human fixations, the 

respective factor is considered to be critical to guide eye movements. This approach led to 

important insights regarding oculomotor control. However, it is hampered by its dependence 

on specific operationalisations of visual features and high-level factors, up to the point when 
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different  operationalisation  have  led  to  qualitatively  different  conclusions.  For  example, 

Einhäuser and colleagues  (Einhäuser, Spain, & Perona, 2008) compared the extent to which 

two maps  were  able  to  predict  human  fixations:  a  saliency  map  created  using  the  model 

developed by Itti and Koch (Itti & Koch, 2000), and a map based on manually labelled object 

regions. Given the superiority of the object map, the authors’ initial conclusion was that object 

recognition,  rather  than  low-level  features,  drive  eye  movements.  This  conclusion  was 

challenged by a re-analysis of the data with other saliency models, including the AWS model 

(Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012), which outperformed the high-level object model 

in  predicting  human performance  (Borji  et  al.,  2013;  see  also  Einhauser,  2013).  However,  it 

turned out  that a  more sophisticated representation of  objects  can outperform even AWS 

(Stoll  et  al.,  2015;),  it  turned  out  that  a  more  sophisticated  representation  of  objects  can 

outperform even AWS  see also Nuthmann et al., 2020).

Since publication of these studies, models that outperform AWS by a large margin have been 

developed (Kümmerer, Wallis, Gatys, & Bethge, 2017a; Thomas, 2016). They no longer rely on 

local  image  conspicuity,  but  harness  high-level  visual  features  extracted  from  deep  neural 

networks trained for  object recognition.  As  described in detail  in  Chapters Two and Three,  

these models played a critical role in the latest instalment of the debate about low-level vs. 

high-level factors in oculomotor control. This dispute had a very similar structure to previous 

discussions.  It  was  initially  ignited  by  the  first  meaning  maps  study  claiming  that  eye-

movements are driven by meaning rather than image features because meaning maps were 

better at predicting fixations than one specific saliency model – the GBVS model (Harel et al., 

2007).  However,  when  my  subsequent  work  compared  meaning  maps  to  more  advanced 

saliency models like DeepGaze II  (Kümmerer et al., 2017b), they perform less  well. Therefore 

the  conclusions  that  can  be  drawn  from  this  approach  depend  on the  choice  of  model. 

Consequently, virtually every result that has been obtained with this approach can be called 

into question: it is always logically possible that the conclusions would have been different, had 

different operationalisations been used. 

A  further limitation of this  approach stems from the fact that high-level  factors like object 

representations  supervene  on  visual  features:  in  other  words,  the  two are  (often  but  not 

always) functionally and spatially correlated (Elazary & Itti, 2008; Masciocchi et al., 2009). To 
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illustrate, consider the following two hypotheses: ‘certain clusters of visual features attract 

fixations (in and of themselves)’ and ‘certain clusters of visual features attract fixations only if 

they are bound into the representation of object’. For typical natural scenes, both hypotheses 

generate  identical  predictions  regarding  which  regions  would  be  fixated.  This  abstract 

illustration is reflected in empirical findings: objects which are interesting for human observers 

and the clusters of visual features indexed as salient by saliency models tend to occupy the 

same image locations (Elazary & Itti, 2008; Masciocchi et al., 2009).

The  approach used in  my study  circumvents  the difficulties  of  this  conventional  approach. 

Specifically,  using  two-tone  images  does  not  involve  disentangling  and  quantifying  the 

contributions  of  bottom-up  and  top-down  factors  post-hoc,  after  recording  the  eye-

movements. Rather, I manipulated the presence of the representations of objects directly, and 

without changing the visual features of images. 

The  results  of Experiment  1  and  2  revealed  that  the  similarity  between  fixation  patterns 

registered on tow-tones and templates were higher when the two-tones were viewed in  the 

After condition, as compared to  the Before condition. I found this effect both in the general 

assessment of similarity between fixations distributions and in a more specific analysis focusing 

on  fixations  within  the  regions-of-interest. The  fact  that  the manipulation  altered  the 

distributions  of  fixations  provides  strong  support  for  the  hypothesis  that  mental 

representations of objects contribute to the process of selecting fixation targets in images. 

Crucially,  formation  of  these  representations  is  dependent  on  possessing  prior  object-

knowledge,  image-computable  visual  features  are  insufficient  for  this  formation  to  occur. 

Therefore,  my results not only rule out the possibility that human oculomotor control relies 

solely on visual features but also highlight the fact that the emergence of objecthood requires 

an interaction between prior-knowledge and the visual input. 

Fixation locations, however, are not the only aspect of oculomotor control influenced by object 

representations. I found that binding features into objects changes also how the visual system 

approaches the exploration-exploitation dilemma  (Ehinger, Kaufhold, & König, 2018; Gameiro 

et al., 2017; Hills et al., 2015).  During every fixation, the visual system must constantly decide 

whether to keep the eyes still  –  and be able to further inspect the currently  fixated scene 
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region (exploit  it)  – or to perform a saccade,  and thereby begin inspecting another region  

(explore the scene). In the context of this dilemma, the fact that in the After condition (as  

compared to Before) I observed a decrease in interfixation distance and the increase in fixation 

duration  marks the shift  from exploration to exploitation  (Gameiro et  al.,  2017).  This  shift, 

together with the increase in the amount of fixations landing on objects (also occurring in the 

After condition, as revealed by the analysis of spatial distributions of fixations), suggests that 

after resolving a two-tone, the visual system prioritizes objects: it ‘exploits them’, while giving 

up exploring the remaining parts of the image. Therefore, clusters of features that provide 

support for object representations become interesting for the system  (for a similar finding, see 

Król & Król, 2019). 

The  speed  with  which  object  representations  acted  to  influence  eye-movement  is  a  very 

striking  finding:  already  the  first  fixations  after  image  onset  were  affected  by  these 

representations. This finding suggests that knowledge-dependent object representations, or at 

least a coarse form of them, emerge very quickly based solely on the information available at  

the beginning of image viewing, when the eyes are stationary. At this moment, only a limited 

part of the image can be inspected with the high-resolution foveal vision, and access to the 

remaining  part  is  possible  only  via  peripheral  vision.  Information  from  peripherial  vision 

therefore has to contribute to the emergence of the initial representation of object. Peripheral 

vision mainly provides access to low spatial frequencies. There is a body of evidence suggesting 

that LSF play a facilitating role in segmenting the incoming visual input into objects (Bar et al., 

2006; Bar, 2004; Bullier, 2001). Specifically, rapidly extracted LSF representations may serve as 

a basis for narrowing down the search space of possible hypotheses about object identities in 

the input, and thereby scaffolding more precise object identification. In light of these studies, it  

is  tempting  to  speculate  that  in  my experiment  first  fixations  were  guided  by  coarse  LSF 

representations while later fixations might be guided by fuller object representations.

This  idea  rests  on  the  assumption  that  two-tone  images  provide  enough  information  to 

peripheral vision to form LSF representations. There are several reasons to believe that this  

assumption holds. First,  recall  that the process of  creating two-tones involves blurring and 

binarisation  of  templates.  These  operations  drastically  change  the  high  spatial  frequency 

content  of  the  images  but  have  less  impact  on  low  spatial  frequencies.  Second,  visual 
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inspection of fixation distributions from my study indicates that in the Before condition, image 

regions containing torsos (but not heads) of animals were fixated more frequently than regions 

belonging to the backgrounds. This observation suggests that converting templates into two-

tones, despite being effective in concealing the identities of depicted objects (as indicated by 

the  meaningfulness  ratings),  could  not  completely  conceal  their  locations.  Crucially,  the 

information about the animal torsos is (most likely) carried mainly by the LSF, which suggests 

that they are to large extend preserved in the two-tones.

Another intriguing pattern of results was evident in almost all between-condition comparisons: 

compared to the Before condition, gaze patterns registered in the After condition were more 

similar to those in the Template condition but there was still  a substantial difference in eye-

movements  between  After  and  Template  conditions.  One  possible  explanation  for  this 

phenomenon might be incomplete perceptual organization in some trials.  According to this 

idea,  as  long  as  visual  features  give  rise  to  the  same  object  representation,  these 

representations guide eye movements towards the same locations. Therefore, different eye-

movement patterns in the After and Template conditions are due to differences in the object  

representations.  This  view  on  oculomotor  control  has  been  expressed  in  the  cognitive 

relevance  theory  (Henderson  et  al.,  2009),  which  proposes  that  visual  features  do  not 

contribute to oculomotor control directly but only create a ‘flat landscape’ on top of which top 

down-factors operate and determine fixations locations.

Another  possibility  is  that  the  differences  between After  and Template  conditions  are  not 

merely a ‘bug’ resulting from the variability in strength of perceptual organization experienced 

by the observer, but rather a manifestation of an inherent characteristic of the oculomotor 

system. Specifically,  the visual features,  instead of being merely potential carriers of object 

representations might  exert  influence on eye movements even after  being bound into the 

representations of objects. According to this hypothesis, I would expect eye movements to 

differ between After and Templates conditions because in each condition the visual features 

with which the same object representation interact are different. 

I did not plan to directly test these alternative explanations of the differences between gaze 

patterns in the After and Template conditions. Yet, the results of my linear weighting analysis 
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are  incompatible  with  the  idea  that  these  two conditions  differ  due  to  incompleteness  of 

perceptual organization and provide support for a persisting influence of visual features even 

for fully organised percepts. Recall that the crux of this analysis was to compare the similarity 

of  different  linear  combinations  of  heatmaps  from  the  Before  and Template  conditions  to 

heatmaps from the After condition. These linear combinations included varying proportions of 

both components and ranged from 100% Before + 0% Template to 0% Before + 100% Template. If  

object representations drive human eye-movements and features are only potential carriers for 

such  representations  along  the  lines  of  the  ‘flat  landscape’  idea  proposed  by  the 

cognitive/behavioural  relevance  theory,  then  features  of  two-tones  and  templates  are 

‘interchangeable’: as long as they support the same object representation, eye-movements on 

two-tones and templates should be identical. In this case, I would expect a monotonic increase  

of similarity in the linear combination analysis. That is, with the decrease in the weight given to 

the  Before  component,  the  similarity  of  the  linear  combination  to  After  heatmaps  should 

increase.  This  prediction  is,  however,  not  supported  by  my data.  Instead,  the  linear 

combinations peaked at a point, at which they included both components, thus demonstrating 

that both the heatmaps from the Before and the Template condition are critical in explaining 

the fixation patterns in the After condition. This finding suggests that even if the same or very 

similar object representations are experienced when viewing two-tones  and templates,  the 

fact that these representations are supported by different features matters for oculomotor 

control.  Interestingly,  the linear combination analysis  indicated that influence of features is 

stronger at the beginning of image viewing. This effect might reflect the fact that perceptual  

organisation takes time to fully unveil. Note that the linear combination analysis was conducted 

on a per-image basis. The finding that features and object representations contribute to eye-

movement control can therefore not be explained by averaging across different images, with  

some  leading  to  purely  feature-driven  and  other  to  purely  representations-driven  eye-

movement control. 

Another interesting aspect of  my study is the relationship between object-knowledge driven 

perceptual  organization,  eye-movements,  and  memory.  It  is  obvious  that  prior-knowledge 

acquired when viewing templates must first be stored in memory and then retrieved from it in 

After condition. Numerous studies demonstrated a tight link between the eye-movements and 

memory retrieval: gaze shifts made during recall of a specific stimulus resemble those made 
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during encoding of this stimulus (Noton & Stark, 1971; Wynn, Ryan, & Buchsbaum, 2020; Wynn 

et al., 2019). It is, therefore, conceivable that in Experiment 1, the two-tone images in the After 

condition served as a cue eliciting the retrieval of the corresponding template from memory, 

and that  it  is  this  retrieval  –  not  the  emergence of  objecthood –  which  changed the  eye-

movements of observers. Even if such phenomenon indeed occurs, my Experiments 2 and 3 

demonstrated  that  it  is  not  able  to  account  for  all  the  effects  I  attribute  to  object 

representations.  Specifically,  Experiment  2  showed  that  the  changes  in  fixation  location 

observed in After condition in Experiment 1 cannot be explained by revisiting screen locations 

remembered as containing meaningful parts of the templates, which I labelled the objects-to-

locations-mapping hypothesis in the main text). Experiment 3, in turn, demonstrated that when 

the perceptual organization is not taking place – due to the lack of object-knowledge – memory 

of where object presented on templates were and what visual features they corresponded to 

(objects-to-features mapping) were not sufficient to change the eye movements to the same 

degree as in Experiment 1, when the perceptual organization took place.

Summarising, in this Chapter I demonstrated that prior object-knowledge and the process of 

perceptual organisation driven by that knowledge play a crucial role in oculomotor control.  

First, object-knowledge largely determines which image locations are being sampled. Second, it 

influences the whole sampling strategy of the visual system and leads to the prioritization of 

extracting information from only a subset of image locations over exploring the entire image. 

Taken together, these findings provide evidence that eye movements control is based on the 

interaction between knowledge already stored in the visual system and the visual features of 

the input.

Appendix to Chapter Four
Data exclusions

Recall  that in each experiment, each participant viewed each image in each condition for 3 

seconds. Some of such viewing session were discarded from my analyses because of the low 

amount of data recorded throughout them – see Table  S1. First, some viewing sessions were 

discarded  because  no  fixations  were  registered  throughout  their  duration  (because,  for 

example, observers did not move their gaze from the fixation point). Next, for each of the 
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remaining viewing sessions,  I  calculated the percentage of  the eye-tracker  data-samples  in 

which the eye-position was not recorded (for example, due to blinking of the observers). After  

visually  inspecting  histograms  of  the  obtained  values,  I  decided  to  exclude  from  further 

analyses all viewing sessions for which more than 30% of the position data was missing. The 

steps  described in  this  section  were  identical  for  all  my  experiments  and their  results  are 

summarized in Table  S1. To  reiterate, each observer provided meaningfulness rating for each 

two-tone image twice: once in the After, and once in the Before condition. When  analysing 

these  ratings,  whenever  I  encountered a  rating  provided  after  viewing  session  marked as 

excluded in one condition, I excluded both this rating, and the rating provided for the same 

image by the same observer in the other condition.

Table S1. Excluded viewing-session per experiment

Experiment

Number

Number of viewing 

sessions with no 

fixations

Number of 

viewing sessions 

excluded 

because of the 

missing data

Total number of 

viewing sessions

Total percent of 

excluded viewing 

sessions

1 12 46 3240 1.79%

2 7 60 1620 4.14%

3 6 13 1800 1.33%

Normalized entropy calculation

Entropy  calculated  for  a  heatmap  provides  the  measure  of  its  spread.  This  measure, 

importantly, is not dependent on the map’s specific shape. However, its values are dependent 

on the number of fixations used to create the heatmap  (Gameiro et al., 2017; Wilming et al., 

2011). Given that the heatmaps from my experiments differed with respect to total the number 

of  fixations  underlying  them,  I  estimated  entropy  values  by  means  of  a  bootstrapping 

procedure which accounts for these differences (Gameiro et al., 2017). Specifically, for a given 

image,  I  first  randomly  selected  50 fixations from the pool of  all  fixations registered on it, 

converted them into a heatmap, and calculated its entropy using a standard Matlab function 
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(entropy). This procedure was then repeated 50 times and the entropy values obtained in all 

the iterations were averaged.

The absolute value of heatmap’s entropy depends also on the specific binning of a heatmap, 

i.e. the range of possible pixel values. Because I was interested only in the changes of entropy 

between  conditions,  rather  than  in  the  absolute  values,  I  normalized  –  hence  the  term 

normalized entropy I  use here – the values from the bootstrapping procedure so that they 

belonged to a range from zero to one. The normalization was performed by dividing them by  

the maximal entropy-value possible to obtain for a heatmap, given the size of my images and 

the binning. This theoretical maximal value was calculated as the entropy of a heatmap being a 

uniform random distribution.
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Chapter Five – general discussion

Summary
In the present thesis, I  investigated factors influencing human oculomotor behaviour during 

natural scene-viewing. The starting point for all of the questions addressed in my research was 

the bottom-up vs. top-down dichotomy used to characterise factors influencing human gaze 

and described in Chapter One. Chapters from Two to Four report experiments I  conducted 

using eye-tracking, computational modelling, and crowd-sourced data collection methods. The 

first two of these Chapters are devoted to assessing the meaning maps approach: a theoretical  

and methodological stance according to which human eye movements are controlled primarily 

by  one of  the top-down factors  –  image meaning.  In  Chapter  Four,  I  make an attempt to 

reshape the dominant way of thinking about oculomotor control and, instead of focusing on 

disentangling the contributions of both components of the aforementioned dichotomy, I focus 

on their interactions. The main findings reported in this thesis are summarised below (see also 

a bullet-point summary at the end of this Chapter).

Chapter Two

In  this  chapter,  I  evaluated  the  fundamental  assumptions  underpinning  meaning  maps 

(Henderson & Hayes,  2017,  2018),  a  tool  designed to measure  the distribution  of  semantic 

information in images. I demonstrated that these maps might be sensitive to complex image 

features, rather than semantic information. To create meaning maps, images are segmented 

into  partially  overlapping  patches,  which  are  rated  for  their  meaningfulness  by  multiple 

individuals  (raters).  These ratings are combined into a smooth distribution over the image. 

Recently,  meaning maps have been used to provide support  for  the claim that  meaning – 

rather  than image-computable  features –  guides human eye-movements  (Henderson et  al., 

2019).  If  meaning maps capture the distribution of meaning, and if  the deployment of eye-

movements in humans is guided by meaning, two predictions arise: first, meaning maps should 

be better predictors of gaze position than saliency models, which use image features rather 

than  meaning  to  predict  fixations;  second,  differences  in  eye  movements  that  result  from 

changes  in  meaning  should  be  reflected  in  equivalent  differences  in  meaning  maps.  This  
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Chapter describes experiments testing these predictions. Their results showed that meaning 

maps performed better in predicting fixation locations than the simplest saliency model (GBVS; 

(Harel et al., 2006), were similar to a more advanced model (AWS; Garcia-Diaz et al., 2012) and 

were outperformed by DeepGaze II – a model using a deep neural network trained on object 

recognition to carve up feature space (Kümmerer et al., 2017). These data suggest that, similar 

to saliency models, meaning maps might not measure meaning but index the distribution of 

complex  features.  I  tested  this  notion  directly  by  comparing  scenes  containing  consistent 

object-context  relationships  with  identical  images,  in  which  one  object  was  semantically 

inconsistent, thus changing its meaning (e.g., a kitchen with a mug swapped for a toilet roll).  

Replicating previous studies, regions containing inconsistencies attracted more fixations from 

observers than the same regions in consistent scenes. Crucially, however, meaning maps of the 

modified scenes did not attribute more ‘meaning’ to these regions. DeepGaze II exhibited the 

same  insensitivity  to  meaning.  I  conclude  that  both  methods  are  thus  unable  to  capture 

changes in the deployment of eye-movements induced by changes of an image’s meaning that 

are based on object-context relationships.

Chapter Three

This  Chapter  further  evaluated  the  meaning  maps  approach  and  demonstrated  that 

contextualized meaning maps (Peacock et al., 2019), the modification of the original meaning 

maps, are also not able to account for the effects of semantic inconsistencies on human eye 

movements. The basic rationale of the chapter is that the limitations of meaning maps, which I  

highlight in Chapter Two, may result from the fact that meaning maps do not provide the raters 

with the opportunity to consider the influence of context on the meaningfulness of a patch –  

recall that the patches are being shown to them in isolation, without the context scene from 

which they were derived. This limitation of meaning maps had been anticipated by the authors  

of this method (Henderson et al., 2018) and, after publishing its initial version, they proposed a 

modification of the original method: contextualised meaning maps (Peacock et al., 2019). These 

maps carry the potential to overcome the limitation of their predecessors because they are 

constructed from ratings provided by raters who know the context scene of each patch and,  

therefore, can take context information into account in their meaningfulness judgements. In 

this Chapter, in Experiment 1, I put the contextualised meaning maps to the same test as the 

original meaning maps. Specifically, I assessed whether they are able to account for the human 
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tendency  to  fixate  semantically  inconsistent  objects  more  than  consistent  objects.  The 

experiment revealed that this is not the case. Moreover, the experiment provided an indication 

that introducing semantic inconsistency to an image region results in lower meaningfulness 

ratings (for this specific region). This observation was confirmed in Experiment 2, in which a 

carefully  selected set  of  image patches was rated by 140 raters.  Interestingly,  the  average 

decrease  in  ratings  for  patches  containing  semantic  inconsistencies  was  underpinned by  a 

considerable  between-rater  variability.  Together,  these  results  demonstrate  that  while 

contextualised meaning maps share the limitations of the original meaning maps, they (or the 

patch-rating task used to create them) might be useful as a tool for investigating individual 

differences in scene processing.

Chapter Four

In the two previous Chapters, I demonstrated that quantifying semantic information in images 

– one of the top-down factors thought to guide human gaze – remains a challenging task. The 

idea of this  quantification is  rooted in the conviction that top-down and bottom-up factors 

influencing gaze can be disentangled and measured independently. In this Chapter, I adopt a  

different  perspective  and focus  on  their  interaction.  Specifically,  I  consider  the  process  of 

knowledge-driven  perceptual  organization: the  situation  when  prior  object-knowledge 

possessed by an individual is rapidly deployed to determine the way in which visual input is  

segmented into objects. As a tool to study to this process, I used two-tone images: black and 

white, Mooney-style versions of photographs of natural scenes (‘templates’). The two-tones 

are perceived as meaningless by observers who have not seen the templates. Only observers 

who know the templates are able to perceptually organize the two-tone images into coherent 

scenes. In three experiments, I compared the eye movements of observers viewing two-tones 

before and after viewing their templates.  The key finding is that gaze patterns on the two-

tones resemble those from the templates to a larger extent when the two-tones are bound 

into  object  percepts,  as  compared  to  when  they  are  not.  This  result  suggests  that  eye-

movements are determined, to a large extent, by the object representations that result from 

the interaction between image-computable features and prior object-knowledge. These effects 

were observable already in the first eye-movements made by observers after stimulus onset. 

Furthermore,  knowledge-driven  perceptual  organization  changed  various  characteristics  of 

gaze  behaviour,  such  as  the  number  of  fixations  and  fixation  duration.  In  summary,  I 
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demonstrated  that  the  interaction  between  image-computable  features  and  prior  object-

knowledge possessed by the observers affects human gaze behaviour in a multifaceted way.

Future directions
In the process of writing this thesis, I identified a number of theoretical, methodological and 

practical  issues  related  to  human  oculomotor  control  during  natural-scene  viewing  which 

remain understudied or unnoticed. Some of them are specific to the content of this thesis,  

while others are more general. Below, I outline several directions for further research, which – 

in my view – carry the potential to address these issues.

Reconciling the relational nature of meaning with the spatial nature of images 

and eye movements

Chapters Two and Three, focusing on the assessment of the meaning maps approach, revealed  

that  to  investigate  the  role  of  semantic  information  in  visual  scenes,  stronger  theoretical  

foundations and more precise definitions of terms such as ‘meaning’ are necessary. One of the 

key  issues  highlighted  by  these  two  Chapters  is  that the  conceptualisation  of  semantics 

commonly  used in psychology is  not easily  adapted to the way in which gaze behaviour is 

typically  modelled.  Specifically,  there  is  a  tension  between  the  assumptions  of  this 

conceptualisation  and the way in  which the distributions  of  fixations in  natural  scenes are 

typically  modelled.  The  dominant  approach  to  modelling  fixations  –  inspired  by  saliency 

modelling – boils down to providing the distribution of some property (saliency, for example) 

over an image which determines how likely certain pixels are to be fixated. The models of 

semantics (see Chapter One), on the other hand, assume that (i) meaning is carried by objects, 

(ii)  that  the  meaning  of  a  certain  object  is  constituted  by  its  place  in  an  abstract, 

multidimensional  conceptual  space,  occupied  by  other  objects,  and  (iii)  that  the  distances 

between objects in that space reflect the degree of their semantic relatedness  (Rose & Bex, 

2020; Sadeghi et al., 2015). Incorporating semantics into the process of generating distributions 

predicting fixations (akin to the outputs generated by saliency models) would – for example – 

require proposing a way in which, for a given object, its location in the conceptual space affects  

its chance for being fixated when it is shown in the image. One promising avenue for building 
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‘saliency models with semantics’ might be to incorporate one additional factor in them, apart 

from (image-based) ‘saliency’ and ‘semantics’:  an observer’s internal states and priorities. For 

example,  it  is  known  that  observers  performing  visual  search  tasks  rely  on  semantic 

relationships  between  the  target  (an  item  to  be  found)  and  objects  in  the  display  when 

selecting subsequent fixations targets  (Hwang et al., 2011; although see Wu et al., 2014). It is 

conceivable that this behaviour could be modelled using a combination of image-based saliency 

model,  a model of conceptual  space, and a model of internal  state of the observer,  which 

would store the identity of the target. In fact, recent studies demonstrate the feasibility of such 

approach (Rose & Bex, 2020; Treder et al., 2020). 

Taking differences between images into account

The rarely spelled out but ubiquitous assumption of saliency models is that they are a general-

purpose tool and should be able to predict fixations for almost any given image. This assumed 

broad scope of applicability  is reflected in the way, in which models are routinely assessed 

(Kümmerer  et  al.,  2020;  see  also  Chapter  One):  the  values  of  some  metric  of  quality  of 

predictions are  calculated for  multiple  images  and averaged.  The resulting value serves an 

indicator of a model’s predictive power. The limitation of this approach is that it neglects the 

differences both between individual images and image categories, while it is clear that that 

such  differences  exist  (Torralba  & Oliva,  2001)  and that  they  are  relevant  for  oculomotor 

control. For example, Onat and colleagues (Onat et al., 2014) showed that the extent to which 

simple  visual  features predict  human fixations on images varies  as  a  function  of  a  general 

category (e. g., urban or natural scene) to which the images belong. Therefore, an interesting 

avenue for future research would be to investigate in more detail – both experimentally and by 

means of developing dedicated saliency models – how scene category or some characteristics 

of individual images contribute to eye-movement guidance. Given that a lot of information can 

be extracted from images rapidly  (Thorpe et al.,  1996, see also Chapter Four),  and that the 

oculomotor  system  is  highly  flexible  in  its  behaviour  (Rothkegel  et  al.,  2019),  it  can  be 

hypothesised that the information extracted from a scene initially might determine the mode 

of operation of the oculomotor system adopted when inspecting this  scene which,  in turn, 

affects subsequent characteristics of gaze behaviour. 
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Clarifying the role of computational models

In Chapter Two, I used a variety of saliency models. The intense reliance on these models as 

tools to study oculomotor control, on the one hand, resulted in many important developments 

(reviewed in Chapter One). On the other hand, their popularity and diversity resulted in these 

models being used – and even built – for purposes which are often unclear. This problem is 

related to the gradual evolution of saliency models, from being the expressions of constructs 

postulated by specific theories (for example, Feature Integration Theory; A. Treisman, 1985; A. 

M. Treisman & Gelade, 1980), to being algorithms  designed for accurately predicting where 

people  would  look  in  images.  Below,  I  use  three  examples  to  outline  this  evolution  and 

highlight how this evolution affected the usability of saliency models for theory development.  

A  more  in-depth  analysis  of  this  issue  is  –  in  my  opinion  –  much  needed  to  advance  our 

understanding of oculomotor control.

Early  saliency models  were derived from specific theories  about  the relationships  between 

image features and fixations allocation and,  as such,  were convenient  tools  for  generating 

testable  predictions  of  these  theories.  Testing  these  predictions,  in  turn,  lead  to  the 

modifications of the theories. For example, consider a study by Einhäuser and Konig (2003; see 

also Parkhurst & Niebur, 2004). These authors tested the hypothesis that image locations with 

high luminance contrast attract fixations. In order to do this, they recorded eye movements of  

observers  viewing  scenes,  in  which  contrast  was  manipulated.  Then,  they  assessed  the 

influence of these manipulations and fixations allocation. One of the main findings of this study 

was that image locations for which local contrast is  strongly reduced attract fixations. This 

finding resulted in the refinenement of theory: the idea that only high-contrast areas attract 

gaze turned out to be too simplistic. In this study, the distribution of luminance contrast played 

a role of a ‘saliency model’: it was used to generate predictions based on a theory positing that 

high values of this specific feature attract fixations.

Next,  consider  the  line  of  research  focusing  on  object  locations  (Borji  &  Tanner,  2016; 

Nuthmann et al.,  2020; Nuthmann & Henderson, 2010). The maps indexing the locations of 

objects within an image can be treated as a saliency models too (assuming that saliency is  

understood in a broad sense). This line of research provided evidence that object locations 

predict fixations well, and that this effect does not supervene on saliency indexed both by the 
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simplest and more advanced models. Yet, the theoretical consequences of these studies are 

less  clear  than  in  the  previous  example.  The  question  about  which  aspects  of  objects  are 

important  for  eye-movements  (their  specific,  complex  visual  features?  the  interaction  of 

features with the prior  knowledge about the world?)  remains open.  The result  that object 

locations predict fixations well, rather than leading to a straightforward theoretical refinement, 

may be treated rather as a heuristic and inspiration for further experiments.

Finally,  consider  the  successes  of  models  based  on  deep  neural  networks.  The  quality  of 

predictions they generate is superb  (Kümmerer et al.,  2020),  but the reasons for this good 

performance are  yet  to  be fully  elucidated.  Deep  neural  networks  are  characterised by  an 

enormous number of  parameters and the way in  which they process  the input  is  still  only 

partially understood. Therefore, using saliency models based on these networks is an extreme 

case of the situation illustrated in the two previous examples: the increase in the predictive 

power of a saliency model happens at the expense of understanding why the model performs 

so well, thus reducing its heuristic usefulness.

The picture which emerges from these three examples is that, currently, models can be very 

successful  at  making valid predictions,  but nevertheless lack explanatory power. They may, 

however, provide good heuristics about future avenues for research. This problem of tension 

between ‘explaining’  and ‘predicting’  present in the eye-movement literature is  only briefly 

outlined here. A more detailed elaboration of it would be undoubtedly beneficial both for the  

researchers who build models and for those, who rely on them in their studies.
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