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1 Summary 

2 The Perceptual-Mnemonic (PM) view of the Medial Temporal Lobe (MTL) suggests it 

processes representations for both perception and memory and that functional 

separation in its regions echoes differing modality specialisation of two widespread 

networks. This thesis investigated a Posteromedial Network (PMN) facilitating 

spatiotemporal navigation, contrasting it with an Anteroinferior Network (AIN) 

facilitating aggregate object/face processing. 

3 Supporting the PM-view, previous work reported correlations between network tract 

microstructure, functional magnetic resonance imaging-measured MTL signals and 

perceptual performance. However: the microstructure measures were biologically 

non-specific; no studies used magnetoencephalography (more temporally precise); the 

relative importance in MTL-reliant behaviours of PMN tracts that connect different 

MTL areas were uninvestigated; and studies relating PMN network structure to 

temporal processing produced conflicting results. 

4 This project investigated relationships between inter-individual differences in 

behaviour and these networks’ structures and functions using perceptual and 

mnemonic tasks probing perception of scenes and faces, and memory of objects-in-

sequences. Microstructure measures were reduced into biologically interpretable 

components. Those of the fornix – a proxy of hippocampal-PMN communication – 

correlated with scene perception and object-in-sequence memory performance. Those 

of the parahippocampal cingulum, which connects other PMN areas, did not, 

indicating the specific role of the hippocampus in spatiotemporal representation. 

Those of the inferior longitudinal fasciculus, part of the AIN, correlated with face 

perception performance. PMN theta/gamma power modulation occurred more during 

scene perception than face perception. In-task MTL theta power modulation 

(reflecting hippocampal/parahippocampal processing), and PMN - posterior cingulate 

cortex resting-state connectivity correlated with scene perception performance. 

Conversely, AIN theta/gamma power modulations occurred during face perception. 

These imply that MTL regions are important for both perception and memory and that 

two dissociable networks cater for the different modalities. An implication of the 

findings is that MTL damage (e.g., as occurs in Alzheimer’s Disease) may not produce 

purely memory disorders but impair representations for use across behaviours.   
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Chapter 1. Introduction to the topic. 

1 
 

1 Chapter 1. Introduction to the topic. 

1.1 Network models of brain function dissociate modality-specific processes.  

This thesis examined functional and structural properties of spatial processing networks in 

the brain to evaluate the Perceptual-Mnemonic (PM) View (Lee, Bussey, et al., 2005; 

Murray & Bussey, 1999; Murray et al., 2007). This view challenges the commonly-held 

belief that perceptual and mnemonic processes occur exclusively in separate areas of the 

brain, a dichotic view of memory and perception. It is encompassed by two 

representational models, the ‘Evolutionary Accretion Model’ (EAM) (Murray et al., 2017, 

2018) and the Posterior-Medial and Anterior-Temporal (PMAT) framework (Ranganath & 

Ritchey, 2012; Ritchey et al., 2015). Both models state: that Medial Temporal Lobe (MTL) 

regions conduct processes that aid both perception and memory; that MTL regions 

function as key regions in two widespread cortical networks; and that the functional 

separation seen in MTL regions echoes the differing modality preferences of the two 

widespread networks. Despite some differences, the two networks they describe are 

largely similar. This thesis focused on a Posteromedial Network (PMN), contrasting it with 

an Anteroinferior Network (AIN). The PMN is thought to conduct sequencing and 

separation to create models for spatiotemporal navigation. It incorporates network areas 

associated with spatial processing (Hodgetts et al., 2016; Nasr et al., 2013) and recollection 

memory (Rugg and Vilberg, 2013) such as: posterior portions of the hippocampus; 

parahippocampal cortex; retrosplenial cortex (RSC); posterior cingulate cortex (PCC); 

inferior parietal cortex and medial prefrontal cortex (mPFC). The AIN is thought to conduct 

aggregate processing to create models for identification and meaning. It incorporates areas 

associated with semantic memory (Jefferies, 2013), object processing (Ishai et al., 2000) 

and face processing (Haxby et al., 2000) such as: the perirhinal cortex (PrC); inferior 

temporal cortex, inferior occipital cortex (IOC); orbitofrontal cortex; amygdala; and 

temporal pole. 

This introductory chapter describes the background of the PM-view, to assess the evidence 

for it, and to expand upon the proposed PMN and AIN areas and functions. The chapter 

starts by describing the two memory models upon which the thesis is predicated. Then, 

functional separations of the MTL memory system and the roles of the PMN and AIN in 

mnemonic processes are described, highlighting how similar underlying mechanisms may 

support the multiple roles these networks have been associated with - such that they can 
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be considered as two generalizable toolboxes. It is then argued that dissociable roles of 

these networks, and their generalizable functionality, also extend to processes outside of 

Long-Term Memory (LTM). Lastly, the aim of the thesis, to further investigate the role of 

the PMN in spatiotemporal processing by examining individual differences in network 

structure, network function and task performance, is outlined.  

1.1.1 Complementary and differing ideas of the EAM and the PMAT framework. 

The ideas described here, including the meeting of two wide-spread cortical networks in 

the MTL that act as generalizable toolboxes processing different modalities across different 

cognitive contexts, are encompassed by the EAM (Murray et al., 2017) and the PMAT 

framework (Ranganath & Ritchey, 2012). The core premise of the EAM is that 

representational brain systems evolved from more primitive memory systems, including: a 

Navigation system which evolved in early vertebrates and utilizes visual and olfactory 

information for mobile foraging; a Feature system which evolved in anthropoids and 

supports visual representations to aid foraging; and a Goal system which also evolved in 

anthropoids and provides abstract thinking and attributed context to memories, to 

enhance foraging strategies. Eventually, a Social-subjective System evolved in hominins, 

developed from these older systems, and comprises a medial component for mental 

simulation of events that encompasses an extended hippocampus-based Navigation 

system, and a lateral component for concept comprehension that encompasses Feature 

and Goal systems (Murray et al., 2017). Therefore, it is proposed that our current brain 

networks, and our human experience of memory, arose through interactions between 

older brain systems. The EAM’s ‘Medial network’ includes the mPFC, PCC, precuneus, 

anterior cingulate cortex, medial parietal cortex, RSC, parahippocampal cortex and the 

hippocampus. The EAM’s ‘Lateral network’ includes higher order areas of the ventral visual 

stream and various frontal regions (including the orbitofrontal region), inferior occipital 

gyrus, Fusiform Face Area (FFA), superior temporal cortex and an anterior-temporal lobe 

‘semantic hub’ (Murray et al., 2017).  

The networks of the PMAT framework are based upon brain areas’ anatomical 

connectivities and common functions (Ranganath & Ritchey, 2012; Ritchey et al., 2015). 

The PMAT framework’s ‘Posterior Medial system’ includes a ‘core recollection network’ 

comprising parahippocampal cortex, RSC, angular gyrus, PCC, precuneus, anterior thalamus 

and mPFC. Its ‘Anterior Temporal system’ includes PrC, anterior temporal cortex, lateral 

orbitofrontal cortex, and amygdala.  
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These models differ in two important ways. The first concerns the view of hippocampal 

function within the two networks. The EAM views an extended hippocampal system, 

connected via the fornix, as an integral component of the ‘medial network’, while the 

PMAT framework views the hippocampus as a convergence point for both networks 

(Ritchey et al., 2015). Therefore, the EAM predicts that the hippocampus is also important 

for online spatiotemporal processes (such as complex scene perception) whereas the PMAT 

does not. However, the EAM agrees that hippocampal areas, termed the ‘amygdaloid-

hippocampus’, are important for semantic memory (Murray et al., 2017), thus 

acknowledging that the hippocampus’s heterogenous structure means it provides 

processing to multiple network systems. Secondly, there are differences in the general 

network structures. The PMAT framework’s ‘Anterior Temporal system’ does not include 

inferior ventral visual stream areas whereas the ‘Lateral network’ of the EAM does, and the 

PMAT framework places more importance on parietal areas such as the angular gyrus, as 

part of the ‘Posterior Medial system’ than does the EAM in its ‘Medial Network’. An 

outcome of these inconsistencies is the difference in the importance each model places in 

connecting white matter. In the EAM, the fornix should connect PMN areas and the Inferior 

Longitudinal Fasciculus (ILF) should connect AIN areas, whereas descriptions of the PMAT 

framework do not discuss these tracts and predicts only the importance of the 

Parahippocampal Cingulum (PHC) and the uncinate fasciculus for these functions 

(Ranganath & Ritchey, 2012; Ritchey et al., 2015).  

Of course, neither model suggests that brain networks work in isolation and the differences 

between the networks described could be ascribed to differences in emphasis of network 

functions and terminology. The PMAT framework does not discuss the findings that 

support a role of the hippocampus in scene perceptual tasks requiring online creations of 

internal view-invariant scene representations, but not in tasks requiring face 

representations (Hodgetts et al., 2015; Lee, Buckley, et al., 2005; Lee et al., 2008) (see 

section 1.3.3.). These findings support the claim of the EAM that the hippocampus is part of 

a ‘medial network’, rather than sitting between two networks. However, the hippocampus 

likely uses object information fed from ‘Lateral network’ or ’Anterior Temporal system’ 

areas to fill its spatiotemporal maps (i.e., joining objects in scenes) and, with this view, the 

hippocampus is acting as a convergence site of two systems, aligning with the PMAT 

framework. In part, this thesis aims to address these differences by directly comparing the 

importance of the fornix and the PHC in spatiotemporal processing in young healthy adults, 
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thereby testing the importance of hippocampal communication, relative to communication 

between other PMN areas, in PMN-related functions. 

1.2 The MTL as a meeting point of two wide-spread memory networks. 

The MTL contains heavily connected areas including the hippocampal complex (HPC), the 

amygdaloid complex and the cortical tissue surrounding these structures (Van Hoesen, 

1995). The HPC comprises the hippocampus itself and the immediately adjacent entorhinal, 

PrC and parahippocampal cortices1. 

Animal studies indicate unequal connectivity patterns between MTL areas that closely 

match the functional segregation within the system. The parahippocampal cortex is 

strongly connected to the dorsal visual stream (Lavenex et al., 2002; Suzuki & Amaral, 

1994a) and the PrC is strongly connected with the inferior temporal regions of the ventral 

visual processing stream (Suzuki & Amaral, 1994). The subiculum (an area of the 

hippocampus), the mamillary bodies and thalamus (strongly connected to the hippocampus 

through the fornix) show stronger connections with the parahippocampal cortex and RSC 

than the PrC; and the amygdala is more strongly connected to the PrC than the PHC or the 

RSC (Aggleton, 2012; Stefanacci et al., 1996). Resting state (RS) functional magnetic 

resonance imaging (fMRI) analysis in humans has confirmed and extended this pattern of 

two networks (Kahn et al., 2008). Activity of a network that included the anterior lateral 

temporal lobe correlated with activity of the PrC and the head of the hippocampus. Activity 

of another, which included the inferior parietal lobule (IPL), the RSC and the PCC, 

correlated with activity of the posterior parahippocampal cortex and the body of the 

hippocampus (Kahn et al., 2008).  

Traditional mnemonic views of functional separation in the MTL system closely follows this 

pattern. Recognition memory is thought to have two components: recollection, which is 

context-bound memory and reliant on the hippocampus and parahippocampal cortex; and 

familiarity, which is contextless and reliant on the PrC (Aminoff et al., 2013; Brown & 

Aggleton, 2001). ‘Context’ in this case, refers to the positioning of a percept or concept in 

time and/or space or relative to other percepts or concepts. For example, recollection can 

be the understanding that object A was encountered before object B when navigating a 

route, or understanding the location relationship between block A and block B in a scene. 

 
1Definition used: Hippocampal Complex. (2009). In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), 
Encyclopedia of Neuroscience (pp. 1840-1840). Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-540-29678-2_2211  
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Conversely, familiarity is the phenomenon of knowing something, for example knowing 

that object A has been encountered before, but not being able to link this knowledge with 

details about the learning event. This dichotomy is referred to as the Dual Process Model 

(Brown & Aggleton, 2001), and it has gained support from several experimental mediums 

including: response time experiments, showing that familiarity arises more quickly than 

recollection (Gronlund et al., 1997); analysis of receiver operating characteristics curves 

constructed of hits (correctly identified reoccurrences) and false alarms (incorrectly 

identifying a new occurrence as old), which show differing shapes for answers labelled as 

familiar and recollective (Yonelinas, 1994); and through the study of event-related 

potentials, which indicate electrophysiological differences between familiarity and 

recollection responses (Rugg & Curran, 2007).  

Similarly, the BIC (Binding of Items and Context) model suggests that functional separation 

is based on modality (Diana et al., 2007; Eichenbaum et al., 2007). In this model, the PrC 

processes object information, the parahippocampal cortex processes context information, 

and the hippocampus binds these representations, creating sequences and scenes of 

objects. 

These mnemonic models can be unified by considering MTL regions as key aspects of two 

networks with generalizable toolboxes, possessing different processing qualities that make 

them applicable to differing modalities. For example, the hippocampus is sensitive to 

representations of conjoined items in a spatiotemporal context and the PrC is sensitive to 

aggregate, but contextless, representations of items.  

1.2.1 The hippocampus and the creation of context-bound memory. 

The hippocampus has been shown to have a role in declarative memory generally (Scoville 

& Milner, 1957), and to have specific roles in spatial (O'Keefe & Dostrovsky, 1971), 

temporal (Hsieh et al., 2014) and abstract associative (Zeithamova et al., 2012) memory. 

For example, presentation of novel scenes created by spatial rearrangement of familiar 

objects gives an increase in immediate early gene expression (an indirect marker of 

neuronal activity) in the rat hippocampus but not the PrC (Aggleton & Brown, 2005). The 

involvement of the hippocampus in both recollection and spatial memory implicates it as a 

builder of cognitive maps that are not constrained to portraying a geographical world, but 

can be built by either relating conceptual elements such as events in episodic memory, or 

physical objects that may be encountered when navigating a space (Schiller et al., 2015).  
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Supporting this idea is evidence of involvement of the hippocampus in binding items in 

temporal orders. Hsieh et al. (2014) used multivariate pattern analysis on fMRI signals 

during the retrieval of object sequences. Before scanning, participants learned several 

different object sequences. There was one unique, fixed sequence, another two pairs of 

sequences that shared common objects in particular positions, and a random sequence. 

During fMRI, the participants were tested on their memory of the sequences through 

answering semantic questions. The creation of various similarity matrices showed that: 

hippocampus response patterns are sensitive to object-in-sequence information; 

hippocampus activity patterns for overlapping sequences are different; and that individual 

differences in participant sequence learning correlated with hippocampus pattern similarity 

differences for learned, relative to random, sequences. The results indicate that the 

hippocampus can support object-temporal-position binding and, by comparing different 

combinations of the sequences, that these patterns could not be explained by object or by 

temporal position alone. 

Moreover, there is evidence of hippocampal processing of conjoined items in abstract 

space. Using fMRI and multivariate pattern analysis, Zeithamova et al. (2012), found a 

relationship between participants’ abilities to learn overlapping associations and infer 

novel relationships (learn AB then BC and infer AC), and patterns of hippocampal online 

reactivation of old experiences (AB) during the encoding of related events (BC). 

Importantly, these associations are not bound by time or space, further supporting the idea 

that the hippocampus can form manipulable conceptual cognitive maps.  

The underlying processes of the hippocampus, thought to result in its sensitivity to 

conjoined items in conceptual cognitive maps, might be those of pattern separation and 

pattern completion (Rolls, 2016). The hippocampus appears to store multiple memories in 

the same neuronal circuits by an unknown mechanism, perhaps explaining why a partial 

cue of a memory can lead to recollection of the whole memory (Horner et al., 2015; Rolls, 

2016). 

1.2.2 A posteromedial network for spatiotemporal navigation in memory. 

The hippocampus and parahippocampal cortex connect to other cortical areas as part of 

spatial processing and recollection networks that mostly reside in posteromedial locations. 

The scene network is thought to include the RSC, occipital place area (OPA; or transverse 

occipital sulcus), parahippocampal cortex, posterior parietal cortex (Ciaramelli et al., 2010; 

Cukur et al., 2016; Nasr et al., 2013), angular gyrus, lateral prefrontal cortex (Summerfield 
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et al., 2010) and hippocampus (Hodgetts et al., 2016). Different regions of a spatial network 

may interact to produce spatial processing behaviour and memory. The hippocampus is 

thought to support the creation of allocentric (based upon stable locations and relative 

positions of landmarks) cognitive maps, as opposed to egocentric maps (based upon one’s 

own personal movement and location), which are thought to be created in posterior 

parietal areas (Gramann et al., 2006). Measurement using fMRI has shown that the OPA, 

but not the parahippocampal cortex or RSC, responds similarly to images of complete 

rooms and to rooms that have been altered so that they no longer fit together to produce a 

coherent scene, suggesting that the OPA processes the component parts individually, 

rather than the global arrangement (Kamps et al., 2016). The RSC is thought to aid 

allocentric processing (Vann & Aggleton, 2002) and navigation, perhaps by coding 

permanent landmarks in an environment (Auger et al., 2012; Auger et al., 2017) and 

supporting orientation within a broader spatial environment (Epstein, 2008). The 

parahippocampal cortex is associated with the perception of local scenes (Epstein et al., 

2007), responding to coherent scenes only (Kamps et al., 2016) and this processing has 

been shown to be viewpoint-specific (Epstein et al., 2003). 

Similarly, an episodic recollection network has been proposed to include the hippocampus, 

parahippocampal cortex, the RSC, posterior parietal cortex and the angular gyrus (Rugg & 

Vilberg, 2013). The parahippocampal cortex has been shown to be involved in contextual 

aspects of memory and associative memories (Aminoff et al., 2013). Importantly, this 

function extends beyond the spatial domain, as the parahippocampal cortex can associate 

abstract concepts (Wagner et al., 1998) and odours (Alvarez et al., 2001).  

These areas have also been implicated in temporal sequencing, an aspect of episodic 

recollection. Hsieh & Ranganath (2015) reanalysed the data of Hsieh et al., (2014) 

(described in section 1.2.1.). They found that activation patterns of the mPFC, RSC, and 

angular gyrus represented information about the position of each object in a sequence, 

regardless of whether those positions were associated with particular objects. Conversely, 

the PrC activation patterns represented information about objects only, regardless of 

sequence position. These results further support the role of the PMN areas in 

spatiotemporal navigation, and highlight the differences between their processes and 

those of the PrC.  

These networks and roles are unified by a PMN, which conducts sequencing, patterning 

and separation to create generalised models for spatiotemporal processing, regardless of 
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the precise nature of the cognitive process. Context can be thought of as arranged 

objects/concepts/events with spatial or non-spatial (such as temporal) associations 

(Aminoff et al., 2013), so it is understandable that similar mechanisms support both spatial 

processing and episodic memory. 

1.2.3 Associations and similarities between the PMN and the Default Mode 

Network. 

PMN areas overlap with the areas of the Default Mode Network (DMN), which includes the 

mPFC, lateral parietal cortex, inferior parietal lobe and posteromedial cortex (PMC) – 

containing the PCC and the precuneus (Bellana et al., 2017; Raichle, 2015). The DMN is 

notable for displaying reduced fMRI-measured Blood Oxygen Level Dependant (BOLD) 

signal during a task condition compared with a baseline rest condition, suggesting reduced 

activity during task engagement (Raichle, 2015). This has also been demonstrated as a 

reduction in broadband gamma power through electrophysiological recording (Li et al., 

2019) and as power suppression associated with increasing task difficulty (Ossandón et al., 

2011). Conversely, there is increased gamma power in the DMN during tasks involving 

internal processing such as memory retrieval (Foster et al., 2012) and imagining (Benoit & 

Schacter, 2015), indicating that DMN areas disengage during tasks requiring processing of 

predominantly external stimuli but engage during internally-generated processes. 

The parahippocampal cortex and the RSC show higher connectivity with the DMN than 

does the PrC, indicating greater commonality between the DMN and PMN, than between 

the DMN and AIN (Kahn et al., 2008; Ranganath & Ritchey, 2012). RS fMRI has shown 

increased functional connectivity between the DMN and MTL during memory retrieval and 

future imagining than at rest, while core DMN structures, such as the mPFC and the PCC, 

showed increased connectivity during rest than during retrieval and imagining (Bellana et 

al., 2017). These results suggest that the PMN and DMN overlap when the current cognitive 

state requires spatiotemporal processing of internally stored/generated information and 

that connectivity patterns within and between them dynamically adjust during a range of 

processes.  

1.2.4 An anteroinferior network for aggregate processing. 

The PrC, part of the AIN, has been shown to provide complementary processing to face and 

object processing networks, which reside mostly in anteroinferior locations (Kivisaari et al., 

2012; O'Neil et al., 2013). Memory research has provided evidence that the PrC has a role 
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in memory, separate to that of the hippocampus, involving recognition for items, without 

context. For example, the presentation of novel rather than familiar visual objects is 

associated with increased levels of immediate early gene expression in the PrC but not the 

hippocampus of the rat (Aggleton & Brown, 2005). The association between the PrC and 

recognition memory is also supported by fMRI studies in humans, which have shown 

modulated PrC BOLD in response to repeated objects (Gonsalves et al., 2005; Kafkas & 

Montaldi, 2012; Martin et al., 2016). Furthermore, PrC BOLD activity has also been shown 

to be associated with cumulative lifetime familiarity of object concepts as well as recent 

object concept (names of objects) exposure (Duke et al., 2017). 

The PrC may also play a role in semantic memory. Category-specific responses from the 

PrC, using intracranial electroencephalography (EEG), have been seen as early as 130 ms 

after the onset of the presentation of a written word (Chan et al., 2011). Areas of the 

ventral anterior temporal lobe, including the PrC, are thought to encode semantic 

categories and interact with upstream visual processing areas, such as the occipitotemporal 

cortex, during visual processing, to aid object identification. Furthermore, through 

multivariate pattern analysis of fMRI, it has been found that activity patterns in the PrC 

reflect semantic similarities between individual objects (Clarke & Tyler, 2014). In this study, 

the PrC also showed increased activation when recognizing highly confusable objects, 

indicating that these objects placed a higher demand on the PrC, with its integrative 

function. The authors suggested that the PrC creates semantic whole-object 

representations through complex aggregation of information fed from connecting areas. 

The PrC is proposed to be at the apex of the ventral visual pathway, a hierarchical stream 

that supports visual object processing (Ishai et al., 2000; Magazzini & Singh, 2018), and that 

includes early visual areas as well as the inferior temporal cortex and the PrC (Bussey & 

Saksida, 2007; Rottschy et al., 2007). fMRI data from participants who underwent an 

object-naming task were used to test the idea of a deep neural network model of vision 

combined with an “attractor network” model of semantics. Posterior ventral temporal 

cortex activity best represented early layers of the semantic network model, whereas PrC 

activity best represented late layers of the semantic network model, showing the passage 

of information in a hierarchical fashion (Devereux et al., 2018). 

The face processing network is thought to comprise two parts, core and extended 

subnetworks (Haxby et al., 2000). The core subnetwork comprises the Occipital Face Area 

(OFA), superior temporal sulcus and Fusiform Gyrus (FG), and the extended subnetwork 
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includes the intraparietal sulcus, amygdala, anterior temporal cortex and the orbitofrontal 

cortex (Haxby et al., 2000; Musch et al., 2014). The extended subnetwork is thought to be 

involved in the extraction of meaning from faces and the recognition of faces (Musch et al., 

2014), and the PrC is thought to contribute to this network when a task demands face-

based person-memory or discrimination between faces with overlapping features (Collins & 

Olson, 2014). Collins and Olsen (2014) suggested that the PrC achieves this by integrating 

features into viewpoint-invariant representations designed to give identity and face 

individuation. Relatedly, O’Neill et al. (2014) examined RS fMRI connectivity across regions 

in a face-processing network and found resting connectivity patterns between the PrC and 

the FFA and the PrC and the amygdala. The former connectivity patterns correlated with 

inter-individual differences in the extent to which inverting the orientation of a face 

disrupted subsequent recognition, indicating that individual differences in communication 

between the PrC and members of the face network affect face memory performance. Faces 

can also be considered as aggregated whole-object items. Isolated face or object items can 

exist without context, highlighting a similarity between object/face processing and 

familiarity memory. 

1.2.5 Neurodegenerative diseases may target distinct neural networks. 

The ‘network degeneration hypothesis’ suggests that some neurodegenerative diseases are 

the results of network dysfunction. Although, abnormalities on the small scale (molecular 

neuropathology/deficits in neuronal firing behaviour or synaptic communication) 

contribute to larger circuits and, ultimately, to network dysfunction (Palop et al., 2006), this 

hypothesis highlights that symptom-complexes can relate more closely to dysfunction of 

affected networks than to underlying neuropathologies (Drzezga, 2018). Two degenerative 

diseases, Alzheimer’s Disease (AD) and semantic dementia unequally target PMN and AIN 

areas (Ranganath & Ritchey, 2012). AD is associated with hippocampal atrophy (Lee et al., 

2019), abnormal DMN activity (Greicius et al., 2004) and abnormal RS-connectivity 

between MTL and DMN regions (Grajski & Bressler, 2019). Semantic dementia is associated 

with atrophy of AIN areas such as the amygdala, anterior temporal lobe and temporal pole 

(Boxer et al., 2003), and semantic memory impairment relates to PrC volume in semantic 

dementia patients (Davies et al., 2004). (However, it should be noted that the brain areas 

affected in these diseases are not entirely separable).  

The PM-view and representational models have implications for how we view diseases 

such as AD and semantic dementia, which affect the MTL. They are often seen as purely 
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memory disorders, which may not be the case (Hutchings et al., 2017; Quental et al., 2013) 

and furthering our understanding of the functional roles of brain network may allow us to 

better characterize network diseases, and potentially provide earlier diagnoses by including 

non-mnemonic based tests (Gaynor et al., 2019; Wu et al., 2020).   

1.2.6 Dissociable reliance on white-matter tracts between the two networks. 

The fornix and the PHC connect PMN areas. The fornix is the major carrier of hippocampal 

input/output tracts, and contains afferents from the diencephalon (Saunders & Aggleton, 

2007). Through the fornix, the hippocampus, mamillary bodies and anterior thalamic nuclei 

are considered to form an extended hippocampal system for episodic memory and spatial 

processing (Aggleton & Brown, 1999; Dumont et al., 2015). The fornix also connects this 

formation with the prefrontal cortex (Metzler-Baddeley et al., 2011). Fornix transection 

causes amnesia, showing that it is crucial in supporting episodic memory (Gaffan & Gaffan, 

1991). Its microstructure properties correlate with free recall performance (Metzler-

Baddeley et al., 2012) and episodic content of autobiographical recall (Hodgetts, Postans, 

et al., 2017). Moreover, microstructure properties of the fornix that may reflect fibre 

damage are reported in AD patients, and in the precursor condition, mild cognitive 

impairment (MCI) (Bozoki et al., 2012; Mielke et al., 2009).  

The PHC is part of the cingulum, which is comprised of long and short association fibres, 

and connects the temporal lobe to the frontal lobe, running along the dorsal surface of the 

corpus callosum (Bubb et al., 2018). It has segments with differing connection patterns or 

properties according to the connections they support (Bubb et al., 2017). The PHC is the 

most lateral region extending into the temporal lobe (Jones, Christiansen, et al., 2013), and 

is associated with episodic memory functioning (Metzler-Baddeley et al., 2012). It connects 

the MTL, mostly the parahippocampal cortex, with the occipital lobe and posterior parietal 

cortex (Bubb et al., 2017; Jones, Christiansen, et al., 2013; Wu et al., 2016). Microstructure 

properties of the PHC also differ between healthy adults and AD patients (Bozoki et al., 

2012), and have been found to correlate with recognition memory performance in MCI 

patients (Metzler-Baddeley et al., 2012).  

The ILF and uncinate fasciculus connect AIN areas. The ILF is a major occipital-temporal 

association pathway and connects the ventral visual stream (Herbet et al., 2018), 

emanating from the occipital lobe and concluding in the ventro-anterior temporal lobe 

(including connections to the PrC) (Catani et al., 2003). It may be important in several areas 

of cognition, including object, face and semantic memory, and socio-emotional processing 
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(Herbet et al., 2018). The range of processes associated with ILF can be explained through 

the breadth of areas connected through this tract. Based on connections within the 

occipital lobe, it has dorsolateral-occipital, fusiform, cuneal and lingual segments, each with 

differing proportions terminating in five temporal cortical regions (Latini, 2015). 

Microstructure properties of the ILF are different in children with impaired object 

recognition (Ortibus et al., 2012), in progressive prosopagnosia (Grossi et al., 2014) and in 

semantic dementia patients (Agosta et al., 2010; Sundqvist et al., 2020), compared with 

healthy controls. 

The uncinate fasciculus is a curved tract that connects the medial and anterior temporal 

lobe to the medial and orbital prefrontal cortex (Hau et al., 2017). It is associated with the 

semantic retrieval aspect of language (Papagno, 2011), socio-emotional behaviour (Coad et 

al., 2017), and reward/value-based associative learning (Thomas et al., 2012). Its 

microstructure also differs in semantic dementia patients (Agosta et al., 2010; Sundqvist et 

al., 2020) compared with healthy controls. An illustration of the proposed structures of the 

PMN and AIN are shown in Figure 1.  

 

 

 Figure 1. The proposed anatomy for the AIN and PMN. 

AIN and PMN areas are shown with tracts that connect them, coloured according to the keys. 

AIN: Anterior Inferior Network. PMN: Posteromedial Network. HPC: Hippocampal Complex. ILF: Inferior Longitudinal Fasciculus.  IPL: 

Inferior Parietal Lobule. mPFC: medial Prefrontal Cortex. PCC: Posterior Cingulate Cortex. PHC: Parahippocampal Cingulum. PrC: 

Perirhinal Cortex. RSC: Retrosplenial Cortex. UF: Uncinate Fasciculus.   
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1.3 The roles of AIN and PMN areas outside LTM. 

Contrary to a pure-mnemonic view of the MTL, the PM-view suggests roles of the PMN and 

AIN that extend beyond mnemonic processes. However, the roles of the hippocampus and 

PrC in perceptual processes are highly contested (Suzuki, 2009; Urgolites et al., 2018). 

There are reports of intact performance in complex perceptual tasks in MTL-damaged 

patients (Stark & Squire, 2000; Urgolites et al., 2018), suggestions that impairments in 

memory display as apparent impairments in perception (Knutson et al., 2013), and reports 

of intact scene construction and perspective shifts in hippocampal-lesioned patients 

(Rungratsameetaweemana & Squire, 2018). The following evaluates the evidence that the 

hippocampus and PrC contribute to processes outside of memory and discusses their 

contributions to PMN and AIN networks, respectively. 

1.3.1 The Hippocampus and the PMN support spatiotemporal representations over 

short timescales. 

The hippocampus is implicated in roles outside of memory, including online spatial 

processing (Voss & Cohen, 2017; Warren et al., 2012; Yee, 2014), imagining fictitious space 

(Barry et al., 2019; Hassabis et al., 2007) and online temporal encoding (Banquet et al., 

2021).  

Regarding online spatial processing, a focus of animal research on the hippocampus is how 

cognitive maps are formed, and how they affect subsequent behaviour. The well-known 

‘place cells’ alter their activity depending on the location of the animal in its environment 

(O'Keefe & Dostrovsky, 1971). Changes to the pattern of place cell activation during 

exploration and the re-run of this pattern during consolidation, have evidenced the 

hippocampus in encoding during exploration (Sosa et al., 2018). However, hippocampal 

processes may not be passive recipients of sensory information, but may guide on-going 

behaviour to manipulate information sampling. For example, vicarious trial and error 

behaviour is a trait observed in rodents and involves back-and-forth movements of the 

head during movement decisions. Animals with intact hippocampi display more vicarious 

trial and error behaviour in trials prior to locating the reward, than on subsequent trials 

whereas hippocampus-lesioned rodents do not show this pattern (Bett et al., 2012), 

indicating that internal model building or model retrieval by the hippocampus affects 

online spatial decisions. Similarly, supporting the role of the hippocampus in online visual 

processing, saccadic eye-movements can align with the phase of the hippocampal theta 

rhythm in both humans and macaques, during visual exploration (Hoffman et al., 2013). 
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Exploratory behaviour in humans can be measured through eye-movements rather than 

head movements, and humans with hippocampal damage show impaired exploration (Yee, 

2014). In this study participants were required to find a goal in novel scenes, but their 

exploration behaviour was made measurable by restricting the view of the scene through a 

‘viewing window’ that could be moved by the participant using a joystick, emulating visual 

searching. Patients showed a less organised search strategy during the first attempt, than 

did healthy subjects, by revisiting areas more and covering lower percentages of the 

images. 

In healthy humans, vicarious trial and error behaviour (expressed through eye-movements) 

has been associated with improved performance on a visual pick-the-odd-one-out task, in 

which multiple similar objects were shown simultaneously, with one differing slightly (Voss 

& Cohen, 2017). In this task, vicarious trial and error behaviour also correlated with BOLD in 

PMN areas such as the hippocampus, PFC and lateral parietal cortex. 

Several studies have evidenced a role for PMN areas in mental simulation or future 

imaginings (Addis et al., 2007; Andelman et al., 2010). In an fMRI study comparing 

activation during periods of past and future imaginings, the posterior hippocampus, mPFC, 

parahippocampal cortex, RSC, PCC and precuneus were found to be active in both states 

and the IPL was more active during future imaginings (Addis et al., 2007). Supporting the 

role of the hippocampus specifically, MEG recording during mental simulation has shown 

that the mPFC drives hippocampal activity during novel scene imagery (Barry et al., 2019), 

and patients with hippocampal damage render poorly detailed mental simulations which 

can lack spatial coherence (Hassabis et al., 2007). This deficit may also extend to mind-

wandering, as patients with hippocampal damage have also been shown to have more 

semantic-based (rather than episode-based), and more abstract (rather than scene-based) 

thoughts, than controls, when asked to freely describe their thoughts (McCormick et al., 

2018). Furthermore, in an fMRI study in healthy individuals, functional connectivity 

strength between the hippocampus and areas of the mPFC correlated positively with 

individual differences in the propensity to engage in future- and past-focused thoughts in 

mind wandering (Karapanagiotidis et al., 2017).  

Strong evidence for the involvement of the hippocampus in creating mental 

representations of scenes comes from research investigating boundary extension. This is 

the phenomenon in which a memory erroneously includes more scene than was originally 

viewed (Intraub & Richardson, 1989). It can be measured either by asking participants to 
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draw previously-viewed scenes by memory or by asking them to choose the previously-

viewed image from a choice which includes wider-angled images. It is evident after only 42 

ms, the duration of a saccade, of the studied item being absent from view (Dickinson & 

Intraub, 2008; Intraub & Dickinson, 2008), which strongly supports the idea that scene 

representations are formed within a perceptual timeframe. It has been argued that 

boundary errors occurring during visual scanning would be useful for scene perception 

because it would aid the perception of a continuous landscape and that without such gap-

filling the world would comprise disjointed fragments given from individual views (Intraub 

& Dickinson, 2008).  

Patients with bilateral hippocampal or ventro-mPFC damage show attenuated boundary 

effects (De Luca et al., 2018; Mullally et al., 2012), and fMRI scanning of healthy individuals 

found a boundary-effect-related hippocampal BOLD response that manifested during, or 

shortly after, the first presentation of the scenes and before the second (Chadwick et al., 

2013), suggesting that the hippocampus’s role in the boundary effect relates more to the 

construction of internal spatial representations rather than to a recollection error. 

Monitoring of time also appears to be a process that the hippocampus conducts during an 

event (Banquet et al., 2021). Like place cells, ‘time cells’ have been recorded in the 

hippocampus, mPFC and striatum during time-delays within memory tasks or at specific 

moments in temporally structured tasks (Akhlaghpour et al., 2016; Eichenbaum, 2017a; 

Salz et al., 2016; Tiganj et al., 2017). Experimentation in rats has shown that hippocampal 

time cells can monitor absolute time in a delay and update their firing patterns when delay 

periods change to allow monitoring of bridging of temporally discontinuous but related 

events (MacDonald et al., 2011). 

This research, along with episodic memory research, demonstrates that the hippocampus, 

in conjunction with other PMN areas, supports spatiotemporal processing across 

behaviours (Eichenbaum, 2017a). Indeed, episodic memory, exploration, imagining 

fictitious scenes and temporal processing all require grouping of sequentially encountered 

information. For example, to comprehend a route, an animal must hold information and 

places that were just revisited, and visual search involves scanning by swiftly moving the 

foveal portion of the visual field. The space or the visual scene can only be understood 

when the discrete pockets of information are joined.  

The mechanism by which the hippocampus performs real-time sequencing is unclear 

(Banquet et al., 2021). A major form of temporal organisation seen across the brain is the 
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synchronisation of population neuronal excitation and inhibition, displayed as oscillatory 

activity. Oscillations in the theta (4-8 Hz) and gamma (>30 Hz) bands may play particularly 

important roles in hippocampal processing (Colgin, 2016), and firing patterns of time and 

place cells are known to interact with temporal properties of theta waves (Dragoi & 

Buzsaki, 2006; Drieu & Zugaro, 2019; Pastalkova et al., 2008). On a larger scale, Elfman et 

al. (2014) designed a computer model simulating three input/output layers of the 

hippocampus (CA1, CA3, and dentate gyrus) and inputs and outputs running through an 

entorhinal cortex layer, emulating on-going pattern completion and separation for 

comparisons in memory and perception. They successfully demonstrated that their model 

could simulate previous human results from memory and perception tasks. Importantly, 

they did not adjust model parameters between perception and memory tasks. Instead, 

they found that differing signal patterns for each emerged as a result of the different task 

demands. The results suggest that the hippocampus contributes similar representations in 

aid of both mnemonic and online processing.  

1.3.2 The PrC and AIN support aggregate item representations over short 

timescales. 

The EAM and PMAT framework both suggest that the PrC is optimally placed, at the apex of 

the ventral visual processing stream, to play a major role in aggregate item processing 

across perception and memory (Murray et al., 2017; Ranganath & Ritchey, 2012).  

As described above, the PrC along with classic face processing areas, has been implicated in 

face processing through neuroimaging and neuropsychology studies (Collins & Olson, 2014; 

O'Neil et al., 2013). During perception, the PrC appears to be important in the identification 

aspect of face processing. It has been shown to have increased activity in response to face 

memory and perceptual discrimination tasks that require whole face processing, over tasks 

that require isolated face feature processing (O'Neil et al., 2013). Correspondingly, patients 

with ventral anterior temporal lobe damage (including the PrC) have been shown to be 

impaired in a face identity judgment task but not a face age judgment task (Olson et al., 

2015), which is thought to be because face-age judgments can be performed by comparing 

individual features, but identity judgment requires comparisons of the whole object. 

It is thought that the same underlying mechanism supports aggregate item representations 

in the PrC across perception as well as memory (Sadil & Cowell, 2017). A model network 

was designed containing a layer corresponding to areas of the posterior ventral visual 
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stream, which were assumed to hold ‘features’ (simple conjunctions of two visual 

dimensions), and a top PrC layer, upon which features converged, and it was assumed to 

represent whole objects. The model emulated a phenomenon named ‘representational 

tuned-ness’. The authors hypothesized that a familiarity or online discrimination decision 

requires an individual to scan back and forth, either between a memory and an 

encountered object, or between two simultaneously encountered objects, and if the 

representation of the second item appears less tuned, then this provides a mismatch signal. 

By comparing results with and without a PrC layer, they successfully simulated impairments 

shown by PrC lesioned patients: worse performance on discrimination tasks between highly 

ambiguous objects (sharing many features) than less ambiguous objects (which could be 

distinguished by their features by lower levels); and poorer object familiarity memory than 

controls (Sadil & Cowell, 2017). Together, this research shows that the PrC, in conjunction 

with the AIN, is important for online processing of aggregate items. 

1.3.3 The ‘oddity task’ has provided evidence of MTL involvement in perceptual 

processes. 

Results of studies using the perceptual oddity task have provided further support for the 

roles of the hippocampus and PrC in perceptual spatiotemporal and aggregate processing, 

respectively. In a study by Buckley et al. (2001), the perceptual oddity task was first 

introduced, with the aim of being able to modulate perceptual difficulty while keeping 

memory demands constant. In this study, monkeys were trained to identify the odd image 

out of six presented images. Task types included: face oddity; object oddity; colour oddity; 

degraded object oddity; shape oddity; scene oddity and size oddity (control task in which 

the subjects were required to identify the 2D shape of a different size). Face and object 

oddity tasks showed images taken from different viewpoints, and monkeys with PrC lesions 

were impaired when making perceptual discriminations in these tasks. They were 

unimpaired in face trials when the images were presented from one viewpoint, or on tasks 

that required simple feature discrimination, such as those in the size and shape oddity 

tasks, even when these were difficult. These data support the idea that the PrC is required 

to create representations of complex conjunctions as part of perceptual processes because 

only performance on oddity tasks that required perceptual discrimination at an abstract 

level was impaired.  

The oddity task has also been used to demonstrate MTL involvement in perception in 

humans. Lee, et al. (2005) aimed to provide evidence for, and differentiate between, the 

roles of the hippocampus and the PrC in spatial and object perception, respectively, in 
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humans. They investigated visual discrimination performance patterns in two groups of 

patients, one with MTL damage including hippocampus and PrC, and one with MTL damage 

including hippocampus but not PrC. Both groups were found to be unimpaired on tasks 

that could be solved on the basis of simple features and also complex scene and face tasks 

that did not demand viewpoint-independent perception. For tasks involving differing 

viewpoints, both groups were impaired on scene tasks, and the group with PrC damage 

were also impaired on face and object tasks. Moreover, when examining the results from 

repeated trials, lesioned patients performed worse than controls on the first trials of the 

blocks, thus making it unlikely that differences between lesion and control groups were 

entirely due to differences in memory encoding.  

The dissociable roles of the hippocampus and PrC in scene and face complex visual 

perception is further supported by the results of fMRI studies in healthy humans (Hodgetts 

et al., 2015; Lee et al., 2008). In these, participants were asked to complete differing-view 

face and scene oddity tasks and size oddity tasks, during fMRI scanning. Face oddity tasks 

were associated with greater BOLD signal in the PrC and the anterior hippocampus when 

contrasted with scene oddity tasks, and scene oddity tasks were associated with greater 

BOLD signal in the posterior hippocampus and parahippocampal cortex when contrasted 

with face oddity tasks (Lee et al., 2008). Moreover, the individual differences in the extent 

of hippocampal and PrC BOLD modulation has been associated with scene and face oddity 

task performance, respectively (Hodgetts et al., 2015).  

Further to the roles of the hippocampus and PrC, communication between these areas and 

extra-MTL areas has also been shown to be important in oddity task completion. Two 

studies have tested correlations between performance of scene and face oddity tasks with 

diffusion MRI measures of white-matter tracts in healthy humans to evidence the 

importance of network communication in complex scene perception (Hodgetts et al., 2015; 

Postans et al., 2014). They assessed tract properties using Diffusion Tensor Imaging (DTI) 

and considered high Fractional Anisotropy (FA) and low Mean Diffusivity (MD) of white 

matter to indicate efficient transfer of information. In one of these studies, fornix FA was 

found to correlate with scene discrimination performance in two tasks, one which 

displayed the scene sequentially with a delay (requiring memory) and the other, which 

displayed the images simultaneously, showing the importance of the fornix-supported 

communication across memory and perception (Postans et al., 2014). In the second study, 

low MD in the fornix, and low MD and high FA of the ILF, related to scene oddity and face 

oddity task performance, respectively (Hodgetts et al., 2015). Since the fornix and ILF are 
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thought to connect multiple areas in the PMN and AIN, respectively, the results of these 

studies provide evidence that effective communication within networks aids cognition. 

It could be argued that the MTL shows involvement in tasks with differing viewpoints not 

because of the need to create representations of complex conjunctions for perception, but 

because they are generally more difficult. However, results from a study by Barense et al. 

(2010) which specifically tested the effects of viewpoint on MTL involvement in the oddity 

task, do not support a ‘difficulty account’. They used face, scene and object oddity tasks, 

with and without differing viewpoints. Additionally, they included two types of the size 

control condition, one difficult and one easy (depending on the range of size changes). To 

compare the viewpoint effects of faces and scenes, trials were contrasted in the following 

pattern: (differing views faces – same view faces) – (differing views scenes – same view 

scenes). Greater viewpoint effects for faces over scenes was seen in the PrC and greater 

viewpoint effects for scenes over faces was seen in the hippocampus. Aspects of their study 

reduce the possibility that the results are a confound of task difficulty: only correct trials 

were included for analysis; there was actually less activity for difficult than for easy size 

trials in all the MTL regions tested; and activity in the posterior hippocampus was related to 

the scene processing task and not the size task even though these two task types were 

matched in terms of behavioural performance. Moreover, a ‘difficulty account’ cannot 

explain how the different modality conditions differently modulated activity in MTL 

regions.  

Furthermore, it could be argued that the apparent involvement of MTL regions in the 

completion of the oddity task is caused by a memory confound. In other words, holding 

scene or object images in memory may aid task performance. However, the tasks used by 

Barense et al. (2010) and Lee et al. (2008) comprised trial-unique stimuli, meaning that 

memory of a scene or object viewed previously, could not aid performance in their tasks.  

They also asked the participants to indicate the response as quickly as possible, to reduce 

the risk that measured MTL signals reflected encoding processes, which may dominate 

after a perceptual decision has been reached. Despite this, it is still difficult to distinguish 

between perception and memory from the results, as very short-term memory, the holding 

of visual information during saccades between simultaneously displayed images, may aid 

task performance and also incite longer term encoding processes in MTL regions.  

Lee et al. (2013) specifically attempted to tease apart spatial perception and spatial 

memory processes in the hippocampus during scene oddity task performance, by analysing 
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fMRI data using univariate and multivariate analysis. They hypothesized that if the 

hippocampus’s involvement in the scene oddity task was purely of a mnemonic kind, there 

should be significantly increased hippocampus BOLD signal for correctly answered trials 

when these are subsequently remembered, and not when they are forgotten. In addition, 

they hypothesized that if perception and memory were separate, classification between 

correct and incorrect oddity trials should be possible regardless of the pattern of 

subsequent memory. The results of the univariate analysis showed greater hippocampal 

BOLD for correct over incorrect oddity trials and, critically, this was not dependent on 

whether the trials were subsequently remembered. The results from the multivariate 

analysis showed that: both classification between subsequently remembered and 

subsequently forgotten, and between correct and incorrect oddity trials, was possible in 

the hippocampus; and that the classification result of the latter was not significantly 

different to the classification results when only subsequently remembered trials were 

included. Overall, these results indicate that hippocampal processes contribute to the 

perceptual processing stage, as well as mnemonic stages, in the scene oddity tasks.  

However, labelling of ‘perceptual’ versus ‘mnemonic’ processes brings about a conceptual 

issue. In some cases, the distinction between perception and memory becomes unclear. 

For example, if a system processes information over time, there must be a memory of 

sorts. For short timescales, this type of memory is referred to as working memory and, in 

the dichotic view of memory and perception, it is thought to be separate from long-term 

memory because there are descriptions of spared short-term memory in cases of MTL 

damage (Baddeley & Warrington, 1970). There are, however, differing opinions on whether 

short-term and long-term memory are fundamentally different (Norris, 2017; Ranganath & 

Blumenfeld, 2005). A criticism of the oddity task is that ‘very short term’ memory or 

‘saccadic’ memory is needed to hold a representation of the one image when focusing on 

another. Instead of altering the argument to ask whether MTL areas are involved with 

short-scale memory as well as long-scale memory, the PM-view stresses the need to 

understand areas of the brain by their computational abilities (for example, spatiotemporal 

processing), instead of modularizing brain areas by assigned outwardly recognizable 

functions (for example, LTM). 
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1.4 Current understanding of PMN and AIN functioning.  

 

Figure 2 illustrates the roles of the PMN and AIN as described in this introduction and 

suggested by the EAM and PMAT models. Concurring with the PM-view, the networks have 

been demonstrated to have dissociable roles in processing different stimuli that span 

perception and memory. However, there are aspects of research into these networks which 

are in their infancy. For example, while simultaneous investigation into the structural and 

functional aspects of the PMN and AIN supporting complex perception in healthy 

individuals performed by Hodgetts et al. (2015) highlighted the importance of hippocampal 

BOLD and fornix microstructure in complex scene perception, and PrC BOLD and ILF 

microstructure in complex face perception, many unanswered questions remain. Regarding 

the functional results, scene perception was associated with hippocampal BOLD decrease, 

which is difficult to interpret due to the complex relationship between neuronal activity, 

cerebral blood flow and oxygen metabolism, and so the result provides little indication of 

the hippocampal processes during perceptual decisions. For example, BOLD decrease has 

been interpreted as inhibition (Devor et al., 2007) and could reflect disengagement of the 

hippocampus. However, there are haemodynamic circumstances where a change in 
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Figure 2. The two proposed types of representations that the PMN (left) and AIN (right) create that aid multiple cognitive processes. 

Examples of PMN and AIN functions are shown. Images under the PMN circle are linked by arrows to show that items can be linked in 

space and time. Images under the AIN circle are placed randomly to show that items and concepts can be understood without context. 

(The scene and face images were made using Deus Ex (Ion Storm, 2000) and Facegen (Singular Inversions, 1998) (see Chapter 3). The 

objects are taken from a collection used in the experiment in Chapter 7.) 

AIN: Anteroinferior Network. PMN: Posteromedial Network.  
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neuronal firing patterns, echoing engagement of hippocampal processes, could produce 

reduced BOLD signals (Hillman, 2014). Similarly, the BOLD signal is slow compared with the 

underlying neuronal activity (Glover, 2011), so the temporal aspects of hippocampal 

engagement with the task is unclear. Both shortcomings can be addressed using an 

electrophysiological technique. Regarding the structural results, Hodgetts et al. (2015) used 

FA and MD, which are not specific to individual properties of white matter. For example, 

both axon membrane characteristics and myelin content can influence FA (Beaulieu, 2002). 

Thus, the importance of underlying biological properties of tracts supporting the PMN and 

AIN, in complex perception, are unclear. Furthermore, no previous study has assessed the 

influence of functional connectivity between network areas and complex perception task 

performance. Therefore, further experimentation into these networks’ roles in complex 

perception is necessary.  

Another shortcoming is our understanding of whether structural and functional aspects of 

these networks equally support the range of roles associated with them. For example, 

individual differences in fornix microstructure have been associated with recollection 

(Rudebeck et al., 2009), and scene memory and scene perception (Hodgetts et al., 2015; 

Postans et al., 2014) performance in healthy adults. However, it is unknown whether its 

properties similarly relate to temporal sequencing memory.   

Additionally, no previous studies have compared the importance of fornix and PHC-

supported communication in complex scene perception and temporal sequence memory, 

both of which are PMN behaviours. Both tracts are thought to support communication 

between PMN areas but the fornix is the major communicating tract of the hippocampus 

(Bubb et al., 2017). It would not be possible to conclude that hippocampus-PMN 

communication is specifically important for spatiotemporal processing if studies have 

shown correlations between individual differences in fornix microstructure and a PMN 

behaviour, but have not shown a weaker or non-existent relationship between PHC 

microstructure and that PMN behaviour.  

1.5 The aims of the PhD project. 

This PhD project aimed to expand our understanding of how the structure and function of 

the PMN network supports PMN behaviours, and to contrast this with aspects of structure 

and function of the AIN network supporting AIN behaviours. This was done by considering 

the testable implications of the PM-view: the PMN and AIN networks should aid behaviours 
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in different modalities; MTL areas should be involved in processes across memory and 

perception; and that the behavioural performance of those modalities should be related to 

the structural and functional properties of the respective networks (Graham et al., 2010; 

Murray et al., 2017) (stated again in Box 1 for clarity).  

The implications were tested in two contexts, complex perceptual processing and temporal 

sequence memory. To investigate the networks’ roles in complex perception, a scene and 

face oddity task was performed in conjunction with Magnetoencephalography (MEG) 

recording, and measurement of microstructural tract properties was carried out with 

microstructural MRI. The fornix, ILF and PHC were compared. As the functions of PMN was 

the main focus of this thesis, and the AIN was examined as a contrast, the other tract 

connecting the AIN, the uncinate fasciculus, was not examined. Correlations between 

individual differences in structure, function and behaviour were tested. Both online MEG 

signals and MEG-measured brain connectivity at rest, were examined. To assess the 

networks’ roles in temporal sequence memory, data collected during a previous 

experiment were used. Correlations were assessed between temporal sequence memory 

performance and microstructure analysis of the fornix, ILF and PHC similar to that carried 

out in the oddity task experiment.  

 
Testable Implications of the PM-view 

• The PMN and AIN should aid behaviours in different 

modalities. 

 

• Network areas, including MTL areas, should be 

involved in processes across memory and 

perception. 

 

• Behavioural performance in tasks involving network-

sensitive modalities should be related to the 

structural and functional properties of the respective 

networks.  

Box 1: Implications of the PM-view that can be tested to further 

our understanding of the roles of networks connected to the 

MTL.  
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2 Chapter 2: Methods to measure network properties and 

functions in humans. 

2.1 Using methods which cater to the aims of the research. 

The aim of this project was to expand our understanding of how the structure and function 

of the PMN supports behaviour, and to contrast this with aspects of structure and function 

of the AIN network, by looking for dissociable associations between individual differences 

in structure, function and behaviour for the two networks. Structure and function were 

measured with MRI and MEG, respectively. These techniques are non-invasive so 

properties of white matter and group neuronal firings can be measured with relative ease, 

in healthy participants.  

MEG allows measurement of synchronised activity of groups of neurones (Singh, 2012) and 

both MEG and MRI can characterize brain connectivity (Hillebrand et al., 2012; Jones, 

Knosche, et al., 2013; Marquetand et al., 2019; Messaritaki et al., 2020). Connectivity can 

be characterized on varying scales, such as between selected brain areas (e.g. Sulpizio et 

al., 2016) or through the assessment of individual tracts (e.g. Postans et al., 2014), or on a 

larger scale through whole-brain network analysis (e.g. Messaritaki et al., 2020). While 

structural connectivity strength can be inferred through microstructure measures (Jones, 

Knosche, et al., 2013), functional connectivity can be defined as a statistical dependency 

between measures of brain regions’ activity over time, such as correlation or coherence 

(Fox & Raichle, 2007; van Diessen et al., 2015). 

Individual differences can be measured with state or trait properties (Schmitt & Blum, 

2020). State characteristics vary across time and relate to the current behaviour. They can 

include modulations of brain activity between tasks or in task versus rest, giving insight into 

how individuals’ brain networks adapt and engage in different behaviours. Trait 

characteristics are less variable over time, generalizing over similar situations, and they can 

be measured irrespective of current behaviour. They can include structural brain properties 

or functional activity during rest periods, and can indicate how near-static network 

properties reflect in individual cognitive differences (Schmitt & Blum, 2020). State 

characteristics are measured in this thesis through completion of the oddity task during 

MEG recording. Structural trait characteristics are measured using MRI and functional trait 

associations are characterized using RS MEG.  
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This chapter outlines the imaging techniques used within this thesis and describes our 

current understanding of the biological bases of the resulting metrics. The sections describe 

the techniques and the resulting measures that are thought to be useful for understanding 

network function. 

2.2 The use of inter-individual differences. 

Although patient data is useful in providing causational roles of brain areas and tracts in 

behaviour, there are shortfalls of lesion-based work. For example, not all damage is equally 

visible with structural MRI (Lee & Newberg, 2005). Also, damage (i.e. abnormal activity) to 

heavily connected areas which form major nodes in networks (e.g., the hippocampus) can 

cause structural and functional alterations to connections elsewhere in the network, a 

phenomenon called ‘connectional diaschisis’ (Carrera & Tononi, 2014). Therefore, it can be 

unclear whether an association between a behavioural impairment and injury necessarily 

means that the affected area supported the behaviour. Moreover, there are benefits to 

understanding the healthy brain by individual differences research as it enlightens our 

understanding of normal brain variation.  

Individual differences research has already been utilized by a myriad of studies to reveal 

how properties of communication between areas of the PMN relate to performance across 

behaviours that require spatiotemporal processing. Examples include: RS fMRI studies that 

revealed that increased small-worldness (reduced number of steps between nodes) and 

modularity (existence of groups of nodes which more highly connected which each other 

than others) of the navigation network (Kong et al., 2017), and increased functional 

connectivity between the posterior hippocampus and RSC (Sulpizio et al., 2016) are 

associated with better navigation ability; an RS fMRI study that showed that trait 

differences in episodic autobiographical remembering have been related to resting neural 

connectivity patterns between areas including the MTL and the parietal cortex (Sheldon et 

al., 2016); and a structural-behavioural study that showed that sequential scene 

discrimination performance correlated with fornix microstructure properties in young 

healthy adults (Postans et al., 2014). 

Experimentation using individual differences has provided support for dissociable PMN and 

AIN roles. For example, relationships between fornix and ILF tract properties with episodic 

and semantic aspects of autobiographical memory have been identified in healthy 

individuals. Episodic detail correlated with fornix microstructure properties and semantic 
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detail correlated with ILF microstructure properties (Hodgetts, Postans, et al., 2017) (see 

also Hodgetts et al., 2015).  

2.3 Measuring brain rhythms using MEG. 

Neurones of the brain operate through electrochemical interactions and groups of 

neurones spiking synchronously can create oscillating electro-magnetic fields, measurable 

outside of the head. Multiple healthy brain oscillatory frequency bands have been 

described, including delta (1-4 Hz) (Park et al., 2014), theta (4-8 Hz) (Herweg et al., 2020), 

alpha (8-13 Hz) (Becker et al., 2018), beta (12-30 Hz) (MacDonald et al., 2019) and gamma 

(>40 Hz) (Hanslmayr et al., 2012; Sato et al., 2014; Seymour et al., 2017)2. 

MEG is a functional imaging technique that can measure the weak magnetic fields 

generated by, and at 90o degrees to, the brain’s electrical activity. Most of the signal is 

thought to come from post-synaptic potentials, including sodium spikes and action 

potentials (Baillet, 2017). Collective firing of the pyramidal cells of shallow cerebral cortex is 

thought to produce the strongest signal because of their distance from the sensors and 

elongated morphology (Baillet, 2017). In humans, neuronal group electrical activity can also 

be measured with EEG, either at scalp or intracranially. MEG and EEG methods provide a 

temporal resolution with a timescale of milliseconds. However, MEG provides benefits over 

EEG techniques. The need for surgical patients makes invasive recording difficult to access 

and limits the scope of investigation. Non-invasive EEG suffers from poorer source 

reconstruction because the electrical signal is distorted by the covering tissue. Regarding 

MEG recording, the cerebrospinal fluid (CSF) and skull have high magnetic permeability so 

there is little distortion of the magnetic fields (Baillet, 2017).  

The magnetic field measured outside the head is around 10 femtoteslas which is 

considerably smaller than the Earth’s magnetic field (Singh, 2014). To measure these weak 

signals, the MEG machine comprises: a magnetically shielded room; pick-up coils coupled 

with sensitive magnetometers called SQUIDS (Super Conducting Quantum Interference 

Devices) held at around −270°C (using liquid helium), stored in the ‘Dewar’ (a large 

container with two walls separated by a vacuum); and gradiometers, to calculate 

background magnetic noise. Along with these are: a helmet and chair connected to the 

dewar; reference electrodes placed upon the three fiducial points (the nasion and left and 

 
2 The exact frequency ranges included within the bands can differ between studies and the 
references included here are example of studies which have used the same frequency band 
definitions.  
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right pre-auricular points) to continuously measure head position; and a chin rest to help 

the participant keep still. It is essential to limit participant movement, as head movement 

can disrupt the validity of the MEG signals and subsequent source localization (Gross et al., 

2013). 

A challenge in understanding the signals measured from outside the brain is determining 

the sources of the activity within the brain. This is referred to as the ‘inverse problem’ as 

the modal parameters (the locations) must be estimated from the recorded SQUID signals. 

However, there are no unique solutions. MEG research aims to create the best solution 

using prior knowledge of the brain to constrain the calculation. This way, analysis usually 

involves solving the forward problem before the inverse problem. The forward solution 

includes a geometrically accurate modelled head using realistic conductor models based on 

structural MRI and estimations of the contributions each brain source would make to the 

externally measured signals. These results are then used to inform calculations in the 

inverse problem, attempting to map the topographical patterns of the real data to likely 

tissue current sources (Gross et al., 2013). 

Source reconstruction techniques vary in their applied constraints. Some assume one or 

few dipole sources are active at one time (Mosher et al., 1992), while others do not make 

assumptions about the number of active sources. The latter is called distributed-source 

imaging (Michel & He, 2019) and includes adaptive and non-adaptive methods (Hämäläinen 

& Ilmoniemi, 1994). Non-adaptive methods include minimum norm estimates which 

assumes that the entire cortex is active and provides a solution with the minimum energy 

(Hämäläinen & Ilmoniemi, 1994). Adaptive methods include beamforming (Michel & He, 

2019). Beamformers are signal processing techniques for directional signal reception from 

phased arrays of sensors, which were developed for radar application but commonly used 

in MEG analysis (Hillebrand & Barnes, 2005; Van Veen & Buckley, 1988). The main 

assumption of beamformer techniques is that no two neuronal activity sources are 

perfectly linearly correlated and only sources that are not correlated are considered 

locations of interest. Beamformers attempt to focus on signals from locations of interest 

and attenuate other signals by selectively weighting the contributions from the sensors to 

the overall beamformer output (Hillebrand & Barnes, 2005; Van Veen & Buckley, 1988). A 

linear constrained minimum variance (LCMV) beamformer is commonly used (Van Veen et 

al., 1997). Here, the linear weighting of the sensor array is calculated using theoretical 

models of the magnetic fields produced by given dipoles as priors and, along with the 

covariance matrix, the second order statistics of the data. The results make it possible to 
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estimate wave properties of "virtual channels" at the source locations (Hillebrand & Barnes, 

2005). 

2.3.1 Measuring oscillatory activity from deep sources. 

The possibility of detecting any activity from the MTL or hippocampus has been a source of 

debate (Riggs et al., 2009; Stephen et al., 2005) for multiple reasons. Foremost, the 

strength of magnetic signals diminishes with distance ‘r’ from the source, by 1/r3 so 

measuring MEG signals from deeper sources is more difficult that shallow sources. 

Additionally, a selection of source localization techniques, such a minimum norm 

estimation, are biased towards shallower sources (Attal & Schwartz, 2013). Also, the 

hippocampus’ cylindrical shape presents a unique challenge as sections fold over each 

other, so homogenous activation could lead to signal cancellation (Ahlfors et al., 2010).  

However, simulation (Quraan et al., 2011) and empirical (Barry et al., 2019; Cornwell et al., 

2012) research, and recent reviews (Pu, Cheyne, et al., 2018; Ruzich et al., 2019) provide 

substantial evidence that detection of hippocampal activity in MEG sensors is possible. 

Modelling of magnetic fields have shown that although hippocampal fields are smaller than 

those of cortical areas, they are still detectable with MEG, and it is suggested that the 

higher current densities in the hippocampus provide compensation for the distance (Attal 

& Schwartz, 2013). Furthermore, simulation work has shown that simultaneous activation 

of hippocampal subfields does not produce complete signal cancellation (Stephen et al., 

2005). 

The research in this field indicates that successful recording of MEG activity is more feasible 

with certain experimental designs, analyses and hardware. Quraan et al. (2011) localized 

hippocampal activation when primary visual sources were also active, which is commonly 

the case when visual stimuli are used. They found that signal leakage from activity in visual 

areas causes a challenge for beamformer analysis because the strong visual signal is 

present simultaneously with the weak hippocampal signal. To increase detection of 

hippocampal activity, they suggested that stimuli from task and control conditions should 

have similar visual statistics, and beamformer analyses should involve source image 

subtraction. A review by Ruzich et al. (2019) suggested a number of techniques to increase 

sensitivity to hippocampal signals. They stated that: source localization is more accurate 

with participant structural MRIs, precise head digitization techniques and continuous head 

movement recording; and analysis should include distributed source or beamforming 

techniques and not equivalent current dipoles. In line with Quraan et al. (2011), they 
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recommend contrasting condition task data with two types of control tasks where areas 

other than the hippocampus are activated. Where MEG is used to measure MTL activity in 

this thesis, the methods were designed in light of these suggestions.  

In addition, separation of signals between MTL areas such as the PrC and hippocampus 

would be useful for examining the PM-view, but it may not be possible because of their 

proximity to each other. Stephen et al. (2005) used simulated interictal epileptic activity to 

investigate whether MEG techniques could dissociate between signals originating from 

hippocampal subfields (including: CA1, CA3, dentate, entorhinal cortex and presubiculum), 

parahippocampal cortex and neocortical areas. To make the data more realistic, generated 

signals were added to real RS-data and the signal dissociation was tested in the context of 

simultaneous and sequential activation. Cortical activity and activity from the hippocampal 

subfields or parahippocampus, could be dissociated. However, hippocampal and 

parahippocampal activity could only be dissociated when the signals were sequential and 

not if they temporally overlapped. Therefore, in the current experiment, since MTL signals 

may be distinguishable from other cortical signals but the separation of MTL signals is 

unlikely, an oscillatory activity in an ROI encompassing both the entire HPC was examined.  

While multiple MEG studies have focused on hippocampal processing (Pu, Cheyne, et al., 

2018; Ruzich et al., 2019), comparatively few have identified PrC activity (Moses et al., 

2009), and previous work has assumed MTL oscillatory modulations to originate from the 

hippocampus (Guitart-Masip et al., 2013; Ruzich et al., 2019). Moreover, a study 

attempting to distinguish MTL MEG sources using Independent Components Analysis (ICA) 

and invasive recordings showed that, when searching for correlations between ICA 

components from continuous MEG recordings and stereoelectroencephalography 

recordings from MTL areas, sources from the hippocampus or parahippocampal cortex 

were more robustly related (correlated in more patients) than signals from the PrC (Pizzo et 

al., 2019). Importantly, hippocampal oscillations may artefactually appear to affect local 

surrounding tissue through the phenomenon of tissue volume conduction (Sirota et al., 

2008; Vinck et al., 2015). Therefore, in the current project, it was anticipated that MEG 

measured signals from the MTL would more likely arise from the parahippocampal cortex 

or hippocampus than PrC. However, there was a possibility that hippocampal and PrC 

processes during the oddity task manifest as different oscillatory frequencies. 
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2.3.2 Oscillatory frequencies of interest. 

The frequency bands may have specific roles or reflect different processes. They grant 

differently sized temporal processing windows which may affect the characteristics of the 

underlying processes. Similarly, they can originate from differently sized cell groups with 

lower frequency oscillations spanning larger areas than higher frequency oscillations 

(Canolty & Knight, 2010; von Stein & Sarnthein, 2000). 

Modulations in oscillatory patterns are understood to reflect modulations in brain 

processes (Buzsáki & Draguhn, 2004). Modulations in power of particular frequency bands, 

in particular brain areas, have been associated with particular functions. For example, theta 

power modulations in the hippocampus have been associated with memory processes 

(Cornwell et al., 2008), and beta power modulations in the motor cortex have been 

associated with movements (Khanna & Carmena, 2015). Relatedly, oscillatory synchrony 

across brain areas, in the forms of phase-coherence and amplitude-amplitude coupling, is 

thought to support long-distance communication (Palva et al., 2005; Samogin et al., 2020). 

For example, increased phase-coherence between the MTL and the frontal cortex has been 

demonstrated during spatial retrieval (Kaplan et al., 2014). Cross-frequency coupling 

patterns, such as phase-amplitude coupling (PAC), which is coupling between the 

amplitude of high frequencies and the phase of low frequencies, also occur (Seymour et al., 

2017). Indeed, spatial retrieval was also demonstrated to coincide with increased PAC 

between frontal cortex theta and medial parietal cortex gamma (Kaplan et al., 2014).  

Gamma, theta and alpha were of particular interest in this research because of their 

involvement in multiple cognitive functions, including perception and memory, and their 

occurrence in multiple brain regions. Examples include: cortical gamma oscillations are 

associated with conscious perception (Meador et al., 2002) and MTL gamma has been 

associated with spatial encoding (Pu, Cornwell, et al., 2018); MTL theta has been associated 

with spatial memory (Pu et al., 2017) and frontal theta has been associated with working 

memory processes (Hsieh & Ranganath, 2014); and alpha may suppress off-task processes 

(Jensen & Mazaheri, 2010) and be associated with perceptual performance (Brüers & 

VanRullen, 2018). Additionally, alpha coherence across brain areas is a suggested 

mechanism for long range communication (Chapeton et al., 2019). The following sections 

briefly describes possible roles of the oscillations and how they might represent underlying 

neuronal processes. 
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2.3.2.1 Gamma. 

Gamma oscillations have been associated with several cognitive functions including 

memory, attention and perception (Cabral-Calderin et al., 2015; Carr et al., 2012; Magazzini 

& Singh, 2018). They can provide real-time characterizations of local circuit operations 

because they emerge from interactions between excitatory and inhibitory neurones in local 

cell circuits (Cardin, 2016). Gamma oscillations can arise from multiple network 

mechanisms, and experimental models have revealed at least two mechanisms in the 

hippocampus which may work together or independently: strongly activated interneuron-

interneuron networks and coactivated reciprocally connected groups of pyramidal cells and 

interneurons. In the cerebral cortex, the latter may be the dominant mechanism (Cardin, 

2016; Whittington et al., 2011).  

There are multiple models which attempt to describe the functional role of gamma 

oscillations (Ray & Maunsell, 2015). The Communication Through Coherence model 

suggests that it offers communication between select neurones whose oscillations are 

temporally coherent and thus share inhibitory and excitatory windows. Interactions are 

established because the neurones’ input and output ‘communication windows’ are open at 

the same time (Fries, 2005). The Phase Coding model proposes that gamma oscillations are 

useful for coding sensory information through the timings of spikes (localised 

depolarisations in individual neurones or small groups) relative to the phase of the ongoing 

oscillation. Stronger excitation could induce spikes during stronger inhibitory times of the 

cycles, whereas weaker excitations could only induce spikes when inhibition is weaker, so 

the pattern of spikes codes stimulus intensity (Fries et al., 2007; Ray & Maunsell, 2015). 

Regardless of the exact role, gamma provides a useful measure of neuronal activity and has 

been associated with information processing (Ray & Maunsell, 2015).  

Gamma oscillation may be important in spatiotemporal processing. In humans, 

hippocampal gamma may be associated with spatial learning as gamma power has been 

found to decrease during repetitions of route navigation (Park et al., 2014) and gamma 

power post route-learning has been found to positively correlate with subsequent 

navigation performance (Pu, Cornwell, et al., 2018).   

Gamma oscillations may also support face processing. Research into face processing and 

gamma activity has indicated that face sensitive areas exhibit gamma power modulation 

between upright faces and inverted faces, at around 300 ms after stimulus presentation 

(Uono et al., 2017), and that gamma power is higher during the viewing of normally-
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configured faces, than scrambled faces (Gao et al., 2013). Also, induced gamma in response 

to faces is reduced in individuals with congenital prosopagnosia (Dobel et al., 2011). 

Together, the results indicate that gamma is involved in coherent face perception. They 

also suggest an underlying mechanism for the deficit in face perception in prosopagnosia.  

2.3.2.2 Theta. 

The hippocampus is well known for activity in the theta range due to the large amount of 

literature associating hippocampal theta with place-cell firing in locomotion in rodents 

(Sosa et al., 2018). Hippocampal theta is also associated with episodic and navigational 

memory in humans and it is thought that the underlying processes for navigating physical 

and mental spaces may be the same (Buzsaki & Moser, 2013). The hippocampus is thought 

to be a major current generator of theta (Buzsaki, 2002) but the emergence of the rhythm 

stems from the septum/diagonal band of Broca (Leao et al., 2015) and the 

supramammillary area (Pan & McNaughton, 2004) which are connected to the 

hippocampus through the fornix (Swanson & Cowan, 1979). Lesions to these areas cause 

reductions in theta (Rawlins et al., 1979) and memory impairments (Aggleton et al., 1995). 

Theta oscillations are thought to link neuronal cell processes, thus creating integrated 

representations of complex concepts such as spaces or episodic memories (Colgin, 2016).  

Place and time cells have been shown to fire in relation to the phase of the oscillations of 

the surrounding group cell activity, in a phenomenon called ‘phase precession’ (Colgin, 

2016; Pastalkova et al., 2008). Place cell firing occurs at progressively earlier phases of the 

theta cycle as the animal moves through the place field such that firing aligns with the 

beginning of the cycle as the animal leaves the field (O'Keefe & Recce, 1993). Time 

compressed sequences, called ‘theta sequences’ emerge in each cycle of the theta rhythm 

and reflect the order of place cell firing and, therefore, the order in which place fields are 

entered during exploration (Foster & Wilson, 2007). Blocking of theta oscillations in rats has 

been shown to disrupt theta sequences and spatial memory (Wang et al., 2015). 

Although phase precession has not been described in humans, cells equivalent to place 

cells have been identified using invasive recording (Ekstrom et al., 2003) and properties of 

human hippocampal theta have been associated with spatial processing, even with non-

invasive techniques. For example, a MEG study showed that 

hippocampal/parahippocampal theta was stronger during an earlier, than later, training 

phase, of a virtual Morris water maze task, and that individual theta power in the earlier 

phase correlated with spatial navigation performance (Pu et al., 2017). Conversely, other 
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studies have found hippocampal theta power decreases during encoding (Crespo-Garcia et 

al., 2016), that were associated with object and place retrieval accuracy, and during novel 

scene imagery (Barry et al., 2019). Together, the results indicate the importance of MTL 

theta in spatial processing in humans.  

2.3.2.3 Delta 

Hippocampal theta rhythms in humans have been reported to be lower (in the delta range 

1-4Hz) than those reported in rodents (Jacobs, 2014). Therefore, although theta is of 

foremost interest for this project, MTL activity in the delta range was also explored. 

Results of invasive studies of rat hippocampi have indicated that hippocampal delta 

increases during ‘offline’ periods, where the current behaviour lacks locomotion (Li et al., 

2008; Schultheiss et al., 2019) (locomotion is associated with increased hippocampal 

engagement in the form of increased theta and gamma power (Buzsaki, 2002; Colgin, 

2016)). Therefore, human slower hippocampal theta rhythms may occur in delta ranges 

because human neuroimaging studies often involve immobility (Bohbot et al., 2017).  

However, delta rhythms may indicate different processes to theta. Human EEG research 

suggests that delta oscillations support internal thought by inhibiting other processes, such 

as processing external stimuli, which may disrupt internal concentration (Harmony, 2013). 

Similarly, rat hippocampal delta has been demonstrated to become more prominent over 

repetitions of the same treadmill run, despite no changes in the amount of locomotion, 

which the researchers attributed to fatigue or task habituation (Furtunato et al., 2020). 

Therefore, increased hippocampal delta may reflect reduced external sensory input, 

whereas reduced hippocampal delta may reflect increased online hippocampal processing.  

2.3.2.4 Alpha. 

It is suggested that alpha suppression reflects disinhibition or information processing 

because, for a particular task, function-relevant brain regions show decreases in alpha 

power whereas other regions can show increased alpha power (Jensen & Mazaheri, 2010). 

Alpha activity is thus associated with ‘gating by inhibition’ (Jensen & Mazaheri, 2010). In 

this, top-down modulation of alpha oscillations in sensory areas may enhance a processing 

stream by exciting task-relevant areas and inhibiting the irrelevant input. For example, in a 

cross-modal attention task where participants were cued for upcoming visual or auditory 

discrimination tasks, alpha activity was shown to increase in auditory processing areas, and 
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decrease in visual processing areas, in response to a visual cue, and vice versa (Mazaheri et 

al., 2014). Jiang et al. (2015) showed that alpha inhibition can aid other processes. Their 

MEG study required participants to learn either words or pictures, depending on a prior 

cue, during trials in which the two were presented simultaneously. They found that alpha 

increased in regions associated with the modality that was not cued and that memory 

performance related to alpha decreases in regions relevant to the cued modality (Jiang et 

al., 2015). The results support the proposal that alpha channels information flow during 

encoding.  

Recently, alpha oscillations have also been shown to have other roles in cognition. A human 

EEG study attempted to separate working memory and attention in visual tasks (Erickson et 

al., 2019). Alpha suppression in frontal and posterior electrodes was higher in a task that 

involved attending to, and memorizing, an array of colours than the task that only involved 

attending to the array. This suggests that alpha suppression can act beyond generalized 

gating by inhibition, by supporting memory-specific processes. In information theory terms, 

alpha suppression may allow increased coding capacity, as information richness may be 

inversely related to synchrony (Hanslmayr et al., 2012).  

It was thus anticipated that alpha power suppression would occur in PMN areas during 

spatiotemporal processing and in AIN areas during aggregate item processing. 

2.3.3 Cognitive functioning can involve interactions between oscillations from 

different brain areas and in different frequency bands. 

Communication between brain areas through oscillatory coupling may support complex 

behaviours and lower frequencies may be better suited to engage larger networks than 

higher frequencies (Chapeton et al., 2019; Doesburg et al., 2009; von Stein & Sarnthein, 

2000). Kaplan et al. (2017) found that theta phase-coupling between the mPFC and MTL 

and RSC areas was higher when imagining travelling a path with learned objects than when 

imagining the objects statically. (The mPFC is associated with working memory 

maintenance, the RSC with spatial memory.) This suggests that collaboration between 

these areas allows a more complex cognitive state (Kaplan et al., 2017). Similarly, mental 

construction of novel scenes has been shown to increase theta coherence between the 

mPFC and the hippocampus, especially when those scenes are greatly detailed (Barry et al., 

2019). 
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Theta/gamma interplay is common during cognitive functions (Lisman & Jensen, 2013). 

Gamma activity may be more prominent in the MTL during encoding than theta, which 

appears to increase in power with experience. Invasive recording in humans, coupled with 

a virtual reality navigation task which involved learning associations between objects and 

places, showed that hippocampal theta and delta power was higher in familiar, over novel, 

environments (Park et al., 2014). High gamma (defined at 51-100 Hz) however, decreased 

during blocks with high behavioural performance. The authors concluded that low 

frequency oscillations are associated with encoding novel spaces whereas high gamma is 

more related to successful object-to-location encoding (Park et al., 2014). Similarly, during 

a virtual Morris water maze task, MEG-recorded hippocampal/parahippocampal high-

gamma power was higher in the inter-trial period after navigation of a novel, than after a 

familiar, space. This high-gamma power correlated with theta power during navigation and 

the speed of learning in the subsequent task block (Pu, Cornwell, et al., 2018). This provides 

evidence that understanding and learning spaces may require theta and gamma oscillations 

that can covary over time.  

Theta and gamma interactions are also reported in perceptual processing (Sato et al., 

2014), retrieval (Kaplan et al., 2014), and working memory (Canolty et al., 2006). The 

‘theta-gamma neural code’ hypothesis of Lisamen and Jenson et al. (2013), states that 

oscillatory coupling allows ordered-storage of multiple items. Gamma oscillations are 

proposed to allow coding, and separation of, multiple items by synchronising and 

separating spikes. Theta oscillations are proposed to aid communication of the multiple 

items between areas by providing a phase reference, shared by the communicating brain 

regions (Lisman & Jensen, 2013). The oscillations can interact through cross-frequency 

coupling, such as PAC, which can occur in single areas, or across brain regions (Canolty & 

Knight, 2010).  

2.3.4 Measuring functional connectivity with RS MEG analysis. 

RS MEG data analysis is similar to that of task-based data but relies on parcellation of the 

brain before connectivity analysis. Once the data is in template source space, publicly 

available atlases such as the Automatic Anatomical Labelling (AAL) atlas can be used for 

parcellation. Correlation analyses between signals from these parcellations are performed 

across the whole brain, and the results can be compared between groups or tested for 

correlations with measures of individual differences.  



Chapter 2: Methods to measure network properties and functions in humans. 

 

36 
 

RS-connectivity patterns can provide information about the quality of a network and can 

help differentiate different networks’ functions. This can be seen in patients with different 

cognitive deficits. RS analysis across frequency bands has shown that the connectivity of 

usually-well-connected areas, such as the hippocampus in the PMN, is disrupted in AD (Yu 

et al., 2017), whereas phase-lag index analysis of EEG signals has shown the importance of 

frontal networks in behavioural-variant frontotemporal dementia, compared with AD (Yu et 

al., 2016). Unequal disruption of brain networks may contribute to unequal behavioural 

impairments in these patients. AD typically involves memory deficits while behavioural-

variant frontotemporal dementia patients often display deficits in complex behaviours and 

can have personality changes (e.g. Bang et al. (2015) and Mielke (2012)). 

2.4 Measuring brain structure using MRI. 

MRI scanners have three main components: a static magnetic field that aligns the spin axis 

of protons; radio-frequency coils that transmit energy and increase the proportion of spins 

in a high energy state (not aligned with the magnetic field); and a receiver coil that 

measures the energy emitted as the protons return to the low energy state. During 

excitation, net magnetization moves from the longitudinal to the transverse plane and the 

spin phases align, giving a higher transverse signal. T2 relaxation is the decay of the 

transverse component due to a decrease in phase coherence. T1 relaxation is the energy 

released as the longitudinal net magnetization is recovered. These images are commonly 

used to delineate brain structure and as a template for other imagining modalities, such as 

MEG source-space analysis (Gross et al., 2013).  

Gradient coils, able to produce magnetic gradients with different orientations, are critical 

for Diffusion Weighted Imaging (DWI). A temporary magnetic gradient causes a phase shift 

and a second magnetic gradient, at the same strength for the same duration but in the 

opposite direction, causes another phase shift that should re-align the phases. However, 

the resulting emitted signal is reduced because the protons will have moved during this 

process. Diffusion is the random motion of molecules and if the molecules move randomly, 

equally in all directions, the resulting signal will be lower than if movement was restricted. 

The brain’s structure results in non-uniform restricted movement. For example, if a voxel 

contains tracts aligned in a single orientation, the DWI signals for that voxel will differ 

greatly across different diffusion orientations and be smallest in the orientation with the 

most movement (the same orientation as the tract). However, in a ventricle, the DWI signal 

will not differ greatly across orientations. The strength of diffusion effects is determined by 
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the strength, spacing and duration of the applied magnetic gradients, which are combined 

into one factor, the b-value (units: s/mm2).  

In this project, DWI was used to indirectly assess the properties of tracts thought to be 

involved in the PMN and AIN. A DWI experiment requires decisions about: the data 

acquisition sequence; the model for tractography; and the model for the calculation of MR-

derived tract properties.  

Diffusion tensor imaging (DTI) is a commonly-used branch of DWI (Jones, Knosche, et al., 

2013), that studies the random motion of water molecules in a medium with diffusion-

hindering tissue, such as white matter. This hindrance turns diffusion from isotropic to 

anisotropic (turning dispersion from a point from a sphere to an ellipsoid, Figure 3A). DTI 

assumes that the probabilities of displacement from a point show Gaussian distribution. 

Magnetic gradients are applied at right-angles to each other in 3D space. The result is a 3x3 

matrix, the tensor. Each voxel contains information about the average diffusion distance, 

the degree of directionality of the diffusion and its direction. In the ellipsoid constructed 

(Figure 3A) from the tensor, these data are presented as its size, shape and orientation. The 

metrics for these are the major-, medium- and minor-eigenvalues, the FA, and the major-

eigenvector respectively. Tractography constructs streamlines through voxels based on the 

major orientation with the expectation that these run parallel to the real white-matter 

fibres (Alexander et al., 2011; Jones, Knosche, et al., 2013). 

When tensors are used to calculate tract streamlines, DTI is vulnerable to errors due to 

fibre crossing within voxels, which causes areas of incorrect prediction of orientation 

(Farquharson et al., 2013). ‘Crossing fibres’ includes any situation where multiple fibre 

orientations appear within one voxel, including fibres brushing past each other or one fibre 

‘fanning out’ (Jones, Knosche, et al., 2013). Most tractography algorithms produce 

streamlines based on local estimates of fibre orientation (Jones, Knosche, et al., 2013), so 

even very small errors in local orientation estimation can cause a streamline to fall onto a 

different fibre or stop completely.  

For this reason, multi-orientation models can be more accurate. They can involve 

estimating a reduced representation of the ‘spin propagator’ based on the q-space (Mori & 

Tournier, 2013). A point in q-space is defined by the gradient strength (b-value) and 

gradient direction. The spin propagator characterizes the proportion of spins with 

particular starting positions that have moved particular distances. To obtain the spin 

propagator from q-space, a 3D Fourier transform is used. Different acquisition models 
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differ in how they acquire data from different points in q-space. Diffusion spectrum 

imaging offers the most thorough coverage of q-space – many images are obtained with 

differing orientations and gradient strengths – and the most complete characterization of 

diffusion (Tuch, 2004; Wedeen et al., 2005). 

For fibre tracking, the spin propagator is used to calculate the diffusion orientation density 

function (dODF). The dODF displays the directions of diffusion peaks and therefore uses 

only a subset of diffusion spectrum imaging data. Acquisition times are long considering the 

amount of information needed for tractography (Tuch, 2004). 

High Angular Resolution Diffusion Imaging (HARDI) acquisition offers a compromise. It 

explores a spherical shell of q-space where the orientation of each image differs, but the 

gradient strength (b-value) stays constant (Tuch, 2004; Tuch et al., 2002). It is possible to 

estimate fibre ODF directly (fODF), with HARDI acquisition with spherical deconvolution, 

which does not require modelling of the diffusion process itself but assumes that the 

characteristics of the diffusion signal are the same for all fibre bundles (Tournier et al., 

2004). An example is the damped Richardson-Lucy (dRL) algorithm, which was designed to 

reduce isotropic partial volume effects from CSF and grey matter (Dell'acqua et al., 2010).  

Scan protocols can include multiple shells (with different b-values). Higher b-values give 

greater contrast to noise ratios in the angular domain, which helps to resolve crossing 

fibres (Mori & Tournier, 2013). However, their lower Signal to Noise Ratio (SNR) can make 

motion and eddy-current correction challenging (Mori & Tournier, 2013). Therefore, low b-

value images are also collected. Moreover, higher order models can require multiple shells 

to gain enough diffusion information for the model fit (Mori & Tournier, 2013).   

To estimate tract properties, four measurements are often taken from the diffusion tensor. 

FA is calculated using metrics related to the difference between the major, medium and 

minor eigenvalues. It gives an indication of the major direction of diffusion and the extent 

of restriction of free movement within white matter (range 0 - 1). High FA is often taken to 

indicate high structural quality (Soares et al., 2013). MD gives an indication of diffusion rate 

across the three orthogonal directions (units: 10−3 mm2/s), and low MD is often taken to 

indicate high structural quality (Soares et al., 2013). Axial Diffusivity (AxD) gives the mean 

diffusion coefficient along the main axis of diffusion (thought to be parallel to the tract) and 

is thought to relate to axon structure (units: 10−3 mm2/s). Radial diffusivity (RD) is the mean 

of the two smaller eigenvalues of the tensor model, and is thought to reflect the magnitude 

of diffusion perpendicular to the fibre tracts (units: 10−3 mm2/s). AxD may reflect axon 
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structure while RD may reflect myelin proportion (Song et al., 2003). However, the 

meaningfulness of DTI measures is vulnerable to the effect of crossing fibres on the 

calculation of the tensor (De Santis et al., 2014). Moreover, they are non-specific to 

individual properties of the white matter. For example, both axon membranes and myelin 

content can influence FA (Beaulieu, 2002). 

Measures from higher-order models may prove to be more biologically meaningful. DTI 

assumes that water molecule movement follows a Gaussian distribution, which is unlikely 

in tissue because of the presence of cell membranes and cellular bodies. Some models do 

not make this assumption, but view tissue as comprising multiple compartments with 

differing diffusion properties (Mori & Tournier, 2013).  

The Composite Hindered and Restricted Model of Diffusion (CHARMED) protocol requires a 

multi-shell HARDI acquisition with a wide range of b-values. The model views white matter 

as a medium containing extra-axonal space with hindered diffusion of water and intra-

axonal space with restricted diffusion of water (Assaf & Basser, 2005) (Figure 3B). The latter 

measure, the Restricted Fraction (FR) (range: 0-1) can be thought of as a probe for axonal 

density, making it more specific than FA. Furthermore FA values depend on the 

orientations of fibres within a voxel (Budde & Annese, 2013) whereas FR appears to be 

independent of this (De Santis et al., 2014). 

Neurite Orientation Dispersion and Density imaging (NODDI) shares similarities with 

CHARMED but was designed to be more clinically feasible, as it can be acquired using a 

two-shell HARDI acquisition. The resulting measures include intracellular volume fraction 

(ICVF) (range: 0-1) and Orientation Dispersion (OD) (range: 0-1). OD and FA are negatively 

related in white matter, while ICVF has a smaller, positive relationship with FA (Zhang et al., 

2012).  

DTI results can be contaminated by CSF, a problem which may not affect FR or ICVF to the 

same degree because CSF data would be incorporated into other model compartments (De 

Santis et al., 2014; Zhang et al., 2012). 

Quantitative Magnetization Transfer (qMT) imaging uses the Magnetization Transfer (MT) 

technique and gives an indication of molecular density, making it more sensitive to 

measures of myelination. MT overcomes the fact that obtaining MRI information from the 

protons bound in myelin is unachievable (because the T2 is too short), by utilizing their 

broad range of resonance frequencies. The free water around these axons has a very 
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narrow spectrum of resonant frequencies but longer, and therefore measurable, T2 

relaxation times. By emitting radiofrequency pulses with frequencies different from free 

water resonance frequency, free water is unaffected, but bound protons will resonate 

(Figure 3C). However, by MT, the magnetization of the liquid pool will reduce. The ratio of 

the free water signal with and without the pulse is the MT ratio. Increases in this ratio 

correlate with increased concentrations of bound protons, and can imply more myelin in 

the tissue (Alexander et al., 2011). For qMT, this two-pool model is fitted to data resulting 

from multiple MT pulses with multiple frequencies and amplitudes (Alexander et al., 2011). 

The resulting Molecular Proton Fraction (MPF) can be taken as a measure of myelin fraction 

(Giulietti et al., 2012; Metzler-Baddeley et al., 2019).  

2.4.1 The microstructure methods chosen in this thesis. 

The temporal-sequence memory experiment described in Chapter 7 uses a two-shell HARDI 

acquisition, spherical deconvolution for the streamline calculation, and DTI and NODDI for 

tract property calculations. Dual-shell data is beneficial because the high b-value (here 

2400) gives more angular contrast and the low b-value (here 1200) gives higher SNR 

(Andersson and Sotiropoulos, 2015; Sotiropoulos et al., 2013), so the former can be used to 

calculate tractography and the latter can be used to calculate DTI measures. Although DTI 

measures can be vulnerable to crossing fibres and are difficult to interpret biologically, they 

can still provide a useful measure for the involvement of a tract in a task when used in an 

individual differences style experiment. To provide some more direct markers of underlying 

structure, NODDI measures, ICVF and OD, were also calculated. 

The oddity experiment described in Chapter 5 used data acquired through a CHARMED 

protocol that comprised diffusion-weighted images acquired over a wide range of b-values 

with some significantly larger than traditional HARDI acquisitions (e.g., 4000). From this, 

data acquired using b-values around 1200 and 2400 could still be used to calculate DTI 
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measures, tractography and NODDI. qMT was also used. Microstructure methods used in 

this thesis are illistrated in Figure 3.  

 

2.5 Statistical methods to relate functional, structural and behavioural data. 

Linear correlation analysis between behavioural data and imaging data (e.g., Hodgetts et 

al., 2015; Postans et al., 2014; Pu et al., 2017) provide a useful and simple clarification of 

the relationship between, for example, behaviour and individuals’ single tract properties, 

or between behaviour and brain areas’ functional relationship scores.  

Figure 3. Diagrams of microstructure methods used in this project. 

A) Isotropic diffusion is illustrated as diffusion within a perfect sphere (top), where it occurs equally in all directions. 

Anisotropic diffusion is illustrated as diffusion in an ellipsoid (middle) where it is not equal in all directions. The 

diffusion ellipsoid is illustrated (bottom) with three eigenvectors (illustrated as arrows) and three eigenvalues (λ1, 

λ2, and λ3). This can be represented in a 3 by 3 matrix, called the diffusion tensor. Diffusion paths are exemplified in 

orange. 

B) CHARMED and NODDI models assume that there are two compartments, hindered and restricted, the former 

occurring in extracellular space and the latter occurring in intracellular space. A diffusion path is exemplified in 

orange.  

C) qMT allows the estimation of the proportion of macromolecular protons bound in myelin (top, blue) despite their 

immeasurably short T2 signals, by utilizing their broad range of resonance frequencies (bottom, blue). Free water 

has a narrow range of resonance frequencies (bottom, green) but measurably long T2 relaxation times. By emitting a 

radiofrequency pulse away from the free water resonance frequency, but within the range of the myelin-bound 

protons, the free water T2 signal can be altered because the spin states of the myelin-bound protons influence those 

of the protons in the liquid pool by magnetization transfer exchange (top, illustrated as a red arrow). 

B C A 
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Whole-brain searches for linear correlations between behaviour and function are also 

useful. For example, Fieldtrip (Oostenveld et al., 2011), a program for electrophysiological 

data analysis, allows for a search for correlations between values of interest, such as a 

behavioural measure, and whole-brain frequency power values. 

For instances where coefficients of correlation tests were predicted to be different (for 

example, in Chapter 5, the coefficient of the correlation between fornix microstructure and 

scene oddity performance was predicted to be stronger than that of the correlation 

between ILF microstructure and scene oddity performance), the coefficients were 

compared using the Pearson and Filson’s test (Pearson, 1897).  

Partial correlations were also used in this thesis, allowing the measurement of correlation 

between two variables while controlling for a third. For example, in Chapter 7 the 

correlation between a fornix microstructure property and an object-in-sequence retrieval 

score was tested while controlling for an object-in-sequence ‘learning score’, to test if a 

relationship existed between fornix microstructure and object-in-sequence retrieval that 

was independent of learning. Similarly, multiple linear regression analyses were useful on 

occasions where it was of interest to understand whether a variable independently 

predicted another variable or whether other measures also contributed. For example, to 

ask whether microstructure properties from all three tracts contribute to a behaviour score 

and whether fornix microstructure is an independent contributor.  

Some of the hypotheses in this project were that specific phenomena should not occur. For 

example, when designing the stimuli for the oddity study through piloting (described in 

Chapter 3), Bayesian Repeated Measures Analysis of Variance (RM ANOVA) was used to 

assess whether accuracy scores for the conditions (scene, face or size) did not differ. 

Therefore, along with inferential statistics, Bayes Factors (BFs) were also calculated using 

BayesFactor package in R (Morey & Rouder, 2018) or using JASP (JASP Team, 2020), and 

were reported as BF10 (evidence of the alternative model over the null model). BF10 values 

between 1 and 3 can be taken as weak evidence in favour of the alternative model, values 

exceeding 3 taken to reflect stronger evidence, and values between 1 and 0.33, and below 

0.33, taken as weak and stronger evidence in favour of the null, respectively (Raftery, 

1995). In the cases where a third variable needed to be controlled for, Bayesian 

correlations between the residuals of variables were tested (as with traditional partial 

correlations).  
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PCA is useful when there is high multicollinearity among variables. Here, it was used to 

reduce microstructure data, as different measures can give overlapping information. PCA 

identifies components in the data by looking for linear correlations between the variables. 

The first component explains the largest amount of variance in the data and subsequent 

orthogonal components explain sequentially smaller amounts of resulting variance (Abdi & 

Williams, 2010). As an example of the advantages of this technique, Chamberland et al. 

(2019) used PCA to reduce 10 MRI-derived tract properties, and found that the first 

component of the inferior fronto-occipital fasciculus correlated with age.
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3 Chapter 3. Adapting the oddity task for use with MEG. 

3.1 Introduction 

3.1.1 Background. 

The oddity task predominantly tests complex perceptual processing as it involves online 

discriminations of items displayed simultaneously, but with differing view-angles. The task 

can include scenes, faces/objects and shape-sizes (control). It has been used to reveal 

impairments in MTL-lesioned patients (Barense et al., 2007; Lee, Buckley, et al., 2005). It 

produces MTL BOLD modulation in healthy participants (Barense et al., 2010; Hodgetts et 

al., 2015; Hodgetts, Voets, et al., 2017; Lee et al., 2008). Importantly, these patterns were 

only seen when the images were displayed at differing angles, suggesting that the MTL 

areas aid in the creation of online view-invariant internal models (the shape-size control 

task, in which participants identify a shape of a different size, does not require the creation 

of a view-invariant internal model and does not produce these patterns). Examples of the 

stimuli used in these previous oddity studies are shown in Figure 4. This project used the 

oddity task in conjunction with MEG to examine the roles of the PMN and AIN in complex 

perception. This had not previously been done. MEG records brain activity with precise 

timings but its ability to localise deep brain sources is challenging, and eye-movements can 

influence MEG signals (Gross et al., 2013; Quraan et al., 2011). This chapter discusses the 

design and piloting of an oddity task adapted for use with MEG.   

   

Object/face Scene Size (control) 

● 

● 

● 

● ● 

● 

● 

Figure 4. Examples of oddity task stimuli used in previous studies. 

Images copied from: ● Barense et al. (2010); ●Hodgetts et al. (2015); and ●Lee et al. (2013), without permission.  
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3.1.2 Aims and considerations. 

Like previous oddity studies, trials in the current oddity task comprised three images, 

presented simultaneously. These were virtual scenes or faces, from three different angles. 

To make this study comparable to Hodgetts et al. (2015), scenes, face and shape stimuli 

were used. The odd scene had different spatial relationships between the objects within 

the image, different orientations or locations. Similarly, the odd face had altered features, 

for example the eyes and mouth might have altered shapes or distance between them. The 

control task was designed not to require online internal model generation and involved 

identifying the different-sized circle. Although previous work had used squares (e.g. 

Hodgetts et al., 2015), rather than circles, there was a risk that the prominent edge 

orientation information in these images may make MEG-measured visual signals 

comparatively stronger in this condition than in the scene or face conditions (the 

importance of matching image statistics is discussed further below in section 3.1.2.2). 

While this project used MEG, previous research combining oddity task completion with 

neuroimaging in humans had used fMRI (Barense et al., 2010; Hodgetts et al., 2015; 

Hodgetts, Voets, et al., 2017; Lee et al., 2013; Lee et al., 2008). There are several 

methodological considerations involved in adapting the stimuli and paradigms of fMRI 

studies for MEG research. Different designs were tested over six behavioural pilot studies, 

which are collectively described in this chapter. The specific considerations and aims are 

described below (sections 3.1.2.1 - 3.1.2.4). 

3.1.2.1 Increasing temporal precision. 

Due to the time-lag of the BOLD response, the temporal qualities of MTL and outer 

network involvement in online processing is unclear. The current experiment was designed 

to utilize the precise timing of MEG. Whereas previous experiments gave participants a 

fixed time period to view the stimuli (e.g. 5.5 s in Lee et al., 2013), here the trial ended as 

soon as the participant made their choice. It is likely that online perceptual processes and 

mnemonic processes temporally overlap (and they are thought to be intimately related in 

the PM-view), but it was postulated that the time-period after a decision, where the 

participant passively views the stimulus for the remainder of the trial, would be dominated 

by mnemonic processes. Therefore, the current method may reduce mnemonic-dominant 

brain signals in the trial periods. The previous fMRI studies did not take this approach, 

presumably because of restraints regarding the temporal characteristics of the 

haemodynamic response function (Amaro & Barker, 2006). 
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The design meant that trials could be of variable lengths. Therefore, it was important that 

trials were viewed long enough so that sufficient recording of the low oscillation 

frequencies of interest (e.g. those within the delta/theta bands) was possible. An aim was 

for trials to last longer than 1.5s. This would allow at least one whole cycle of the lowest 

delta frequency (1 Hz) and at least 6 cycles of theta (4-8 Hz) frequencies. Participants were 

given 6 s (pilots 1-2) or 8 s (pilot 3-6) in total for each trial but were asked to indicate their 

answer as soon as they had come to a decision. They were advised that accuracy was more 

important than speed, and that the response could be made any time during the trial. This 

differed from a previous administration of the oddity task in fMRI, where the researchers 

asked participants to respond “as quickly but as accurately as possible” (Lee et al., 2008). It 

was important that the stimuli were difficult enough so that completion of most trials 

would take longer than 1.5 s and, ideally, up to 8 s. Although part of the aim of this project 

was to replicate the findings of Hodgetts et al. (2015), the scene stimuli used in Lee at al. 

(2013) were chosen as they were more difficult. This latter study gave participants 5.5 s to 

complete each trial and had around a 50% accuracy rate (chance level at 33%). The current 

pilot studies initially aimed for accuracy of around 50% (Pilots 1-3) but this was then 

increased to 60% (Pilots 4-6) to allow for a ‘safety net’ in case the MEG environment 

caused a reduction in accuracy scores. It was hoped that this higher accuracy level would 

be achieved through the longer trial times.  

The face and size stimuli were generated with the aim of matching the scene stimuli in 

mean and distribution of accuracy. There was a jittered 1-1.5 s interval in between task 

trials (except those preceded by a ‘fixation trial’, see below) in which a fixation cross was 

displayed. A jittered time-length is important to reduce the effects of participants’ 

expectations of upcoming trials and the accumulation of recurring cyclic interference from 

line noise, for example, when calculating the average over trials (Gross et al., 2013).  

3.1.2.2 Increasing the likelihood of deep source localization by matching image statistics 

between conditions. 

As discussed in Chapter 2, localization of deep sources is a challenge in MEG research, but it 

is feasible (Pu, Cheyne, et al., 2018). Quraan et al. (2011) localized hippocampal activation 

when primary visual sources were also active, which is commonly the case when visual 

stimuli are used and is likely the case in the current study. They found that signal leakage 

from activity in visual areas causes a challenge for beamformer analysis because the strong 

visual signal is present simultaneously with the weak hippocampal signal. Source image 
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subtraction is a viable solution. The comparison of two sets of MEG data with similar visual 

cortex activity but differing deep brain activity, should expose the deep brain activity. Image 

properties can modulate visual area activity. Therefore, in the current project, the stimulus 

images were created and modified with the aim of making the low-level statistics of the 

images of each category as similar as possible, without changing the nature of the tasks. 

The following describes the image properties of interest and how they can influence visual 

cortex activity. 

Image statistics can be classified as first-order, second-order or higher-order, which 

corresponds to the number of pixel values included in a calculation. First-order statistics 

includes data from individual pixels, and they can be represented through histograms that 

possess several descriptive qualities such as mean and dispersion. A common first order 

image property is luminance, which has been shown to affect low level visual processing 

areas. For example, mean luminance has been shown to influence the time course of event-

related potentials in response to faces (Bieniek et al., 2013). 

Second-order statistics describe the comparison of two spatially separate pixel values (van 

der Schaaf, 1998) and have been shown to modulate activity in low level visual processing 

areas. For example, V1 responses increase with increasing image contrast (Albrecht & 

Hamilton, 1982; Gardner et al., 2005). Perry et al. (2015) used MEG recording in 

conjunction with patterns of varying luminance contrast and showed that varying 

luminance contrast over time modulated the contrast tuning of the amplitude and 

frequency of the visual gamma response. The autocorrelation function and the power 

spectrum are commonly used measures of luminance contrast in second-order statistics. 

The former measures the correlation between intensity values of two spatially separate 

pixels and the power spectrum is the Fourier transform of this (van der Schaaf, 1998). 

Fourier analysis allows for any 2D image to be reduced into the sum of a set of sinusoidal 

gratings described by spatial frequency (the width of the grating bars), orientation (angle of 

the grating bars), amplitude (difference in luminance in the grating) and phase (the position 

of the sinusoidal grating relative to a reference point) (Willenbockel et al., 2010). 

Performing Fourier analysis on an image produces two spectra, an amplitude spectrum and 

a phase spectrum, which illustrate the amplitudes and phases of each grating at particular 

spatial frequencies and orientations, respectively (van der Schaaf, 1998). Natural images 

have an amplitude power spectrum that follows a pattern of 1/f2, where spectral amplitude 

decreases with increasing spatial frequencies. Images with finer detail will have higher 

powers of high spatial frequencies and the slope will be shallower. The opposite applies to 
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images with more coarseness and higher powers of low spatial frequencies. The size of the 

spectral signature is correlated with the slope of the frequency spectrum (Torralba & Oliva, 

2003). Lescroart et al. (2015) investigated how Fourier power spectrums, object category 

and subjective distance of images, affected BOLD response patterns in scene processing 

areas and found that their Fourier power model was the best predictor of these patterns in 

V1. Therefore, it can be assumed that equivalent V1 oscillatory signals are modulated by 

Fourier power spectra of images, and these signals may pervade the recordings of MTL 

signals.  

In an effort to match the low-level statistics (luminance and Fourier spectra) between 

categories, the face, scene and size stimuli underwent statistics matching using the SHINE 

toolbox for MATLAB (MATLAB, 2015), which reduced differences between condition 

images’ Fourier amplitude and luminance patterns (Willenbockel et al., 2010).  

In previous studies the control condition required participants to judge the size of black 

squares on white backgrounds. This straight-edge high-contrast shape does not visually 

match the scene and face stimuli, which are more complex, and such properties can 

strongly affect visual cortex oscillatory activity (Hadjipapas et al., 2015). The control task 

needed to be adapted without changing its lack of requirement for view-invariant internal 

representations. The task was changed to size judgment of semi-translucent circles overlaid 

on phase scrambled face and scene stimuli.  

3.1.2.3 Increasing the likelihood of deep source localization by adapting layout and timing. 

The layout and timing of the presentation of the stimuli differed from previous oddity task 

studies with the aim of limiting head movement while also increasing trial number. Quraan 

et al. (2011) simulated hippocampal localization in datasets with 10 to 150 trials. They 

found that localization error did not increase when reducing from 150 to 100 trials, but it 

increased when reducing from 100 to 50 trials and increased again between 50 and 10 

trials. Previous studies had used relatively few trials (e.g. Hodgetts et al. (2015) used 18 per 

condition). To limit scan time, and to assist with counterbalancing, the current study used 

96 trials per condition.  

To allow for breaks and reduce head-movement distance within recording sessions, trials 

were split into 4 blocks, lasting around 10-minutes each. The head position was re-mapped 

before each recording block. 
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Eye-movement can create physiological artefacts in the MEG recording (Gross et al., 2013) 

so it was important that the extent of saccades between images within the trials was kept 

to a minimum. The ocular angle of the first pilot was estimated to be the smallest possible 

while still visible to the participant. The intention was to reduce this angle in subsequent 

pilots if possible. However, accuracy scores did not reach the target mean of 60% so ocular 

angle was not reduced. The distance between participant and screen and the screen size 

differed between the behavioural laboratory setting and the MEG lab setting so the image 

size was altered to keep ocular angle the same in the two settings.  

3.1.2.4 The importance of a subsequent unforeseen memory test. 

In addition to the oddity task, it is important to include a post scanning memory test of the 

oddity trials. A criticism of previous work is that MTL BOLD changes during the trial could 

be a result of incidental encoding processes. Although this can be countered by the 

evidence that the association between hippocampal signal strength and oddity task 

performance is independent of subsequent memory for the oddity stimuli (Lee et al., 2013), 

it is important to test for incidental encoding as well as complex perception performance. 

This allows the researchers to ensure that associations between structure or function 

neuroimaging measures and performance in this complex perceptual task, are not simply 

reflections of an association between these neuroimaging measures and incidental 

encoding, and that incidental encoding aids performance in the complex perceptual task. 

Pilots 1 and 5 included an unexpected memory test, following the oddity task, to test the 

paradigms’ feasibility and to examine whether incidental encoding of scene and face 

stimuli facilitates oddity task completion.   

3.2 Methods  

3.2.1 Participants. 

Participants for all pilots, and all subsequent experiments presented in this thesis, were 

recruited through Cardiff University School of Psychology’s participant panel after the 

projects were approved by Cardiff University School of Psychology ethics department. 

Participants were asked to volunteer only if they were taking no psychoactive medication 

and had normal, or corrected-to-normal, vision. All volunteers gave informed consent prior 

to participation. 
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Since the aim was to create an adaptation of the oddity task, a task that has been used in 

several studies previously, the purpose of the pilots was to check that the trials were 

answerable, and that the condition accuracies were equal. Therefore, small sample sizes 

were sufficient. The participant demographics for each oddity pilot are shown in Table 1. 

For each pilot, there was a target of 10-15 participants and the resulting sample size varied 

according to the number sessions that could be run within the time allocated to the pilots 

(for example, more volunteers are available at certain times of the year). Note that 

participants could not contribute to more than one pilot. Due to a recording error, the ages 

of the participants in pilots 1 and 2 were not recorded. However, the age range is likely to 

be similar to other pilots because they were recruited from the same participant pool.  

Pilot Number Number of 
Participants 

Number of 
Males 

Mean Age Number Left-
handed 

1 15 3 n/a 2 

2 9 3 n/a 1 

3 15 2 20 SD: 1.3 2 

4 10 0 22 SD: 1.9 0 

5 9 3 23 SD: 2.6 1 

6 9 1 20 SD: 1.5 0 

Table 1. Participant demographics for oddity task pilots 1-6. 

Age was not collected for pilots 1 and 2. 10 participants’ data were collected for pilot 4 in total but 
one individual did not appear to engage with the task so this dataset was not used and another 
participant was recruited. 15 participants were originally recruited for pilot 1 but two datasets were 
not fully collected due to recording errors.  
n/a = ‘not available’ 

 

3.2.2 The oddity task. 

3.2.2.1 Layout and timing of presentation of the stimuli. 

The oddity task required participants to examine triplet images of scenes, faces or circles 

and to identify the odd-one-out. For the scene and face stimuli, the images were shown at 

three different angles and different locations. One image had either differing object 

relationships (scene condition) or differing facial features (face condition). For the control 
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task (size condition), 3 circles were shown with different locations and one circle differed in 

size.  

There was a total of 96 size trials and 144 face and scene trials. For each participant, the 

oddity task included all 96 size trials, 96 of the face trials, and 96 of the scene trials. To 

reduce fatigue and head movement over trials, the resulting 288 trials of the oddity task 

were split into four counterbalanced blocks of 72 trials. Participants responded using a 

keyboard with their right hand. In the oddity task, three keys represented the three images. 

To reduce predictability, there was an element of random ordering of stimuli within blocks. 

However, complete randomness of trial order may increase the time taken for networks to 

fully engage. The trials were grouped into mini-blocks of three trials of the same condition, 

with the aim of inducing maximal engagement of the scene and face networks. These mini-

blocks were then presented within blocks in a pseudo-random order, such that each mini-

block was different from the previous one. An illustration of the mini-block design is shown 

in Figure 5. 

In the oddity task, the first trial of each mini-block was preceded by a 5 s fixation period of 

a black screen with a white cross at the centre. The second and third trial of each mini-

block were preceded by an inter-trial fixation period for a time that randomly varied 

between 1 s and 1.5 s. Participants were shown trials for up to 6 s (pilots 1 and 2) or 8 s 

(pilots 3-6) but each trial ended as soon as a response was made. 

To make the behavioural laboratory setting similar to the MEG laboratory setting, 

participants were asked to sit with their head 1m from the screen and to keep as still as 

possible during the experiment blocks.  
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3.2.2.2 Stimulus design 

Scene stimuli were made using a commercially available computer game, Deus Ex (Ion 

Storm, 2000) and the majority had been previously made by Lee et al. (2013). Screenshots 

were taken from the virtual character’s perspective from different angles within the scene, 

by placing the character in different positions in the room.  

Face stimuli were made using Facegen (Singular Inversions, 1998). After applying the 

default settings for face type (race, age, symmetry) and setting the sex rating equidistant 

between male and female, the 'generate random face' function was used. It was important 

that facial characteristics pertaining to race and gender did not vary greatly because they 

can influence individual differences in recognition of faces (Mukudi & Hills, 2019). In light of 

this some faces needed additional editing to remove shading emulating facial hair, as this 

Figure 5. Layout of the oddity task.  

The upper image illustrates a mini-block comprising 3 scene, face or size stimuli, separated by short (1 - 1.5s) inter-trial 

fixation periods, preceded and followed by 5 s fixation periods. The trials could be displayed up to 6 or 8s in total 

(depending on pilot number) but ended as soon as the participant made a response. The 3 lower images are examples 

of the final (pilot 6) oddity stimuli. The asterisk indicates the odd-one-out.  
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made faces look male. The odd-one-out was constructed by using the 'genetics' tab and 

applying a variation of 0.4.  

All faces within a trial were presented from three different viewpoints from four 

possibilities, 'right' (45o right), 'left-up' (45o left and 20o up), 'up' (20o up) and ‘straight-on’ 

(0o). Viewing angle and location oddity were counterbalanced across trials. 

To reduce differences in image statistics between the task and control conditions, the size 

images were constructed using 24 phase-scrambled scene images and 24 phase-scrambled 

face images, equally taken from each stimulus group (described below in 3.2.3). Phase-

scrambling was performed using a technique (Perry, 2016) which allows the user to 

determine the level of phase scrambling by using the ‘weighted mean phase’ method 

(Dakin et al., 2002). This adds noise to spatial phases of images according to ‘w’, a 

weighting factor, in the range of 0 - 1. The weighting factor determines the proportion of 

unaltered spatial phase kept in the scrambled image. A ‘w’ of 0.16 was used because this 

has been shown to produce a subthreshold detection rate (Perry, 2016). To reflect the 

similarity in spatial phase between three similar scenes and faces portrayed at different 

angles, each scrambled image was used 3 times in each size triplet.  

Using the python package ‘PIL’ (Umesh, 2012), translucent homogenous black circles were 

placed over the scrambled images. Circles were rendered inside square areas randomly 

sized between 60x60 pixels to 90x90 pixels. These square areas were randomly placed 

within a larger area covering 305x205 pixels. Three circle images were made for each triplet 

(each with the same scrambled background), two with the same size dimensions and one 

with a different sized square. The changes in size in pixels of the pilots are as follows: pilot 

1 = 5, 7, 9, 11; pilot 2 = 6; pilot 3 = 5, 6; and pilots 4 to 6 = 4. For example, in pilot 6, if two 

square areas were size 60x60, the third would be 64x64.  

Images for all three conditions, face, scene and size, were converted to greyscale, cropped 

to a size of 400x300 pixels and ordered into a triplet pattern on a black background. 
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3.2.2.3 Matching image statistics with the SHINE toolbox. 

Triplet3 greyscale images were altered using SHINE (Willenbockel et al., 2010). Luminance 

was normalized across images using the ‘lumMatch’ function and the luminance histograms 

were matched using the ‘histMatch’ function. The SHINE toolbox provides two ways of 

equating Fourier amplitudes across stimuli, ‘spec Match’ and ‘sfMatch’. The latter is more 

lenient as it preserves the amplitude distribution across orientations but ensures that the 

rotational average amplitudes for given spatial frequencies are equated across images. 

sfMatch was used here because the tasks in this experiment require the participant to 

judge differences between similar images and, therefore, image quality is important. 

SHINE incorporates a method by Avanaki (2009) which can improve the quality of the 

histogram-matched images through optimising the Structural Similarity Index Measure 

(SSIM) (Wang et al., 2004) over a series of steps. SSIM is a measure of the similarity 

between the original and output images and is used as a proxy for quality: measured 0-1, 

where 1 would imply identical images. For each iteration, an image with a target histogram 

is produced, the SSIM index and gradient are then calculated and the gradient is used to 

improve the SSIM of the output image. For the stimuli of the final pilot, the SSIM index was 

0.88. 

Histogram and Fourier amplitude specifications can affect each other so SHINE facilitates 

an iterative approach where the targets are recalculated in each repetition. 15 iterations 

were used. 

To visualize the effects of SHINE, images of the Fourier spectrum and frequency spectrum 

were made using the inbuilt MATLAB Fourier Transform function (MATLAB, 2015) and the 

luminance histograms were made using the ‘imstats’ function in SHINE. Figure 6 shows the 

averaged image properties from each condition before and after undergoing SHINE 

alterations. 

 

 

3 Note that in pilots 1-4, SHINE editing occurred before triplet images were stitched 

together, causing unequal noise to be added to each image, which was thought to be 

making the task more difficult. In pilots 5 and 6, SHINE editing occurred after the triplet 

images were stitched together. 
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Figure 6. The averaged image properties from each condition before and after undergoing SHINE alterations. 

Average image statistics for each condition are shown, before and after SHINE.  The stimuli after SHINE application in pilot 6 were used for the subsequent experiments in this 

thesis. From left to right the boxes display: the Fourier spectra in polar plots; the power per frequency (averaged across orientations) in log plots; luminance histograms and 

example images. 
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3.2.3 The memory task. 

3.2.3.1 Layout and timing of presentation of the stimuli. 

The memory task included the remaining 48 scene and 48 face trials not used in the oddity 

task, plus 48 of the previously used scene trials and 48 of the previously used face trials 

(192 trials in total). To be consistent with the methods of Lee et al. (2013), the trials were 

presented in the same layout as those of the oddity task (triplet images). To ensure a 

balanced split between scenes and faces used for the oddity and memory tasks, the stimuli 

were split into 3 groups of 48: A, B, C. The participants were also split into three groups 

with each group receiving different combinations of stimulus groups for the oddity and 

memory tasks. For example, if scene stimuli groups A and B were used in the oddity task, 

then the memory task would use scene stimulus group C as ‘novel’ trials and 48 randomly 

chosen trials from scene stimuli groups A and B as ‘old’ trials. 

Participants responded using a keyboard with their right hand. Four keys represented four 

answers: ‘definitely old’, ‘I think it’s old’, ‘I think it’s new’ and ‘definitely new’. The reason 

for this integrated response in the memory task (combining old/new discrimination with 

confident/unconfident) was to allow for further detail on the memorability of the stimuli, 

without lengthening the duration of the experiment with an additional question.   

As in the oddity task, memory trials were grouped into mini-blocks of three trials of the 

same condition which were then displayed in a pseudorandomized order. Decision making 

in the memory task was predicted to be faster than that of the oddity task, so trials lasted 

only for up to 3.5 s and mini-blocks were separated by 2 s fixation periods. Previous studies 

using delayed recognition tests of scenes and faces have reported RTs shorter than 3.5 s 

(Blondin & Lepage, 2008; Burns et al., 2014), so this was expected to give enough time for a 

recognition decision. Similar to the oddity task, the inter-trial fixation period also randomly 

varied between 1 s and 1.5 s. An illustration of the memory task is shown in Figure 7. 
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3.2.4 Statistical analyses. 

Statistical analyses were carried out using RStudio (R Core Team, 2018; RStudio Team, 

2015) and JASP (JASP Team, 2019). Bayesian RM ANOVA was used to assess the evidence 

that the stimuli groups were equally difficult in the oddity task. When comparing the oddity 

task accuracies to chance level (using frequentist statistics), an alpha level of 0.016 (0.05/3) 

was applied to correct for the three conditions. For the memory task, an alpha level of 

0.025 (0.05/2) was applied when comparing memory scores to chance level. A traditional 

alpha level of 0.05 was used for all other tests, to maximise sensitivity.  

3.3 Results 

3.3.1 Oddity task results. 

The aims were: to have accuracy scores significantly above chance level (33%), which was 

achieved in Pilot 1; to have equal means and spreads of accuracy scores in the scene, face 

and size conditions, which were achieved by Pilot 4; and to have mean accuracies of around 

<

<

<

<

<

<3.5s 

<3.5s 

<3.5s 

2s 

2s 

Figure 7. The layout of the unexpected memory task. 

Illustration of a mini-block comprising 3 scene or face stimuli, separated by short (1 - 1.5s) inter-trial fixation 

periods, preceded and followed by 2 s fixation periods. The trials could be displayed up to 3.5 s in total but 

ended as soon as the participant made a response. Participants were asked to indicate whether they had 

previously seen the triplet image within the oddity task blocks, or whether it was new, and to indicate their 

confidence. Using four keys, participants could respond: ‘definitely old’; ‘I think it’s old’; ‘I think it’s new’; 

and ‘definitely new’. 
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60%, which was achieved by Pilot 6. The accuracies and Reaction Times (RTs) across the 

pilot studies are shown in Figures 8 and 9. 

3.3.1.1 Accuracy in Pilots 1-6. 

Equal accuracy scores across the conditions were achieved by pilot 6. Table 2 gives a 

summary of the accuracy results, as means and standard deviations (SD), for each pilot. 

Pilot Stimulus details Results Comments 

1 Edited scene stimuli 
from Lee et al. 
(2013).  

 

Aiming for accuracy means at 50%. 

It was possible to complete the task above chance 
level, but accuracy means across conditions were 
not equal.  

 

ACCURACY (%) SCENE FACE SIZE 

MEAN 45.03 48.48 61.54 

SD 7.40 5.59 17.89 

 

Chance level 33% exceeded (p<0.01).  

Bayesian RM ANOVA results provided evidence 
that accuracy means were different (BF10 = 
200.354). 

 

The stimuli needed altering 
to get equal accuracy means 
and spreads across 
conditions. 

Accuracy scores of 
individual circle size 
changes inspected. 5 was 
too low (40%) and 7 was 
too high (59%), so size 
change 6 was used in the 
next pilot. 

2 Scene and face 
stimuli unchanged, 
circle size change of 
6 used. 

 

 

Chance level 33% exceeded (p<0.01). 

Bayesian RM ANOVA results provided evidence 
that accuracy means were different (BF10 = 11.760). 

 

ACCURACY (%) SCENE FACE SIZE 

MEAN 48.38 50.35 62.15 

SD 5.314 6.400 15.256 

Aimed to increase 
performance means and 
spreads with increased trial 
times. 

3 Scene and face 
stimuli unchanged, 
circle size change of 
5 and 6 used. 

ACCURACY (%) SCENE FACE SIZE 

MEAN 51.04 48.89 60.21 

Circle size change needed to 
be reduced to increase 
difficulty. 
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Trial times extended 
from 6s to 8s. 

 

 

 

 

 

Chance level 33% exceeded (p<0.01). 

Bayesian RM ANOVA results provided evidence 
that accuracy means were different (BF10 = 36.502). 

 

SD 6.09 7.00 11.65 

4 Scene and face 
stimuli unchanged, 
circle size change of 
4 used. 

 

Aiming for accuracy means at 60%. 

 

 

Chance level 33% exceeded (p<0.01). 

Bayesian RM ANOVA results provided evidence 
that accuracy means were not different (BF10 = 
0.272). 

 

ACCURACY (%) SCENE FACE SIZE 

MEAN 48.85 51.04 48.85 

SD 7.97 4.66 11.48 

Aimed to increase accuracy 
scores to 60% and increase 
spread for scenes and faces.  

Additionally, performance of 
individual scene trials was 
inspected to see if some 
scene trials were 
consistently answered 
incorrectly. Those answered 
correctly by less than 40% of 
participants were removed 
and replaced with new scene 
stimuli. 

 

5 SHINE processing 
moved to after 
triplet image 
stitching. New scene 
stimuli replaced 
difficult scene trials. 

Face and size accuracy increased but not scene 
accuracy 

 

Chance level 33% exceeded (p<0.01). 

Bayesian RM ANOVA results provided weak 
evidence that accuracy means were different (BF10 

= 1.334). 

ACCURACY (%) SCENE FACE SIZE 

MEAN 51.74 60.30 60.30 

SD 8.64 12.69 13.90 

Performance of individual 
scene trials over pilots 4 and 
5 were inspected to assess 
accuracy levels of new scene 
stimuli.  
Additional new scene stimuli 
were added to pilot 6.  

6 New scene stimuli 
replaced difficult 
scene trials. 

Scene accuracy score raised and spread increased. 

ACCURACY (%) SCENE FACE SIZE 

MEAN 58.56 55.44 63.77 

Accuracy and spread 
between groups matched 
more closely.  
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Chance level 33% exceeded (p<0.01). 

Bayesian RM ANOVA results provided weak 
evidence that accuracy means were equal (BF10 = 
0.527). 

 

SD 15.25 8.80 14.53 

Table 2. Summary of accuracy results of oddity pilots 1-6. 
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Figure 8. Violin plots showing condition accuracies for pilots 1-6. 

The scene data are green, the face data are pink, and the size data are blue. The horizontal red line indicates 

the chance level at 33%.  As a visual aid, horizontal yellow line indicates 60%. The white dots indicate the 

median, the thick vertical black lines indicate the interquartile ranges and the thin vertical black lines indicate 

the 1.5 x interquartile ranges. 

By pilot 6, distribution and means of the accuracy scores are well matched between conditions. 
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3.3.1.2 RTs in Pilots 1-6. 

The RTs across the conditions could not be matched and there were consistent 

relationships between the groups: scene RT > face RT > size RT. RTs in pilot 6 for scene, face 

and size trials (mean (SD)) were 4713 (1079), 3691 (1230), 2664 (946) ms respectively. 

However, the majority of trials exceeded the aim of 1.5 second minimum length and the 

spread across conditions was reasonably matched in pilot 6.   

Figure 9. Violin plots showing condition RTs for pilots 1-6. 

The scene data are green, the face data are pink, and the size data are blue. The horizontal red line indicates 

the target minimum trial length of 1.5s. The white dots indicate the median, the thick vertical black lines 

indicate the interquartile ranges and the thin vertical black lines indicate the 1.5 x interquartile ranges. 
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3.3.2 Memory task results. 

3.3.2.1 Pilot 1 memory task results. 

Overall, memory performance was poor. The mean of scene hit rates was 0.50 (SD = 0.143), 

with a mean false alarm rate of 0.36 (SD = 0.083). The mean of face hit rates was 0.54 (SD = 

0.119), with a false alarm rate of 0.44 (SD = 0.129). To compare memory performance 

across conditions, d-prime (d′) scores (z(P(hits) – z(P(false alarms)) were calculated for 

scenes and faces. The mean d’ scores for scenes and faces were 0.57 and 0.29, respectively, 

and were both above the chance level of 0 (t(12) = 3.873, p = 0.002; t(12) = 3.653, p = 0.003). 

A paired t-test, testing the difference in d’ scores between conditions, was significant (t(12) = 

2.39, p = 0.034). 

The mean proportion of hits answered with high confidence (‘It’s definitely old’) (as 

opposed to low confidence (‘I think it’s old’)) for the scenes was 0.56 (SD = 0.333) and for 

the faces was 0.39 (SD = 0.304) (fractions of total number of correct remembered 

responses). There was no significant difference between these values (t(12) = 1.35, p = 0.19).  

For both scene and face trials, there was no significant difference between the number of 

oddity-correct and subsequently remembered stimuli and oddity-incorrect and 

subsequently remembered stimuli (t(12) = 1.56, p = 0.15; t(12) = -0.51, p = 0.62, respectively 

for scenes and faces).  

3.3.2.2 Pilot 5 memory task results. 

The mean of scene hit rates was 0.61 (SD = 0.140), with a mean false alarm rate of 0.41 (SD 

= 0.131). The mean of face hit rates was 0.58 (SD = 0.165), with a false alarm rate of 0.45 

(SD = 0.144). The mean d’ scores for scenes and faces were 0.62 and 0.34, respectively, and 

were both above the chance level of 0 (t(8) = 3.513, p = 0.004; t(8) = 2.178, p = 0.050). A 

paired t-test, testing the difference in d’ scores between conditions, just surpassed 

traditional alpha threshold (t(8) = 2.21, p = 0.054). 

The mean proportion of hits answered with high confidence (‘It’s definitely old’) (as 

opposed to low confidence (‘I think it’s old’)) for the scenes was 0.65 (SD = 0.158) and for 

the faces was 0.32 (SD = 0.220) (fractions of total number of correct remembered 

responses). There was a significant difference between these values (t(8) = 4.23, p = 0.003).  
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For both scene and face trials, there was no significant difference between the number of 

correctly answered and subsequently remembered stimuli and incorrectly answered and 

subsequently remembered stimuli (t(8) = -0.89, p = 0.34; t(8) = -0.18 , p = 0.86, respectively).   
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3.4 Discussion 

The pilot behavioural studies allowed the stimuli, their layout and presentation sequences 

to be adapted for an oddity study in the MEG environment. One consideration is that trials 

had to be long enough for multiple delta/theta cycles to occur during decision time and 

therefore the trials had to be made difficult enough so that RTs would be longer than 1.5 s. 

The scene stimuli of Lee et al. (2015) were chosen because of their difficulty, and face and 

size stimuli were developed to match the scene accuracy levels. A second challenge was to 

minimise the differences in image properties across the stimuli conditions, which involved 

redesigning the control size task and matching the images with the SHINE toolbox. In sum, 

aims of the piloting included: producing matched accuracy scores across image-statistics-

matched conditions, accuracy scores averaging at around 60%, and to design an 

unforeseen memory test appropriate to examine incidental encoding of stimuli. The first 

two were achieved by Pilot 6 and the last was achieved by Pilot 1 but re-tested in Pilot 5 

due to the stimuli and paradigm changes.  

Although oddity accuracy matched between groups, RT did not. Altering the stimuli with 

the aim of matching RTs would likely alter accuracy scores and it may be that the brain 

processes involved in making perceptual decisions on scene, face and circle images take 

different lengths of time. Supporting this, an early MEG study compared the time course of 

predominant evoked MEG signals in response to viewing scenes and faces (Sato et al., 

1999) and found that scene-related signals were localised to the right parietooccipital 

junction and parahippocampal gyrus and had a latency of around 300ms, whereas face-

related signals were localised to the FG and had a latency of around 160ms. More recent 

studies examining scene-viewing related electrophysiological signals have also reported 

timescales longer than those reported in more recent studies examining face-viewing (Gao 

et al., 2013; Halgren et al., 2000; Mormann et al., 2017; Vlcek et al., 2020). Moreover, the 

hypothesis tested in this thesis is that scenes and faces require different processing and 

that two brain networks possess the respective processing qualities required. It is 

conceivable that these networks may function at different speeds. 

The d’ results of the memory task indicated that the stimuli were memorable above chance 

level and that the scene stimuli were more memorable than face stimuli. However, the d’ 

scores also indicated that memory for both was poor. This may be due to the number of 

trials shown in the oddity and the length of the sessions. There were 96 scenes and faces 

shown in the oddity task which could last up to 50 minutes. Furthermore, participants were 
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not told about a subsequent memory task because active encoding of the stimuli was not 

an aim of the task. Interestingly, the memory results of Lee et al. (2013), who also used 

large numbers of stimuli and an unforeseen subsequent memory test, also showed poor 

recollection of scene oddity trials (d’ = 0.562). These results may indicate a success in 

oddity paradigm design, as the aim is to incite online perceptual processes and not 

incidental encoding processes. Importantly, there was no difference between the number 

of remembered correct scenes or faces (answered correctly during the oddity task) and the 

number of remembered incorrect scenes or faces (answered incorrectly during the oddity 

task), in either Pilots 1 or 5, suggesting that recognition memory performance was not 

modulated by successful completion of this complex perceptual task.  

The higher memorability of scene stimuli than face stimuli may mean that scene and face 

stimuli have differing effects on memory processes. The difference in memorability was 

also echoed in the proportion of confidently remembered scenes and faces. In pilot 5, the 

proportion of scene hits answered with high confidence was higher than that of faces. The 

objects within scenes vary more than features on faces. This pattern may be due to the 

higher similarity between images in the face condition. However, this finding may not 

undermine the use of the oddity task to measure complex perception. Since scene oddity 

accuracy was lower than that of faces in pilots 1 and 5, it is unlikely that previous studies’ 

findings that scene oddity and face oddity completion incite neuronal activity in different 

brain areas (Hodgetts et al., 2015; Lee et al., 2008) are reflections of the differing 

propensities of the stimuli to incite beneficial incidental encoding processes. On the other 

hand, it could be that the more a trial incites memory processes, the poorer the perceptual 

performance. Considering this, the relationship between hippocampal BOLD and scene 

oddity performance found by Hodgetts et al. (2015) may be mediated by the amount of 

memory processes during the task, and the hippocampal activity may reflect memory 

encoding rather than reflect the involvement of the hippocampus in scene perception. 

Therefore, it is important that in any research where a correlation between a neuroimaging 

measure and scene/face oddity performance is demonstrated, the relationship between 

the same neuroimaging measure and subsequent scene/face memory performance must 

also be tested (see Chapter 5 section 5.3.5). 

The level at which to match image statistics between the conditions was a compromise. It 

was important that the conditions were as visually similar as possible because a challenge 

with recording deep brain signals in MEG is the spread of stronger visual signals from visual 

areas, which can pervade into the deep brain signal recordings (Quraan et al., 2011). 
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However, complete matching would result in identical images and all levels below this 

cause graded improvements on the image quality. It was important to match the condition 

images as closely as possible without degrading image quality to the extent that the task 

was too difficult to complete. Therefore, applying SHINE, the rotational average amplitudes 

for the spatial frequencies were matched across images while the amplitude distributions 

across the orientations were unchanged as this helps to preserve image quality 

(Willenbockel et al., 2010).  

As the aim was to use this study design in conjunction with MEG, it is important to note 

similarities and differences between the behavioural laboratory and MEG laboratory 

settings. To make these similar, participants were asked to sit with their head at a fixed 

distance from the monitor and keep as still as possible during the experimental blocks. 

However, MEG sessions differ from behavioural-only sessions in several ways: the timing, 

due to set-up time before MEG recording; the environment, for example participants must 

wear reference electrodes and sit in a shielded room; and comfort and freedom of 

movement, as participants’ movement is physically restricted when in the MEG system. For 

these reasons, it was noted that the accuracy scores could decrease in the MEG setting. It 

was hoped that the final average oddity accuracy score of 60% would provide a large 

enough safety net so that accuracy levels could drop without reaching chance level.  

In conclusion, the oddity task was adapted to be suitable for a MEG study and to allow 

further investigation into the timing and nature of processes underlying complex online 

scene and face processing. The target results were decided before the pilot studies began 

and included target accuracy scores that matched between conditions. The stimuli and 

their timing and layout in Pilot 6 were used in the subsequent MEG and microstructure 

study.
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4 Chapter 4: Examining oscillatory power modulation within 

PMN areas during complex scene perception, using MEG.  

4.1 Introduction 

4.1.1 Background. 

Implications of the PM-view include: the PMN and AIN networks should aid behaviours in 

different modalities; network areas, including MTL areas, should be involved in processes 

across memory and perception; and that the behavioural performance of those modalities 

should be related to the structural and functional properties of the respective networks 

(Graham et al., 2010; Murray et al., 2017). This chapter continues the investigation of the 

first two implications by measuring brain oscillatory behaviour during completion of the 

oddity task, using MEG.   

Oddity tasks can be used to incite complex perceptual processes. The task requires the 

participants to pick the odd-one-out from multiple images of scenes or faces, each 

presented at a different view angle. It is understood that successful completion of the task 

requires the construction of a view-invariant internal model of a scene or face (Barense et 

al., 2010). Previous fMRI work has shown BOLD increases in the hippocampus and PrC 

during the completion of scene and face visual oddity tasks, respectively (Barense et al., 

2010; Hodgetts, Voets, et al., 2017), and increased hippocampal BOLD during correct versus 

incorrect scene oddity trials (Lee et al., 2013). These studies indicate the importance of 

these MTL areas in complex visual processing in two modalities. Moreover, Hodgetts et al. 

(2015) found an increase in PrC BOLD during the face task that selectively correlated with 

face task performance, and not with performances in the scene task or a size judgment 

control task. In contrast, hippocampal BOLD decrease during the scene task selectively 

correlated with scene task performance and not with face or size task performance. 

Together, since the PrC and hippocampus are thought to be members of the AIN and the 

PMN, respectively, the results support the proposal that the AIN and PMN cater for 

different modalities, but they leave some unanswered questions. The discrepancy in 

relationship between the scene task and hippocampal BOLD increase or decrease is difficult 

to interpret due to the complex relationship between neuronal activity and the BOLD 

response (Ekstrom, 2010; Ekstrom et al., 2009). Moreover, the BOLD signal is slow 

compared with the underlying neuronal activity, and so the result provides little detail of 
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the temporal dynamics of hippocampal processes during perceptual decisions. Indeed, the 

results of Hodgetts et al. (2015) were created from averaging BOLD in 6 s trials. In addition, 

Hodgetts et al. (2015) like previous work (Barense et al., 2010; Lee et al., 2013), focused on 

activity in single areas of the networks. Further investigation of the PM-view requires 

assessment of functional modulation across networks.  

The current study aimed to expand on previous work using fMRI and the oddity task by 

measuring oscillatory power modulation, PAC and phase-coherence across multiple 

network areas in the first 2 s of oddity task completion, using MEG. There was a particular 

focus on the oscillatory power modulations of PMN areas, during the scene oddity 

condition, and this was contrasted with oscillatory power modulations of AIN areas during 

the face oddity condition. Assessment of area-to-area communication was also used to 

study how the HPC and other PMN structures interact during complex scene perception. 

A whole-brain assessment of time-averaged oscillatory power was carried out, to assess 

the differential involvement of brain regions in complex scene and face processing. Virtual 

Sensors (VSs) of six PMN regions were then extracted: right and left HPC (comprising the 

hippocampus and parahippocampal areas); right and left IPL (including the supramarginal 

gyrus and the angular gyrus); PCC; and mPFC. Time-frequency analysis was carried out on 

each. PAC within right and left HPC and mPFC VS data, and theta/alpha phase-coherence 

modulations between all VSs, were then measured. 

4.1.1.1 Electrophysiological correlates of activity in the PMN and AIN. 

MTL oscillatory activity had not previously been explored during complex visual perceptual 

processes but previous human memory research examining the MTL, or perceptual work 

examining other ROIs, points towards the importance of oscillations in the gamma (40-

80Hz) and theta (4-8Hz) ranges (Colgin & Moser, 2010; Fell et al., 2011; Monk et al., 2020; 

Pu et al., 2017; Pu, Cornwell, et al., 2018; Sweeney-Reed et al., 2016).  

The hippocampus is well known for activity in the theta range due to the wealth of 

literature associating hippocampal theta with place-cell firing in locomotion in rodents 

(Sosa et al., 2018), and episodic and navigational processes in humans (Lin et al., 2017; Pu 

et al., 2017). The hippocampus is understood to be a major current generator (contributor 

to magnitude of power) of the hippocampal and limbic theta rhythm (Kocsis et al., 1999). 

Theta rhythms could allow grouping and separation of information and processes in an 

extended hippocampal network (Buzsaki, 2002) and this ability to sequence and separate 
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may underly both memory and navigation processes (Eichenbaum, 2017b). It is thought 

that the underlying processes for navigating physical and mental spaces may be the same 

(Buzsaki & Moser, 2013) and, therefore, theta rhythms may also be important during 

complex scene perception, which requires the construction of view-invariant internal 

representations. Indeed, the reduction in hippocampal BOLD during scene task completion, 

compared with a size judgment control task, reported in Hodgetts et al. (2015) may 

correspond to underlying increase in hippocampal theta. BOLD decreases have been 

reported to relate to increases in low frequency power (Fellner et al., 2016; Scheeringa et 

al., 2011) and, in particular, to MTL theta power increases during mnemonic encoding 

(Fellner et al., 2016). 

However, previous research that used a similar oddity task found hippocampal voxels that 

displayed increased BOLD during viewing of scene oddity trials involving images of scenes 

displayed at differing angles (requiring internal representation construction) in contrast to 

scene oddity trials involving images of scenes displayed at consistent angles (Barense et al., 

2010). Additionally, two studies using a mental scene construction task reported a decrease 

in anterior hippocampal theta (Monk et al., 2020) and an increase in anterior hippocampal 

BOLD (Dalton et al., 2018), when compared with construction of a non-scene mental array. 

Power decreases in lower frequency bands can coincide with power increases in higher 

frequency ranges, such as gamma (Mukamel et al., 2005; Scheeringa et al., 2011). This 

pattern has been related to increased BOLD (Conner et al., 2011; Kilner et al., 2005), and 

therefore implies increased engagement of a brain area. It is likely that different 

hippocampal processes are reflected in theta and gamma oscillations. For example, a study 

inspecting virtual navigation in humans found that delta and theta power were lower in 

novel environments compared with familiar ones, whereas low gamma (defined as 31-50 

Hz) power showed an opposite pattern (Park et al., 2014). The discrepancy in BOLD change 

direction between these findings and those of Hodgetts et al. (2015) may be due to the 

blurred BOLD representation of multiple processes with different temporal or oscillatory 

characteristics taking place during the trial. Therefore, in the current study, it was 

hypothesized that hippocampal theta and gamma would be modulated during completion 

of the scene oddity task, when compared with face or size judgment oddity conditions. 

However, due to the discrepant BOLD results, and the lack of previous research into 

oscillatory correlates of hippocampal perceptual processes, the direction of modulation 

was unspecified. Moreover, time-frequency analysis was carried out on multiple VSs to 

study the duration of the oscillatory patterns that were observed.  
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In conjunction with changes in hippocampal oscillatory activity, it was hypothesized that 

other areas of the PMN network would specifically engage in the scene oddity task. Theta 

in the mPFC has been reported to increase during spatial working memory delay (Kaplan et 

al., 2017) and spatial memory retrieval (Kaplan et al., 2014). Scalp-recorded frontal midline 

theta is associated with several PMN functions, such as episodic memory encoding and 

retrieval, and is thought to be largely contributed to by the mPFC, and influenced by other 

areas of the DMN and the hippocampus (Hsieh & Ranganath, 2014). In addition, the inferior 

parietal cortex is understood to be important for spatiotemporal integration in visual-

spatial working memory (Pisella, 2017), and parietal gamma oscillations have been 

associated with manipulation of visual and spatial representations in working memory 

(Morgan et al., 2011). The PCC may also play a role in the PMN processing as inhibitory 

stimulation of this area during encoding disrupts subsequent recall (Natu et al., 2019), and 

successful item encoding is associated with decreased low frequency power and increased 

gamma power (Lega et al., 2017). Considering these findings, theta and gamma oscillations 

may be a marker of spatiotemporal processing, not only in the hippocampus, but across the 

PMN. 

Increased power in the gamma range in response to object or face processing has been 

reported in areas across the ventral visual hierarchy including early visual areas (Gao et al., 

2013; Magazzini & Singh, 2018; Perry & Singh, 2014), ventral occipitotemporal cortex 

(Engell & McCarthy, 2010) and fusiform cortex (Gao et al., 2013). Moreover, PrC cells 

responsive to object repetition show ‘phase-pruning’ (more concentration of spiking 

phases around the rhythm peak) in the gamma band, after repeated experience of an 

object (Ahn et al., 2019), and it is thought that PrC gamma may be a result of a transfer of 

gamma oscillations from other visual areas carrying object information (Ahn et al., 2019; 

Collins et al., 2001). It is suggested that unified percepts are brought about by oscillatory 

synchronisation in the gamma range in distributed networks (Bertrand & Tallon-Baudry, 

2000), and that gamma activity facilitates the integration of new visual input into internal 

perceptual models (Gao et al., 2013). Indeed, previous MEG research has indicated a feed-

forward role of gamma activity, passing sensory information up the ventral visual hierarchy 

(Magazzini & Singh, 2018; Michalareas et al., 2016). Therefore, in this work, ventral visual 

stream gamma power was predicted to be elevated during the face oddity task, in contrast 

to scene or size judgment oddity conditions.  

In accordance with the increased PrC BOLD during face oddity task completion reported in 

Hodgetts et al. (2015), it might be expected that power in low frequency oscillations of the 
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PrC would decrease, while power in high frequency oscillations would increase, during the 

face oddity task, in contrast to scene or size judgment oddity conditions. However, 

distinguishing between different sources among MTL structures (such as between the 

hippocampus and the PrC) is challenging with MEG. This is because of the low SNR of 

signals originating from deep tissue and, because of their proximity, the influence of head 

movements (Ruzich et al., 2019). Since successful separation of hippocampal and PrC 

sources with MEG was unlikely, and hippocampal signals may be more reliably detected 

(see Chapter 2), it was assumed that modulation of MTL oscillations would predominantly 

reflect hippocampal or parahippocampal processing, rather than PrC processing. Therefore, 

it was predicted that MTL oscillatory modulation be unique to the scene condition. 

For the whole-brain analysis, the theta band chosen was 4-8 Hz, as human hippocampal 

signals have previously been measured in this range with MEG (Barry et al., 2019). The 

gamma band chosen was 40-80Hz, but this was analysed in two bands: low (40-60Hz) and 

high (60-80Hz) gamma. This was to aid specificity about signal ranges important to the 

current task, given the wide range of frequencies included in the term ‘gamma’. Moreover, 

in the context of novel spatial encoding, higher and lower gamma signals have been shown 

to have different functions in the hippocampus, with the latter relating to encoding success 

(Park et al., 2014). 

These frequency band definitions vary across studies. In previous studies, and in the 

present study, the definitions are somewhat arbitrary. However, broadband time-

frequency analysis of PMN ROIs (e.g., using 1-90 Hz) help in understanding the spread of 

frequency modulation. For example, theta band modulations could be accompanied by 

modulations in delta (1-4 Hz) and alpha (8-13 Hz). If only theta is inspected, it is unclear 

whether modulation in this band is specific to this band, or represents a general 

modulation of lower frequencies. Similarly, homologues of rodent theta in humans are 

often reported to be lower, residing in the delta band (Watrous et al., 2013). There were no 

specific hypotheses regarding hippocampal oscillatory modulation in the range between 

alpha and gamma (beta, 15-30 Hz), but this is included so that: broadband modulations can 

be appropriately captured; and to include high-beta (although not commonly reported, 

high beta modulation of the hippocampus has been described (França et al., 2014)). In 

addition, the time-frequency analysis allowed inspection of the temporal dynamics of 

oscillatory power modulations within the first 2 s, with the aim of illustrating a complete 

picture of oscillation modulation during the oddity task. 
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4.1.1.2 Communication within and between brain areas by PAC and phase-coherence in 

the PMN. 

Interactions between oscillations of different frequencies are understood to reflect the 

coordination of information processing within local groups of neurones. PAC describes a 

phenomenon whereby the phase of the lower frequency range provides a temporal 

reference for amplitude modulation in higher frequencies (Bonnefond et al., 2017). 

Although PAC is thought to occur across the brain (Bonnefond et al., 2017), to assess its 

role in the PMN, the current study focused on PAC in MTL and mPFC regions, which have 

been associated with mnemonic functions. For example, PAC between theta and 

beta/gamma within the human hippocampus has been associated with memory load in a 

task requiring maintaining multiple items in working memory (Axmacher et al., 2010), and 

PAC between theta and low gamma within the rat mPFC was more pronounced during 

correct trials of a Y-maze working memory task than with incorrect trials (Li et al., 2012). A 

study exploring the association between hippocampal PAC and encoding discovered two 

sets of neurones, one displaying increased PAC, and the other displaying decreased PAC, 

during successful encoding (Lega et al., 2016). In the former subset the higher frequency 

range was predominantly modulated by low theta/delta (2.5-5 Hz), rather than the 

traditional theta band, and this low frequency also showed an increase in power during 

successful encoding. In addition, neurones displaying increased PAC (with traditional theta, 

4-9 Hz) with successful encoding were found in the frontal cortex (Lega et al., 2016). 

Considering these results, modulation of PAC within the mPFC and hippocampus may be a 

hallmark of successful PMN functioning.  

Phase-coherence between brain regions may also signify network communication. For 

example, theta phase-coherence between the hippocampus and mPFC has been shown to 

increase during retrieval in free recall compared to baseline (Anderson et al., 2010) and to 

be associated with successful memory integration (Backus et al., 2016) and encoding of 

spatial position (Zielinski et al., 2019). Kaplan et al. (2014) used MEG to investigate spatial 

memory retrieval and revealed modulations of phase-coherence and PAC between the 

hippocampus, the mPFC and the parietal cortex. Increases in mPFC theta power, mPFC-

hippocampus theta coherence, and PAC between mPFC theta and parietal cortex gamma, 

occurred during cued retrieval of spatial representations compared with fixation baseline. 

More recently, phase-coherence between these regions was investigated in the context of 

a dynamic mental sequence recall task, in which participants were asked to mentally ‘walk’ 

through a learned scene, passing the learned objects sequentially (Kaplan et al., 2017). This 
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task incited increased theta phase-coupling between the mPFC and posterior MTL/RSC 

compared to baseline. Together, these results suggest that inter-area phase-coherence is 

important for PMN processing and may support the maintenance of internal mental 

representations of scenes, associations, and sequences.  

Beneficial phase-coherence may extend outside of the theta range. Work combining fMRI 

and EEG found that functional binding between the hippocampus and the PFC during 

recollection related to hippocampal low frequency oscillations, spanning the theta and 

alpha bands (Herweg et al., 2016). Therefore, the current experiment explored phase-

coherence over 4-12 Hz between the HPC and mPFC ROIs (and then exploratorily between 

in the remaining PMN ROIs).  

4.1.1.3 The overlap between the PMN and the DMN.  

Understanding the role of the mPFC and PCC in complex scene processing is of particular 

interest because they are also members of the DMN, a collection of areas which display 

reduced activity during active engagement with a task (Raichle, 2015). Whereas multiple 

studies have evidenced the importance of complementary mPFC and hippocampal 

processing in spatial processing and memory (Backus et al., 2016; Dahmani & Bohbot, 

2015; Kaplan et al., 2017; Kaplan et al., 2014), in line with the mPFC being within the PMN 

network, others have shown an association between increased task difficulty and reduced 

DMN activation, in the form of broadband gamma suppression (Ossandón et al., 2011) and 

reduced BOLD (de Dreu et al., 2019) in the mPFC. In addition, the PCC is commonly 

associated with the DMN and shows task-related activation decreases (Shulman et al., 

1997) but has also been reported to show increased communication with the hippocampus 

during encoding (Lega et al., 2017). 

It may be that mPFC and PCC engagements are not always consistent with hippocampal 

engagement across PMN functions. There is evidence that DMN areas show reduced 

activity during encoding but increased activity during retrieval, a process known as the 

encoding-retrieval flip (Huijbers et al., 2012), whereas the hippocampus does not display 

this pattern (Huijbers et al., 2011). This may be because encoding phases tend to involve 

processing of external information (e.g. a visually presented sequence) whereas retrieval 

involves internal processes (e.g. mentally re-imagining a sequence). Therefore, while it was 

hypothesized that oscillatory power modulation in the mPFC and PCC, and increased 

coherence between the HPC and mPFC ROIs, would be associated with the scene task 

because of their roles in the PMN, if these areas showed activity in line with their 
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involvement in the DMN, there may be no detectable differences between the scene and 

face tasks. This may help to clarify the roles of these areas in complex visual perceptual 

processes.  

4.1.2 Aims and hypotheses. 

This project aimed to investigate the role of the PMN in complex scene processing, and 

contrast this with complex face processing, using the oddity task and MEG recordings. This 

work builds upon previous fMRI work (Barense et al., 2010; Hodgetts et al., 2015; Hodgetts, 

Postans, et al., 2017) by investigating oscillatory modulations associated with complex 

scene perception, not only in the MTL, but in several areas of the PMN. Furthermore, 

whereas previous fMRI work had averaged BOLD modulations over long trials (e.g. 6 s in 

Hodgetts et al., 2015), in the current study the trial ended as soon as participants indicated 

their perceptual decision and trial analysis was restricted to the first 2 s (permissible with 

the temporal precision provided by MEG). This was done with the aim of reducing 

measurements of oscillatory modulations reflecting off-task thoughts and to increase the 

proportion of oscillatory modulations reflecting perceptual processes. 

First, whole-brain theta and gamma power during the first 2 s of the scene and face tasks 

were contrasted with the first 2 s of the size task, and each other. It was hypothesized that 

there would be theta and gamma modulations in the PMN areas, including the MTL, that 

would be specific to the scene task, and that there would be increased gamma power in 

areas of the ventral visual stream specific to the face task.  

Second, broadband time-frequency analysis was carried out on virtual sensor data on six 

PMN ROIs (left HPC, right HPC, mPFC, PCC, left IPL and right IPL). It was hypothesized that 

these would also reflect modulations in theta and gamma power, specific to the scene task. 

However, this additional analysis was included mainly to aid understanding of the 

frequency band specificity, laterality and temporal dynamics of effects found in the whole-

brain analysis. 

Lastly, PAC within the mPFC and HPC ROIs, and phase-coherence between all PMN ROIs, 

were investigated. It was hypothesized that increased mPFC and HPC PAC, and HPC - mPFC 

phase-coherence, would be specific to the scene task. Additional exploratory analyses 

investigated whether scene specific phase-coherence modulations occurred between the 

remaining PMN ROIs.  
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4.2 Methods 

This chapter, Chapter 5 and Chapter 6 describe different aspects of the same experiment. 

4.2.1 Participants. 

The sample size of this study was based on the microstructure-behaviour correlation 

results of Hodgetts et al. (2015), which reported a Pearson’s correlation of 0.46 between 

fornix MD4 and scene oddity accuracy (microstructure-behaviour correlation tests are 

relevant to Chapter 5). Therefore, using G*Power (Faul et al., 2009; Faul et al., 2007) it was 

calculated that 38 participants were needed to achieve an 80% chance of detecting a 

Bonferroni-adjusted (0.017, adjusted for 3 conditions) one-sided correlation. To ensure 

enough data were collected if some collection sessions were unsuccessful or produced 

outliers, the number of participants recruited was 43, this being approximately 10% above 

the calculated requirement. Relevant to the current chapter, this sample size exceeded that 

reported in multiple previous MEG studies that produced significant results when 

examining MTL oscillatory patterns in healthy participants with MEG (Ruzich et al., 2019). 

Forty-three volunteers (mean age: 22.4 years, SD 4.0, range: 18-38 years; 31 female), with 

no reported neurological pathology, were recruited. After giving informed consent, they 

participated in a MEG session, in which they undertook the behavioural task, and a follow-

up dMRI session. Due to data collection disruptions, data from three participants were 

incomplete, leaving forty datasets (mean age: 22.5 years, SD 4.0, range: 18-38 years; 30 

female). 

4.2.2 The oddity task. 

Participants were asked to perform scene, face and size oddity tasks. The creation of the 

stimuli and further details of the paradigm are described in Chapter 3. Three further 

examples of the stimuli are shown in Figure 10.  

There were 96 trials of each condition (288 trials in total), displayed in a pseudo-

randomised order. The 288 trials were split into 4 counterbalanced blocks (72 trials in each 

block, 24 of each condition).  

 
4 Note that the correlation between ILF MD and face oddity accuracy was also of interest, but the 
reported Pearson’s r was a higher value. 
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Participants indicated their answer using a button box placed in their right hand. Each trial 

could last up to 8 seconds, but participants could answer at any point during trial display 

and their response would end the trial. Trials of the same type were grouped into ‘mini-

blocks’. Trials within mini-blocks were preceded by a baseline screen of a white fixation 

cross on a black background with a duration that varied between 1 and 1.5s. There were 

also longer fixation screens, of 5 s, between mini-blocks.   

 

4.2.3 MRI scanning protocol. 

Structural MRI data were collected using a Siemens Prisma GE 3T MRI system with a 32-

channel head coil. T1-weighted anatomical images were obtained using an MPRAGE 

sequence with the following parameters: slices = 176, time to repetition (TR) = 2300 ms, 

field of view (FOV) = 256 mm  x 256 mm,  matrix size = 256 mm x 256 mm, flip angle = 9o, 

echo time (TE) = 3.06 ms, slice thickness = 1 mm. 

4.2.4 MEG recording and analyses. 

4.2.4.1 MEG acquisition.  

The MEG recordings were performed using a 275-channel (1 channel was faulty) axial 

gradiometer CTF system, located inside a magnetically shielded room. The data were 

acquired continuously, with a sampling rate of 1200 Hz. Electromagnetic coils were placed 

on three fiducial locations, the nasion, and left and right pre-auricular regions. During the 

MEG recording, these sensors were energised with a high-frequency signal, in order to 

locate their positions relative to the MEG sensors. The locations of the fiducial points for 

Figure 10. Examples of the scene, face and size trials. 

The triplets of images were presented simultaneously. For this example, an asterisk is placed over the odd-one-out.  
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each participant, and head shape, were recorded digitally using an Xsensor camera system 

(ANT Neuro, Enschede, The Netherlands). These data were subsequently used to co-

register the MEG data to each participant’s individual T1-weighted MRI scan. There were 

individual MEG scans for each of the four oddity task blocks, each beginning with head 

localization. 

4.2.4.2 MEG data pre-processing. 

All MEG analyses were carried out using the Fieldtrip toolbox (Oostenveld et al., 2011) for 

MATLAB (MATLAB, 2015). The recordings were inspected manually for muscle and system 

artefacts before being downsampled (600Hz) and decomposed into 100 components using 

ICA (using Fieldtrip’s fast ICA) (Hyvärinen, 1999; Oostenveld et al., 2011). Components 

relating to eye-movement, heart rate, and movement, were removed from the original 

data. These data were then cut into trials. These were visually inspected, and any left-over 

artefacts were manually excluded. Two participants each had one block removed due to 

large head movements, resulting in fewer trials surviving artefact removal (for each 

participant, the remaining numbers of trials for each condition, after data cleaning and 

cutting for two differently sized epochs, can be found in Appendix 1).  

4.2.4.3 MEG to MRI co-registration. 

Volume conduction models for each participant were computed using segmented 

individual T1-weighted images (brain, skull and scalp) and a semi-realistic model (Nolte, 

2003). The source model was computed using an inverse-warping procedure to create 

subject-specific grids that are equivalent across subjects in normalized space. For this, a 

template MNI brain was divided into a 5-mm resolution grid (provided by 

Fieldtrip)(Oostenveld et al., 2011) and each individual anatomical MRI was warped to the 

template MRI. The inverse transformation matrix was then used to warp the template grid 

into an individual grid for each participant. The source models and head models were used 

to compute the leadfield matrix. 

4.2.4.4 Whole-brain frequency and source analysis. 

This study is primarily concerned with earlier perceptual processes, rather than later 

encoding processes (though these likely overlap), so analyses were focused on the first 2s 

of the trials. For whole-brain analysis, trials were cut to include -1 s pre-stimulus and 2 s 

post-stimulus onset. Oscillatory power in the frequency bands theta (4-8 Hz), low gamma 
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(40-60 Hz) and high gamma (60-80 Hz) were calculated using Fieldtrip’s ft_freqanalysis and 

the ‘mtmfft’ (multi-taper method fast Fourier transform) method (Oostenveld et al., 2011), 

which entails windowing the data and performing a Fast-Fourier-Transform. Source 

localization was carried out using the Linearly Constrained Minimum Variance (LCMV) 

beamforming method (Van Veen et al., 1997). To reduce the magnitude of participant 

movement in each beamformer calculation, data were not concatenated across the 

experimental blocks. For each frequency band, common filters were calculated using all 

task conditions (face, scene, size). The source images were interpolated to a template 

source model included with Fieldtrip and anatomically parcellated using the AAL atlas 

(Tzourio-Mazoyer et al., 2002), also included with Fieldtrip.  

All calculations were carried out per trial (rather than on averaged trial data), and the 

resulting trial source images were collated within conditions across blocks, for each 

participant. 

4.2.4.5 Extraction of VS time series, and time-frequency, PAC and coherence analysis. 

Adaptations of freely available code by Seymour et al. (2017) (available here: 

https://github.com/neurofractal/PACmeg/tree/master/frontiers_paper) were used to 

create VS time series and to perform subsequent PAC analysis. 

ROI masks of the left and right HPC were made using the AAL ROIs: right hippocampus and 

parahippocampal regions, and left hippocampus and parahippocampal regions, 

respectively. An ROI mask of the mPFC was made using AAL ROIs: bilateral frontal medial 

orbital, bilateral middle frontal, and bilateral superior medial frontal regions. ROI masks of 

the right and left IPL were made using AAL ROIs: left and right IPL (inferior parietal gyrus, 

angular gyrus and supramarginal gyrus AAL ROIs), respectively. Lastly, a PCC ROI mask was 

made using the right and left PCC AAL ROIs. Whole-brain frequency analysis and source 

analysis was recomputed as above but over the frequency range 1-100Hz. To construct VS 

time-series data, a single spatial filter for each ROI was obtained by multiplying the spatial 

vertices extracted from an ROI mask by the sensor-level covariance matrix, and then 

performing PCA and taking the first principal component. The sensor-level data was then 

multiplied by the spatial filters for each ROI (Seymour et al., 2017). 

Time-frequency analysis of the VSs was calculated over a time-window of 0-1.2 s with fixed 

sliding time window of 0.2 s (but the last 0.2 s were disregarded to remove edge artefacts) 

in two frequency windows. The ‘mtmconvol’ (multi-taper method fast Convolution) 
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method was used. A lower window of 1-15 Hz was analysed in 1 Hz intervals with 5 Hz 

frequency smoothing, and a higher window of 15-90 Hz was analysed in 5 Hz intervals with 

10 Hz frequency smoothing. This was because increased smoothing for higher frequencies 

(>30H z) increases sensitivity as the gamma bandwidth is larger than the lower frequency 

bands and subject variability in peak frequency is more pronounced in higher frequency 

bands (Gross et al., 2013). 

For PAC analysis, edge artefacts are particularly problematic (Kramer et al., 2008), but a 

long time window is necessary for reliable calculations (Seymour et al., 2017). Therefore, 

trials were cut to include -1 s pre-stimulus and 2.2 s post-stimulus onset. PAC was then 

calculated using times 0-2 s, to reduce spurious PAC from edge artefacts. The low and high 

frequency windows spanned 1-10 Hz and 24-90 Hz, respectively. The phase of the lower 

window, and the amplitude of the higher window, were extracted using a fourth order, 

two-pass Butterworth filter before applying the Hilbert transform. As in Seymour et al. 

(2017), a variable bandwidth, of 0.4 x centre frequency, was used for filtering to improve 

the ability to detect PAC. Coupling between the phases and amplitudes was calculated 

using the phase-locking value modulation index (Cohen, 2008). In this, the Hilbert 

transform is used to construct envelopes of the signals in the higher frequency band and 

then the relationships between the phases of these envelopes, and the phases of the 

signals in the lower frequency band, are expressed with phase-locking values.  

Phase-coherence analysis was carried out between each VS over a time-window of 0-1.8 s, 

using Fieldtrip’s ‘ft_connectivity’ analysis (Oostenveld et al., 2011), after frequency analysis 

was carried out at 8 Hz with 4 Hz smoothing. The imaginary aspect was analysed, removing 

0 phase-lag, thereby suppressing spurious coherence resulting from electromagnetic field 

spread (Nolte et al., 2004). 

4.2.5 Variable trial lengths. 

Trials ended as soon as participants had responded with the button box, which meant that 

the trial lengths varied. It also resulted in different average trial length between the 

conditions (see Results section 4.3.1 for RTs). This study is primarily concerned with earlier 

perceptual processes, rather than later encoding processes (though these likely overlap) 

but trials needed to be long enough so that lower frequencies could be reliably measured. 

Therefore, the first 2 s were explored. However, some trials were shorter than 2 s, so they 

were not included in the whole-brain power analysis and VS time-frequency analysis. This 

length inclusion criterion, in combination with data cleaning during pre-processing, 
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resulted in different trial numbers within conditions. Although a common solution to this 

problem is to randomly remove trials to equalise trial numbers across conditions (Gross et 

al., 2013), this is wasteful, and large trial numbers are required to localise signals to deep 

brain structures (Quraan et al., 2011). Moreover, unequal trial numbers are less of an issue 

when measuring mean amplitudes, as done in whole-brain source analysis here, than when 

measuring peak amplitudes (Thomas et al., 2004).  

Nonetheless, trial numbers affect SNR and comparing one condition with higher SNR to 

another with lower SNR would bias the results. There were consistently fewer size 

condition trials than scene or face condition trials. For example, trials cut at 2s post 

stimulus onset, resulted in 82 scene trials, 82 face trials and 65 size trials, on average. 

Appendices 1a and 1b show the trial numbers for each participant. To combat this bias in 

the whole-brain source analysis and VS time-frequency analysis, variance information was 

included in the statistical tests (see below, section 4.2.6). 

4.2.6 Statistical analysis. 

Statistical comparisons of whole-brain source images of the three conditions, face, scene 

and size, were carried out in two stages, to account for unequal trial numbers between 

conditions. First the conditions were compared at the individual level with Fieldtrip’s 

‘ft_sourcestatistics’ (Oostenveld et al., 2011) using MATLAB’s t-test with unequal variance 

(MATLAB, 2015). This resulted in t-maps for each condition comparison (scene vs size, face 

vs size, scene vs face) for each individual. Additional t-maps were created by sign-flipping 

each t-map and the conditions were then compared with their sign-flipped counterparts, at 

the group level, using a dependent-samples t-test with Monte Carlo sampling and 5000 

permutations. Locations of significant clusters were interpreted using an AAL atlas overlay. 

Statistical comparisons of VS time-frequency data were carried out using Fieldtrip’s 

ft_freqstatistics (and involved the same two-stage statistical analysis described above, to 

account for unequal trial numbers across conditions), with equivalent parameters. 

The alpha thresholds in these analyses were Bonferroni-corrected in accordance with the 

number of tests included in a section (with one hypothesis per section). The alpha 

threshold applied in the whole-brain power comparisons was 0.017 (0.05 / 3 conditions). 

The alpha threshold applied in the VS time-frequency power comparisons was 0.008 (0.05 / 

6 tests per section, 3 conditions with frequency range split into 2 parts). For both, the 

cluster alpha threshold was 0.001. Fieldtrip’s ‘correct tail = alpha’ option was applied to 

further correct for two-sided tests.  
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Unequal variance, caused by unequal trial numbers, could not be overcome for PAC and 

coherence analyses as the Fieldtrip functions do not permit single-trial analysis. Moreover, 

the trials were cut longer (2.2 s) for PAC, resulting in fewer trials per condition (see 

Appendix 1B). Therefore, rather than delete trials and reduce SNR, these analyses were 

carried out with unequal trial numbers and were classed as exploratory in nature, with the 

understanding that the method may create false positives and false negatives. Alpha 

threshold was not as strict, and no Bonferroni-corrections were applied. Statistical 

comparisons of PMN ROI PAC results were carried out using the methods of Seymour et al. 

(2017), utilizing Fieldtrip’s ft_freqstatistics (Oostenveld et al., 2011) and a dependent-

samples t-test with Monte Carlo sampling and 5000 permutations. The alpha, and cluster 

alpha, thresholds were both 0.05. For statistical comparisons in the coherence analysis, 

phase-coherence statistics from each condition were contrasted through subtraction, for 

each individual. Then, a group-level one-tailed t-test was carried out on each comparison, 

comparing to 0 (no difference) and the alpha threshold was kept at the traditional alpha 

threshold of 0.05.  
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4.3 Results 

4.3.1 Oddity behavioural data. 

Descriptive statistics of the oddity behavioural task results are shown in Table 3. No outliers 

(values larger than three SDs from the mean) were identified. There was no evidence that 

mean accuracies differed across conditions. An RM ANOVA to test for differences between 

accuracy scores for the three conditions gave a non-significant result (F(1.59,62.13) =  0.010, p = 

0.868)5, and the equivalent Bayesian ANOVA test indicated evidence in favour of the null 

(BF10 = 0.09), suggesting that task difficulties were well matched. However, RTs did 

significantly differ between conditions (F(2,78) = 250.2, p<0.001; BF10 = 3x1032). Post hoc 

analysis with Bonferroni correction identified that scene RT was significantly larger than 

face RT (p >0.001) which in turn was significantly larger than size RT (p >0.001). This may 

have implications for subsequent analysis and interpretation of the results (see Discussion 

section 4.4). 

 

 

 
5 Mauchly’s test of sphericity was significant at p = 0.004, so the Greenhouse-Geisser correction was 
used. 

   Scene 
Accuracy 

(%)  

Face 
Accuracy 

(%)  

Size  
Accuracy 

(%)  

Scene RT 
(s) 

Face RT 
(s)  

Size RT 
(s)  

Mean  60.52  60.68  61.30  5.14 4.16 3.14 

SD  7.18  8.841 13.00  0.51 0.78 0.70 

Minimum  38.54  39.58  29.17 3.95 2.56 2.14 

Maximum  70.83  80.21 89.58 6.00 5.48 4.96 

Table 3. Descriptive statistics of oddity task performance results. 

RT: Reaction Time. SD: Standard Deviation.  
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4.3.2 Dissociability of complex scene and face processing networks through 

oscillatory power changes. 

Whole-brain theta and gamma power differences in scene, face and size conditions were 

assessed first. Cluster-based permutation tests revealed differences in oscillatory power 

within the selected 2 s time window, between the task conditions.  

4.3.2.1 Differences in theta (4-8 Hz) power between scene and face conditions. 

It had been hypothesized that theta power modulation in the MTL and other PMN areas 

would occur during the scene condition, and not the face condition, when compared with 

the size condition. The cluster-based permutation test, comparing the scene condition with 

the size condition revealed two significant clusters of theta reduction (both cluster p-values 

= 0.0002; 0.0008). These encompassed areas of left medial and inferior temporal lobe 

(including the hippocampus), and the medial occipital cortex (Figure 11).  

 

The cluster-based permutation test comparing the face condition with the size condition 

revealed two significant clusters. A positive cluster (cluster p-value = 0.0002) encompassed 

areas of the IOC. A negative cluster (cluster p-value = 0.0016) encompassed areas of the 

left lateral and inferior frontal cortices (Figure 12). 

 

Figure 11. Theta power difference between scene and size trials. 

Reduced theta power was localized to the left medial and inferior temporal lobes, and the medial occipital cortex. Colours 

represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 
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The cluster-based permutation test comparing the scene condition with the face condition 

revealed a significant negative cluster (cluster p-value = 0.0002). This encompassed areas of 

occipital cortex that also showed decreased and increased theta power in the previous 

scene and face versus size contrasts, respectively. Additionally the cluster included the right 

MTL areas including the hippocampus (Figure 13).  

Left Right R 

L 

Face>size 

Size>face 

Left Right 

R
 

L 

R
 

Figure 13. Theta power difference between scene and face trials. 

Decreased theta power was localized to occipital, midline and right medial temporal structures, including the 

hippocampus. 

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Face>scene 

Scene>face 

Figure 12. Theta power difference between face and size trials. 

Increased theta power was localized to the inferior medial occipital cortex. Decreased theta power was localized to left 

lateral and inferior frontal cortices. 

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 
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4.3.2.2 Differences in low gamma (40-60 Hz) power between scene and face conditions. 

The cluster-based permutation test comparing the scene condition to the size condition 

revealed a significant negative cluster (cluster p-values = 0.0058), encompassing areas of 

the medial occipital cortex (Figure 14).  

The cluster-based permutation test comparing the face condition with the size condition 

revealed a positive cluster (cluster p-value = 0.0078) encompassing right posterior inferior 

temporal cortex, including the FG (Figure 15).  

Right Left 

Figure 14. Low gamma power difference between scene and size trials. 

Decreased gamma power was localised medial occipital cortex. 

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Scene>size 

Size>scene 

Right Left 

R
 

Figure 15. Low gamma power difference between face and size trials. 

Increased low gamma power was localised to the right inferior temporal cortex, including the fusiform gyrus.  

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Face>size 

Size>face 



Chapter 4: Examining oscillatory power modulation within PMN areas during complex scene perception, using 
MEG. 

90 
 

 

The cluster-based permutation test comparing the scene condition with the face condition 

revealed one positive cluster (cluster p-value = 0.0040) and one negative cluster (cluster p-

value = 0.0046), The positive cluster encompassed the left inferior parietal cortex and the 

negative cluster encompassed areas of the right IOC and inferior posterior temporal cortex, 

including the FG (Figure 16).  

  

Left Right 

R
 

L
 

Figure 16. Low gamma power difference between scene and face trials. 

Increased low gamma power was localised to the left parietal cortex. Decreased gamma power was localised to the right 

posterior inferior temporal cortex.  

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Scene>face 

Face>scene 
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4.3.2.3 Differences in high gamma (60-80 Hz) power between scene and face conditions. 

The cluster-based permutation test comparing the scene condition with the size condition 

revealed one positive cluster (cluster p-value = 0.0004) encompassing areas of the bilateral 

medial occipital lobes and extending: superiorly and anteriorly to include areas of the IPL; 

and medially and anteriorly to include the right precuneus (Figure 17).  

  

Left Right 
R 

Figure 17. High gamma power difference between scene and size trials. 

Increased high gamma power was localized to bilateral medial occipital lobes, inferior parietal lobule and the right 
precuneus. 
Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Scene>size 

Size>scene 



Chapter 4: Examining oscillatory power modulation within PMN areas during complex scene perception, using 
MEG. 

92 
 

 

The cluster-based permutation test comparing the face condition with the size condition 

revealed two positive clusters (cluster p-values = 0.0004; 0.004) both encompassing IOC, 

and one also extending anteriorly to include the right FG (Figure 18).  

The cluster-based permutation test comparing the scene condition with the face condition 

revealed one positive cluster (cluster p-value = 0.0006) encompassing bilateral areas of the 

superior parietal cortex, inferior parietal lobule and precuneus (Figure 19).  

Left Right 

L R 

Figure 18. High gamma power difference between face and size trials. 

Increased high gamma power was localized to right inferior occipital and right inferior temporal lobes.  

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Face>size 

Size>face 
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Figure 19. High gamma power difference between scene and face trials. 

Increased high gamma power was localized to bilateral superior parietal cortex, inferior parietal lobule and precuneus. 

Colours represent t-values, and the scale is shown on the left-side bar. L = left. R = right. 

Scene>face 

Face>scene 
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4.3.3 Time-frequency analysis of regions of the PMN. 

4.3.3.1 Right HPC virtual sensor time-frequency analysis. 

Time-frequency analysis of the right HPC VS, in the lower frequencies (1-15 Hz), revealed a 

significant decrease in power in the scene condition compared with the size condition, 

starting at approximately 1.6 s post stimulus-onset (cluster p-value = 0.0008). Equivalent 

tests in the higher frequencies (15-90 Hz) revealed a significant increase in power in the 

scene condition compared with the size condition, starting at approximately 0.5 s post 

stimulus-onset (cluster p-value = 0.0072). No significant clusters were revealed in the low 

or high right HPC VS time-frequency data in the comparison of the face and size conditions, 

or between the scene and face conditions (Figure 20B). 

4.3.3.2 Left HPC virtual sensor time-frequency analysis. 

Time-frequency analysis of the left HPC VS, in the lower frequencies, revealed significant 

decreases in power in the scene condition compared with the size condition, starting at 

approximately 1.3 s post stimulus-onset, and appearing as two clusters on the spectrogram 

(cluster p-values = 0.0002; 0.0004). There were significant increases and decreases in 

power in the face condition compared with the size condition, starting within 0.2 s of 

stimulus onset (cluster p-value = 0.0026), and at approximately 1.4 s post stimulus-onset 

(cluster p-value = 0.0028), respectively. No significant clusters were revealed in the low left 

HPC VS time-frequency data in the comparison of the scene and face conditions. Time-

frequency analysis of the left HPC in the higher frequencies revealed no significant 

differences between any of the conditions (Figure 20C). 

4.3.3.3 Right IPL virtual sensor time-frequency analysis. 

Time-frequency analysis of the right IPL VS in the lower frequencies revealed a significant 

increase in high theta/alpha in the scene condition compared with the size condition, 

starting at approximately 0.3 s post stimulus-onset (cluster p-value = 0.0002). There was 

also a decrease in delta power starting at approximately 1.6 s post stimulus-onset (cluster 

p-value = 0.003). There was an increase in theta/alpha in the scene condition compared to 

the face condition, starting at approximately 0.2 s post stimulus-onset (cluster p-value = 

0.0003). There were no significant differences between the face and size conditions.  

Equivalent tests in the higher frequencies, revealed a significant increase in high beta 

power in the scene condition compared with the size condition, appearing as two clusters 
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starting within 0.2 s of stimulus onset (cluster p-values = 0.0016; 0.0020). An equivalent 

increase in high beta power was also seen in the scene condition compared to the face 

condition, starting at approximately 0.5 s post stimulus-onset (cluster p-value = 0.0002). 

There were no significant differences between the face and size conditions (Figure 20E). 

4.3.3.4 Left IPL virtual sensor time-frequency analysis. 

Time-frequency analysis of the left IPL VS, in the lower frequencies revealed a significant 

increase in high alpha power in the scene condition compared with the size condition, 

starting at less than 0.2 s post stimulus-onset (cluster p-value = 0.0002). There was also a 

significant decrease in theta/delta starting at approximately 1.6 s post stimulus-onset 

(cluster p-value = 0.0038). There was a significant increase in high alpha power in the face 

condition compared with the size condition, starting at approximately 0.7 s post stimulus-

onset (cluster p-value = 0.0002). There was a significant increase in theta/alpha power in 

the scene condition compared with the face condition, starting at approximately 0.2 s post 

stimulus-onset (cluster alpha = 0.0022).  

Equivalent tests in the higher frequencies revealed broad increases in low gamma/beta 

power in the scene condition compared to the size condition, appearing as two clusters 

starting at less than 0.2 s post stimulus-onset (cluster p-values = 0.0002; 0.0036). There 

were similar increases in low gamma/beta power in the face condition compared with the 

size condition, appearing as two clusters, but these had a later onset, starting at 

approximately 0.4 s post stimulus-onset (cluster p-values = 0.0014; 0.002). There was a 

significant increase in low gamma/beta power in the scene conditions compared with the 

face condition, starting at approximately 0.2 s post stimulus-onset (cluster p-value = 

0.0068; Figure 20F). 

4.3.3.5 mPFC virtual sensor time-frequency analysis. 

Time-frequency analysis of the mPFC VS, in the lower frequencies, revealed no significant 

differences between any of the conditions.  

Equivalent tests in the higher frequencies, revealed a significant decrease in gamma power 

in the scene condition compared with the size condition, starting at approximately 0.8 s 

post stimulus-onset (cluster p-value = 0.0024). There was a significant decrease in gamma 

power in the face conditions compared with the size condition, starting at around 0.2 s post 

stimulus-onset (cluster p-value = 0.0074). No significant clusters were revealed in the 
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comparison between high mPFC VS time-frequency data in the face and the scene 

conditions (Figure 20H). 

4.3.3.6 PCC virtual sensor time-frequency analysis. 

Time-frequency analysis of the PCC VS in the lower frequencies revealed a significant 

increase in alpha power in the scene condition compared with the size condition, starting 

at approximately 0.6 s post stimulus-onset (cluster p-value = 0.0078). There was a 

significant increase in alpha power in the face conditions compared with the size condition, 

appearing as three clusters, starting at approximately 0.4 s post stimulus-onset (cluster p-

values = 0.0002, 0.0002, 0.0018). There was a significant decrease in alpha/theta power in 

the scene condition compared with the face condition, starting at approximately 0.4 s post 

stimulus-onset (cluster p-value = 0.0002).  

Equivalent tests in the higher frequencies revealed a significant decrease in beta power in 

the face condition compared with the size condition, at approximately 0.4 s post stimulus-

onset (cluster p-value = 0.0068). There were no significant differences between the scene 

and size conditions, or between the scene and face conditions (Figure 20J). 
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Figure 20. Comparison of VS time-frequency data between conditions. 

ROI masks of the HPC (A), IPL (D), mPFC (G), PCC (I), illustrated over template brains are shown to the left of the time-frequency results of each corresponding VS. Time-frequency 

spectrograms of the right HPC (B), left HPC (C), right IPL (E), left IPL (F), mPFC (H) and PCC (J) virtual sensors are shown for three contrasts: scene versus size; face versus size and scene versus 

face. The black dotted lines outline clusters significant at an alpha threshold of 0.008. Colours represent t-values, and the scale is shown on the bar to the right of each spectrogram.  
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4.3.4 Phase-Amplitude Coupling Within Regions of the PMN. 

Contrary to the hypothesis, comparison between PAC values in the scene and size conditions 

revealed reduced mPFC delta-gamma coupling in the scene condition compared with the size 

condition (cluster p-value = 0.0280). There were no other significant differences in the other 

comparisons (Figure 21). 

An exploratory search of PAC in the HPC VSs revealed no significant differences in the right or left 

HPC PAC between any of the conditions (see Appendix 4C).  

 

 

  

Scene > Size Face > Size Scene > Face 

Phase Frequency (Hz) Phase Frequency (Hz) 

Figure 21. mPFC PAC in scene and face trials. 

The scene and size conditions comparison revealed decreased delta-gamma PAC. This was also indicated in the scene and face conditions 

comparison, but it was not significant.  

The colours represent t-values. The colour scale bar is shown to the right of each image. The black dashed line outlines a cluster significant at 

an alpha threshold of 0.05. 
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4.3.5 Phase-coherence between regions of the PMN. 

Contrary to the hypothesis, analysis of theta-alpha phase-coherence (4-12Hz) revealed no 

differences in right or left HPC-mPFC coherence, between any of the conditions (p >0.2489). An 

exploratory search (alpha threshold set at uncorrected 0.05) for coherence between all VSs, 

compared between the conditions, indicated increased coherence between the right HPC and left 

IPL in the scene and size conditions comparison (p = 0.0331). In the scene and face conditions 

comparison, there was increased coherence between the left HPC and the left IPL (p = 0.0494), and 

decreased coherence between the left IPL and the PCC (p = 0.0110) There were no significant 

differences in coherence in the face and size conditions comparison (Figure 22).  
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Figure 22. Differences in theta-alpha phase-coherence between conditions. 

The scene and size conditions comparison revealed increased coherence between the right HPC and left IPL. The scene and face 

conditions comparison showed increased coherence between the left HPC and left IPL and reduced coherence between the right IPL 

and the PCC. 

The colours represent t-values. The colour scale bar for each image is shown to the right of each image. The black dashed line outlines 

significance at an alpha threshold of 0.05. 

HPCR: right Hippocampal Complex. HPCL: left Hippocampal Complex. IPLR: right Inferior Parietal Lobule. IPLL: left Inferior Parietal 

Lobule. mPFC: medial Prefrontal Cortex. PCC: Posterior Cingulate Cortex. 
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4.4 Discussion 

This project aimed to investigate the role of the PMN in complex scene processing, and contrast this 

with complex face processing, using the oddity task and MEG recording. The results build upon 

previous fMRI work (Barense et al., 2010; Hodgetts et al., 2015; Hodgetts et al., 2017) by revealing 

oscillatory modulations associated with complex scene perception, not only in the MTL, but in 

several areas of the PMN. Whole-brain theta (4-8 Hz) power analyses revealed power modulations in 

MTL and other posteromedial areas that were specific to complex scene perceptual processing. 

Whole-brain gamma power analyses revealed power modulations in low gamma (40-60 Hz) in the 

right IOC and FG areas that were specific to complex face processing, and high gamma (60-80 Hz) in 

the inferior parietal cortex and precuneus that were specific to complex scene processing. Time-

frequency analysis of the VS data revealed further temporal and frequency detail of the 

engagements of PMN ROIs during the scene condition. Although the decreased low frequency power 

during the scene condition compared with the face condition was not significant, it indicated that 

the scene specific decrease in right HPC theta power, found in the whole-brain analysis, was a long-

lasting effect throughout the 2 s time-period. The right IPL and PCC regions also showed power 

modulations during the scene condition, compared with the face and size oddity conditions, but 

these lasted shorter durations. Exploratory PAC and phase-coherence analysis results differed from 

the hypotheses, as the mPFC VS data showed reduced PAC during the scene task and phase-

coherence between the hippocampus and mPFC VSs did not differ between any conditions. 

Together, the results suggest that areas within the PMN network engaged during complex scene 

processing, and not during face or size processing. 

4.4.1 Results of whole-brain theta and gamma power analyses provide some support for a 

dissociation between the networks. 

In accordance with the hypotheses, there were brain areas displaying dissociable oscillatory power 

modulations in PMN areas during the scene condition, and in AIN areas during the face condition.  

Whole-brain theta power comparison between the scene and size conditions revealed significant 

differences in the oscillatory power in areas including the medial occipital cortex and left MTL. The 

comparison between the face and size conditions did not reveal any power differences in MTL 

regions, but instead showed increased theta power in an area including the IOC and decreased theta 

in an area including left lateral and inferior frontal cortex. Since the size control task is thought not 

to incite the creation of an internal representation, the results reveal brain areas that are involved in 

creating representations to aid complex perception (Barense et al., 2010). Further comparison 
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between scene and face conditions, revealed reduced theta power in the right MTL. Together, the 

results suggest that power reduction in the MTL was specific to complex scene processing which 

aligns with the results of previous MEG studies, which identified reduced hippocampal theta power 

during novel scene imagery (Barry et al., 2019; Monk et al., 2020). A commonality between this 

novel scene imagery task and the scene oddity task, is the requirement to construct view-invariant 

internal representations of scenes, so the current finding of a reduction in MTL theta may reflect 

hippocampal processes that support internal scene representations.  

Whole-brain gamma power comparison between the scene and size condition revealed decreased 

low gamma power and increased high gamma power in the medial occipital cortex. This could relate 

to the engagement of the OPA, a member of the scene network (Nasr et al., 2013). Indeed, the OPA 

has been implicated in several functions including local scene elements (items within a scene) 

processing (Kamps et al., 2016), and inhibition of the OPA by transcranial magnetic stimulation has 

been shown to selectively disrupt scene discrimination but leave face discrimination intact (Dilks et 

al., 2013). The decrease in power in low gamma and the increase in power in high gamma could 

reflect a shift in gamma frequency power in this area, but this is challenging to interpret as the 

primary visual cortex was anticipated to be engaged during the size task. Indeed, visual evoked 

gamma measured from occipital lobes, has been shown to occur during a simple circle size 

discrimination task (Ghorashi & Spencer, 2015). Therefore, for example, this apparent shift in 

frequency power could arise if the size condition induced a weaker, broadband effect, and the scene 

condition induced a larger increase in a narrower higher frequency range. However, these significant 

differences in medial occipital gamma power between scene and size conditions were not present in 

the comparison between scene and face conditions, implying that this power modulation may not 

reflect scene-specific processes. Further research, combining MEG and fMRI, for more accurate 

spatial localization, may allow confirmation, and/or further understanding, of the role of OPA 

gamma power increase in scene oddity task completion.  

Increased low and high gamma power in the left parietal cortex was also seen in the scene condition 

compared with the face condition. It was hypothesized that the IPL would be engaged in complex 

scene processing because of its role in the PMN. The IPL has been identified as a member of the 

‘anterior scene network’, a collection of scene processing areas which are highly connected with 

areas of the DMN and the hippocampus (Baldassano et al., 2016). Contradictory to the current 

results, the anterior scene network, in particular the IPL, is associated with mnemonic rather than 

perceptual functions, because it seems unresponsive to standard scene localizers in fMRI studies 

using unfamiliar scenes or sequences of unrelated scenes (Baldassano et al., 2016). However, it is 

thought to act as a cross-modal hub (Seghier, 2013), integrating visual information with internal 

memory information, allowing recognition of an image of a scene and relating to the place it depicts 
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(Baldassano et al., 2016; Montaldi et al., 2006). In the case of the oddity task, it may be that this area 

integrates incoming visual information, from visual sampling of the triplet images, into the internal 

scene model concurrently being constructed elsewhere in the PMN, such as in the hippocampus. 

For the face condition, there was a significant increase in low and high gamma power in the right 

inferior occipital and temporal lobes, including the FG, compared with the size task. The low gamma 

change was also significantly different from the scene condition, indicating that this process is 

specific to complex face processing. The brain areas included in the cluster contain the OFA and the 

FFA, two areas of the core face processing network (Haxby et al., 2000). These results align with 

those of a transcranial magnetic stimulation study, which showed that inhibition of the right OFA 

impaired face discrimination but left scene discrimination unimpaired (Dilks et al., 2013), and a MEG 

study which showed low and high gamma power increases in both the right IOC and the right FG in 

response to images of faces as opposed to houses (Uono et al., 2017). Modulations in gamma power 

in these areas has been shown to be sensitive to gestalt face processing, displaying increased activity 

to whole faces over facial features not presented on a face (Gao et al., 2013), and over scrambled 

face images (Perry & Singh, 2014). Therefore, gamma oscillations in the IOC and FG may aid 

completion of the face oddity task since it was proposed that it requires aggregate processing of 

faces to complete. 

In general, the whole-brain power analyses support the PM-view by showing MTL involvement in 

scene perceptual processing, and revealing PMN and AIN brain areas which were differently 

modulated during scene or face perceptual processing. In line with the hypotheses regarding the 

PMN, activity in the MTL, parietal and medial occipital areas was modulated during scene 

perception. In line with the hypotheses regarding the AIN, activity in areas along the ventral visual 

stream, including the FG, was modulated during the face task. 

4.4.2 Time-frequency analysis of PMN virtual sensors elaborated on the temporal and 

frequency properties of the responses. 

4.4.2.1 Results from the Right and Left HPC suggest a mixture of short and long-lasting oscillatory 

modulations in response to scenes. 

The right and left HPC VSs displayed decreased theta/delta power near the end of the time window 

in the comparison between scene and size conditions. Although this could be interpreted as a 

bilateral late-appearing frequency-specific effect, the comparison between the right HPC VS data in 

the scene and face conditions indicated a long-lasting decrease in power covering delta and theta 

ranges starting at the beginning of the time window. This trend was apparent, but the p-value of the 

cluster did not survive multiple-comparison correction. Nonetheless, this pattern would explain the 
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decreased right MTL theta power between scene and face conditions resulting from the whole-brain 

analysis. The results do not support a specific theta effect in the MTL for scenes, but rather a general 

power decrease in the lower frequencies. This has been postulated to mirror engagement of a brain 

area in encoding and retrieval tasks (Hanslmayr et al., 2016), and may reflect a shift in power to 

higher frequencies, which is associated with increased BOLD (Conner et al., 2011).  

In this way, the results of the right HPC VS do not adhere to predictions made from the results of 

Hodgetts et al. (2015) but might reflect the results of Barense et al. (2010). The latter used a similar 

oddity task, comparing BOLD signals in the PrC and the hippocampus in response to scene, face and 

object oddity tasks. Some of these contained images with differing angles (like the stimuli used here; 

to incite the creation of view-invariant internal models) and some contained images with fixed 

angles. They found voxels in the right hippocampus which showed increased BOLD when comparing 

scene viewpoint effects (an increase in BOLD when comparing scene oddity trials comprising images 

with differing image angles over oddity trials comprising images shown at fixed angles) with face and 

object viewpoint effects. However, considering the results of Barense et al. (2010), considering that 

decreases in low frequency power have been shown to accompany increases in power in higher 

frequencies (Scheeringa et al., 2011), and considering that an increase in BOLD signal can reflect a 

shift in power from lower to higher frequencies, an increase in HPC gamma power may have been 

expected in the current results. This was not the case. Interestingly, Barry et al. (2019), who 

identified a MEG-measured decrease in hippocampal theta in response to novel scene imagery, also 

reported no equivalent power change in higher frequencies. It may be the case that increased power 

in higher frequencies did occur but were undetected, because accurate localization of higher 

frequency signals from deep sources with MEG is more challenging than localization of lower 

frequency signals, because of decreased SNR due to source-sensor distance and muscle artefacts 

(Muthukumaraswamy, 2013). Invasive recording of MTL oscillatory signals during scene oddity 

performance may help address this uncertainty.  

There was, however, a transient increase in power in the range 20-30 Hz in the right HPC VS data, 

during the scene condition compared with the size condition, which may motivate further research. 

This range has been described as beta2 and modulation of beta2 was associated with novel scene 

perception in an invasive recording study in rats (Berke et al., 2008). During early stages of novel 

environment exploration, local field potential recordings revealed pulses of increased beta2 (23-30 

Hz) which decreased during subsequent laps of the environment and during a revisit to the same 

environment the following day. The authors suggested that hippocampal activity within the beta 

range may reflect, or facilitate, a plastic state aiding the construction of contextual representations. 

However, further research is needed to understand the role of modulations of right HPC beta2 

during the scene oddity task, as this effect was not found in the comparison between right HPC VS 
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data in the scene and face conditions, indicating that it may not be specific to complex scene 

processing.  

Results from the left HPC VS do not support its unique involvement in scene processing. Similar to 

the right HPC, there was a decrease in delta power near the end of the time-window in the scene 

and size condition comparison. However, a similar delta power decrease was also revealed in the 

face and size comparison, and there were no significant differences revealed in the scene and face 

conditions comparison. These results match the whole-brain theta power analysis, which also did 

not reveal any power differences between scene and face conditions in left MTL areas.  

Considering the whole-brain and VS time-frequency analysis together, the results may indicate 

bilateral MTL involvement in complex scene processing, but that only the right HPC is selectively 

engaged during scene, as opposed to face, processing. Although this is in disagreement with 

Hodgetts et al. (2017), who found increased bilateral hippocampal BOLD during scene oddity trials 

over face or object oddity trials, asymmetrical hippocampal involvement in spatial processing has 

been previously demonstrated (Lee et al., 2016). In a study that compared hippocampal BOLD during 

two stages of a virtual reality task, one requiring object-place association retrieval and the other 

requiring spatial navigation, it was shown that the left hippocampus was more engaged in retrieval 

of object-place pairs while the right hippocampus was more engaged in retrieval of spatial memory 

(Lee et al., 2016). Together with the current results, this may suggest that the bilateral hippocampi 

are involved in conjunctive processes but that the right hippocampus is specific to spatial processing. 

As left and right HPC oscillatory power modulations were not directly compared in the current 

project, a future study would be necessary to elaborate on lateralized MTL processing in complex 

scene perception.  

4.4.2.2 Results from the mPFC may reflect its role in the DMN. 

Previous studies have demonstrated increased mPFC theta power during spatial memory retrieval 

(Kaplan et al., 2014), theta-gamma PAC during working memory (Li et al., 2012), and hippocampal-

mPFC communication during spatial processing in dynamic mental exploration of previously-learnt 

scenes (Kaplan et al., 2017). Therefore, it was hypothesized that the same phenomena would be 

more prevalent during the scene condition than during the face or size conditions. However, 

increased theta power was not revealed in either the whole-brain analysis or the VS data. Rather, 

the mPFC results may reflect DMN processes, as time-frequency analysis of the VS data revealed 

decreased gamma power in both the scene and face conditions compared with the size condition. A 

decrease in dorsal-mPFC gamma, has been reported to occur in response to task difficulty (Ossandón 

et al., 2011). Although the oddity task was designed to result in equal accuracy scores across 

conditions (see Chapter 3) and the accuracy scores were equal across conditions in this experiment, 
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the RT differed across conditions such that scene RT > face RT > size RT (a pattern that was also 

consistent in task piloting, see Chapter 3). Longer RTs may imply that a task differs in cognitive 

demand inasmuch as the necessary processes took longer. Moreover, the size condition does not 

necessitate the creation of an internal representation, making it an appropriate control task, but this 

may also reduce cognitive demand.   

If the mPFC oscillatory modulations recorded in the present study do indicate functioning akin to the 

DMN, it implies that HPC and DMN areas display differing engagements during the scene oddity task, 

despite these areas featuring in both the PMN and the DMN. Relatedly, Huijbers et al. (2011) 

assessed whether DMN areas worked cohesively with the hippocampus during encoding and 

retrieval if both were ‘internal’ (encoding and retrieving internally generated events). For this, some 

encoding trials asked participants to imagine a sound or image when presented with a word and to 

remember this association. They found evidence of differing BOLD modulations within the two 

phases: the PCC, mPFC and ventral parietal cortex displayed reduced BOLD during encoding, and 

increased BOLD during retrieval, whereas the hippocampus displayed increased BOLD during both 

encoding and retrieval. It may be that functional coupling between HPC and mPFC areas occurs 

during spatiotemporal processing in some circumstances but not others.  

The reduction in mPFC theta-gamma PAC resulting from the scene and size conditions comparison 

may be related to the decreased gamma power in the equivalent comparison in the mPFC VS, and 

further supports the suggestion that the mPFC disengaged during scene trials. On the other hand, 

while increased PAC is often reported as functionally beneficial (Canolty & Knight, 2010), it has been 

suggested that it yields an inflexibility in cortical processing, and PAC has also been found to diminish 

in memory-related brain areas during encoding and retrieval (Vaz et al., 2017). Due to this 

uncertainty, and because this analysis was exploratory, further research is necessary to understand 

modulations in mPFC PAC during complex scene processing. 

The difference between the current results and previous work relating mPFC processes to spatial 

processing may also have come about because of the specific requirements of the scene oddity task. 

The hypotheses of mPFC scene specific modulations were based upon previous work examining 

memory functions (Kaplan et al., 2017; Kaplan et al., 2014), whereas the oddity task has been shown 

to incite non-mnemonic processes (Lee et al., 2013). Together, these results imply that scene-

selective engagement of the mPFC, PAC within the mPFC, and hippocampal-mPFC communication, 

may be restricted to PMN processes involved in memory, and that the processing of trial-unique 

novel stimuli, used in the oddity task, may incite different network dynamics. Future work could 

attempt to clarify the role of the mPFC in the PMN by using an adapted oddity task with differing 

levels of mnemonic demand. For example, by comparing PMN activity during online scene oddity 

task completion (trials comprise simultaneously displayed images and require an immediate 
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response, as done here), with PMN activity during oddity task completion where images are 

displayed sequentially with delays in which the internal representation must be held (an example of 

the latter was used by Postans et al. (2014)).  

4.4.2.3 Results from the Right and Left IPL suggest a unique role of the inferior parietal areas in 

scene processing. 

The right IPL VS demonstrated a broadband increase in power spreading across alpha to gamma 

bands, commencing early in the time window, which was specific to the scene condition. The left IPL 

VS, however, did not display specificity for the scene task over the face task: increased broadband 

power modulation was also present in the face condition compared to the size condition. These 

results were contrary to the whole-brain gamma analyses which showed increased low gamma 

power in the left inferior parietal cortex and increased high gamma power in bilateral inferior 

parietal areas in the scene over face conditions comparison. The whole-brain analyses involved 

averaging activity over time, so the conflicting results may arise through differences in temporal 

dynamics in left and right inferior parietal processes.   

The parietal cortex is known to be important for spatial cognition, as lesions can cause spatial 

neglect (Karnath & Rorden, 2012), mental rotation deficits (Bestmann et al., 2002) and spatial 

working memory deficits (Mackey et al., 2016). The results of an experiment showing that areas of 

the posterior parietal cortex (containing the IPL) respond differently to changes in perspective of 

familiar and unfamiliar scene images, may provide insight into the role of the parietal cortex in the 

scene oddity task. Van Assche et al. (2016) showed participants sequential images portraying the 

same scene at different angles, either in a sequential order or a scrambled order, to test the role of 

the posterior parietal cortex in integration of information to create coherent spatial representations. 

Using fMRI, they found that the rostral IPL differed from other parietal areas examined, as it showed 

increased BOLD for unfamiliar scenes versus familiar scenes, when the angle images were presented 

in a coherent order. The results suggested that this area played a role in spatiotemporally mapping 

different viewpoints into a coherent internal scene representation (van Assche et al., 2016). 

Similarly, it is postulated that the contribution of the posterior parietal cortex to visual perception is 

to support working memory, allowing the integration of information over saccades (Pisella, 2017). In 

particular, the right IPL may be important in spatiotemporal mapping, as unilateral damage here can 

produce bilateral deficits in spatial attention (Malhotra et al., 2009) and spatial working memory 

(Malhotra et al., 2005).  

The increase in broadband power in the IPL VSs warrants further investigation. It may reflect a 

phase-locked event-related field, rather than an induced response spanning multiple frequency 

ranges. A follow up analysis extracting only phase-locked signals would be beneficial.  
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Aligning with the whole-brain and VS time-frequency results, exploratory phase-coherence analysis 

indicated increased HPC-IPL coherence during the scene task, suggesting that, in addition to their 

processes being contributory to PMN functioning, communication between these areas may also 

have been important. However, this conclusion would need to be further supported by confirmatory 

analyses.  

4.4.2.4 PCC patterns are complex, displaying DMN and PMN characteristics. 

The PCC VS showed increased alpha power in both the scene and face conditions compared with the 

size condition. Previous studies have shown positive associations between BOLD and alpha power in 

the PCC (Javadi et al., 2019) and DMN areas (Mayhew et al., 2013), so the current results may 

indicate similar engagement of the PCC in complex scene and face processing, perhaps by supporting 

internal representations in both tasks (Leech & Smallwood, 2019). However, there was a transient 

decrease in lower frequency power in the scene condition when compared with the face condition, 

indicating that PCC processes during these tasks were not identical. It may be that, despite it being in 

the DMN, the PCC contributes processing specific to the PMN, displaying scene-specific decreases in 

low frequency power resembling those seen in the MTL.  

The results of Shine et al. (2015) also illustrate complex PCC activity dynamics with the scene oddity 

task. They used fMRI to compare PCC BOLD in scene, face and object oddity conditions in APOE-ε4 6 

carriers and non-carriers, and found PCC deactivation, compared with baseline, for all conditions in 

the non-carriers, and for the face and object conditions in the carriers. Carriers showed increased 

PCC BOLD in the scene condition compared to the face and object conditions (Shine et al., 2015). 

Shine et al. interpreted their results as an impairment in APOE-ε4 carriers to modulate PCC activity. 

However, this modulation did not relate to performance in the task, so these results cannot 

elaborate further on the function of the PCC during complex scene processing. The following chapter 

will explore relationships between oscillatory activity and task performance, potentially indicating 

the importance of scene-specific PCC oscillatory power modulation. 

4.4.3 Limitations. 

One limitation of this study is the uncertainty that modulations of signals appearing to originate 

from the hippocampus, do in fact originate from this area. The ability of MEG to localize deep source 

activity such as that from the hippocampus has been debated (Riggs et al., 2009; Stephen et al., 

2005), but it is becoming accepted in the literature and techniques for best revealing these signals 

are being reported (Mills et al., 2012; Quraan et al., 2011; Ruzich et al., 2019). However, it is known 

 
6APOE-ε4 is a major genetic risk factor for Alzheimer’s disease (Genin et al., 2011), suggested to be a disease of 
the PMN (Ranganath and Ritchey, 2012). 
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that source localization becomes more difficult to solve when co-registration error exceeds 3 mm 

(Meyer et al., 2017), a plausible amount of movement for a MEG recording block. The trials across 

the blocks were not concatenated before conducting the analysis for this reason. However, the 

fewer the trials entered frequency analysis, the less noise is removed by averaging, and this may 

affect the accuracy of the frequency and source results.  

Furthermore, due to the challenge in accurately localizing MEG signals, the HPC ROI was made using 

AAL hippocampal and parahippocampal regions. This included the hippocampus, parahippocampal 

cortex and PrC, and it should be noted that signals from this ROI were assumed to be predominantly 

originating from the hippocampus and parahippocampal cortex. This was because: multiple studies 

have shown hippocampal/parahippocampal cortex activity to be detectable with MEG (Mills et al., 

2012; Pu, Cheyne, et al., 2018), while comparatively few have shown PrC activity with MEG (Moses 

et al., 2009); hippocampal signals have previously been shown to influence measurement from 

nearby cortex, such as the PrC, through tissue volume conduction (Sirota et al., 2008; Vinck et al., 

2015); and, in a previous study, the number of participants in which components of MEG signals 

correlated with hippocampal/parahippocampal cortex signals was larger than the number of 

participants in which they correlated with PrC signals (Pizzo et al., 2019). Previous MEG work has 

attributed MTL oscillatory modulations to hippocampal signals (Guitart-Masip et al., 2013), but 

confirming this is challenging. In the current study, it may be that changes in neuronal activity 

occurring during the scene task may be related to hippocampal processes specifically, or to 

processes in another region within this ROI. Previous fMRI-based studies of MTL activity during 

oddity task completion provide partial support for the assumption that these signals are from the 

hippocampus. Barense et al. (2010) reported that no voxels in the PrC showed increased BOLD for 

scene viewpoint effects compared with face viewpoint effects, but also found that the 

parahippocampal place area responded to both fixed angle and differing angle scene conditions. On 

the other hand, Hodgetts et al. (2015), who found a three-part relationship between hippocampal 

BOLD, the fornix and scene performance, did not find any voxels in the posterior parahippocampal 

gyrus that showed a relationship between increased BOLD in response to scene trials (versus face 

trials) and fornix microstructure. Therefore, the following chapter in this thesis (Chapter 5) may 

allow some confirmation that these scene-related signals were specific to the hippocampus, if they 

relate to fornix microstructure. 

Further limitations of this study are the low trial numbers in the size task, and the unequal trial 

numbers across conditions. Due to the differences in RT between conditions, for most participants, 

there were more scene trials than face or size trials. This can create a bias because if one condition 

has a low SNR and is compared to another with a high SNR, then the comparison may not be 

between brain activity during two behaviours but rather between brain activity in one behaviour, 
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and noise. However, it is unlikely that the size condition had too few trials in any participant to 

adequately match the SNR in the scene condition, because there were areas showing significant 

power differences in the whole-brain scene and size condition comparisons that also showed 

significant power differences in the scene and face condition comparisons (such as increased high 

gamma power in the IPL), and the face and scene conditions were well matched in terms of trial 

numbers. Moreover, the purpose of this control condition was to remove visual signals that were 

non-specific to complex visual processing that likely reside in the primary visual cortex, and sources 

from this area are stronger than those in the MTL, making them more easily detectable (Quraan et 

al., 2011). Although the minimum number of size trials per participant to reliably measure visual 

signals during the size task is unknown, it is interesting to note that significant classifier performance 

of MEG recordings during speech perception, significant detection of cortical MEG-measured evoked 

potentials, and significant detection of EEG-measured event-related potentials have been shown to 

be obtainable with 40 or fewer trials (Boudewyn et al., 2018; Chaumon et al., 2021; Dash et al., 

2019). 

Regardless, to reduce the risk of spurious results arising from unequal trial numbers across 

conditions, unequal variance was accounted for in the statistical analyses for whole-brain power 

comparisons and VS time-frequency comparisons. Moreover, unequal trial numbers are less of an 

issue when measuring mean amplitudes, as done in whole-brain source analysis here, than when 

measuring peak amplitudes (see “ERP Methodology Blog” 7). However, SNR can have substantial 

effects on PAC and phase-coherence analysis (see this Fieldtrip tutorial8 for an example) and these 

analyses could not be corrected for unequal variance. Also, shortening the time-window, and 

therefore including more short trials and evening trial numbers across conditions, would have 

reduced the capacity for measuring lower frequency bands. Therefore, while the exploration of PMN 

PAC and phase-coherence illustrated an interesting picture of reduced mPFC engagement, 

unchanged mPFC-HPC communication, and increased HPC-IPL communication, complementing the 

whole-brain and VS data analyses, conclusions cannot be drawn without further replication.  

An additional obstacle in interpreting the results is the ambiguity in the functional processes being 

represented by oscillatory power modulation. The role of MTL structures in perceptual processes is 

controversial, with some arguing that any apparent involvement is a reflection of memory processes 

(Squire et al., 2006; Urgolites et al., 2018). Although the oddity task used here comprised novel 

images in every trial and did not require memory over a delay, there is a possibility that incidental 

mnemonic processes are responsible for the modulations in MTL activity. To address this, 

 
7 https://erpinfo.org/blog/2018/6/26/different-ntrials 
8 http://www.fieldtriptoolbox.org/example/coherence_snr/ 
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participants also underwent a subsequent surprise memory test, and relationships between the HPC 

activity modulations and subsequent memory performance are tested in Chapter 5. 

4.5 Conclusions 

The aims of the work described in this chapter were to expand on previous work investigating the 

roles of the PMN and AIN in complex scene and face processing. The results further support the 

notion described in previous studies that MTL areas are involved in perceptual processes when 

constructions of internal representations are required. Modulation of theta power in the MTL, 

thought to be contributed to by hippocampal/parahippocampal cortex processes, was specific to the 

scene task. Moreover, two collections of brain areas showed dissociable engagements with scene or 

face conditions, matching the PMN and AIN networks, respectively. Pertaining to the AIN, activity 

modulation in areas along the right visual ventral stream was specific to the face condition. 

Pertaining to the PMN, activity modulation in the right MTL, inferior parietal cortex and 

posteromedial areas was specific to the scene condition. Time-frequency analysis allowed some 

further understanding of the temporal dynamics of these network processes, giving indications of 

which processes were long- or short- lasting, or appearing earlier or later in the time-window. 

Exploratory PAC and phase-coherence analysis indicated differences in PMN processes involved in 

the oddity task compared with those described in previous work investigating other PMN-related 

behaviours, such as memory retrieval. This study highlighted PMN processes that are distinct from 

DMN and that are specific to complex scene processing. 
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5 Chapter 5: Examining relationships between structure, 

function, and oddity performance in the PMN and AIN. 

5.1 Introduction 

5.1.1 Background. 

Implications of the PM-view include: the PMN and AIN networks should aid behaviours in 

different modalities; network areas, including MTL areas, should be involved in processes 

across memory and perception; and that the behavioural performance of those modalities 

should be related to the structural and functional properties of the respective networks 

(Graham et al., 2010; Murray et al., 2017). This chapter continues the investigation, 

focussing on the last implication, by testing correlations between individual differences in 

oddity task performance, MEG-measured brain oscillatory power modulation during the 

oddity task, and microstructure of the tracts that connect areas of the PMN and AIN 

networks. The aim of the experiment was to identify three-part relationships between 

structure, function and performance. 

The investigations of the roles of PMN and AIN networks, including MTL areas, in complex 

perceptual processing are reported in Chapter 4. PMN areas, including the IPL, PCC and 

HPC, displayed oscillatory power modulations during scene oddity trials, and areas of the 

AIN, including the FG, displayed oscillatory power modulations during face oddity trials. Of 

particular note, is the scene-oddity-related decrease in HPC theta power.  

As briefly described in Chapter 4, the implications of the PM-view have been investigated 

previously by Hodgetts et al. (2015), who correlated performance of scene and face oddity 

tasks with diffusion MRI measures of white-matter tracts and BOLD changes in MTL areas. 

They assessed fornix and ILF properties using DTI and found that fornix MD and ILF MD 

negatively correlated with scene oddity and face oddity accuracy, respectively. They also 

found positive trends between fornix FA and ILF FA, and scene oddity and face oddity 

accuracy, respectively. Similarly, they found PrC and FFA BOLD increases associated with, 

and positively correlated with, face task accuracy. FFA BOLD also correlated negatively with 

ILF MD. In addition, they found hippocampal BOLD decreases associated with, and 

correlated with, scene task accuracy. Although these results provide evidence that the AIN 

and PMN cater for different modalities, they leave some unanswered questions. Critically, 

they found a three-part mediation between FFA BOLD, ILF MD and face task accuracy, but 
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no three-part mediation between hippocampal BOLD, fornix MD and scene task accuracy 

was found. Regarding the functional results, the hippocampal BOLD decrease is difficult to 

interpret due to the complex relationship between hippocampal neuronal activity and 

BOLD (Ekstrom, 2010; Ekstrom et al., 2009), and so the results provide little information 

about the hippocampal processes during perceptual decisions. Regarding the structural 

results, Hodgetts et al. (2015) used FA and MD which are non-specific to individual 

properties of the white matter. For example, both axon membranes and myelin content 

can influence FA (Beaulieu, 2002). It may be that structure-function-behaviour relationships 

can be further unveiled by using different imaging techniques.   

Therefore, in the current study, functional aspects were measured with MEG, which 

provided more precise timing and added oscillatory information, and structural properties 

were derived from several microstructure models. These included CHARMED (Assaf & 

Basser, 2005), qMT (Cercignani & Alexander, 2006; Henkelman et al., 1993; Henkelman et 

al., 2001), and NODDI (Zhang et al. 2012), as well as DTI.  

From CHARMED, the FR, was extracted. It can be thought of as a probe for axonal density, 

so it is more specific than FA. From NODDI, two measures were extracted: ICVF, which is a 

marker of neuronal density, and OD which quantifies the coherence of fibre orientations. 

Both of these have been shown to relate to FA (Zhang et al., 2012). CHARMED and NODDI 

can be especially useful when studying the fornix. Fornix DTI results can be contaminated 

by CSF from the lateral ventricles (De Santis et al., 2014), a problem which may not affect 

FR or ICVF to the same degree (as explained in Chapter 2). Lastly, from qMT, MPF9 

(Cercignani & Alexander, 2006) was extracted. This has been shown to be sensitive to 

myelin content (Turati et al., 2015).  

With the aim of reducing multiple-comparisons problems and to collate microstructure 

information in a biologically interpretable way, inter-individual differences in tract 

properties were scored by reducing multiple microstructure measures to component 

scores using PCA (Chamberland et al., 2019; Geeraert et al., 2020). 

In addition to confirming the importance of the fornix and ILF in scene and face processing, 

this study also inspected the importance of the PHC. The PHC, along with the fornix, is an 

important pathway within the hippocampal–diencephalic–cingulate loop, connecting 

parahippocampal areas to other areas of the posteromedial network, including the RSC 

 
9 Also often referred to as “F” (Cercignani & Alexander, 2006; Turati et al., 2015). 
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(Bubb et al., 2017). It was of interest to know whether relationships between fornix 

microstructure and scene oddity performance were specific to the fornix or whether there 

was a similar relationship between the PHC and scene oddity accuracy, since both the 

hippocampus and parahippocampal areas have been shown to display BOLD modulation 

during complex scene processing (Hodgetts et al., 2016). However, the hippocampus is 

thought to be particularly important when the oddity images are presented at differing 

angles (Barense et al., 2010) and BOLD modulation of the hippocampus and not 

parahippocampal cortex, has been found to correlate with scene oddity performance 

(Hodgetts et al., 2015). Therefore, communication through the fornix pathway may relate 

to scene oddity performance more strongly than communication through the PHC 

pathway.  

Since theta and gamma power modulations were found in PMN areas during scene oddity 

task completion (Chapter 4) and previous studies have found correlations between MTL 

theta/gamma power and spatial processing performance (Park et al., 2014; Pu et al., 2017; 

Y. Pu et al., 2020), MTL theta/gamma power was predicted to correlate with scene oddity 

performance. MTL localization of hippocampal and parahippocampal signals are 

challenging to differentiate with MEG. With small head movements, resolved localization of 

one region’s signals may be shifted to the other. Previous MEG research has analysed them 

together (Pu et al., 2017). For this reason, the HPC ROI used here encompassed both the 

hippocampus and parahippocampal regions, creating a risk that any correlations between 

oscillatory power in this ROI and behaviour may be produced by parahippocampal activity. 

Assessing the relationships between the HPC ROI activity and fornix and PHC 

microstructure may help clarify the location from which the signals arise. For example, if 

HPC ROI oscillatory power relates to fornix microstructure only, then this could support the 

suggestion that the signals arose from the hippocampus.  

Regarding the AIN, no studies have focused on the relationship between face perception 

performance, oscillatory power in areas of the AIN, and the microstructure of the ILF. 

Increased power in the gamma range (including the both the higher and lower bands 

defined here) in response to object or face processing has been reported in areas across 

the ventral visual hierarchy including early visual areas (Gao et al., 2013; Magazzini & Singh, 

2018; Perry, 2016), the ventral occipitotemporal cortex (Engell & McCarthy, 2010) and the 

FG (Gao et al., 2013). Since the ILF connects the ventral visual pathway (Herbet et al., 

2018), there may be correlations between FG gamma power, ILF microstructure and face 

oddity performance. 
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This study also investigated incidental encoding of oddity stimuli with the use of an 

unforeseen recognition test following the oddity task. It was important to investigate if 

oddity-related HPC signals were the consequences of incidental encoding, by testing 

whether HPC oscillatory signals that correlated with oddity performance, also correlated 

with subsequent memory of the stimuli. From a mnemonic-only view of the MTL, it could 

be argued that MTL signals during the oddity task, or poor performance from patients with 

MTL damage, could be explained by MTL encoding processes which support memory of 

items within each trial. Previous work by Lee at al. (2013), which measured hippocampal 

BOLD signals during a scene oddity task and a subsequent surprise recognition test, 

provided evidence against a mnemonic-only view of the MTL. In line with the PM-view, 

they found that hippocampal BOLD signals during correct and incorrect oddity trials were 

not associated with subsequent recognition performance, and that there was no 

correlation between scene oddity accuracy and d’ scores from the scene memory test. 

However, their experiment did not include equivalent tests for face oddity stimuli or 

correlations with microstructure data. Therefore, since the memorability of scene and face 

oddity trials has not been compared in the context of oddity tasks, there is still the 

possibility that differences found from functional imaging of the MTL during face and scene 

oddity trials reflected differences in the propensity of the stimuli to incite incidental 

encoding. The current work aimed to test whether scene and face HPC oscillatory 

responses during the oddity trials related to recognition memory accuracy (measured as 

d’). Similarly, previous work has not compared the relationships between fornix and ILF 

microstructure properties and oddity task performance, and fornix and ILF microstructure 

properties and incidental stimulus encoding. Therefore, there is a risk that relationships 

found between fornix microstructure and scene oddity performance, for example, arise 

because incidental encoding aids task performance and fornix microstructure aids 

incidental encoding. In this study, correlations between fornix and ILF microstructure 

properties and scene and face d’, respectively, were tested.  

5.1.2 Aims and hypotheses. 

Regarding structure, function and behaviour correlations, it was hypothesized that the 

current study’s results would follow the same patterns as those of Hodgetts et al. (2015). 

Relationships between fornix microstructure and ILF microstructure and scene oddity and 

face oddity performance, respectively, were hypothesized. Moreover, since the PHC 

connects the PMN, but not predominantly the hippocampus, it was hypothesized that PHC 

microstructure would not correlate with scene oddity performance as strongly as fornix 
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microstructure, and that PHC microstructure would not correlate with face oddity 

performance.  

Also, it was hypothesized that modulation of HPC theta (4-8 Hz) and low or high gamma 

power (40-60 Hz, 60-80 Hz) during the scene task, as compared to baseline, would correlate 

with scene oddity performance, reflecting hippocampal neuronal activity. Oscillatory power 

modulations were calculations of the differences between scene, face or size conditions 

compared to the fixation condition (to create a modulation from baseline measure). These 

comparisons (with the fixation condition) differed from those carried out in Chapter 4, in 

which contained comparisons between conditions. Comparing with the fixation condition 

was equivalent to the BOLD-behaviour analyses carried out by Hodgetts et al. (2015). It 

allowed a characterization of ROI ‘engagement’ in a task, from rest, rather than differences 

in engagement between tasks. However, oscillatory power modulations were also 

calculated as differences between scene or face conditions compared to the size condition, 

to create a difference from control measure which is equivalent to the comparisons made 

in Chapter 4.  

In particular, it was hypothesized that there would be a three-part relationship between 

MTL oscillatory power, fornix microstructure and scene oddity performance. Although the 

results of Hodgetts et al. (2015) indicated that fornix microstructure and hippocampal 

BOLD correlated with scene oddity accuracy, but not with each other, it could be that 

structure and function measures other than those they used would correlate with each 

other. It was considered that the inclusion of further functional and structural information 

would reveal a three-part relationship.  

Since the ILF connects lower and higher ventral visual stream areas (Catani et al., 2003; 

Latini et al., 2017), it was hypothesized that gamma power modulations in the FG during 

face processing would be associated with ILF tract properties and face oddity accuracy. 

Although Hodgetts et al. (2015) included the PrC as a focus in their investigation, signals 

from this brain area are likely unmeasurable with MEG (see chapter 4), so, in the current 

study, the focus was to replicate and expand on the findings that FFA activity modulation 

(BOLD increase) correlated with face oddity performance. 

This project included a mixture of confirmatory and exploratory analyses. Confirmatory 

analyses related to the outlined hypotheses. Additional questions were addressed through 

exploratory analyses. Exploratory questions included: whether associations between tract 

microstructure and oddity task performance were specific to accuracy, or whether they 
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also related to RT; whether associations between HPC theta/gamma power modulation and 

scene oddity task were specific to that brain region or whether theta/gamma power 

modulations of other PMN regions also correlated with scene oddity performance; whether 

associations between HPC theta/gamma power modulation and scene oddity task were 

specific to that frequency band or whether power modulations in other frequency bands 

also correlated with scene oddity performance; and whether associations between fornix 

microstructure and HPC theta power were specific to that brain region or whether fornix 

microstructure related to power modulation in other PMN regions. 

To test whether any relationships between scene HPC theta and gamma power and scene 

oddity performance were specific to that ROI, exploratory correlation tests between theta 

and gamma power in other PMN ROIs (mPFC, PCC, IPL) and oddity performance were 

carried out. It was anticipated that, if oscillatory power in the HPC, and the microstructure 

of the fornix (which connects the HPC to other PMN structures), both correlated with scene 

oddity performance, then another theta and gamma power modulation in another PMN 

structure, connected via the fornix, may also correlate with performance. Coherent 

oscillatory activity between regions can be a reflection of network communication and 

complementary processing (e.g. Barry et al., 2019).   

To assess whether any relationships between scene HPC theta and gamma power and 

scene oddity performance were specific to those frequency bands, associations between 

scene HPC delta (1-4 Hz), alpha (8-12 Hz), beta (12-30 Hz) and scene oddity performance 

were also tested. Similarly, correlations with performance were also searched for in 

broadband (1-90 Hz) time frequency data for the right and left HPC. This also allowed 

exploration of bilateral differences and timescales of behaviour-oscillatory power 

associations. It was predicted that HPC theta and gamma would be uniquely important in 

complex scene processing but there were no predictions about the laterality or temporal 

dynamics of these relationships. Although there is some overlap in these analyses, it is 

important to include both the individual frequency bands and the broadband time 

frequency data. This is because a signal spatial filter over a broadband range of frequencies 

can be inaccurate, as the spatial structure of background activity is different for different 

frequencies, so one spatial filter cannot be optimal for all frequencies (Liu & Weiss, 2010).  

Lastly, correlations were also tested between oddity performance and whole-brain t-maps 

of differences between theta and gamma power in the three conditions (scene>size, 

face>size, scene>face; see chapter 4). This differs from the methods of the main results of 
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Hodgetts et al. (2015), and part of the methods of the confirmatory analysis presented 

here, which compared online data to fixation data. It was thought that this comparison (of 

in-task data to other in-task data) may improve localization of correlations between oddity 

performance and deep-source oscillatory power. MEG measurements of deep sources can 

be influenced by stronger signals from shallower sources, such as those from the occipital 

cortex relating to visual processing (Quraan et al., 2011). Therefore, the aim was to ‘cancel 

out’ these visual signals by comparing the scene and face oddity tasks, which should incite 

more similar visual processing signals than those incited by the fixation trials. This analysis 

addresses a different question to that of the confirmatory analysis: ‘do activation 

differences between oddity conditions relate to performance?’, rather than ‘do activation 

differences within oddity conditions, compared with baseline, relate to performance?’.   

Since the PM-view implies that MTL responses during the oddity task are not purely 

reflections of incidental encoding, it was hypothesized that structure-function-behaviour 

correlations found for the oddity task would not be explained by subsequent memory 

behaviour. Therefore, correlations between oddity performance and subsequent 

recognition performance would be weak or non-existent. Moreover, it was predicted that 

HPC oscillatory changes that associated with oddity performance would not correlate, or 

only correlate weakly, with subsequent recognition performance. Furthermore, although 

the fornix and ILF have been shown to be important in spatial (Hodgetts et al., 2020) and 

face memory (Unger et al., 2016), respectively, it was hypothesized that associations 

between tract microstructure and subsequent recognition performance would be weaker 

than associations between tract microstructure and oddity performance, or non-existent. 
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5.2 Methods 

5.2.1 Participants. 

The 40 participants were the same as described in Chapter 4. However, one participant 

asked to leave the scanner before completing all the qMT-weighted scans, so this dataset is 

included in MEG-behaviour correlations but not in the analyses involving microstructure 

data (39 participants: mean age: 22.5 years, SD 4.2, range: 18-38 years; 29 female). 

5.2.2 The oddity task and incidental recognition memory task. 

See Chapter 3, for a detailed description of the oddity and memory tasks and for diagrams 

of the paradigms. In short, the oddity task included 96 scene, face and size trials. The 

oddity blocks were followed by a 5-minute pause after which the participants were asked 

to perform a memory task that was a “surprise test” inasmuch as they knew there was an 

additional part of the study, but they did not know its nature. The memory task consisted 

of 48 “old” (shown during the oddity task) scenes, 48 “old” faces, 48 “new” (not shown in 

the oddity task) scenes and 48 “new” faces. 

The percentage of correct oddity trial responses was used as a measure of oddity task 

performance. RT was measured in ms. To analyse the memory task data, individual results 

from the oddity and memory tasks were combined, allowing the identification of matching 

trials (old trials) that appeared in the oddity and the memory tasks, and non-matching trials 

(new trials), which appeared in the memory task only. The former data were used to 

calculate the number of hits and the hit rate (old trials correctly identified as old), and 

misses (old trials incorrectly identified as new). The latter data was used to calculate 

correct rejections (new trials correctly identified as new) and the number of false alarms 

and the false alarm rate (new trials incorrectly identified as old).  

The scene and face memory performances were compared, to understand if memorability 

of the stimuli differed between conditions. The hit and false alarm rates were inspected, 

and then the hits were split by confidence level to see if confidence in memory of the 

conditions differed (a similar comparison of confidence of hit rates across stimulus types 

has been done by Michalowski et al. (2014)). To test whether performance in the oddity 

task influenced memory performance, the hit rates for oddity-incorrect and oddity-correct 

trials in the scene and face conditions, were compared. Finally, d’ scores were calculated by 



Chapter 5: Examining relationships between structure, function, and oddity performance in the PMN and AIN. 

121 
 

the Psycho package for R (Makowski, 2018), and were tested for correlations with scene 

and face oddity performance.  

5.2.3 MRI scanning protocol and microstructure measurement. 

5.2.3.1 Protocol. 

Methods to obtain structural MRI data are outlined in Chapter 4 (section 4.2.3). 

Diffusion weighted data were acquired using the CHARMED protocol with the following 

parameters: phase encoding = A>P; slice thickness = 2 mm; TE = 73 ms; TR = 4100 ms; 203 

gradient directions and 4 shells (maximum b-value: 4000 s/mm2); FOV = 220 mm x 220 mm. 

A reference acquisition with the opposite phase encoding direction was acquired for blip-

up blip-down correction, with 33 directions and 2 shells (maximum b-value: 1200 s/mm2).  

qMT sensitive data was acquired through an optimized 3D MT-weighted fast spoiled-

gradient recalled-echo sequence (Cercignani & Alexander, 2006) with the following 

parameters: TR = 32 ms, TE = 2.46 ms, flip angle = 5°, Gaussian MT pulses, duration t = 12.8 

ms, bandwidth = 330 Hz/Px, FOV = 240 mm x 240 mm, slice thickness = 2 mm. 11 MT-

weighted scans had the following off-resonance irradiation frequencies/saturation pulse 

amplitudes: 1000 Hz/332°, 1000 Hz/333°, 12060 Hz/628°, 47180 Hz/628°, 56360 Hz/332°, 

2750 Hz/628°, 1000 Hz/628°, 1000 Hz/628°, 2768 Hz/628°, 2790 Hz/628°, 2890 Hz/628°. 

Data for two B1 maps were collected through two four-shot spin-echo echo-planar imaging 

sequences with the following parameters: TR = 5000 ms, TE = 1.83 ms, flip angle = 8°, 

matrix = 64 × 64. Data for two B0 maps were collected through gradient recalled 

acquisitions with the following parameters: TE = 4.92 ms/ 7.38 ms; TR = 330 ms; FOV = 240 

mm; slice thickness = 2.5 mm. 

5.2.3.2 Analysis of structural images. 

Diffusion analysis pipelines were orchestrated by G. Parker of Cardiff University. Motion 

distortion correction was carried out using the Eddy tool in FSL (Andersson & Sotiropoulos, 

2016; Jenkinson et al., 2012). The separate contribution of the free water compartment to 

the DTI data was identified and removed by a customized version of the Free Water 

Elimination algorithm (Pasternak et al., 2009). 

Tensor fitting was carried out on the 1200 b-value shell. To estimate the diffusion tensor in 

the presence of physiologic noise and system-related artefacts, the Robust Diffusion Tensor 
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Estimation (RESTORE) algorithm was applied (Chang et al., 2005). This analysis resulted in 

FA, MD and RD maps. 

Tractography analysis was applied to the 1400 b-value shell. To detect and eliminate signal 

artefacts, the Robust Estimation in Spherical Deconvolution by Outlier Rejection (RESDORE) 

algorithm was applied (Parker, 2014). Subsequently, peaks in the fODF in each voxel were 

extracted using the dRL technique (Dell'acqua et al., 2010). Whole-brain deterministic 

tractography was conducted in Explore DTI (version 4.8.3) (Leemans, 2009), using an fODF 

amplitude threshold of 0.05, step size of 0.5 mm and an angle threshold of 45°. 

NODDI maps were created using the Accelerated Microstructure Imaging via Convex 

Optimization (AMICO) NODDI algorithm (Daducci et al., 2015) (description and pipelines 

available here10). For this, the co-registered and distortion-corrected 1200 and 2400 b-

value shells were combined. 

All shells were used for the CHARMED analysis, which was conducted using an in-house 

program coded in MATLAB (MATLAB, 2015) which calculated FR per voxel (De Santis et al., 

2014). 

The magnetization transfer-weighted images were co-registered (affine, 12 degrees of 

freedom), within each participant, to the image with the highest contrast, to correct for 

interscan motion, using Elastix (Klein et al., 2010). Modelling was then carried out by using 

two-pool pulsed-magnetization transfer approximation as described by Ramani et al. 

(2002), which also corrects for amplitude of B0 field inhomogeneities and produces MPF 

maps.  

5.2.3.3 Tractography.  

To generate three-dimensional streamlines that represented the fornix, the ILF and the PHC, 

'way-point' ROIs were manually drawn onto whole-brain FA maps in the diffusion space of 

18 subjects, using Explore DTI (Leemans et al., 2009). These 'way-point' ROIs allow the user 

to define Boolean AND and NOT gates with the aim of isolating the relevant streamlines. 

The resultant tracts were used to train in-house automated tractography software (written 

by G. Parker of Cardiff University), which was then applied to the entire dataset. 

Protocols for the manual construction of the tract streamlines are described below. NOT 

 
10 https://github.com/daducci/AMICO/blob/master/doc/demos/NODDI_01.md 
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gates were added until no spurious fibres remained. To generate the images shown here for 

illustration (Figure 23), the same methods were used to extract streamlines from an 

example dataset (available here11; Leemans et al., 2009). 

A protocol based upon Hodgetts et al. (2015) was used to isolate fornix streamlines. One 

AND and six NOT gates (if required) were used (note that, in this case, the AND gate placed 

on the transverse plane used by Hodgetts et al. was not used, as it did not appear to be 

required). The AND gate encompassed the body of the fornix, selected from a coronal view. 

This was approximately five voxels back from the anterior commissure, as identified on the 

sagittal plane. NOT gates were placed as follows: two on the transverse plane to intersect 

the corpus callosum and corticospinal tracts; two on the sagittal plane to intersect the 

anterior commissure and corpus callosum; and two on the coronal plane to intersect fibres 

travelling posteriorly towards the occipital cortex, or anteriorly towards the frontal cortex.  

The protocol of Wakana et al. (2007) was used to isolate ILF streamlines. One 'seed', one 

AND and 4 NOT gates (if required) were used in each. In the sagittal plane, the coronal 

cross-hair was placed just posterior to the cingulum bundle. In the coronal plane, a 'seed' 

was drawn around the entire left/right cortex (for extraction of the left and right ILF, 

respectively). The AND gate was placed encompassing the temporal lobe, on the furthest 

posterior coronal slice in which a connection could not be seen between the temporal and 

frontal lobes. NOT gates were placed as follows: one on the transverse plane to intersect 

fibres reaching the parietal lobe; two on the sagittal plane to intersect fibres that crossed 

the midline; and one on the coronal plane to intersect fibres extending into the frontal 

cortex.  

 
11 https://www.exploredti.com/exampledataset.htm 

https://www.exploredti.com/exampledataset.htm
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The protocols of Jones et al. (2013) and Sibilia et al. (2017) were used to isolate streamlines 

representing the PHC (note that Jones et al. refer to this as the ‘restricted PHC’). Two AND 

gates and one NOT gate were used. For the first AND gate, the corpus callosum was 

identified on a midline sagittal plane. The transverse plane cross-hair was placed 

approximately four slices above the bottom of the curve of the posterior corpus callosum 

and the AND gate was placed on the transverse plane, encompassing the cross section of 

the cingulum (Jones et al. 2013). The transverse plane was then moved to around four slices 

below the curve of the posterior corpus callosum and a second AND gate was placed on the 

transverse plane, encompassing a lower cross section of the cingulum (Jones et al. 2013). A 

NOT gate was placed on the sagittal plane transecting, and extending above, the posterior 

portion of the corpus callosum, to exclude any streamlines of the cingulum that curved 

forward (Sibilia et al., 2017). These steps were carried out bilaterally, to extract the left and 

right PHC.  

The resultant tracts were used to train the in-house automated tractography software that 

was then applied to the entire dataset. Streamlines produced by the automated 

tractography software were visually inspected, and spurious fibres were removed using 

additional NOT gates. 

5.2.4 Tract microstructure data reduction.  

FA, MD, RD, FR, MPF, ICVF and OD values for the voxels encompassed in the tract 

streamlines were extracted and averaged for each tract. This resulted in seven 

microstructure metrics for three tracts for 39 participant datasets. 

Fornix ILF PHC 

Figure 23. Construction of tract streamlines. 

Sagittal views of the fornix (left), ILF (middle) and PHC (right) streamlines constructed in an example dataset. Right ILF and PHC tracts are 

shown, though they were extracted bilaterally. Colours on the brain map and the streamlines indicate diffusion along the gradient directions 

(left-right: red; top-bottom: blue; front-back: green). Example locations of the Boolean gates are represented by coloured lines (NOT: red, 

AND: green, SEED: blue). 
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Redundancies in dMRI-derived microstructure measures can be exploited by dimensionality 

reduction, to collate data in a biologically interpretable way and to reduce the risk of false 

positive errors arising from multiple statistical comparisons (Chamberland et al., 2019). 

Therefore, microstructure data were reduced through PCA, which has been shown to be 

effective in capturing age-sensitive, biologically informative features from previous 

microstructure datasets (Chamberland et al., 2019; Geeraert et al., 2020). The tract 

microstructure data were combined in a single table. Correlations between the 

microstructure measures were explored. The Bartlett test was used to assess the 

appropriateness for PCA. The prcmp function in R (R Core Team, 2019) was then used to 

apply PCA to centred and scaled data (converted to z-scores). Sampling adequacy of the 

PCA results was tested using the Kaiser-Meyer-Olkin (KMO) test (from the R ‘Psych’ 

package; Revelle, (2020)). Components were retained depending on the amount of 

cumulative variation they explained and on inspection of the scree plot. Following data 

reduction, participant scores in two principal components (PCs) were used for analysis.  

5.2.5 MEG analysis and creation of time- and trial- averaged ROI data, and trial-

averaged VS data, for testing correlations with behavioural performance. 

A detailed description of MEG data preprocessing, frequency analysis and source analysis, 

using Fieldtrip (Oostenveld et al., 2011), can be found in Chapter 4. In that analysis, power 

between conditions was stastically compared. In the current Chapter, the confirmatory 

analyses included the trial-averaged change in oscillatory powers for all three oddity task 

conditions measured relative to the fixation condition, as well as power differences 

between scene or face conditions compared to the size condition. The aim of the former 

was to understand how brain oscillatory activity during a task (compared with at rest) 

related to performance in that task. The fixation periods lasted 5 s, but to match the length 

of the task conditions (2 seconds), data from the period from one second to three seconds 

after the start of the fixation period was analysed. This was done to include a fixation 

period sufficiently distanced from the task trials to minimise the risk of including any 

carried-over task-dependent processes. Oscillatory power differences were averaged 

within PMN ROIs (HPC, PCC, mPFC and IPL) and the AIN ROI (FG). The additional FG VSs was 

constructed using the same techniques described in Chapter 4, using the left and right FG 

ROIs of the AAL atlas. Confirmatory analyses included inspecting the relationships between 

HPC theta and gamma power and scene oddity accuracy, and the relationship between FG 

gamma power and face oddity accuracy (controlling for MEG trial numbers, see below 

section 5.2.6). 
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In addition, averaged delta (1-4 Hz), alpha (8-12 Hz) and beta (13-30 Hz) HPC power, and 

broadband (1-90 Hz) HPC time-frequency data of the scene and face oddity tasks (both also 

contrasted with the fixation period) were tested for partial correlations with scene and face 

accuracy data (controlling for MEG trial numbers). This allowed investigation into whether 

the correlation between hippocampal theta and scene accuracy was specific to the theta 

range or to the right or left hemisphere. It also allowed exploration of the temporal 

dynamics of this relationship.  

Lastly, the t-maps produced from statistically comparing oscillatory power between the 

conditions (scene>size, face>size, scene>face; described in Chapter 4) were also tested for 

partial correlations with scene and face oddity performance (controlling for MEG trial 

numbers). As it is akin to source-source subtraction (so MTL signals would have been less 

influenced from stronger more shallow sources, such as those from the occipital cortex), it 

may help to localize deep sources (see Chapter 3 and Quraan et al., (2011)).  

5.2.6 Statistical analysis. 

Statistical analyses were carried out using Fieldtrip for MATLAB (MATLAB, 2015; 

Oostenveld et al., 2011), or using Rstudio (R Core Team, 2018; RStudio Team, 2015). 

Outliers were defined as being further than three times the SD from the mean and were 

removed per variable. The number of values entering each statistical test (N) is reported 

through degrees of freedom with the test statistics, or noted in results tables. 

Pearson’s correlation tests were applied to understand relationships between tract 

microstructure, oscillatory activity and behaviour. In cases where variable data did not have 

a normal distribution, the data was transformed to de-skew the distribution. To make the 

brain-behaviour correlations across conditions, tracts or ROIs comparable, it was important 

that the same, ideally parametric, tests could be applied to all and if one variable was 

transformed, the same was applied to the other variables within that modality.  

To compare correlations, differences between correlation coefficients were tested using 

the Pearson and Filson’s test (Pearson, 1897), with the package ‘Cocor’ for R (Diedenhofen 

& Musch, 2015). 

Since the results of Hodgetts et al. (2015) showed correlations between fornix MD and 

scene oddity accuracy, and ILF MD and face oddity accuracy, and revealed trends between 

fornix FA and scene oddity accuracy, and ILF FA and face oddity accuracy, there were 
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directed hypotheses about correlations between microstructure and oddity task 

performance. Therefore, the contribution of FA and MD values to microstructure PCA 

components, prescribed the hypotheses of how the components of the tracts would relate 

to oddity task performance, supporting the use of one-tailed statistical tests. 

Partial correlations were used for correlation analyses involving MEG data so that MEG trial 

numbers in each condition could be controlled for. MEG trials in which the participant did 

not respond were not included in the MEG analysis, but were regarded as incorrect in the 

behavioural data. Since an aim of this study was to capture predominantly perceptual 

processes, and since participants had a long time in which to respond (8 s) and on average, 

took around 5s, there was a risk that trials not answered within 8 s would contain off-task 

thoughts, such as those pertaining to mind-wandering or exhaustion. Therefore, trials 

without responses were not included in the MEG analysis. However, missed trials could not 

be removed from the behaviour analysis without artificially inflating performance scores of 

participants with missing trials, because of the high likelihood that missing trials would 

have been answered incorrectly. Although this is a small proportion of excluded MEG trials 

(MEG trials were also removed due to length criteria and noise during data-cleaning), there 

was still an association between the number of MEG trials and oddity performance. 

Therefore, partialling-out the variance from MEG trial numbers was performed to adjust for 

its potential biasing of performance-MEG data correlations. Importantly, tests for 

correlations between the MEG data and the number of MEG trials produced no significant 

results (these are reported in Appendix 2A).  

Multiple-comparisons correction was not carried out considering the number of tests in 

total, which may have resulted in false negatives from overly strict correction. For the 

microstructure-behavioural correlation tests, the alpha level was Bonferroni-corrected by 

dividing by the number of statistical comparisons involving each individual DTI measure 

(0.05/3 oddity accuracy measures = 0.017; Hodgetts et al. 2015). This rule was also used for 

the oscillatory power-behavioural correlation tests and oscillatory power-microstructure 

correlation tests inasmuch as the alpha level was Bonferroni-corrected by dividing by the 

number of statistical comparisons involving each individual DTI measure or oscillatory 

variable. Similarly, when comparing correlation coefficients, the alpha level was Bonferroni-

corrected by dividing by the number of statistical comparisons relating to a variable (0.05/2 

= 0.025). For the tests involving memory performance, the alpha level was Bonferroni-

corrected according the to the number of conditions (0.05/2 = 0.025).  
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Some of the hypotheses in this project were that specific phenomena should not occur. For 

example, it was hypothesized that ILF microstructure should not relate to scene oddity 

performance, a hypothesis that cannot be supported using inferential statistics. Therefore, 

for analyses that pertain to this kind of hypotheses, inferential statistics are accompanied 

by BFs from equivalent Bayesian tests. BFs were calculated using the BayesFactor package 

in R (Morey & Rouder, 2018), and were reported as BF10 (evidence of the alternative model 

over the null model). 

Exploratory analyses were included to ask whether correlations found between structure, 

function and oddity performance, in the confirmatory analyses, were specific to the tract or 

ROI. Therefore, despite the fact that a whole-brain search should require multiple 

comparison correction, the traditional alpha level of 0.05 was retained so that the relative 

importance of the tract or ROI investigated in the confirmatory analyses, was not 

exaggerated by the use of a stricter alpha threshold in the exploratory analyses. In light of 

this leniency, the results obtained from exploratory analysis were interpreted only as 

complementary to the confirmatory analyses or for consideration for future investigations.  

Additionally, exploratory searches for correlations between scene and face oddity accuracy 

and whole-brain t-maps of theta/low gamma/high gamma power differences between 

conditions were carried out using, partial correlation tests, with Monte Carlo sampling and 

5000 permutations. These controlled for the trial numbers of each condition. Both the 

alpha and cluster alpha thresholds were set at the traditional alpha level of 0.05. 

Plots were drawn using several R packages. Visualization of the correlation matrices was 

achieved using ggcorrplot (Kassambara, 2019). For the PCA results, stats (R Core Team, 

2019) and ggplot2 (Wickham, 2016) were used. To visualize correlation plots, with 

histograms ggstatsplot (Patil, 2021) was used. 
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5.3 Results. 

5.3.1 Further examination of the oddity behavioural data.  

Performance across the conditions was well matched, with similar mean and SD values (see 

Chapter 4 and summary statistics in Table 4). RT across conditions was not as well matched 

(scene RT > face RT > size RT; see Chapter 4).  

The scene performance data had a right skew. To reduce the skew, so that parametric tests 

could be used while keeping the conditions matched, all accuracy data was squared 

(McDonald, 2014). This resulted in a coefficient of skewness of less than 1 for the scene 

performance data but did not cause the coefficients of skewness of the face and size 

performance data to exceed +/-1. These transformed accuracy values were used for 

subsequent parametric tests and (except when stated otherwise) the terms ‘scene 

accuracy’, ‘face accuracy’ and ‘size accuracy’ in the results section of this chapter refer to 

the transformed conditions. 

 

Table 4. Descriptive statistics of the transformed oddity task performance results. 

SD: Standard Deviation.  

 

Pearson’s correlation tests revealed significant correlations between scene and face 

accuracy (r = 0.317, p = 0.046) and between scene and size accuracy (r = 0.343, p = 0.030), 

but not between face and size accuracy (r = 0.179, p = 0.270). There were also significant 

correlations between scene and face RT (r = 0.691 p <0.001), scene and size RT (r = 0.645, 

p<0.001), and face and size RT (r = 0.682, p <0.001). However, there were no significant 

 Scene Accuracy, 
untransformed 

(%) 

Face Accuracy, 
untransformed 
(%) 

Size Accuracy, 
untransformed 
(%) 

Scene 
Accuracy, 
squared 

Face 
Accuracy, 
squared 

Size 
Accuracy, 
squared 

Mean 60.87 60.78 61.35 3754.64 3768.77 3927.25 

SD 7.08 8.74 12.97 807.59 1062.13 1580.89 

Minimum 38.95 39.58 29.17 1516.90 1566.84 850.70 

Maximum 70.53 80.21 89.58 4973.96 6433.38 8025.17 

Skew -1.12 -0.08 -0.16 -0.84 0.40 0.42 
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correlations between condition accuracies and condition RTs (all p-values >0.05). The lack 

of correlations between accuracy and RT indicated that there were no clear speed-accuracy 

trade-offs so creating integrated measures, such as inverse efficiency scores would not be 

appropriate (Bruyer & Brysbaert, 2011; Townsend & Ashby, 1978). Therefore, accuracy and 

RT were inspected separately. A graphical summary is shown in Figure 24.  

 

 

5.3.2 Tract microstructure. 

The microstructure measures were averaged over each tract streamlines construction, 

resulting in seven measures each for the fornix, ILF and PHC, for each participant. Details of 

the microstructure measures across the group are shown in Table 5.  

 

 Fornix ILF PHC 

  Group mean SD  Group mean SD  Group mean SD 

FA 0.72 0.03 0.78 0.03 0.64 0.05 

Size RT 

Face RT 

Scene RT 

Size Accuracy 

Face Accuracy 

Scene Accuracy 

Figure 24. Graphical summary of the Pearson’s correlation statistics between oddity 
performance and RT within and between the scene face and size conditions. 

Numbers and box-colours represent r values, according to the key on the right. Crossed-

out boxes represent relationships whose corresponding p-values were above the 

traditional alpha level of 0.05. Note that this is not Bonferroni-corrected, as this is a 

hypothesis-free exploration of the data. 

RT: Reaction Time. 
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The results from the PCA (KMO: 0.66, sphericity: p<0.0001) showed that 94% of the 

microstructure data variance was accounted for by the first two principal components, PC1 

and PC2. PC1 accounted for 56% of the variance with MD and RD providing the major 

negative contributions, while FR and MPF provided the major positive contributions (Table 

6; Figure 25B). This is similar to the first component found in Chamberland et al. (2019), 

and therefore PC1 was interpreted as positively relating to a ‘restriction’ property of the 

fibre (the proclivity for water movement along the fibres as opposed to other dispersed 

directions). It was hypothesized that tract PC1 would relate positively to oddity 

performance. PC2 accounted for 38% of the variance, with FA and ICVF providing the major 

negative contributions, while OD provided a major positive contribution (Table 6). Since OD 

is lower in tracts known to have more fibre coherency and higher in tracts known to have 

more fibre fanning and crossing (Zhang et al., 2012), and FA can be influenced by how 

coherently fibres within a voxel are organised (Pierpaoli et al., 1996; Jones et al., 2013), PC2 

was interpreted as negatively relating to a ‘coherence’ property of the fibre (the dispersion 

of modelled fibre orientations). It was hypothesized that PC2 would relate negatively to 

oddity performance. The relative differences between the scores of the tracts are 

illustrated in Figure 25C. 

 

 

MD  0.09 x10-2 0.03 x10-3 0.07 x10-2 0.01 x10-3 0.07 x10-2 0.002 x10-3 

RD  0.07 x10-2 0.03 x10-3 0.05 x10-2 0.01 x10-3 0.06 x10-2 0.002 x10-3 

FR 0.24 0.01 0.33 0.02 0.25 0.02 

MPF 0.08 0.01 0.14 0.01 0.12 0.01 

ICVF 0.56 0.03 0.52 0.02 0.48 0.02 

OD 0.15 0.01 0.17 0.01 0.21 0.03 

Table 5. Group means and SDs for each microstructure value, for each tract. 

Microstructure values are averaged over tract streamlines for each participant. Means and SDs of microstructure 
values, across the group, for the three tracts of interest are shown.  
 
FA: Fractional Anisotropy. FR: Restricted Fraction. ICVF: Intracellular Volume Fraction. ILF: Inferior Longitudinal 
Fasciculus. MD: Mean Diffusivity. MPF: Molecular Proton Fraction. OD: Orientation Dispersion. PHC: 
Parahippocampal Cingulum. RD: Radial Diffusivity. SD: Standard Deviation.   
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 PC1 PC2 

FA  0.16 -0.56 

MD -0.48 -0.17 

RD -0.50  0.01 

FR  0.42 -0.32 

MPF  0.48  0.12 

OD  0.16  0.55 

ICVF -0.23 -0.48 

Table 6. PCA microstructure measure weightings. 

FA: Fractional Anisotropy. FR: Restricted Fraction. ICVF: Intracellular Volume Fraction. MD: Mean 
Diffusivity. MPF: Molecular Proton Fraction. OD: Orientation Dispersion. PC: Principal Component. 
RD: Radial Diffusivity.  
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Figure 25. Redundancy between tract diffusion values and results from PCA. 

A) Pearson’s correlations within the microstructure data from each tract suggest that the values give overlapping information 

(generated using ggcorrplot, Alboukadel, 2019). Colour denotes r value according to the key. B) Biplot illustrating the influence of 

each of the measures on PC1 and PC2, which account for 56% and 38% of the variance, respectively. C) Tract component scores for 

each participant, illustrating the differing properties of the tracts. 

FA: Fractional Anisotropy. FR: Restricted Fraction. ICVF: Intracellular Volume Fraction. ILF: Inferior Longitudinal Fasciculus. MD: 
Mean Diffusivity. MPF: Molecular Proton Fraction. OD: Orientation Dispersion. PC: Principal Component. PHC: Parahippocampal 
Cingulum. RD: Radial Diffusivity.  
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5.3.3 Associations between structure, function and oddity task performance. 

5.3.3.1 Correlations between oddity accuracy and tract microstructure. 

As predicted, there was a significant positive correlation between face oddity accuracy and 

ILF PC1 and a significant negative correlation between face oddity accuracy and ILF PC2 

(Figure 26), which were supported by BFs indicating weak evidence in favour of the 

alternative models over the null models. Moreover, neither ILF component measure 

correlated with scene or size oddity accuracy (Table 7).  

It was predicted that there would be a positive correlation between fornix PC1 and scene 

oddity accuracy. Although this trend did not surpass the experiment-wise alpha level 

(Figure 26), the resulting BF indicated weak evidence in favour of the alternative model 

over the null model. In addition, neither fornix microstructure component correlated with 

face or size oddity accuracy. Contrary to the hypothesis, fornix PC2 did not negatively 

correlate with scene oddity accuracy (Table 7).  

It was hypothesized that PHC microstructure would not relate to any oddity task 

performance. Indeed, all of the correlations surpassed the experiment-wise alpha level 

(Table 7). However, for the correlations between face oddity accuracy and PHC 

components, the BFs indicated weak evidence in favour of the alternative over the null 

models. For the correlations between scene and size oddity accuracy and PHC components, 

the BFs indicated evidence in favour of the null models. 

  Scene Accuracy Face Accuracy Size Accuracy 

Fornix PC1 r = 0.321 
p = 0.023 
BF10 = 2.05 

r = 0.243 
p = 0.068 
BF10 = 0.94 

r = -0.035 
p = 0.585 
BF10 = 0.36 

PC2 r = 0.057 
p = 0.635 
 BF10 = 0.38 

r = -0.090 
p = 0.292 
BF10 = 1.27 

r = 0.088 
p = 0.702 
BF10 = 0.40 

ILF PC1  r = 0.100 
p = 0.272 
 BF10 = 0.42 

r = 0.349 
p = 0.014* 
BF10 = 2.84 

r = -0.037 
p = 0.589 
BF10 = 0.36 
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There was partial support for dissociability of the correlations. The coefficient of the 

correlation between fornix PC1 and scene oddity accuracy was significantly larger than that 

of the correlations between fornix PC1 and size oddity accuracy (z(36) = 2.019, p = 0.022). 

However, it was not larger than that of the correlations between fornix PC1 and face oddity 

accuracy (z(36) = 0.442, p = 0.329). Similarly, the correlation coefficient between ILF PC1 and 

face oddity accuracy was significantly larger than that of the correlation between ILF PC1 

and size oddity accuracy (z(36) = 1.991, p = 0.023), but was not larger than that of the 

correlation between ILF PC1 and scene oddity accuracy (z(36) = 1.390, p = 0.082). Also, 

coefficient of the correlation between fornix PC1 and scene oddity accuracy was not 

significantly larger than that of the correlation between PHC PC1 and scene oddity accuracy 

(z(36) = 1.454, p = 0.146). 

Multiple linear regression was also used to assess whether fornix microstructure was 

specific in its relationship with scene oddity accuracy or whether ILF and PHC 

microstructure also contributed. A model with fornix PC1, PHC PC1, ILF PC1 did not 

significantly predict scene oddity accuracy (adjusted R2 = 0.029, p = 0.267) but fornix PC1 

was an independent predictor (p = 0.031, one-tailed). 

PC2 r = -0.119 
p = 0.236 
BF10 = 0.45 

r = -0.340 
p = 0.017* 
 BF10 = 2.58 

r = 0.170 
p = 0.849 
BF10 = 0.57 

PHC PC1 r = 0.053 
p = 0.372 
BF10 = 0.37 

r = 0.294 
p = 0.034 
BF10 = 1.52 

r = 0.180 
p = 0.136 
BF10 = 0.61 

PC2 r = -0.03 
p = 0.427 
BF10 = 0.36 

r = -0.258 
p = 0.057 
BF10 = 1.07 

r = -0.106 
p = 0.260 
BF10 = 0.43 

Table 7. Correlation tests between oddity task performance and Fornix, ILF and PHC microstructure 
components. 

One-tailed Pearson’s correlation tests, and undirected Bayesian correlation tests, between fornix, ILF and 
PHC microstructure, and oddity accuracy.  
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N=39. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal Cingulum.  
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5.3.3.2 Investigating relationships between oddity RT and tract microstructure.  

There were no significant correlations between fornix or ILF microstructure and oddity RTs 

(Table 8). However, the BF indicated weak evidence in favour of a correlation between face 

RT and ILF PC1.  

 

r = 0.321 
p = 0.023 

r = 0.057 
p = 0.635 

r = -0.340 
p = 0.017* 

r = 0.349 
p = 0.014* 

Figure 26. Scatterplots showing the relationship between fornix and ILF microstructure, and scene and face oddity 
performance. 

The mid-blue histograms show the distribution of the fornix PC1 data (top) and fornix PC2 data (bottom). The red 
histograms show the distributions of the ILF PC1 data (top) and ILF PC2 data (bottom). The light blue histogram 
shows the distribution of the scene accuracy data and the light pink histogram shows the face accuracy data. The 
blue lines are the regression lines and surrounding shaded areas represent the 95% confidence interval. Note that 
the accuracy data has been transformed to normal. *Highlights p≤0.017. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. 
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  Scene RT Face RT Size RT 

Fornix PC1 r = -0.059 
p = 0.362 
BF10 = 0.37 

r = -0.111 
p = 0.250 
BF10 = 0.43 

r = 0.020 
p = 0.547 
BF10 = 0.36 

PC2 r = -0.194 
p = 0.882 
BF10 = 0.66 

r = 0.148 
p = 0.816 
BF10 = 0.51 

r = 0.020 
p = 0.548 
BF10 = 0.36 

ILF PC1  r = -0.171 
p = 0.150 
BF10 = 0.57 

r = -0.319 
p = 0.024 
BF10 = 1.99 

r = -0.020 
p = 0.453 
BF10 = 0.36 

PC2 r = -0.030 
p = 0.573 
BF10 = 0.36 

r = 0.189 
p = 0.125 
BF10 = 0.64 

r = 0.011 
p = 0.473 
BF10 = 0.36 

PHC PC1  r = 0.011 
p = 0.528 
BF10 = 0.36 

r = -0.199 
p = 0.113 
BF10 = 0.68 

r = -0.038 
p = 0.410 
BF10 = 0.36 

PC2 r = 0.097 
p = 0.278 
BF10 = 0.42 

r = 0.238 
p = 0.073 
BF10 = 0.91 

r = 0.001 
p = 0.498 
BF10 = 0.36 

Table 8. Relationships between oddity RT and microstructure components of the fornix and the 
ILF. 

One-way Pearson’s correlation tests, and undirected Bayesian correlation tests, between fornix, ILF 
and PHC microstructure, and oddity RT.  
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N=39. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal Cingulum. RT: 
Reaction Time.  
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5.3.3.3 Inspecting the relationships between oddity performance and theta and gamma 

power in the HPC ROI.  

It was hypothesized that scene task HPC theta (4-8 Hz) power difference (between task and 

fixation) would be correlated with scene task accuracy. This trend was apparent. The p-

value of the correlation exceeded the experiment-wise alpha level, but the BF indicated 

evidence in favour of the alternative model. As predicted, significant correlations were not 

found between face task HPC theta difference and face accuracy, or between size task HPC 

theta difference and size oddity accuracy. Furthermore, the BFs indicated evidence in 

favour of the null models (Table 9).  

Contradictory to the hypothesis, neither low (40-60 Hz) nor high (60-80 Hz) HPC gamma 

power difference (between task and fixation) in the scene task correlated with scene oddity 

accuracy. Significant correlations were also not found between face task HPC gamma 

difference and face oddity accuracy, or between size task HPC gamma difference and size 

oddity accuracy (Table 9). Scatter plots showing the relationships between HPC theta, and 

scene and face oddity accuracy, are shown in Figure 27.  

 

 

 Scene accuracy Face accuracy  Size accuracy  

HPC theta power 
difference (task vs 

fixation) (N=40) 

r = -0.374 
p = 0.019 
BF10 = 4.24* 

r = 0.084 
p = 0.612 
BF10 = 0.40 

r = 0.051 
p = 0.756 
BF10 = 0.37 

HPC low gamma power 
difference (task vs 

fixation) (N=38) 

r = -0.054 
p = 0.750 
BF10 = 0.38 

r = -0.182 
p = 0.281 
BF10 = 0.61 

r = -0.025 
p = 0.883 
BF10 = 0.36 

HPC high gamma power 
difference (task vs 

fixation) (N=38) 

r = -0.034 
p = 0.841 
BF10 = 0.37 

r = -0.301 
p = 0.070 
BF10 = 1.58 

r = -0.097 
p = 0.567 
BF10 = 0.42 

Table 9. Relationships between oddity accuracy and HPC theta, low gamma and high gamma power 
during task compared to fixation. 

Partial correlation tests, and Bayesian correlation tests, between HPC theta and gamma power (task vs 
fixation) and oddity accuracy. 
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N differs in each row due to outlier deletion.  
 
HPC: Hippocampal Complex. 
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HPC theta power difference, between scene and size, in the scene task did not correlate 

with scene oddity accuracy. Significant correlations were also not found between face task 

HPC theta difference (between face and size) and face oddity accuracy (Table 10). 

There was, however, weak evidence for a trend between scene oddity accuracy and HPC 

high gamma power difference, between scene and size, but the p-value of the correlation 

exceeded the experiment-wise alpha level (Table 10). 

 

r = -0.374 
p = 0.019 

r = 0.084 
p = 0.612 

Figure 27. Relationships between scene and face oddity task accuracy and HPC theta power difference between task and 
fixation, with MEG trial number partialled out. 

The light blue histogram shows the distribution of the residuals of the scene accuracy data, and the light pink histogram shows 
the distributions of the residuals of the face accuracy data. The dark blue histograms show the distributions of the residuals of 
the HPC theta difference for scene vs fixation (left) and face vs fixation (right). The blue lines are the regression lines and 
surrounding shaded areas represent the 95% confidence interval. Note that the accuracy data was transformed to normal.   
 
HPC: Hippocampal Complex.  
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  Scene accuracy Face accuracy  

HPC theta power 
difference (scene/face 

vs size)  

r = 0.071 
p = 0.667 
BF10 = 0.38 

r = -0.008 
p = 0.962 
BF10 = 0.35 

HPC low gamma power 
difference (scene/face 

vs size)  

r = 0.110 
p = 0.504 
BF10 = 0.43 

r = -0.047 
p = 0.778 
BF10 = 0.37 

HPC high gamma power 
difference (scene/face 

vs size)  

r = 0.338 
p = 0.035 
BF10 = 2.62 

r = -0.015 
p = 0.929 
BF10 = 0.35 

Table 10. Relationships between oddity accuracy and HPC theta, low gamma and high gamma 
power during scene or face tasks compared to size task. 

Partial correlation tests, and Bayesian correlation tests, between HPC theta and gamma power 
(scene/face vs size) and oddity accuracy. 
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N=40. 
 
HPC: Hippocampal Complex.  
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There was partial support for dissociability of the correlations. The coefficient of the 

correlation between the scene HPC theta power difference (compared with fixation) and 

scene oddity accuracy was significantly stronger than that of the correlation between face 

HPC theta power difference (compared with fixation) and face oddity accuracy (z(37) = -

2.607, p = 0.009). However, the p-value for the test between the coefficient of the 

correlation between the scene HPC theta power difference (compared with fixation) and 

scene oddity, and that of the correlation between size HPC theta power difference and size 

oddity accuracy, exceeded the experiment-wise alpha level (z(37) = -2.204, p = 0.028).  

The coefficient of the correlation between the scene HPC high gamma power difference 

(compared with size) and scene oddity was not significantly larger than that of the 

correlation between face HPC high gamma power difference (compared with size) and face 

oddity accuracy (z(37) = 1.859, p = 0.063). 

5.3.3.4 Investigating three-part relationships between scene oddity performance, HPC 

theta power and fornix microstructure. 

It was hypothesized that there would be a three part-relationship between HPC oscillatory 

activity, fornix microstructure and scene task accuracy. Correlations were found between 

HPC theta difference (compared with fixation) in the scene task and scene accuracy, and 

between fornix PC1 and scene accuracy but fornix PC1 did not significantly correlate with 

HPC theta difference in the scene task (Table 11).  

However, there was a negative correlation between fornix PC2 and scene HPC theta 

difference (compared to fixation) and the corresponding the BF indicated evidence in 

favour of the alternative model (Table 11). In line with the hypothesis, this correlation 

coefficient was significantly stronger than those of the correlations between ILF PC2 and 

scene HPC theta power difference (z(36) = -2.585, p = 0.010), and between PHC PC2 and 

scene HPC theta power difference (z(36) = --2.335, p = 0.020). However, this correlation 

coefficient was not stronger than those of the correlations between fornix PC2 and face 

HPC theta power difference (z(36) = -1.661, p = 0.097) or size HPC theta power difference 

(z(36) = -0.636, p = 0.548). Indeed, there was weak evidence supporting trends between 

fornix PC2 and face and size HPC theta difference (compared to fixation).  

As predicted, there were no significant correlations between ILF or PHC microstructure and 

theta power differences in any of the conditions (Statistics shown in Appendix 2B). 
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  Scene HPC theta 
power difference 

Face HPC theta 
power difference 

Size HPC theta 
power difference 

Fornix PC1 r = -0.162 
p = 0.331 
BF10 = 0.55 

r = -0.295 
p = 0.072 
BF10 = 1.56 

r = -0.193 
p = 0.246 
BF10 = 0.65 

PC2 r = -0.389 
p = 0.016 * 
BF10 = 4.89 * 

r = -0.277 
p = 0.093 
BF10 = 1.28 

r = -0.355 
p = 0.029 
BF10 = 2.91 

Table 11. Relationships between HPC theta power difference (compared to fixation), and fornix 
microstructure. 

Partial correlation tests, and Bayesian correlation tests, between HPC theta power (task vs fixation) 
and tract microstructure 
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N=39. 
 
HPC: Hippocampal Complex. PC: Principal Component. 
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5.3.3.5 Investigating three-part relationships between face oddity performance, FG 

gamma power and ILF microstructure.  

Contradictory to the hypothesis, neither low nor high FG gamma power difference 

(compared with fixation), during the face task, significantly correlated with face task 

accuracy. Similarly, were there no significant correlations between high or low FG gamma 

power difference (compared with fixation) during the face task, and either of the ILF 

components (Table 12).  

Contradictory to the hypothesis, neither low nor high FG gamma power difference 

(compared with size), during the face task, significantly correlated with face task accuracy 

(Table 13).  

 

  

 Scene accuracy Face accuracy  Size accuracy  ILF PC1 ILF PC2 

FG low gamma power 
difference (task vs fixation) 

r = -0.035 
p = 0.832 
BF10 = 0.36 

r = -0.225 
p = 0.169 
BF10 = 0.83 

r = -0.002 
p = 0.992 
BF10 = 0.35 

r = -0.185 
p = 0.266 
BF10 = 0.62 

r = 0.223 
p = 0.178 
BF10 = 0.81 

FG high gamma power 
difference (task vs fixation) 

r = 0.032 
p = 0.848 
BF10 = 0.36 

r = -0.232 
p = 0.156 
BF10 = 0.88 

r = -0.039 
p = 0.817 
BF10 = 0.36 

r = -0.289 
p = 0.078 
BF10 = 1.44 

r = 0.159 
p = 0.340 
BF10 = 0.54 

Table 12. Relationships between low and high FG gamma power (task vs fixation), oddity accuracy and ILF microstructure. 

Partial correlation tests, and Bayesian correlation tests, between FG gamma power difference (task vs fixation) and oddity 
accuracy (N=40), and between FG gamma power difference and ILF microstructure (N=39). 
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. 

FG: Fusiform Gyrus. ILF: Inferior Longitudinal Fasciculus.  

Table 13. Relationships between low and high FG gamma power (task vs size) and oddity accuracy. 

Partial correlation tests, and Bayesian correlation tests, between FG gamma power difference 
(scene/face vs size) and oddity accuracy. 
*Highlights p≤0.017. *Highlights a BF10 ≥ 3. N=40. 

FG: Fusiform Gyrus.  

 Scene accuracy Face accuracy  

FG low gamma power 
difference (scene/face vs 

size) 

r = 0.089 
p = 0.591 
BF10 = 0.40 

r = 0.051 
p = 0.760 
BF10 = 0.37 

FG high gamma power 
difference (scene/face vs 

size) 

r = 0.314 
p = 0.052 
BF10 = 1.95 

r = 0.013 
p = 0.940 
BF10 = 0.35 
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A graphical summary of the main results is shown in Figure 28.   

Figure 28. Graphical summary of findings of correlations between structure, function and behaviour. 

No associations were found between PHC (green tract) microstructure and oddity performance or between 

PHC microstructure and HPC oscillatory power differences, between scene task and fixation (green arrow). 

There were correlations between ILF (red tract) microstructure and face oddity performance (red arrow). 

There was evidence for correlations between fornix (blue tract) PC1 and scene oddity performance, between 

fornix PC2 and HPC theta power difference between scene and fixation, and between scene oddity 

performance and theta power difference between scene and fixation (blue arrows). 

(The brain image was made using ExploreDTI and an example dataset (Leemans et al., 2009)). 

HPC: Hippocampal Complex. ILF: Inferior Longitudinal Fasciculus. PHC: Parahippocampal Cingulum.  

No significant 

correlations between 

PHC microstructure 

components and 

oddity performance 

or HPC theta power 

modulation. 

Correlations between 

both ILF 

microstructure 

components and face 

oddity performance. 

Evidence for 

correlation between 

‘restriction’ fornix 

microstructure 

component and scene 

oddity performance. 

Correlation 

between 

‘coherence’ 

fornix 

microstructure 

component and 

HPC theta 

modulation. 

Correlation between 

scene oddity 

performance and HPC 

theta modulation. 
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5.3.4 Exploratory searches for associations between structure, function and oddity 

accuracy. 

5.3.4.1 Investigating relationships between other PMN ROIs and whole-brain power 

modulations, task accuracy and tract microstructure.  

An exploratory examination of the relationships between theta power differences 

(compared with fixation) in other PMN ROI data and task accuracy revealed no further 

significant correlations. However, there was a negative trend between scene PCC theta 

power difference and scene oddity accuracy (Table 14). Although the p-value of this trend 

exceeded the experiment-wise alpha level, the correlation coefficient was significantly 

stronger than that of the correlation between face PCC theta difference and face oddity 

accuracy (z(37) = -2.618, p = 0.009), and it was also significantly stronger than that of the 

correlation between size PCC theta difference and size oddity accuracy (z(37) = -2.348, p = 

0.019). Similarly, there was a negative trend between scene PCC low gamma power 

difference and scene oddity accuracy, but this correlation coefficient was not significantly 

stronger than those of the correlations between face PCC low gamma difference and face 

oddity accuracy, or size PCC low gamma difference and size oddity accuracy (p values 

>0.05).  

 Scene accuracy Face accuracy  Size accuracy  

mPFC theta power difference (task vs fixation) (N=40) r = 0.057 
p = 0.731 

r = 0.173 
p = 0.292 

r = 0.179 
p = 0.275 

PCC theta power difference (task vs fixation) (N=40) r = -0.337 
p = 0.036 

r = 0.139 
p = 0.423 

r = 0.069 
p = 0.675 

IPL theta power difference (task vs fixation) (N=40) r = -0.138 
p = 0.401 

r = 0.192 
p = 0.245 

r = -0.046 
p = 0.779 

mPFC low gamma power difference (task vs fixation) 
(N=37)  

r = -0.092 
p = 0.603 

r = -0.004 
p = 0.982 

r = -0.065 
p = 0.717 

PCC low gamma power difference (task vs fixation) 
(N=37) 

r = -0.343 
p = 0.046 

r = -0.124 
p = 0.486 

r = -0.292 
p = 0.094 

IPL low gamma power difference (task vs fixation) 
(N=35) 

r = -0.185 
p = 0.296 

r = 0.147 
p = 0.407 

r = -0.309 
p = 0.075 

mPFC high gamma power difference (task vs fixation) 
(N=35)  

r = 0.066 
p = 0.702 

r = -0.156 
p = 0.362 

r = -0.257 
p = 0.130 
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 There were no significant correlations between scene mPFC, PCC or IPL theta power and 

fornix microstructure (Table 15).  

 

 

 

 

 

 

5.3.4.2 Whole-brain search for negative theta power modulations and scene oddity 

accuracy correlations. 

To see if the negative correlation between theta power and scene oddity accuracy was 

specific to the HPC, a one-sided whole-brain search for negative correlations between theta 

power difference (compared with fixation) and scene task accuracy was carried out (while 

controlling for the number of MEG trials in each condition). In accordance with the result of 

the confirmatory correlation analysis focusing on the HPC ROI, a large cluster where theta 

power difference in the scene task negatively correlated with scene oddity accuracy was 

PCC high gamma power difference (task vs fixation) 
(N=35) 

r = -0.050 
p = 0.772 

r = 0.020 
p = 0.910 

r = -0.163 
p = 0.344 

IPL high gamma power difference (task vs fixation) 
(N=35) 

r = 0.001 
p = 0.997 

r = -0.155 
p = 0.366 

r = -0.085 
p = 0.621 

Table 14. Correlation tests between PMN ROI theta and gamma power, and oddity accuracy. 

Partial correlation tests between PMN ROI theta power (task vs fixation) and oddity accuracy. 
No significant correlations were found. N values shown on each row and differed due to outlier removal. 

IPL: Inferior Parietal Lobule. mPFC: Medial Prefrontal Cortex. PCC: Posterior Cingulate Cortex.  

 

 

 

 

  Fornix  

PC1 PC2 

Scene mPFC theta  r = 0.002 
p = 0.992 

r = -0.169 
p = 0.310 

 Scene PCC theta  r = -0.254 
p = 0.123 

r = -0.208 
p = 0.211 

 Scene IPL theta  r = 0.006 
p = 0.972 

r = -0.325 
p = 0.047 

Table 15. Correlation tests between PMN ROI theta and gamma power, and fornix microstructure. 

Partial correlation tests between PMN ROI theta power (scene vs fixation) and tract microstructure. 
 
IPL: Inferior Parietal Lobule. mPFC: Medial Prefrontal Cortex. PC: Principal Component. PCC: 

Posterior Cingulate Cortex.  
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revealed (cluster p = 0.048). This encompassed several posteromedial areas, including 

bilateral MTL, bilateral inferior temporal lobe, precuneus and the PCC (Figure 29). No 

significant clusters were found for equivalent partial correlation tests between theta power 

differences during face or size conditions, and face and size oddity accuracy.  

 

5.3.4.3 Investigating relationships between task accuracy and differences between scene 

and face whole-brain theta and gamma oscillatory power. 

Source-source subtraction can aid localization of oscillatory activity from deep sources in 

MEG (see Chapter 2). Therefore, associations between whole-brain power t-map 

differences between the conditions (see Chapter 4), and scene and face oddity accuracies, 

were also explored (while controlling for the number of MEG trials in each condition). 

Partial correlation tests between scene oddity accuracy and scene vs size theta/low gamma 

t-maps (controlling for scene and size trial numbers) revealed no significant clusters. 

However, partial correlations tests between scene oddity accuracy and scene vs size high 

gamma t-maps (controlling for scene and size trial numbers) revealed one large positive 

cluster spanning multiple medial areas including bilateral MTL, portions of the cerebellum, 

PMC, inferior occipital areas and superior frontal cortex areas (cluster p = 0.039) (Figure 

30). Partial correlation tests between face oddity accuracy and face vs size theta/low 

gamma/high gamma t-maps (controlling for face and size trial numbers) revealed no 

significant clusters.  

A partial correlation test between scene oddity accuracy and scene vs face theta t-maps 

(controlling for scene and face trial numbers) revealed one large positive cluster spanning 

R L R 

Figure 29. Relationships between theta power difference (compared with fixation) and scene accuracy. 

Negative relationships were found in bilateral medial and inferior temporal lobes, the right hippocampus and the 
PCC. Colours represent t-values, and the scale is shown below the middle image (alpha threshold = 0.05).  L = left. 
R = right. M = mid-line. 

M 
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several medial areas including portions of the cerebellum, PCC, middle cingulate cortex, 

thalamus and caudate (cluster p = 0.020) (Figure 30). The equivalent test for correlations 

with face oddity accuracy revealed no significant clusters.   

Partial correlations tests between scene or face oddity accuracy and scene vs face low 

gamma t-maps (controlling for scene and face trial numbers) revealed no significant 

clusters.  

 A partial correlation test between scene oddity accuracy and scene vs face high gamma t-

maps (controlling for scene and face trial numbers) revealed one large positive cluster 

which included posterior right MTL, the PCC, the occipital lobe, right inferior parietal cortex 

and the right precuneus (cluster p = 0.048) (Figure 30). The equivalent test for correlations 

with face oddity accuracy revealed no significant clusters.   

 

 

5.3.4.4 Investigating the frequency specificity and timing of the correlation between scene 

HPC theta power modulation and scene oddity accuracy.  

To understand whether scene oddity accuracy related to scene HPC power difference 

(compared to fixation) in the theta band only, scene HPC power difference (compared to 

fixation) was also calculated for the frequency bands surrounding theta and gamma, and 

Correlation between scene oddity 
accuracy and scene>face theta 

RM

Correlation between scene oddity 
accuracy and scene>face high gamma 

R

Correlation between scene oddity 
accuracy and scene>size high gamma 

Figure 30. Relationships between scene oddity accuracy and oscillatory power differences between conditions. 

Left: Positive relationships were found between scene oddity accuracy and scene vs size high gamma in several medial areas 
such including portions of the cerebellum, bilateral MTL, inferior occipital areas, PMC areas and the superior frontal cortex.   
Middle: Positive relationships were found between scene oddity accuracy and scene vs face theta in several medial areas 
including portions of cerebellum, PCC, middle cingulate cortex and midbrain. Right: Positive relationships were found between 
scene oddity accuracy and scene vs face high gamma in portions of the right MTL, PCC, occipital lobe, and the right precuneus. 
Colours represent t-values from correlation tests according to the keys shown below the images (alpha threshold = 0.05). M = 
midline. R = right. 
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partial correlations between these values and scene oddity accuracy were tested 

(controlling for MEG trial numbers). These tests revealed that scene HPC delta power 

difference negatively correlated with scene oddity accuracy (Table 16). There were no 

significant correlations between scene HPC power difference and scene oddity accuracy in 

the alpha or beta bands.  

 

 

 

 

To further understand the laterality, timing and frequency-spread of this relationship 

between HPC theta/delta power and oddity accuracy, and how they compare in the scene 

and face tasks, HPC time-frequency data of the scene and face tasks (contrasted with the 

fixation period) were tested for partial correlations with scene and face oddity accuracy 

data, respectively (controlling for MEG trial numbers).  

In the right HPC scene data, there was a negative cluster, spanning the lower frequencies 

and encompassing theta and delta, which commenced at around 0.4 s and continued for 

the rest of the time period (cluster p = 0.002). Equivalent partial correlation tests between 

time-frequency comparison of the right HPC virtual sensor during the face task and fixation 

period and face oddity accuracy data (controlling for MEG face trial numbers) revealed no 

significant clusters (Figure 31).  

The left HPC scene data also contained a negative cluster, spanning the lower frequencies 

and encompassing theta and delta, which commenced at around 0.5 s and continued for 

the rest of the time-period (cluster p = 0.0062). Equivalent partial correlation tests between 

time-frequency comparison of the left HPC virtual sensor during the face task and fixation 

 Scene accuracy 

HPC delta power difference (task vs 
fixation) 

r = -0.401 
p = 0.012* 

HPC alpha power difference (task vs 
fixation) 

r = -0.233 
p = 0.154 

HPC beta power difference (task vs 
fixation) 

r = -0.033 
p = 0.843 

Table 16. Relationships between scene HPC ROI power difference in surrounding frequency bands and 
scene oddity accuracy. 

Partial correlation tests between HPC oscillatory power difference (task vs fixation) and scene oddity 
accuracy. 
*Highlights p≤ 0.017. N=40. 
 
HPC: Hippocampal Complex.  



Chapter 5: Examining relationships between structure, function, and oddity performance in the PMN and AIN. 

150 
 

period and face oddity accuracy data (controlling for MEG face trial numbers) revealed a 

negative cluster, spanning low to high gamma ranges, which commenced at around 1.4 s 

and continued to the end of the time period (cluster p = 0.027) (Figure 31).  
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Figure 31. Whole time frequency search for correlations between right and left HPC theta power difference 
(compared with fixation) and scene and face oddity accuracy. 

Colours represent t-values, according the to the key presented next to each spectrogram. Dotted lines outline 

significant clusters (alpha threshold = 0.05).  

HPC: Hippocampal Complex.  
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Test for correlations with 

scene oddity accuracy. 
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Test for correlations with 

face oddity accuracy. 
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5.3.5 Incidental memory behavioural data. 

Overall, memory performance was poor. The mean of scene hit rate was 0.63 (SD = 0.140), 

with a mean false alarm rate of 0.45 (SD = 0.140). The mean of face hit rate was 0.55 (SD = 

0.156), with a false alarm rate of 0.44 (SD = 0.140). The mean d’ scores for scenes and faces 

were 0.49 (SD = 0.452) and 0.28 (SD = 0.287), respectively, and were both above the chance 

level of 0 (t(39) = 9.197, p >0.001; t(39) = 6.197, p >0.001). The d’ scores for scenes were 

significantly larger than those for faces (t(39) = 2.635, p = 0.012; BF10 = 3.49), and the two did 

not correlate significantly (t(38) = 1.001, r = 0.161, p = 0.320; BF10 = 0.32).  

However, assessing recognition performance without confidence may not reveal if the 

confidence with which items were remembered differed across the stimuli. To assess 

whether the difference in memory performance for scenes and faces was reflected in the 

confidence of hit responses, the proportions of high confidence hit responses (“It’s 

definitely new”, rather than “I think it’s new”) were compared between the conditions. On 

average, 50% of the scene hits, and 26% of the face hits were answered with high 

confidence (Figure 32). These were significantly different (t(39) = 7.101, p<0.001; BF10 = 

846112).   

 

5.3.5.1 Associations between oddity performance and memory performance. 

A two-way RM ANOVA was constructed to test whether scenes and faces differed in terms 

of the proportions of hit responses for stimuli answered correctly or incorrectly in the 

Confident (Face) Confident (Scene) 
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Figure 32. Confident scene and face hits, as proportions of all scene and face hits. 

Density plots of confident scene and face hit responses, as proportions of all scene and face hits, 
averaged over the group. Red dots/µ = mean. Boxplots indicate the median and upper and lower 
quartiles. 
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oddity task (the ‘condition’ factor had two levels, scene and face, the ‘hits’ factor had two 

levels, oddity-correct and oddity-incorrect, and the dependant variable was the proportion 

of hits in the memory task). There was a simple main effect of condition (more hit 

responses for scenes than for faces; F(1,39) = 10.067, p = 0.003) but there was no main effect 

of oddity task accuracy (F(1,39) = 2.653, p = 0.111), indicating that stimuli answered correctly 

in the oddity task were not more, or less, likely to be recognised as previously-seen than 

stimuli answered incorrectly (Figure 33). 

Also, there was no significant interaction between condition and oddity accuracy (F(1,39) < 

0.001, p = 0.993).   

Bayesian RM ANOVA also supported these results. A model based on the alternative 

hypothesis that condition influenced hit rate was supported with the highest BF (BF10 = 

278.65, compared to the null). The model based on the alternative hypothesis that oddity 

accuracy influenced hit rate was not supported (BF10 = 0.29).  
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Figure 33. Proportion of hit responses in oddity-correct trials and oddity-incorrect trials. 

Density plots of oddity-correct and oddity-incorrect scene and face hit responses, as proportions of all old oddity-correct and 
oddity-incorrect scene and face trials, averaged over the group. 
Red dots/µ  = mean. Boxplots indicate the median and upper and lower quartiles. 
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A correlation test revealed a positive trend between scene oddity accuracy and scene d’, 

but the p-value exceeded the experiment-wise alpha threshold (t(38) = 2.157, r = 0.330, p = 

0.037), and the BF indicated weak evidence in favour of the alternative model over the null 

model (BF10 = 2.37). There was also a positive trend between face oddity accuracy and face 

d’, but the p-value exceeded the traditional alpha level (t(38) = 1.913, r = 0.290 p = 0.063), 

and the BF indicated only weak evidence in favour of the alternative model over the null 

model (BF10 = 1.61; Figure 34).  

5.3.5.2 Testing whether correlations between tract microstructure and HPC theta power 

modulation, and oddity accuracy, carry over to memory performance. 

One-way correlations between tract microstructure scores and d’ scores were carried out 

to investigate whether fornix and ILF microstructure measures correlated with scene and 

face memory performance, respectively, as they did with scene and face oddity accuracy, 

respectively. There were no significant correlations between scene d’ and either fornix PC1 

(t(37) = 0.840, r = 0.137, p = 0.203; BF10 = 0.28) or fornix PC2 (t(37) = -0.709, r = =0.116, p = 

0.242; BF10 = 0.25). Similarly, there were no significant correlations between face d’ and ILF 

PC1 (t(37) = -0.450, r = -0.074, p = 0.673; BF10 = 0.22) or ILF PC2 (t(37) = 0.187, r =0.031, p = 

0.574; BF10 = 0.20). 

In addition, partial correlation tests were carried out between HPC theta power difference 

(compared with fixation) during the scene oddity task and scene memory performance 

(while controlling for the number of scene MEG trials) and between HPC theta power 

Figure 34. Relationships between oddity and memory performance for scenes and faces. 

The light blue histogram shows the distribution of the scene accuracy data, and the light pink histogram shows the 
distribution of the face accuracy data. The green histogram shows the distribution of the scene d’ data and the dark 
pink histogram shows the distribution of the face d’ data. The blue lines are the regression lines and surrounding 
shaded areas represent the 95% confidence interval. 

r = 0.330 
p = 0.037 

r = 0.290 
p = 0.063 
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difference (compared with fixation) during the face oddity task and face memory 

performance (while controlling for the number of face MEG trials). There were no 

significant correlations between scene HPC theta power difference and scene d’ (t(36) = 

0.995, r =0.161, p = 0.326; BF10 = 0.54) or between face HPC theta power difference and 

face d’ (t(36) = -1.671, r =-0.264, p = 0.103; BF10 = 1.17).  
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5.4 Discussion 

This experiment aimed to test relationships between structure and function in components 

of the PMN, and performance in a complex scene processing task, and to contrast these 

with relationships between structure and function in components of the AIN and 

performance in a complex face processing task. This project expanded upon the work of 

Hodgetts et al. (2015) by harnessing the added oscillatory and temporal information 

provided by MEG and the more biologically specific representation of tract structure 

provided by combining DTI measures with those obtained using higher-order 

microstructure models. Here, scene processing in the HPC, connected to the PMN by the 

fornix, was the focus of the research, and it was contrasted with aspects of face processing 

in the FG, which is connected to AIN regions by the ILF. These results provided support for 

the PM-view: the ‘restriction’ property of the fornix, and the ‘restriction’ and ‘coherence’ 

properties of the ILF were evidenced to be related to complex perceptual processing for 

scenes and faces, respectively. Furthermore, HPC theta power difference between the 

scene task and fixation correlated with scene oddity performance, and the ‘coherence’ 

property of the fornix. These relationships were unique to the fornix and were not also the 

case for PHC microstructure, a tract which also connects areas of the PMN. Furthermore, 

relationships between structure, function and oddity performance were not carried over to 

memory performance, indicating that the processes measured were not purely reflections 

of incidental encoding. Contrary to the hypotheses, there was not a three-part relationship 

between fornix microstructure, HPC theta power difference between the scene task and 

fixation, and scene oddity accuracy. In addition, gamma power in the FFA did not relate to 

face oddity performance or ILF microstructure.  

5.4.1 Reduction of tract microstructure measures produced biologically 

interpretable components. 

Tract microstructure data were reduced to two main components. These were biologically 

interpretable and were similar to those described in previous studies which also reduced 

tract microstructure data through PCA (Chamberland et al., 2019; Geeraert et al., 2020). 

PC1 was most influenced negatively by MD, RD and positively by FR and MPF. It was 

interpreted as positively relating to a ‘restriction’ property of the fibre (the proclivity for 

water movement along the fibres as opposed to other dispersed directions). It shares 

similarities to the first component reported in Chamberland et al. (2019), which was 

negatively influenced by RD and positively influenced by another measure of fibre density, 
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and they also interpreted this component as reflecting ‘restriction’. It is also similar to the 

second component reported in Geeraert et al. (2020) which they named ‘myelin and axonal 

packing’ because it was influenced positively by FA and negatively by RD and MD.  

PC2 was most influenced positively by OD and negatively by FA. It was interpreted as 

negatively relating to a ‘coherence’ property of the fibre (the dispersion of modelled fibre 

orientations). It was similar to the first component reported in Geeraert et al. (2020) which 

they named ‘tissue complexity’ because it was influenced positively by FA and negatively by 

OD. However, the term ‘coherence’ was used here to clarify the hypothesis that increased 

coherency, and therefore increased FA, would reflect a beneficial tract property. The term 

‘complexity’ is ambiguous in its expected relationship with performance. Although there 

are slight differences in the resulting components across studies (as would be expected as 

there is variation in the microstructure measures and tracts included), common biologically 

interpretable properties are revealed supporting the usefulness of microstructure data 

reduction across studies.  

5.4.2 Partially dissociable correlations between fornix microstructure and scene 

task performance, and ILF microstructure and face task performance.  

In line with the results of Hodgetts et al. (2015), there was weak evidence of a correlation 

between the fornix microstructure component relating to restriction, and scene oddity 

performance. Although the p-value did not surpass the experiment-wise alpha level, the 

resulting BF indicated weak evidence in favour of the alternative model over the null. 

Similarly, the ILF microstructure components relating to restriction, PC1, and coherence, 

PC2, correlated with face oddity performance and both BFs indicated weak evidence in 

favour of the alternative model over the null. Moreover, the coefficient of the correlation 

between fornix PC1 and scene oddity performance was significantly larger than that of the 

correlation between fornix PC1 and size oddity performance; and the coefficients of the 

correlations between ILF components and face oddity performance were larger than those 

of correlations between ILF components and size oddity performance. These distinctions 

are important because the scene and face oddity tasks require the construction of a view 

invariant internal model, whereas the size task does not.  

However, the correlations were not dissociable as would be predicted by the PM-view. The 

coefficient of the correlation between fornix PC1 and scene oddity performance was not 

significantly larger than that of the correlation between fornix PC1 and face oddity 
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performance; and the coefficients of the correlation between the ILF PC1 and face oddity 

performance were not significantly larger than that of the correlation between ILF PC1 and 

scene oddity performance. This may be due to a lack of power as Hodgetts et al. (2015) 

found a significant difference between the correlations between ILF MD and face oddity 

performance and ILF MD and scene oddity performance, and in the current work, the BFs 

for the correlations between ILF components and scene oddity performance indicated 

evidence in favour of the null. Although, Hodgetts et al. (2015) did not find a significant 

difference between the correlations between fornix MD and scene oddity performance and 

fornix MD and face oddity performance, it approached significance. Moreover, Postans et 

al. (2014) conducted a similar experiment comparing associations between fornix 

microstructure and scene and face complex processing and did find a significant difference 

between the coefficients of correlations between fornix microstructure and scene 

performance, and fornix microstructure and face performance. These studies reported 

larger effect sizes than those found in the current study. Since the current participant 

population was larger than these previous studies but comparable in demographics, it may 

be that differences in the methods (for example natural versus virtual stimuli or tract 

microstructure measurement) reduced the tract-behaviour correlations, possibly thereby 

reducing power. 

It was also of interest to understand whether associations between scene oddity 

performance and PMN tract microstructure were specific to the fornix, or also related to 

microstructure of the PHC, since both these tracts connect areas of the hippocampal–

diencephalic–cingulate loop (Bubb et al., 2017). The hypothesis that the fornix would be 

uniquely important was partially supported by the results. Scene oddity performance did 

not correlate with PHC microstructure, but the coefficient of the correlation between fornix 

PC1 and scene oddity accuracy was not significantly larger than that of the correlation 

between PHC PC1 and scene oddity accuracy.  

Conversely, in a one-tailed multiple linear regression including fornix PC1, ILF PC1 and PHC 

PC1, and designed to predict scene oddity accuracy, only fornix PC1 significantly 

contributed. Together, these results cannot rule-out associations between ILF and PHC 

microstructure and scene oddity performance, but they indicate that fornix microstructure 

may have an independent relationship with scene oddity performance, distinct from that 

between scene oddity performance and ILF or PHC microstructure.  
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5.4.3 HPC theta power correlated with scene oddity performance.  

It was hypothesized that there would be an oscillatory change in the HPC ROI that would be 

related to scene task performance, and it was proposed that signals from this location 

would largely originate from the hippocampus because the reduction of hippocampal BOLD 

was previously found to relate to scene oddity performance (Hodgetts et al., 2015). Indeed, 

there was evidence that reduction of HPC theta power during the scene task correlated 

with scene oddity performance and not face or size oddity performance, indicating the 

importance of decreased HPC theta for successful complex perception of scenes. This aligns 

with the common understanding of the importance of the theta rhythm in hippocampal 

processing (Colgin, 2016) and with two previous MEG studies which found decreased 

hippocampal theta power during novel scene imagery (Barry et al., 2019; Monk et al., 

2020). The underlying cognitive processes reflected by decreased theta power are not 

clear. However, commonalities between these two previous studies and the current project 

include: the novelty of the scene stimuli (every scene in the current work was trial unique); 

the requirement for internal processing (internal rotation of the scenes is required to 

identify the odd image and internal novel scene construction was required in the tasks of 

Barry et al. 2019 and Monk et al. 2020); and the lack of instruction to encode. Relatedly, 

decreased hippocampal theta has been reported in rats when they experience novelty in 

their environment (Jeewajee et al., 2008), and it is suggested that decreased theta 

contributes to the generation of the MTL-P300 (Jeewajee et al., 2008), a commonly 

reported evoked signature of novelty (Nieuwenhuis et al., 2011). 

Exploration of bilateral HPC time-frequency data, indicated that the association between 

scene oddity performance and theta power decrease commenced with a delay after 

stimulus onset, and continued for much of the trial time, suggesting that this beneficial 

process was not transient. This pattern was similar for the right and left HPC.  

Theta power has also previously been related to performance in MEG navigation studies, 

specifically theta power negatively related to time taken to find the hidden platform in a 

virtual Morris water maze suggesting that higher theta power was associated with better 

performance (Cornwell et al., 2008; Y. Pu et al., 2020). Moreover, invasive recording in rats 

using the radial arm maze, has shown increased theta preceding correct versus incorrect 

spatial decisions (Belchior et al., 2014). Although these associations between theta power 

change and performance are in the opposite direction to that reported here, they support 
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the hypothesis that modulation of hippocampal theta reflects beneficial hippocampal 

processes.  

To assess the specificity of the frequency effect, tests of correlations between scene oddity 

performance and HPC power in frequency bands surrounding theta, delta and alpha, were 

also carried out as part of the exploratory analyses. The effect was largely specific to the 

theta band inasmuch as no significant correlation was found between scene oddity 

performance and HPC alpha power. However, a negative association was found with 

averaged HPC delta, and the correlation test with HPC time-frequency data shows that the 

negative cluster encompasses delta frequencies for some of the time period. Frequencies 

associated with navigation, such as theta, in humans have been reported to be shifted to 

lower frequencies to those reported in animals (Watrous et al., 2013), which may be 

because human studies involve participants exploring virtual environments without any 

physical movement (Bohbot et al., 2017). Similar to the current results, invasive recordings 

from humans navigating virtual environments have shown modulation of both delta and 

theta in response to what was viewed in the environment (Watrous et al., 2011). Invasive 

recordings in humans during virtual navigation has indicated differing roles for theta and 

delta oscillations: posterior hippocampal theta (around 8Hz) was associated with 

movement speed and delta (around 3Hz) was more prominent in the anterior hippocampus 

and was not modulated by movement speed (Goyal et al., 2020). However, the current 

results provide no evidence of functional differences between delta and theta modulations 

during spatial processing, and there was no movement. 

Decreases in low frequency power have been shown to accompany increases in power in 

higher frequencies (Scheeringa et al., 2011). However, there was no equivalent positive 

correlation between scene oddity performance and HPC power difference between scene 

and fixation, in either of the gamma frequencies. Interestingly, Barry et al. (2019), who 

identified a MEG-measured decrease in hippocampal theta in response to novel scene 

imagery, also reported no equivalent change in higher frequencies. It may be the case that 

increased power in higher frequencies did occur but were undetected, because accurate 

localization of higher frequency signals from deep sources with MEG is more challenging 

because of the decreased SNR of MEG recordings due to source-sensor distance and 

muscle artefacts (Muthukumaraswamy, 2013). Deep source localization of MEG signals is 

improved when stronger signals related to visual processing are cancelled out by 

contrasting two visually similar tasks, rather than contrasting a task to a baseline (Mills et 

al., 2012; Quraan et al., 2011). This may have meant that oddity performance – power 



Chapter 5: Examining relationships between structure, function, and oddity performance in the PMN and AIN. 

161 
 

modulation correlations were missed in the confirmatory analyses that comprised task vs 

fixation comparisons. Indeed, the exploratory test of correlations between t-maps of the 

difference between scene and size high gamma power, and scene oddity accuracy revealed 

a positive cluster which included bilateral MTL areas. Similarly, the exploratory test of 

correlations between t-maps of the difference between scene and face high gamma power, 

and scene oddity accuracy, revealed a positive cluster which included areas of the right 

MTL. Together, the results could indicate that optimal complex scene processing in the 

hippocampus, entails increased high gamma power in conjunction with decreased 

theta/delta power. However, further confirmatory investigation of the relationship 

between scene oddity performance and hippocampal gamma, ideally with invasive 

recording, would be required to test this.  

It is important to note that the correlation between scene oddity performance and 

decreased scene HPC theta/delta was not a phenomenon occurring across all lower 

frequencies as there was no equivalent correlation with scene HPC alpha. However, it 

remains unclear whether the reduction in theta/delta power reflects one process which 

causes a wide-spread power reduction, or two simultaneous processes, and, if the latter, 

whether these processes took place in the same MTL structure.  

Decreases in low frequency power, including decreases in theta (Fellner et al., 2016), have 

been associated with increased BOLD signal (Scheeringa et al., 2011). This highlights a 

discrepancy between the current results and those of Hodgetts et al. (2015), as they found 

an association between the extent of decreased hippocampal BOLD and scene oddity 

performance. It could be that this decrease in hippocampal BOLD, and the decrease in HPC 

theta found in the current study, reflect different aspects of the same hippocampal 

process, and that the unexpected relationship between the two stems from the complexity 

of the relationship between the BOLD response and hippocampal neuronal activity. 

Alternatively, it could be that the two modalities have measured different processes. One 

clear difference between fMRI and MEG measurements is the temporal information: each 

give blurred representations of multiple simultaneous processes over time, but on different 

scales. Whereas Hodgetts et al. (2015) averaged BOLD data over 6 s trials, in this study, 

oscillatory power in the first 2 s was examined, before a more in-depth look of this time-

period with time-frequency analysis. Considering the complexity of the oddity task, it is 

imaginable that several processes take place within 2 s, and likely more, in 6 s.  
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5.4.4 Is the HPC theta result reflective of hippocampal processing? 

Although hippocampal activity is fundamental to this test of PMN functioning in complex 

scene perception, and functional results have been interpreted in relation to hippocampus-

related literature, it is uncertain whether recordings in this study reflect hippocampal 

signals. Indeed, the HPC ROI is made from hippocampal and parahippocampal AAL atlas 

ROIs (because deep source localization is inaccurate and these areas have been analysed 

together in previous MEG research (Pu et al., 2017)), so it may be that theta decreases in 

the parahippocampus or PrC, rather than the hippocampus, actually correlated with scene 

oddity performance. However, it is unlikely that PrC signals contribute to the HPC power 

measures, considering the previous fMRI work which has identified scene oddity task 

related BOLD modulations in the hippocampus and not PrC (Hodgetts et al., 2015), and 

considering the challenge involved in measuring PrC activity with MEG.  

Furthermore, the trend between fornix PC2 and HPC theta, found in the current study, may 

indicate that these signals originate from the hippocampus rather than the 

parahippocampal cortex because the fornix is the major connecting tract of the 

hippocampus (Bubb et al., 2017). Relatedly, Hodgetts et al. (2015) did not find any 

correlations between fornix microstructure and parahippocampal cortex BOLD. On the 

other hand, both the hippocampus and parahippocampal cortex have been shown to 

engage during the scene oddity task (Hodgetts et al., 2016) and both areas may have 

displayed a decrease in theta power in this study. Future work could address this 

localization uncertainty using invasive electrophysiological recording, comparing oscillatory 

local field potential recordings between the hippocampus and parahippocampal areas.  

5.4.5 HPC theta and fornix microstructure ‘restriction’ component related to scene 

oddity accuracy, but not to each other.  

Although it was expected that there would be a three-part relationship linking fornix 

structure, HPC theta and scene oddity performance, the results suggest there are separate 

correlated groups of related variables: fornix PC1 and scene oddity accuracy; scene HPC 

theta power difference and scene oddity accuracy; and fornix PC2 and scene HPC theta 

power difference. Interestingly, this suggests a dissociation in the importance of the fornix 

restriction property and the fornix coherence property in PMN functioning. Fornix 

‘coherency’ was indicated to relate positively with scene HPC theta (negative correlation 

between fornix PC2 and theta power), suggesting that this property may aid theta 
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oscillations in this circuit. Although this result clashes with the finding that scene HPC theta 

negatively relates to oddity performance, it fits well with literature showing the importance 

of connectivity via the fornix for hippocampal theta rhythms (Benear et al., 2020). On the 

other hand, a reduction in fibre coherence could be interpreted as an increase in fibre 

complexity and it is possible that fornix fibre complexity correlates with reductions in theta 

power during scene oddity task completion. This would then be complementary to the 

finding that scene HPC theta negatively relates to scene oddity performance. An invasive 

animal electrophysiological and histological study measuring theta power modulations and 

fornix fibre shapes, would be beneficial in validating these suggestions.  

Hodgetts et al. (2015) also found this dissociation: while fornix MD correlated with scene 

oddity performance, fornix FA correlated with hippocampal BOLD difference between the 

scene task and baseline. They suggest that some but not all aspects of hippocampally 

related scene processing are mediated by the fornix, based on three relevant findings: non-

fornical hippocampal pathways are also important for spatial processing (Dumont et al., 

2015); fornix lesions, impairing spatial memory, disrupt hippocampal plasticity changes 

instead of neuronal activity (Fletcher et al., 2006); and that the fornix may aid functions not 

attributable to the hippocampus (Whishaw & Jarrard, 1995). 

However, neither hippocampal theta power nor BOLD reflect the full orchestra of 

hippocampal functioning and fornix ‘restriction’ may mediate optimal hippocampal 

processes that went unmeasured, or that the relationships between structure and function 

are more complex than the current analysis was able to reveal. For example, there are 

correlations between MEG-measured spontaneous signal complexity (Lempel–Ziv's 

Complexity) and white-matter microstructure in several tracts (Fernández et al., 2011) and, 

signal complexity has been shown to be reduced in cases of mild cognitive impairment, 

where it correlates with hippocampal volume (Shumbayawonda et al., 2020). Alternatively, 

fornix microstructure, as well as relating to hippocampal activity, may also influence 

functional connectivity between the hippocampus and more distant brain areas, which was 

not measured here. For example, correlations have been found between functional 

connectivity of the hippocampus and DMN areas, fornix microstructure and cognitive 

ability, in patients with AD (Wang et al., 2020).  

The dissociation may also come about because of the different types of individual variation 

being measured. On the one hand, structure is a static trait (although structure can change 

with learning (X. Wang et al., 2014), we assume changes are minimal in the time period 
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between the MEG and MRI scan), whereas the functional measures reflect state traits: 

magnitude of oscillatory differences between two tasks, or between task and baseline. For 

example, the relationship between fornix PC2 and HPC scene theta power difference 

between scene and fixation, implies that fornix ‘coherence’ related positively with scene 

HPC theta power, even though average HPC theta power is lower in the scene task versus 

the fixation. Therefore, it could be that fornix ‘coherence’ correlates with the general 

propensity for an individual to generate theta rhythms in the HPC regardless of the current 

state. It is possible to measure more static individual differences in functional data, which is 

not reliant on task state, in the form of RS-connectivity. Previous work has shown 

correlations between tract microstructure and RS-connectivity (Messaritaki et al., 2020) 

and between RS-connectivity and behaviour (Wegman & Janzen, 2011). Chapter 6 

describes an investigation into relationships between: RS-connectivity of the hippocampus 

and PCC to other PMN areas; tract microstructure; and oddity task performance. 

5.4.6 Exploratory analyses results indicate that oscillatory power differences in 

other PMN areas are associated with scene oddity performance. 

The PM-view suggests that the hippocampus is important for complex scene processing 

due to its role in creating view-invariant internal spatiotemporal models (Graham et al., 

2010; Murray et al., 2017). However, other areas of the PMN are also thought to aid spatial 

processing (Clark et al., 2018; Hodgetts et al., 2016). Therefore, associations between theta 

and power changes between task and fixation in the mPFC, PCC and IPL, and scene oddity 

performance were also explored. The results of this exploratory analysis suggested PCC 

theta power negatively correlated with scene oddity performance, and did not correlate 

with face or size oddity performance. Similarly, a whole-brain search for negative 

associations between theta power difference between the scene task and fixation, and 

oddity performance, revealed a large cluster which included bilateral MTL, PCC and 

precuneus. Similarly, whole-brain searches for correlations between scene oddity 

performance and high gamma power difference between the scene and size conditions, 

and between the scene and face conditions, both revealed positive clusters which included 

PMC areas. Although it is important not to over-interpret results from exploratory analyses, 

these results mirror results from an fMRI study that found increased PCC/precuneus BOLD 

modulation during a scene oddity task versus face or object oddity tasks (Costigan et al., 

2019). It is suggested that the role of the PCC is to aid scene processing by receiving spatial 

representation information from parietal areas and passing information to the 

parahippocampus and hippocampus, thereby providing the spatial component of 
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spatiotemporal representations (Rolls, 2019). In line with this finding, Chapter 4 revealed 

significant oscillatory changes in the PCC/precuneus in the scene and face conditions 

comparison.  

5.4.7 FG gamma did not relate to face oddity performance or ILF microstructure.  

In contrast to the hypothesis, and the findings of Hodgetts et al. (2015), no significant 

correlations were found between FG gamma power difference (in either gamma band) 

between the face task and fixation, and face oddity performance, or ILF microstructure. 

There are several possibilities for these findings. First, although gamma power has been 

shown to positively correlate with BOLD, it is not the only contributor (Ekstrom, 2010). 

Therefore, the process reflected by FFA BOLD in Hodgetts et al. (2015) may not have been 

the same process that was reflected by increased gamma power during face oddity task 

completion (seen in Chapter 4). Another possibility is that the signal recorded in this study 

did not reflect face processing areas, as the FFA is located in the FG but the FG is large and 

may contain multiple functionally-distinct areas. Also, the face processing network has 

been shown to be right-lateralized (Bukowski et al., 2013; Hildesheim et al., 2020) and 

combining bilateral FG signals may have obscured a correlation between right FG power 

and face oddity performance (see Chapter 8 for further discussion). Lastly, the PrC has been 

shown to be more engaged when participants view highly similar faces, than the FFA, which 

is more engaged when participants view faces with more differences (Mundy et al., 2012). 

This was interpreted as meaning that the FFA is more sensitive to individual features rather 

than the whole face (Mundy et al., 2012), which would explain why activity in the FG did 

not correlate in the current study, in which aggregate face processing was necessary.  

5.4.8 Evidence that the oddity performance effects are not purely reflections of 

incidental encoding.  

Although there were positive trends between scene and face oddity performance, and 

memory performance (d’ scores), the associations found between fornix structure, HPC 

oscillatory power and task performance were exclusive to the oddity task. Furthermore, 

there were no significant differences between the proportion of incorrect scene or face 

oddity trials and correct scene or face oddity trials, that were subsequently remembered. 

In line with the hypothesis, the results suggest that there are processes involved in complex 

scene and face perception which are distinct from processes involved in incidental 

encoding. This aligns well with the results of previous fMRI studies which found that 
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modulations of hippocampal BOLD that were associated with scene oddity task completion, 

were not modulated by subsequent memory (Hodgetts et al., 2016; Lee et al., 2013). 

Similarly, it is also important to ensure that differences between structural and functional 

correlates of scene and face oddity performance were not facilitated by differences in the 

memorability of the scene and face stimuli. However, the hit rate and the proportion of 

confident hits were larger for the scene trials than face trials, indicating that the scene 

stimuli were more confidently memorable than face stimuli. This may be because face 

features are always consistent (they all include eyes, nose, etc.) whereas scene features 

could vary between scenes (they could include doors, stairs, pillars, blocks, etc.) and the 

varying objects may aid incidental encoding. This differs from the results of Hodgetts et al. 

(2016) who found no differences between memory of different stimulus types, including 

scenes and faces. The discrepancy between this and the current findings may be due to the 

use of naturalistic versus computer generated scenes and faces. Regardless, due to the lack 

of correlations between fornix and ILF microstructure, and HPC theta, and scene and face 

memory performance, it seems unlikely that the difference in memorability explains the 

dissociations between structure, function, and performance in the oddity task for scenes 

and faces. 

5.4.9 Limitations. 

There are limitations of this study that warrant further thought. First, the issue caused by 

the discrepancy in how unanswered trials were treated in the MEG (excluded) and 

behavioural (classed as incorrect) data, which has already been described, was addressed 

by using partial correlations (controlling for MEG trial numbers). The reasoning behind this 

discrepancy was because inclusion of unanswered trials in the MEG data processing may 

have reduced sensitivity to task relevant signals as it is not clear if the participant was 

attempting the trial or was distracted. However, in the behavioural data, if unanswered 

trials are removed then, when calculating the percentage of correct responses, scores of 

participants who missed trials would be inflated, as we can assume that either prolonged 

trial attempts or distraction would likely result in an incorrect answer. Importantly, there 

were no correlations between MEG-measure task oscillatory power differences and MEG 

trial numbers. Nevertheless, future work could reduce the risk of unanswered trials by 

removing the time-to-respond restraint, or by reducing participant fatigue by splitting the 

MEG scan into multiple sessions. However, any such changes would increase inter-trial 

variability and experiment time, in an already long experiment.  
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Unlike Hodgetts et al. (2015), MEG oscillatory power analyses were not confined to correct 

oddity trials only, as it was important to have as many trials as possible in the MEG analysis 

to aid deep source localization. Therefore, while one may conclude from the results of 

Hodgetts et al. (2015) that the propensity for an individual to display reduced hippocampal 

BOLD would mean that that individual would be better at complex scene processing, the 

equivalent conclusion cannot be drawn from the current project. For example, here, it is 

not possible to clarify whether the correlation between HPC theta power during scene 

oddity task and scene oddity performance, reflects a difference in theta power between 

correct and incorrect trials, or whether an individual’s general HPC theta power during 

scene oddity trials related to that individual’s performance. Supporting the former, Lee et 

al. (2013) found differences in hippocampal BOLD during correct versus incorrect scenes. 

However, if scene HPC theta power simply reflected the proportion of correct and incorrect 

trials in an individual, then fornix PC2, which correlated with scene HPC theta, should have 

also correlated with scene oddity performance. Furthermore, it’s important to note that 

restricting analysis to correct oddity trials only is also not without its flaws. It may create a 

difference in SNR for each participant’s data which directly relates to their performance. 

One solution could be to increase the trial number and difficulty (to achieve an equal 

number of correct and incorrect answers, a design similar to that of Lee et al. 2013) and 

compare the correlation between oddity accuracy and HPC theta in the incorrect trials, 

with the correlation between oddity accuracy and HPC theta in the correct trials. An 

alternative could be to use RT as a measure of performance as this would mean that 

analysis could be limited to correct trials and trial number would not directly relate to the 

performance measure. However, the RT values here do not represent performance well as 

participants were told to aim for accuracy over speed. It also would not have been the 

solution for this experiment because participants were not instructed to answer as quickly 

as they could as this may have increased the number of trials lasting shorter than the 

required 2 s. Furthermore, this is not a good solution for this challenging task as faster RTs 

may lead to reduced accuracy (Palmer et al., 2005). 

Regarding the microstructure data reduction, the aim of reducing several microstructure 

measures was to create more biologically interpretable variables than FA and MD alone, 

while not increasing the number of tests, but it cannot be claimed that the true anatomical 

meanings of the ‘restriction’ and ‘coherence’ components are known. Future work could 

use such a technique in combination with histology of tissue cultures to assess whether 

components of multiple MRI-derived microstructure data capture histology-measured 
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anatomical features more accurately than the raw MRI-derived measures. Reassuringly, 

however, the similarities of the resulting components across studies (Chamberland et al., 

2019; Geeraert et al., 2020) means that this is a useful technique in non-invasively 

comparing the behavioural and functional influences of tract structure properties, even if 

the underlying anatomy being represented is unclear.  

5.5 Conclusions 

Implications of the PM-view include: the PMN and AIN networks should aid behaviours in 

different modalities; network areas, including MTL areas, should be involved in processes 

across memory and perception; and that the behavioural performance of those modalities 

should be related to the structural and functional properties of the respective networks 

(Graham et al., 2010; Murray et al., 2017). This chapter further tested these assumptions 

by expanding on the work of Hodgetts et al. (2015) with the use of multiple microstructures 

measures of the fornix ILF and PHC, reduced into biologically interpretable components, 

and by measuring functional correlates of complex scene and face processing, utilizing the 

added temporal and oscillatory information provided by MEG. Confirming the results of the 

previous study, there was evidence for correlations between fornix and ILF microstructure 

and scene and face oddity performance, respectively. Furthermore, fornix microstructure 

components, reflecting the properties of restriction and coherence, appear to have 

different influences on PMN functioning. Fornix restriction was associated with scene 

oddity performance while fornix coherence was associated with scene HPC theta. Fornix 

restriction and scene HPC theta independently related to scene oddity performance. These 

structural and functional oddity correlates did not relate to memory performance in a 

follow-up surprise memory test, showing that the results did not reflect incidental 

encoding. Results from exploratory analysis indicated that the association between scene 

oddity task performance and HPC theta decrease was prolonged throughout the 2 s time 

period and extended to include delta frequencies. Further exploratory whole-brain 

analyses implicated the importance of other PMN areas, particularly the PCC/precuneus 

areas in scene oddity performance. In conclusion, this experiment provides evidence for 

dissociable roles of MTL-connecting tracts in complex scene and face complex perceptual 

processing, and for the role of oscillatory modulation in the PMN structures in complex 

scene perceptual processing.
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6 Chapter 6: Examining relationships between RS-

connectivity, structure and oddity performance in the PMN 

and AIN. 

6.1 Introduction 

6.1.1 Background. 

It is widely accepted that brain areas display functional connectivity during taskless periods, 

bringing about ‘RS-connectivity’ or RS networks (Fox & Raichle, 2007). In this context, 

connectivity is defined as a statistical dependency between measures of brain regions’ 

activity over time. For example, correlation or coherence are commonly used (Fox & 

Raichle, 2007; van Diessen et al., 2015). RS networks have been found to be consistent 

across individuals inasmuch as brain areas show higher connectivity with other brain areas 

that share behavioural functions (Fox & Raichle, 2007; Kahn et al., 2008; Kong et al., 2017; 

O'Neil et al., 2014), but they can also be seen to be different in different individuals 

inasmuch as there is evidence of inter-individual differences in spatial topography and in 

connectivity strength indices between areas (Wens et al., 2014). Regarding the former, RS 

functional connectivity has been demonstrated between PMN areas, as part of networks 

supporting navigation (Ramanoël et al., 2019), recollection and future imagining (Gilmore 

et al., 2018). These areas include the hippocampus, the parahippocampal cortex, the PCC; 

the RSC; and the IPL. Conversely, intrinsic connectivity between areas of the AIN has been 

demonstrated as part of semantic (Jackson et al., 2016), object (Konkle & Caramazza, 2017) 

and face (O'Neil et al., 2014) processing networks, and the areas involved include the FFA, 

the OFA, the inferior temporal gyrus, the PrC and the anterior temporal lobe. 

The hippocampus and the PCC (often regarded to spatially overlap with the RSC (Burles et 

al., 2018; Natu et al., 2019)) may be particularly important regions in widespread PMN 

communication. The hippocampus is known to be an important region in episodic memory 

(Benoit & Schacter, 2015), spatial memory (Baldassano et al., 2016) and scene perception 

(Hodgetts et al., 2016) networks. The PCC is highly connected with other areas of the DMN 

(Huijbers et al., 2012), and is proposed to play a key role in functional connectivity across 

the DMN (Fransson & Marrelec, 2008).  
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Studies examining mild cognitive impairment (MCI) or AD, both thought to be diseases of 

the PMN (Ranganath & Ritchey, 2012; Yu et al., 2016), have highlighted the PCC (Bai et al., 

2009; Liang et al., 2008) and the hippocampus (Allen et al., 2007) as key structures in the 

pathophysiology. Studies comparing RS-fMRI patterns in Alzheimer’s patients and healthy 

controls have revealed reduced connectivity between the hippocampus and various cortical 

areas, including the mPFC, the inferior temporal gyrus, the superior temporal gyrus, the 

caudate nucleus and the PCC (Z. Wang et al., 2014; Xue et al., 2019). Similarly, RS-fMRI 

connectivity between the PCC and other brain areas such as the middle occipital gyrus, the 

hippocampus and the FG, has also been shown to be reduced in Alzheimer’s patients (Yokoi 

et al., 2018). In MCI patients, there is evidence of reduced PCC-temporal cortex 

connectivity, which may be associated with the level of cognitive impairment (Bai et al., 

2009). Also, in mesial temporal lobe epilepsy patients, increased RS-fMRI connectivity 

between the affected hippocampus and the PCC, was associated with better pre-surgical 

memory but worse post-surgical memory (McCormick et al., 2013). Together, these results 

illustrate a relationship between increased hippocampal and PCC connectivity and 

improved PMN network functioning.  

Moreover, studies examining individual differences in healthy adults have identified 

associations between hippocampal RS-fMRI connectivity with other PMN areas, or PCC RS-

fMRI connectivity with other PMN areas, and performance in tasks requiring PMN-related 

behaviours. For example, RS-fMRI connectivity between the hippocampus and the RSC has 

been found to be stronger in good navigators versus poor navigators (Sulpizio et al., 2016) 

and was positively associated with memory of places as measured by d’ (Collins & 

Dickerson, 2019). For another example, RS-fMRI connectivity between the 

parahippocampal cortex and areas of the DMN including the PCC and mPFC, was found to 

be associated with path integration ability in navigation (Izen et al., 2018). However, 

behaviours in these studies rely on memory processes so it is unclear whether similar 

relationships exist between RS-connectivity of the hippocampus and PCC and scene 

perception performance.  

This study aims to investigate such relationships and to contrast them with associations 

between RS-connectivity within the AIN network and face perception. Associations, 

between RS PMN connectivity and PMN-related behaviours have previously been 

dissociated from associations between RS AIN connectivity and AIN-related behaviours. For 

example, hippocampal-RSC and FFA-PrC connectivity, post encoding task, were found to be 
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correlated with place and face memory task performance, respectively (Collins & 

Dickerson, 2019).  

The FFA and the PrC, along with the OFA, the superior temporal sulcus and the amygdala, 

are among the face-selective areas that show functional connectivity at rest (O'Neil et al., 

2014). RS-connectivity between the FFA and the OFA has been associated with several 

measures of face processing performance including: famous face recognition; the face 

inversion effect (the extent of performance improvement when assessing upright versus 

upside-down faces); and the whole-part effect (the extent of performance improvement 

when assessing whole faces versus parts of faces) (Zhu et al., 2011).  

The hippocampus and the PCC, and the FFA and the OFA, have previously been found to 

show activity modulation during completion of the scene and face perceptual oddity tasks, 

respectively. Hippocampal and PMC (includes the PCC, the precuneus and the RSC) BOLD 

have been found to be modulated during the scene oddity task (Hodgetts, Voets, et al., 

2017), and the magnitude of the hippocampal BOLD modulation correlated with task 

performance (Hodgetts et al., 2015). This was complemented by the findings of Chapter 4, 

in which reduced theta power in the MTL and the PCC was found during the scene oddity 

task versus the face oddity task or control. Conversely, during the face oddity task, as 

compared to control, FFA BOLD has been found to increase (Hodgetts et al., 2015), which is 

complemented by the findings of Chapter 4, which showed modulated theta/gamma power 

in the FG and the IOC. However, it is unclear whether communication between these areas 

dissociably supports complex scene and face processing. Therefore, this study tested 

whether individual differences in RS-connectivity patterns of PMN and AIN regions 

dissociably correlate with scene and face oddity task performance, respectively.  

The discussed studies used fMRI, which benefits from high spatial resolution, whereas the 

current work used MEG. MEG recording is more temporally resolved than fMRI and allows 

for direct measurement of synchronised electrophysiological activity. Although RS-MEG 

recordings can be compromised by field-spread, the use of constrained source-localization 

and robust connectivity measures mean that true functional connections can be 

characterized with reduced influence from arbitrary connectivity caused by field-spread 

(van Diessen et al., 2015). Therefore, RS-MEG can unveil a rich and reliable picture of 

connectivity across the brain within multiple frequency bands. It is becoming clear that 

oscillations of different frequencies can have different topographical spread (Hillebrand et 

al., 2012; Hillebrand et al., 2016), leading to different RS networks displaying oscillatory 
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coupling in different frequencies (Samogin et al., 2020). Although functional correlations 

within the PMN and AIN are likely to occur over multiple frequency ranges, it may be that 

behaviourally relevant RS-connectivity patterns, within the two networks, lie in different 

frequency ranges. 

In this study, RS-connectivity patterns in the theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 

Hz) bands were examined. Functional connectivity in lower ranges, such as alpha and theta, 

have been associated with long-range connectivity (Ganzetti & Mantini, 2013; Jones et al., 

2000), and alpha connectivity is higher in intra-network versus inter-network connections 

within DMN and visual networks (Samogin et al., 2020). These results suggest that alpha 

connectivity may be important in both the PMN and AIN. However, RS-connectivity within 

the PMN in theta may be specifically important in complex scene processing. Multiple 

studies have associated hippocampal functioning with theta oscillations (Buzsaki, 2002; 

Colgin, 2016), which are thought to be a platform for hippocampal-cortical interactions, in 

support of scene processing and episodic memory (Buzsaki & Moser, 2013; Karakaş, 2020), 

and RS theta oscillations have been identified in the PMC, which includes the PCC (Foster & 

Parvizi, 2012). However, in a study inspecting RS-connectivity in AD patients versus healthy 

controls, in frequency ranges from delta (1-4 Hz) to high gamma (50-90 Hz), connectivity 

was found to be specifically reduced in the alpha and beta bands only (Koelewijn et al., 

2017). Therefore, behaviourally relevant RS interactions between PMN regions were 

hypothesized to occur primarily in the theta range, but alpha and beta bands were also 

inspected.  

Alpha oscillations may be specifically important for AIN processing. Frontotemporal 

dementia is associated with decreased alpha power in diffuse areas including the 

orbitofrontal and temporal cortices (Nishida et al., 2011), areas which are part of the AIN. 

Also, alpha coherence between the FFA and several cortical areas has been found to be 

reduced in adolescents with autism spectrum disorder (Khan et al., 2013), a condition that 

is associated with impaired face identification (Weigelt et al., 2012).  

Since functional connections must be supported by structural connections, and whole-brain 

changes in structure with age have been associated with changes in RS intra/inter-network 

connectivity (Betzel et al., 2014), there may also be relationships between microstructure 

of the tracts connecting the PMN and AIN, and RS-connectivity. Associations have been 

found between fornix microstructure and: RS-fMRI connectivity between the hippocampus 

and the thalamus in healthy older adults (Kehoe et al., 2015); average connectivity strength 
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of the hippocampus to whole-brain ROIs in Alzheimer’s and MCI patients (Wang et al., 

2020); and increased connectivity between the hippocampus and several medial brain 

areas during an episodic memory task (Ly et al., 2016). Fornix microstructure may influence 

connectivity within the theta band specifically, as hippocampal theta rhythms stem from 

the septum/diagonal band of Broca (Leao et al., 2015) and the supramammillary area (Pan 

& McNaughton, 2004), which are connected to the hippocampus through the fornix 

(Swanson & Cowan, 1979). Furthermore, low frequency stimulation of the fornix, and not 

the mammillothalamic tract, has been found to modulate the theta rhythm in the 

thalamus, indicating that the hippocampus modulates thalamic activity through this tract 

(Tsanov et al., 2011). Therefore, there may be a correlation between the strength of RS 

theta amplitude correlation between the hippocampus and PMN areas, such as the 

thalamus, and fornix microstructure in healthy adults, but this has not been tested. 

Additionally, it unclear whether fornix microstructure would relate to the strength of RS 

theta amplitude correlation between the hippocampus and PCC. If fornix microstructure 

does influence hippocampal theta connectivity, then theta hippocampus-PCC connectivity 

may also be expected to be influenced. However, there is evidence for both hippocampus-

generated, and hippocampus-independent theta rhythms in the PCC (Colom et al., 1988; 

Talk et al., 2004).   

The ILF connects the ventral visual pathway, including the inferior occipital visual areas and 

the inferior temporal and temporal pole areas (Herbet et al., 2018), and RS-connectivity in 

the alpha band has been associated with bottom-up processing, originating from areas 

such as visual areas in the occipital lobe (Hillebrand et al., 2016). Therefore, individual 

differences in ILF microstructure could be related to RS alpha connectivity between areas 

of the ventral visual stream, which overlaps with the AIN.  

6.1.2 Aims and hypotheses. 

The aims of the experiment in this chapter were to test relationships between individual 

differences in oddity task performance, tract microstructure and RS-connectivity. RS-MEG 

scans were recorded between the perceptual oddity task and a subsequent unforeseen 

memory task (see Chapters 4 and 5). First, connectivity strengths between the 

hippocampus, and the PCC, with PMN ROIs were tested. To do this, amplitude-amplitude 

correlations were measured within the PMN network, created by selecting the AAL atlas 

ROIs that were included in the areas examined in Chapter 4 (HPC, mPFC, IPL, and PCC). In 

addition, the precuneus and thalamus regions were also inspected as the precuneus 



Chapter 6: Examining relationships between RS-connectivity, structure and oddity performance in the PMN and 
AIN. 

174 
 

showed frequency power modulation during the scene oddity task in Chapter 4, and 

connectivity between the hippocampus and thalamus has been associated with fornix 

microstructure previously (Kehoe et al., 2015). The averages of the coefficients of the 

bilateral hippocampus-PMN ROIs and bilateral PCC-PMN ROIs correlations – for the theta, 

alpha and beta frequency bands – were calculated to create hippocampus and PCC 

‘connectivity strengths’. It was hypothesized that hippocampus and PCC connectivity 

strengths, specifically in the theta band, would correlate with scene oddity performance 

and fornix microstructure. 

Second, amplitude-amplitude correlations between specific ROIs were inspected. The 

connection between hippocampus and the PCC (hippocampus-PCC) was inspected because 

the hippocampus and PCC are well-connected brain areas important for PMN-related 

behaviours such as episodic memory (Bubb et al., 2017; Hagmann et al., 2008; Lega et al., 

2017; Natu et al., 2019), and hippocampus-PCC RS-connectivity has been shown to relate to 

PMN functioning (McCormick et al., 2013; Natu et al., 2019). Also, the connection between 

the hippocampus and the thalamus (hippocampus-thalamus) was inspected because 

hippocampus-thalamus RS-connectivity has been shown to relate to fornix microstructure 

(Kehoe et al., 2015). The AIN connections examined were between the FG and the IOC (FG-

IOC) which contain the FFA (Kanwisher & Yovel, 2006) and the OFA (Pitcher et al., 2011)12, 

respectively. RS-connectivity between these areas has been associated with face processing 

performance (Zhu et al., 2011).  

Following the theme of this thesis, relationships between PMN structure, function and 

behaviour were contrasted with relationships between AIN measures of structure, function 

and behaviour. Regarding the PMN, it was hypothesized that hippocampus and PCC 

strengths would correlate with scene oddity performance and not face or size oddity 

performance. It was then tested if specific PMN ROI connections, hippocampus-PCC RS-

connectivity and hippocampus-thalamus RS-connectivity, correlated with scene oddity 

performance and not face or size oddity performance. Also, RS-connectivity measures that 

correlated with scene oddity performance were predicted to also correlate with fornix 

microstructure, and not ILF microstructure. Regarding the AIN, it was hypothesized that FG-

 
12 The OFA and FFA are functionally defined regions, usually residing in or close to the inferior 

occipital cortex and on the middle fusiform gyrus, respectively (for reviews see Pitcher et al., 2011 

and Kanwisher & Yovel, 2006). 
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IOC connectivity would correlate with face oddity performance, and not scene or size 

oddity performance, and ILF microstructure, and not fornix microstructure.  

It was further hypothesized that relationships between behaviour, microstructure and RS-

connectivity might differ for different frequency bands. Theta connectivity within the PMN 

was predicted to correlate with scene oddity performance and fornix microstructure, more 

strongly than connectivity in the alpha and beta ranges. Conversely, the connectivity of the 

AIN within the alpha band was predicted to correlate with face oddity performance and ILF 

microstructure, more strongly than connectivity in the theta and beta bands.  

The focus of this chapter was to examine network properties that relate to perception 

specifically. RS recording took place after oddity task completion so, although memory for 

the oddity scene and face stimuli was poor (see Chapter 5), these data may contain 

signatures of stimulus encoding. Therefore, partial correlations were used when scene and 

face oddity performance were examined, and the scene and face d’ scores from the 

subsequent memory test, were controlled for.   

It was of interest to understand whether PC1 and PC2 component scores unequally related 

to RS-connectivity. Results of a recent study, which aimed to uncover relationships 

between individual differences in white-matter structure and RS-connectivity by combining 

MEG and microstructure scanning (Messaritaki et al., 2020), might predict stronger 

correlations between PC1 components scores and RS-connectivity than PC2 component 

scores. In this work, the authors’ microstructurally informed algorithms were constructed 

using multiple microstructure measures, to predict functional connectivity in multiple 

frequency bands and they found that their myelin measure was a better predictor of 

functional connectivity properties in the theta, alpha and beta bands, than FA. In the 

current study, the microstructure data were reduced to two components. PC1 was more 

influenced by MPF (a measure of myelin) and PC2 was more influenced by FA (see Chapter 

5). Therefore, it was predicted that RS-connectivity between the PMN and AIN ROIs would 

specifically relate to the PC1 scores of the fornix and the ILF, respectively.  

Lastly, it was hypothesized that PMN RS-connectivity patterns which correlated with scene 

oddity performance, would not also correlate with PHC microstructure. This was because, 

despite the PHC supporting PMN connections, PHC microstructure was not found to relate 

to scene oddity performance (Chapter 5). 
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6.2 Methods 

Descriptions of the oddity task paradigm and resulting behavioural data can be found in 

Chapters 4 and 5. Descriptions of the isolation of fornix, ILF and PHC streamlines, and 

assessments of their microstructure, can be found in Chapter 5. The RS-MEG recording and 

analyses are outlined below.  

6.2.1 Participants. 

The 40 participants are the same as those of the experiments described in Chapters 4 and 

5. 

6.2.2 RS-MEG recording and connectivity analysis. 

6.2.2.1 RS-MEG recording. 

The five-minute RS-MEG recording occurred immediately after the oddity task blocks and 

before the memory task. Subjects were asked to keep still and keep their eyes fixated on a 

small black dot, displayed at the centre of a grey screen. As in Chapters 4 and 5 the 

recordings were performed using a 275-channel axial gradiometer CTF system, located 

inside a magnetically shielded room and the data were acquired continuously, with a 

sampling rate of 1200 Hz. Head movement was monitored, head-shape was mapped, and 

MEG-MRI co-registration was conducted, using the methods detailed in Chapter 4. 

6.2.2.2 RS-MEG data pre-processing. 

Previously (Chapter 4), muscle artefacts were removed as part of manual inspection of trial 

data. As RS-data is treated as continuous data, an automatic artefact detection approach 

was used (Fieldtrip function: ft_artifact_zvalue, described here13). This process involves: 

calculating the Hilbert envelope of the data of each channel, over time; calculating the 

mean and SD of the data of each channel; applying z-transformation to the data of each 

channel; and lastly, averaging the z-values per timepoint. Then, as each timepoint is 

expressed as a deviation from the mean over time and channels, a threshold can be applied 

to identify samples containing artefactual data. The threshold values used ranged between 

4 and 10, depending on each individual’s data, with the aim of effectively removing muscle 

artefacts while keeping as much data as possible. The original data were then 

 
13 https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/#iii-z-transforming-the-
filtered-data-and-averaging-it-over-channels 
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downsampled (250 Hz) and decomposed into 100 components using ICA (using Fieldtrip’s 

fast ICA) (Oostenveld et al., 2011). Components relating to eye-movement and heart rate 

were removed from the original data. Lastly, the data was visually inspected to ensure the 

efficacy of the previous steps. 

6.2.2.3 RS-MEG connectivity analysis.  

Amplitude envelope correlations across the whole brain were calculated using an ROI-

based approach (Hillebrand et al., 2012), which has previously been used as part of 

published work (Koelewijn et al., 2019; Messaritaki et al., 2020; Routley et al., 2017). Theta 

and alpha frequency bands were isolated by applying bandpass filters of 4-8 Hz and 8-12 

Hz, respectively, and source localization was carried out using LCMV beamforming. Each 

participant’s data was warped to MNI space and segregated into the 90 AAL ROIs. For each 

frequency band, a time-series was assigned to each ROI, by constructing VSs for each voxel 

and taking a representative VS (the one with the greatest power change during the 

recording) within each ROI. To reduce source leakage between ROI VSs (which would result 

in spurious signal correlations) a symmetric orthogonalization procedure was carried out 

which involves removing zero-lag correlations (Colclough et al., 2015).  

To calculate amplitude coupling between ROI VSs, the amplitude envelopes of these 

orthogonalized VS time-series data were extracted through calculating the Hilbert 

transforms, and were then down-sampled to 1 Hz and had edge artefacts removed. 

Correlation matrices (90x90) for each participant were constructed by calculating 

correlations across the envelopes. Lastly, the coefficients were Z-transformed using Fisher’s 

transform. Higher and lower Z-values were taken as indicators of higher and lower 

connectivity, respectively. 

6.2.2.4 Assessing Connectivity measures within the PMN and AIN.  

From the whole-brain data (90x90), a PMN network was constructed including ROIs 

thought to have major roles in the PMN network, resulting in a 22x22 matrix (Figure 35). 

This included the same AAL ROIs examined in Chapter 4 (bilateral hippocampus and 

parahippocampal regions, frontal medial orbital, bilateral middle frontal, and bilateral 

superior medial frontal regions, the inferior parietal gyrus, the angular gyrus the 

supramarginal gyrus, bilateral PCC regions) and bilateral thalamus and precuneus regions. 

To measures the strengths of the hippocampus and PCC connections to the other PMN 

ROIs, Z-values along the rows of the PMN matrix were summed, for the hippocampus and 
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PCC columns, creating the ‘connection strength’ scores (Routley et al., 2017). The bilateral 

scores were averaged, and this was done separately for each frequency band. 

Specific connectivities between the hippocampus and PCC, and between the hippocampus 

and the thalamus were also inspected. Z-transformed correlation coefficients between the 

bilateral hippocampus and PCC ROIs, and the bilateral hippocampus and thalamus, were 

both averaged for each individual for the three frequency bands. These PMN connectivity 

scores were contrasted with connectivity scores (calculated in the same way) between two 

ROIs hypothesized to play a role in the AIN: the FG and IOC.   

 

 

Figure 35. The defined PMN network on a circular network plot. 

Connectivity between nodes that are considered members of the PMN is shown. Each 

line is associated with a coefficient for each frequency band, for each participant. Lines 

and ROIs are colour coded according to location of the node. From top to bottom (or 

anterior to posterior brain): dark blue denotes frontal lobe areas; brown denotes deep 

frontal areas; purple denotes MTL areas; green denotes lateral temporal lobe areas; 

yellow denotes midbrain areas; grey denotes parietal lobe areas; maroon denotes 

occipital lobe areas; and pale blue denotes posteromedial areas. To save space, 

abbreviated labels are used and a translation into full names is included in the Appendix 

3A. Note that ‘_L’ and ‘_R’ refers to left and right hemisphere, respectively. 
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6.2.3 Statistical analysis: testing correlations between oddity performance, RS-

connectivity and tract microstructure. 

Statistical analyses were carried out using MATLAB (MATLAB, 2015), or using Rstudio (R 

Core Team, 2019; RStudio Team, 2020). Pearson’s correlation tests were applied, to 

elucidate relationships between RS-connectivity, task performance and tract 

microstructure. The transformed-to-normal scene, face and size oddity accuracy scores, 

scene and face d’ memory scores, and tract microstructure component scores, described in 

Chapters 4 and 5, were used. The RS-MEG measures were tested for outliers, defined as 

being further than three times the SD from the mean. The number of values entering each 

statistical test (N) is noted in results. 

First, partial correlations between RS-connectivity scores and scene and face oddity 

accuracy scores, controlling for scene and face d’ scores, were carried out. Correlations 

between the RS-connectivity scores and size oddity accuracy (the control task) were 

calculated, as incidental encoding of the circles was assumed not to occur. The alpha value 

was Bonferroni-corrected to 0.006 to account for the number of oddity conditions and 

frequency bands (0.05/9, for 3 frequency bands and 3 oddity task conditions).  

Second, Pearson’s correlations between fornix, ILF and PHC microstructure scores, and RS-

connectivity scores were computed. All scatterplots were constructed using ggscatterstats 

for R (Patil, 2021). The alpha value was Bonferroni-corrected to 0.006 to account for the 

number of tracts and frequency bands (0.05/9, for 3 frequency bands and 3 tracts).  

When comparing correlation coefficients (methods described in section 5.2.6), the alpha 

value was Bonferroni-corrected for the number of tests within each section, to 0.025 

(0.05/2).  

Parametric correlation statistics were accompanied by Bayesian correlation tests. BFs were 

calculated using the BayesFactor package in R (Morey & Rouder, 2018), and were reported 

as BF10 (evidence of the alternative model over the null model).  

It was hypothesized that behaviour–RS-connectivity and structure–RS-connectivity would 

share similar correlations, indicating a functional mediator, explaining the structure-

behaviour correlations found in Chapter 5. However, no such common correlations were 

identified. Therefore, additional exploratory analyses were carried out. For these, partial 

correlations between scene/face oddity accuracy and the whole-brain Z coefficient data 
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(controlling for scene/face d’ scores) were tested. Also, correlations between fornix and ILF 

microstructure component scores and the whole-brain Z coefficient data were carried out. 

Previous similar studies, testing whole-brain RS-connectivity effects, have used a 

conservative ranking procedure with the aim of reducing the impact of noise (e.g. 

Koelewijn et al., 2019). For this, each connection within each participant’s data is ranked 

and these rank maps are then averaged across the group. Those connections in the top 

20% of the average rank map are considered valid and reproducible. However, this method 

produces few remaining theta connections (e.g. see Dima et al. (2020)). As this was an 

exploratory analysis, to allow for a widespread search while eliminating the least 

reproducible connections, a lower threshold was used resulting in selection of the top 40% 

of connections. Regression analyses were carried out, testing predictions of the remaining 

RS connections, with either the behaviour or tract microstructure measures. For the 

former, both oddity accuracy and d’ scores were included as predictors in the same models 

so that the independent contribution of oddity accuracy data to RS-connectivity could be 

assessed. Each test comprised 5000 permutations. For each section, the alpha value was 

Bonferroni-corrected to 0.0083 to account for the tests involving the oddity task and tract 

microstructure in three frequency bands (0.05/6, for one oddity measure, one tract, and 

three frequency bands). The p-values of the correlations that did not surpass this threshold 

were then FDR corrected and accepted at the traditional 0.05 level.    
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6.3 Results 

6.3.1 Investigating relationships between hippocampus and PCC connectivity 

strengths and oddity performance. 

As predicted, there was a significant partial correlation between PCC theta connectivity 

strength and scene oddity accuracy (controlling for scene d’) and the corresponding BF 

indicated evidence against the null (Table 17; Figure 36). However, only a trend for a partial 

correlation between hippocampus connectivity strength and scene oddity accuracy was 

apparent, and this did not reach significance. As expected, there were no significant 

correlations between either hippocampus or PCC connectivity strength, in any frequency 

band, with face oddity accuracy (controlling for face d’) or size oddity accuracy (statistics 

shown in Appendix 3B). 

The correlation coefficient between theta PCC connectivity and scene oddity accuracy was 

significantly larger than that of the correlation between theta PCC connectivity and face 

oddity accuracy (z(37) = 4.284, p<0.001).  
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theta r = 0.280 
p = 0.084 
BF10 = 1.27 

r = -0.224 
p = 0.170 
BF10 = 0.84 

alpha r = -0.004 
p = 0.979 
BF10 = 0.36 

r = -0.169 
p = 0.303 
BF10 = 0.56 

beta r = 0.075 
p = 0.649 
BF10 = 0.39 

r = - 0.007 
p = 0.968 
BF10 = 0.35 
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theta r = 0.429 
p = 0.006* 
BF10 = 9.06* 

r = -0.282 
p = 0.082 
BF10 = 1.39 

alpha r = -0.028 
p = 0.864 
BF10 = 0.36 

r = -0.065 
p = 0.695 
BF10 = 0.38 

beta r = 0.119 
p = 0.471 
BF10 = 0.45 

r = 0.010 
p = 0.953 
BF10 = 0.35 

Table 17.Partial correlation tests between oddity task performance and Hippocampus and PCC 
connectivity strengths. 

Partial correlation tests between Hippocampus and PCC PMN connectivity strengths, in theta, 
alpha and beta bands, and oddity accuracy. Subsequent scene and face memory scores (d’) were 
controlled-for. 
*Highlights p≤0.006. *Highlights a BF10 ≥ 3. N=40. 
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Figure 36. Scatterplots showing the relationships between scene and face oddity performance and hippocampus and PCC 
connectivity strengths. 

The light blue histogram shows the distributions of the scene accuracy data and the light pink histogram shows the face 
accuracy data. The darker(top) and lighter (bottom) blue histograms show the distributions of the theta hippocampus and PCC 
connectivity strength scores, respectively. Note that these data are the residuals after controlling for scene d’ scores (two left 
scatterplots) and for face d’ scores (two right scatterplots). The blue lines are the regression lines and the surrounding shaded 
areas represent the 95% confidence interval. Note that the accuracy data was transformed to normal.  *Highlights p≤0.006.  
 
PCC: Posterior Cingulate Cortex. 
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6.3.2 Investigating relationships between Hippocampus-PCC connectivity and 

scene processing with FG-IOC connectivity and face processing. 

There were no significant partial correlations between RS hippocampus-PCC or 

hippocampus-thalamus connectivity and scene or face oddity accuracy (controlling for 

scene and face d’). The BFs indicated only weak evidence in favour of a positive relationship 

between scene oddity accuracy and theta hippocampus-PCC connectivity, and a negative 

relationship between face oddity accuracy and theta hippocampus-PCC connectivity (Table 

18; Figure 37). There were also no significant correlations between hippocampus-PCC theta 

connectivity, or hippocampus-thalamus connectivity, and size oddity accuracy (statistics 

shown in Appendix 3C).  
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theta r = 0.252 
p = 0.121 
BF10 = 1.07 

r = -0.251 
p = 0.123 
BF10 = 1.01 

alpha 

 

r = -0.081 
p = 0.624 
BF10 = 0.38 

r = -0.239 
p = 0.146 
BF10 = 0.87 

beta r = 0.083 
p = 0.616 
BF10 = 0.39 

r = -0.030 
p = 0.857 
BF10 = 0.36 
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theta r = 0.151 
p = 0.389 
BF10 = 0.51 

r = -0.257 
p = 0.114 
BF10 = 1.08 

alpha r = 0.023 
p = 0.888 
BF10 = 0.36 

r = -0.001 
p = 0.997 
BF10 = 0.36 

beta r = 0.146 
p = 0.375 
BF10 = 0.50 

r = -0.040 
p = 0.810 
BF10 = 0.36 

Table 18. Partial correlation tests between oddity task performance and hippocampus-PCC and 
hippocampus-thalamus connectivity scores. 

Partial correlation tests between Hippocampus and PCC PMN connectivity strengths, in theta, alpha 
and beta bands, and oddity accuracy. Scene and face memory scores (d’) were controlled-for. 
N=40. 
 
PCC: Posterior Cingulate Cortex. 
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Contrary to the hypothesis, FG-IOC connectivity, in any of the frequency bands, did not 

significantly correlate with face oddity accuracy or scene oddity accuracy (Table 19).  

  Scene Accuracy Face Accuracy 

 F
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theta r = 0.122 
p = 0.459 
BF10 = 0.56 

r = -0.110 
p = 0.505 
BF10 = 0.42 

alpha r = -0.075 
p = 0.651 
BF10 = 0.38 

r = 0.087 
p = 0.599 
BF10 = 0.41 

beta r = -0.142 
p = 0.387 
BF10 = 0.49 

r = 0.013 
p = 0.936 
BF10 = 0.35 

Table 19. Partial correlation tests between oddity task performance and FG-IOG connectivity 
scores. 

Partial correlation tests between FG-IOC connectivity scores, in theta, alpha and beta bands, and 
oddity accuracy. Scene and face memory scores (d’) were controlled-for. 
N=40. 
 
FG: Fusiform Gyrus. IOC: Inferior Occipital Cortex.  
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Figure 37. Scatterplots showing the non-significant relationships between scene and face oddity accuracy and theta 
hippocampus-PCC and hippocampus-thalamus connectivity. 

The light blue histogram shows the distributions of the scene accuracy data and the light pink histogram shows the face 
accuracy data. The lighter (top) and darker (bottom) green histograms show the distributions of the theta hippocampus-PCC 
and hippocampus-thalamus connectivity scores, respectively. Note that these data are the residuals after controlling for scene 
d’ scores (two left scatterplots) and for face d’ scores (two right scatterplots). The blue lines are the regression lines and 
surrounding shaded areas represent the 95% confidence interval. There were no significant correlations between theta 
hippocampus-PCC or hippocampus-thalamus connectivity and scene or face oddity accuracy. However, the coefficient of the 
correlation between theta hippocampus-PCC and scene oddity accuracy was significantly different to that of the correlation 
between theta hippocampus-PCC and face oddity accuracy. Note that the accuracy data was transformed to normal.   
 
PCC: Posterior Cingulate Cortex.  
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6.3.3 Investigating relationships between RS-connectivity and tract microstructure. 

Contrary to the hypotheses, there were no significant correlations between hippocampus-

PCC connectivity, hippocampus-thalamus connectivity, and fornix microstructure 

components. Unexpectedly, there was a correlation between ILF PC2 and alpha 

hippocampus-thalamus connectivity (Table 20). However, the coefficient of the correlation 

between alpha hippocampus-thalamus connectivity and ILF PC2 was not significantly 

stronger than that of the correlation between alpha hippocampus-thalamus connectivity 

and fornix PC2 (z(36) = -1.795, p = 0.073). 
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 PC1 PC2 PC1 PC2 

theta r = 0.124 
p = 0.450 
BF10 = 0.46 

r = 0.092 
p = 0.579 
BF10 = 0.41 

r = 0.145 
p = 0.379 
BF10 = 0.50 

r = -0.228 
p = 0.162 
BF10 = 0.84 

alpha r = 0.023 
p = 0.891 
BF10 = 0.36 

r =-0.023 
p = 0.889 
BF10 = 0.36 

r = 0.169 
p = 0.303 
BF10 = 0.57 

r = -0.292 
p = 0.071 
BF10 = 1.49 

beta r = 0.011 
p = 0.945 
BF10 = 0.36 

r = 0.178 
p = 0.279 
BF10 = 0.60 

r = 0.252 
p = 0.122 
BF10 = 1.02 

r = -0.293 
p = 0.070 
BF10 = 1.50 
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theta r = -1.500 
p = 0.143 
BF10 = 0.92 

r = -0.035 
p = 0.830 
BF10 = 0.36 

r = -0.026 
p = 0.875 
BF10 = 0.36 

r = -0.289 
p = 0.074 
BF10 = 1.45 

alpha r = -0.010 
p = 0.547 
BF10 = 0.42 

r = -0.151 
p = 0.358 
BF10 = 0.52 

r = 0.226 
p = 0.167 
BF10 = 0.82 

r = -0.462 
p = 0.003* 
BF10 = 16.7* 

beta r = 0.076 
p = 0.644 
BF10 = 0.39 

r = 0.014 
p = 0.934 
BF10 = 0.36 

r = 0.567 
p = 0.094 
BF10 = 0.41 

r = -0.300 
p = 0.063 
BF10 = 1.62 

Table 20. Correlation tests between hippocampus-PCC and hippocampus-thalamus connectivity, 
and fornix and ILF microstructure components. 

*Highlights p≤0.006. *Highlights a BF10 ≥ 3. N=39. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PCC: Posterior Cingulate Cortex. 
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All correlations between hippocampus or PCC connectivity strength in any of the frequency 

bands, and fornix and ILF microstructure exceeded the experiment-wise alpha level (Table 

21). However, there were trends between ILF PC2 and theta/alpha/beta hippocampus 

connectivity strength and alpha/beta PCC connectivity strength which were supported by 

BFs indicating evidence against the null.  
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 Fornix ILF 

 PC1 PC2 PC1 PC2 

Theta r = 0.074 
p = 0.653 
BF10 = 0.39 

r = -0.016 
p = 0.921 
BF10 = 0.36 

r = 0.152 
p = 0.356 
BF10 = 0.52 

r = -0.381 
p = 0.017 
BF10 = 4.37* 

Alpha r = 0.005 
p = 0.978 
BF10 = 0.36 

r = -0.069 
p = 0.677 
BF10 = 0.38 

r = 0.246 
p = 0.131 
BF10 = 0.97 

r = -0.367 
p = 0.022 
BF10 = 3.60* 

Beta r = 0.124 
p = 0.450 
BF10 = 0.46 

r = 0.111 
p = 0.503 
BF10 = 0.43 

r = 0.328 
p = 0.041 
BF10 = 2.21 

r = -0.408 
p = 0.010 
BF10 = 6.63* 
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 Theta r = -0.057 

p = 0.732 
BF10 = 0.38 

r = 0.077 
p = 0.640 
BF10 = 0.39 

r = 0.103 
p = 0.533 
BF10 = 0.42 

r = -0.263 
p = 0.105 
BF10 = 1.13 

Alpha r = -0.047 
p = 0.776 
BF10 = 0.37 

r = -0.051 
p = 0.756 
BF10 = 0.37 

r = 0.209 
p = 0.202 
BF10 = 0.73 

r = -0.364 
p = 0.022 
BF10 = 3.50* 

Beta r = 0.027 
p = 0.869 
BF10 = 0.36 

r = 0.099 
p = 0.547 
BF10 = 0.42 

r = 0.247 
p = 0.130 
BF10 = 0.97 

r = -0.329 
p = 0.041 
BF10 = 2.23 

Table 21. Correlation tests between hippocampus and PCC connectivity strengths, and fornix and 
ILF microstructure components. 

*Highlights p≤0.006. *Highlights a BF10 ≥ 3. N=39. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PCC: Posterior Cingulate Cortex. 
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In line with the hypotheses, there were significant correlations between ILF PC2 and FG-IOC 

connectivity in the theta, alpha and beta bands (Table 22). There were also trends between 

ILF PC1 and FG-IOC connectivity in the alpha and beta bands which were supported by BFs 

indicating evidence against the null. Also, there were no significant correlations between 

FG-IOC connectivity and fornix microstructure. 

 

As predicted, the coefficient of the correlation between alpha FG-IOC connectivity and ILF 

PC2 was significantly larger than that of the correlation between alpha FG-IOC connectivity 

and fornix PC2 (z(36) = -2.620, p = 0.009). Similarly, the coefficient of the correlation 

between theta FG-IOC connectivity and ILF PC1 was significantly larger than that of the 

correlation between theta FG-IOC connectivity and fornix PC2 (z(36) = -2.451, p = 0.014; 

Figure 38).  

There were no significant correlations between PHC microstructure scores and any ROI 

connectivity scores (statistics shown in Appendix 3D).  

 

FG
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 Fornix ILF 

 PC1 PC2 PC1 PC2 

theta 

 

r = 0.168 
p = 0.306 
BF10 = 0.56 

r = -0.044 
p = 0.791 
BF10 = 0.37 

r = 0.347 
p = 0.031 

BF10 = 2.76 

r = -0.467 
p = 0.003* 
BF10 = 18.36* 

alpha r = 0.126 
p = 0.441 
BF10 = 0.46 

r = 0.001 
p = 0.950 
BF10 = 0.36 

r = 0.405 
p = 0.011 
BF10 = 6.27* 

r = -0.44 
p = 0.005* 
BF10 = 11.84* 

beta r = 0.198 
p = 0.226 
BF10 = 0.68 

r = 0.129 
p = 0.436 
BF10 =0.47  

r = 0.354 
p = 0.027 
BF10 = 3.03* 

r = -0.435 
p = 0.006* 
BF10 = 10.24* 

Table 22. Correlation tests between FG-IOC and fornix and ILF microstructure components. 

*Highlights p≤0.006. *Highlights a BF10 ≥ 3. N=39. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. FG: Fusiform Gyrus. IOC: Inferior Occipital Cortex. 
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Figure 38. Scatterplots showing the relationship between Fornix and ILF microstructure component scores and alpha FG-
IOC connectivity scores. 

The blue histograms show the distributions of the fornix PC1 (top) and fornix PC2 (bottom) data. The red histograms show 
distributions of the ILF PC1 (top) and ILF PC2 (bottom) data. The lighter red histograms show the distribution of the alpha 
FG-IOC connectivity scores. The blue lines are the regression lines and the surrounding shaded areas represent the 95% 
confidence interval. *Highlights p≤0.006. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. FG: Fusiform Gyrus. IOC: Inferior Occipital Cortex. 
 

 

r = 0.126 
p = 0.441 

r = 0.405 
p = 0.011 

r = 0.001 
p = 0.950 

r = -0.44 
p = 0.005* 
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6.3.4 Whole-brain exploratory search for relationships between RS-connectivity, 

oddity performance and tract microstructure. 

Exploratory analyses, searching for correlations between whole-brain RS-connectivity and 

scene oddity accuracy, and whole-brain RS-connectivity and fornix microstructure revealed 

one common connection in the theta band (Figure 39). Scene accuracy correlated with 

connectivity between the left angular gyrus and the left Heschl’s gyrus. Fornix PC1 

correlated with connectivity between the left angular gyrus and left hippocampus. There 

were no significant correlations between RS-connectivity and fornix PC2. There were no 

significant correlations between RS-connectivity and scene oddity accuracy or fornix 

microstructure in the alpha or beta bands. 

 Theta Alpha Beta 

Top 40% 
connections  

connections = 599 connections = 845 connections = 861 

Scene 
Accuracy 

p value = 0.014 (FDR 
corrected) 

X X 

Fornix PC1 

p value = 0.029 (FDR 
corrected) 

X X 

Fornix PC2 X X X 
Figure 39. Exploratory search for correlations between whole-brain RS-connectivity and scene 
oddity performance and fornix microstructure. 



Chapter 6: Examining relationships between RS-connectivity, structure and oddity performance in the PMN and 
AIN. 

191 
 

Coloured dots represent AAL atlas ROIs, with frontal regions located at the top of the circle and 
posterior and occipital regions located at the bottom of the circle. The top row shows the top 40% 
strongest connections for each of the frequency bands and the lines are colours by the regions they 
connect (see Appendix 3A for region names).  
For the remaining rows, lines between ROIs indicate RS connectivities that correlated with the 
behaviour or structure measure. Red and blue lines indicate positive and negative correlations, 
respectively. Opacity and width of the lines indicate relative strength of the correlations within that 
test.  
 
Alpha = 0.0083, FDR corrected p-value threshold = 0.05. N = 39. ‘X’ indicates no significant 
correlations. 
 
PC: Principal Component.  

 

Exploratory analysis, searching for correlations between whole-brain RS-connectivity and 

face oddity accuracy, and whole-brain RS-connectivity and ILF microstructure revealed no 

common connections within any frequency band (Figure 40). Face accuracy correlated with 

connectivity between the posterior and middle cingulum in the beta band. ILF PC1 

correlated with multiple ROI-ROI connectivities in the alpha band. Most of these 

connectivities were between occipital areas but there were connections between: the 

occipital and temporal lobes; the parietal and temporal lobes; the PMC and the frontal 

lobe; and the parietal lobe and the MTL. ILF PC2 correlated with multiple ROI-ROI 

connectivities within the theta band. These connectivities were between several posterior 

areas including occipital, parietal, temporal and PMC areas.  

 Theta Alpha Beta 

Face 
Accuracy 

X X 

p value < 0.001 

ILF PC1 X 

p values < 0.010 

X 
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ILF PC2 

p values < 0.034 

X X 

Figure 40. Exploratory search for correlations between whole-brain RS-connectivity and face 
oddity performance and ILF microstructure. 

Coloured dots represent AAL atlas ROIs, with frontal regions located at the top of the circle and 
posterior and occipital regions located at the bottom of the circle (see Appendix 3A for region 
names). Lines between ROIs indicate RS connectivities that correlated with the behaviour or 
structure measure. Red and blue lines indicate positive and negative correlations, respectively. 
Opacity and width of the lines indicate relative strength of the correlations within that test.  
 
Alpha = 0.0083, FDR corrected p-value threshold = 0.05. N = 39. ‘X’ indicates no significant 
correlations. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component.  
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6.4 Discussion 

This study aimed to investigate correlations between inter-individual differences in RS-

connectivity and task performance in a complex perceptual task, and between inter-

individual differences in RS-connectivity and white-matter tract microstructure. It was 

hypothesized that dissociable relationships would be found for two networks. Specifically, 

RS connectivity patterns of the hippocampus and PCC, with other PMN ROIs, were 

predicted to correlate with scene oddity performance and not face oddity performance, 

and also to correlate with fornix microstructure and not ILF microstructure. The results 

provided partial support for this, as the strength of PCC connectivity to other PMN areas, in 

the theta band, correlated with scene oddity accuracy and not face or size oddity accuracy, 

but no correlations were found between fornix microstructure and any measures of RS-

connectivity. Moreover, tests to see whether scene oddity performance and fornix 

microstructure related to specific RS connectivities, between the hippocampus and PCC, 

and between the hippocampus and thalamus, revealed no evidence to support these. 

Regarding the AIN, FG-IOC connectivity was predicted to correlate with face oddity 

performance and ILF microstructure. There was no evidence of correlations between face 

oddity accuracy and RS-connectivity, but ILF microstructure correlated with FG-IOC RS-

connectivity.  

6.4.1 The importance of widespread RS-connectivity of the PCC. 

The PCC is a highly connected area within the DMN, a network which has been noted to be 

more active at rest than during task engagement (Leech & Sharp, 2014; Raichle, 2015), and 

is thought to be a key member of the PMN, which highly overlaps with the DMN 

(Ranganath & Ritchey, 2012). Both functional (Lord et al., 2017) and structural (Hagmann et 

al., 2008) mapping has identified the PCC as a major hub of the brain, and there are direct 

structural connections between the PCC and the mPFC, and the PCC and the MTL (Greicius 

et al., 2009). Along with the hippocampus, the PCC is an important area in the 

pathophysiology of AD (Lee et al., 2020; Liang et al., 2008), a disease thought to affect the 

PMN (Ranganath & Ritchey, 2012), and RS-connectivity of the PCC has been shown to be 

reduced, and correlate with cognitive impairment, in MCI (Bai et al., 2009). The current 

results extend the importance of PCC RS-connectivity in PMN processing to healthy adults. 

Moreover, RS-connectivity of the PCC correlated only with scene oddity performance and 

not face or size oddity performance, thus supporting the PM-view, which states that the 
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PMN carries out spatiotemporal processing (Murray et al., 2017; Ranganath & Ritchey, 

2012).  

It is unclear whether connectivity of the PCC reflects its direct involvement in scene 

processing, or simply its large influence on PMN communication. The PCC could play a role 

in internal processing, generating internal representations (Leech & Smallwood, 2019), a 

process that is thought to be necessary for solving the oddity task (Barense et al., 2010). 

The connectivity of the PCC with both the DMN and PMN may also result in its pivotal role 

in internal scene presentations, specifically. Additionally, since the PCC is a major network 

hub (Hagmann et al., 2008), it has been suggested that it regulates network dynamics 

(Leech & Smallwood, 2019). In this view, the PCC may activate and deactivate networks 

(such as the DMN and PMN) depending on the current task demands, such as reducing 

activity in task-irrelevant areas during sensory processing, to balance the brain’s activity 

(Hellyer et al., 2017; Leech & Smallwood, 2019).  

The suggested role of the PCC in regulating network-wide activity would explain the 

apparent lack of importance of RS hippocampal connectivity in scene oddity performance. 

Although this seems to contradict studies showing the engagement of the hippocampus in 

this task (Barense et al., 2010; Graham et al., 2010; Hodgetts et al., 2015) and also 

contradicts the EAM, which suggests that the hippocampus is crucial for spatiotemporal 

processing (Murray et al., 2017, 2018), these studies inspect the task-state and this single 

area rather than a network, and the PCC is proposed to have more of a role in mediating 

whole-brain network information flow than the hippocampus (Lee et al., 2020; Leech & 

Sharp, 2014). 

Similarly, the suggested role of the PCC in regulating PMN-wide activity would explain why 

the microstructure measures of neither the fornix nor the PHC correlated with theta RS-

connectivity strength of the PCC to the other PMN ROIs. There is evidence that the fornix 

supports hippocampal theta (Rawlins et al., 1979; Swanson & Cowan, 1979), which has 

been shown to influence PCC theta (Colom et al., 1988), and that connections between the 

PCC and MTL have been shown to run along the PHC bundle (Greicius et al., 2009). 

However, study of the direct pathway between the hippocampus and PCC may not reflect 

the role of the PCC within the PMN as well as studying all PCC-PMN connections. Indeed, 

PCC connections are supported by multiple white-matter routes (Greicius et al., 2009). 

Moreover, hippocampally-independent theta rhythms have been measured in the PCC. 

Therefore, the theta amplitude correlations between the PCC and other PMN areas may 
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not be limited by the characteristics of the direct structural connection with the 

hippocampus.  

The current results share similarities with a study investigating structural and functional 

connections in MCI (Gilligan et al., 2019), which found altered fornix and PHC 

microstructure and reduced functional connectivity between the hippocampus and DMN 

areas, but no correlation between the two. This, together with the current results, may 

mean that fornix/PHC microstructure and RS-connectivity independently relate to PMN 

functioning. On the other hand, both studies used network-wide functional measures 

(average connection strength was used here while Gilligan et al. used graph theory 

measures), but the structure of a small number of individual tracts was assessed. If 

microstructure measures of multiple PCC structural connections were collectively scored in 

a similar way, it might be that structure and function correlations would be revealed.  

The aim of this study was to investigate correlations between RS-connectivity patterns and 

scene perceptual performance, specifically. As it has been argued that MTL activity during 

oddity tasks are actually reflections of encoding processes (Suzuki, 2009), and because 

there was a weak relationship between scene oddity accuracy and scene d’ (Chapter 5), it 

was important to control for potential incidental encoding activity that may have occurred 

during the RS period. This means that the correlation between theta PCC connectivity 

strength within the PMN and scene accuracy is independent of encoding processes. The 

importance of RS PCC connectivity outside of mnemonic processes has also been shown in 

a study investigating scene construction impairments in AD (Irish et al., 2015), which asked 

patients to imagine fictitious scenes. Using voxel-based morphometry as a measure of 

structure quality, the authors found an association between PCC structure and scene 

construction performance in both patients and healthy controls. However, this is not to say 

that RS-connectivity of the PCC within the PMN is not related to memory processes. 

Indeed, previous work has already identified relationships between PCC RS-connectivity 

patterns and memory functioning (Greicius et al., 2004; Natu et al., 2019). Instead, we can 

conclude that RS-connectivity patterns of the PCC may reflect a role in spatiotemporal 

processing across memory, perception and imagining, echoing the predictions of the PM-

view.  

6.4.2 The relationship between ILF microstructure and RS-connectivity measures. 

There was partial support for the hypothesis that ILF microstructure measures would 

specifically correlate with FG-IOC RS-connectivity. There were significant correlations 
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between FG-IOC RS-connectivity in the theta, alpha and beta bands, and ILF PC2, and not 

fornix or PHC PC2. Moreover, there were trends between ILF PC1 and FG-IOC RS-

connectivity in the alpha and beta bands, which were supported by BFs over 3. The FG and 

IOC are connected through the ILF (Herbet et al., 2018) but a correlation between their RS-

connectivity and ILF microstructure had not been demonstrated in healthy adults before. 

This adds to the evidence that RS-connectivity relates to the underlying brain structure 

(Betzel et al., 2014; Messaritaki et al., 2020). 

However, since FG-IOC connectivity did not relate to face oddity performance, it is unclear 

whether there is a behavioural consequence of this correlation between structure and 

function. Furthermore, ILF microstructure may not specifically relate to connectivity within 

the AIN as ILF PC2 also correlated with alpha hippocampus-thalamus connectivity, and 

there were trends between ILF PC2 and hippocampus, and between ILF PC2 and PCC, 

connectivity strengths, supported by BFs above 3. There are several possible reasons for 

correlations between ILF PC2 and widespread alpha RS-connectivity: RS-connectivity 

patterns between areas connected by the ILF may also influence connections elsewhere in 

the brain; as the thalamus may influence occipital alpha (Minami et al., 2020), there may be 

a mechanism by which thalamic alpha influences both functional visual pathway 

communication and ILF tract structure; or given that the ILF is a large tract, the average 

microstructure of this tract may be more representative of an individual’s average white-

matter properties across the whole brain, than the fornix or PHC. Expanding the last point, 

this would mean that ILF microstructure measures are more likely to be closely related to 

microstructure measures of other tracts, and therefore to relate to RS-connectivity 

patterns between brain areas that the ILP does not connect. Lastly, there is a risk that 

measures of RS-connectivity patterns of deep brain areas measures may be inaccurate (see 

Limitations section 6.4.5) so RS-connectivity strength of the hippocampus, for example, 

may not actually represent hippocampal connectivity, but rather connectivity from another 

region (poor localization) or noise. Therefore, ILF microstructure may correlate with 

functional connectivities of areas it anatomically connects, but these functional signals 

have been mis-localized. Future work, which controls for voxel numbers within compared 

tracts and invasively records deep brain activity, would provide insight into the validity of 

these suggestions.  
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6.4.3 Partial dissociability between connectivity frequencies between the 

networks. 

It is has been demonstrated that intra- and inter-network connectivity in different 

frequency bands are unequal across RS networks (Hillebrand et al., 2012). It was 

hypothesized that behaviourally and structurally relevant connectivity between the PMN 

and AIN ROIs would be primarily in the theta and alpha bands, respectively. The results 

provide support for this, as scene oddity accuracy correlated with PCC connectivity strength 

only in the theta band. Moreover, the exploratory analyses, which searched for correlations 

between scene oddity accuracy and whole-brain RS-connectivity strength and between 

fornix microstructure and whole-brain RS-connectivity strength, only revealed significant 

correlations with connectivities in the theta band. These findings appear to contradict the 

RS-MEG study that showed reduced connectivity in AD specifically in the alpha and beta 

bands (Koelewijn et al., 2017). However, it may be that optimal PMN functionality relies on 

functional connections in multiple bands, but that only theta connectivity relates to 

individual differences in behaviour in healthy adults.  

The reason for the specific importance of RS theta amplitude correlations in scene 

processing performance remains unclear. It was hypothesized that PMN theta connectivity 

would be relevant because hippocampal processing is important in scene oddity task 

completion (Barense et al., 2007; Hodgetts et al., 2015; Hodgetts, Voets, et al., 2017) and 

hippocampal processing has been associated with theta rhythms (Buzsaki, 2002). Although 

hippocampus-PCC RS-connectivity did not relate to oddity task performance, PCC 

communication with the hippocampus may still influence PCC connectivity strength to 

other PMN areas. On the other hand, there are hippocampus-dependent theta rhythms in 

the PCC (Talk et al., 2004).  

Regardless of the underlying mechanism, the finding of the importance of PCC theta aligns 

with the results of a study assessing RS oscillatory peaks of the PMC, an area with includes 

the PCC (Foster & Parvizi, 2012). RS spectral power of the PMC was found to peak in the 

theta range, a pattern that was distinguishable from nearby occipital tissue which displayed 

spectral power peaks in the alpha range.  

There was less support for the specific importance of connectivity in the alpha band within 

the AIN. ILF microstructure was found to relate to alpha RS FG-IOC and alpha RS 

hippocampus-thalamus, but it also correlated with RS FG-IOC connectivities in the theta 



Chapter 6: Examining relationships between RS-connectivity, structure and oddity performance in the PMN and 
AIN. 

198 
 

and beta ranges. Furthermore, no RS-connectivities correlated with face oddity 

performance. The exploratory analyses indicated relationships between ILF PC1 and whole-

brain alpha RS connectivities, but ILF PC2 and face oddity accuracy related to whole-brain 

RS connectivities in the theta and beta bands, respectively. Therefore, further assessment 

of functional connections between face processing regions is necessary to understand 

whether there is a dominant oscillatory frequency binding these areas.   

6.4.4 The evidence for three-part relationships between structure, function and 

behaviour. 

Since brain white-matter microstructure can predict functional connectivity between brain 

areas at rest (Messaritaki et al., 2020), and there is evidence of relationships between 

white-matter microstructure and behaviour (e.g. Hodgetts et al. 2015), and RS-connectivity 

and behaviour (e.g. Sulpizio et al. 2016), it was hypothesized that three-part relationships 

between structure, function and behaviour would be found for the PMN and AIN networks. 

Specifically, it was predicted that RS-connectivity of the hippocampus with the PCC or 

thalamus would correlate with both scene oddity performance and fornix microstructure 

(which was evidenced to relate to scene oddity performance in Chapter 5). Similarly, it was 

predicted that RS-connectivity between the FG and IOC would correlate with both face 

oddity performance and ILF microstructure (which was evidenced to correlate with face 

oddity performance in Chapter 5). However, the results suggest that, in the case of PMN 

functioning, fornix microstructure and RS PCC theta connectivity strength independently 

relate to scene oddity performance. This aligns with the results of Chapter 5, which 

indicated that fornix PC1 and HPC theta change between scene oddity and fixation 

independently correlated with scene oddity task performance, and of Hodgetts et al. 

(2015), which also showed that fornix MD and hippocampal BOLD decrease between scene 

oddity task and baseline independently correlated with scene oddity performance.  

However, the results from the exploratory analyses could incite further investigation into 

the angular gyrus. Theta RS-connectivity between the left angular gyrus and left 

hippocampus correlated with fornix PC1, and theta RS-connectivity between the left 

angular gyrus and the left lateral temporal cortex (Heschl’s gyrus) correlated with scene 

oddity accuracy. Moreover, the angular gyrus is part of the IPL, an area which displayed 

modulated oscillatory power during scene oddity task completion in Chapter 4. Therefore, 

the angular gyrus appears to be a common factor in PMN structure, function and 

behaviour.  
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6.4.5 Limitations. 

The challenge of measuring deep source activity may explain why no relationships were 

found between hippocampus RS and scene oddity performance, or between any RS-

connectivity patterns and fornix microstructure. Measuring signals from deep brain 

structures such as the hippocampus and thalamus is challenging in MEG (Hillebrand & 

Barnes, 2002). Hippocampal signals have been shown to be measurable with MEG when 

source subtraction techniques are used, as in Chapter 4, to reduce the overshadowing of 

weak deep MTL signals by stronger visual signals (Quraan et al., 2011). However, since RS is 

taskless, source activity from different conditions cannot be contrasted to cancel-out 

stronger signals, making measuring RS-connectivity between deep sources with MEG 

challenging. The challenge of measuring deep brain RS-connectivity is illustrated in three 

studies (Dima et al., 2020; Godfrey & Singh, 2020; Koelewijn et al., 2019) that measured 

amplitude-amplitude coupling across AAL ROIs and used a ranking procedure to isolate the 

top 20% strongest connections. Hippocampus connections did not surpass this threshold in 

any frequency band studied, in any of the studies, indicating either that the strengths of 

hippocampal connections are highly variable across participants, or that they are 

consistently weak, both of which could be caused by a low SNR. The field would benefit 

from a re-evaluation of the relationships between RS-connectivity of the hippocampus and 

fornix microstructure or scene processing performance, with the use of a technique which 

can better measure deep brain sources. Several fMRI studies have shown correlations 

between RS hippocampal connectivity with structure or behaviour (Kehoe et al., 2015; 

Sulpizio et al., 2016; Wegman & Janzen, 2011), but fMRI does not allow the measurement 

of electrophysiological oscillatory activity, and results of the current study indicated the 

specific importance of PMN connectivity within the theta band. Invasive 

electrophysiological recording may allow further understanding into whether fornix 

microstructure relates to hippocampal RS-connectivity in the theta band specifically. 

ILF microstructure, and FFA BOLD modulation, have previously been shown to relate to 

face oddity performance (Hodgetts et al., 2015), and the present study showed an 

association between FG-IOC RS-connectivity and ILF microstructure, so the lack of evidence 

for a correlation between FG-IOC RS-connectivity and face oddity performance, was 

unexpected. However, the ILF is a large tract with multiple subcomponents (Catani et al., 

2003), and the FG has multiple functional roles (Weiner & Zilles, 2016), so it is possible that 

a non-face-sensitive network was inspected. This is because the choice of the 

representative VS for each area was based on the voxel with the largest activity change 
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during the recording, rather than functional activations of the areas. The VSs could have 

been reflecting activity from brain areas that do not have roles in face processing. 

Therefore, while I aimed to measure RS-connectivity between two face areas, and 

individual differences in this connectivity could have no association with face processing 

performance, it is also possible that RS-connectivity between two areas not primarily 

associated with face processing, but still connected via the ILF, was measured. Previous 

studies inspecting the OFA and FFA have used fMRI and run functional localizer scans to 

ensure that face specific areas are being inspected (Kanwisher et al., 1997; Pitcher et al., 

2011). However, a similar method in MEG would be challenging because the face localizing 

task and RS recording would have to take place within the same session, otherwise 

mapping exact brain locations from two recordings with different head localization 

measures, would incite source localization errors. A future MEG study, hoping to localize 

RS-connectivity between face specific areas could produce VSs from these areas using a 

PCA technique to reduce the signal data (see Chapter 4 and Seymour et al., 2014) and then 

investigate for correlations between the resulting components and face processing ability.  

RS-connectivity patterns were thought to portray an individual ‘trait’ inasmuch as RS 

patterns are less variable over time than in-task activity patterns. However, true RS 

patterns of the participants may not have been captured as the scan took place after the 

oddity task, because it was anticipated that beginning a long MEG session with inactivity in 

a dimly lit room may increase the chances that participants were fatigued before the end of 

the session. It also created a minimum time between the oddity and memory tasks. 

Lingering oddity task processes may have influenced the scan. For example, the PMN and 

AIN may have been more active. Therefore, the correlation between PCC theta connectivity 

strength and scene oddity performance may be interpreted as a relationship between 

scene processing ability and connectivity between PMN areas post-scene-processing, 

rather than connectivity between PMN areas during rest. Future work could compare RS 

patterns before and after the oddity task to characterize influences of carry-over effects.  

Lastly, it should be noted that amplitude-amplitude oscillation correlations are only one 

measure of functional connectivity, and further correlations between RS-connectivity, 

behaviour and structure may have been identified if another functional connectivity 

method was used. For example, other methods include oscillation-based coupling, such as 

phase-coherence between different brain areas (Marquetand et al., 2019) or entropy-

based coupling, in which brain areas can be functionally coupled through correlations in 

irregular activity over time (Godfrey & Singh, 2020). The amplitude-amplitude correlation 



Chapter 6: Examining relationships between RS-connectivity, structure and oddity performance in the PMN and 
AIN. 

201 
 

method was used because it has been demonstrated to be one of the most reliable 

measures of RS-MEG connectivity (Colclough et al., 2015), but this field may benefit from 

future work that combines functional connectivity measures from different methods to 

better portray functional correlations within the PMN and AIN.  

6.5 Conclusion 

This study aimed to investigate correlations between inter-individual differences in RS-

connectivity and task performance in a complex perceptual task, and between inter-

individual differences in RS-connectivity and tract microstructure. In line with the 

hypotheses, theta RS-connectivity strength between the PCC and other PMN areas 

correlated with scene oddity performance and not face or size oddity performance, 

demonstrating the importance of theta PCC connectivity in spatiotemporal processing. The 

confirmatory analyses revealed no correlations between RS-connectivity and fornix 

microstructure, suggesting that theta RS-connectivity within the PMN and fornix 

microstructure independently relate to scene processing performance. However, 

exploratory whole-brain analyses indicated theta connectivity of the angular gyrus as a 

common element in correlations between RS-connectivity and scene oddity accuracy, and 

RS-connectivity and fornix microstructure, suggesting that it may act as a mediating factor 

between structure and behaviour. Confirmation of this would need further investigation. 

Regarding the AIN, and contradicting the predictions, no RS-connectivity patterns 

correlated with face oddity performance. However, there were RS-connectivity patterns, 

such as alpha FG-IOC, that did correlate with ILF microstructure, which aligned with the 

hypotheses. Overall, the results demonstrate the behavioural relevance of PMN RS-

connectivity in the theta band, particularly between the PCC and other PMN areas.
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7 Chapter 7: Examining relationships between structure and 

object-in-sequence memory performance in the PMN and 

AIN. 

7.1 Introduction 

7.1.1 Background. 

Space and time are often combined in episodic memory (Eichenbaum, 2017a) and the PMN 

is thought to conduct concurrent spatiotemporal processing (Murray et al., 2017; 

Ranganath & Ritchey, 2012). Up to this point, this thesis has assessed the role of the PMN, 

specifically the hippocampus and fornix, in spatial processing but the role of the PMN in 

temporal processing has not been similarly addressed. PMN areas, in particular 

components of the extended hippocampal network that are connected via the fornix, have 

been shown to be critical for episodic memory (Aggleton & Brown, 1999), specifically 

through contributions to the processing of space and time (Buzsaki & Moser, 2013; 

Ranganath & Hsieh, 2016). Inter-individual differences in fornix microstructure in healthy 

individuals have been shown to be correlated with recollection of episodic information 

(Rudebeck et al., 2009), spatial-temporal information in autobiographical memories 

(Hodgetts, Postans, et al., 2017), spatial perception (Hodgetts et al., 2015) and spatial 

learning (Hodgetts et al., 2020). To date, however, the contribution of the fornix to 

temporal sequence memory has not been investigated in healthy humans, and animal and 

human lesion studies have provided inconclusive results (Charles et al., 2004; Hunsaker & 

Kesner, 2009).  

Work by Hsieh et al. (Hsieh et al., 2014; Hsieh & Ranganath, 2015) involving object-in-

sequence memory, has shown that the hippocampus holds object-in-sequence information. 

In these studies, participants learned several different object sequences, by answering 

semantic questions on the objects. They then underwent fMRI, during which they again 

answered semantic questions on the objects presented in these sequences. Activation 

pattern similarity matrices showed that the hippocampus responded to object-in-sequence 

information. Other PMN areas, the mPFC, RSC, parahippocampal cortex and angular gyrus, 

responded to sequence position regardless of which objects were presented in that 

sequence position. Conversely, the PrC, an important region in the AIN, responded to the 

objects regardless of where they were positioned in the sequence.  
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These findings suggest that the temporal context of events may arise through processing of 

object-in-sequence information in the hippocampus, complementing the purely contextual 

processing functions of other PMN areas, and aggregate object processing in the AIN. 

Therefore, microstructure of the fornix, the main connecting tract of the hippocampus, 

may determine the effectiveness of communication between the hippocampus in support 

of temporal processing, and relate to interindividual differences in temporal memory.  

Previous animal research examining contributions of the fornix to temporal sequence 

memory has produced inconclusive results. For example, rats with dorsal fornix 

transections (thought to be the major output of the hippocampal CA1 sub-region) were 

found to be unimpaired in the temporal processing component of an object recognition 

task, but they displayed poor novel object detection (Hunsaker & Kesner, 2009). The 

authors suggested that preservation of the direct perforant pathway between CA1 and the 

entorhinal cortex may have allowed temporal information still to be effectively 

communicated. By contrast, complete transection of the fornix in monkeys has been shown 

to result in poor between-session recency memory in a delayed matching-to-sample task, 

while sparing object novelty detection (Charles et al., 2004). This task required the 

selection of an item seen in the preceding sequence as opposed to an item seen elsewhere 

during the task. Similarly, impaired temporal order memory but intact content memory has 

been described in a human fornix lesion case, a finding attributed to disrupted fronto-

hippocampal communication (Yasuno et al., 1999).  

There are multiple possible mechanisms by which the hippocampus and connected regions 

could support the temporal ordering of information. Items within events may be 

temporally ordered through serial inter-item associations or item-position coding (Cohn-

Sheehy & Ranganath, 2017; Long & Kahana, 2019). The hippocampus may also support 

representation of temporal associations within groups of objects without specific serial 

orders (Cohn-Sheehy & Ranganath, 2017). For example, the hippocampus has been 

reported to hold information about temporal community structures (Schapiro et al., 2016), 

in which transition probabilities within communities are equal and therefore items are 

temporally linked but not in any specific order. Both mechanisms may be related to 

sequence boundary effects, where memory for event order within events is enhanced 

compared with memory for event order across contextual boundaries (DuBrow & Davachi, 

2013). Hippocampal activity has also been reported to alter at sequence boundaries 

(Schapiro et al., 2016). The hippocampus thus appears to be important for memory of 

objects grouped by their temporal proximity, either with specific serial orders (object-
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position binding) or without specific orders. It may be that an extended-hippocampal 

network, supported by the fornix, is also important for these functions.  

7.1.2 Aims and hypotheses. 

To investigate the role of the fornix in object-in-sequence memory, an adaptation of the 

behavioural task of Hsieh et al. (2014) was used. Participants were exposed to two types of 

object sequences: fixed sequences (objects always appeared in fixed temporal positions) 

and random sequences (objects appeared in random temporal positions). During the 

‘Learning Phase’, they answered semantic questions about objects, which were presented 

in their associated sequences. In the ‘Retrieval Phase’ they also answered semantic 

questions about the objects, which were again presented in their associated sequences, 

and novel object sequences were also included. As in Hsieh et al. (2014), the time taken to 

answer the semantic questions (RT) was used as a measure of implicit learning of object 

structures. This differs from previous chapters of this thesis where accuracy was the focus, 

because semantic decision accuracy was not of interest, and measuring RT can reveal 

individual differences in retrieval even if accuracy levels are at ceiling level (the task was 

designed to be easy). Average response RTs for novel, random and fixed sequences were 

contrasted, with the assumption that response RTs to objects learned in randomly ordered 

sequences would be shorter than response RTs to novel objects, and that response RTs to 

objects learned in fixed ordered sequences would be shorter than response RTs to objects 

learned in randomly ordered sequences. These measures of object-in-sequence memory 

were called ‘RT Enhancement novel-random’ and ‘RT Enhancement random-fixed’, 

respectively. The aims of this study were threefold: to assess the role of hippocampal 

communication in temporal memory, by testing for associations between fornix 

microstructure and performance in the object-in-sequence memory task; to investigate 

whether this fornix pathway is specific to particular forms of temporal memory, by 

comparing the correlations with the two RT enhancement measures; and to investigate 

whether this fornix-supported pathway supports temporal memory retrieval independent 

of a contribution to learning. 

There was thus a hypothesis that fornix microstructure would relate to measures of object-

in-sequence retrieval, but the nature of the temporal memory was unclear. Considering 

that Hsieh et al. (2014) identified bound item-position information in the hippocampus, it 

could be predicted that inter-individual differences in fornix microstructure would be 

correlated with RT Enhancement random-fixed, indicating fornix contributions to bound 
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object-position memory. On the other hand, Hsieh et al. (2014/15) also found evidence for 

temporal context memory for random sequences, revealed as a gradual reduction in 

response RT across serial positions, indicating that memory of the object sequence 

facilitated anticipation of upcoming objects. This behavioural pattern indicates memory 

akin to temporal community structures. If individual differences in communication via the 

fornix related to this form of temporal memory, then fornix microstructure may relate to 

RT Enhancement novel-random. 

It was unclear whether individual variation in the fornix-supported pathway would relate 

equally to temporal sequence learning and retrieval. While some microstructure studies 

have found associations between fornix microstructure and retrieval (Hayek et al., 2020; 

Hodgetts, Postans, et al., 2017), others have found associations between fornix 

microstructure and encoding (Green et al., 2016; Hodgetts et al., 2020). Additionally, 

hippocampal BOLD has been shown to increase during learning and retrieval of non-spatial 

sequences of faces (Ross et al., 2009), which aligns with the understanding that networks 

involved in successful encoding and retrieval heavily overlap (Rugg et al., 2008). Bridging 

encoding and retrieval processes together, a test of adaptability to changes in temporal 

structure over short delays in fornix-transected monkeys, has indicated that the fornix is 

crucial to the processes of updating internal models of temporal structure (Kwok et al., 

2015). Together, these results suggest that individual differences in fornix microstructure 

would correlate with measures of temporal sequence learning to the same degree as 

measures of temporal sequence retrieval, or they might even imply that any apparent 

relationship between fornix microstructure and retrieval performance is actually just a 

reflection of encoding ability. However, functional connectivity within the PMN and AIN, 

and the hippocampus, has been found to differ in encoding and retrieval states (Cooper & 

Ritchey, 2019). Cooper and Ritchey (2019) examined fMRI-measured functional 

connectivity during encoding and retrieval of associations between objects, and the colour, 

spatial properties, and emotional properties of those objects. They found that while the 

connectivity patterns of the PMN and AIN networks indicated that they functioned 

somewhat separately from each other during encoding, whole network (all regions 

together) modularity decreased during retrieval, indicating increased connectivity between 

the networks, and between the network areas and the hippocampus, during this state. 

These results may indicate differing levels of influence of connecting white-matter 

properties on network functioning, within the learning and retrieval phases. Therefore, in 

addition to examining RT in retrieval responses during the retrieval phase, the accuracy of 
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sequence reconstruction during the learning phase was tested. This measure of retrieval, 

assessed intermittently during learning, was intended to indirectly reflect learning 

performance. It was thus possible to test whether correlations between fornix 

microstructure and retrieval measures, were independent of learning performance. 

To test if the fornix had a specific role in temporal sequence memory, correlations between 

temporal sequence memory measures and microstructure properties of the ILF and PHC 

were also tested. The ILF is an important tract of the AIN (Catani et al., 2003; Latini, 2015) 

and studies have reported correlations between ILF microstructural properties and 

performance of tasks involving production of semantic content in autobiographical 

memory (Hodgetts, Postans, et al., 2017) and object recognition (Ortibus et al., 2012). 

Therefore, while the ILF may support performance in this study through supporting 

semantic/object processing, performance in semantic/object processing was not directly 

assessed so it was anticipated that relationships between ILF microstructure and the RT 

enhancement measures would be weaker than those between fornix microstructure and 

the RT enhancement measures, or not apparent. Conversely, the PHC, along with the 

fornix, is an important pathway within the hippocampal–diencephalic–cingulate loop, 

connecting parahippocampal areas to other areas of the PMN, including the RSC (Bubb et 

al., 2017). Therefore, it may have been expected that PHC microstructural properties would 

be associated with temporal sequence memory measures. However, areas connected 

through the PHC have been shown to hold temporal sequence position knowledge only, 

irrespective of objects (Hsieh & Ranganath, 2015), and the current experiment’s tasks 

probed object-in-sequence memory. Therefore, since the fornix is the primary white-

matter connection of the hippocampus, and the RT enhancement measures would not 

capture position-only information, it was anticipated that relationships between PHC 

microstructure and the RT enhancement measures would be weaker than those between 

fornix microstructure and the RT enhancement measures, or not apparent. 

As with the previous microstructure analysis within this thesis, inter-individual differences 

in tract properties were scored by reducing multiple MRI-derived microstructure measures, 

through PCA, to biologically interpretable components, and extracting individuals’ tract 

scores from those components. Also, similar to the previous analysis, tract FA, MD and RD 

were calculated from the DTI model and ICVF and OD were calculated from the NODDI 

model. However, the current experimental MRI protocol did not include CHARMED or qMT 

imaging, so FR and MPF values could not be extracted. With the aim of creating 

comparable components across the datasets, AxD was additionally calculated from the DTI 
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model. This way, the number of measures entering the PCA were similar (6 in the current 

study, 7 previously). Also, AxD and FR are correlated in areas of single fibre populations (De 

Santis et al., 2014), so it was predicted to provide some information similar to that 

provided by FR. 

7.2 Methods 

7.2.1 Participants. 

Fifty-one female volunteers (mean age: 20.1 years, SD 1.1, range: 19-24 years), with no 

reported neurological pathology, were recruited. Participants underwent behavioural 

testing followed by a diffusion MRI scan, on the same day14. 

7.2.2 The Object-in-sequence memory task.  

The temporal sequencing task, which was adapted from Hsieh et al. (2014), comprised two 

phases, a learning phase immediately followed by a retrieval phase. In these, participants 

were asked to make semantic decisions on objects, including man-made objects, animals, 

fruits and vegetables, that were presented in sequences of five objects. Both phases 

included fixed and random sequence types. Fixed sequences contained consistent objects 

that always appeared in a consistent order: one of these contained unique objects and 

another two shared identical objects in serial positions 2 and 3. Two random sequences 

contained unique objects, but these were presented in a different order in every repetition. 

The retrieval phase additionally included novel sequences, which contained novel and trial-

unique objects upon every repetition. Examples of the sequences are shown in Figure 41.  

 
14 This was a previously collected dataset and I analysed the data subsequently.  
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Learning phase. 

The learning phase included two study-test cycles. In each study cycle, the three fixed and 

the two random sequences were each presented three times. One of five semantic yes/no 

questions e.g. “Is the presented item readily edible?” (more example questions shown in 

Appendix 4A) was presented at the beginning of each cycle, and participants answered this 

question for each object presented within the cycle. Participants were instructed to answer 

as quickly and accurately as possible15. The order of sequences was semi-randomised to 

 
15 Note that this contrasts with the oddity task described in previous chapters of the thesis, where 
participants were told to focus on answering correctly rather than quickly. In the current task, RT 
was the measure of interest, and the semantic questions were not designed to be challenging or to 
reveal individual differences in semantic decision-making accuracy. 
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Figure 41. Examples of sequence types. 

The task comprised two phases, a learning phase immediately followed by a retrieval phase. The learning phase included cycles 

in which participants answered semantic questions on the objects presented in the sequences, and reconstructed the 

sequences. In the retrieval phase, participants only answered semantic questions on the objects presented in the sequences. 

Both phases included object sequences that were either consistently ordered, “fixed”, or randomly ordered, “random”. Fixed 

sequences contained consistent objects that always appeared in a consistent order: one of these contained unique objects and 

another two shared identical objects in serial positions 2 and 3 (in this study, the two fixed sequence types were analysed 

together so this detail is not illustrated in this figure). Two random sequences contained unique objects, but these were 

presented in a different order in every repetition.  Sequences of novel objects, “novel”, were additionally included in the 

retrieval stage. Repetition examples are included to illustrate that fixed sequences had consistent object order across 

repetitions whereas random sequences did not. 
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ensure that identical sequences were not presented consecutively and that all sequences 

had been presented before showing repeats (see Figure 42 for more detail and 

presentations timings).  

In each of the test cycles in the learning phase, participants were shown all classes of 

sequences again. Again, the order of sequences was semi-randomised. Participants were 

explicitly tested on how well they had learned each of the fixed sequences, three times. 

They were shown all the objects from a sequence simultaneously and these were labelled 1 

to 5, with five boxes underneath each of the numbers. Participants were asked to 

reconstruct the order in which they were presented in that sequence, using keys 1 to 5 

along the top of the keyboard. The correct order was then displayed. For the random 

sequence trials, participants simply placed the objects in a random order and then another 

random order was displayed, which required no response. Answers were regarded as 

correct if objects were placed in the correct temporal position. The fraction of answers that 

were correct was expressed as a percentage. There were two study-test cycles within the 

learning phase. Accuracy over all the reconstruction tests was averaged to give a “Learning 

Score”. Note that this score is actually comprised of explicit measures of sequence 

retrieval, assessed intermittently during the learning phase, with the aim of reflecting 

learning performance, but does not directly measure learning.  

Retrieval phase. 

Each of the five blocks was preceded by the presentation of a yes/no semantic question 

(different from those used in the learning phase). Each sequence was presented three 

times within each block. The presentation times were the same as those in the Learning 

phase, except that the sequences were run seamlessly: sequence boundaries were not 

highlighted by a longer fixation screen. 

Response RTs were recorded to measure the extent to which individuals utilized object 

sequence knowledge to facilitate semantic judgments. This should be reflected as a 

reduction in average response RT of the fixed sequences compared to the random 

sequences, “RT Enhancement random-fixed”, and a reduction in average response RT of 

the random sequences compared to novel sequences, “RT Enhancement novel-random”. 

Initially, the RT differences between responses to positions 3 and 4 of the overlapping fixed 

sequences were to be included to examine sequence separation. However, response RTs to 

position 3 and 4 were not found to be significantly different (see Appendix 4B). 
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Averaged sequence RT scores were calculated for each sequence by computing the mean 

of the RTs to decisions on objects presented in positions 2-5. Response RTs to position 1 

were removed at this stage, as it was assumed these RTs would be influenced more 

strongly by the inability to predict the first object, than by individual differences in object-

in-sequence knowledge.    
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Figure 42. Layout of the temporal sequence memory task. 

To aid understanding, only examples of the fixed and random sequences are shown. Note that the retrieval phase additionally included novel 

object sequences. The task comprised a “learning” phase followed by a “retrieval” phase. The Learning phase comprised study-test cycles. In 

the study part, participants learned the object sequences by answering semantic questions about the objects presented in their sequences. 

Each object was displayed for 1 s and was followed by a blank fixation screen lasting 1.5 s. Participants could respond any time between 

object onset and the end of this fixation screen. Additionally, the sequences were separated by a longer blank fixation screen lasting 2.5 s. In 

the test part, participants were asked to re-order randomly ordered objects from the sequences. Note that the random sequence cannot be 

reordered correctly, and participants randomly ordered the objects before being shown another random order. The sequences were shown 

three times within the test and study parts, and there were two test-study cycles. The Retrieval phase comprised five blocks, which was 

similar to the study part of the Learning phase, but all the sequences were shown seamlessly (without longer fixation screens). Again, 

participants answered semantic questions about each object displayed.  

Blue asterisks have been added for illustrative purposes, on some images in the Retrieval phase, to denote the image in position 1 of a 

sequence.  
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7.2.3 MRI scanning protocol and microstructure measurement. 

7.2.3.1 Protocol. 

Structural and diffusion MRI data were collected using a Siemens Prisma GE 3T MRI system 

with a 32-channel head coil. DWI data were acquired using a dual-shell HARDI (Tuch et al., 

2002) protocol with the following parameters: slices = 80, TR = 9400 ms, TE = 67 ms, FOV = 

256 mm x 256 mm, voxel dimensions = 2 x 2 x 2 mm. Gradients were applied along 90 

isotropic directions with b-values of 1200 s/mm2 and 2400 s/mm2. Six non-diffusion-

weighted images were also acquired with a b-value of 0 s/mm2.  

T1-weighted anatomical images were obtained using an MPRAGE sequence with the 

following parameters: slices = 176, TR = 2250.0 ms, FOV = 256 mm x 256 mm, matrix size = 

256 mm x 256 mm, flip angle = 9o, TE = 3.06 ms, slice thickness = 1 mm. 

7.2.3.2 Analysis of structural images. 

The T1 MPRAGE files underwent alignment to their respective DWI images, cropping, skull 

removal with the FSL brain extraction tool (BET), and downsampling to a voxel size of 1.5 x 

1.5 x 1.5 mm. 

Subject motion and echo planar imaging distortions were corrected by co-registering the 

DWIs to their respective T1 images using Explore DTI (Leemans et al., 2009). Tensor fitting 

was carried out on the 1200 b-value shell, tractography analysis was applied to the 1400 b-

value shell, AMICO NODDI was applied to the dual-shell data, using the same methods 

described in Chapter 5 (section 5.2.3.2.). 

ICVF and OD values were extracted from NODDI maps. DTI Modelling was used to extract 

measures, FA, MD, RD and AxD. Although MD is an average of RD and AxD, all are included, 

as they have been associated with different tissue properties, and have been previously 

included together in a similar study using PCA to reduce microstructure data (Geeraert et 

al., 2020).  

7.2.3.3 Tractography.  

To generate three-dimensional streamlines that represented the fornix, the ILF and the PHC, 

'way-point' ROIs were manually drawn onto whole-brain FA maps in the diffusion space of 
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18 subjects, using Explore DTI (Leemans, 2009). These 'way-point' ROIs allow the user to 

define Boolean AND and NOT gates with the aim of isolating the relevant streamlines. The 

resultant tracts were used to train in-house automated tractography software (written by 

Greg Parker of Cardiff University), that was then applied to the entire dataset. Afterwards, 

streamlines produced by the automated tractography software were visually inspected and 

spurious fibres were removed using additional NOT gates. The protocols for the manual 

construction of the tract streamlines are the same as those described in Chapter 5. 

7.2.4 Tract microstructure data reduction.  

FA, MD, RD, AxD, ICVF and OD values for the voxels encompassed in the tract streamlines 

were extracted and averaged for each tract. This resulted in six microstructure metrics for 

three tracts for all 51 participants. Reduction of the microstructure data, through PCA, was 

carried out using the same methods as those described in Chapter 5.  

7.2.5 Statistical analysis. 

For assumption testing, tract microstructure-behaviour correlations and figure generation, 

R (R Core Team, 2019) and RStudio (RStudio Team, 2020) were used. Where appropriate, 

parametric tests were applied to raw values or transformed-to-normal values. Tests used, 

and applied transformations, are outlined alongside the results. 

To inspect position response RT effects for fixed, novel and random sequences, RM ANOVA, 

with sphericity correction if necessary, was applied. 

To assess the unique contribution of fornix microstructure, compared with ILF and PHC 

microstructure, to the behavioural indexes of sequence memory, both individual tract 

microstructure-behaviour correlations, and a multiple linear regression model, were tested. 

The latter allowed assessment of whether the fornix microstructure predicted RT 

Enhancement random-fixed independently from contributions of PHC and ILF 

microstructure data, and independently from Learning Score.  

Similar to the methods of Chapter 5 and Hodgetts et al. (2015), p-values were Bonferroni-

corrected by dividing the traditional 0.05 alpha level by the number of correlation tests for 

each microstructure component. Therefore, the experiment-wise threshold used was 

0.017, this being 0.05/3 behavioural measures (Learning Score, RT Enhancement random-

fixed and RT Enhancement novel-random). When comparing correlation coefficients 
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(methods described in Chapter 5 section 5.2.6), the alpha value was Bonferroni-corrected 

for the number of tests within each section, to 0.025 (0.05/2).  

Some of the hypotheses in this project were that specific phenomena should not occur. 

Therefore, confirmatory correlation tests between structure, function and behaviour were 

carried out with both inferential statistics and equivalent Bayesian tests. BFs were 

calculated using BayesFactor package in R (Morey & Rouder, 2018), and were reported as 

BF10 (evidence of the alternative model over the null model).  

Outliers were identified in the microstructure component data, and in the behavioural 

measures that were used for correlation testing with microstructure component data. 

Participant datasets containing outlying values (>3 SDs from the mean) in either the 

contrasted behaviour conditions or the microstructure PCA score data were identified in 

each analysis stage and removed. 

Plots were drawn using several R packages. Visualization of the correlation matrices was 

achieved using ggcorrplot (Kassambara, 2019). For the PCA results, stats (R Core Team, 

2019) and ggplot2 (Wickham, 2016) were used. To visualize correlation plots, with 

histograms, and to test and visualize regression results, ggstatsplot (Patil, 2021) was used. 
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7.3 Results  

7.3.1 Object-in-sequence memory behavioural data. 

7.3.1.1 Learning phase: Learning Scores. 

Results from the reconstruction tests of the learning phase showed that fixed sequences 

were learned reasonably well. The mean and mode of the scores from the last repeat of the 

second cycle (the 6th reconstruction of a sequence) were 90.39% and 100% respectively. 

The Learning Scores, created by averaging the reconstruction results across Study-Test 

cycles, were thought to reflect individual differences in the rate of initial learning (Table 

23).  

 

 

 

 

 

7.3.1.2 Retrieval Phase. 

7.3.1.3 Average response RTs differed between sequence types. 

Sequence position RT effects are described in detail in the Appendix 4B. The averaged 

response RTs to positions 2-5 of the three sequence types, novel, random and fixed were 

compared (Table 24; Figure 43). Response RTs to position 1 were not included in the 

average calculation because it was anticipated that these would be influenced by sequence 

boundary effects, which are not the focus of this experiment. RMANOVA revealed a 

significant difference between the means of the conditions (F(2, 100) = 147.8, p <0.001, ω2 = 

0.230). Post hoc testing (with Bonferroni correction) revealed that, as expected, the 

averaged RTs of the novel sequences were larger than those of the random sequences 

(mean difference = 90.55, p <0.001), which in turn were larger than those of the fixed 

sequences (mean difference = 21.97, p = 0.003). 

 
Learning Score 

Mean 80.81 

SD 16.90 

Minimum 25.83 

Maximum 100 

Skew -0.69 

Table 23. Learning Score. 

Each participant had a learning score, which was an average of their reconstruction scores across 

Study-Test cycles. 
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RM ANOVA revealed that, unlike the finding of Hsieh et al. (2014), response RTs for 

positions 3 and 4 of the overlapping fixed sequences did not significantly differ (see 

Appendix 4B). Therefore, the response RTs of the overlapping fixed sequences were not 

independently included in subsequent analyses but averaged, with the other fixed 

sequence. 

  

  

 
Novel  Random Fixed RT 

Enhancement 
novel-random  

RT 
Enhancement 
random-fixed  

Mean 685.23 594.69 572.71 90.55 21.97 

SD 87.03 82.33 96.64 42.91 44.90 

Minimum 509.00 432.28 290.17 13.30 -47.14 

Maximum 908.61 856.40 792.10 216.48 192.75 

Skew -0.01 0.44 -0.38 0.32 1.56 

Table 24. Average RT of sequence-types, and contrasted sequence-types values. 

Average RT values (in ms) were made from averaging RTs for positions 2-5. RT Enhancement novel-random and RT 

Enhancement random-fixed scores were made by subtracting the averaged RTs of random from novel, and fixed from 

random, respectively.  
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7.3.2 Tract microstructure. 

Mean along-tract, bilaterally averaged tract microstructure metrics are shown in Table 25. 

The Pearson correlation values shown in Figure 44A highlight the shared variance in this 

data. 
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Figure 43. Participant averaged response RTs, for each condition. 

Individual participant averaged response RTs, for positions 2-5, for the novel, random and fixed sequences scores are 

plotted. The asterisks indicate that the group average RTs of each sequence type were significantly different from each other 

(p-values ≤ 0.003). The behavioural indexes of sequence memory, RT Enhancement novel-random and RT Enhancement 

random-fixed are the differences between novel and random averaged RTs and between the random and fixed averaged 

RTs, respectively. 
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The results from the PCA (overall KMO: 0.63, sphericity: p <0.001) showed that 93% of the 

microstructure data variability was accounted for by the first two principal components, 

PC1 and PC2. PC1 accounted for 59% of the variance, and MD, RD and AxD provided major 

negative contributions (Table 26; Figure 44B). It was similar to the first component found in 

Chamberland et al. (2019) and the second component of Geeraert et al. (2020). Therefore, 

PC1 was interpreted as positively relating to a ‘restriction’ property of the fibres (presumed 

to relate to myelin density and axonal packing). PC2 accounted for 34% of the variance, and 

FA and ICVF provided the major negative contributions, while OD provided a major positive 

contribution (Table 26; Figure 44B). Since OD is lower in tracts known to have more fibre 

coherency and higher in tracts known to have more fibre fanning and crossing (Zhang et al., 

2012), and FA can be influenced by how coherently fibres within a voxel are organised 

(Jones, Knosche, et al., 2013; Pierpaoli et al., 1996), PC2 was interpreted as negatively 

relating to a ‘coherence’ property of the fibres (the dispersion of modelled fibre 

orientations). The relative differences between the scores of the tracts are illustrated in 

Figure 44C.  

 

 

 Fornix ILF PHC 

  Group mean SD  Group mean SD  Group mean SD 

FA 0.40 0.01 0.44 0.02 0.35 0.03 

MD  0.09 x10-2 0.03 x10-3 0.07 x10-2 0.01 x10-3 0.07 x10-2 0.01 x10-3 

RD  0.07 x10-2 0.03 x10-3 0.05 x10-2 0.02 x10-3 0.06 x10-2 0.02 x10-3 

AxD 0.14 x10-2 0.07 x10-3 0.11 x10-2 0.02 x10-3 0.10 x10-2 0.02 x10-3 

ICVF 0.45 0.03 0.46 0.03 0.46 0.03 

OD 0.15 0.01 0.19 0.02 0.24 0.02 

Table 25. Group means and SDs for each microstructure value, for each tract. 

Microstructure values are averaged over tract streamlines for each participant. Means and SDs of microstructure 
values, across the group, for the three tracts of interest are shown.  
 
AxD: Axial Diffusivity. FA: Fractional Anisotropy. ICVF: Intracellular Volume Fraction. ILF: Inferior Longitudinal 
Fasciculus. MD: Mean Diffusivity. OD: Orientation Dispersion. PHC: Parahippocampal Cingulum. RD: Radial 
Diffusivity.  
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 PC1 PC2 

FA -0.027 -0.674 

MD -0.527 0.046 

AxD -0.521 -0.126 

RD -0.495 0.222 

ICVF -0.255 -5.02 

OD 0.375 0.476 

Table 26. PCA Loadings. 

AxD: Axial Diffusivity. FA: Fractional Anisotropy. ICVF: Intracellular Volume Fraction. ILF: Inferior 
Longitudinal Fasciculus. MD: Mean Diffusivity. OD: Orientation Dispersion. PC: Principal Component. 
RD: Radial Diffusivity.  
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Figure 44. Redundancy between tract diffusion values and results from PCA. 

A) Pearson’s correlations within the microstructure data from each tract suggest that the values give overlapping information. Colour 

denotes r value. B) Biplot illustrating the influence of each of the measures on PC1 and PC2, which account for 59% and 34% of the 

variance, respectively. C) Tract component scores for each participant, illustrating the differing properties of the tracts. 

AxD: Axial Diffusivity. FA: Fractional Anisotropy. ICVF: Intracellular Volume Fraction. ILF: Inferior Longitudinal Fasciculus. MD: Mean 
Diffusivity. OD: Orientation Dispersion. PC: Principal Component. PHC: Parahippocampal Cingulum. RD: Radial Diffusivity.  
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7.3.3 Associations between object-in-sequence memory performance and 

structure 

7.3.3.1 Correlations between Learning Score and tract microstructure. 

The BF indicated only weak evidence for a correlation between Learning Score and fornix 

PC1, and this did not survive the experiment-wise alpha threshold (t(48) = 2.087 , r = 0.289, p 

= 0.042). There were also no significant correlations between Learning Score and ILF or PHC 

microstructure.  

There were no significant correlations between Learning Score and fornix PC2, PHC PC2 and 

ILF PC2 and no BFs indicated evidence in favour of the alternative over the null model 

(Table 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.3.2 Correlations between RT Enhancement scores and tract microstructure. 

RT Enhancement random-fixed had a right skew (>1), so a constant (of the most negative 

value, sign-flipped and rounded up) was added to each value, and the square root was then 

  Learning Score 

Fornix PC1 r = 0.0289 
p = 0.042 
BF10 = 2.05 

PC2 r = -0.052 
p = 0.724 
BF10 = 0.34 

ILF PC1 r = 0.153 
p = 0.293  
BF10 = 0.53 

PC2 r = -0.026 
p = 0.831 
BF10 = 0.33 

PHC PC1 r = 0.139 
p = 0.341 
BF10 = 0.48 

PC2 r = -0.103 
p = 0.482 
BF10 = 0.40 

Table 27. Correlation tests between Learning Score and Fornix, ILF and PHC microstructure 
components. 

N=49. ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal 
Cingulum.  
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calculated (McDonald, 2014). Unless stated otherwise, ‘RT Enhancement random-fixed’ 

refers to the transformed data.  

There were no significant correlations between RT Enhancement random-fixed, or RT 

Enhancement novel-random, and fornix, ILF or PHC PC1. The BFs indicated evidence in 

favour of the nulls (Table 28). 

There was a significant correlation between RT Enhancement random-fixed and fornix PC2 

(t(46) = 2.473, r = 0.343, p = 0.017), and the resulting BF indicated evidence in favour of the 

alternative model. Also, there were no significant correlations between RT Enhancement 

random-fixed and ILF or PHC PC2, and the resulting BFs indicated evidence in favour of the 

null (Table 28). 

There were no significant correlations between RT Enhancement novel-random and fornix, 

ILF or PHC PC2.  

  RT Enhancement random-
fixed 

RT Enhancement novel-
random 

Fornix PC1 r = 0.029 
p = 0.847 
BF10 = 0.33 

r = -0.175 
p = 0.233 
BF10 = 0.61 

PC2 r = 0.346 
p = 0.017* 
BF10 = 4.16* 

r = -0.235 
p = 0.108 
BF10 = 1.03 

ILF PC1 r = 0.030 
p = 0.839 
BF10 = 0.33 

r = 0.015 
p = 0.918 
BF10 = 0.33 

PC2 r = 0.361 
p = 0.720 
BF10 = 0.34 

r = -0.059 
p = 0.691 
BF10 = 0.35 

PHC PC1 r = -0.014 
p = 0.923 
BF10 = 0.33 

r = 0.032 
p = 0.313 
BF10 = 0.33 

PC2 r = 0.116 
p = 0.433 
BF10 = 0.43 

r = -0.229 
p = 0.117  
BF10 = 0.98 

Table 28. Correlation tests between RT Enhancement random-fixed, and RT Enhancement novel-
random, and fornix, ILF and PHC microstructure components. 

*Highlights p≤0.017. *Highlights a logBF10 ≥ 3. N=48. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal Cingulum. 
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However, the coefficient of the correlation between RT Enhancement random-fixed and 

fornix PC2 was not significantly larger than those of the correlations between RT 

Enhancement random-fixed and ILF PC2 (z(45) = 1.671, p = 0.095), or PHC PC2 (z(45) = 1.308, p 

= 0.191). 

Partial correlations between RT Enhancement random-fixed and tract microstructure 

component scores were then carried out so that individual differences in the rate of initial 

sequence learning, Learning Score, could be controlled-for. In line with the hypothesis, the 

only significant partial correlation was between RT Enhancement random-fixed and fornix 

PC2 (t(45) = 2.638, r = 0.369, p = 0.012) and the resulting BF indicated evidence in favour of 

the alternative model (Table 29; Figure 45). 

 

  RT Enhancement random-fixed 

Fornix PC1 r = -0.050 
p = 0.740 
BF10 = 0.34 

PC2 r = 0.369 
p = 0.012* 
BF10 = 6.11* 

ILF PC1 r = -0.016 
p = 0.916 
BF10 = 0.33 

PC2 r = 0.057 
p = 0.708 
BF10 = 0.35 

PHC PC1 r = -0.057 
p = 0.707 
BF10 = 0.035 

PC2 r = 0.146 
p = 0.332 
BF10 = 0.50 

Table 29. Partial correlation tests between RT Enhancement random-fixed and fornix, ILF and PHC 
microstructure components, controlling for initial sequence learning. 

*Highlights p≤0.017. *Highlights a logBF10 ≥ 3. N=47. 
 
ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal Cingulum. 

 

Multiple linear regression was used to assess whether fornix microstructure was specific in 

its relationship with RT Enhancement random-fixed or whether ILF and PHC microstructure 

also contributed, and to see if this correlation was separate to any associations with 
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Learning Score. A model with fornix PC2, PHC PC2, ILF PC2 and Learning Score predicted RT 

Enhancement random-fixed (adjusted R2 = 0.124, p = 0.047). Significant predictors included 

fornix PC1 (p = 0.020) and Learning Score (p = 0.046). Detailed statistics are shown in Figure 

45B.   

   

Figure 45. Associations between tract PC2 microstructure scores and RT Enhancement random-fixed, controlling for Learning Score. 

A) Scatter plots showing the partial correlations between microstructure and RT Enhancement random-fixed residual scores. The mid-blue 

histogram shows the distribution of the fornix PC2 data. The green and red histograms show the distributions of the PHC PC2 data and ILF 

PC2 data, respectively. The dark blue histogram shows the distribution of RT Enhancement random-fixed. The blue lines are the regression 

lines and surrounding shaded areas represent the 95% confidence interval. 

B) Multiple Linear Regression results. The model was built to predict RT Enhancement random-fixed with tract PC2 scores and Learning 

Score. Fornix PC2 and Learning Score were significant predictors (at the 0.05 level). 

ILF: Inferior Longitudinal Fasciculus. PC: Principal Component. PHC: Parahippocampal Cingulum. 
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7.4 Discussion 

The AIN and PMN have been linked to representations of object and position information, 

respectively (Hsieh & Ranganath, 2015; Murray et al., 2017), and the hippocampus is 

thought to hold conjoined object-time information in the form of recency memory (Jenkins 

& Ranganath, 2016), temporal community structure (Schapiro et al., 2016) and object-

position binding (Hsieh et al., 2014). To investigate whether network structure relates to 

individual differences in object-in-sequence memory, the current study combined a 

microstructure reduction technique with an implicit object sequence memory task adapted 

from Hsieh et al. (2014/15). Associations between inter-individual differences in fornix, ILF 

and PHC microstructure and in object-in-sequence memory, were investigated. 

Due to its key role in connecting the hippocampus, it was hypothesized that the fornix 

would have a specific role in memory for objects in temporal sequences. Considering the 

results of Hsieh et al. (2014), who found that the hippocampus held object-in-position 

information, it was proposed that there might be correlations between fornix 

microstructure and differences in RTs in the retrieval of random sequences compared with 

fixed sequences. Furthermore, we tested whether fornix microstructure correlated with 

fixed sequence retrieval independently of the participants’ learning of fixed sequences. 

Additionally, it was predicted that these correlations would be specific to fornix 

microstructure because, although the PHC also connects areas of the PMN, it is not the 

major tract providing connections for the hippocampus. These hypotheses were supported 

by a significant correlation between RT Enhancement random-fixed and fornix PC2 and a 

significant partial correlation between RT Enhancement random-fixed and fornix PC2 when 

Learning score was controlled for. Although the RT Enhancement random-fixed - fornix PC2 

correlation coefficient was not found to be significantly stronger than those of the 

correlations between RT Enhancement random-fixed and ILF or PHC PC2, fornix PC2 and 

Learning score were the only significant predictors of RT Enhancement random-fixed in a 

multilinear regression model. 

Since Hsieh et al. (2014) also found evidence of broader context learning in the case of 

random sequences, and the hippocampus has also been shown to hold information about 

temporal community structure (Schapiro et al., 2016), it could have been predicted that 

fornix microstructure would also correlate with RT differences between novel sequences 

and random sequences (RT Enhancement novel-random). However, no significant 
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correlations were found between fornix microstructure scores and RT Enhancement novel-

random.  

7.4.1 The role of the fornix pathway in object-in-temporal-sequence retrieval in 

healthy adults. 

The fornix may facilitate communication between the hippocampus and multiple areas, 

supporting bound temporal memory. Indeed Hsieh et al. (2014/2015) demonstrated that 

temporal context information is stored in multiple cortical areas, including the mPFC, RSC 

and angular gyrus, while the PrC and caudate were shown to hold object information. For 

example, fornix supported hippocampal-mPFC communication may allow complementary 

temporal order processes, with the working memory functions of the PFC (Naya et al., 

2017) facilitating current goals, and context processing in the hippocampus supporting 

more fine-tuned sequencing. This suggestion aligns with the following evidence: PFC 

activity is predictive of coarse temporal memory (Jenkins & Ranganath, 2010); mPFC 

activity reduces at sequence boundaries (Schapiro et al., 2013); mPFC-hippocampus 

communication is elevated during sequence boundaries (Schapiro et al., 2016); and the 

fornix indirectly supports connections between the hippocampus and the mPFC (Bubb et 

al., 2017). In addition, the fornix directly connects the hippocampus to the thalamus (Bubb 

et al., 2017). Not only is the thalamus thought to support mPFC-hippocampal processing by 

synchronising the theta oscillations of these two areas (Ketz et al., 2015), but lesions to the 

rat thalamus have been shown to impair temporal order memory of odour sequences 

(Wolff et al., 2006). Although the exact dependencies of these hippocampal 

communications on the fornix pathway are unclear, the results show the importance of 

fornix-supported communication in temporal memory, and that this differs between 

different healthy young adult individuals in a behaviourally relevant way.  

The current results specifically indicate a role of this fornix-supported pathway in object-

sequence-retrieval that is independent of object-in-sequence learning. The multilinear 

regression model that was predicting RT Enhancement random-fixed and included Learning 

Score, showed fornix PC2 to be an independent predictor. These results suggest that the 

relationship between fornix PC2 and object-in-sequence retrieval cannot be attributed to 

an influence of fornix PC2 on encoding. Assessment of functional connectivity within the 

PMN and the AIN, and the hippocampus, during encoding and retrieval, found increased 

network connections between these networks, and between these networks and the 

hippocampus, during retrieval (Cooper & Ritchey, 2019). These results, and those of the 
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current study, together indicate that although many brain areas are involved in both 

encoding and retrieval (Rugg et al., 2008), PMN network communication during encoding 

may differ from PMN network communication during retrieval, so that inter-individual 

differences in fornix coherence may relate more strongly to individual differences in 

retrieval performance. Furthermore, a subiculum-connected hippocampal circuit, as 

opposed to a CA1-entorhinal, hippocampal circuit has been shown to be selectively 

involved in retrieval over memory formation (Roy et al., 2017), and subiculum volume has 

been associated with fornix microstructure, independent of age, in healthy adults (Hartopp 

et al., 2018). Therefore, it may be that while this fornix pathway supports both encoding 

and retrieval, that healthy adults only display correlations between fornix microstructure 

and retrieval associations.  

However, there was a positive trend between fornix PC1 (reflecting the property of 

restriction) and Learning Score that did not survive the experiment-wise alpha threshold 

(and the BF only indicated weak evidence in favour). It is possible that limitations in this 

measure of encoding could have weakened this association. Learning Score was made by 

averaging the scores from the reconstruction tests in the study-test cycles of the learning 

phase, so a higher score could reflect both faster learning and better over-all learning. 

Distinguishing between these is not possible. Hodgetts et al. (2020), who found a 

correlation between fornix microstructure and navigational learning, fitted a power curve 

to the RT as it reduced during a repeated navigation task, so that learning rate could be 

isolated. Then, correlations between microstructure measures and the slopes for each 

participant were tested. It may be that a similar correlation would have been revealed in 

the current study, if average RTs of the learned sequences during the repeats within the 

learning phase were examined. Unfortunately, so that objects would be learned rather 

than answers to semantic questions, the question asked was different in the first and 

second study-test cycle. This meant that there was not a smooth decrease in RT from the 

first exposure of a sequence to the sixth exposure. There was an increase in RT for the 

fourth exposure, coinciding with the question change. However, RTs to the fourth exposure 

were generally lower than RTs to the initial exposure, so future work could re-examine 

associations between fornix microstructure and object-in-structure learning by using the 

same learning-phase paradigm as used here, but by fitting power slopes to RT data and 

adding more repetitions with more questions, with the aim of smoothing-out question-

change-related RT increases.  
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Additionally, it is important to note that object-position binding may also benefit from 

communication between the hippocampus and other brain areas, mediated by extra-

fornix/PHC routes. For example, the entorhinal cortex also holds a type of time-cell (Heys & 

Dombeck, 2018), and activity in this region has been associated with object-position 

binding, which suggests that hippocampal-entorhinal cortex interactions aid the production 

of temporal representations (Rolls & Mills, 2019). Multiple alternative routes exist within 

the parahippocampal regions and between the parahippocampal regions and the 

hippocampus (Bubb et al., 2017). The use of high-resolution diffusion scans may uncover 

the relationships between structure and object-in-sequence encoding performance in 

other smaller pathways such as these, which were not included in the present study. 

7.4.2 The correlation between fornix PC2 and RT Enhancement random-fixed was 

positive. 

FA contributed negatively to, and OD contributed positively to, the second major 

component resulting from our tract microstructure reduction, and therefore a decrease in 

PC2 was interpreted as representing an increase in tract fibre coherence. In line with the 

hypothesis, fornix PC2 significantly correlated with RT Enhancement random-fixed but the 

direction of this correlation was positive, suggesting that increased temporal memory 

performance, requiring object-position binding relates to decreased fornix coherence. The 

equivalent PC2 from the dataset in the study in Chapter 5, was also positively and 

negatively contributed-to, by OD and FA, respectively. This was predicted to negatively 

correlate with performance because of previous work showing positive relationships 

between spatial processing and fornix FA (Postans et al., 2014). Although no equivalent 

previous research was available to support a directional hypothesis in the case of the 

current study, it was still anticipated that lower PC2 scores would equate to a beneficial 

tract property.  

There are several possible interpretations for the positive relationship between fornix PC2 

and RT Enhancement random-fixed. First, increased fornix coherence could impair 

sequence position learning. Second, there may be fibres that perpendicularly cross the 

fornix, whose structural properties relate to object-position binding memory. Third, 

increased fornix OD may represent a positive tract property linking greater fibre 

complexity, rather than decreased coherence, with greater retrieval performance. Fourth, 

the fornix pathway may not support object-position retrieval, but temporal community 

structure retrieval instead. The first suggestion lacks plausibility, since there is no clear 
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reason why better communication ability in the fornix, aligned to increased fornix 

coherence, would impair this memory-based behaviour. The second explanation can also 

be refuted as the fornix is largely free from crossing fibres (Acosta-Cabronero & Nestor, 

2014).  

The third explanation is more plausible and calls for further investigation. A positive 

correlation between white matter OD and reading skill, and a negative correlation between 

FA and reading skill, has been shown in children (Huber et al., 2019), but cognitive 

performance or functioning is often negatively associated with increased white matter OD 

in adults (Coad et al., 2020; Ota et al., 2018; Wen et al., 2019). That said, adult pre-

commissural fornix has been shown to have higher OD than the post-commissural fornix, 

which the authors suggested could be the result of the larger number of pre-commissural 

target sites (Coad et al., 2020). Therefore, an increase in OD could mirror an increase in 

fornix target site connections. 

The fourth explanation, that the fornix pathway supports learning of objects in temporal 

community structures over ordered temporal sequences, is suggested because RT 

Enhancement random-fixed was calculated by subtracting the average RT of the fixed 

sequences from the average RT of the random sequences. Consequently, smaller values 

may indicate a better ability to retrieve groups of objects without object-position 

associations. Therefore, this result may reflect a positive correlation between fornix fibre 

coherence and memory for temporal community structures. Indeed, as well as finding 

hippocampal signals coding object-position binding, Hsieh et al. (2014) also found evidence 

for processing that generally relates objects to sequences, in the hippocampus. When 

hippocampal fMRI multivariate pattern representations for identical items with identical 

positions, in different overlapping sequences, were compared, pattern similarity was higher 

for repetitions for the item within one sequence than the presentation of the same item as 

part of the other sequence. This result suggests that hippocampal signals also represented 

the sequence context. Considering this suggestion that the fornix pathway supports 

learning of objects in temporal community structures, one might have expected 

correlations between fornix microstructure and RT Enhancement novel-random, as this 

could have reflected temporal community structure retrieval. However, RT Enhancement 

novel-random likely also reflects object (without context) memory.  

A future study, which includes contextless objects, could investigate the validity of the third 

and fourth explanations. This could include a measure of response RTs to objects shown 
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repeatedly, randomly, and in isolation, between sequences (the surrounding sequences 

must be displayed in a random order so that these do not become a context for the 

isolated objects). Then, average response RT of the object-in-isolation condition could be 

compared with the average response RT of the random sequences to create a measure of 

object-in-random-community-structure retrieval, which is not influenced by pure object 

retrieval. In the interim, it can be concluded that fornix microstructure relates to temporal 

sequence memory in healthy adults, but the exact nature of the temporal memory needs 

further investigation. 

7.4.3 Reduction of tract microstructure measures produced biologically 

interpretable components. 

The two major components resulting from microstructure PCA, PC1 and PC2, were 

influenced most by MD, RD and AxD; and FA and OD, respectively. Therefore, these 

components were considered to capture the properties of fibre restriction and coherence. 

PCA allowed reduction of the DTI and NODDI data in a way that was biologically 

interpretable. The PCA components reported in this study share similarities with those 

reported in previous studies (Chamberland et al., 2019; Geeraert et al., 2020), which found 

correlations between microstructure components and age in children, and those reported 

in Chapter 5. PC1 is similar to the first component reported in Chamberland et al. (2019), 

which was negatively influenced by RD and positively influenced by a measure of fibre 

density, and they also interpreted this component as reflecting ‘diffusion restriction’. It is 

also similar to the second component reported in Geeraert et al. (2020), which they named 

‘myelin and axonal packing’ because it was influenced positively by ICVF and negatively by 

RD and MD. PC2 was similar to the first component reported in Geeraert et al. (2020), 

which they named ‘tissue complexity’ because it was influenced positively by FA and 

negatively by OD. However, the term ‘coherence’ was used in the present study to clarify 

the hypothesis that increased coherency, and therefore increased FA, would reflect a 

beneficial tract property. Although, there are slight differences in the resulting components 

across studies, common biologically-interpretable properties are revealed supporting the 

usefulness of microstructure data reduction.   

The results indicate unequal importance of the two components to behavioural 

performance. There was an association between RT Enhancement random-fixed and fornix 

PC2 but not fornix PC1. There may be multiple reasons for inter-individual differences in 

tract coherence in the young, healthy adult population. For example, studies have reported 
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fornix microstructure differences induced by learning (Hofstetter et al., 2013), or 

associated with different polygenic risk scores (Braskie et al., 2011). Although the exact 

nature of this coherence/complexity property is unclear, the current work shows the 

usefulness of examining FA and OD in young, healthy adult populations, as they revealed 

inter-individual differences, and indicated the importance of fornix fibre coherence.  

Although it is important not to over-interpret trends, it is noteworthy that there was 

evidence for a correlation between fornix PC1 and Learning Score, and evidence against a 

correlation between fornix PC2 and Learning Score. This is mirrored in other studies. 

Hodgetts et al. (2020) found significant correlations between navigational learning and 

fornix MD, but not fornix FA. The authors suggest that finding correlations with MD is more 

likely because it is more ‘tract representative’ than FA because MD varies less than FA 

along the tract. However, in Hodgetts et al. (2017), episodic detail in retrieval was found to 

correlate more strongly with fornix FA than with fornix MD. The dissociation found in the 

current study indicates different behavioural implications of the fornix properties on 

behaviour. Our understanding of the importance of fornix microstructure properties in 

learning and retrieval of temporal sequences may benefit from future work testing 

dissociable correlations between fornix restriction and learning, and between fornix 

coherence and retrieval. 

7.4.4 Limitations. 

A limitation with the current design is that behavioural RT measurements are an indirect 

measurement of memory processes. This behavioural task was previously combined with 

multivariate analysis of fMRI data (Hsieh et al., 2014), so information about brain processes 

relating to object-position retrieval could be assessed more directly. Indeed, while the 

finding of no significant RT difference between positions 3 and 4 in the overlapping 

sequences may indicate very good sequence knowledge (such that there were no 

substantial differences between RTs of overlapping objects and non-overlapping objects), it 

may also indicate poor sequence knowledge, such that each object is equally 

unpredictable, leading to equal RTs in each position. Although this is unlikely, given the 

overall performance on the last recall test of the learning phase, it cannot be ruled out. This 

contrasts with the study of Hsieh et al. (2014), in which it was possible to test multivariate 

classification in the fMRI data relating to objects in positions 2 and 3 in the two overlapping 

sequences, for each individual. 



Chapter 7: Examining relationships between structure and object-in-sequence memory performance in the PMN 
and AIN. 

232 
 

The indirect measurement of memory processes, through RT differences, also meant that 

there was no object-without-context memory measure. Hsieh et al. (2015), from which this 

behavioural task was adapted, were able to isolate fMRI signals holding pure object 

information, originating from the PrC, using multivariate analysis of brain signals produced 

during objects from various sequences (learned and novel). Without such a measure, it was 

not possible to test a double dissociability of the fornix and ILF roles in object-in-sequence 

and object-without-context memory. It may have been that ILF microstructure measures 

would have correlated with object-without-context memory performance. The ILF is an 

important tract of the AIN, connecting the ventro-anterior temporal lobe (including the 

PrC) with the occipital lobe (Catani et al., 2003; Latini, 2015), and studies have reported 

correlations between ILF microstructural properties and performance of tasks involving 

face processing (Hodgetts et al., 2015), production of semantic content in autobiographical 

memory (Hodgetts, Postans, et al., 2017), and in object recognition (Ortibus et al., 2012). 

An object-without-context memory measure could have been created by measuring 

average response RT differences between repeated isolated objects (described above) and 

the novel sequences. Furthermore, as discussed above, the lack of an object-without-

context memory measure meant that the influence of isolated object memory of RT 

Enhancement novel-random could not be removed. It could be that fornix microstructure 

does not support isolated object memory and that variation from this in the RT 

Enhancement novel-random measure diminished a correlation between fornix 

microstructure and object-in-random-sequence memory.  

A further suggestion for future work could be to include assessment of processing times. 

Machine-learning analysis techniques, in combination with more temporally sensitive, 

electrophysiological imaging, such as MEG, can allow classification over time. Therefore, in 

addition to measuring behavioural RTs, individual differences in the latency at which 

classifiers perform above chance when classifying imaging data trials from different 

sequence representations conditions, could be used to assess processing speed. With or 

without this, future work combining behavioural data, tract microstructure measures and 

multivariate pattern analysis of oscillatory signals might further reveal relationships 

between network structure, speed of processing and behavioural performance. 

7.5 Conclusion 

This study used an object-in-sequence memory task to assess the influence of the 

microstructure of the fornix, a principal connecting tract of the hippocampus, on temporal 
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order memory. Our results indicate that inter-individual variation in fornix microstructure, 

and perhaps specifically individual differences in fornix fibre coherence (PC2), was related 

to retrieval of object-in-sequence performance. Importantly, the relationship between 

fornix PC2 and RT Enhancement random-fixed was independent of contribution from 

Learning Score, indicating that the relationship was not mediated by an influence of fornix 

PC2 on encoding. The relationship between fornix PC2 and RT Enhancement random-fixed 

was rather complex, however, as the correlation was positive. Further research is needed 

to understand whether this positive correlation indicates an importance of fornix 

complexity (rather than coherence) for object-position binding, or whether it indicates that 

increased fornix coherence relates to reduced RT differences between random and fixed, 

which could reflect temporal community structure memory. Microstructure measures of 

the PHC and ILF did not correlate with measures of object-in-sequence retrieval, suggesting 

a specific role of the hippocampus and a fornix-supported pathway. Consequently, this 

study augments prior work by providing evidence of a selective relationship between fornix 

microstructure and object-in-sequence memory in healthy young adults.
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8 Chapter 8: General Discussion. 

8.1 Thesis rationale and overview. 

This thesis examined functional and structural properties of spatial processing networks 

with the aim of investigating and expanding upon the PM-view, which is encompassed by 

two memory models, the EAM (Murray et al., 2017, 2018) and the PMAT framework 

(Ranganath & Ritchey, 2012; Ritchey et al., 2015). By combining networks defined by these 

models, Chapter 1 described two networks with distinct functions. The PMN was proposed 

to conduct sequencing and separation to create models for spatiotemporal navigation, and 

it incorporates areas associated with scene processing and episodic memory (Hodgetts et 

al., 2016; Nasr et al., 2013; Rugg & Vilberg, 2013) such as: the hippocampus; the 

parahippocampal cortex; the RSC; the PCC; the IPL and the mPFC. The AIN was proposed to 

conduct aggregate processing to create models for identification and meaning, and it 

incorporates areas associated with semantic memory, object processing and face 

processing (Haxby et al., 2000; Ishai et al., 2000; Jefferies, 2013) such as: the PrC; the 

inferior temporal cortex, the orbitofrontal cortex; the amygdala; and the temporal pole.  

Evaluation of the PM-view was done through considering the implications of the view and 

the two memory models: the PMN and AIN should aid behaviours in different modalities 

across perception and memory; network areas, including MTL areas, should be involved in 

complex visual perceptual tasks; and the behavioural performance in tasks involving those 

modalities should be related to the structural and functional properties of the respective 

networks (Graham et al., 2010; Murray et al., 2017). Therefore, this thesis evaluated the 

networks’ functions from two approaches, one task requiring complex visual perceptual 

processing and the other implicitly testing memory of object sequences. To assess network 

roles, correlations between inter-individual differences in task performance, tract 

microstructure and functional correlates of network activity were investigated. An 

advantage of examining individual differences in healthy adults, unlike examining patients 

with lesions, is that it allows assessment of normally functioning networks.  

Specifically, this thesis focused on the role of the PMN by studying: MEG-measured 

oscillatory modulations, particularly within the MTL, during complex scene perception; 

associations between these oscillatory modulations and fornix microstructure; and 

associations between fornix microstructure and behavioural performance in tasks requiring 

complex scene perception and temporal sequencing memory. A comparison was made 
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between microstructure-behaviour associations of the fornix and the PHC, as these 

primarily connect different areas of the PMN, the hippocampus and parahippocampal 

cortex, respectively. As hippocampal processes were hypothesized to be specifically 

important for the spatiotemporal tasks chosen, it was hypothesized that fornix 

microstructure would relate more strongly than PHC microstructure would, to performance 

in these tasks. Functions of the PMN were also compared with functions of the AIN by 

studying MEG-measured oscillatory modulation in areas of the AIN during complex face 

perception, and by studying associations between ILF microstructure and behavioural 

performance in complex face perception. 

8.2 Discussion of the main findings. 

8.2.1 There was evidence for correlations between fornix microstructure measures 

and performance in two tasks measuring spatiotemporal processing.  

Since study of the role of the PMN and, particularly the role of the hippocampus in the 

PMN, was the major aim of this thesis, studying the fornix was a major focus. The PM-view, 

particularly the EAM, places importance in a ‘medial’ extended hippocampal network 

(Murray et al., 2017). The prediction was that individual differences in fornix 

microstructure should relate to individual differences in performance of tasks requiring 

spatiotemporal processing, in healthy adults. Indeed fornix microstructure had already 

been shown to relate to recollection of episodic information (Rudebeck et al., 2009), 

spatiotemporal information in autobiographical memories (Hodgetts, Postans, et al., 2017), 

spatial learning (Hodgetts et al., 2020), and complex scene perception (Hodgetts et al., 

2015; Postans et al., 2014).  

Two shortcomings in this prior literature were identified. The first concerned the role of the 

fornix in complex scene perception. Although fornix microstructure had been related to 

complex scene pereption in two studies (Hodgetts et al., 2015; Postans et al., 2014), these 

focused on the microstructure values FA and MD, so the underlying anatomical properties 

important for the task were indecipherable, perhaps explaining why they obtained differing 

results (with Postans et al. finding correlations between scene task performance and both 

fornix FA and MD, and Hodgetts et al. only identifying a correlation between scene task 

performance and fornix MD). Additionally, the timing in the paradigm of Postans et al. 

(2014) meant that mnemonic processes were required to undertake the task, because 

there were delays between the display of different images to discriminate between, and a 
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further delay before the response period. Lastly, since neither study tested correlations 

between fornix microstructure and performance in a subsequent unexpected retrieval task, 

probing incidental encoding, it was unclear whether the fornix-supported pathway was 

contributing to perceptual processes per se or whether it was facilitating incidental 

memory processes, which in turn supported task performance (Kim et al., 2011). Chapter 5 

addressed these issues with an experiment involving an oddity task with trial-unique scene, 

face and size trials, and the assessment of multiple microstructure measures of the fornix. 

The results provided evidence in favour of a positive correlation between fornix restriction 

property and scene oddity performance. Although, the p-value just surpassed the 

experiment-wise alpha level, the resulting BF indicated weak evidence in favour of the 

alternative model over the null, a result that aligns with those of Hodgetts et al. (2015) and 

Postans et al. (2014). In this thesis, MD negatively influenced the fornix restriction measure 

(PC1) and both Hodgetts et al. (2015) and Postans at al. (2014) found significant negative 

correlations between scene discrimination accuracy and fornix MD. However, Postans et al. 

(2014) also found a significant positive correlation with fornix FA (albeit with a higher p-

value) and Hodgetts et al. (2015) identified a positive trend with fornix FA. This pattern may 

emerge because MD needs a smaller sample size to detect a statistically significant effect 

than FA (De Santis et al., 2014). However, considering the current results, it is also possible 

that the difference came about because the anatomical properties represented by FA and 

MD are overlapping but not the same (i.e. that they are both influenced by restriction and 

coherence properties but to differing extents) and that all these studies together highlight 

the specific importance of the fornix restriction in complex scene perception. Moreover, in 

line with Hodgetts et al. (2015) and Postans et al. (2014) fornix microstructure properties 

did not correlate with face task performance, showing the specificity of this network to 

scene stimuli over face stimuli.  

Importantly, despite there being some evidence for a positive correlation between oddity 

scene task performance and subsequent scene retrieval performance, as measured by d’, 

there was no correlation between fornix microstructure and scene retrieval performance. 

This implied that scene retrieval performance did not mediate the relationship between 

fornix microstructure and scene task performance. Therefore, the results indicate that the 

fornix pathway has a role in complex scene perception that is not purely to facilitate 

incidental memory processes. This aligns with the study of Lee et al. (2013), which reported 

significantly larger hippocampal BOLD responses for correct versus incorrect oddity scene 

trials, independent of subsequent memory. Additionally, using multivariate analysis, they 
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found that classification of hippocampal BOLD signals on trials into correct and incorrect 

trials performed above chance level. Together, their results indicate that the hippocampus 

has a role in complex scene perception that is not mediated by incidental encoding. 

Importantly, neither the results of Lee et al. (2013), nor the current results, dismiss the role 

of the extended hippocampal network in memory, suggesting instead that this pathway 

supports both perceptual and mnemonic functions. Indeed, Lee et al. (2013) also found 

that classification of hippocampal BOLD signals of trials into ‘subsequently remembered’ 

and ‘forgotten’ performed above chance level. It could be that the two processes rely on 

internal spatiotemporal representations. It could be that hippocampus-supported internal 

spatiotemporal representations are required for both memory and perception (Graham et 

al., 2010; Murray et al., 2017), and that representations constructed online for perceptual 

processes can become encoded when additional mnemonic processes are incited. 

The second shortcoming in the literature concerned the lack of a study testing the role of 

the fornix in temporal sequence memory in healthy humans. The hippocampus has been 

shown to hold conjoined object-in-sequence information (Hsieh et al., 2014) but 

investigations into fornix involvement have provided contradictory results, with one animal 

study suggesting that transection impairs object memory but spares temporal memory 

(Hunsaker & Kesner, 2009), and animal and patient studies suggesting that transection 

impairs temporal memory and spares object memory (Charles et al., 2004; Yasuno et al., 

1999). The current results indicate that inter-individual variation in fornix microstructure, 

and perhaps specifically individual differences in fornix fibre coherence, are related to 

object-in-sequence retrieval performance. The fornix was predicted to be important, as the 

hippocampus is the only area to have been found to hold object-in-sequence information, 

other PMN areas such as the RSC and mPFC having been found to hold ordinal sequence 

position information only (Hsieh & Ranganath, 2015; Reeders et al., 2021). Furthermore, 

although the fornix pathway is likely important for encoding (Green et al., 2016), the 

current project found an independent correlation between fornix microstructure and 

sequence retrieval, indicating that the contribution of this pathway to retrieval is not purely 

mediated by an encoding process. Interestingly, fornix PC2 was thought to negatively relate 

to fibre coherence, but it positively correlated with RT Enhancement random-learned. In 

this behavioural measure, larger values were taken to mean better object-position 

retrieval. Therefore, although there was no specific hypothesis about the direction of the 

correlation between fornix PC2 and temporal sequence retrieval, as there was between 

tract PC2 and oddity task performance (see Chapter 5), the positive relationship between 
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fornix PC2 and RT Enhancement random-learned was unanticipated. As discussed in 

Chapter 7, it remains unclear whether decreased coherence, perhaps implying increased 

complexity (Chamberland et al., 2019), can be a beneficial tract property with respect to 

object-position binding, or whether increased fornix coherence relates to performance of 

behaviour akin to temporal community structure memory (Schapiro et al., 2013), rather 

than object-position binding. Regardless of the exact temporal memory mechanism, the 

results support the importance of this pathway in temporal memory.  

In the current project, associations between behaviour and fornix microstructure were 

contrasted with associations between behaviour and PHC microstructure, a tract 

supporting PMN communication but not primarily to and from the hippocampus (Bubb et 

al., 2017; Bubb et al., 2018). The absence of any significant correlations between PHC 

microstructure and tasks requiring spatiotemporal processing supports the specific 

importance of the hippocampus in these tasks. Regarding the scene oddity task, it has been 

proposed that the hippocampus is of particular importance in the creation of view invariant 

scene models (Barense et al., 2010), whereas the parahippocampal cortex, connected 

primarily through the PHC (Bubb et al., 2017), has been shown to conduct view-specific 

scene processing (Epstein et al., 2003). However, this is not to say that the PHC does not 

contribute to spatiotemporal processes. Its connections include the parahippocampal 

cortex, RSC and PCC, areas already shown to play roles in spatial (Baldassano et al., 2016; 

Burles et al., 2018; Clark et al., 2018; Epstein et al., 2007) and temporal (Hsieh & 

Ranganath, 2015; M. Pu et al., 2020) processing. Furthermore, PHC microstructure differs 

between healthy adults and MCI patients (Metzler-Baddeley et al., 2012), a disease 

affecting the PMN. Despite these, animal lesion work has demonstrated that fornix lesions 

cause more severe impairments to spatial processing behaviours than cingulum lesions 

(Bubb et al., 2018), and memory performance and PHC microstructure only correlates in 

human MCI patients, not healthy controls, whereas fornix microstructure has been found 

to correlate with memory performance in both groups (Metzler-Baddeley et al., 2012; 

Rudebeck et al., 2009). These findings suggest that the structure of the fornix has a larger 

influence on performance in healthy individuals and structure of the PHC, being a minor 

pathway of communication between the hippocampus and other PMN structures, only 

influences behaviour when the fornix pathway is damaged, perhaps as a result of 

compensatory re-routing (Bubb et al., 2017). 

Additionally, in this project, associations between PMN related behaviour and fornix 

microstructure were contrasted with associations between AIN related behaviour and ILF 
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microstructure. This was because the ILF connects the ventral visual stream, allowing 

communication between visual occipital areas and AIN areas such as the PrC and temporal 

pole (Catani et al., 2003; Herbet et al., 2018). The AIN has been proposed to conduct 

aggregate item processing for identification, as areas of this network and the ILF have been 

found to be important for object processing (Lee & Rudebeck, 2010; Ortibus et al., 2012), 

familiarity (Haskins et al., 2008), semantic memory (Devereux et al., 2018; Ripolles et al., 

2017) and face processing (Collins & Olson, 2014; Hodgetts et al., 2015). In line with the 

hypotheses and previous work (Hodgetts et al., 2015), ILF microstructure correlated with 

face oddity performance and not scene oddity performance or temporal sequence 

memory. 

BOLD modulation in the PrC and FFA during face oddity task completion has been found to 

correlate with task performance (Hodgetts et al., 2015) and RS-connectivity between these 

areas been found to relate to patterns of face recognition (O'Neil et al., 2014). Therefore, it 

may be that its connection between these areas is particularly important in the case of 

complex face perception. 

8.2.2 Oscillatory activity of the PMN related to complex scene perception. 

Previous fMRI work has found hippocampal BOLD modulations during scene oddity task 

completion (Barense et al., 2010; Hodgetts et al., 2015; Lee et al., 2008). One of these 

found BOLD deactivations to correlate with performance (Hodgetts et al., 2015), but 

relating deactivations to underlying neuronal processes is challenging, especially in MTL 

areas, where the relationship between BOLD and oscillatory activity is unclear (Ekstrom et 

al., 2009). Oscillatory activity of the PMN has previously been recorded during recollection 

(Herweg et al., 2016), navigation (Pu et al., 2017) and novel scene imagery (Barry et al., 

2019; Monk et al., 2020), but not during complex scene perception.  

In Chapter 4, whole-brain theta (4-8 Hz) power analyses revealed power modulations in the 

MTL and in other posteromedial areas that are specific to complex scene perceptual 

processing. Whole-brain gamma power analyses revealed power modulations in high 

gamma (60-80 Hz) in the inferior parietal cortex and the precuneus that were specific to 

complex scene processing. Together, the pattern of areas with modulated oscillatory 

activity, is strikingly similar to the scene network revealed by Hodgetts et al. (2016) who 

measured whole-brain BOLD modulations during a scene one-back recognition task. The 

current work complements this past research by extending the involvement of these 

network areas into perceptual processes, and adds an understanding of the underlying 
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neuronal activity through characterization of oscillatory power modulations. Moreover, 

Chapter 5 showed that theta power decrease in the MTL ROI correlated with scene oddity 

performance and not with face oddity performance, showing similarities with the results of 

Hodgetts et al. (2015). Importantly, MTL theta power did not correlate with subsequent 

scene memory performance, showing that the relationships between MTL theta and oddity 

performance was unlikely to be purely mediated by incidental encoding processes. 

 Theta rhythms are known to be important in hippocampal processes (Buzsaki, 2002), and 

increases in low frequency oscillations have been associated with decreased BOLD (Fellner 

et al., 2016), so considering the hippocampal BOLD decrease reported in Hodgetts et al. 

(2015), it could have been assumed that MTL theta power would increase during the scene 

oddity task. However, it may be the case that MTL theta power decreases during novel 

scene processing. The MTL theta power decrease reported in Chapter 4 is echoed in two 

previous MEG studies which found decreased hippocampal theta power during novel scene 

imagery (Barry et al., 2019; Monk et al., 2020). Furthermore, hippocampal theta has been 

shown to be lower in novel spatial environments than in familiar environments, whereas 

gamma shows the opposite pattern (Park et al., 2014). Regarding the apparent conflict with 

the previous BOLD results, theta in the MTL has been shown to be positively related to 

BOLD (Ekstrom et al., 2009), and the results of a recent preprint study (Hill et al., 2021), 

which combined fMRI with invasive electrophysiological recording during a free recall task, 

have further supported unique relationships between BOLD and oscillatory patterns in the 

MTL. In this study, gamma and BOLD subsequent memory effects (encoding-related activity 

that predicts subsequent recall) related positively across the cortex but related negatively 

in the hippocampus. Therefore, shifts in power from low frequency to high frequency 

within the MTL may be associated with both novel scene processing and reduced BOLD.  

It was expected that phase-coherence between the hippocampus and the mPFC, and PAC 

in the mPFC, would increase during the scene oddity task. However, no evidence to support 

these hypotheses was found. Rather, mPFC PAC was found to reduce in the scene task 

versus the control, which contradicts previous studies, which reported theta coherence 

between the MTL and the mPFC during spatial memory retrieval (Kaplan et al., 2014) and 

increased mPFC theta-gamma PAC during correct versus incorrect trials of a Y-maze 

working memory task (Li et al., 2012). It may be that complex novel scene processing is 

reflected by different patterns of network communication or inter-frequency interactions 

that were not assessed here. Further work could explore communication between the 

hippocampus and the parietal cortex, and the mPFC and the parietal cortex. Exploratory 
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analysis in Chapter 4 indicated that phase-coherence (in the theta and alpha bands) 

between the hippocampus and the IPL was increased during the scene oddity task in 

comparison with the face or size oddity tasks, and previous work has shown increased 

coupling between the phase of theta rhythms in the mPFC and gamma amplitude in the 

medial parietal cortex during spatial memory retrieval (Kaplan et al., 2014).  

Regarding RS PMN connectivity, theta connectivity strength between the PCC and other 

PMN areas was associated with scene oddity performance while hippocampus-PMN 

connectivity strength was not (Chapter 6). This was a partial correlation, controlling for 

subsequent memory performance, so it is unlikely that the perceptual benefit of increased 

PCC-PMN connectivity was a reflection of the benefits of PCC-PMN connectivity in 

incidental encoding. The findings of Chapter 5 suggest a specific importance of the MTL 

compared with the PCC during the scene oddity task (MTL theta correlated with oddity 

performance, whereas the correlation test between PCC theta and scene oddity 

performance was exploratory and gave a larger, non-significant p-value). Comparison of the 

results in these two chapters may indicate that flexibility within the PMN is advantageous. 

Although the assessments of network function differ between the chapters (Chapter 6 

assessed amplitude correlations between multiple areas, whereas Chapter 5 assessed 

oscillatory power in ROIs including a combined MTL ROI), it may be that PCC connectivity 

best reflects PMN quality at rest, while task related engagement of hippocampal processes 

best reflects PMN quality during the behaviour. Supporting this suggestion, the PCC is 

proposed to have more of a role in mediating whole-brain network information flow than 

the hippocampus (Lee et al., 2020; Leech & Sharp, 2014). Future work comparing 

connectivity between the hippocampus, the PCC and other PMN ROIs during perceptual 

processing and rest, using the same functional analysis methods in each, would help to 

validate this suggestion.  

Regarding the AIN, whole-brain gamma power analyses revealed power modulations in low 

gamma (40-60 Hz) in the right inferior occipital and fusiform areas that were specific to 

complex face processing. These results concurred with Hodgetts et al. (2015) who found 

increased FFA BOLD during face oddity task completion, and also with MEG studies 

examining face processing, which found increased gamma power in the same locations 

(Gao et al., 2013; Uono et al., 2017). Although the PrC is thought to be of particular 

importance in creating view-invariant internal face representations (Barense et al., 2010), 

and the ILF was proposed to be important in complex face perception because of its 

connections to the PrC, the current project found no oscillatory activity within the MTL that 
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was specific to the face task over the scene task. Indeed, it was anticipated that measuring 

PrC activity with MEG would not be possible, and that therefore it would be likely that the 

MTL signals relating to the scene oddity task would have originated from the hippocampus 

or the parahippocampal cortex but not from the PrC. The inability to measure PrC activity 

with MEG may also explain why no RS-connectivity patterns correlated with face oddity 

performance. It could be the case that RS-connectivity between the FFA and the PrC would 

have related to face oddity performance as it has been shown to do in other face 

processing tasks when measured with fMRI (Collins & Dickerson, 2019; O'Neil et al., 2014).  

8.2.3 Tract microstructure was reduced to biologically interpretable and replicable 

components. 

Whereas multiple studies have assessed correlations between behavioural performance 

and tract microstructure measures separately, and mostly only used FA and MD derived 

from DTI (Coad et al., 2017; Hodgetts et al., 2015; Metzler-Baddeley et al., 2011; Postans et 

al., 2014), this thesis took advantage of PCA-based reduction of multiple microstructure 

measures (Chamberland et al., 2019; Geeraert et al., 2020) and then tested correlations 

between the microstructure component scores and behavioural measures. This method is 

comparatively novel and has only been carried out in the context of childhood 

development (Chamberland et al., 2019; Geeraert et al., 2020), rather than for studying 

individual differences in adults.  

In this thesis, PCA-based reduction of microstructure data was carried out on fornix, PHC 

and ILF data across two studies. Despite these studies having different groups of adult 

participants, different diffusion-weighted MRI protocols, and a different collection of 

microstructure measures, the final components were similar. The experiment in Chapter 5 

included: FA, MD and RD from the DTI model; FR from CHARMED; ICVF and OD from 

NODDI; and MPF from qMT. The experiment in Chapter 7 included FA, MD, RD and AxD 

from the DTI model, and ICVF and OD from NODDI. Biplots, illustrating the weightings of 

the microstructure measures on two components for each experiment (Figure 46), show 

how similar the resulting components were across the experiments. PC1 was interpreted as 

positively relating to the property of restriction and, as it is assumed that increased axon 

density and myelin proportion contribute to restricting water diffusion, it was predicted to 

correlate positively with behavioural performance. In both studies, PC1 was negatively 

influenced by MD and RD, which are both negatively related to myelin density (Seehaus et 

al., 2015). PC1, from the study in Chapter 5, was also positively influenced by MPF, which is 
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positively related to myelin proportion (Turati et al., 2015), and FR, which is interpreted as 

relating to axon density (De Santis et al., 2016). PC2 was interpreted as negatively relating 

to the property of fibre coherence. In both studies it was negatively influenced by FA and 

positively influenced by OD. OD is lower in tracts known to have more fibre coherency and 

higher in tracts known to have more fibre fanning and crossing (Zhang et al., 2012), and FA 

can be influenced by the extent of coherent organisation of fibres within a voxel (Jones, 

Knosche, et al., 2013; Seehaus et al., 2015). Since many studies have found tract FA to 

positively relate to performance (Coad et al., 2017; Postans et al., 2014; Schlaffke et al., 

2017), or to be reduced in disease (Agosta et al., 2010; Chen et al., 2019; Kantarci, 2014), it 

was assumed that fibre coherence was a beneficial property, so this component was 

predicted to negatively relate to behavioural performance. With regard to OD, it should be 

noted that an increased value could be interpreted as increased fibre complexity 

(Chamberland et al., 2019; Geeraert et al., 2020), a property that increases during normal 

childhood development (Chang et al., 2015). Indeed, a positive relationship between white 

matter OD and reading skill has been shown in children (Huber et al., 2019). However, 

cognitive performance or functioning is often negatively associated with increased white 

matter OD in adults (Coad et al., 2020; Ota et al., 2018; Wen et al., 2019).  
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Figure 46. Biplots from PCA-based microstructure data reduction for two experiments. 

AxD: Axial Diffusivity. FA: Fractional Anisotropy. FR: Restricted Fraction. ICVF: Intracellular Volume 
Fraction. ILF: Inferior Longitudinal Fasciculus. MD: Mean Diffusivity. MPF: Molecular Proton Fraction. OD: 
Orientation Dispersion. PC: Principal Component. PHC: Parahippocampal Cingulum. RD: Radial Diffusivity.  
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This method allowed for further interpretation of the underlying biology influencing 

structure-performance relationships. For example, Postans et al. (2014) found correlations 

between fornix FA and MD, and complex scene perception performance, but since both FA 

and MD are influenced by fibre density, myelination, and fibre dispersion (Beaulieu, 2002; 

De Santis et al., 2014), interpreting which of these particular fornix properties is specifically 

influential is unfeasible. Chapter 5 revealed that the fornix microstructure component 

relating to restriction, and not the component relating to coherence, correlated with 

complex scene perception performance, suggesting that fornix myelination or fibre density 

may be more related to this behaviour than fornix fibre dispersion.  

The influences of AxD and ICVF on the PCA components warrant further thought. AxD 

measures the diffusion in the greatest direction, considered to be the diffusion path 

parallel to the fibres in a voxel, and decreases and increases in AxD have been associated 

with traumatic damage (Song et al., 2003) and axonal degeneration in AD (Mayo et al., 

2018), respectively. Assuming a lack of axon damage, its meaning in a healthy population is 

unclear. AxD has previously been found to positively correlate with FR and negatively 

correlate with RD (De Santis et al., 2014). The correlation matrix between all microstructure 

measures within the tracts, shown in Chapter 7, indicates positive relationships between 

AxD and FA, and negative relationships between AxD and RD, in the ILF and PHC data, but 

these relationships are not the same for the fornix data, in which there was a positive 

relationship between AxD and RD. It may be that there are properties of the fornix, such as 

its curvature, that results in different sensitivities of the microstructure data for this tract. 

For example, it has been shown that correlations between AxD and FR are stronger in 

single fibre populations than in multiple fibre populations because of the reduction in 

variation in fibre orientations (De Santis et al., 2014). Analogous to the current PC1 

component, an experiment examining fornix microstructure and memory scores in 

participants with mild cognitive impairment, found fornix MD, RD and AxD to all negatively 

correlate with memory performance, indicating that they represent shared properties of 

the fornix (Mielke et al., 2012).  

It was anticipated that FR from CHARMED and ICVF from NODDI would be strongly related 

to each other, and contribute to the PCA components similarly, because they are both 

sensitive to the volume fraction of intracellular components of a voxel, and thought to 

represent axon density. However, they did not show a similar contribution to PCA 

components in Chapter 5 (see their positions on the biplot, Figure 46). From examination of 

the relationships between individual microstructure data within each of the tracts, it seems 
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that this difference is driven by fornix data. In the ILF and PHC data, positive relationships 

exist among FA, FR, MPF and ICVF, as expected, but in the fornix, ICVF does not positively 

relate to FA, FR or MPF, instead showing positive relationships with MD and RD. The 

dissimilarity between FR and ICVF in the fornix may stem from differences in the 

assumptions from the models, as NODDI relies on the tortuosity assumption whereas the 

CHARMED model does not. The tortuosity assumption imposes a connection between the 

volume fraction and MD, which might mean that measures of ICVF are exaggerated in 

some tissue types (Lampinen et al., 2017). In a comparison between NODDI estimates and 

estimates from a model that did not rely on the tortuosity assumption, Lampinen et al. 

(2016), using tissue simulations, found that for cases with high anisotropy, volume fraction 

estimates of the two models were similar but they differed when anisotropy was low, and 

NODDI overestimated the restricted fraction. Since fornix FA and MD were lower and 

higher, respectively, than FA and MD of the other tracts recorded here, a pattern that is 

also seen in other studies (De Santis et al., 2014; Hodgetts et al., 2015; Pievani et al., 2010), 

it may be that fornix ICVF is less accurate than fornix FR while ILF/PHC FR and ICVF are 

similarly accurate. Due to this weakness of NODDI, it has been suggested that FR from 

CHARMED should be used when examining white-matter abnormalities (De Santis et al., 

2019). However, no suggestions have been made about the appropriateness of the use of 

NODDI when studying different brain tracts. This field would benefit from direct 

comparison of accuracies of NODDI estimations in different brain tracts, ideally in 

conjunction with histological data.  

By studying correlation matrices between raw microstructure measures of the tracts, 

different relationships between those of the fornix, compared with those of the ILF and 

PHC, were apparent. Moreover, when participant tract data was presented as PC1 and PC2 

scores, the fornix cluster was distant from those of ILF and PHC, which overlapped. The 

fornix may have one or more properties that set it apart from the other tracts (e.g., its 

curvature). There is a risk that the proximity of the fornix to the ventricles means that 

values from this tract are inaccurate due to signal contamination despite the use of a ‘Free 

Water Elimination’ algorithm (Pasternak et al., 2009). Indeed, fornix microstructure data 

were omitted from a study by De Santis et al. (2014) because the low FA, low myelin water 

fraction and high MD values of this tract compared with the other tracts they studied led 

the authors to conclude that there had been contamination from CSF. However, in the 

current data, although fornix MPF was lower than ILF or PHC MPF, the FA and MD values of 

the fornix did not differ from those of the ILF and PHC to same degree as fornix values 
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differed from those of the ILF in De Santis et al. (e.g. fornix MD was almost double ILF MD 

in their study). Therefore, in this project, the difference in fornix microstructure from the 

other tracts is likely driven more by true differences in underlying anatomy than noise in 

MRI measurements.  

Regardless of the reason, the difference in fornix microstructure from the other tracts may 

mean that the component scores from the PCA-based data reduction of all tract data may 

be less accurate at portraying each tract than if data reduction was carried out on the 

microstructure measures of each tract separately. Therefore, it was important for the 

correlations between behaviour/functional values and raw tract microstructure values to 

also be presented in the Appendices 2C and 4C, so that if relationships between individual 

tract microstructure values and behaviour/functional values did not carry over to 

microstructure component data, they could be identified.  

To summarize, the results presented in this thesis support the use of this PCA-based 

microstructure data reduction technique for collections of tracts, including the fornix, but 

also highlight the importance in examining the raw microstructure data.  

8.3 Findings inspiring further thought. 

8.3.1 No three-part structure-function-behaviour relationships were identified but 

the angular gyrus may be important in linking these in the PMN. 

It was anticipated that the analyses of the oddity experiment would reveal three-part 

relationships between structure, function and behaviour in the PMN and the AIN. However, 

although there was evidence that fornix PC1 and HPC theta power related to scene oddity 

performance, they did not correlate with each other. Furthermore, PCC-PMN theta RS-

connectivity also correlated with scene oddity performance but not fornix PC1. However, 

there was a correlation between fornix PC2 and HPC theta power, but fornix PC2 did not 

relate to scene oddity performance. These results may indicate that these functional and 

structural measures of PMN functioning independently contribute to performance in PMN 

related behaviours, in healthy adults. Indeed, Hodgetts et al. (2015) also found no 

correlation between fornix microstructure and hippocampal BOLD. Also, correlations 

between PMC/MTL RS-connectivity and fornix microstructure have been found in MCI 

patients and not healthy controls (Berron et al., 2020). Exploratory RS-connectivity analysis 

in Chapter 6 revealed that the angular gyrus has a potentially important role in connecting 

structure, functional and behaviour. Theta RS-connectivity between the left angular gyrus 
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and left hippocampus correlated with fornix PC1, and theta RS-connectivity between the 

left angular gyrus and the left lateral temporal cortex correlated with scene oddity 

accuracy. This parallels the exploratory analysis in Chapter 4 which suggested increased 

HPC- left IPL phase-coherence during scene oddity task completion. As part of the 

‘contextual integration model’, the left angular gyrus has been proposed to be crucial in 

integrating and representing multimodal contextual details (Ramanan et al., 2018). In this 

model, interactions between the left angular gyrus and the MTL allow for richer 

representations, conjoined with perceptual-sensory and saliency information, over 

representations constructed in MTL alone. It may be that scene representations, built 

though MTL-left angular gyrus interactions, partly supported by fornix fibres (the fornix 

does not directly connect the angular gyrus), are beneficial to complex scene perception. 

Future work could specifically test correlations between MTL-left angular gyrus 

connectivity, during perceptual processing and during rest, with scene oddity performance 

and fornix microstructure.  

There was no in-task functional imaging in conjunction with the temporal sequencing task, 

so three-part relationships were not tested here. However, since angular gyrus processes 

has been shown to aid temporal sequence memory (Hsieh & Ranganath, 2015), it would 

greatly benefit investigation of the PMN and the PM-view if the future study suggested 

above (testing correlations between MTL-left angular gyrus connectivity, during task and 

during rest, with scene oddity performance and fornix microstructure) also included a 

temporal sequence memory task. 

8.3.2 Properties of the PMN and AIN were not fully dissociable. 

When correlations between structure, function and behaviour were compared between 

the networks, some correlations were found to be dissociable and others were not. To 

exemplify the former, the coefficient of the correlation between the scene HPC theta 

power difference (compared with fixation) and scene oddity accuracy was significantly 

stronger than that of the correlation between face HPC theta power difference and face 

oddity accuracy. Similarly, the correlation coefficient between theta PCC RS-connectivity 

strength and scene oddity accuracy was significantly larger than that of the correlation 

between theta PCC connectivity and face oddity accuracy. 

However, the coefficient of the correlation between fornix microstructure and scene oddity 

performance was not significantly greater than that of the correlation between fornix 

microstructure and face oddity performance. Furthermore, the coefficient of the 
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correlation between ILF microstructure and face oddity performance was not significantly 

larger than that of the correlation between ILF microstructure and scene oddity 

performance. These results differ from those of Hodgetts et al. (2015), which did find 

dissociable relationships within structure and function measures of the PMN and AIN. 

Similarly, regarding the temporal sequence memory experiment, the coefficient of the 

correlation between RT Enhancement random-fixed and fornix PC2 was not significantly 

larger than that of the correlation between RT Enhancement random-fixed and ILF PC2.  

Despite the lack of dissociability between these correlations of structure and function, 

multilinear regression analyses provided some evidence of unique contributions of fornix 

microstructure, over the ILF and PHC, to predictions of PMN-related task performance. In 

Chapter 5, the regression results showed that fornix PC1 predicted scene oddity 

performance independently of ILF/PHC PC1, while in Chapter 7, the regression results 

showed that fornix PC2 predicted RT Enhancement random-fixed independently of ILF/PHC 

PC2. 

Together, the results portray distinct inequalities in the importance of network structure 

and function properties, between the networks, but not complete separability. It is possible 

that the dissociable correlations found in Hodgetts et al. (2015) could not be reproduced 

because of the differences in experimental methods, for example, in how microstructure 

properties were measured or because the oddity task used in the current project was more 

difficult. Equally possible is that dissociable correlations would have been found with a 

larger sample size. Regardless, further studies are required to determine the extent of 

dissociability of structure, function and behaviour correlations in the PMN and the AIN.   

8.4 Limitations and considerations. 

8.4.1 Considerations of measuring functional activity from ROIs. 

There are several aspects of the methods used to characterize the functional signals of ROIs 

that warrant further discussion. These can be characterized by two themes, the fact that 

multiple brain areas are known to be functionally heterogenous but were assessed 

collectively, and that differences in assessing ROI activity between the chapters could make 

cross-chapter comparisons flawed. To exemplify this, methods used to explore MTL and 

PCC signals are discussed. 
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Since theta power modulations associated with spatial processing have been identified in 

the hippocampus and in parahippocampal areas (Pu et al., 2017; Pu, Cornwell, et al., 2018), 

and differentiating activity within these locations with MEG is challenging (Stephen et al., 

2005), it is not possible to be sure that theta power modulations found during the scene 

oddity task (Chapter 4) in a cluster that appeared to cover the hippocampus and 

parahippocampus, really show that both brain areas were active, or whether activity from 

one produced source spread effects. However, it seems likely that both areas were 

engaged, as BOLD modulations in both areas have previously been found during the scene 

oddity task (Hodgetts et al., 2015; Hodgetts, Voets, et al., 2017). Additionally, due to the 

challenge of separating MTL sources, a HPC ROI was constructed by combining AAL ROIs for 

hippocampal and parahippocampal areas (see methods of Chapter 4), and time-averaged 

theta power modulations of the voxels within this ROI were averaged for each participant, 

to create the MTL theta measure. This creates an uncertainty as to whether theta power 

modulations in the hippocampus or parahippocampal cortex, or both, correlated with 

scene oddity performance. However, it is likely that, while both areas contributed to the 

behaviour, only hippocampal signals correlated with performance, as the hippocampus has 

been shown to be specifically important when view-invariant scene representations are 

required (Barense et al., 2010). Moreover, significant and insignificant correlations 

between scene oddity performance and hippocampal BOLD, and parahippocampal BOLD, 

have previously been reported (Hodgetts et al., 2015). Nevertheless, further work 

investigating the influence of hippocampal and parahippocampal oscillatory activity on 

complex scene perception would be helpful, and would perhaps be best characterized by 

using invasive electrophysiological techniques.  

Moreover, not all components of the hippocampus are likely to be equally involved in 

complex scene perception. The anterior hippocampus has been proposed to be specifically 

important for creation of internal scene representations (Zeidman & Maguire, 2016), and 

theta modulation during novel scene imagery has been reported specifically in the anterior 

hippocampus (Monk et al., 2020). In agreement, high field fMRI work has indicated the 

specific engagement of the anteromedial subiculum during scene oddity task completion 

(Hodgetts, Voets, et al., 2017). Such precise localization of source signals is challenging with 

MEG, so it was not attempted in the current work. Alternatively, the medial and lateral 

aspects of the fornix, connecting to the posterior and anterior portions of the hippocampus 

respectively, can be separately characterized using DWI techniques (Christiansen et al., 

2017). Future work could attempt further investigations into the role of the anterior 
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hippocampus by testing for stronger correlations between lateral fornix microstructure and 

scene oddity performance than between medial fornix microstructure and scene oddity 

performance. 

On a similar theme, functional heterogeneity and homogeneity of the PMC requires further 

examination. The PCC ROI may have multiple functions. For example, dorsal PCC locations 

are more associated with spatial recall than are ventral locations, which are more 

associated with spatial encoding (Burles et al., 2018). It may be that dorsal and ventral PCC 

were differently engaged within the scene oddity task. Similarly, some studies do not 

specifically distinguish between the PCC and RSC (Burles et al., 2018; Natu et al., 2019) and 

the RSC falls within the precuneus ROI of the AAL atlas, so it was not independently 

explored in this project either. Therefore, future work may benefit from splitting the PCC 

ROI and including the RSC separately to either the PCC or the precuneus. On the other 

hand, the PMC has been assessed as a whole (Shine et al., 2015), and the precuneus and 

the PCC were reported to display similar interactions between APOE-ε4 group scene oddity 

BOLD modulations and those of controls, so similarities between these brain areas may 

mean that grouped ROI analysis is still useful in understanding network functionality.  

The construction methods of MTL VSs differ between analyses in this project. In Chapter 4, 

left and right HPC VSs were made by combining AAL ROIs for the hippocampus and the 

parahippocampal areas and creating single VSs (one left, one right) using a PCA reduction 

technique (Seymour et al., 2017). In Chapter 6, separate VSs were created for the 

hippocampus and the parahippocampal cortex, and single VSs were created by identifying 

the voxel with the largest signal variation. There are two reasons for these methodological 

differences. The first is the aim to use methods consistent with those used in the literature, 

so that the current work could be easily compared with other studies. The VS method in 

Chapter 4 was the PCA reduction technique used by Seymour et al. (2017) and since the 

PAC analysis method also used by Seymour et al. was subsequently conducted, it was 

important to keep the creation of the VSs comparable. On the other hand, multiple RS MEG 

studies have tested amplitude-amplitude correlations between AAL ROIs and several of 

them created the VSs by identifying the voxel with the largest variation (Dima et al., 2020; 

Godfrey & Singh, 2020; Routley et al., 2017).  

Additionally, the reason why the hippocampal and parahippocampal signals could be 

assessed separately within RS analysis is because part of the RS MEG analysis methods 
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removes the zero lag between the ROIs so that the risk of artificial connectivity from source 

spread is reduced (Dima et al., 2020; Godfrey & Singh, 2020; Routley et al., 2017).  

8.4.2 Hemispheric differences may exist but were not tested. 

Hemispheric lateralization may be present in the AIN and PMN, but this was not explicitly 

tested in the current project. For example, time-frequency spectrograms of the right and 

left HPC VSs were exploratively examined but not directly compared. This was because 

there was not a hypothesis regarding left or right lateralization for PMN functioning, or 

specifically, left or right hemispheric dominance for hippocampal engagement, in complex 

scene processing. Concurrently, Hodgetts et al. (2017) identified BOLD modulation in the 

bilateral subiculum for the scene oddity condition over face or object conditions.  

Some findings have indicated that the right hippocampus is more sensitive to spatial 

memory, while the left is more sensitive to temporal sequence memory (Abrahams et al., 

1997; Iglói et al., 2010). Characteristics of the theta rhythm may also differ between the 

hippocampi (Miller et al., 2018). However, MTL lateralization is not immediately obvious 

from the current project’s results. In Chapter 4, whole-brain power comparisons showed 

decreased theta power in the left MTL in the scene-vs-size comparison, but showed 

decreased theta power in the right MTL in the scene-vs-face comparison, suggesting that 

MTL theta modulation occurs bilaterally during complex scene processing, perhaps with 

differing levels of strength. Regarding the time-frequency analysis of the VSs, although the 

right HPC displayed a brief increase in beta2 power, both the left and right HPC displayed 

reduced low theta/delta power near the end of the time window in the scene-vs-size 

comparison. Moreover, exploratory correlation tests in Chapter 5, revealed correlations 

between the decrease in HPC theta power in the scene-vs-fixation comparison and scene 

oddity accuracy, for both left and right HPC VSs.  

On the other hand, the face processing network is generally agreed to be right-lateralized 

in adults (Bukowski et al., 2013; Cohen et al., 2019; Hildesheim et al., 2020; Sergent et al., 

1992). Although not specifically tested, the results of this project also indicate right-

lateralization of oscillatory power modulation during the face oddity task. Gamma power 

(both higher and lower bands) was found to be higher in the face condition versus the 

scene and size oddity conditions, in an area including the right FG and right IOC. However, 

the results of Hodgetts et al. (2015) provide only weak evidence of right-lateralization. 

There was no report of a significantly stronger correlation between right FFA/PrC BOLD and 

face oddity performance than between left FFA/PrC BOLD and face oddity performance. In 
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addition, although they found a numerically stronger correlation between right ILF MD and 

face oddity performance than between left ILF MD and face oddity performance, there was 

no significant difference between these correlation coefficients. Together, this inconclusive 

evidence incites the need for further research into right lateralization in complex face 

processing. While it would have been possible to inspect left and right ILF tracts in the 

current project, it was avoided because this would have increased the number of 

behaviour-microstructure tests far beyond the number of hypotheses. Due to the use of 

the microstructure PCA reduction techniques, splitting the ILF by hemisphere would have 

necessitated also splitting the fornix and the PHC, otherwise the PCA analysis would have 

been biased towards ILF values. Therefore, the number of behaviour-microstructure 

correlation tests would double because of only one hypothesis. 

8.4.3 Microstructure components are useful for comparing tract properties, but 

the underlying biology is still undetermined. 

Although the two microstructure components resulting from the two studies in this thesis 

allowed some understanding of how different microstructure properties influence 

behaviour, the results cannot provide an understanding of the true underlying anatomical 

properties. For example, it is inferred that PC1 represents restriction, mediated by myelin 

proportion and axon density, but these two anatomical properties cannot be distinguished 

here, or in previous studies using similar methods (Chamberland et al., 2019; Geeraert et 

al., 2020). It is unclear whether it would be possible to separate these properties using this 

data reduction method for two reasons. First, although FR and MPF are thought to be 

sensitive to axon sensitive and myelin proportion, respectively, it is unclear how dissociable 

those sensitivities are. For example, CHARMED is thought to be more sensitive than DTI 

measures, because the variation in the size of the restricted water pool was thought to 

reflect the proportion of axons in a voxel, making it a marker of axon density. However, it 

has been noted that the part of the calculation of FR is normalization according to the total, 

extra and intracellular, water content, meaning that variation in myelin and total water 

context can influence resulting FR values (De Santis et al., 2019). Unlike FA, MD (Seehaus et 

al., 2015), ICVF and OD (Sato et al., 2017), FR has not been validated histologically (De 

Santis et al., 2019). Second, while damage to axons and myelin may be separable in disease 

states (Song et al., 2003), in healthy brains there is a relationship between axon diameter 

and myelin thickness (Waxman, 1980), so it might be expected that axon density and 

myelin proportion would correlate within a healthy brain. Therefore, even if MPF and FR 

dissociably characterize myelin and axon density, correlations between these anatomical 
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properties would lead to correlations between these microstructure values, resulting in 

their similar contribution to PCA components.  

Although future work would benefit from validation of FR from CHARMED, and even 

though NODDI has undergone histological validation (Wang et al., 2019), FR from 

CHARMED may be the more appropriate option when studying fornix data. As mentioned 

above, ICVF values of the fornix were difficult to interpret, and it may be that they were not 

accurate for this tract. Future work could aim to provide a better understanding of the 

underlying anatomy influencing fornix ICVF data, making individual differences in fornix 

ICVF more understandable.  

In this thesis, varimax rotation was not applied to resulting principal components (the same 

methods as Chamberland et al. (2019) were used), but it was used in Geeraert et al., 

(2020). Varimax rotation is used to maximize the variance of components by minimizing the 

number of variables loading highly onto multiple components (Reinard, 2006). This can 

make interpretation of the meaning of the components clearer, as it can mean that the 

tract properties to which the components are related have less overlap, or are even 

separated. Without varimax rotation, there is a risk that fibre coherence, for example, is 

represented more by PC2, but still represented to a smaller extent in PC1. Varimax rotation 

may have resulted in no fibre coherence representation in PC1. In the case of Geeraert et 

al. (2019) it was particularly important to apply varimax rotation because their second and 

third components were very similar in the fact that myelin relating measures loaded onto 

both components. The third component also had an axon-diameter-sensitive measure, so 

the use of varimax allowed the researchers to interpret PC3 as sensitive to axon diameter, 

assuming that myelin sensitive measures were mostly loaded onto PC2. However, in the 

current project, and in Chamberland et al. (2019), this was less of a concern because the 

properties represented by the two resulting components did not appear to overlap to the 

same extent as seen in Geeraert et al., (2020). Furthermore, the primary goal of this thesis 

was to test tract microstructure and behaviour associations and a secondary goal was to 

ask whether different properties appear to be more influential, with the aim of explaining 

why previous work found relationships with FA and not MD, or vice versa. Future 

researchers using PCA-based data reduction of multiple microstructure measures may 

decide whether to apply varimax rotation after assessing the interpretability of the 

components or choose to present data with and without varimax rotation to see if it 

improves interpretation.  
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A further important point concerning the microstructure components revealed in the 

experiments of Chapters 5 and 7 is that they are comparable, but not identical. This is 

crucial when considering the relative influence of fornix microstructure properties on 

behaviour/function. For instance, the findings that the fornix restriction measure 

correlated with complex scene perception performance (Chapter 5) while the fornix 

coherence measure correlated with object in temporal structure retrieval (Chapter 7) are 

interesting but we cannot conclude that fornix restriction and coherence are differentially 

influential in the contexts of perception and memory because the findings come from two 

different studies with different participant cohorts and collections of microstructure 

measures. These findings should be considered early steps in the understanding of how 

different white-matter properties influence different behaviours supported by single 

networks. Ideally, this work should be followed by a study assessing individual differences 

in performances of tasks requiring spatiotemporal processing in a range of contexts, from 

retrieval to learning and perception to future imaginings.    

It is also important to consider the limitations of tractography itself. Virtual streamlines, 

which we consider to represent tracts, are created from estimations of the directionality of 

diffusion of water molecules in the brain, and not the tissue itself, which means that 

characterization of fibres is limited by the limitations of this MRI technique. For example, 

the magnetic gradient amplitudes influence the resolution, determining the minimum 

diameter fibre that can be detected (McNab et al., 2013). Strengths of the current methods 

include the use of prior understanding of tract anatomy and the placing of streamline ROIs 

according to previous studies, allowing some assurance that the streamlines captured 

fibres which were comparable across studies. In addition, although the automated 

software allowed an appropriate initial carving of each tract, each participant’s streamlines 

differ in shape, and so were then pruned to remove any spurious streamlines. However, it 

is challenging to assess the specificity and sensitivity of the tractography methods used, for 

each participant, without the knowledge of the true underlying anatomy (Schilling et al., 

2020). 

8.4.4 The demographics of the experiment samples. 

There are three aspects of the participant pool demographics that warrant discussion: 

sample size, participant sex and participant age.  

Despite the experiments in Chapters 4/5/6 and 7 having sample sizes comparable to, or 

larger than, other studies that revealed similar structure-behaviour (Geeraert et al., 2020; 
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Hodgetts et al., 2015) / structure-function (Hodgetts et al., 2015; Shin et al., 2019) / 

function-behaviour (Pu et al., 2017; Y. Pu et al., 2020)16 correlations, some results in this 

project indicate that the experiments may have benefited from increased sample size. The 

sample size of the oddity-MEG-diffusion study was based on the sample size and effect 

sizes reported in Hodgetts et al. (2015), which included 30 participants. Individual 

differences studies, such as that of Hodgetts et al. (2015) and the present project, require 

larger samples than do group comparisons such as comparisons of healthy controls vs 

disease patients, as the effect sizes are usually weaker in individual differences studies 

(Dubois & Adolphs, 2016). Some correlations in this chapter had alpha values below the 

traditional threshold of 0.05, but not below the corrected experiment-wise alpha, and the 

corresponding BF indicated weak evidence in favour of the alternative model. For example, 

the correlation between the fornix restriction measure and scene oddity performance fits 

this description, suggesting that this result would have produced a lower p-value if the 

sample were larger. Moreover, Geeraert et al. (2020) suggested that they would have 

found relationships between white-matter properties and reading skill if their sample had 

been larger, stating that p-values less than 0.1 suggested that effects would have been 

found with increased sample size. 

None of the hypotheses of this project was sex-specific. Key papers of interest studying 

complex perception (e.g. Hodgetts et al., 2015) and temporal sequence memory (e.g. Hsieh 

et al. 2014) did not study differences between males and females, so there were no 

predictions that structure, function and behaviour correlations would differ between them. 

However, the bias towards female participants in the two experiments of this project must 

be acknowledged. Most participants in the oddity task experiment were female and all the 

participants in the temporal sequence memory experiment were female. Therefore, there 

is a risk that the results of this project pertain specifically to females.  

Gender-binary (Hyde et al., 2019) approaches have identified psychological differences 

between the sexes (Hyde et al., 2019; Ristori et al., 2020). For example, differences in 

spatial learning have been found in males vs females in a virtual navigation MEG study (Y. 

Pu et al., 2020). Task performance of the males was significantly higher than that of the 

females, and hippocampal theta decreased in power from the first to second training set, 

whereas no difference was found for females. Differences in hippocampal theta power 

modulation between the sexes was not tested in the current project and could have 

 
16 Sample sizes of example studies are as follows: Geeraert et al. (2020), 46; Hodgetts et al. (2015), 
30; Shin et al. (2019), 10; Pu et al. (2017, 2020), 18.  
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influenced the correlations between MTL theta power and scene oddity performance. 

However, it should be noted that in Pu et al. (2020), the groups were tested at different 

times, for use in two difference studies (Pu et al., 2017; Y. Pu et al., 2020) and therefore it 

does not provide strong evidence that MTL theta differs between the sexes.   

Although future work could aim to assess if the findings in this project can be replicated in 

male-dominated groups, it is unclear how useful this would be, when ignoring multiple 

aspects of gender (Hyde et al., 2019). It is not clear if brain differences noted between 

males and females are purely chromosome-based. Rather, it may be that brain differences 

are also based upon experience, genes and hormone effects on development (Ristori et al., 

2020), all things that can influence an individual beyond relating to their sex. Therefore, it 

seems unlikely that humans can be easily categorized into two groups. Indeed, it is 

commonly argued that there are multiple genders (Hyde et al., 2019). Furthermore, it is 

unclear how useful it would be to separate participant pools when examining human 

aspects, such as spatial processing, which are not sex-specific.   

The aims of this project were to study individual differences in young healthy adults. The 

age groups of the participant pools in the oddity experiment (mean: 22.4 years, SD 4.0, 

range: 18-38 years) and temporal sequence memory experiment (mean: 20.1 years, SD 1.1, 

range: 19-24 years) were largely comparable but not identically matched. In particular, the 

oddity experiment has a larger age range. Therefore, as suggested previously, one study 

(i.e. with one participant pool) investigating structure, function and behaviour correlations 

in the context of both mnemonic and perceptual tasks, with both spatial and temporal 

modalities, would be beneficial. 

Revealing the underlying mechanisms behind individual differences in young healthy adults 

was not the primary interest of this project. It is possible that age contributed to 

differences in structure, function and behaviour, or even influenced the two networks 

unequally. Exploration of these ideas would be of great interest to the field of brain aging. 

Relatedly, microstructure measures of different tracts may not change equally with age. 

For example, in a study (Mårtensson et al., 2018) where DTI metrics of segments of the 

cingulum and inferior-fronto occipital fasciculus were compared between age groups, RD 

values of the anterior and posterior portions of the cingulum were lowest in the 28-40 age-

group, and increased in the subsequent age groups. Conversely, for the PHC, RD appeared 

highest in the 19-27 age group and decreased in the subsequent age groups, and RD values 
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of the central inferior-fronto occipital fasciculus were low in the youngest group but was 

relatively stable across the other age groups. 

It would have been possible to include participant age as a control variable in all tests of 

this project, but since the study of individual differences was primarily used as a method to 

examine networks, the mechanisms behind the healthy individual differences was not of 

interest, and beyond the scope of the investigation. Therefore, adding age correlation tests 

would have unnecessarily increased the chances of type 1 errors and made interpretation 

of results more complicated. However, understanding how age influences structure, 

function and behaviour correlations is important for the field generally. As discussed 

previously, correlations between PHC microstructure and behaviour have been revealed in 

MCI patients but not healthy controls (Metzler-Baddeley et al., 2012), perhaps due to 

compensatory mechanisms. It may be that age-related compensatory changes also result in 

changes in different structure-behaviour relationships over a life-time.  

8.5 Final conclusions. 

In conclusion, this project examined functional and structural properties of spatial 

processing networks in the brain with the aim of evaluating the PM-view that is 

encompassed by the EAM and PMAT models. Based upon the networks described by these 

models, the function of the PMN, thought to conduct spatiotemporal processing, was 

contrasted with the function of the AIN, thought to conduct aggregate item processing. To 

achieve this, individual differences in network structure, function and behaviour were 

characterized using multi-model imaging techniques, for the purposes of two experiments, 

probing perceptual processing and temporal sequence memory, respectively. Examination 

of MEG signals recorded during the perceptual oddity task revealed theta and gamma 

power modulation in PMN areas, including the MTL, during the scene oddity task. Of these, 

reduction of MTL theta correlated with scene oddity performance, indicating the 

importance of MTL areas in this perceptual task. In contrast, during rest, connectivity of the 

PCC to the rest of the PMN correlated with scene oddity performance. These results 

contrast with oscillatory patterns of the AIN during the face oddity task, where gamma-

power increases were revealed in the FG and IOC. In terms of structure, tract 

microstructure data was successfully reduced into interpretable components that 

corresponded across two datasets. There was evidence of correlations between fornix 

microstructure and both scene oddity performance and temporal sequence memory, 

indicating the importance of hippocampal communication in both spatiotemporal-
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perception and -mnemonic tasks. On the other hand, ILF microstructure correlated with 

face oddity performance only, and PHC microstructure did not correlate with any behaviour 

measures. Three-part relationships between structure, function and behaviour were 

hypothesized but not evidenced. However, exploratory RS analysis indicated correlations 

between angular gyrus connectivity within the theta band and both fornix microstructure 

and scene oddity performance. In general, the findings from this project provide evidence 

in support of the implications of the PM-view: areas of the PMN and AIN networks were 

found to be differently important for behaviours requiring different processing modalities; 

MTL areas were found to be involved in a complex visual perceptual task; and correlations 

were found between behavioural performance in tasks involving the network-specific 

modalities and structural/functional properties of the respective networks. 

The results presented in this thesis weaken the conceptual and anatomical barriers 

between perception and memory, and instead reinforce the roles of MTL regions in 

supporting conjunctive representations as part of processing hierarchies. While supporting 

that individual brain areas play unique roles in cognitive functions, this thesis highlights the 

importance of large-scale network function by revealing individual differences in network 

properties and cognitive behaviours. The results also have implications in predictions of 

cognitive impairments from diseases affecting the MTL. These may be contributed to by 

diminished large-scale network communication with the MTL, as well as by MTL damage 

itself. Moreover, cognitive impairments would not be predicted to be restricted to memory 

but to include a range of behaviours that rely on the processing qualities of the damaged 

network.  
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9 Appendices 

9.1 Appendix 1: Pertaining to Chapter 4. Number of MEG trials after cutting 

and cleaning.  

A) Number of trials for each condition after 2 s cut. The last row contains the mean 

number of trials, in bold.  

Participant 
number 

Scene  Face  Size Fixation 

1 80 90 72 87 

2 84 61 30 92 

3 83 77 76 91 

5 86 78 53 92 

6 83 90 71 83 

7 89 91 87 95 

9 82 87 69 87 

10 78 92 33 92 

11 78 86 69 91 

12 86 88 43 94 

13 93 94 95 96 

14 80 84 39 81 

15 84 85 61 93 

16 89 80 36 95 

17 87 89 93 90 

18 81 87 74 81 

19 84 83 75 81 

21 90 93 64 95 

22 84 82 78 89 

23 77 70 48 81 

24 86 92 71 89 

25 91 69 71 94 

26 72 82 81 88 

27 91 79 66 96 

28 89 87 90 88 

29 85 88 63 92 

30 72 87 86 86 

31 75 85 49 93 

32 90 93 79 91 

33 85 73 56 93 

34 85 94 81 89 

35 88 94 73 87 

36 63 81 79 91 

37 84 47 81 93 

38 58 50 38 59 
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39 75 91 30 84 

40 92 92 68 89 

41 86 86 80 88 

42 57 55 25 49 

43 91 84 59 92 

     

 82.3 82.4 64.8 87.9 

 

B) Number of trials for each condition after 2.2 s cut. The last row contains the mean 

number of trials, in bold. 

Participant 
number 

Scene  Face  Size Fixation 

1 80 87 63 87 

2 80 48 26 92 

3 80 72 69 91 

5 83 70 42 92 

6 82 83 66 83 

7 88 90 82 95 

9 82 84 62 87 

10 77 87 26 92 

11 76 86 68 91 

12 85 88 34 94 

13 93 94 94 96 

14 80 78 33 81 

15 83 81 54 93 

16 88 72 29 95 

17 87 89 91 90 

18 81 80 71 81 

19 83 80 72 81 

21 87 90 57 95 

22 84 80 73 89 

23 76 58 42 81 

24 85 90 65 89 

25 89 58 66 94 

26 72 81 80 88 

27 89 71 55 96 

28 89 87 88 88 

29 84 88 52 92 

30 72 84 85 86 

31 74 83 42 93 

32 90 90 67 91 

33 82 64 48 93 

34 85 88 79 89 

35 88 94 64 87 

36 63 79 73 91 

37 81 41 33 93 
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38 55 42 22 59 

39 75 88 77 84 

40 91 91 60 89 

41 86 85 70 88 

42 57 52 18 49 

43 91 82 54 92 

     

 81.3 78.4 58.8 87.9 

 

C) PAC in the left and right HPC. 

An exploratory search of PAC in the HPC VSs revealed no significant differences in the right 

or left HPC PAC between any of the conditions. However, an apparent increase in theta-

gamma coupling, seen for the left HPC in the scene condition compared with the face 

condition, approached significance (cluster p-value = 0.09). 
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Appendix 1C Figure: PAC in the left and right HPC. 

No significant differences in PAC between conditions were found for either the left or right HPC VSs. The colours represent t-

values. The colour scale bar for each image is shown to the right of each image. 
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9.2 Appendix 2: Pertaining to Chapter 5. Correlation tests between: ROI 

power modulation and MEG trial numbers; HPC power modulation and 

ILF/PHC microstructure; and raw tract microstructure values and oddity 

accuracy.  

A) Tables showing no significant correlations between number of trials in each condition 

and oscillatory power differences (between condition and fixation) in the ROIs. N=40. 

Theta Scene trial number Face trial number Size trial number 

 Pearson's r p-value Pearson's r p-value Pearson's r p-value 

HPC theta scene 0.091 0.575 0.044 0.789 0.132 0.417 

HPC theta face 0.041 0.8 0.043 0.794 0.17 0.293 

HPC theta size 0.194 0.23 0.154 0.344 0.204 0.208 

PCC theta scene 0.212 0.189 0.196 0.226 0.16 0.325 

PCC theta face 0.038 0.814 0.141 0.385 0.227 0.158 

PCC theta size 0.257 0.109 0.17 0.294 0.193 0.232 

mPFC theta scene -0.069 0.674 -0.078 0.633 0.007 0.964 

mPFC theta face -0.16 0.325 -0.01 0.95 -0.048 0.768 

mPFC theta size -0.059 0.716 -0.126 0.44 -0.023 0.889 

IPL theta scene -0.076 0.641 -0.091 0.575 -0.108 0.508 

IPL theta face -0.046 0.777 -0.048 0.768 -0.029 0.86 

IPL theta size 0.002 0.992 -0.045 0.783 -0.04 0.808 

 

High gamma Scene trial number Face trial number Size trial number 

 Pearson's r p-value Pearson's r p-value Pearson's r p-value 

HPC gamma scene 0.149 0.36 0.119 0.465 -0.018 0.912 

HPC gamma face -0.115 0.481 0.106 0.516 -0.118 0.469 

HPC gamma size -0.17 0.293 -0.165 0.309 -0.122 0.455 

PCC gamma scene 0.051 0.756 0.109 0.504 -0.139 0.394 

PCC gamma face -0.136 0.404 0.123 0.45 -0.268 0.094 

PCC gamma size -0.012 0.942 -0.003 0.987 -0.188 0.246 

mPFC gamma scene 0.138 0.396 0.14 0.388 0.021 0.897 

mPFC gamma face -0.067 0.68 0.183 0.259 -0.05 0.761 

mPFC gamma size -0.014 0.93 -0.11 0.501 -0.026 0.873 

IPL gamma scene 0.233 0.148 0.161 0.321 0.141 0.385 

IPL gamma face 0.02 0.901 0.076 0.643 -0.131 0.419 

IPL gamma size -0.017 0.918 -0.132 0.417 -0.046 0.78 

 

 

 

Low gamma Scene trial number Face trial number Size trial number 

 Pearson's r p-value Pearson's r p-value Pearson's r p-value 
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HPC gamma scene 0.17 0.294 0.067 0.683 0.042 0.798 

HPC gamma face -0.192 0.234 -0.025 0.877 -0.203 0.209 

HPC gamma size -0.123 0.451 -0.226 0.161 -0.169 0.297 

PCC gamma scene 0.019 0.909 0.019 0.907 -0.053 0.743 

PCC gamma face -0.16 0.324 -0.093 0.569 -0.202 0.211 

PCC gamma size -0.077 0.636 -0.164 0.312 -0.047 0.774 

mPFC gamma scene 0.274 0.087 0.096 0.557 -0.051 0.753 

mPFC gamma face 0.209 0.196 0.079 0.626 -0.141 0.385 

mPFC gamma size 0.228 0.157 0.116 0.477 -0.023 0.887 

IPL gamma scene 0.06 0.714 0.269 0.094 0.092 0.574 

IPL gamma face 0.06 0.714 0.269 0.094 0.092 0.574 

IPL gamma size -0.006 0.968 0.099 0.543 0.007 0.968 

 

B) Partial correlations between HPC theta power difference (compared to fixation), and 

ILF and PHC microstructure (controlling for trial number) N=39. 

 

 

 

 

 

 

 

 

  Scene HPC theta 
power difference 

Face HPC theta 
power difference 

Size HPC theta 
power difference 

ILF PC1  r = -0.103 
p = 0.538 
BF10 = 0.42 

r = -0.129 
p = 0.440 
BF10 = 0.47 

r = -0.094 
p = 0.573 
BF10 = 0.41 

PC2 r = 0.065 
p = 0.700 
BF10 = 0.38 

r = 0.167 
p = 0.315 
BF10 = 0.56 

r = 0.038 
p = 0.819 
BF10 = 0.36 

PHC PC1 r = -0.004 
p = 0.982 
BF10 = 0.36 

r = -0.051 
p = 0.761 
BF10 = 0.37 

r = -0.163 
p = 0.327 
BF10 = 0.55 

PC2 r = 0.001 
p = 0.998 
BF10 = 0.36 

r = 0.048 
p = 0.773 
BF10 = 0.37 

r = 0.111 
p = 0.507 
BF10 = 0.43 
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C) Correlation matrix of the relationships between oddity accuracy scores and raw tract 

microstructure data.  

The correlation matrix shows that the relationships between the raw tract microstructure values and the behaviour scores 

follow similar patterns to the relationships between the tract PCA scores and behaviour scores (see main text). The values are 

correlation r values from Pearson tests. The colours represent r values, indicating positive or negative relationships, according 

to the key. Crossed-out values indicate the correlation tests that produced a p-value above 0.05. Significant correlations were 

found between: Face accuracy and ILF FA; Scene accuracy and fornix MD; Scene accuracy and fornix RD; and Scene accuracy 

and ILF FA. Note that no results from partial correlations are shown, whereas partial correlations were used in the main 

experiment.  

Size accuracy 

Scene accuracy 

Face accuracy 
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9.3 Appendix 3: Pertaining to Chapter 6. AAL Atlas labels and correlation 

tests between: size oddity accuracy and connectivity values; and PHC 

microstructure and connectivity values. 

3A) AAL ROI labels.  

AAL Label Atlas 
Colour 

Region Name 

Precentral_L'  Left Precental Gyrus 

'Precentral_R'  Right Precental Gyrus 

'Frontal_Sup_L'  Left Superior Dorsolateral Frontal Gyrus 

'Frontal_Sup_R'  Right Superior Dorsolateral Frontal Gyrus 

'Frontal_Sup_Orb_L'  Left Superior Orbital Frontal Gyrus 

'Frontal_Sup_Orb_R'  Right Superior Orbital Frontal Gyrus 

'Frontal_Mid_L'  Left Middle Frontal Gyrus 

'Frontal_Mid_R'  Right Middle Frontal Gyrus 

'Frontal_Mid_Orb_L'  Left Middle Orbital Frontal Gyrus 

'Frontal_Mid_Orb_R'  Right Middle Orbital Frontal Gyrus 

'Frontal_Inf_Oper_L'  Left Inferior Opercular Frontal Gyrus 

'Frontal_Inf_Oper_R'  Right Inferior Opercular Frontal Gyrus 

'Frontal_Inf_Tri_L'  Left Inferior Triangular Frontal Gyrus  

'Frontal_Inf_Tri_R'  Right Inferior Triangular Frontal Gyrus  

'Frontal_Inf_Orb_L'  Left Inferior Orbital Frontal Gyrus 

'Frontal_Inf_Orb_R'  Right Inferior Orbital Frontal Gyrus 

'Rolandic_Oper_L'  Left Rolandic Operculum 

'Rolandic_Oper_R'  Right Rolandic Operculum 

'Supp_Motor_Area_L'  Left Supplementary Motor Area 

'Supp_Motor_Area_R'  Right Supplementary Motor Area 

'Olfactory_L'  Left Olfactory Cortex 

'Olfactory_R'  Right Olfactory Cortex 

'Frontal_Sup_Medial_L'  Left Superior Medial Frontal Gyrus 

'Frontal_Sup_Medial_R'  Right Superior Medial Frontal Gyrus 

'Frontal_Med_Orb_L'  Left Medial Orbital Frontal Gyrus 

'Frontal_Med_Orb_R'  Right Medial Orbital Frontal Gyrus 

'Rectus_L'  Left Gyrus Rectus 

'Rectus_R'  Right Gyrus Rectus 

'Insula_L'  Left Insula 

'Insula_R'  Right Insula 

'Cingulum_Ant_L'  Left Anterior Cingulate 

'Cingulum_Ant_R'  Right Anterior Cingulate 

'Cingulum_Mid_L'  Left Middle Cingulate 

'Cingulum_Mid_R'  Right Middle Cingulate 

'Cingulum_Post_L'  Left Posterior Cingulate 

'Cingulum_Post_R'  Right Posterior Cingulate 

'Hippocampus_L'  Left Hippocampus 
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'Hippocampus_R'  Right Hippocampus 

'ParaHippocampal_L'  Left Parahippocampal Gyrus 

'ParaHippocampal_R'  Right Parahippocampal Gyrus 

'Amygdala_L'  Left Amygdala 

'Amygdala_R'  Right Amygdala 

'Calcarine_L'  Left Calcarine Fissure 

'Calcarine_R'  Right Calcarine Fissure 

'Cuneus_L'  Left Cuneus 

'Cuneus_R'  Right Cuneus 

'Lingual_L'  Left Lingual Gyrus 

'Lingual_R'  Right Lingual Gyrus 

'Occipital_Sup_L'  Left Superior Occipital Gyrus 

'Occipital_Sup_R'  Right Superior Occipital Gyrus 

'Occipital_Mid_L'  Left Middle Occipital Gyrus 

'Occipital_Mid_R'  Right Middle Occipital Gyrus 

'Occipital_Inf_L'  Left Inferior Occipital Gyrus 

'Occipital_Inf_R'  Right Inferior Occipital Gyrus 

'Fusiform_L'  Left Fusiform Gyrus 

'Fusiform_R'  Right Fusiform Gyrus 

'Postcentral_L'  Left Post-Central Gyrus 

'Postcentral_R'  Right Post-Central Gyrus 

'Parietal_Sup_L'  Left Superior Parietal Gyrus 

'Parietal_Sup_R'  Right Superior Parietal Gyrus 

'Parietal_Inf_L'  Left Inferior Parietal Gyrus (Without Supramarginal and Angular 
Gyri) 

'Parietal_Inf_R'  Right Inferior Parietal Gyrus (Without Supramarginal and 
Angular Gyri) 

'SupraMarginal_L'  Left Supramarginal Gyrus 

'SupraMarginal_R'  Right Supramarginal Gyrus 

'Angular_L'  Left Angular Gyrus 

'Angular_R'  Right Angular Gyrus 

'Precuneus_L'  Left Precuneus 

'Precuneus_R'  Right Precuneus 

'Paracentral_Lobule_L'  Left Paracentral Lobule 

Paracentral_Lobule_R'  Right Paracentral Lobule 

'Caudate_L'  Left Caudate Nucleus 

'Caudate_R'  Right Caudate Nucleus 

'Putamen_L'  Left Putamen 

'Putamen_R'  Right Putamen 

Pallidum_L'  Left Pallidum 

'Pallidum_R'  Right Pallidum 

'Thalamus_L'  Left Thalamus 

'Thalamus_R'  Right Thalamus 

'Heschl_L'  Left Heschl Gyrus 

'Heschl_R'  Right Heschl Gyrus 

'Temporal_Sup_L'  Left Superior Temporal Gyrus 
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'Temporal_Sup_R'  Right Superior Temporal Gyrus 

'Temporal_Pole_Sup_L'  Left Superior Gyrus Temporal Pole 

'Temporal_Pole_Sup_R'  Right Superior Gyrus Temporal Pole 

'Temporal_Mid_L'  Left Middle Temporal Gyrus 

'Temporal_Mid_R'  Right Middle Temporal Gyrus 

'Temporal_Pole_Mid_L'  Left Middle Gyrus Temporal Pole 

'Temporal_Pole_Mid_R'  Right Middle Gyrus Temporal Pole 

'Temporal_Inf_L'  Left Inferior Temporal Gyrus 

'Temporal_Inf_R'  Right Inferior Temporal Gyrus 
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 3B) Correlation tests between size oddity accuracy and hippocampal and PCC RS-

connectivity strength. N=40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3C) Correlation tests between size oddity accuracy and hippocampal and PCC connectivity 

strength. N=40. 
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theta r = 0.116 
p = 0.478 
BF10 = 0.44 

alpha 

 

r = -0.188 
p = 0.246 
BF10 = 0.64 

beta r = -0.017 
p = 0.918 
BF10 = 0.35 
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theta r = 0.208 
p = 0.197 
BF10 = 0.73 
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Theta r = 0.141 
p = 0.387 
BF10 = 0.49 

Alpha r = -0.097 
p = 0.551 
BF10 = 0.41 

Beta r = -0.057 
p = 0.726 
BF10 = 0.37 
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Theta r = 0.157 
p = 0.332 
BF10 = 0.53 

Alpha r = -0.112 
p = 0.490 
BF10 = 0.43 

Beta r = 0.203 
p = 0.208 
BF10 = 0.71 
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alpha r = -0.147 
p = 0.366 
BF10 = 0.51 

beta r = -0.187 
p = 0.247 
BF10 = 0.64 

 

3D) Correlation tests between ROI RS-connectivity scores and PHC microstructure. N=39. 
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 PHC 

 PC1 PC2 

Theta r = 0.092 
p = 0.579 
BF10 = 0.41 

r = -0.212 
p = 0.195 
BF10 = 0.75 

Alpha r = 0.052 
p = 0.753 
BF10 = 0.37 

r = -0.215 
p = 0.189 
BF10 = 0.76 

Beta r = 0.176 
p = 0.284 
BF10 = 0.59 

r = -0.298 
p = 0.066 
BF10 = 1.58 
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 Theta r = -0.076 

p = 0.644 
BF10 = 0.39 

r = -0.088 
p = 0.595 
BF10 = 0.40 

Alpha r = -0.056 
p = 0.735 
BF10 = 0.37 

r = -0.109 
p = 0.509 
BF10 = 0.43 

Beta r = 0.003 
p = 0.984 
BF10 = 0.36 

r = -0.192 
p = 0.243 
BF10 = 0.65 

H
ip

p
o

ca
m

p
u

s-
P

C
C

 

theta r = 0.054 
p = 0.742 
BF10 = 0.37 

r = -0.168 
p = 0.306 
BF10 = 0.56 

alpha r = -0.035 
p = 0.833 
BF10 = 0.36 

r = -0.115 
p = 0.486 
BF10 = 0.44 

beta r = 0.779 
p = 0.046 
BF10 = 0.37 

r = 0.551 
p = -0.099 
BF10 = 0.42 
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theta r = -0.145 
p = 0.377 
BF10 = 0.50 

r = -0.067 
p = 0.686 
BF10 = 0.38 

alpha r = -0.021 
p = 0.899 
BF10 = 0.36 

r = -0.261 
p = 0.109 
BF10 = 1.10 

beta r = -0.026 
p = 0.877 
BF10 = 0.36 

r = -0.152 
p = 0.357 
BF10 = 0.52 
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theta 

 

r = 0.046 
p = 0.780 
BF10 = 0.37 

r = -0.230 
p = 0.158 
BF10 = 0.85 

alpha r = 0.061 
p = 0.714 
BF10 = 0.38 

r = -0.228 
p = 0.164 
BF10 = 0.84 

beta r = 0.065 
p = 0.692 
BF10 = 0.38 

r = -0.225 
p = 0.168 
BF10 = 0.82 
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9.4 Appendix 4: Pertaining to Chapter 7. Semantic question examples, 

sequence position RT effects, and correlation tests between retrieval 

performance and raw microstructure values.  

A) Examples of semantic questions included in the Learning and Retrieval Phases. 

Questions were presented before sequences of objects and participants were asked to 

answer ‘yes’ or ‘no’ with button presses. For each participant, they were randomly drawn 

at the beginning of the session. 

 

B) Sequence Retrieval Position Effects 

Repeated Measure (RM ANOVA) on the overlapping fixed sequences, with one factor with 

5 levels for each position (and RT as the dependant variable), revealed significant RTs 

differences between the positions (F(2.757,137.856) = 10.68, p < 0.001, ω2 = 0.030). However, 

only RT for the position 1 differed from the others (p-values <0.004), whereas RTs for the 

other positions, including positions 3 and 4, did not differ from each other (p-values 

>0.706). 

Two-way RM ANOVA, with two factors, one with three levels for the fixed, random and 

novel sequence conditions, and another with five levels for the five positions (and RT as the 

dependant variable), revealed a significant difference between the means of the RTs for 

the conditions (F(1.596, 79.817) = 178.351, p<.001, ω2 = 0.246). There was also a significant 

difference between the means of the RTs for the positions (F(3.074, 153.716) = 17.021, p<0.001, 

ω2 = 0.024). There was no interaction between condition and position (F(5.978, 298.881) = 1.081, 

Learning Phase Questions 'Does this item weigh more than a basketball?’  

'Is this item sold at Wal-Mart or a similar store?’ 

'Does this item contain visible metal?’ 

'Is the presented object living?’ 

'Is the presented item readily edible?’ 

Retrieval Phase Questions 'Does this item fit in a shoebox or a similar sized box?’ 

'Can you lift this item with one hand?’ 

'Can you ride on/in it?’ 

'Is this item bigger than the computer screen in front of you?’ 

'Does this item require fuel/electrical power?’ 
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p = 0.374). Furthermore, position 1 RTs differed significantly from the subsequent four 

positions (p ≤0.001), confirming the presumption that the inability to predict the first 

object would influence RT. Post-hoc testing with Bonferroni correction revealed that, as 

expected, the RTs for the positions in the novel sequences were larger than those for the 

random sequence (mean difference = 94.74 ms, p<0.001), which were larger than those for 

the fixed sequence (mean difference = 25.06 ms, p<0.001), indicating benefits of object 

sequence knowledge.   

To further understand the condition and position RT differences, we then examined RTs of 

responses to each position in the novel, fixed and random conditions separately (illustrated 

in Appendix 4B Figure), by creating RM ANOVAs for each of the three sequence conditions, 

each with one factor with five levels for each position (and RT as the dependant variable). 

For each, RTs for position 1 were larger than those of the subsequent positions (novel F(4, 

200) = 9.012, p<0.001, ω2 = 0.029; fixed F(2.289, 114.455) = 9.230, p<0.001, ω2 = 0.020; random 

F(3.341, 167.026) = 6.332, p<0.001, ω2 = 0.010, respectively. Greenhouse-Geisser correction was 

applied to the last two). Post-hoc testing with Bonferroni correction revealed no significant 

differences between RTs for other positions (all p-values > 0.785). 
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Appendix 4B Figure: RTs for each position for the conditions. 

Box plots indicate the median (horizontal centred line) and the upper and lower quartiles (top and 

bottom edges of the box) of the RT data at each position of each sequence. The positions are colour-

coded according to the key to the right. The blue asterisks reflect that the RTs of responses to objects in 

position 1 differed from those of the subsequence positions (Bonferroni-corrected p-values < 0.05), in 

all sequences (their vertical locations on the graph holds no meaning). 

Note that the Y axis was limited, so that box plot notches could be seen easily, meaning that 5 high 

(these were from position 1 in Novel) and 5 low (these were from position 3-5 in fixed) values are not 

displayed. 
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C) Correlation matrix of the relationships between temporal sequence memory 

behaviour scores and raw tract microstructure data. 

 

 

 

  

The correlation matrix shows that the relationships between the raw tract microstructure values and the behaviour scores 

follow similar patterns to the relationships between the tract PCA scores and behaviour scores (see main text). The values are 

correlation r values from Pearson tests. The colours represent r values, indicating positive or negative relationships, according 

to the key. Crossed-out values indicate correlation tests that produced a p-value above 0.05. Significant correlations were 

found between: RT Enhancement novel-random and fornix FA; RT Enhancement novel-random and fornix OD; RT 

Enhancement random-learned and fornix FA; and RT Enhancement random-learned and fornix OD. Note that no results from 

partial correlations are shown, whereas partial correlations were used in the main experiment.  

Learning Score 

RT Enhancement novel-random 

RT Enhancement random-learned 
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