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ABSTRACT
Rouder and Haaf (2021) propose that studying qualitative individual differences 
would be a useful tool for researchers. I agree with their central message. I use this 
commentary to highlight examples from the literature where similar questions have 
been asked, and how researchers have addressed them with existing tools. I also 
observe that while the hierarchical Bayesian framework is a useful tool for studying 
individual differences, it does not relieve us of the requirement to evaluate the forms 
of reliability that are critical to our research questions.
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Rouder and Haaf (2021) outline an approach in which qualitative variations in experimental 
effects can be a valuable tool to researchers, by constraining theory and leading us to questions 
about individual differences that we might not reach otherwise. I am keen to see this approach 
embraced and hope this commentary will contribute to the discussion on where and how it 
can be best used.

DO RESEARCHERS THINK ABOUT QUALITATIVE INDIVIDUAL 
DIFFERENCES?
Rouder and Haaf ask whether the identification of qualitative individual differences speaks to 
researchers. Indeed, I think the ‘does everybody…’ question formalises intuitions that I and 
colleagues have had about our data. This prompted me to consider how I would previously 
have tackled these kinds of questions. 

In the discussion of a recent paper examining individual differences in strategic changes in 
the speed-accuracy trade-off (SAT), I reflected on whether every individual responds to the 
instruction to prioritise speed over accuracy in the same way (Hedge et al., 2019). We typically 
assume that the SAT reflects a change in how much evidence an individual requires to make a 
decision, though it may also involve changes in how evidence is processed (Rae et al., 2014). 
From this I speculated ‘does everybody change in more than just their strategy?’. I ran an analysis 
for one dataset here to illustrate what I would do with my existing toolkit.1 I fit multiple variants 
of a cognitive model to each participant’s data separately. I then used model comparisons to 
determine the most parsimonious account for each person. One model assumed that participants 
only changed their threshold for how much evidence is required, which was sufficient to explain 
the data of 10 out of 81 participants. A second model assumed that the duration of perceptual 
and motor processing changed in addition to their threshold (47/81). A third further assumed 
that the efficiency of evidence processing was affected (24/81). Based on this, I would conclude 
that there are qualitative individual differences in the speed-accuracy trade-off. 

I also see qualitative individual differences assumed or implied in the literature. Responder 
analyses are common in clinical studies and are sometimes used in other areas (e.g. working 
memory training, see Tidwell et al., 2014). There, researchers define a cut-off that represents 
a clinically significant effect, and then may ask what covaries with the presence or absence 
of that effect. Finally, while Haaf and Rouder (2017) have shown that “everybody Stroops”, 
perhaps not everybody spider-Stroops (Watts et al., 1986). Using a mixed ANOVA, Watts et al. 
show that spider related words interfere with colour naming for individuals with a spider phobia 
to a greater extent than controls. They also show that the distribution of observed interference 
scores is centred close to zero for controls.

The questions in these examples do not take the same form as the ones posed by Rouder and 
Haaf. The model comparisons in the speed-accuracy trade-off example do not ask about the 
direction of changes or formally test whether qualitative individual differences are present at 
the sample level. In the spider-Stroop example, testing for an interaction in an ANOVA does 
not ask whether some individuals show null or negative (true) effects. However, these existing 
approaches may be a barrier to the uptake of new tools if they scratch the same theoretical 
itch for researchers. 

ARE ESTIMATED TRUE EFFECTS RELIABLE/STABLE?
A desirable property of the hierarchical Bayesian approach proposed by Rouder and Haaf is the 
ability to estimate ‘true’ effects from observed effects by incorporating assumptions about 
the magnitude of trial noise. There has been recent concern that traditionally measured 
experimental effects taken from widely used tasks are not as reliable as we would like them 
to be for asking questions about individual differences (e.g. Hedge et al., 2018; Parsons et al., 
2019). The same concern applies to qualitative individual differences in principle – it is difficult to 
identify factors that covary with the presence or absence of an effect if an individual sometimes 
shows an effect and sometimes does not. Do hierarchical models relieve us of this concern?

1 Data are the random-dot motion task data from Hedge et al. (2019). The script and model outputs for this 
new analysis are on the OSF (https://osf.io/yh4ak/).
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The idea of true scores is associated with classical test theory (Novick, 1966), where it is 
assumed that observed measures reflect variation in people’s true values on the dimension 
of interest plus some measurement error. When we assess reliability, we estimate the ratio of 
signal (variation in true scores) to noise (error) by examining the consistency of participants’ 
scores over some form of repeated measurement. It has been stated that reliability is not a 
property of tasks or procedures, but rather a property of a set of scores obtained from a given 
population (Wilkinson, 1999). This is because the magnitude of the signal and the noise are 
context dependent (Cronbach et al., 1963). For example, there may be more variance in true 
Stroop effects in a clinical population than in a healthy population. Measurement error is also 
potentially comprised of multiple sources. I agree with Rouder and Haaf that trial noise is a 
large component in reaction time-based effects (see Supplementary Material D of Hedge et 
al., 2018), though there can be additional sources of error in a test-retest reliability context 
(e.g. fluctuations in mood or health). Until we have assessed the test-retest reliability of a task 
in our population, we do not know if our qualitative or quantitative differences reflect stable 
characteristics of those individuals.

As an illustration, I applied Rouder and Haaf’s quid() function to test-retest reliability data for 
the spatial-numeric association of response codes (SNARC) effect from Hedge et al. (2018).2 
I chose this task because the effect in mean reaction times was relatively small (15ms and 
8ms in sessions one and two respectively), so it is likely that there are qualitative individual 
differences. I applied the analysis to session one (Figure 1; black) and session two (red) 
separately, to highlight the conclusion we would draw if we only had data from a single session. 
We would reach the same conclusion about whether qualitative individual differences are 
present from both sessions – Bayes factors favour the unconstrained model. However, if we 
were to ask “what kind of person shows a positive/null/negative SNARC effect”, then we might 
select different individuals at different time points depending on how we identify them. Twelve 
out of forty participants have numerically positive effects in one session and negative effects in 
the other. Further, the 95% credible interval for twelve participants includes zero in one session 
and not the other. 

Several papers have shown that hierarchical Bayesian models can improve our estimates of 
individual differences (Brown et al., 2020; Rouder & Haaf, 2019; Wiecki et al., 2013), and the 
illustration above does not contradict this. The key point is that we still need to evaluate the 
forms of reliability that are important to our research questions to be able to make appropriate 
generalisations about qualitative individual differences. 

2 R code for this analysis can be found on the Open Science Framework.

Figure 1 Estimated SNARC 
effects from session 1 (black) 
and session 2 (red) from 
Hedge et al., (2018). Shaded 
regions are 95% credible 
intervals. Estimates are sorted 
by their size in session 1.
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