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Summary

In [BKS18], Bondal, Kapranov and Schechtman gave the definition of a conjectural

categorical analogue of perverse sheaves, known as perverse schobers. More

accurately, due to the difficulties involved in categorifying the definition of perverse

sheaves directly, they take a description of the category of perverse sheaves on a

linear hyperplane arrangement H ⊆ Rn in terms of a quiver representation due to

Kapranov and Schechtman [KS16], and categorify this description. They call this

notion an H-schober.

In Chapter 1, we provide the background material for this thesis. In particular, we

give the aforementioned quiver description of the category of perverse sheaves and

the definition of an H-schober.

In Chapter 2, we introduce the notion of geometric invariant theory quotients,

which depend on a choice of stability parameter L; studying how this quotient

changes as we vary the stability parameter is known as variation of geometric

invariant theory (VGIT). For a given choice of stability parameter, we recount an

iterative process for stratifying the unstable locus into a disjoint union of pieces,

known as Kempf-Ness strata. An analysis of these KN strata leads to a method of

constructing wall-crossing equivalences in VGIT via window subcategories.

In Chapter 3, we describe a VGIT problem arising from the McKay correspondence.

This naturally produces a hyperplane arrangement H and, for each cell in this

hyperplane arrangement, the derived category of a quotient stack. In the

remainder of this chapter we investigate the geometry of these quotient stacks for

the particular case of G = Z3 := Z/3Z.

In Chapter 4, we build an H-schober from the McKay correspondence as indicated.

In particular, we are able to verify most of the schober conditions. The remaining

conditions will be treated in future work.
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Chapter 1

Introduction and Background
Material

The bounded derived category of coherent sheaves of OX -modules,

Db(X) := Db(Coh(X)), of a given variety, scheme or stack X can be thought of as

the ultimate cohomological invariant of X. They were introduced by Grothendieck

and Verdier in the 1960s, together with the notion of a triangulated category which

axiomatises them. Originally considered as formally constructed objects without

too much geometric flavour, these derived categories have turned out to be a very

reasonable invariant to consider. For example, a result of Bondal and Orlov shows

that, if X is a smooth projective variety with ample (anti-)canonical bundle, the

derived category is a strong invariant. That is to say, for two such varieties X and

Y , Db(X) ' Db(Y ) if and only if X ' Y . Of course, if this was always the case,

then studying these derived categories would perhaps not be terribly interesting.

An early result of Mukai, however, exhibits a derived equivalence between an

abelian variety A and its dual Â, which in general are not isomorphic. He did this

by considering the Poincaré bundle on the product space A × Â and used this to

construct an analogue of a Fourier transform (here the Poincaré bundle plays the

role of the integral kernel in the Fourier transform). Today, functors of this type are

known as Fourier-Mukai transforms. In fact, these transforms form a far more

general class of functors than they appear to at first sight; a famous result of Orlov

states that all fully faithful functors (satisfying some mild extra conditions)

between the derived categories of two smooth projective varieties can be written as

the Fourier-Mukai transform for some kernel. As all equivalences are necessarily

fully faithful, studying these transforms is a powerful method for constructing

derived equivalences.

An additional motivation for studying these derived categories comes from

mathematical physics, where derived categories are closely linked to string theory.
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This inspired Kontsevich’s 1994 Mirror Symmetry Conjecture [Kon94], which

conjectures a ‘mirror’ between algebraic geometry and symplectic geometry. In

particular, it states that for each ‘mirror pair’ of certain projective varieties X and

X ′, the derived category of coherent sheaves on X should be equivalent to some

other category, known as the Fukaya category, associated to the symplectic

geometry of X ′, and vice versa.

In this introductory chapter we give some background material and motivation for

the remainder of the thesis. In Section 1.1 we give a brief reminder of what the

derived category of an arbitrary abelian category is and why the autoequivalence

group of the derived category of coherent sheaves might reasonably be a useful

thing to study; we also remind the reader of the technology of Fourier-Mukai

transforms. In Section 1.2 we discuss the McKay correspondence in two

dimensions, and in 1.3 we define and discuss spherical functors. In Section 1.4 we

discuss a proposed categorification of the notion of a perverse sheaf, known as a

perverse schober, and note that we have already met an example of a schober in the

form of spherical functors. Section 1.5 serves as a primer on stacks, and in Section

1.6 we extend the technology of Fourier-Mukai transforms to the equivariant

setting of quotient stacks. In Section 1.7 we examine quivers and quiver

representations, and in Section 1.8 we fix some notation and conventions for the

subsequent chapters.

1.1 Derived categories and their autoequivalences

Given an abelian category A, define the category C(A) to be the category whose

objects are complexes of objects of A, i.e. everything of the form

. . . Ai−1 Ai Ai+1 . . .
di−1 di di+1

where Ak ∈ A and dk+1 ◦ dk = 0 for all k ∈ Z. The morphisms in this category are

maps of complexes. We define an intermediate category K(A) whose objects are

the same as those of C(A), but we consider two morphisms of complexes to be

equal if they are homotopically equivalent. The derived category D(A) is then the

category whose objects are again chain complexes, and the morphisms are

equivalence classes of diagrams of the form

F H G
s

where s is a quasi-isomorphism. A quasi-isomorphism is, by definition, a morphism

of complexes such that the induced morphism at the level of cohomology is an
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isomorphism. The derived category can therefore be thought of as the category

in which we formally invert quasi-isomorphisms. The full subcategory of D(A) in

which all the objects are cohomologically bounded is denoted Db(A). The derived

category we will most frequently work with in this thesis is the bounded derived

category of the abelian category of coherent sheaves ofOX -modules onX, which we

denote Db(X) := Db(Coh(X)). If we instead consider the derived category of quasi-

coherent sheaves, we indicate this with a subscript. For a conceptual introduction

to derived categories we suggest [Tho01]. For technical details there are many

excellent references, such as [Huy06] or [Har66].

Definition 1.1.0.1. Let X and Y be two separated schemes of finite type over C, and
let DQCoh(−) denote the unbounded derived category of quasi-coherent sheaves. The
Fourier-Mukai transform ΦK : DQCoh(X)→ DQCoh(Y ) is defined as

ΦK(F) = q∗(p
∗F ⊗K)

where p and q are the projections X
p← X ×Y q→ Y , and K ∈ Db(X ×Y ) is said to be

the kernel of the transform.

Remark 1.1.0.2. The functors q∗, p∗ and ⊗ are a priori taken to be the derived

versions. Note however that p is a flat map, and so p∗ is the pullback in the usual

sense. If K is a complex of locally free sheaves, then the derived tensor product is

also the usual tensor product of complexes of sheaves.

We can also compose Fourier-Mukai transforms as follows. Let X, Y and Z be

separated schemes of finite type and consider P ∈ DQCoh(X×Y ) andQ ∈ DQCoh(Y×
Z).

X × Y × Z

X × Y X × Z Y × Z

π12
π13

π23

Define an object in DQCoh(X × Z) by R := π13∗(π
∗
12P ⊗ π∗23Q).

Proposition 1.1.0.3. The composition

DQCoh(X) DQCoh(Y ) DQCoh(Z)
ΦP ΦQ

is isomorphic to the Fourier-Mukai transform ΦR : DQCoh(X)→ DQCoh(Z).

Proof. See [Huy06] or [Muk81].
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Initially, these Fourier-Mukai transforms might appear to define a very limited class

of maps between derived categories, but the following result gives a powerful

motivation for why this class is worthy of study. In certain situations, such as for

smooth projective varieties, Fourier-Mukai transforms descend nicely to functors

between the bounded derived categories of coherent sheaves, Db(−).

Theorem 1.1.0.4 ([Orl97]). Let X and Y be smooth projective varieties, and let F :

Db(X) → Db(Y ) be a fully faithful exact functor. If F admits left and right adjoints,
then there exists an object K ∈ Db(X × Y ), unique up to isomorphism, such that
F ' ΦK .

In particular, all equivalences between the derived categories of two smooth

projective varieties can therefore be written as Fourier-Mukai transforms.

Historically, one of the most important ways of studying a given derived category

was to consider its autoequivalence group, the group of equivalences

Aut(Db(X)) := {Db(X)
∼−→ Db(X)}. These can be highly non-trivial in general.

Letting X be a smooth projective variety, a much celebrated result of Bondal &

Orlov [BO01] tells us that if the canonical bundle ωX is ample or anti-ample (i.e. if

X is of general type or Fano), then the autoequivalence group has a particularly

nice structure. More precisely, it is generated by three classes of autoequivalences,

sometimes referred to as the standard autoequivalences. These are:

i) tensoring with an invertible sheaf L, with inverse given by tensoring with L−1,

ii) the shift functor [n], which shifts chain complexes n places to the left in Db(X),

with inverse [−n], and

iii) the pushforward functor f∗, with inverse the pullback functor f∗, where f is an

automorphism of X.

If we define the diagonal morphism ∆ : X → X × X and the graph

(id, f) : X → X × X of an automorphism f : X → X, these three classes of

autoequivalences correspond to the Fourier-Mukai kernels ∆∗L, ∆∗OX [n] and

(id, f)∗OX , respectively. A special case of all three of these classes is the identity

functor, whose kernel is given by the structure sheaf of the diagonal, O∆ := ∆∗OX :

ΦO∆
(F) = q∗(p

∗F ⊗∆∗OX)

' q∗∆∗(∆∗p∗F ⊗OX) by the projection formula

' (q ◦∆)∗(p ◦∆)∗F by functoriality of pullback/pushforward

' F as q ◦∆ = p ◦∆ = idX .
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When ωX ' OX (i.e. X is Calabi-Yau in the weak sense) we still have these three

classes, but there can be considerably more autoequivalences than just these. A class

of new autoequivalences inspired by mirror symmetry were constructed by Seidel &

Thomas [ST01] and are known as spherical twists, named after the spherical objects

which induce them. Under mirror symmetry, these spherical twists correspond to

Dehn twists around Lagrangian spheres on the symplectic side of the mirror. To

avoid confusion with the more general concept of a twist around a spherical functor

which we will encounter later, we shall refer to these as geometric spherical twists.

Definition 1.1.0.5 ([ST01]). Let X be a smooth projective variety over C. An object
E ∈ Db(X) is said to be spherical if

i) HomDb(X)(E , E [n]) '

C if n = 0 or dim(X),

0 else

ii) E ⊗ ωX ' E ,

where ωX denotes the canonical bundle of X.

Note that, if ωX is ample or anti-ample, then this second condition ensures that the

support of E must be zero-dimensional.

Definition 1.1.0.6. Given a spherical object E ∈ Db(X), define

P := Cone(η : π∗1E∨ ⊗ π∗2E → O∆) ∈ Db(X ×X)

where πi : X×X → X denotes the projection onto the ith component and the map η is
the natural pairing given by the composition of the restriction to the diagonal followed
by the diagonal pushforward of the evaluation map ev : E∨ ⊗ E → OX

η : π∗1E∨ ⊗ π∗2E → ∆∗∆
∗(π∗1E∨ ⊗ π∗2E) ' ∆∗(E∨ ⊗ E)

∆∗ev−→ O∆.

We define the geometric spherical twist TE as the Fourier-Mukai transform
ΦP : Db(X)→ Db(X).

Proposition 1.1.0.7. Geometric spherical twists TE are autoequivalences of Db(X).

Proof. See the original paper [ST01], or [Plo05] for an alternative proof.

Definition 1.1.0.8. A set of m spherical objects E1, . . . Em ∈ Db(X) is said to form an
Am-configuration if

⊕
n∈Z

HomDb(X)(Ei, Ej [n]) '

C if |i− j| = 1

0 if |i− j| ≥ 2.
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Proposition 1.1.0.9 ([ST01]). Given an Am-configuration of spherical objects Ei ∈
Db(X), the corresponding geometric spherical twists satisfy the braid relations, up to
graded natural isomorphism, i.e.

TEiTEi+1TEi ' TEi+1TEiTEi+1 for i ∈ {1, . . . ,m− 1}

TEiTEj ' TEjTEi for |i− j| ≥ 2.

Define the categorical group action ρ : Brm+1 → Aut(Db(X)) by sending the ith

standard generator of the braid group to TEi . If dim(X) ≥ 2, ρ is injective.

Example 1.1.0.10 (Example 3.5, [ST01]). Let X be a surface. Then any smooth

rational curve C with self-intersection C · C = −2 is a spherical object. A collection

of such curves (C1, . . . , Cm) such that Ci ∩ Cj = ∅ for |i − j| ≥ 2 and Ci · Ci+1 = 1

for i = 1, . . . ,m− 1 is an Am-configuration.

1.2 The McKay correspondence

Let us now give a quick introduction to the McKay Correspondence, before returning

to study it in more detail in Chapter 3. Far more comprehensive surveys exist than

what appears in this thesis, see e.g. [Rei97], [Rei99] or the introduction to [BKR01]

for the point of view of derived categories; the original article is [McK80]. Let

G ⊂ SL(2,C) be a finite subgroup with an action on C2 = Spec(C[x, y]). With this

information, we can naively1 define the quotient variety as the prime spectrum of

the invariant functions, C2/G := Spec(C[x, y]G), which has an isolated singularity

at the origin. These singularities are known by various different names, for example

Kleinian, Du Val or simple surface singularities, or rational double points. The rings

of invariant polynomials were classified by Klein in 1884:

Theorem 1.2.0.1 ([Kle84]). Let G ⊂ SL(2,C) be a finite subgroup with an action on
C2. Then C[x, y]G ' C[X,Y, Z]/(f), where f belongs to one of the following cases:

An : f = Z2 +X2 + Y n+1

Dn : f = Z2 +X(Xn−2 + Y 2)

E6 : f = Z2 +X3 + Y 4

E7 : f = Z2 +X(X2 + Y 3)

E8 : f = Z2 +X3 + Y 5.

1There are certainly different ways of taking quotients by group actions; this is the central point
of geometric invariant theory, which we shall meet later.
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In the two-dimensional case, it is well-known that we can resolve the quotient

singularity C2/G by a finite sequence of blow-ups at the origin, and through this

we obtain the minimal resolution π : Ymin → C2/G.

Example 1.2.0.2. Consider the action of G = Zn := Z/nZ on C2 given by 1 · (x, y) =

(ζx, ζn−1y) for ζ a principal root of unity. This has the ring of invariant functions

C[xn, xy, yn] which is of type An−1. Then C2/G has a single isolated singularity at

the origin, of type often denoted 1
n(1, n−1) in reference to the action which induces

it, and we can resolve this singularity by blowing it up at the singular point to get

the minimal resolution π : Ymin → C2/G. Geometrically, π is a bijection away from

the origin, and a chain of n− 1 exceptional P1 curves over the singular point at the

origin, intersecting as follows:

. . .

The intersection graph2 of this chain of exceptional rational curves is exactly the

Dynkin diagram of type An−1. This is a particular instance of part of John McKay’s

famous 1980 observation, which we now state.

Theorem 1.2.0.3 (McKay’s observation, [McK80]). If we forget the edge directions
and multiplicities in the McKay quiver3 of the group G, we obtain the affine Dynkin
diagram of some semi-simple Lie algebra g of ADE type. In addition, the intersection
graph of the irreducible components of the exceptional divisor π−1(0) is the Dynkin
diagram of g.

Roughly, the idea of this observation is that the non-trivial irreducible

representations of G are in bijection with the irreducible components of the

exceptional divisor of the minimal resolution. The set-up of this provides a fruitful

source of spherical twists as follows.

Example 1.2.0.4. For Ei an irreducible component of the exceptional divisor of the

minimal resolution of a Kleinian singularity, Ei satisfies the self-intersection

condition of Example 1.1.0.10 and OEi ∈ Db(Ymin) is therefore a spherical object.

If f is of An type, the irreducible components form an An-configuration in the

sense of Definition 1.1.0.8, and so induces a faithful categorical action of the braid

group on Db(Ymin).

2This is the (undirected) graph whose vertices i correspond to irreducible components Ei of the
exceptional locus π−1(0), with an edge connecting vertices i and j if and only if Ei ∩ Ej 6= ∅.

3See Definition 3.1.0.3 for the formal definition.
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1.3 Spherical functors

The following remarkable concept, first introduced by Anno and Logvinenko

[AL17], provides a natural direct generalisation of the concept of a geometric

spherical twist. Unlike geometric spherical twists, these spherical functors are not

autoequivalences themselves, but rather induce autoequivalences on both their

source and target category. We first give the definition, then explain in what sense

these functors generalise geometric spherical twists.

Definition 1.3.0.1 (Spherical Functors, [AL17]). Let A and B be two enhanced
triangulated categories and let s : A→ B be an enhanceable functor with enhanceable
adjoints l a s a r. Use the following distinguished triangles to define the twist t, the
dual twist t′, the cotwist f and the dual cotwist f ′:

sr −→idB −→ t t′ −→idB −→ sl

f −→idA −→ rs ls −→idA −→ f ′

The functor s is spherical if all of the following hold:

i) t and t′ are quasi-inverse autoequivalences of B.

ii) f and f ′ are quasi-inverse autoequivalences of A.

iii) The composition lt[−1]→ lsr → r is an isomorphism of functors.

iv) The composition r → rsl→ fl[1] is an isomorphism of functors.

A Bs

f

f ′
l

r

t

t′

Figure 1.1: Diagrammatic representation of a spherical functor.

In fact it suffices to check any two of these requirements, as the following

proposition shows.

Proposition 1.3.0.2. Any two of the conditions in the definition imply the other two.

Proof. See [AL17].
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Remark 1.3.0.3. A spherical object E ∈ Db(X) in the sense of Seidel & Thomas

[ST01] is a spherical functor Db(Spec C) → Db(X) which sends OSpecC 7→ E , with

the twist t around this functor then being the corresponding geometric spherical

twist. This is Example 3.5 of [AL10]. In this sense, spherical functors Db(Z) →
Db(X) are a natural direct generalisation of geometric spherical twists where we

replace the point with a scheme Z.

Remark 1.3.0.4. A result of Segal [Seg18] tells us that all autoequivalences of B are

induced by some spherical functor. That is, given any autoequivalence of B, we can

always find some A and a spherical functor s : A → B such that the twist t is the

given autoequivalence.

1.4 Perverse schobers

The concept of a perverse sheaf4 was introduced in [BBD82] and has come to play

an important role in both representation theory and algebraic geometry. As

outlined in [KS15], it has since become clear that there should be some sort of

categorical analogue of the concept of a perverse sheaf, and the name perverse
schober (or simply schober) has become attached to these conjectured analogues.

Due to technical difficulties with constructing such schobers, coupled with the fact

that the definition is still conjectural, there aren’t yet many known examples of

these schobers. Allowing for some flexibility in precisely what is meant by a

‘schober’, examples can be found in [BKS18; ŠVdB19; KS15; Don17; Don19].

The main reason that this definition is not yet nailed-down is that the standard

description of perverse sheaves does not lend itself well to categorification. This is

because, in general, it’s not completely clear what should take the role of

“complexes of triangulated categories”. However, in some situations the category of

perverse sheaves can be described as representations of certain quivers (directed

graphs) obeying certain commutativity relations. This description sometimes

suggests a natural categorical analogue, such as the following example which we

recall from [KS15]. Let D be the unit disc in C and let Perv(D, 0) be the category of

perverse sheaves on D with the only possible singularity at the origin. Then the

category Perv(D, 0) is equivalent [Bei87] [GGM85] to the category of quadruples

(V,W, f, g), where V and W are k-vector spaces and f , g are linear maps

4Note that a perverse sheaf is not actually a sheaf, rather it is an object in some abelian subcategory
of the derived category of constructible complexes of sheaves of vector spaces. This subcategory
appears naturally as the heart of a t-structure, known as the perverse t-structure.



10 Chapter 1. Introduction and Background Material

V W
f

g

Figure 1.2: The quiver description of Perv(D, 0).

such that the linear map

TW := idW − fg (1.1)

is an isomorphism. In [KS15], the authors propose considering spherical functors as

the schobers corresponding to this description. The intuition behind this is that the

data of a spherical functor provides two diagrams

A B B A
s

l r

s

and this data should be considered the categorical analogue of Figure 1.2, with the

equivalent condition to (1.1) being an isomorphism being that the twist and cotwist

of s are equivalences. In this situation, taking the cone to define the (co)twist plays

the role of the subtraction in (1.1).

In the cases where we have a quiver description of the category of perverse sheaves

and any relations in the quiver are monomial5 in nature, we immediately have a

natural categorification where we replace vector spaces by triangulated categories

and linear maps by exact functors. The monomial condition on the relations of the

linear maps then becomes important, as it suggests a natural commutativity

relation on the functors. Taking one of these schobers and applying some functor

from the category of triangulated categories to the category of k-vector spaces (e.g.

taking Grothendieck groups Vi := K0(V)⊗ k) would then produce a perverse sheaf.

In [BKS18], Bondal, Kapranov and Schechtman take such a quiver description of

the category of perverse sheaves on the complexification of a linear hyperplane

arrangement H ⊂ Rn. This quiver description does admit a natural categorical

analogue, and they term categorical representations satisfying these conditions

H-schobers. We now recall both this quiver description of the category of perverse

sheaves, and the conjectured categorical analogue. We first state what we mean by

a stratification of a variety.

Definition 1.4.0.1. A stratification of a variety X is a partition X =
⊔
λ∈ΛXλ of X

into smooth, locally closed, connected subvarieties parametrised by a poset Λ, such that
Xλ =

⊔
µ≤λXµ for all λ ∈ Λ, where Xλ denotes the topological closure of Xλ.

5i.e. the relations do not involve adding linear maps together or scaling them by some element of
the field k, as it’s not always clear what the version of this for functors should be.
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Now, let H be a collection of linear hyperplanes in Rn. This produces a finite

disjoint collection of cells Ci such that Rn =
⊔
iCi, and we endow these cells with a

partial ordering by setting Ci ≤ Cj if and only if Ci ⊆ Cj , where we take the

closure in the normal Euclidean topology. Denote by C = {Ci} this poset. The

complexification of this hyperplane arrangement, HC, provides a stratification of

Cn. As an example, consider Figure 1.3 which shows the stratification induced by

the unique linear “hyperplane” in R1.

01 2

Figure 1.3: The unique linear hyperplane arrangement in R1. The “hyperplane” C0

is the single point at the origin and C1 (resp. C2) is the set of strictly negative (resp.
strictly positive) points in R. In the partial ordering, C0 ≤ C1, C2 as their closures
contain the point at the origin; C1 and C2 are incomparable.

With the structure of this linear hyperplane arrangement in Rn, the following

theorem gives a description of the perverse sheaves on the complexified space Cn.

Fix some base field k and let Perv(Cn,H) denote the category of perverse sheaves

of k-vector spaces on Cn, smooth with respect to H. In [KS16], Kapranov and

Schechtman give the following quiver representation description of perverse

sheaves on the complex space based on the cells in the real space. We say an

ordered triple of three cells Ci, Cj and Ck are collinear if there exists a triple of

points a ∈ Ci, b ∈ Cj and c ∈ Ck, such that b lies on the straight line segment

[a, c] ⊆ Rn.

Theorem 1.4.0.2 (Theorem 8.1, [KS16]). Perv(Cn,H) is equivalent to the category
of diagrams formed by a finite-dimensional k-vector space Ei for each Ci ∈ C and, for
all Ci ≤ Cj , linear maps

Ei Ej
γij

δji

satisfying the following relations:

i) Transitivity: if Ci ≤ Cj ≤ Ck, then γik = γjkγij and δki = δjiδkj .

ii) Idempotency: if Ci ≤ Cj , then γijδji = idEj . For any Ci, Cj , Ck ∈ C with Ci ≤
Cj , Ck, this allows us to define ϕjk := γikδji : Ej → Ek without ambiguity.
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iii) Collinear transitivity: if three cells Ci, Cj , Ck are collinear, then ϕik = ϕjkϕij .

iv) Invertibility: if Cj , Ck are cells of dimension d, lie in a linear subspace of Rn of
dimension d, and are separated by a cell Ci ≤ Cj , Ck of dimension d− 1, then ϕjk
is an isomorphism.

We now simply define H-schobers to be the immediate categorical analogue of the

result of this theorem. With a slight abuse of notation by now taking γij and δji

to be functors, we state the following definition which was first given by Bondal,

Kapranov and Schechtman [BKS18].

Definition 1.4.0.3 (Definition 3.6, [BKS18]). An H-schober is a collection of
triangulated categories ECi and adjoint pairs of exact functors γij a δji, where
γij : ECi → ECj and δji : ECj → ECi for every Ci ≤ Cj , such that the following
conditions hold:

i) Transitivity: If Ci ≤ Cj ≤ Ck, then γik ' γjkγij and δki ' δjiδkj .

ii) Idempotency: the counit of adjunction γijδji → idECj for all Ci ≤ Cj is an
isomorphism, and so ϕij := γkjδik is well-defined for Ck ≤ Ci, Cj . We refer to the
ϕij as flopping functors.

iii) Collinear transitivity: for 3 collinear cells Ci, Cj , Ck, we have a natural
isomorphism of functors ϕjkϕij→̃ϕik.

iv) Invertibility: for all Ci and Cj of dimension d which lie in the same d-dimensional
subspace of Rn, and which are separated by a cell of dimension d − 1, ϕij is an
equivalence. We refer to such ϕij as wall-crossing functors.

Remark 1.4.0.4. In the original paper [BKS18], they take γij a δji, whereas in

[ŠVdB19] the authors take δji a γij , with the idempotency condition then being

phrased in terms of the unit of adjunction rather than the counit.

Often, the invertibility condition in this definition is the hardest to verify in

practice. In [BKS18], the authors consider the hyperplane arrangement given by

the root system of sl3 and construct a candidate for an H-schober on this. In their

paper they verify all the schober conditions with the exception of the wall crossing

corresponding to going from a one-dimensional cell to its opposite via the cell at

the origin.

The first fully verified example of an H-schober was given in the remarkable paper

[ŠVdB19]. In this paper, the authors construct the triangulated categories in vast
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generality as derived categories of GIT quotient stacks for a reductive group (see

Definition/Proposition 1.6.0.5) acting on a quasi-symmetric representation6. This

built on earlier work of the authors [ŠVdB17], as well as work of Halpern-Leistner

and Sam [HS20].

1.5 A quick introduction to stacks

In the same way as schemes were constructed in order to generalise algebraic

varieties, stacks should be viewed as some generalisation of the notion of a scheme.

In this thesis, the only stacks we will encounter are global quotient stacks [X/G]

formed from a reductive group G acting on a variety X, so we refrain from

discussing the general theory in too much detail. For a global quotient stack, the

points of the stack should be thought of as a pair consisting of a G-orbit in X

together with the data of an automorphism group as follows. For a point in [X/G],

choose a point p in the corresponding G-orbit in X. The automorphism group is

the stabiliser subgroup of elements of G which fix p. When the stabilisers are all

finite the stack is Deligne-Mumford. When the action is free (i.e. the stabiliser of

all points is trivial), the quotient stack is a scheme. Roughly, this is because there is

no additional information kept by retaining knowledge of the stabilisers. We will

informally refer to points in the quotient stack with non-trivial stabilisers as

“stacky” points. For a very readable introduction to algebraic stacks, see [Góm01].

We denote by (Sch/S) the category of schemes over a given scheme S, i.e. the

category whose objects are pairs (X, s) where X is a scheme and s : X → S is a

morphism of schemes, and whose morphisms (X, s) → (X ′, s′) are morphisms of

schemes f : X → X ′ such that s = s′ ◦ f . Recall that a groupoid is a (small)

category in which every morphism is invertible. This gives us diagrams

R U R, R×s,U,t R Ri
s

t

ε c

where

i) U is the set of objects, R the set of morphisms,

ii) s (resp. t) is the map which takes a morphism to the object at its source (resp.

target),

6Quasi-symmetric representations were introduced in [ŠVdB17]. Roughly, let G be a reductive
group acting on a representation V , and let a maximal torus G ⊇ T ' Gnm act with weights {βi} ∈
Hom(T,Gm) ' Zn ⊆ Rn. The representation V is quasi-symmetric if and only if

∑
βi∈l βi = 0 for all

lines l ⊆ Rn passing through the origin (recall that the empty sum is equal to zero by convention).



14 Chapter 1. Introduction and Background Material

iii) i inverts the morphism,

iv) ε takes an object to its identity morphism,

v) c composes morphisms.

Definition 1.5.0.1. A category over (Sch/S) is a pair (C, p) consisting of a category C
and a (covariant) functor p : C → (Sch/S). We say that C ∈ C (resp. f : C → D) lies
over A ∈ (Sch/S) (resp. lies over g : A→ B) if p(C) = A (resp. p(f) = g).

Definition 1.5.0.2. A category C over (Sch/S) is called a category fibred in groupoids
if

i) for every morphism f : X → Y in (Sch/S) such that p(y) = Y for some y ∈ C,
there exists x ∈ C and ϕ : x→ y such that p(x) = X and p(ϕ) = f .

x y

X Y

∃ϕ

p p

f

ii) if φ : x→ y and ψ : z → y are morphisms in C and there exists h : p(x)→ p(z) in
(Sch/S) such that p(ψ)◦h = p(φ), then there exists a unique morphism ρ : x→ z

such that ψ ◦ ρ = φ and p(ρ) = h.

x y

z

p(x) p(y)

p(z)

φ

∃!ρ
p p

ψ

p(φ)

h

p

p(ψ)

Let C be a category fibred in groupoids and letB ∈ (Sch/S). We define the fibre over

B to be the subcategory of C consisting of objects lying over B and morphisms lying

over idB. This is a groupoid, which justifies the name of the previous definition. The

formal definition of a stack is as follows.

Definition 1.5.0.3. A stack is a category fibred in groupoids for which descent data is
effective, and for which a condition known as the prestack condition holds. A morphism
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of stacks (X1, p1 : X1 → (Sch/S)) → (X2, p2 : X2 → (Sch/S)) is a functor F : X1 →
X2 such that p2 ◦ F ' p1.

We refrain from explaining either of these conditions, and instead direct the reader

to the above references. Motivated by the above description of a groupoid, we define

the following.

Definition 1.5.0.4. An algebraic groupoid over S is a tuple (R,U, s, t, ε, i, c), where
R,U are objects of (Sch/S) and s, t, ε, i, c are morphisms of S-schemes satisfying the
obvious compatibilities. Where the maps are clear we shall denote an algebraic
groupoid by R⇒ U .

Example 1.5.0.5. A prime source of such algebraic groupoids comes from an

algebraic group G acting on a variety X. In this case we can take R = G ×X and

U = X. Then the maps are as follows:

s : (g, x) 7→ x

t : (g, x) 7→ g · x

i : (g, x) 7→ (g−1, x)

ε : x 7→ (1G, x)

where g · x is the group action. In this situation we shall refer to G×X ⇒ X as an

action groupoid.

Definition 1.5.0.6. A quasi-coherent sheaf on an algebraic groupoid R⇒ U is a pair
(F , α), where F is a quasi-coherent sheaf on U , and α : s∗F ∼→ t∗F is a choice of
isomorphism satisfying a cocycle condition.

For R = G×X and U = X as considered above, this definition coincides with that

of a G-equivariant quasi-coherent sheaf, as we shall define in Definition 1.6.0.6.

Proposition 1.5.0.7. The category of quasi-coherent sheaves on the quotient stack
[X/G] is equivalent to the category of quasi-coherent sheaves on the algebraic groupoid
G × X ⇒ X, where the two maps are given by the projection onto the second factor
and the group action.

Proof. See e.g. Remark 2.1.2 in [BFK19] or the contained reference to [Vis89].

This proposition tells us that the quasi-coherent sheaves on [X/G] are precisely the

G-equivariant quasi-coherent sheaves on X. In fact, the same statement is true with

“quasi-coherent” replaced by e.g. coherent or locally free [BFK19].
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1.6 Fourier-Mukai transforms for quotient stacks

We now give the construction of the equivariant analogue of Fourier-Mukai

transforms. This is essentially nothing but Definition 1.1.0.1 where we must keep

track of the equivariant structure. We fix an algebraically closed field k, with no

assumptions on characteristic (at least initially). By an algebraic variety we mean a

reduced scheme of finite type over k.

Definition 1.6.0.1. An algebraic group G is a group with the structure of an algebraic
variety, where the multiplication map µ : G×G→ G and the inverse map ν : G→ G

are morphisms of algebraic varieties.

Example 1.6.0.2. GL(n, k) is an algebraic group for all n ∈ N.

Definition 1.6.0.3. A linear algebraic group G is an algebraic group which is
isomorphic to an algebraic subgroup of GL(n, k) for some n ∈ N.

Definition 1.6.0.4. A linear algebraic group G is a linearly reductive group if, for any
finite-dimensional representation V of G, and any non-zero v0 ∈ V G, there exists a
non-zero linear map f : V → k such that f(v0) 6= 0.

Definition/Proposition 1.6.0.5. If k is now assumed to be of characteristic zero, G is
a reductive group if and only if it is a linearly reductive group.

From now on, we fix k = C.

Definition 1.6.0.6 ([MFK94]). Let X be a scheme with a (left) action of an algebraic
group G, and let π2, act : G × X → X denote the projection onto the second factor
and the action map, respectively. A G-equivariant quasi-coherent sheaf is a pair
(E , α), where E is a quasi-coherent sheaf on X and α : act∗E ∼−→ π∗2E is a choice of
isomorphism obeying the cocycle condition, which is the commutativity of

(act ◦ (idG × act))∗E (π2 ◦ (idG × act))∗E

(act ◦ p23)∗E

(π2 ◦ p23)∗E

(act ◦ (µ× idX))∗E (π2 ◦ (µ× idX))∗E

(idG×act)∗α

p∗23α

(µ×idX)∗α

(CC)

where (idG × act), p23 and (µ× idX) are the obvious maps G×G×X → G×X.
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Remark 1.6.0.7. The maps marked as such in (CC) are genuine equalities, rather

than merely isomorphisms, as act ◦ (idG × act) = act ◦ (µ× idX), π2 ◦ (idG × act) =

act ◦ p23 and π2 ◦ p23 = π2 ◦ (µ× idX).

Remark 1.6.0.8. For a G-equivariant line bundle L, the choice of isomorphism α is

often referred to in the literature as a linearisation of L.

Definition 1.6.0.9. The category of G-equivariant quasi-coherent sheaves on a scheme
X is the category whose objects are G-equivariant quasi-coherent sheaves, and whose
morphisms are morphisms of sheaves compatible with the maps α, i.e. those morphisms
f : E → F for which the following diagram commutes

act∗E π∗2E

act∗F π∗2F .

α

act∗f π∗2f

α′

Definition 1.6.0.10. Let G× Y ⇒ Y be an action groupoid with a trivial action of G
so that the action and projection maps σY and πY coincide, and let (E , α) be a coherent
sheaf on this groupoid. This gives us two isomorphisms π∗Y E ⇒ π∗Y E , given by the
identity and α, and therefore two corresponding maps E ⇒ (πY )∗π

∗
Y E by adjunction.

Define EG ⊆ E to be the subsheaf given by the equaliser of this diagram,

EG E (πY )∗π
∗
Y E .

We now slightly extend this idea to the situation where we have a G×H action on

Y , where it is only theG component which acts trivially. Thus consider the following

diagram

H × Y

G× Y G×H × Y H × Y

G× Y Y

εG

εH π23

πσ

p2

in which the commutative square depicts two fibre squares, εG and εH are the

inclusions by the identity elements of G and H, and p2 is the projection on the

second factor. Denote the groupoids A := (G × H × Y ⇒ Y ) and

B := (H × Y ⇒ Y ) for brevity. We define a functor Coh(A) → Coh(B) by taking

the "G-invariant part", in the following sense. Let (F , β) ∈ Coh(A), so that
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(F , ε∗Hβ) is a coherent sheaf on the groupoid G× Y → Y , on which the action of G

is trivial, so this defines an invariant part FG via the equaliser

FG F p2∗p
∗
2F

η

(p2∗ε
∗
Hβ)◦η

(1.2)

where η is the morphism induced by the unit of adjunction map id → p2∗p
∗
2. As

σ∗ and π∗ are left exact they preserve equalisers, and applying ε∗G to β gives an

isomorphism σ∗F → π∗F , so that the following diagram commutes

σ∗FG σ∗F σ∗p2∗p
∗
2F

π∗FG π∗F π∗p2∗p
∗
2F ,

βG ε∗Gβ

σ∗η

(σ∗p2∗ε
∗
Hβ)◦σ∗η

(π23)∗π∗23ε
∗
Gβ

π∗η

(π∗p2∗ε
∗
Hβ)◦π∗η

where we identify σ∗p2∗p
∗
2F ' (π23)∗π

∗
23σ
∗F . Thus, by the universal properties of

the two equalisers, β restricts to an isomorphism βG. We define the functor of taking

G-invariants

Coh(A)→ Coh(B)

(F , β) 7→ (FG, βG).

Lemma 1.6.0.11. There is an adjunction

HomCoh(A)

(
(E , π∗23α), (F , β)

) 1:1←→ HomCoh(B)

(
(E , α), (FG, βG)

)
Proof. We construct the bijective function as follows. Let f : (E , π∗23α)→ (F , β), i.e.

a map f : E → F such that the following square commutes:

π∗23σ
∗E π∗23π

∗E

π∗23σ
∗F π∗23π

∗F .

π∗23α

π∗23σ
∗f π∗23π

∗f

β

(1.3)

Applying ε∗H to this diagram yields

p∗2E p∗2E

p∗2F p∗2F .

id

p∗2f p∗2f

ε∗Hβ
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Thus the two compositions

p∗2E p∗2F p∗2F
p∗2f id

ε∗Hβ

are equal and, by adjunction and using the universal property of the equaliser, there

exists a unique map f ′ : E → FG such that f filters through FG. Now applying ε∗G
to (1.3) and using the filtering property of f , we find

σ∗E π∗E

σ∗FG π∗FG

σ∗F π∗F

α

σ∗f

σ∗f ′

π∗f

π∗f ′

βG

ε∗Gβ

and thus f ′ ∈ HomCoh(B)

(
(E , α), (FG, βG)

)
.

For the other direction, let g ∈ HomCoh(B)

(
(E , α), (FG, βG

)
, i.e. g : E → FG such

that the following square commutes

σ∗E π∗E

σ∗FG π∗FG

α

σ∗g π∗g

βG

Apply π∗23 to this diagram and postcompose with the pullback of the inclusion FG →
F to get

π∗23σ
∗E π∗23π

∗E

π∗23σ
∗FG π∗23π

∗FG

π∗23σ
∗F π∗23π

∗F

π∗23α

π∗23σ
∗g π∗23π

∗f

π∗23β
G

β

which lies in HomCoh(A)

(
(E , π∗23α), (F , β)

)
. These two functions are mutually

inverse, and thus the functors in the statement of the lemma are adjoint.

Corollary 1.6.0.12. Let

G×H ×X × Y G×H × Y H × Y

X × Y Y Y

(πX ,πY )(σX ,σY )

π124 π23

πYσY

q id
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be a commutative diagram for some q. Denote the groupoids A = (G×H ×X × Y ⇒
X × Y ), B = (G × H × Y ⇒ Y ), C = (H × Y ⇒ Y ). By slight abuse of notation
denote

q∗ : Db(C)→ Db(A) qG∗ : Db(A)→ Db(C)

(E , α) 7→ (q∗E , π∗124π
∗
23α) (F , β) 7→ ([q∗F ]G, [π124∗β]G)

Then q∗ a qG∗ .

Proof.

HomA((q∗E , π∗124π
∗
23α), (F , β)) = HomB((E , π∗23α), (q∗F , π124∗β))

= HomC((E , α), ([q∗F ]G, [π124∗β]G))

where the existence of the first map follows from base change, and is a bijection as

q∗ a q∗ and π∗124 a π124∗. The second bijection is the statement of the lemma.

Let G×X ⇒ X and H×Y ⇒ Y be quotient stacks, with G and H reductive groups,

and let (E , α) be a coherent sheaf on G ×X ⇒ X. As in Definition 1.1.0.1, denote

by X
p← X × Y q→ Y the projections. In addition, let (K,β) be a coherent sheaf on

the product groupoid G×H ×X × Y ⇒ X × Y with the support of K proper over

both X and Y . The action of G × H on X × Y is given by the actions of G on X

and H on Y . All maps denoted by a π with subscripts are the projection maps onto

the factors indicated by these subscripts. The equivariant Fourier-Mukai transform

works as follows.

G×H ×X × Y

G×X G×H × Y

X × Y H × Y

X Y

π13 π124

π23

p q

i) By commutativity of the leftmost square, (p∗E, π∗13α) is a coherent sheaf on

G×H ×X × Y ⇒ X × Y .

ii) Tensor by the kernel to get (p∗E ⊗K,π∗13α⊗ β).
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iii) Using the fibre square, by flat base change (q∗(p
∗E ⊗K), (π124)∗(π

∗
13α⊗ β)) is a

coherent sheaf on G ×H × Y ⇒ Y , and taking the G-invariant part gives us a

coherent sheaf on H × Y ⇒ Y .

Formally, we thus arrive at the following definition

Definition 1.6.0.13. With notation as above, the equivariant Fourier-Mukai
transform with kernel (K,β) is the functor

Φ(K,β) : Db([X/G])→ Db([Y/H])

(E , α) 7→ ([q∗(p
∗E ⊗K)]G, [(π124)∗(π

∗
13α⊗ β)]G)

where the pushforwards, pullbacks and tensor product are derived. As we noted in
Remark 1.1.0.2, p∗ and π∗13 are the normal pullbacks as their respective underlying
maps are flat. The derived tensor product is exact, and if a locally free resolution exists
for K then the derived tensor product coincides with the underived version. Taking
invariants is exact as G is a reductive group. Equivariant Fourier-Mukai transforms
are therefore automatically exact functors.

Definition 1.6.0.14. Given a groupG acting onX, we define the equivariant diagonal

to be

∆G := {(x, g · x) | x ∈ X, g ∈ G} ⊆ X ×X.

That is, ∆G is the image of (π, σ) : G×X → X ×X where σ, π : G×X ⇒ X is the
action groupoid.

Given this action of G on X it is immediate that this induces a natural (G×G) action

on X × X, which we denote σG2 : G × G × X × X → X × X. Define a (G × G)

action on G×X by

σ′ : G×G×G×X → G×X (1.4)

(g1, g2, g, x) 7→ (g2gg
−1
1 , g1 · x) (1.5)

so that (π, σ) is (G×G)-equivariant. There is a fibre diagram

G×G×G×X (G×G)× (X ×X)

G×X X ×X.

π′σ′

(idG×G,π,σ)

πG2σG2

(π,σ)
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We justify the name equivariant diagonal as O∆G := ((π, σ)∗OG×X , (idG×G, π, σ)∗γ)

is the equivariant kernel for the identity functor, where γ is the canonical

linearisation of OG×X , as we show in the following example. Although this result is

well-known, we are not aware of it being shown explicitly in this generality in the

literature. For G a finite group this is Example 3.15 of [Plo05]; for X = SpecR and

G = Gm this is Lemma 2.1.5 of [BDF17].

Lemma 1.6.0.15. The equivariant Fourier-Mukai transform ΦO∆G
is the identity

functor on Db([X/G]).

Proof. Let (E , α) ∈ Db([X/G]).

G1 ×G2 ×G3 ×X3 G3 ×X3

G1 ×G2 ×X1 ×X2

G1 ×X1 G1 ×G2 ×X2

X1 ×X2

X1 X2

(idG2 ,π,σ)

σ′

π′

(π,σ)

π13
π124

πσ π◦π23σ◦π23

p q

Figure 1.4: The Fourier-Mukai transform diagram for the equivariant diagonal.

Then

ΦOG∆
(E , α) =

(
[q∗(p

∗E ⊗ OG∆)]G, [π124∗(π
∗
13α⊗ (idG×G, π, σ)∗γ)]G

)
' ([q∗(π, σ)∗(π, σ)∗p∗E ]G, [π124∗(idG2 , π, σ)∗(idG2 , π, σ)∗π∗13α]G)

' ([σ∗π
∗E ]G, [(idG2 , σ)∗π

∗
14α]G)

where the second line follows by the projection formula and (idG2 , σ) and π14 are

defined as the obvious compositions. In other words, we are pulling back along the

left square in the following diagram and pushing forward along the right:

G1 ×X1 G1 ×G2 ×G3 ×X3 G1 ×G2 ×X2

X1 G3 ×X3 X2.

(∗)πσ (∗∗)π′σ′

π14 (idG2 ,σ)

π◦π23σ◦π23

π σ
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This gives a well-defined element (σ∗π
∗E , (idG2 , σ)∗π

∗
14α) ∈ Db([X2/(G1 × G2)]) as

we now show. To see that (idG2 , σ)∗π
∗
14α gives a suitable equivariant structure on

this sheaf, note that it is an isomorphism (idG2 , σ)∗π
∗
14σ
∗E → (idG2 , σ)∗π

∗
14π
∗E and

that

(idG2 , σ)∗π
∗
14σ
∗E ' (idG2 , σ)∗σ

′∗π∗E and (idG2 , σ)∗π
∗
14π
∗E ' (idG2 , σ)∗π

′∗π∗E

' (σ ◦ π23)∗σ∗π
∗E ' (π ◦ π23)∗σ∗π

∗E .

The first isomorphism in both cases is the commutativity of (∗), and the second

isomorphisms follow by base-change around the respective fibre diagrams (∗∗).
Therefore

(idG2 , σ)∗π
∗
14α : (σ ◦ π23)∗σ∗π

∗E ∼−→ (π ◦ π23)∗σ∗π
∗E

as required. Letting ε2 denote the inclusion by the identity element of G2, the

pullback around

G1 ×G2 ×X2 G1 ×X2

X2 X2

π◦π23σ◦π23

ε2

π

id

gives (σ∗π
∗E , ε∗2(idG2 , σ)∗π

∗
14α). The commutativity of this square ensures that the

equivariant structure here is an isomorphism

ε∗2(idG2 , σ)∗π
∗
14α : π∗σ∗π

∗E −→ π∗σ∗π
∗E . (1.6)

By (1.2), the G-invariant part is determined as the equaliser of the two maps

σ∗π
∗E π∗π

∗σ∗π
∗E

η

π∗ε∗2(idG2 ,σ)∗π∗14α◦η
(1.7)

where the lower map is the map obtained from (1.6) by adjunction. We define two

maps:

p : E σ∗σ
∗E σ∗π

∗E π∗π
∗σ∗π

∗E

q : π∗π
∗σ∗π

∗E σ∗π
∗E σ∗σ

∗E E

η′ σ∗α η

i∗ε σ∗α−1 i∗ε′

where i : X → G×X is the inclusion by the identity and ε′ : σ∗σ∗σ∗E → σ∗E is the

counit map. We remark the following

i) qp ' idE by inspection, which follows from the pullbacks along i of the

following compositions
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σ∗E σ∗σ∗σ
∗E σ∗E

π∗σ∗π
∗E π∗π∗π

∗σ∗π
∗E π∗σ∗π

∗E

σ∗η′ ε′

π∗η ε

which, by standard facts about adjunctions, are both the identity.

ii) pq ' π∗ε
∗
2(idG2 , σ)∗π

∗
14α by inspection on stalks. In particular,

(π∗ε
∗
2(idG2 , σ)∗π

∗
14σ
∗E)(g1,g3·x) ' Eg1·x and (π∗ε

∗
2(idG2 , σ)∗π

∗
14π
∗E)(g1,g3·x) ' Ex,

with the map between them given by σ∗α. For the composition pq, the

pullbacks along i of the two counit maps restrict the family of sections to the

section over the identity element. Thus they do not “see” the map σ∗α
−1 as

this acts trivially over the identity element. The composition pq is therefore

also determined completely by σ∗α and the result follows.

The following therefore equalises (1.7):

E σ∗σ
∗E σ∗π

∗E π∗π
∗σ∗σ

∗Eη′ σ∗α
η

pq◦η

and satisfies the requisite universal property by taking, for any r : F → σ∗π
∗E which

equalises (1.7), i∗ε′ ◦ σ∗α−1 ◦ r : F → E . Thus ΦOG∆
(E , α) = (E , α), i.e. ΦOG∆

is the

identity functor.

1.7 Quivers and quiver representations

Definition 1.7.0.1. A quiver Q = (Q0, Q1, h, t) is a directed graph specified by a set
of vertices Q0, a set of arrows Q1 and two functions h, t : Q1 → Q0 taking an arrow to
the vertex at its head or tail, respectively. A quiver is called finite if both Q0 and Q1 are
finite sets. A quiver is called connected if the underlying graph obtained by forgetting
the direction of the arrows in the quiver is connected.

Definition 1.7.0.2. A k-linear representation V = (Vi, ϕα)i∈Q0,α∈Q1 of a finite quiver
Q is the data of a k-vector space Vi for each i ∈ Q0, together with a linear map
ϕα : Vt(α) → Vh(α) for each α ∈ Q1. A representation is called finite dimensional if all
the Vi are finite dimensional vector spaces. A morphism between two such
representations V and V ′ consists of linear maps fi : Vi → V ′i for all i ∈ Q0 such that
all the induced squares commute. In particular, a subrepresentation V ↪→ V ′ is a
morphism of representations such that all the fi are inclusion maps.
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We denote by Rep(Q) the category of representations of Q, and by Repfd(Q) the

subcategory of finite dimensional representations.

For any quiver Q, a path in the quiver from i to j of length l is a concatenation

of arrows α1 . . . αl such that t(α1) = i, h(αl) = j and h(αk) = t(αk+1) for all

1 ≤ k ≤ l− 1. For any vertex i we have the trivial path εi of length 0. The following

simple lemma will prove useful.

Lemma 1.7.0.3. Let Q be a quiver. Let V be a representation of Q with
one-dimensional vector spaces Vi and Vj at vertices i, j respectively. Let V ′ ⊆ V be a
subrepresentation of the quiver. If Vi ⊂ V ′ and there exists a path p from i to j in the
quiver such that ϕp : Vi → Vj is a nonzero map, then Vj ⊂ V ′ also.

Proof. In order for V ′ to be a subrepresentation of V , the diagram

Vi Vi

? Vj

ϕp

must commute, where ? = Vj or 0 as dim(Vj) = 1. But going round the top of the

diagram is a nonzero map, so ? = Vj .

We define the path algebra as follows.

Definition 1.7.0.4. The path algebra CQ is defined to be the k-algebra whose
underlying vector space is the space of formal k-weighted sums of paths in the quiver.
Multiplication of two paths α1 . . . αl and β1 . . . βl′ is defined by

(α1 . . . αl)× (β1 . . . βl′) =

α1 . . . αlβ1 . . . βl′ , if h(αl) = t(β1)

0, else.

Remark 1.7.0.5. i) CQ is not commutative in general.

ii) It is an associative graded algebra, with grading by path length.

iii) It is a unital associative graded algebra iff Q is finite. In particular, if Q0 =

{0, . . . N}, then the identity is 1 =
∑N

i=0 εi. For more detail, see [Sos13].

Definition 1.7.0.6. Let Q be a finite and connected quiver. The two-sided ideal of CQ
generated by the arrows of Q is called the arrow ideal and is denoted by RQ.

Definition 1.7.0.7. Let Q be a finite quiver. A two-sided ideal I of CQ is called
admissible if there exists an m ≥ 2 such that RmQ ⊆ I ⊆ R2

Q.
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Definition 1.7.0.8. Let Q be a finite quiver and let V = (Vi, ϕα) be a representation
of Q. For a nontrivial path ω = α1 . . . αl of length l from i to j in Q, we define the
evaluation of V on the path ω to be the C-linear map from Vi to Vj given by

ϕω = ϕαl . . . ϕα1 .

Given a set of paths {ωk}mk=1 from i to j, the definition formally extends to C-linear
combinations as follows. For a linear combination of paths Ω =

∑m
k=1 λkωk with

λk ∈ C, we define the evaluation to be

ϕΩ =

m∑
k=1

λkϕωk .

Definition 1.7.0.9. Let Q be a finite quiver and I an admissible ideal of CQ. A
representation V is said to be bound by I if we have ϕΩ = 0 for all Ω ∈ I. We denote
by Rep(Q, I) the full subcategory of Rep(Q) containing representations of Q which are
bound by I.

Definition 1.7.0.10. Let Q be a finite and connected quiver, and let I be an admissible
ideal of CQ. The bound quiver algebra is defined to be CQ/I.

Proposition 1.7.0.11. Let Q be a finite and connected quiver, and let I be an
admissible ideal of CQ. There exists a C-linear equivalence of categories

Mod(CQ/I) −̃→ Rep(Q, I),

which restricts to an equivalence

Modfg(CQ/I) −̃→ Repfd(Q, I).

Proof. See [Sos13] or [ASS06].

1.8 Notation and conventions

By an algebraic variety we mean a reduced scheme of finite type over an

algebraically closed field k = k, and this ground field should be taken to be the

complex numbers C unless otherwise indicated. Similarly, unless otherwise

indicated, we denote by A := C[x1, . . . , xn] the coordinate ring of affine space An,

and by R := C[f0, . . . , f5]/(f0f1 = f2f3 = f4f5) the coordinate ring of the affine

scheme of interest in Chapters 3 and 4. We denote by Gm := SpecC[t, t−1] the

multiplicative group of C, considered as a scheme.
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Chapter 2

Wall-Crossing Equivalences from
VGIT

In this chapter we present historical results about stability in the sense of geometric

invariant theory (GIT) [MFK94]. Morally, taking quotients of varieties by group

actions should be the space of closed orbits of the group action, but this turns out

to be too strict a notion and often removes much of the interesting geometry. GIT

is one way to solve this. It works by removing the points which cause this bad

behaviour, known as the “unstable” points, and keeping the complement, known as

the “semistable” points. The space of closed orbits in this semistable locus exhibits

more of this interesting geometry which was previously hidden (cf. the introduction

to [Kin94]). Here stability is defined with respect to a stability parameter given by

a G-equivariant line bundle.

By varying this stability parameter we get a wall-and-chamber decomposition of the

stability space into cells [DH98], where the semistable loci are unchanged by moving

within the cell. The study of how the quotient changes when the stability parameter

is varied is known as variation of GIT (VGIT). In particular, crossing walls changes

the GIT quotient, often via a birational modification, and a much-studied problem

has been to determine when wall-crossings correspond to equivalences between the

derived categories of the quotients on either side of the wall.

As we will see, the derived categories appearing in the schober we construct in

Chapter 4 arise naturally from (the stacky version of) a VGIT problem, and we

wish to use the heavyweight technology developed by Halpern-Leistner [Hal15] and

Ballard, Favero and Katzarkov [BFK19] to construct derived equivalences between

wall-crossings. This involves careful analysis of the unstable locus and a certain

stratification of the unstable locus known as a Kempf-Ness (KN) stratification. In

this chapter we summarise the main aspects of this theory.
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2.1 Group actions and variation of GIT

In this section, we first construct an equivalence between the category of

G-equivariant quasi-coherent sheaves on an affine scheme X = SpecR and the

category of R-modules with a coaction. We present some results where G = Gm,

then go on to define GIT stability and give a numerical criterion for stability due to

Mumford. To illustrate the technology of VGIT, we introduce a running example

involving Gm acting on An+1 by multiplication on the coordinates. In the

wall-and-chamber decomposition of the stability space, the GIT quotients are P1 on

one side of the wall and the empty set on the other, whilst on the wall itself it is a

single point; in this case there is clearly no hope of the wall-crossing giving an

equivalence. We will continue to use this running example in the subsequent

sections in this chapter. For experts, it is hoped that this running example will also

make apparent the sign conventions we are using, which can be inconsistent in the

literature.

Definition 2.1.0.1. Given a ring homomorphism f : R→ S, the restriction of scalars
functor resf : S-Mod→ R-Mod is the one which takes an S-module N and considers it
as an R-module via f . Explicitly, the action is given by r ·R s := f(r) ·S s.
Given a morphism of S-modules, the restriction of scalars functor returns the same
morphism, but now considered as a morphism of R-modules.

Definition 2.1.0.2. Given a ring homomorphism f : R → S, the extension of scalars
functor extf : R-Mod→ S-Mod is the one which takes an R-module M and takes it to
the S-module S ⊗R,f M . This tensor product is well-defined over R as we consider S
as an R-module via restriction of scalars along f . The S-action on S ⊗R,f M is given
by the action of S on itself, i.e. s · (

∑
i si ⊗mi) =

∑
i ssi ⊗mi.

Given a morphism of R-modules α : M → N , the extension of scalars functor returns
the morphism of S-modules

S ⊗R,f M → S ⊗R,f N∑
i

si ⊗mi 7→
∑
i

si ⊗ α(mi).

Lemma 2.1.0.3. The extension and restriction of scalars functors form an adjoint pair,
extf a resf .

Definition 2.1.0.4. Let G be a linear algebraic group and let S := Γ(G,OG). In
addition, let µ̂ : S → S ⊗C S and β̂ : S → C be the C-algebra homomorphisms
corresponding to multiplication µ and the inclusion of a point as the identity in G,
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β : Spec(C) ↪→ G. A co-action of S on R is a homomorphism of C-algebras σ̂ : R →
S ⊗C R such that

i) The following diagram is commutative in the category of C-algebras

R S ⊗C R

S ⊗C R S ⊗C S ⊗C R

σ̂

σ̂ µ̂⊗idR

idS⊗σ̂

(CR1)

ii) The composition

R
σ̂−→ S ⊗C R

β̂⊗idR−→ R (CR2)

is the identity.

Definition 2.1.0.5. Given a co-action of S on a C-algebra R, σ̂ : R → S ⊗C R, an
R-module with a co-action of S is an R-module M with a map of R-modules σ̂M :

M → S ⊗C M such that

i) The following diagram is commutative in the category of R-modules

M S ⊗C M

S ⊗C M S ⊗C S ⊗C M

σ̂M

σ̂M µ̂⊗idM

idS⊗σ̂M

(CM1)

where we consider S ⊗C M and S ⊗C S ⊗C M as R-modules via restriction of
scalars along σ̂ and (µ̂⊗ idR) ◦ σ̂ = (idS ⊗ σ̂) ◦ σ̂, respectively.

ii) The composition

M
σ̂M−→ S ⊗C M

β̂⊗idM−→ M (CM2)

is the identity.

This defines the objects in the category of R-modules with a co-action of S, and the
morphisms in this category are defined to be the maps of R-modules f : M → N such
that the following square commutes

M S ⊗C M

N S ⊗C N.

σ̂M

f idS⊗f

σ̂N

Definition 2.1.0.6. We say m ∈M is invariant if σ̂M (m) = 1S ⊗m.
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Lemma 2.1.0.7. Let (f, f#) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces, F
a sheaf of OY -modules and x ∈ X. Then there is an isomorphism (as OX,x-modules)
of stalks

(f∗F)x ' Ff(x) ⊗OY,f(x)
OX,x

where the tensor product is well-defined by using (f#)x : OY,f(x) → OX,x.

Proposition 2.1.0.8. Let R be a finitely-generated commutative C-algebra. The
category of G-equivariant quasi-coherent sheaves on X = SpecR is equivalent to the
category of R-modules with a co-action of S.

Proof. The category of quasi-coherent sheaves on X is well-known to be equivalent

to the category of R-modules. Explicitly, this equivalence is given in one direction by

taking global sections, and in the other via the (
∼
−) functor of [Har77]. It therefore

remains to translate between the G-equivariant structure on a sheaf and the co-

action of S on its global sections.

Let E be a G-equivariant quasi-coherent sheaf on X. From the two maps π2, act :

G×X → X we get the corresponding maps of rings

π̂2 : R→ S ⊗C R âct : R→ S ⊗C R

ri 7→ 1S ⊗ ri ri 7→ si ⊗ ri

where the ri are the generators of R, as well as the maps

µ̂ : S → S ⊗C S β̂ : S → C

s 7→ µ̂(s) s 7→ s(1G)

corresponding to the multiplication map µ : G × G → G and the inclusion of the

identity, respectively. As E comes with a choice of isomorphism α : act∗E ∼−→ π∗2E ,

this induces an isomorphism of (S ⊗R)-modules between global sections

α̂ : Γ(G×X, act∗E)
∼−→ Γ(G×X,π∗2E).

As Γ(G × X, f∗E) ' extf̂ (E) for f ∈ {act, π2}, there is a corresponding map of

R-modules under the adjunction of Lemma 2.1.0.3 given by the composition

Γ(X, E) Γ(G×X, act∗E) Γ(G×X,π∗2E) ' S ⊗C E

E (S ⊗C R)⊗R,âct E (S ⊗C R)⊗R,π̂2
E ' S ⊗C E

α̂

(2.1)
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where the first map1 is given by e 7→ (1S ⊗ 1R)⊗ e and we identify (S⊗CR)⊗R,π̂2
E

with S ⊗C E via the isomorphism (s ⊗ r) ⊗ e = (s ⊗ 1R) ⊗ re 7→ s ⊗ re. Writing

α̂(1S ⊗ 1R ⊗ e) =
∑

i si ⊗ 1R ⊗ ei, we call this composition σ̂E : E → S ⊗C E,

e 7→
∑

i si ⊗ ei. Taking global sections in diagram (CC), the commutativity of the

diagram gives us two equal maps of (S ⊗ S ⊗R)-modules

ext(idS⊗âct)◦âctE → ext(µ̂⊗idR)◦π̂2
E,

and their equality is equivalent to the equality of the image of these maps under the

adjunction ext(idS⊗âct)◦âct a res(idS⊗âct)◦âct.

Examine first the anticlockwise map in (CC), which we consider as the composition

ext(idS⊗âct)◦âctE ext(µ̂⊗idR)◦âctE extµ̂⊗idRextâctE

S ⊗C S ⊗C E extµ̂⊗idRextπ̂2
E.

∼

extµ̂⊗idR
α̂

∼

(2.2)

The last map is an isomorphism as

extµ̂⊗idRextπ̂2
E ' ext(µ̂⊗idR)◦π̂2

E

= (S ⊗C S ⊗C R)⊗R,(µ̂⊗idR)◦π̂2
E

' S ⊗C S ⊗C E

where the final line is due to the fact that

(s1 ⊗ s2 ⊗ r)⊗ e = (s1 ⊗ s2 ⊗ 1R)(1S ⊗ 1S ⊗ r)⊗ e = (s1 ⊗ s2 ⊗ 1R)⊗ re.

By adjunction, (2.2) then corresponds canonically to the map

E → res(idS⊗âct)◦âct(S ⊗C S ⊗C E) which is given by applying res(idS⊗âct)◦âct to (2.2)

and precomposing with the unit of adjunction map

E → res(idS⊗âct)◦âctext(idS⊗âct)◦âctE. A check verifies that this is the map of

R-modules given by the composition

e 7→ 1S⊗S⊗R ⊗ e
∼7→ 1S⊗S⊗R ⊗ 1S⊗R ⊗ e 7→ 1S⊗S⊗R ⊗ α̂(1S⊗R ⊗ e) =

= 1S⊗S⊗R ⊗ (
∑
i

si ⊗ 1R ⊗ ei)
(∗)
=
∑
i

µ̂(si)⊗ 1R ⊗ 1S⊗R ⊗ ei
∼7→

∼7→
∑
i

µ̂(si)⊗ 1R ⊗ ei
∼7→
∑
i

µ̂(si)⊗ ei ∈ S ⊗C S ⊗C E,

(2.3)

where (∗) follows by commuting past the tensor product in extµ̂⊗idRextπ̂2
E = (S⊗C

S ⊗C R) ⊗S⊗R,µ̂⊗idR (S ⊗C R) ⊗R,π̂2
E. By the construction of the map σ̂E above,

1This is the unit of adjunction map E → resâctextâctE.
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the si and ei appearing here are exactly those in σ̂E(e) =
∑

i si ⊗ ei, and so (2.3) is

exactly the composition map E
σ̂E−→ S ⊗C E

µ̂⊗idE−→ S ⊗C S ⊗C E in (CM1).

Similarly, we now examine now the clockwise map in (CC). As a map of (S⊗C S⊗C

R)-modules, we consider this as the composition

ext(idS⊗âct)◦âctE extidS⊗âctextâctE extidS⊗âctextπ̂2
E

extp̂23extâctE extp̂23◦âctE ext(idS⊗âct)◦π̂2
E

extp̂23extπ̂2
E extp̂23◦π̂2

E ext(µ̂⊗idR)◦π̂2
E

S ⊗C S ⊗C E

∼ extidS⊗âctα̂

∼

extp̂23
α̂

∼

∼

∼

which by adjunction induces the map ofR-modules E → res(idS⊗âct)◦âct(S⊗CS⊗CE)

given by

e 7→ 1S⊗S⊗R ⊗ e
∼7→ 1S⊗S⊗R ⊗ 1S⊗R ⊗ e 7→ 1S⊗S⊗R ⊗ α̂(1S⊗R ⊗ e) =

= 1S⊗S⊗R ⊗ (
∑
i

si ⊗ 1R ⊗ ei) =
∑
i

si ⊗ 1S⊗R ⊗ 1S⊗R ⊗ ei
∼7→

∼7→
∑
i

si ⊗ 1S⊗R ⊗ ei
∼7→
∑
i

si ⊗ 1S⊗R ⊗ 1S⊗R ⊗ ei 7→

7→
∑
i

si ⊗ 1S⊗R ⊗ α̂(1S⊗R ⊗ ei) =
∑
i

si ⊗ 1S⊗R ⊗
∑
j

sj ⊗ 1R ⊗ eij =

=
∑
i,j

si ⊗ sj ⊗ 1R ⊗ 1S⊗R ⊗ eij
∼7→
∑
i,j

si ⊗ sj ⊗ 1R ⊗ eij
∼7→
∑
i,j

si ⊗ sj ⊗ eij ,

and this is indeed the map of R-modules E
σ̂E−→ S ⊗C E

idS⊗σ̂E−→ S ⊗C S ⊗C E in

(CM1). We have therefore shown that the equality of the two directions around

(CC) implies the equality of the directions around (CM1). As this was an adjunction

argument, the converse statement also holds. The cocycle condition (CC) therefore

holds for a sheaf if and only if (CM1) holds for its global sections.

Given a G-equivariant sheaf E , we now check that (CM2) holds. Consider the map

β × idX : X → G × X. On global sections, (β × idX)∗α and the identifications
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extβ̂⊗idR
extâctE ' E ' extβ̂⊗idR

extπ̂2
E give us the map of R-modules

E R⊗S⊗CR,β̂⊗idR
(S ⊗C R)⊗R,âct E

E R⊗S⊗CR,β̂⊗idR
(S ⊗C R)⊗R,π̂2

E

∼

extβ̂⊗idR
α̂

∼

(2.4)

given by

e 7→ 1R ⊗ 1S⊗CR ⊗ e 7→ 1R ⊗
∑
i

(si ⊗ 1R ⊗ ei) =
∑
i

β̂(si)1R ⊗ 1S⊗CR ⊗ ei =

= 1R ⊗ 1S⊗CR ⊗
∑
i

β̂(si)ei 7→
∑
i

β̂(si)ei,

which is exactly the composition map from (CM2). Now define a map γ : X →
G×G×X by x 7→ (1G, 1G, x) and note that the three possible compositions

X
γ−→ G×G×X f−→ G×X, f ∈ {idG × act, p23, µ× idX},

are all the same map, namely β×idX . Note also that act◦(β×idX) = π2◦(β×idX) =

idX . Pulling (CC) back along γ therefore gives the following commutative diagram

E E

E E

(β×idX)∗α

(β×idX)∗α

(β×idX)∗α

and thus (β × idX)∗α is idempotent. As it is the pullback of an isomorphism, and

therefore an isomorphism itself, (β × idX)∗α = idE . The composition in (2.4) is

therefore the identity also, and so (CM2) is satisfied.

For the converse, assume M is an R-module with a coaction of S. From before, we

know that (CC) holds for α : act∗M̃ → π∗2M̃ and we now show that α is in fact an

isomorphism. First, define a map

δ : G×X → G×G×X

(g, x) 7→ (g−1, g, x)

and pull (CC) back along δ to get

π∗2M̃ act∗M̃

π∗2M̃ π∗2M̃

ε∗α

α

ζ∗α
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where ε, ζ are the precompositions by γ of idG × act and µ× idX , respectively, i.e.

ε : G×X → G×X ζ : G×X → G×X

(g, x) 7→ (g−1, g · x) (g, x) 7→ (1G, x).

Using Lemma 2.1.0.7 to take stalks at the point (g, x) ∈ G × X, this gives the

commutative square

(M̃)x ⊗OX,x OG×X,(g,x) (M̃)g·x ⊗OX,g·x OG×X,(g,x)

(M̃)x ⊗OX,x OG×X,(g,x) (M̃)x ⊗OX,x OG×X,(g,x).

(α)(g−1,g·x)

(α)(g,x)

(α)(1G,x)

Using (CM2), (β × idX)∗α = idM̃ , and thus the bottom map in this diagram is the

identity. Therefore, (α)(g,x) is an isomorphism at every point (g, x), and so α is an

isomorphism as well.

Example 2.1.0.9. Recall that an R-module M is of finite presentation if and only if

there exist n,m ∈ N and an exact sequence R⊕m → R⊕n → M → 0, and that a

quasi-coherent sheaf E on X = SpecR is of finite presentation if and only if Γ(X, E)

is an R-module of finite presentation.

Let E ,F be two G-equivariant quasi-coherent sheaves and assume E is of finite

presentation. As act, π2 : G×X → X are flat maps,

act∗HomX(E ,F) ' HomG×X(act∗E , act∗F)

' HomG×X(π∗2E , π∗2F)

' π∗2HomX(E ,F),

and we define α : act∗HomX(E ,F)
∼−→ π∗2HomX(E ,F) to be the composition.

We define the map HomR(E,F ) → HomR(E,F ) ⊗C S ' HomR(E,F ⊗C S) via

composing with the coaction map of F ,

E F F ⊗C S.

Example 2.1.0.10. Let R be a Z-graded ring and let X = SpecR. We have a Gm

action on X corresponding to the coaction

R→ S ⊗C R

r 7→ tdeg(r) ⊗ r,
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where S = C[t±]. Suppose M is a graded R-module. Then we obtain a

Gm-equivariant sheaf M̃ with α : act∗M̃ ∼−→ π∗2M̃ corresponding to the map of

(S ⊗C R)-modules

(S ⊗C R)⊗R,âctM
∼−→ (S ⊗C R)⊗R,π̂2

M

1S ⊗ 1R ⊗m 7→ tdeg(m) ⊗ 1R ⊗m.

The following two lemmas show that this behaviour is indicative of something more

general.

Lemma 2.1.0.11. Suppose we have an action of Gm on an affine scheme X = SpecR.
This action defines a Z-grading R =

⊕
nRn such that the co-action map is the one in

Example 2.1.0.10. That is, r ∈ Rn if and only if

σ̂ : R→ C[t, t−1]⊗C R

r 7→ tn ⊗ r.

Proof. The coaction map is given by some map

R→ C[t, t−1]⊗C R

r 7→
∑
n∈Z

tn ⊗ rn,

where only finitely many of the rn are non-zero and the rn are uniquely determined.

It follows from condition (CR2) that r =
∑

n∈Z rn. From condition (CR1), we see

that ∑
n,m∈Z

tn ⊗ tm ⊗ (rn)m =
∑
n∈Z

tn ⊗ tn ⊗ rn

and thus (rn)m = δn,mrn, where δn,m denotes the Kronecker delta. Defining Rn :=

{r ∈ R | rn = r}, it is clear that RiRj ⊆ Ri+j , and so we obtain a direct sum

decomposition R =
⊕

n∈ZRn.

Lemma 2.1.0.12. Let Gm act on X = SpecR, so that R has the grading given by the
previous lemma. In addition, let F be a Gm-equivariant quasi-coherent sheaf. Then
M := H0(X,F) is a Z-graded R-module with co-action

σ̂M : M → C[t, t−1]⊗C M

m 7→ tdeg(m) ⊗m.
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Proof. The construction of the direct sum decomposition M =
⊕

nMn works in

exactly the same way as in the proof of Lemma 2.1.0.11. To check that RiMj ⊆
Mi+j , let r ∈ Ri, m ∈Mj . Then

σ̂M (rm) = σ̂(r)σ̂M (m)

= (ti ⊗ r)(tj ⊗m)

= ti+j ⊗ rm.

Thus, the notion to keep in mind is that a Gm action on an affine schemeX = SpecR

is nothing but a Z-grading onR, with equivariant quasi-coherent sheaves onX being

graded R-modules.

Definition 2.1.0.13. Let (X,OX) be a ringed space, and let E be an OX -module.
Define

T (E) :=
⊕
n≥0

E⊗n

and define Sym(E) to be the quotient of T (E) by the ideal generated locally by all
elements of the form s⊗ t− t⊗ s ∈ E⊗2(U).

We now recall the relative version of the Spec construction, which we denote Spec.

Given a scheme X and a quasi-coherent sheaf E of OX -algebras, we have

associated to every open Spec(A) = U ⊆ X an A-algebra, Γ(U, E). The affine

schemes Spec(Γ(U, E)) are compatible [Stacks, Tag 01LL], and we can glue them

together to form the scheme Spec
X

(E). Note that if X is an affine scheme,

Spec
X

(E) = Spec(Γ(X, E)).

Example 2.1.0.14. Let R be a C-algebra and consider the affine scheme X = SpecR

and the structure sheaf OX . Then Spec
X

(OX) is the total space of the trivial line

bundle. This is indicative of more general behaviour, given by the following well-

known result.

Proposition 2.1.0.15. Let X be a scheme. There is a (covariant) equivalence between
the category of vector bundles onX and the category of locally free sheaves onX. Given
a locally free sheaf E , this equivalence is given in one direction by the functor which
returns the vector bundle Ẽ := Spec(SymE∨). Due to this equivalence, we will follow
the standard convention of sometimes confusing the terms “vector bundle” and “locally
free sheaf”.
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We now have a third way of thinking of a G-equivariant sheaf E , in this case under

the additional hypothesis of E being locally free. In this setting, act∗E and π∗2E are

also locally free, and isomorphic via the map of sheaves α. Thus, their induced

geometric vector bundles are also isomorphic:

a : (G×X)×X,act Ẽ (G×X)×X,π2 Ẽ.
∼

These maps a correspond canonically to maps Σ such that the following square is

commutative

G× Ẽ Ẽ

G×X X,

idG×π

Σ

π

act

where Σ is a bundle isomorphism of G × Ẽ over G × X and Ẽ over X. This

correspondence is given by taking Σ to be the composition

G× Ẽ ∼−→ (G×X)×X,act Ẽ
a−→ (G×X)×X,π2 Ẽ

∼−→ G× Ẽ proj.−→ Ẽ,

and this defines an action Σ of G on Ẽ (Ch.1, §3 [MFK94]). That is, putting a G-

equivariant structure on a locally free sheaf is the “same” as extending the action of

G on X to an action of G on (the total space of) the vector bundle Ẽ.

Definition 2.1.0.16 (Definitions 1.7 & 1.8, [MFK94]). Let L be a G-equivariant line
bundle on X. Write H0(X,Ln)G for the G-invariant global sections of Ln and Xs for
the open set given by the complement of the zero-locus of s. Letting G ·x and Gx denote
the orbit and stabiliser of x, respectively, define three subsets of X as

Xss(L) := {x ∈ X | ∃s ∈ H0(X,Ln)G for some n ∈ N, with s(x) 6= 0 and Xs affine}

Xs(L) := {x ∈ Xss(L) | G · x ⊆ Xss(L) is closed, and Gx is finite}

Xus(L) := X \Xss(L),

called the semistable, stable and unstable loci, respectively. If Xss(L) = Xs(L), then
we say the choice of linearisation is generic.

Remark 2.1.0.17. What is now almost universally called stable in the literature is

referred to as properly stable in the original reference [MFK94].

We now give a topological criterion for (semi)-stability.

Proposition 2.1.0.18 (Proposition 2.2, [MFK94]). Let L be a G-equivariant line
bundle on X, i.e. an extension of the action of G on X to an action of G on L̃. Let
x ∈ X and let x̃ ∈ L̃ be a point lying over x, outside the zero locus of L̃. Then:
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i) x is semistable if and only if G · x̃ doesn’t intersect the zero-locus of L̃.

ii) x is stable if and only if G · x̃ is closed and Gx̃ is finite.

Definition 2.1.0.19. A 1-parameter subgroup of a reductive group G is a non-trivial
group homomorphism λ : Gm → G. We will abuse notation by confusing the
homomorphism λ with its image as a subgroup of G.

Definition 2.1.0.20 (Definition 2.2, [MFK94]). Let L be a G-equivariant line bundle,
λ ⊆ G a 1-parameter subgroup and x ∈ X a closed point. If it exists, define x0 :=

limt→0(λ(t) · x) and note that x0 is fixed under the action of λ. The action of λ on the
fibre of L̃ over the fixed point x0 is given by a character of λ,

χ : λ→ Gm

t 7→ tr

for some r ∈ Z. Define Mumford’s numerical function µ(x, λ,L) := r.

The key idea to keep in mind here comes from the topological criterion for

semistability - if x̃0 is a non-zero point of the fibre over the fixed point x0, the

closure of the orbit λ · x̃0 will intersect the zero-locus of L̃ if and only if r > 0. In

fact, Mumford’s numerical criterion (Proposition 2.1.0.24) essentially states that the

topological condition for x ∈ X to be semistable (Proposition 2.1.0.18) is

equivalent to having r ≤ 0 for all 1-parameter subgroups of G acting on the fibre of

L̃ over x0, where the limit point x0 exists. We now generalise the function µ

slightly, to arbitrary locally free sheaves E .

Definition 2.1.0.21. Let V be a finite-dimensional representation of Gm and
decompose it as

V '
⊕
χ∈Z

Vχ

where χ ∈ Hom(Gm,Gm) ' Z is a character of Gm, and Vχ is the subspace of V where
Gm acts by χ. We slightly abuse notation by saying that v ∈ Vχ has weight χ ∈ Z, and
we call {χ ∈ Z | Vχ 6= 0} the set of weights of V .

Definition 2.1.0.22. Let E be a locally-free quasi-coherent G-equivariant sheaf on X,
λ a 1-parameter subgroup ofG, and assume that the limit point x0 = limt→0(λ(t)·x) ∈
Xλ exists. The set of λ-weights of E at x, µ(x, λ, E), is defined to be the set of weights
of the Gm-action on the fibre of Ẽ over x0.
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Lemma 2.1.0.23. With the notation as above, if x, x′ lie in the same connected
component of Xλ, then µ(x, λ, E) = µ(x′, λ, E).

Proof. See e.g. [BFK19], Lemma 2.1.19.

We will therefore adopt the notation µ(Z, λ, E) := µ(x, λ, E) for x a point of the

connected component Z ⊆ Xλ, without ambiguity.

Proposition 2.1.0.24 (Mumford’s numerical criterion, [BFK19]). Let X = An and
let L be a G-equivariant line bundle. A point x ∈ Xus(L) if and only if there exists a
1-parameter subgroup λ such that x0 = limt→0(λ(t) · x) exists and µ(x0, λ,L) > 0.

Definition 2.1.0.25. Let Gm act on an affine scheme X = SpecR and let M be an
R-module with a co-action σ̂M : M → C[t, t−1]⊗CM . We say m ∈M is homogeneous
of degree l ∈ Z if σ̂M (m) = tl ⊗ m. Denote this by degM (m) = l. In particular, by
Definition 2.1.0.6, m is invariant if and only if it is homogeneous of degree 0.

Lemma 2.1.0.26. Consider R as an R-module, and endow it with the two module
coactions

σ̂m : Rm → C[t, t−1]⊗Rm σ̂n : Rn → C[t, t−1]⊗Rn
r 7→ tm+degR(r) ⊗ r r 7→ tn+degR(r) ⊗ r.

Then the R-module HomR(Rm, Rn) has a natural coaction given by

HomR(Rm, Rn)→ C[t, t−1]⊗ HomR(Rm, Rn)

(1 7→ r) 7→ tn−m+degR(r) ⊗ (1 7→ r)

such that the homogeneous elements of degree 0 are exactly the morphisms Rm → Rn

compatible with the coactions σ̂m and σ̂n.

Proof. Let f ∈ Hom(Rm, Rn) given by 1 7→ r. Then f is homogeneous of degree 0

⇔ m = n+ degR(r)⇔ the requisite diagram

Rm C[t, t−1]⊗Rm

Rn C[t, t−1]⊗Rn

commutes.

We now introduce a lemma which will prove useful for computing weights µ(x, λ, E).
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Lemma 2.1.0.27. Let E be a G-equivariant locally free sheaf of rank n on X = SpecR.
Then µ(x, λ, E) is equal to the set of the degrees of the homogeneous elements of the
induced map

Ex0 → (C[t, t−1]⊗C E)x0

where (−)x0 denotes the localisation at the maximal ideal corresponding to the limit
point x0.

Proof. Sketch of proof: We have established a covariant equivalence of categories

between the category of R-modules E with a co-action of G and the category of

vector bundles Ẽ on X with an action of G, compatible with the action of G on the

base spaceX. Restricting to the fibre of Ẽ over x0, Σ induces an action λ×Cn → Cn,

with weights χi ∈ Z. Under this equivalence (for the space x0 = Spec(C)), this

action map corresponds to the co-action map Cn → C[t, t−1]⊗Cn with homogeneous

elements of degree χi.

We are now able to finally define what we mean by a GIT quotient. We will also

consider taking GIT quotients as stacks, so we use the additional qualifier classical
for the following concept.

Definition 2.1.0.28. Let L be a G-equivariant line bundle on X with corresponding
semistable locus Xss. The classical GIT quotient is the set of points of Xss modulo the
following equivalence relation on the closures of their orbits in Xss:

x ∼ y ⇔ G · x ∩G · y 6= ∅.

Definition 2.1.0.29. As above, let L be a G-equivariant line bundle on X with
corresponding semistable locus Xss. By a GIT quotient stack we mean the quotient
stack [Xss/G]. As discussed in Section 1.5, the points of this are the G-orbits where we
also remember the stabilisers of points in the orbit.

Remark 2.1.0.30. From these definitions it’s clear that the stacky GIT quotient is

a refinement of the data of the corresponding classical GIT quotient. As we will

be dealing with stabiliser subgroups which are not finite, we follow [Alp13] and

call these classical GIT quotients the good moduli space of the corresponding stacky

GIT quotient. This is not just a matter of labels - for the rigorous definition of

what a good moduli space is, see [Alp13, Definition 4.1]; the fact that classical GIT

quotients are good moduli spaces for the corresponding quotient stack is Theorem

13.6 ibid. The classical and stacky notions of GIT coincide precisely when the action

of the group is free.
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Example 2.1.0.31. Let us illuminate Proposition 2.1.0.24 with the standard example

of G := Gm acting on X := Cn+1 via

G×X → X

(g, (x0, x1, . . . , xn)) 7→ (gx0, gx1, . . . , gxn).

This gives us a solution to the VGIT problem by describing every possible GIT

quotient with respect to this group action of Gm on Cn+1. Setting R := C[f0, . . . fn]

and S := C[t, t−1], this action corresponds to the coaction

σ̂ : R→ S ⊗C R

fi 7→ t⊗ fi.

By Lemma 2.1.0.12, a choice of linearisation of the structure sheaf OX corresponds

to a module coaction

σ̂M : M → S ⊗C M

fi 7→ tm+1 ⊗ fi.

for some m ∈ Z, where we define M := Γ(X,OX) = R to emphasise when we

are viewing R as a graded R-module. Thinking of R as a graded ring, the different

module coactions here are nothing but M as a graded R-module, where the grading

of M is the grading of R shifted by m. Given a 1-parameter subgroup λ : t 7→ tp, we

examine when limit points exist, in order to use Mumford’s numerical criterion.

Gm ×X Gm ×X X

(g, (x0, . . . , xn)) (gp, (x0, . . . , xn)) (gpx0, . . . , g
pxn)

λ×idX act

If p > 0, the limit point will exist for all points x ∈ X, and in fact is always the point

(0, . . . , 0). If p < 0, then no limit point exists if at least one of the coordinates is

non-zero, so (0, . . . , 0) is the only point for which a limit point exists, and the limit

point is trivially itself. Choosing the linearisation of OX induces the composition for

stalks

C S ⊗ C S ⊗ C

1 tm ⊗ 1 tpm ⊗ 1

Consider the following cases:
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1) Let m < 0.

i) Pick the point (x0, . . . , xn) such that there exists xi 6= 0. The limit point

exists for p > 0, and thus 1 is homogeneous of degree pm < 0.

ii) Pick (0, . . . , 0). The limit point exists for all p, thus pm can be either sign, so

(0, . . . , 0) is unstable.

iii) The semistable locus is the set of all non-zero points of Cn+1, and points

lying on the same line through the origin are GIT equivalent, so the quotient

is Pn.

2) Let m = 0. Pick (x0, . . . , xn) such that there exists xi 6= 0. The limit point again

exists for p > 0, and so 1 is homogeneous of degree 0. For (0, . . . , 0), the limit

exists for all p, but 1 is again homogeneous of degree 1. Thus all points of Cn+1

are semistable for m = 0. As the closure of all the orbits intersect at the origin,

they are all GIT equivalent, and the quotient is a single point.

3) Finally, let m > 0.

i) Let (x0, . . . , xn) be such that there exists xi 6= 0. The limit exists for p > 0,

so 1 is homogeneous of degree pm > 0.

ii) Pick (0, . . . , 0). The limit point exists for all p, thus pm can be either sign, so

(0, . . . , 0) is unstable.

iii) As all points are unstable, the GIT quotient is ∅.

m
Pn pt ∅

Figure 2.1: The wall-and-chamber decomposition for the VGIT problem given by
describing all possible GIT quotients of Cn by Gm, where the group action is given
by multiplication in each coordinate.

2.2 Unstable loci and their KN stratifications

As alluded to in the introduction to this chapter, we wish to use the technology of

Halpern-Leistner [Hal15] and Ballard, Favero and Katzarkov [BFK19] to construct

equivalences between the derived categories of (stacky) GIT quotients. The

referenced papers give certain conditions for equivalences to exist, which is
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phrased in terms of a careful analysis of the unstable loci for the different

quotients. In particular, it involves a certain stratification of the unstable locus,

known as a KN stratification. This should be viewed as an algorithmic way of

decomposing the unstable locus into disjoint pieces, starting with the “most

unstable” points, and is described in Algorithm 2.2.0.4. We first define what we

mean by KN strata.

Definition 2.2.0.1. Let X be a quasi-projective variety with a linearisable action of
an algebraic torus G ' Gn

m. Given a one-parameter subgroup λ′ : Gm → G and a
connected component Z ′ ⊆ Xλ, define

Yλ′,Z′ := {x ∈ X | lim
t→0

λ′(t) · x ∈ Z ′} ⊆ X

and the canonical projection map

π : Yλ′,Z′ → Z ′

y 7→ lim
t→0

λ′(t) · y.

A closed KN stratum is a closed subvariety S ⊆ X such that there is a one-parameter
subgroup λ : Gm → G and an open and closed subvariety Z ⊆ Xλ satisfying the
following properties:

i) g · z ∈ Z and g · y ∈ Yλ,Z = S for all g ∈ G, z ∈ Z and y ∈ Yλ,Z .

ii) The projection π : Yλ,Z → Z is algebraic and affine.

iii) The conormal sheaf IS/I2
S , restricted to Z, has non-positive weights with respect

to λ.

iv) If X is not smooth in a neighbourhood of Z, there exists a G-equivariant closed
immersion X ⊂ X ′ and a KN stratum S′ ⊆ X ′ such that S is a union of connected
components of S′ ∩X and X ′ is smooth in a neighbourhood of Z ′.

Remark 2.2.0.2. We will refer to Yλ,Z as the blade over Z.

Definition 2.2.0.3. Let Y ⊆ X be a closed equivariant subvariety. A set of locally
closed subvarieties {Si ⊆ Y | i = 1, . . . , n} is called a KN stratification of Y if

i) Y =
⋃n
i=1 Si

ii) Si ⊆ X \
(⋃

j<i Sj
)

is a closed KN stratum for all i.
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In [Hal15], Halpern-Leistner gives an iterative procedure for constructing a KN

stratification of the unstable locus of a fixed choice of linearisation of a

G-equivariant line bundle L, where G is a reductive group. We now recall the

version for G an algebraic torus. First, denote the cocharacter lattice of G by

Λ := Hom(Gm, G) ' Zn. Fixing an inner product on Λ ⊗Z R ' Rn allows us to

define a norm ‖ · ‖ such that ‖λ‖ > 0 for any 1-parameter subgroup λ. The iterative

procedure for constructing the KN strata Si is as follows:

Algorithm 2.2.0.4 (§2.1, [Hal15]). 1) Choose a pair (λ∗, Z∗), for Z∗ ⊆ Xλ∗ a
connected component, which maximises the scaled version of Mumford’s numerical
invariant

µ∗(λ∗, Z∗) :=
1

‖λ∗‖
µ(L, λ∗, Z∗).

If this is the second (or higher) iteration of this algorithm, impose the additional
condition that Z∗ *

⋃
i Si for the strata Si already defined.

2) If this is the first iteration, define Z1 := Z∗. Otherwise, for the ith iteration, define
Zi := Z∗ \

⋃
j<i Sj .

3) Define the blade Y ∗ := {x ∈ X | limt→0 λ
∗(t) · x ∈ Z∗} with projection map

π : Y ∗ → Z∗. Define the KN stratum Si := π−1(Zi).

4) Iterate the previous steps until there are no remaining suitable pairs (λ∗, Z∗) with
µ∗(λ∗, Z∗) > 0.

Remark 2.2.0.5. Note that, although the unstable locus is constant for any

linearisation of L in a given cell of the GIT wall-and-chamber space, the KN

stratification of it produced by this algorithm is not. In particular, for a cell with

two or more different walls, it is likely that a different set of unstable points will

become semistable as we move onto the walls. As we construct the strata by

decreasing degree of instability, for linearisations near to the walls these points will

be contained in the last KN stratum to be defined. We will see this effect in the KN

stratifications we produce in Chapter 3.

Example 2.2.0.6. We now return to Example 2.1.0.31 to demonstrate a simple

instance of this algorithm. Pick the standard Euclidean norm on Λ⊗Z R ' R.

i) For m < 0, choose the 1-parameter subgroup g 7→ gp for p < 0. Then the fixed

locus is the point at the origin and µ(λ∗, (0, . . . , 0)) = 1
−ppm = −m > 0. The

blade over the origin is just the origin itself, and this is the whole unstable locus,

so the algorithm terminates.
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ii) For m = 0, the unstable locus is empty.

iii) For m > 0, choose any 1-parameter subgroup g 7→ gp for p > 0. The fixed locus

is again just the origin, and µ(λ∗, (0, . . . , 0)) = 1
ppm = m > 0. This time, the

blade over the origin is the whole unstable locus (i.e. the whole of Cn+1), so

the unstable locus is stratified by one stratum and the algorithm terminates.

2.3 Stacky GIT quotients and wall-crossing equivalences

Recall that a G-linearised ample line bundle L defines an open semistable locus

Xss(L) ⊆ X. By “GIT quotient” we now refer to the stack given by the quotient of

the semistable locus by the group action, [Xss(L)/G], rather than the varieties

constructed in section 2.1. If confusion seems likely to occur, we will use the

qualifier classical GIT quotient to refer to the quotient varieties.

This sits inside the quotient stack of the whole space by the group action, [X/G].

As we have discussed, for two different choices of linearisation L± sitting on either

side of a wall, a pertinent question is when we have derived equivalences

Db([Xss(L−)/G]) ' Db([Xss(L+)/G]).

If these equivalences exist, we require some way of constructing them. A possible

general method is to identify some subcategory Gw ⊆ Db([X/G]) such that the

restriction functors res± : Gw → Db([Xss(L±)/G]) simultaneously give an

equivalence:

Db([X/G])

Gw

Db([Xss(L−)/G]) Db([Xss(L+)/G])

∼ ∼

⊆

Figure 2.2: A general recipe for constructing wall-crossing equivalences via window
subcategories Gw.

A derived equivalence between the derived categories of the two GIT quotients is

then given simply by res+ ◦ res−1
− . We make two brief remarks about this general

technique.
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Remark 2.3.0.1. Note that there is no requirement here for the subcategory Gw ⊆
Db([X/G]) to be geometric in origin, i.e. there is no requirement for it to be the

derived category of any stack.

Remark 2.3.0.2. Note also that the key word in the statement of this technique is

simultaneously. Indeed, as we shall see next, it is possible in high generality to

construct subcategories of Db([X/G]) which restrict to one of Db([Xss(L±)/G]) as

an equivalence, but restricting to both as an equivalence at the same time is a far

more constraining condition.

Let us now fix some notation. Consider a linearisation of a line bundle L, let Zi, Si
and X be as in the above algorithm and denote the inclusions

Zi Si X Xss(L).
σi ji ι

In addition, fix a choice of integer wi for each Zi and set w := (w1, . . . , wn). The

main result of [Hal15] is in two parts. The first states that

Gw := {F ∈ Db([X/G]) | for all i, µ(Zi, λi,H∗(σ∗i j∗i F )) ≤ wi < µ(Zi, λi,H∗(σ∗i j!
iF ))}
(2.5)

gives a suitable subcategory of Db([X/G]) such that the restriction functor

ι∗ : Gw −→ Db([Xss(L)/G])

is an equivalence. Here H∗(−) := ⊕Hi(−) and j!
i denotes the twisted pullback

functor j!
iF := Hom(OSi , F |U ), regarded as an OSi-module, where [U/G] ⊆ [X/G]

is an open substack containing [Si/G] as a closed substack. If X is smooth in a

neighbourhood of Zi then j!
iF ' j!

iOX ⊗ j∗i F . Note that, due to the sign

conventions we have adopted, the inequalities in (2.5) are the opposite to those

found in [Hal15]. Defining Db
Xus([X/G]) to be the subcategory of Db([X/G])

consisting of those complexes whose cohomology sheaves are supported on the

unstable locus, the second part of the statement identifies this Gw as the middle

component in the semi-orthogonal decomposition

Db([X/G]) = 〈Db
Xus([X/G])>w, Gw, D

b
Xus([X/G]≥w)〉

where

Db
Xus([X/G])>w := {F ∈ Db

Xus([X/G]) | for all i, wi < µ(Zi, λi, σ
∗
i j

!
iF )

Db
Xus([X/G]≤w := {F ∈ Db

Xus([X/G]) | for all i, µ(Zi, λi, σ
∗
i j
∗
i F ) ≤ wi}.
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We are interested in the Fourier-Mukai kernels which describe this equivalence. For

a semistable locus Xss ⊆ X, the kernel of the restriction functor ι∗ : Db([X/G]) →
Db([Xss/G]) is simply the (equivariant version of the) graph subvariety of ι,

G×Xss → X ×Xss

(g, x) 7→ (g · x, x),

restricted to Gw ⊆ Db([X/G]). The kernels of the inverse functors for different

w are more subtle. The construction of these works by extending the equivariant

diagonal inside Xss × Xss to Xss × X. These extensions are certainly not unique,

and different extensions correspond to different choices of w. In Section 2.3.1 we

explain how to construct a particular extension due to Ballard, Diemer and Favero

[BDF17], and in Section 2.3.2 we recall an algorithm due to [Hal15] which gives a

general recipe to modify this extension to give the correct extension for any given

choice of w.

Before finishing this section, we state a result about the nicest type of wall-crossings,

which are known as balanced wall-crossings. Let θ0 be a stability condition on a wall,

so that θ± := θ0 ± εθ1 for some small ε > 0 are stability conditions on either side of

the wall. Letting S±i ⊆ Xus(θ±) denote the KN strata which become semi-stable on

the wall, we can write

Xss(θ0) = Xss
θ+ ∪

m+⋃
i

S+
i

and symmetrically

Xss(θ0) = Xss
θ− ∪

m−⋃
i

S−i

From the construction of KN strata, these S±i are blades over a connected component

of the fixed locus for some one-parameter subgroup. We denote these connected

components Z±i . The following definition and proposition are the torus versions of

results stated in [Hal15].

Definition 2.3.0.3. The wall-crossing is balanced if m+ = m− and
[Z+
i /G] = [Z−i /G].

When we are in the situation of a balanced wall-crossing, the additional conditions

we impose in the following proposition ensure that the window subcategories G±w
coincide. This gives a wall-crossing equivalence via the general recipe shown in

Figure 2.2.
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Proposition 2.3.0.4 (Proposition 4.5, [Hal15]). If the following conditions hold, then
the wall-crossing is an equivalence.

i) The wall crossing is balanced.

ii) The stability conditions θ+ and θ− are generic.

iii) For all Z±i ⊆ Xus(θ±) which lie in Xss(θ0) with corresponding 1-parameter
subgroup λ±, the weight of the canonical bundle of X restricted to Z±i is zero.

In particular, if X has ωX ' OX , then all generic chambers are derived equivalent

[Hal15, Corollary 4.8].

2.3.1 Kernels from compactifications

In this section we state an important construction due to Ballard, Diemer and Favero

[BDF17], whereby we extend the action of G on X to a partial compactification of

the action, and use this partial compactification to produce a Fourier-Mukai kernel.

These kernels give maps Db
QCoh([Xss/G])→ Db

QCoh([X/G]) and restrict to Xss×Xss

as the equivariant diagonal.

Definition 2.3.1.1 ([BDF17]). Let G act on X, and let X̃ be a variety equipped with a
G×G action. In addition let i : G×X → X̃ be a (G×G)-equivariant open immersion,
where the action of G × G on G × X is given by (1.4). If there exist maps π̃, σ̃ such
that the inner and outer triangles in the following diagram commute

X̃

G×X X

π̃σ̃

σ

π

i (2.6)

and (π̃, σ̃) : X̃ → X ×X is (G×G)-equivariant, where the (G×G)-action on X ×X
is the obvious one induced by the action of G on X, then we say that the quadruple
(X̃, i, π̃, σ̃) is a partial compactification of the action of G on X. If the context is clear,
we will simply refer to X̃ as a partial compactification.

We construct the Fourier-Mukai kernels defining maps from Db
QCoh([Xss/G]) to

Db
QCoh([X/G]) via the following general recipe.

Definition 2.3.1.2. Given a partial compactification diagram (2.6), define

QX,G := (π̃, σ̃)∗OX̃ ∈ D
b
QCoh([X ×X/G×G])
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and restrict it to the semistable locus in the first component to obtain an object

QssX,G := (j, id)∗QX,G ∈ Db
QCoh([Xss ×X/G×G]).

for (j, id) : Xss ×X ↪→ X ×X. Thus QssX,G defines a Fourier-Mukai transform

ΦQssX,G
: Db

QCoh([Xss/G])→ Db
QCoh([X/G]). (2.7)

For X = SpecR and G = Gm we have a particularly explicit way of producing

examples of such partial compactifications.

Definition 2.3.1.3. Let X = SpecR and G = Gm. The action groupoid provides
two maps π̂, σ̂ : R → R[t, t−1]. Define Q(R) = 〈π̂(R), σ̂(R), t〉 ⊆ R[t, t−1] to be the
subalgebra generated by t and the images of π̂ and σ̂.

This generalises to the case of an algebraic torus acting on an affine scheme as

follows.

Definition 2.3.1.4. Let X = SpecR and G = Gn
m, with corresponding character lattice

χ(G) = Hom(G,Gm). Let C ⊆ χ(G) be a finitely generated submonoid. The action
groupoid gives σ̂ : R→ R[t±1 , . . . , t

±
n ] ' R[χ(G)]. We define Q(R) to be the subalgebra

generated by the monoid ring and the image of R under σ̂,

Q(R) := 〈R[C], σ̂(R)〉 ⊆ R[χ(G)].

Thus we have the following two commutative diagrams, which are clearly equivalent

to each other

Q(R) Spec(Q(R))

R[t, t−1] R G×X X,

π̃σ̃

π̂

σ̂

σ̂ π̂
i

σ

π

and the right diagram is a partial compactification (Proposition 3.1.2, [BDF17]).

Definition 2.3.1.5. Given a partial compactification diagram

X̃

G×X X

π̃σ̃

σ

π

i

there is a natural notion of a boundary ∂ := X̃ \ i(G ×X). We define the σ̃-unstable
locus to be Xus

σ̃ := σ̃(∂), and the σ̃-semistable locus to be the complement Xss
σ̃ :=

X \Xus
σ̃ .



50 Chapter 2. Wall-Crossing Equivalences from VGIT

This notion of stability is closely linked to that of stability in the sense of GIT for the

action of an algebraic torus on an affine variety, as the following proposition shows.

We use the same notation as in Definition 2.3.1.4.

Proposition 2.3.1.6 (Proposition 3.1.8, [BDF17]). Assume Pic(X)⊗Q = 0. Choose
the monoid C of integral points given by the closure of a GIT chamber, and construct
the corresponding partial compactification. Choosing any linearisation L lying in the
relative interior of this chamber, Xss(L) = Xss

σ̃ .

Example 2.3.1.7. For our running Pn example, A = C[f0, . . . , fn] and

Q(A) = C[t, f0, . . . , fn] ⊂ C[t, t−1, f0, . . . , fn]. Our partial compactification is

therefore X̃ := An+2 and i : G × X → X̃ the naive inclusion2, i.e. we partially

compactify G at the point at the origin. Thus ∂ = {0} × An+1 and the image of this

under σ̃ is the point at the origin, i.e. the unstable locus as predicted by Proposition

2.3.1.6. As the following square is fibre

G×Xss G×X X̃

Xss ×Xss Xss ×X X ×X

(π,σ)

i

(π̃,σ̃)

(j,id)

the restriction of QssX,G to Xss × Xss is indeed the equivariant diagonal. We now

show that the EFMT (2.7) for this kernel restricts to a functor between the

equivariant bounded derived categories of coherent sheaves. As a scheme, Db(Xss)

is generated by OXss . The derived category Db([Xss/G]) is therefore generated by

copies of the structure sheaf with all possible equivariant structures, and in fact it

suffices to take the ones whose equivariant structures lie in the weight window

[BDF17, Lemma 4.1.4]. To show that (2.7) restricts to a functor between

coherents, it is sufficient to show that these generating objects are all mapped to

coherents. By the projection formula, ΦQssX,G
(OXss) ' (σ̃∗OA×Xss)(0,∗).

A×Xss X̃ = A×X

Xss ×X X ×X

Xss X

(π̃,σ̃) (π̃,σ̃)

2In our example we are lucky and i can be taken to be the naive inclusion, but this need not always
be the case. In particular, if G acted on the coordinates of X with the opposite sign, we would take a
different i corresponding to the partial compactification of G at the point at infinity. See [BDF17] for
further details.
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• For n = 1, X and Xss are both affine, so we can argue directly with modules.

Note that the coordinate ring of Xss ×X, denoted C[g±, h], naturally has the

Z2-grading with g in degree (1, 0) and h in degree (0, 1). Recall that

equivariant coherent sheaves on Xss × X are graded modules compatible

with the ring grading. Our kernel QssX,G has global sections

C[t, f0]⊗C[g,h],(π̃,σ̃) C[g±, h] as a C[g±, h]-module, with Z2-grading as follows:

Element Z2-grading

1⊗ g = f0 ⊗ 1 (1, 0)

1⊗ h = tf0 ⊗ 1 (0, 1)

t⊗ 1 (−1, 1)

Pushing the kernel forward to Xss therefore corresponds to viewing the kernel

as a C[h]-module via C[h] ↪→ C[g±, h] and taking the (0, ∗) graded part. This

is isomorphic to C[h], so ΦQssX,G
(OXss) ' OX , which is coherent.

• For n ≥ 2, Xss is only quasi-affine. As σ̃ is affine, higher direct images vanish.

The global sections ofOA×Xss are C[t, f0, . . . , fn]; therefore the global sections

of ΦQssX,G
are the degree (0, ∗) part of C[t, f0, . . . , fn], viewed as a C[g0, . . . , gn]-

module via

C[g0, . . . , gn]→ C[t, f0, . . . , fn]

gi 7→ tfi.

Here t has degree (−1, 1) and fi have degree (1, 0), so the degree (0, ∗) part

is C[tf0, . . . , tfn] ' C[g0, . . . , gn]. Therefore ΦQssX,G
(OXss) ' OX , which is

coherent.

Results of [BDF17] show that ΦQssX,G
is both full and faithful, and thus the essential

image of the restricted functor

ΦQssX,G
: Db([Xss/G])→ Db

QCoh([X/G])

is generated by copies of the structure sheaf with given equivariant structure. In

particular, ΦQssX,G
restricts to a functor between the bounded derived categories of

coherent sheaves.

Next, we recall an algorithm due to Halpern-Leistner which allows us to modify

objects in such a way that it shifts them into different weight windows Gw. This

can also be applied to the kernels themselves; this gives a way to construct the

embedding functors corresponding to different windows.
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2.3.2 The shifting algorithm

Assume for the moment that the unstable locus is comprised of only one stratum

(necessarily closed), and consequently drop the subscripts i for brevity. Let H ∈
Db([Xss(L)/G]) and choose some F ∈ Db([X/G]) such that ι∗F ' H. Starting with

this initial candidate F , our aim is to modify it so that it lies in Gw ⊆ Db([X/G]).

We make use of the following facts, which are Lemma 3.36 of [Hal15]:

i) µ(Z, λ, σ∗j∗F ) ≤ b for some minimal b

ii) µ(Z, λ, σ∗j!F ) > a for some maximal a

iii) a ≤ b.

Note that F ∈ Gw if and only if a = b = w. Step 1 of the following algorithm

provides a method for decreasing b (resp. Step 2 increases a) by constructing new

objects F ′ until we produce an object for which a = b = w. The steps are as follows:

Algorithm 2.3.2.1 ([Hal15]). 1) If b ≤ w there is no problem with the weights of
the regular pullback, so go directly to Step 2. Thus, assume b > w and let
E ∈ Db([Z/G]) be the non-trivial subcomplex of σ∗j∗F with weight b. There is a
morphism j∗F → π∗E and therefore, by adjunction, a morphism F → j∗π

∗E

which induces σ∗j∗F → σ∗j∗j∗π
∗E, which is an isomorphism3 between the

components in degree b. Define a new object F ′ by the exact triangle

F ′ F j∗π
∗E F ′[1].

This new object F ′ ∈ Db([X/G]) satisfies ι∗F ′ ' H and µ(Z, λ, σ∗j∗F ′) ≤ b − 1.
In addition, µ(Z, λ, σ∗j!j∗π

∗E) ≥ b ≥ a, and so we have two possibilities:

i) b > a, in which case µ(Z, λ, σ∗j!F ′) > a

ii) b = a, in which case µ(Z, λ, σ∗j!F ′) > w.

By abuse of notation, iterating this step yields F such that ι∗F ' H,
µ(Z, λ, σ∗j∗F ) ≤ w and µ(Z, λ, σ∗j!F ) > min{a,w}.

2) If a ≥ w then we are done, so assume a < w. Let E ∈ Db([Z/G]) be the non-trivial
subcomplex of σ∗j!F with weight a + 1. By complete analogy with Step 1, there is
a morphism j∗π

∗E → F , and so we define F ′ by the exact triangle
3Notice that this algorithm works for any morphism F → j∗π

∗E which induces such an
isomorphism.
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j∗π
∗E F F ′ j∗π

∗E[1].

This satisfies ι∗F ′ ' H and µ(Z, λ, σ∗j∗F ′) ≤ w, but now µ(Z, λ, σ∗j!F ′) > a+ 1.
Iterate this step until we have F ∈ Db([X/G]) such that µ(Z, λ, σ∗j!F ′) > w. If the
unstable locus consists of only one stratum, then F ∈ Gw.

3) If the unstable locus consists of multiple strata Si for i ∈ {1, 2, . . . k}, we must
repeat Steps 1 & 2 for each of these strata in turn. We start with Sk, which is closed
in X \

(⋃
j<k Sj

)
. The algorithm produces some element of Db([X \

(⋃
j<k Sj

)
/G])

lying in the required weight window with respect to Zk, and iterating through each
of the strata in turn gives us our required element of Gw ⊆ Db([X/G]).

Let’s return again to the situation considered in Examples 2.1.0.31 & 2.2.0.6 and

run this algorithm with the aim of first computing which object of Gw restricts to

Db([Xss(Lm<0)/G]) as OXss(Lm<0). As there is only one unstable stratum, we

resume our practice of dropping the subscripts i. Note also that Z = S, so both σ

and π are the identity map and we omit mention of them. We choose our initial lift

of OXss(Lm<0) to Db([X/G]) to be OX .

The weights of the structure sheaf F = OX
Consider first F = OX . Then j∗F = OZ , and the corresponding coaction for λ is

C C[t, t−1]⊗ C C[t, t−1]⊗ C

1 t0 ⊗ 1 tp0 ⊗ 1

and thus µ(Z, λ, j∗F ) = 0. Choose U := X and recall that we defined

A := C[f0, . . . , fn] with the natural grading, with An denoting A as a graded

A-module with grading shifted by n. Note that OS is quasi-isomorphic to the

equivariant Koszul complex

An+1
⊕n

i=0An . . .
⊕n

i=0A1 A0
(fn,...,f0)

f0

...
fn


(2.8)

and thus j!OX is quasi-isomorphic to the dual complex

A0
⊕n

i=0A−1 . . .
⊕n

i=0A−n A−(n+1),
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where the grading on the coaction changes according to Lemma 2.1.0.26. The

cohomology of this complex is zero in every degree except the terminal one, and so

j!OX ' OS ⊗ χ−(n+1)[−(n + 1)]. The corresponding coaction for the 1-parameter

subgroup λ is

C C[t, t−1]⊗ C C[t, t−1]⊗ C

1 t−(n+1) ⊗ 1 t−p(n+1) ⊗ 1

and so µ(Z, λ, j!F ) = −p(n+ 1) > 0. Thus, OX ∈ Gw for 0 ≤ w < −p(n+ 1).

The case w < 0

Assume now that w < 0, and thus OX /∈ Gw. We now demonstrate Step 1 of the

shifting algorithm. The pullback j∗F is concentrated in a single weight, and so Step

1 of the shifting algorithm tells us to take the distinguished triangle

F ′ OX j∗OS F ′[1]

and thus F ′ ' IS , the ideal sheaf of S ⊂ X, by the standard short exact sequence

for closed subvarieties. This has a locally free resolution given by the truncation of

the Koszul resolution (2.8):

An+1
⊕n

i=0An . . .
⊕n

i=0A1
(fn,...,f0)

Upon pulling back to Z, we find µ(Z, λ, j∗IS) = {(n + 1)p, np, . . . , p}. The

corresponding weights for the twisted pullback are

µ(Z, λ, j!IS) = {0,−p, . . . ,−np}, and so IS ∈ Gw for p ≤ w < 0. If w < p, we

iterate Step 1 of the algorithm.

The case w ≥ −p(n+ 1)

Analogously, we now assume that w ≥ −p(n + 1) and run Step 2 of the shifting

algorithm. As j!OX ' OS⊗χ−(n+1)[−(n+ 1)] is concentrated in a single weight, we

choose E to be this and take the distinguished triangle

j∗OS ⊗ χ−(n+1)[−(n+ 1)] OX F ′ j∗OS ⊗ χ−(n+1)[−n],

which yields F ′ ' I∨S by the derived dual of the standard short exact sequence for

closed subvarieties. The weights for this are

µ(Z, λ, j∗I∨S ) = {−p,−2p, . . . ,−(n+ 1)p}

µ(Z, λ, j!I∨S ) = {−(n+ 2)p,−(n+ 3)p, . . . ,−(2n+ 2)p}.
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and so I∨S ∈ Gw for −(n+ 1)p ≤ w < −(n+ 2)p. If w ≥ −(n+ 2)p, we iterate Step

2 of the algorithm.

Fourier-Mukai kernels

Perhaps the most powerful use of the aforementioned shifting algorithm is in

constructing Fourier-Mukai kernels. More explicitly, in the circumstances discussed

above, there is an equivalence Gw−̃→Db([Xss/G]) given by the restriction map,

and the shifting algorithm allows us to construct the FMK for the inverse functor

Db([Xss/G])−̃→Gw. Given a KN stratification Si ⊆ X for i = 1, . . . , k, we make use

of the KN strata Xss × Si ⊆ Xss × X. Take the equivariant diagonal

O∆G ∈ Db([Xss ×Xss/G×G]) and, for a given w ∈ Zk, extend it to some object in

G′w ⊆ Db([Xss × X/G × G]) by running the shifting algorithm with respect to this

stratification. Lemma 2.16 of [Hal15] tells us that the window subcategories Gw
and G′w are compatible in the following sense: if Q′ ∈ G′w then

ΦQ′(F ) ∈ Gw ⊆ Db([X/G]) for any F ∈ Db([Xss/G]), and the remark shortly after

this lemma concludes that Q′ is the kernel of the functor inverse to the restriction.

For our running example, we have only one stratum S and we can choose our

initial extension of the equivariant diagonal to Db([Xss ×X/G×G]) to be QssX,G as

in Example 2.3.1.7. We denote

S′ := Xss(Lm<0)× S Xss(Lm<0)×X =: X ′.
j′

Using a very similar trick to before, j′∗OS′ ∈ Db([X ′/G×G]) is quasi-isomorphic to
the complex

OX′ ⊗ χ0,n+1

⊕
OX′ ⊗ χ0,n . . .

⊕
OX′ ⊗ χ0,1 OX′ ⊗ χ0,0

(gn,...,g0)


g0

...
gn



and thus (j′)!OX′ has the single weight −p(n+ 1), via the coaction

R′ C[t±, s±]⊗R′ C[t±, s±]⊗R′

1 t0s−(n+1) ⊗ 1 s−p(n+1) ⊗ 1

where R′ := C[f0, . . . , fn, g0, . . . , gn] are the global sections of OX′ . This is just the

bigrading given by the gradings on each of Xss and X.

By base change around the fibre diagram
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S′ X̃

S′ X ′ X ×X

id (π̃,σ̃)

j′

we see that (j′)∗QssX,G ' OS′ , and thus the only weight of (j′)∗QssX,G is zero.

Therefore, QssX,G ∈ G′w for 0 ≤ w < −p(n+ 1). We now run the shifting algorithm.

The case w < 0

The sole weight of (j′)∗QssX,G ' OS′ is zero, so we want to take a distinguished

triangle of the form

Q′ QssX,G j′∗OS′ Q′[1]

We obtain this by observing the commutativity of

A×Xss

Xss × S Xss ×X

(π̃,σ̃)

j′

j′′

and that the image of S′ = Xss × S in A × Xss is closed. We therefore take the

standard short exact sequence in Db(A×Xss)

0 IS′ OA×Xss j′′∗OS′ 0. (2.9)

As (π̃, σ̃) is affine, higher direct images vanish and we can push this SES forward to

obtain the distinguished triangle

(π̃, σ̃)∗IS′ QssX,G j′∗OS′ (π̃, σ̃)∗I[1]

Thus the new kernel is Q′ = (π, σ)∗IS′ . If this still doesn’t lie in G′w, iterate the

algorithm until we obtain something that lies in the weight window.

The case w ≥ −p(n+ 1)

Conversely, in this case we want an exact triangle of the form

(j′)∗OS′ ⊗ χ−p(n+1) QssX,G Q′ (j′)∗OS′ ⊗ χ−p(n+1)[1]

We obtain this by first dualising (2.9) to get

0 Hom(j′′∗OS′ ,OA×Xss) OA×Xss I∨S′ 0
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and note that Hom(j′′∗OS′ ,OA×Xss) ' (j′′)∗OS′ ⊗ χ−p(n+1). Pushing this SES

forward along (π̃, σ̃) gives the required distinguished triangle with new kernel

Q′ ' (π̃, σ̃)∗I∨S′ .
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Chapter 3

VGIT Stacks for 2-dim. An-type
McKay Correspondence

The main aim of this chapter is to provide the geometry necessary for the schober

we construct in Chapter 4. In Section 3.1 we remind the reader of some results from

the representation theory of finite groups G and give the definition of objects known

as G-constellations for G ⊂ GL(n,C) due to Craw [Cra01]. These G-constellations

have a particularly nice formulation of GIT stability due to King [Kin94], known as

θ-stability, as well as a natural group action. This gives a description of the moduli

space of θ-semistable G-constellations as a VGIT problem, and there is a natural

decomposition of the stability space into cells via a wall-and-chamber description.

In Section 3.2 we give an example of this by giving a description of the θ-semistable

G-constellations and the wall-and-chamber decomposition for the specific case G =

Z3 := Z/3Z. In Section 3.3 we describe the geometry of these semistable loci,

viewing them as quotient stacks. In Section 3.5 we study the unstable loci and give

corresponding KN stratifications.

3.1 G-constellations as McKay quiver representations

Recall that we work over the base field C and use A to denote the coordinate ring

C[x1, . . . , xn] of Cn. We first remind the reader of some some well-known results

from the representation theory of finite groups, which can be found in [FH91]. The

main references for the subsequent part of this section are [Cra01] and [Kin94]. In

this section G denotes a finite group.

Proposition 3.1.0.1. For any representation V of a finite group G, there is a
decomposition V = W⊕a1

1 ⊕ · · · ⊕ W⊕akk where the Wi are distinct irreducible
representations. The decomposition of V into a direct sum of k factors is unique, as
are the Wi that occur and their multiplicities ai.



60 Chapter 3. VGIT Stacks for 2-dim. An-type McKay Correspondence

Lemma 3.1.0.2. Schur’s Lemma
If V and W are irreducible representations of G and ϕ : V → W is a G-equivariant
linear map, then either ϕ is an isomorphism, or ϕ = 0. If V = W then ϕ = λidV for
λ ∈ C.

For G a finite abelian group, all irreducible representations are one-dimensional,

i.e. they are characters χi ∈ Hom(G,Gm) of the group. For any representation V

we can therefore say that there is a decomposition into irreducible representations

given by:

V = χ⊕a0
0 ⊕ · · · ⊕ χ⊕akk

and define Vi := χ⊕aii .

The given representation of G ⊆ GL(n,C) is defined to be the vector space Vgiv =

Cn with action given by G ↪→ GL(n,C).

Definition 3.1.0.3. The McKay quiver QM of a finite group G ⊆ GL(n,C) is the
quiver with vertices indexed by the irreducible representations ρ0, . . . , ρN of G, and
dimCHomG(ρi, Vgiv ⊗ ρj) arrows from vertex i to vertex j.

Having chosen vector spaces Vi of dimension vector v = (vi)
N
i=0 for vi = dimVi,

isomorphism classes of representations of the McKay quiver are in natural bijection

with orbits in the representation space

R(QM , v) :=
⊕
α∈Q1

HomC(Vt(α), Vh(α))

under the natural faithful group action of

PGL(v) :=
( ∏
i∈Q0

GL(Vi)
)
/∆

acting1 by (g ·ϕ)α = gt(α)ϕαg
−1
h(α) . We factor out the diagonal 1-parameter subgroup

∆ = {(c(idVi)i) | c ∈ Gm} as it acts trivially. There are n(N+1) arrows in this quiver.

For one-dimensional Vi this action corresponds to a rescaling of the basis element

for each of the Vi, modulo rescaling them all by the same thing. For dimension

vector v = (1)Ni=0, R(QM , v) ' Cn(N+1). This group action also provides a natural

interpretation of the moduli space of representations as a GIT problem. In this case

the line bundle is necessarily trivial (R(QM , v) is an affine space) and the different

linearisations correspond to different choices of characters of PGL(v) [Kin94]. King

1Note that some authors use the opposite convention, i.e. that (g · ϕ)α = gh(α)ϕαg
−1
t(α).
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gives a translation of the notion of GIT stability, known as θ-stability, for this problem

ibid.:

Definition 3.1.0.4. Given θ ∈ ZN+1 and a representation V of the McKay quiver with
dimension vector (vi)

N
i=0, let Θ(V ) :=

∑N
i=0 viθi. A representation is said to be θ-stable

if Θ(V ) = 0 and every proper subrepresentation 0 ⊂ W ⊂ V has Θ(W ) > 0. θ-
semistability is defined likewise, but substituting the weak inequality Θ(W ) ≥ 0 for all
0 ⊂ W ⊂ V . A representation is said to be θ-unstable if it is not θ-semistable. For a
fixed choice of θ, if representations are stable if and only if they are semistable, we say
θ is generic.

As indicated, the notion of θ-stability coincides with that of GIT stability. The exact

statement is as follows:

Proposition 3.1.0.5 (Proposition 3.1, [Kin94]). Let x ∈ R(QM , v) be a point
corresponding to a representation V . The point x is GIT semistable (resp. GIT stable)
if and only if V is θ-semistable (resp. θ-stable).

In addition to this, there is also a nice translation of two points x and y being GIT

equivalent to this new language of θ-stability due to King. We will state this as

Proposition 3.1.0.20. For any finite group G, denote by Vreg the regular

representation of G. Recall that the McKay Correspondence [McK80] is the study

of the geometry of quotient singularities where a finite group G acts on Cn.

Definition 3.1.0.6. Let G ⊂ GL(n,C) be finite. A G-cluster Z ⊆ Cn is a G-invariant
finite length subscheme with Γ(OZ) ∼= Vreg as representations of G.

The space parametrising G-clusters on Cn goes by the name G-Hilb(Cn) and there

is a natural Hilbert-Chow morphism η : G-Hilb(Cn)→ Cn/G given on closed points

by sending the corresponding G-cluster to its defining subscheme (this subscheme

is G-invariant by assumption). In dimension 2, this map is the minimal resolution

[IN96]. In some higher dimensional cases it is a crepant resolution, e.g. [BKR01].

The notion of a G-cluster admits a generalisation due to Craw known as a

G-constellation. These were introduced and first studied in his thesis [Cra01] and

his subsequent paper with Ishii [CI04].

Definition 3.1.0.7 ([Cra01]). Let G ⊂ GL(n,C) be finite. A G-constellation is a
G-equivariant coherent sheaf M on Cn with Γ(M) ∼= Vreg as representations of G.
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Remark 3.1.0.8. We think of G-clusters as being the G-invariant finite-length

subschemes for which OZ is a G-constellation. In this sense, G-constellations are a

natural generalisation of G-clusters.

Definition 3.1.0.9. The cross-product algebra AoG.
Viewing A and C[G] as vector spaces over C, the underlying vector space of A o G is
that of A⊗CC[G]. Multiplication in AoG is given, for all f1, f2 ∈ A and g1, g2 ∈ C[G],
by

(f1 ⊗ g1)× (f2 ⊗ g2) =
(
f1(g1 · f2)

)
⊗ (g1g2),

where the action of C[G] on A is given by linearly extending the action of G on A.

Remark 3.1.0.10. The (equivariant versions of the) global section functor Γ(−) and

the (−̃) functor [Har77, p.110] give mutually inverse equivalences between the

abelian categories of G-equivariant coherent sheaves, CohG(Cn), and finitely

generated AoG-modules, Modfg(AoG):

Γ : CohG(Cn) −̃→ Modfg(AoG)

(−̃) : Modfg(AoG) −̃→ CohG(Cn).

In this way, we can think of a G-constellation as being either a G-equivariant

coherent sheaf, or its corresponding AoG-module.

Remark 3.1.0.11. Take any G-equivariant coherent sheaf M on Cn. As a

G-representation, M =
⊕
Mρ ⊗ ρ. The A-module structure on M is given by

G-equivariant maps V ∗giv ⊗ M → M , where V ∗giv is the dual of Vgiv, i.e.

V ∗giv = 〈x1, . . . xn〉 =
⊕

Cxi.

HomG(V ∗giv ⊗M,M) = HomG(
⊕

Mρ ⊗ ρ⊗ V ∗giv,
⊕

Mρ ⊗ ρ)

=
⊕
ρ,ρ′

HomC(Mρ,Mρ′)⊗ HomG(V ∗giv ⊗ ρ, ρ′)

The HomG(V ∗giv ⊗ ρ, ρ′) are the actions of x1, . . . xn on ρ, which define the arrows in

our quiver diagram. In this way we can think of G-constellations as being certain

representations of the McKay quiver. We make this precise via the following

proposition. The admissible ideal I appearing in the statement can be found in

[CMT07a]. The proposition is well-known, but the proof is short so we include it

for completeness. The key result is that CQM/I ∼= A o G, which is proved in

Proposition 2.8 of [CMT07b].
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Proposition 3.1.0.12. For a finite abelian subgroup G ⊂ GL(n,C), there is an
equivalence of categories

CohG(Cn) −̃→ Repfd(QM , I)

where the admissible ideal I ⊆ CQM is given by

I = 〈aρρij aρi − a
ρρj
i aρj | ρ ∈ HomG(G,Gm), 1 ≤ i, j ≤ n〉 (3.1)

where we label the arrows in the McKay quiver aρi : ρρi → ρ.

Proof. We note that the McKay quiver is connected. This is because, as Vgiv is a

faithful representation, every irreducible representation ofG is contained in V ⊗ngiv for

some n (see [CR62], Theorem 32.9). Therefore, by the definition of arrows in QM ,

there exists a path in the quiver from a given vertex to every other vertex. As QM is

a finite quiver, Proposition 1.7.0.11 gives that Modfg(CQM/I) ' Repfd(QM , I). For

G ⊂ GL(n,C) abelian, it is known that CQM/I ∼= AoG for this ideal (Proposition

2.8, [CMT07b]), so the result follows by Remark 3.1.0.10.

For finite abelian G ⊆ GL(n,C), we can therefore think of G-constellations as

being representations of the McKay quiver with the linear maps satisfying the path

relations given by I. The relations specified by I correspond to the commutativity

of xi, xj ∈ A when we view our G-constellation as an A o G-module (Remark 3.7,

[CMT07b]). In fact, the G-constellations are precisely the representations of the

McKay quiver which obey these relations and are isomorphic to Vreg.

Remark 3.1.0.13. The analogous result also holds for arbitrary finite G ⊆ SL(n,C)

[BSW10, p.7] for an appropriate choice of I; here it is no longer true in general that

CQM/I ∼= A o G, but they are still Morita equivalent, so the result follows by the

same logic.

Viewing a G-constellation as a representation of the McKay quiver via Proposition

3.1.0.12, we have a natural notion of θ-stability for G-constellations. For a given

choice of θ, the category of θ-semistable G-constellations, G-Constssθ , is an abelian

subcategory of the abelian category of G-constellations. We remind the reader of

the following trivial definition.

Definition 3.1.0.14. An object X in an abelian category with a zero object is simple if
there are precisely two subobjects of X, namely 0 and X itself.

Lemma 3.1.0.15 ([Kin94]). For a given choice of θ, the simple objects in G-Constssθ
are precisely the θ-stable G-constellations.
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Proof. Let M ∈ G-Constssθ be a simple object. Then Θ(M) = 0 and there are no

non-trivial proper subrepresentations to check, so M is stable.

Conversely, let M ∈ G-Constssθ be stable. Then Θ(E) > 0 for any nontrivial

subrepresentations E ⊂ M . M cannot properly contain any nontrivial semistable

representations, as this would require Θ(E) = 0. M is therefore simple.

Definition 3.1.0.16. Given a θ-semistable G-constellation M , we call a filtration

M0 = 0 ⊆M1 ⊆ · · · ⊆Mn = M

a composition series of M , where the Mi are θ-semistable G-constellations for i < n

and the quotients of successive terms are simple. We call

M1/M0 ⊕M2/M1 ⊕ · · · ⊕Mn/Mn−1

the composition factor.

Remark 3.1.0.17. We can always find such a filtration for a θ-semistable

G-constellation. Indeed, if M is a strictly θ-semistable G-constellation, then

Θ(M) = 0 and Θ(E) = 0 for some E ⊂ M a proper subrepresentation. Then E is

either θ-stable or strictly θ-semistable itself. If E is strictly θ-semistable, then repeat

the process. If E is θ-stable then by Lemma 3.1.0.15, it is simple. Therefore there

do not exist non-trivial E′ ⊂ E such that Θ(E′) = 0, and so the filtration

terminates. In fact, the filtration must always terminate as M is finite dimensional

as a vector space (indeed, M is a G-representation for G a finite group by

definition).

Remark 3.1.0.18. Theorem 2.1 in [Ses67] tells us that the Jordan-Hölder theorem

holds. Therefore, although the composition series of a θ-semistable G-constellation

M may not be unique, the composition factor is (up to reordering of the direct

summands).

Definition 3.1.0.19 ([Ses67]). We call two θ-semistable representations
S-equivalent if they have the same composition factors in the category of θ-semistable
representations.

A result of King gives the promised translation of the idea of GIT equivalence:

Proposition 3.1.0.20 (Proposition 4.2, [Kin94]). Let x and y be two points of
R(QM , v) with corresponding QM -representations V and W . Then x and y are GIT
equivalent if and only if V and W are S-equivalent.
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We now note a general result due to Kronheimer that we will observe specific

instances of in the rest of this chapter. From the definition of θ-stability, for a

representation V with dimension vector (v0, . . . , vN ) to be θ-semistable, θ must lie

on the hyperplane given by
∑N

i=0 viθi = 0, and the following result describes the

wall-and-chamber decomposition of this hyperplane, and what the moduli space of

θ-semistable G-constellations is in the generic open chambers. Let v be the

dimension vector of Vreg. The space of G-constellations inside R(QM , v) ' Cn(N+1)

is given by the subset such that the coordinates satisfy the commutativity relations

imposed by (3.1). Denote this space X, with corresponding θ-semistable loci Xss
θ

for each value of θ.

Proposition 3.1.0.21 ([Kro86]). Let G ⊆ SL(2,C) be finite. Then the classical GIT
quotient Xss

θ /PGL(v) for any generic θ is the minimal resolution of the quotient
singularity C2/G. Moreover, the wall-and-chamber decomposition of the hyperplane
given by

∑N
i=0 viθi = 0 is given by a root system of the same ADE-type as C2/G.

An observation due to Ito and Nakajima [IN00, §3] shows that the choice of θ lying

in one of the generic cells gives Xss
θ /PGL(v) ' G-Hilb(C2).

We finish off this section by making a key observation. Start with a generic stability

condition θ lying in some open chamber, so that the classical GIT quotient

Xss
θ /PGL(v) is the minimal resolution with exceptional locus E =

⋃
iEi given by

some collection of rational curves Ei, intersecting transversally. Whenever you

move your stability condition θ  θ′ to a neighbouring lower dimensional cell (e.g.

a bordering wall), the new GIT quotient Xss
θ′ /PGL(v) corresponds to a contraction

of some number of these Ei (i.e. it is a partial resolution of C2/G). Moving to the

central cell θ = (0, . . . , 0), the GIT quotient is the contraction of all the Ei, i.e. the

GIT quotient is the original singularity C2/G. We prove this final statement now.

Proposition 3.1.0.22. Let G ⊆ SL(2,C) be finite and abelian, θ0 = (0, . . . , 0) and let
v be the dimension vector of Vreg. The good moduli space of [Xss

θ0
/PGL(v)] is C2/G.

Proof. From [Alp13, Theorem 13.6], the good moduli space of [Xss
θ0
/PGL(v)] is

Xss
θ0
/PGL(v). There is a Hilbert-Chow morphism η : [Xss

θ0
/PGL(v)] → C2/G given

by taking (the isomorphism class of) a representation to the support of the

corresponding G-constellation. By the universal property of good moduli spaces for

maps to schemes [Alp13, Theorem 4.16], there exists a unique map π such that the

following diagram commutes
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[Xss
θ0
/PGL(v)] Xss

θ0
/PGL(v)

C2/G.

η′

η
π

There are two cases to consider. First, assume η(F ) 6= 0. As G acts freely away from

the origin, there is only one PGL(v)-orbit which F could belong to, i.e. a single

point in the quotient stack. The map π is therefore an isomorphism away from the

origin 0 ∈ C2/G.

As Xss
θ0
/PGL(v) is separable, if x, y ∈ [Xss

θ0
/PGL(v)] are two points such that the

closures of their orbits intersect, they are sent to the same point by η′. Assume

η(F ) = 0. We now show that the closures of the orbits of all such points intersect.

LetQF denote the McKay quiver ofGwhere we remove all the arrows corresponding

to zero maps in F . The condition η(F ) = 0 implies that QF has no loops. If QF has

no arrows left, F was the zero representation. Assuming QF has at least one arrow,

choose a vertex which has arrows {ai} going out but none coming in. Now, choose

the one-parameter subgroup λ : Gm → PGL(v) for which t ∈ Gm rescales the linear

maps corresponding to {ai} by t. Sending t→ 0, we find that F is inseparable from

some representation F ′ with strictly fewer non-zero maps. Proceeding by induction

on the (finite) number of non-zero maps, we find that F is inseparable from the

zero representation. All F such that η(F ) = 0 are therefore mapped to the same

point in Xss
θ0
/PGL(v). Thus π is an isomorphism in this case as well, and so an

isomorphism.

Remark 3.1.0.23. This result is an instance of the following mantra, which it may

be useful to keep in mind in the sequel: when we move to lower dimensional cells

in the stability space, the classical GIT quotient gets smaller, whereas the stacky GIT

quotient gets bigger.

3.2 The GIT wall-and-chamber decomposition for G = Z3

Consider Z3 = Z/3Z ⊂ GL(2,C). As the number of irreducible representations of a

finite group G is equal to the number of conjugacy classes of elements, this McKay

quiver has three vertices 0, 1 and 2, with single arrows i→ i+1 and i→ i−1 for all i,

where we count modulo 3. The Z3-constellations are precisely the representations of

this McKay quiver where the Vi are one-dimensional and the commutativity relations

induced by (3.1) are satisfied. By choosing a basis for each of the one-dimensional

Vi, these maps are fully determined by where we send the basis element, and so
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they may be represented by xi ∈ C. Therefore we represent these Z3-constellations

diagrammatically as

V1

V0 V2

x1

x2x0

x5

x3

x4

where dim(Vi) = 1. For x, y ∈ C[x, y], the clockwise arrows correspond to the

action of x, and the anti-clockwise arrows correspond to the action of y. A direct

check verifies that condition (3.1) implies the requirement that x0x1 = x2x3 =

x4x5. Denote V :=
⊕2

i=0 Vi. Given a fixed choice of basis, the representation space

of these Z3-constellations is then given by X := {(x0, x1, x2, x3, x4, x5) | x0x1 =

x2x3 = x4x5} ⊂ C6. However, we wish to consider isomorphism classes of these

Z3-constellations, i.e. to consider them up to any choice of basis, and by rescaling

the basis elements we get the natural action of the projective general linear group

(Gm)3/(λ, λ, λ) =: G ' G2
m we described on p.60. This action is given by

(a, b, c) · (x0, x1, x2, x3, x4, x5) =
(a
b
x0,

b

a
x1,

b

c
x2,

c

b
x3,

c

a
x4,

a

c
x5

)
. (3.2)

Thus, the fine moduli space of Z3-constellations is given by the stacky GIT quotient

[X/G], and we examine the geometry of this stack in Section 3.3. Recalling

Definition 3.1.0.4, we investigate the space of stability conditions θ = (θ0, θ1, θ2).

Note that dim(V ) = (1, 1, 1), and so

Θ(V ) =

2∑
i=0

θi.

In order for a representation V to be semistable, we must lie on the hyperplane given

by Θ(V ) = 0. Thus, we consider stability conditions of the form θ = (θ0, θ1,−θ0−θ1).

All possible non-trivial strict subrepresentations of V are given by {V0, V1, V2, V0 ⊕
V1, V0 ⊕ V2, V1 ⊕ V2}, and so we have a natural wall-and-chamber decomposition of

our stability space by the three walls θ0 = 0, θ1 = 0 and θ2 = −θ0 − θ1 = 0. We

project the Θ(V ) = 0 plane to the (θ1, θ2) coordinate plane for ease of presentation.

This gives a linear hyperplane arrangement, and we label the thirteen cells of this

as follows:
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θ2

θ10

−0+

−+0

0+−
+0−

+−0

0−+

−++

−+−

++−

+−−

+−+

−−+

Figure 3.1: The wall-and-chamber decomposition of the hyperplane
∑2

i=0 θi = 0 for
G = Z3. As the cells are solely determined by the parity of the θi, we label the cells
Ci, with i a string of three characters as indicated in the diagram. In Chapter 4, we
will introduce a partial ordering on these cells by inclusion of closures.

This is the wall-and-chamber decomposition promised by Lemma 3.1.0.21, and is

indeed an A2 root system2, which is of the same type as the minimal resolution

of C2/Z3. In the open two-dimensional cells of this hyperplane arrangement, V is

stable if and only if it is semistable, and so the θ in these connected components are

generic; θ lying in any of the zero- or one-dimensional cells are not generic. Varying

the stability parameter θ inside these cells does not change which Z3-constellations

are (semi)stable, i.e. Xss(θ) = Xss(θ′) for all θ, θ′ lying in the same cell.

3.3 Geometry of the semistable loci

In this section we explore the geometry of the semistable loci for the thirteen

different cells in Figure 3.1. As we consider lower-dimensional cells in the stability

space, more G-constellations become semistable and the geometry becomes

slightly more involved. We therefore start by describing the geometry for the

two-dimensional generic chambers, then for the one-dimensional walls, before

finally describing the geometry for θ = (0, 0, 0), for which all G-constellations are

semistable.

2The cells in this diagram are in fact evenly spaced on the hyperplane
∑2
i=0 θi = 0, so this really

is an A2 root system; the ‘skewness’ of this presentation is due to the projection down to the (θ1, θ2)
plane.
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3.3.1 The semistable locus in generic chambers

Take θ lying in Cell C++−, e.g. θ = (1, 1,−2). Then G-constellations are unstable if

and only if they have at least one of V2, V0⊕V2 or V1⊕V2 as a subrepresentation. By

Lemma 1.7.0.3, in order for a G-constellation to be semistable we therefore require

at least one non-zero map out of each of these. Thus, a G-constellation is semistable

if and only if at least one of the labelled maps in each of the following three diagrams

is non-zero:

V1 V1 V1

V0 V2 V0 V2 V0 V2

x1x3

x4

x0

x3

x4

and so, as a simple corollary,

Xss
++− = {(x0, x1, x2, x3, x4, x5) | x1x3 6= 0 or x3x4 6= 0 or x0x4 6= 0} ⊆ X.

Note that, as two coordinates must always be non-zero, the stabiliser of every point

in this semistable locus is trivial. The stacky GIT quotient therefore coincides with

the good moduli space given by the classical GIT quotient, and is indeed the minimal

resolution of the A2 singularity C2/Z3, as promised by Proposition 3.1.0.21.

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

{(x0, 0, 0, x3, x4, 0)} {(0, x1, 0, x3, x4, 0)}

(1, 0, 0, 0, 1, 0)

(0, 0, 0, 1, 1, 0)

(0, 1, 0, 1, 0, 0)

Figure 3.2: The orbit space of the semistable locus for generic θ in Cell C++−.

The argument for the remaining five generic open chambers is identical3, and in

each case the stacky quotient gives us something isomorphic to the same minimal
3This is due to the incredibly strong Weyl group symmetry of the problem, which manifests here as

a clear symmetry in the coordinates we are about to give of the semistable loci in the different generic
chambers.
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resolution. We give their coordinates here for reference, and plot their orbits in

Figure 3.3.

Xss
+−− = {(x0, x1, x2, x3, x4, x5) | x1x3 6= 0 or x1x4 6= 0 or x2x4 6= 0} (3.3)

Xss
+−+ = {(x0, x1, x2, x3, x4, x5) | x1x2 6= 0 or x1x5 6= 0 or x2x4 6= 0} (3.4)

Xss
−−+ = {(x0, x1, x2, x3, x4, x5) | x0x2 6= 0 or x2x5 6= 0 or x1x5 6= 0} (3.5)

Xss
−++ = {(x0, x1, x2, x3, x4, x5) | x0x2 6= 0 or x0x5 6= 0 or x3x5 6= 0} (3.6)

Xss
−+− = {(x0, x1, x2, x3, x4, x5) | x0x3 6= 0 or x0x4 6= 0 or x3x5 6= 0} (3.7)

where, in each case, the defining relations of X hold.

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

A B

A B

Xss
++− {(x0, 0, 0, x3, x4, 0)} {(0, x1, 0, x3, x4, 0)}

Xss
+−− {(0, x1, x2, 0, x4, 0)} {(0, x1, 0, x3, x4, 0)}

Xss
+−+ {(0, x1, x2, 0, x4, 0)} {(0, x1, x2, 0, 0, x5)}

Xss
−−+ {(x0, 0, x2, 0, 0, x5)} {(0, x1, x2, 0, 0, x5)}

Xss
−++ {(x0, 0, x2, 0, 0, x5)} {(x0, 0, 0, x3, 0, x5)}

Xss
−+− {(x0, 0, 0, x3, x4, 0)} {(x0, 0, 0, x3, 0, x5)}

Figure 3.3: The orbit space of the semistable locus for each generic chamber.

3.3.2 The semistable locus on a one-dimensional wall

We now take θ lying on a codimension one wall, e.g. θ = (0, 1,−1) in Cell C0+−.

Now G constellations are unstable if and only if they contain V2 or V0 ⊕ V2 as a

subrepresentation. To be semistable, we therefore require at least one of the labelled

maps in each of the following diagrams to be non-zero
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V1 V1

V0 V2 V0 V2

x3

x4

x0

x3

and thus

Xss
0+− = {(x0, x1, x2, x3, x4, x5) | x3 6= 0 or x0x4 6= 0} ⊆ X

The stabiliser of any point of the form (0, 0, 0, x3, 0, 0) ∈ Xss
1 is non-trivial (it is

isomorphic to Gm), and so, in contrast to the generic chamber cases, the stack

[Xss
1 /G] is not a scheme. Following the same process as before, we plot the orbits in

Figure 3.4.

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

{(x0, 0, 0, x3, x4, 0)}
{(x0, 0, 0, x3, 0, x5)}

{(0, x1, 0, x3, x4, 0)}

(1, 0, 0, 0, 1, 0)

(1, 0, 0, 1, 0, 0)

(0, 0, 0, 1, 1, 0)

(0, 0, 0, 1, 0, 1)

(0, 1, 0, 1, 0, 0)

(0, 0, 0, 1, 0, 0)

Figure 3.4: The orbit space of the semistable locus for θ in Cell C0+−. The stacky
point is shown in red.

The five components with three non-zero coordinates are each isomorphic to C×

when we take the stacky quotient, and the compactifications of each of these by the

indicated black points in the diagram give three P1 curves, as well as the original

two coordinate axes.

As this is a genuinely stacky quotient due to the non-trivial stabiliser of the point

(0, 0, 0, 1, 0, 0), the behaviour of the good moduli space is a little more interesting

than in the case for the generic open cells. Taking t ∈ Gm and a point each in

{(0, x1, 0, x3, x4, 0)} and {(x0, 0, 0, x3, 0, x5)} with all xi 6= 0, we note that

(1, tx2
3, tx3) · (0, x1, 0, x3, x4, 0) = (0, tx2

3x1, 0, 1, tx3x4, 0)

(1, tx2
3, tx3) · (x0, 0, 0, x3, 0, x5) = (tx0/x

2
3, 0, 0, 1, 0, tx5/x3)
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and that the limit of these two points as t → 0 is (0, 0, 0, 1, 0, 0). As the closures of

the orbits of these two points therefore intersect, they are mapped to the same

point in the good moduli space given by the classical GIT quotient. This good

moduli space is thus the partial resolution obtained from the minimal resolution of

C2/Z3 by contracting one of the exceptional curves. The argument for θ lying on

each of the other dimension 1 cells is identical - in each case the stacky quotient

has three P1 curves and the closures of the orbits corresponding to any two points

on the “doubled” P1 intersect. The good moduli space is therefore the

corresponding partially contracted space where we contract this doubled P1. We

describe the semistable loci of the remaining one-dimensional cells for reference.

Xss
+0− = {(x0, x1, x2, x3, x4, x5) | x4 6= 0 or x1x3 6= 0}

Xss
+−0 = {(x0, x1, x2, x3, x4, x5) | x1 6= 0 or x2x4 6= 0}

Xss
0−+ = {(x0, x1, x2, x3, x4, x5) | x2 6= 0 or x1x5 6= 0}

Xss
−0+ = {(x0, x1, x2, x3, x4, x5) | x5 6= 0 or x0x2 6= 0}

Xss
−+0 = {(x0, x1, x2, x3, x4, x5) | x0 6= 0 or x3x5 6= 0}

Plotting the orbits, we find two symmetric cases depending on which chamber we

are in. These two cases correspond to whether the associated wall crossing from

generic chamber to generic chamber involves replacing a P1 curve on the left or the

right of the diagram. The geometry in the case of replacing the P1 on the right is

shown in Figure 3.5, and for the left in Figure 3.6.
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{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

A
B

C
D

A B C D
Xss

0+− {(x0, 0, 0, x3, x4, 0)} {(x0, 0, 0, x3, 0, x5)} {(0, x1, 0, x3, x4, 0)} (0, 0, 0, 1, 0, 0)
Xss

+−0 {(0, x1, x2, 0, x4, 0)} {(0, x1, x2, 0, 0, x5)} {(0, x1, 0, x3, x4, 0)} (0, 1, 0, 0, 0, 0)
Xss
−0+ {(x0, 0, x2, 0, 0, x5)} {(0, x1, x2, 0, 0, x5)} {(x0, 0, 0, x3, 0, x5)} (0, 0, 0, 0, 0, 1)

Figure 3.5: The orbit space of the semistable locus for θ in Cells C0+−, C+−0 and
C−0+. The stacky point D is shown in red.

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

C
A

B
D

A B C D
Xss

+0− {(x0, 0, 0, x3, x4, 0)} {(0, x1, x2, 0, x4, 0)} {(0, x1, 0, x3, x4, 0)} (0, 0, 0, 0, 1, 0)
Xss

0−+ {(x0, 0, x2, 0, 0, x5)} {(0, x1, x2, 0, x4, 0)} {(0, x1, x2, 0, 0, x5)} (0, 0, 1, 0, 0, 0)
Xss
−+0 {(x0, 0, x2, 0, 0, x5)} {(x0, 0, 0, x3, x4, 0)} {(x0, 0, 0, x3, 0, x5)} (1, 0, 0, 0, 0, 0)

Figure 3.6: The orbit space of the semistable locus for θ in Cells C+0−, C0−+ and
C−+0. The stacky point D is shown in red.

The good moduli spaces of the semistable loci appearing in Figure 3.5 are therefore

the partial resolutions where we contract the right P1, with the left P1 being

contracted for those semistable loci appearing in Figure 3.6.
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3.3.3 The geometry of [X/G]

For Cell C0, all G-constellations are trivially semistable. The geometry of the stack

is therefore an amalgamation of all of the preceding diagrams, as follows:

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

{(x0, 0, 0, x3, x4, 0)}

{(0, x1, x2, 0, x4, 0)}

{(x0, 0, x2, 0, 0, x5)}

{(0, x1, x2, 0, 0, x5)}

{(x0, 0, 0, x3, 0, x5)}

{(0, x1, 0, x3, x4, 0)}

Figure 3.7: The geometry of [X/G].

There are also seven stacky points not pictured. Considering the three P1 curves on

the left of the diagram, there is a stacky point corresponding to the intersection of

each pair of curves. Similarly, there are three stacky points corresponding to pairs

of P1 curves on the right of the diagram. These six stacky points all have stabiliser

isomorphic to Gm. The seventh stacky point is (0, 0, 0, 0, 0, 0), which has stabiliser

the whole of G ' G2
m. Picking any pair of points on these six P1 curves, the closures

of their orbits intersect and the good moduli space is the fully contracted space,

C2/Z3, by Proposition 3.1.0.22.

3.4 The Weyl group action

When considering the semistable loci in each of the above cells, there is an obvious

Z3-action given by cyclically permuting the roles of the Vi (i.e., rotating the

triangular diagram representing the G-constellation). Thus, if a given

G-constellation (x0, x1, x2, x3, x4, x5) is semistable with respect to the stability

condition θ = (θ0, θ1, θ2), then (x2, x3, x4, x5, x0, x1) is automatically semistable

with respect to θ′ = (θ1, θ2, θ0). Therefore, if the original G-constellation is

semistable in a particular chamber, the new G-constellation is semistable in the

chamber obtained by an order three rotation clockwise around the origin on the

hyperplane Θ(V ) = 0.

Similarly, if (x0, x1, x2, x3, x4, x5) is semistable with respect to θ = (θ0, θ1, θ2), then
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(x1, x0, x3, x2, x5, x4) is semistable with respect to θ′ = (−θ0,−θ1,−θ2). That is, the

new G-constellation is semistable with respect to the stability condition

diametrically opposite.

These two facts encode how the Weyl group of the hyperplane arrangement acts on

G-constellations.

3.5 KN stratifications of the unstable loci

Recall the iterative construction of the Kempf-Ness stratification of the unstable locus

given by Algorithm 2.2.0.4, and also the action of G on X given in (3.2). All 1-

parameter subgroups of G can be written as λ(t) = (tn0 , tn1 , tn2) for ni ∈ Z, under

the equivalence relation that (tn0 , tn1 , tn2) = (tn0+n, tn1+n, tn2+n) for any n ∈ Z.

The cocharacter lattice is correspondingly Λ = Z3/ ∼, where the equivalence is

as indicated. We choose the standard three-dimensional Euclidean norm ‖λ‖ :=√
n2

0 + n2
1 + n2

2 on the hyperplane Λ⊗ZR ' {(n0, n1, n2) ∈ R3 | n0 +n1 +n2 = 0} ⊆
R3. We now construct our stratification iteratively by choosing pairs (λ∗, Z∗) which

maximise the numerical invariant

µ∗(λ∗, Z∗) :=
1

‖λ∗‖
µ(L, λ∗, Z∗).

Now, choose a stability parameter θ = (θ0, θ1, θ2). The corresponding weight

function for this linearisation is simply the integer associated to the evaluation of

the character θ on the 1-parameter subgroup:

t 7→ (tn0 , tn1 , tn2) 7→ (tn0 )θ0(tn1 )θ1(tn2 )θ2 = tn0θ0+n1θ1+n2θ2 ,

i.e. the weight of the one-parameter subgroup (tn0 , tn1 , tn2) with respect to θ is

n0θ0 + n1θ1 + n2θ2, and so we obtain

µ∗(λ∗, Z∗) =
n0θ0 + n1θ1 + n2θ2√

n2
0 + n2

1 + n2
2

(3.8)

for Z∗ ⊆ Xλ∗ . We label the 13 cells of the GIT wall and chamber decomposition as

shown in Figure 3.1, and for stability conditions θ in each of the cells we compute

KN stratifications of the unstable locus. Note that the unstable locus for each cell is

essentially given by some rational curves with some extra stacky points. What the

KN stratification process does is pick some connected component of the fixed locus

with respect to a one-parameter subgroup, which is necessarily a (union of) stacky

point(s). The algorithm then takes the stratum to be the blade over this fixed locus;

this is a (union of these) rational curve(s).
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3.5.1 Cell C0

For θ = (0, 0, 0) there are no unstable Z3-constellations, and so there is no unstable

locus to stratify.

3.5.2 One-dimensional cells

First, choose the one-dimensional cell C0+−. The relevant 1-parameter subgroups

to consider in this case are

1-PS µ

1) λ1(t) = (1, tn, t−n)
√

2θ1

2) λ2(t) = (t−n, t2n, t−n)
√

6
2 θ1

3) λ3(t) = (tn, tn, t−2n)
√

6
2 θ1

and this leads to the following KN stratification.

1) Max µ given by λ1(t) = (1, tn, t−n).

Xλ1 = {(0, 0, 0, 0, 0, 0)} =: Z1

Blade = {(0, x1, x2, 0, 0, x5)} =: S1

2) Max µ given by λ2(t) = (t−n, t2n, t−n).

Xλ2 = {(0, 0, 0, 0, x4, 0)} ∪ {(0, 0, 0, 0, 0, x5)}

Xλ2 \ S1 = {(0, 0, 0, 0, x4, 0) | x4 6= 0} =: Z2

Blade = {(0, x1, x2, 0, x4, 0) | x4 6= 0} =: S2

3) Max µ given by λ3(t) = (tn, tn, t−2n).

Xλ3 = {(x0, 0, 0, 0, 0, 0)} ∪ {(0, x1, 0, 0, 0, 0)}

Xλ3 \
2⋃
i=1

Si = {(x0, 0, 0, 0, 0, 0) | x0 6= 0} =: Z3

Blade = {(x0, 0, x2, 0, 0, x5) | x0 6= 0} =: S3

Note that we could have considered either λ2 or λ3 first, and that the algorithm

would have produced the same strata (up to relabelling S2 and S3).

Now, a moment’s thought shows that the value for µ∗ is unchanged by

simultaneously cyclically permuting the ni and θi in (3.8). Similarly,

simultaneously negating all of the ni and θi has no effect on the value of µ∗.
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Utilising the Weyl-symmetry of the problem, as discussed in §3.4, we can therefore

write down the corresponding KN stratifications for the other one-dimensional

cells. These are shown in Figure 3.8.

Cell S1 S2 S3

C0+− {(0, x1, x2, 0, 0, x5)} {(0, x1, x2, 0, x4, 0) | x4 6= 0} {(x0, 0, x2, 0, 0, x5) | x0 6= 0}
C+0− {(x0, 0, x2, 0, 0, x5)} {(0, x1, x2, 0, 0, x5) | x1 6= 0} {(x0, 0, 0, x3, 0, x5) | x3 6= 0}
C+−0 {(x0, 0, 0, x3, 0, x5)} {(x0, 0, x2, 0, 0, x5) | x2 6= 0} {(x0, 0, 0, x3, x4, 0) | x4 6= 0}
C0−+ {(x0, 0, 0, x3, x4, 0)} {(x0, 0, 0, x3, 0, x5) | x5 6= 0} {(0, x1, 0, x3, x4, 0) | x1 6= 0}
C−0+ {(0, x1, 0, x3, x4, 0)} {(x0, 0, 0, x3, x4, 0) | x0 6= 0} {(0, x1, x2, 0, x4, 0) | x2 6= 0}
C−+0 {(0, x1, x2, 0, x4, 0)} {(0, x1, 0, x3, x4, 0) | x3 6= 0} {(0, x1, x2, 0, 0, x5) | x5 6= 0}

Figure 3.8: The KN stratifications of the unstable loci, for the one-dimensional cells.

3.5.3 Two-dimensional cells

Now, consider the two-dimensional cell C++−, in which θ0 and θ1 are both strictly

positive. The relevant 1-parameter subgroups to consider in this case are

1-PS µ

1) λα(t) = (tnθ0/θ1 , tn, t−n(θ0/θ1+1))
√

2θ2
0 + 2θ0θ1 + 2θ2

1

2) λβ(t) = (tn, tn, t−2n)
√

6
2 (θ0 + θ1)

3) λγ(t) = (t2n, t−n, t−n)
√

6
2 θ0

4) λδ(t) = (t−n, t2n, t−n)
√

6
2 θ1

and we encourage the reader to think for a moment about the choice of ordering in

the corresponding KN strata. Note that λα always has the largest value for µ in this

cell, and also that it coincides with λβ when θ0 = θ1. Whether λγ or λδ provides

the larger value for µ clearly depends on which of θ0 and θ1 is larger. Therefore, we

have three subtly different KN stratifications in C++−, corresponding to the cases

θ0 < θ1, θ0 = θ1 and θ0 > θ1.4 We now compute these three stratifications, then use

the Weyl group symmetry of the problem to obtain the stratifications for all of the

generic cells.

The case θ0 < θ1

In this case, we have

4To gain intuition as to why this is the case, consider that one of the KN strata will become
semistable as we pass onto one adjoining one-dimensional wall, and that, near to the wall, this will
be the least unstable stratum. Similarly, the stratum that becomes semistable as we pass onto the
other wall bordering the cell will be the least unstable stratum near to this wall. The behaviour when
θ0 = θ1 is the “cross-over point”, equidistant from these two walls, when these two KN strata are
equally unstable.
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1) Max µ is given by λ1(t) = λα(t).

Xλ1 = {(0, 0, 0, 0, 0, 0)} =: Z1

Blade = {(0, x1, x2, 0, 0, x5)} =: S1

2) Max µ given by λ2(t) = λβ(t).

Xλ2 = {(x0, 0, 0, 0, 0, 0)} ∪ {(0, x1, 0, 0, 0, 0)}

Xλ2(t) \ S1 = {(x0, 0, 0, 0, 0, 0) | x0 6= 0} =: Z2

Blade = {(x0, 0, x2, 0, 0, x5) | x0 6= 0} =: S2

3) Max µ given by λ3(t) = λδ(t).

Xλ3 = {(0, 0, 0, 0, x4, 0)} ∪ {(0, 0, 0, 0, 0, x5)}

Xλ3 \
2⋃
i=1

Si = {(0, 0, 0, 0, x4, 0) | x4 6= 0} =: Z3

Blade = {(0, x1, x2, 0, x4, 0) | x4 6= 0} =: S3

4) Max µ given by λ4(t) = λγ(t).

Xλ4 = {(0, 0, x2, 0, 0, 0)} ∪ {(0, 0, 0, x3, 0, 0)}

Xλ4 \
3⋃
i=1

Si = {(0, 0, 0, x3, 0, 0) | x3 6= 0} =: Z4

Blade = {(x0, 0, 0, x3, 0, x5) | x3 6= 0} =: S4

The case θ0 = θ1

In this case, we have

1) Max µ is given by λ1(t) = λα(t) = λβ(t).

Xλ1 = {(x0, 0, 0, 0, 0, 0)} ∪ {(0, x1, 0, 0, 0, 0)} =: Z1

Blade = {(x0, 0, x2, 0, 0, x5)} ∪ {(0, x1, x2, 0, 0, x5)} =: S1

2) Max µ given by λ2(t) = λγ(t).

Xλ2 = {(0, 0, x2, 0, 0, 0)} ∪ {(0, 0, 0, x3, 0, 0)}

Xλ2(t) \ S1 = {(0, 0, 0, x3, 0, 0) | x3 6= 0} =: Z2

Blade = {(x0, 0, 0, x3, 0, x5) | x3 6= 0} =: S2
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3) Max µ given by λ3(t) = λδ(t).

Xλ3 = {(0, 0, 0, 0, x4, 0)} ∪ {(0, 0, 0, 0, 0, x5)}

Xλ3 \
2⋃
i=1

Si = {(0, 0, 0, 0, x4, 0) | x4 6= 0} =: Z3

Blade = {(0, x1, x2, 0, x4, 0) | x4 6= 0} =: S3

The case θ0 > θ1

In this case, we have

1) Max µ is given by λ1(t) = λα(t).

Xλ1 = {(0, 0, 0, 0, 0, 0)} =: Z1

Blade = {(x0, 0, x2, 0, 0, x5)} =: S1

2) Max µ given by λ2(t) = λβ(t).

Xλ2 = {(x0, 0, 0, 0, 0, 0)} ∪ {(0, x1, 0, 0, 0, 0)}

Xλ2(t) \ S1 = {(0, x1, 0, 0, 0, 0) | x1 6= 0} =: Z2

Blade = {(0, x1, x2, 0, 0, x5) | x1 6= 0} =: S2

3) Max µ given by λ3(t) = λγ(t).

Xλ3 = {(0, 0, x2, 0, 0, 0)} ∪ {(0, 0, 0, x3, 0, 0)}

Xλ3 \
2⋃
i=1

Si = {(0, 0, 0, x3, 0, 0) | x3 6= 0} =: Z3

Blade = {(x0, 0, 0, x3, 0, x5) | x3 6= 0} =: S3

4) Max µ given by λ4(t) = λδ(t).

Xλ4 = {(0, 0, 0, 0, x4, 0)} ∪ {(0, 0, 0, 0, 0, x5)}

Xλ4 \
3⋃
i=1

Si = {(0, 0, 0, 0, x4, 0) | x4 6= 0} =: Z4

Blade = {(0, x1, x2, 0, x4, 0) | x4 6= 0} =: S4

Utilising the Weyl group symmetry of the problem, as previously discussed, we can

write down the corresponding KN stratifications for the other generic cells. These

KN stratifications are shown in Figure 3.9.
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Chapter 4

An H-Schober for 2-dim. An-type
McKay Correspondence

In this final chapter we give the construction of the H-schober. We do this by

considering the hyperplane arrangement H given by the wall-and-chamber

decomposition of the space of stability conditions in Figure 3.1. Recall that we

order the thirteen cells induced by H by inclusion of closures: Ci ≤ Cj if and only

if Ci ⊆ Cj . We now remind the reader of the definition of an H-schober as given in

Definition 1.4.0.3. To construct a schober on this particular hyperplane

arrangement we need the data of a triangulated category ECi for each cell Ci and,

for each Ci ≤ Cj , an adjoint pair of functors γij : ECi → ECj and δji : ECj → ECi
such that

i) All the induced triangles commute for the γ and δ functors.

ii) For all Ci ≤ Cj , γijδji ' idECj ; thus, for any two cells Ci and Cj , the flopping

functors ϕij := γkjδik are well-defined, where Ck is any choice of cell such that

Ck ≤ Ci, Cj .

iii) Collinear transitivity holds.

iv) For generic cells separated by a dimension one cell, and for one-dimensional

cells and their opposite one-dimensional cell, the flopping functors are

equivalences.

In our schober, we take the triangulated categories to be the derived categories of

the quotient stacks for the semistable loci in each of the thirteen cells. The maps γij
in this schober are given by the open restrictions. In Section 4.1 we construct partial

compactifications for each cell and use these to construct the maps δji. In Section

4.2 we consider for which window subcategories Gw the extension of the structure

sheaf as the structure sheaf is the correct one to take, and conjecture that the δji we
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have constructed are the isomorphisms δji : Db([Xss
i /G])

∼−→ Gw where we choose

wk = 0 for each unstable stratum Sk. In Section 4.3 we give the formal construction

of the schober we’ve just described, and in Section 4.4 we conclude this thesis and

give some possible directions for future work.

As all points of the pertinent group G = {(a, b, c)}/ ∼ can be written as (1, b, c)

without loss of generality, we choose this identification G ' G2
m = {(b, c)} in this

chapter. Under this identification, the action of G on X given in (3.2) becomes

(b, c) · (x0, x1, x2, x3, x4, x5) =
(1

b
x0, bx1,

b

c
x2,

c

b
x3, cx4,

1

c
x5

)
. (4.1)

As the labelling of the cells given in Chapter 3 will prove notationally cumbersome

in the work presented in this chapter, we relabel the cells in the following way:

θ2

θ10

−0+

−+0

0+−
+0−

+−0

0−+

−++

−+−

++−

+−−

+−+

−−+

θ2

θ10

5

6

1
2

3

4

11

12

7

8

9

10

Figure 4.1: Left: the labelling of the cells used in Chapter 3, as given in Figure 3.1.
Right: the relabelling used in this chapter.

4.1 Partial compactifications and kernels

In this section we construct the Fourier-Mukai kernels of the maps δji we will have

in our schober; we do this by constructing partial compactifications of the group

action.

4.1.1 Partial compactifications and the kernels for maps into the
central stack

In this subsection we construct the Fourier-Mukai kernels for the functors going

into the central stack in our schober. We do this by extending the equivariant
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diagonal O∆G ∈ Db([Xss
i ×Xss

i /G×G]) to an object in Db
QCoh([Xss

i ×X/G×G]).

It might be tempting to choose this extension to be the (equivariant) graph;

however, the functor going into the big stack would then be the pushforward along

the open immersion Xss
i ↪→ X. In general, there is no reason for such a

pushforward to land in the coherent derived category. We therefore construct

partial compactifications of the group action, and show that the functors given by

the corresponding kernels do indeed land in the coherent derived category. We

now construct a partial compactification for each non-zero cell Ci.

For an arbitrary group G acting on some X with corresponding action/projection

maps π, σ : G×X → X, recall from Definition 1.6.0.14 that O∆G := (π, σ)∗OG×X .

This is the pushforward along a G×G-equivariant map, where the G×G action on

G×X was given by

(G×G)× (G×X)→ G×X

(g1, g2, g, x) 7→ (g2gg
−1
1 , g1 · x).

For X = SpecR and G = SpecS, where R = C[f0, . . . , f5]/(f0f1 = f2f3 = f4f5) and

S = C[s±, t±], the corresponding coaction R[s±, t±] → R[s±, t±, s±1 , t
±
1 , s

±
2 , t
±
2 ] is a

Z4 grading on the elements of R[s±, t±] by Lemma 2.1.0.11. We give this grading

in the following table. We also introduce rescalings of the fi which will naturally

appear in the calculations to come. It will be convenient for these to have a label,

so we denote the rescaled version of fi by gi.

Element Grading Element Grading
s (−1, 0, 1, 0) t (0,−1, 0, 1)
f0 (−1, 0, 0, 0) g0 = s−1f0 (0, 0,−1, 0)
f1 (1, 0, 0, 0) g1 = sf1 (0, 0, 1, 0)
f2 (1,−1, 0, 0) g2 = st−1f2 (0, 0, 1,−1)
f3 (−1, 1, 0, 0) g3 = s−1tf3 (0, 0,−1, 1)
f4 (0, 1, 0, 0) g4 = tf4 (0, 0, 0, 1)
f5 (0,−1, 0, 0) g5 = t−1f5 (0, 0, 0,−1)

Figure 4.2: The Z4-grading on elements of R[s±, t±], corresponding to the G × G-
action on G×X.

Recalling Definition 2.3.1.4, we will construct our partial compactifications as the

spectra of certain subalgebras Qi ⊆ R[s±, t±] corresponding to finitely generated

submonoids of the space of characters. This gives an extension of the group action

and projection maps as follows:
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SpecQi

G×X X

These subalgebras have the Z4 grading induced by the grading of R[s±, t±]. We first

identify the space of characters of G with the monomial lattice in S = C[s±, t±], and

so cones in the stability space give cones in the monomial lattice. We choose the

submonoids for the generic cells in the obvious way - the submonoids given by the

generators of each of the cells themselves in the wall-and-chamber decomposition

of the space of characters, under this identification with the monomial lattice in S.

As our group action is that of G = G2
m, we are compactifying the action of two

copies of Gm in each case and we require a choice of two generators for each cell.

For each one-dimensional cell we therefore take the generators for the union of the

two generic cells bordering it. The choice of generators is depicted in Figure 4.3.

θ2

θ1

ε

ζ

α
β

γ

δ
α = (0, 1,−1) s−1t

β = (1, 0,−1) t

γ = (1,−1, 0) s

δ = (0,−1, 1) st−1

ε = (−1, 0, 1) t−1

ζ = (−1, 1, 0) s−1

Figure 4.3: Left: the wall-and-chamber decomposition of the space of characters,
with the generators of each generic cell depicted. Right: the corresponding element
of R[s±, t±].

Recalling the G action on X given by (4.1):

(b, c) · (x0, x1, x2, x3, x4, x5) =
(1

b
x0, bx1,

b

c
x2,

c

b
x3, cx4,

1

c
x5

)
,

the corresponding coaction map σ̂ : R→ R[s±, t±] is given by

f0 7→ s−1f0 f3 7→ s−1tf3

f1 7→ sf1 f4 7→ tf4

f2 7→ st−1f2 f5 7→ t−1f5
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We thus write down the partial compactifications SpecQi to use in the following

table.

Cell Qi ⊆ R[s±, t±] Cell Qi ⊆ R[s±, t±]

C1 R[s−1, t, σ̂(R)] C7 R[s−1t, t, σ̂(R)]

C2 R[s, s−1t, σ̂(R)] C8 R[s, t, σ̂(R)]

C3 R[st−1, t, σ̂(R)] C9 R[s, st−1, σ̂(R)]

C4 R[s, t−1, σ̂(R)] C10 R[st−1, t−1, σ̂(R)]

C5 R[s−1, st−1, σ̂(R)] C11 R[t−1, s−1, σ̂(R)]

C6 R[s−1t, t−1, σ̂(R)] C12 R[s−1, s−1t, σ̂(R)]

In this section, we investigate what these partial compactifications are geometrically,

and what the extended action and projection maps are. We do the generic Cell 8

as our first example as the generators of the submonoid for Q8 have the nicest

description. We then proceed with the remaining cells.

4.1.1.1 Cell 8

Recall that R = C[f0, . . . , f5]/J for J = (f0f1 = f2f3 = f4f5). In this case we take

Q8 = R[s, t, σ̂(R)] ⊆ R[s±, t±]

' C[s, t, f0, s
−1f0, f1, sf1, f2, st

−1f2, f3, s
−1tf3, f4, tf4, f5, t

−1f5]/J

' C[s, t, s−1f0, f1, f2, st
−1f2, f3, s

−1tf3, f4, t
−1f5]/J

' C[s, t, g0, f1, f2, g2, f3, g3, f4, g5]/K8 (4.2)

where K8 is the ideal of relations (sg0f1 = f2f3 = g2g3 = tf4g5, tg2 = sf2, sg3 =

tf3). The obvious ring maps induce the partial compactification diagram for X̃8 :=

SpecQ8

Q8 X̃8

R[s±, t±] R G×X X

π̃σ̃σ̂ π̂

π̂

σ̂ σ

π

i

Using the coordinates corresponding to (4.2), the partial compactification is the

following closed subvariety of A10:

X̃8 = {(h1, h2, c0, x1, x2, c2, x3, c3, x4, c5) ∈ A10 | h1c0x1 = x2x3 = c2c3 = h2x4c5,

h2c2 = h1x2,

h1c3 = h2x3}
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and the maps (of schemes) are given on closed points by

i(b, c, x0, x1, x2, x3, x4, x5) = (b, c, b−1x0, x1, x2, bc
−1x2, x3, b

−1cx3, x4, c
−1x5)

π̃(h1, h2, c0, x1, x2, c2, x3, c3, x4, c5) = (h1c0, x1, x2, x3, x4, h2c5)

σ̃(h1, h2, c0, x1, x2, c2, x3, c3, x4, c5) = (c0, h1x1, c2, c3, h2x4, c5).

A direct check verifies that everything in X̃8 with h1h2 6= 0 is in the image of i.

Clearly nothing with h1h2 = 0 is in this image, so the boundary ∂ = X̃8 \ i(G ×X)

is exactly this set of points. Under σ̃, all points in the boundary land in the unstable

locus Xus
8 , as expected.

We take our initial kernel to be the open restriction of (π̃, σ̃)∗OX̃8
to Xss

8 × X.

Defining X̃ss
8 as the fibre product of the following square on the right, we see that

our initial kernel is isomorphic to (π̃, σ̃)∗OX̃ss
8

by flat base change.

G×Xss
8 X̃ss

8 X̃8

Xss
8 ×Xss

8 Xss
8 ×X X ×X

(π,σ) (π̃,σ̃) (π̃,σ̃) (4.3)

Referring to the description of Xss
8 given on p.70, the set of points in X̃ss

8 which

land in Xss
8 under π̃ gives an explicit description of the closed points of X̃ss

8 ⊆ X̃8

as

X̃ss
8 = {(h1, h2, c0, x1, x2, c2, x3, c3, x4, c5) ∈ X̃8 | x1x3 6= 0 or x1x4 6= 0 or x2x4 6= 0}.

(4.4)

As all points in ∂ are mapped to the unstable locus under σ̃, the left square in (4.3)

is also fibre. Therefore the restriction of our initial kernel to Xss
8 × Xss

8 is the

equivariant diagonal. We have therefore constructed an extension of the

equivariant diagonal O∆G ∈ Db([Xss
8 ×Xss

8 /G ×G]) to the space of Fourier-Mukai

kernels, Db([Xss × X/G × G]). The construction of the kernels for each of the

other cells is identical, and in the rest of this section we state what each of the

partial compactifications X̃i are, as well as the corresponding extensions of the

action and projection maps.

4.1.1.2 Cell 1

In this cell our subalgebra Q1 ⊆ R[s±, t±] is given by

Q1 = R[s−1, t, σ̂(R)]

' C[s−1, t, f0, g1, g2, f3, f4, g5]/K1
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for K1 = (s−1f0g1 = s−1tg2f3 = tf4g5), and thus

X̃1 = {(h1, h2, x0, c1, c2, x3, x4, c5) | h1x0c1 = h1h2c2x3 = h2x4c5},

where the maps in the partial compactification diagram are given by

i(b, c, x0, x1, x2, x3, x4, x5) = (b−1, c, x0, bx1, bc
−1x2, x3, x4, c

−1x5)

π̃(h1, h2, x0, c1, c2, x3, x4, c5) = (x0, h1c1, h1h2c2, x3, x4, h2c5)

σ̃(h1, h2, x0, c1, c2, x3, x4, c5) = (h1x0, c1, c2, h1h2x3, h2x4, c5).

4.1.1.3 Cell 2

In this case we have

Q2 = R[s−1t, s, σ̂(R)]

' C[s, s−1t, g0, f1, g2, f3, f4, g5]/K2

for K2 = (sg0f1 = s−1tg2f3 = (s)(s−1t)f4g5), and thus

X̃2 = {(h1, h2, c0, x1, c2, x3, x4, c5) | h1c0x1 = h2c2x3 = h1h2x4c5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b, b−1c, b−1x0, x1, bc
−1x2, x3, x4, c

−1x5)

π̃(h1, h2, c0, x1, c2, x3, x4, c5) = (h1c0, x1, h2c2, x3, x4, h1h2c5)

σ̃(h1, h2, c0, x1, c2, x3, x4, c5) = (c0, h1x1, c2, h2x3, h1h2x4, c5).

4.1.1.4 Cell 3

In this case we have

Q3 = R[st−1, t, σ̂(R)]

' C[st−1, t, g0, f1, f2, g3, f4, g5]/K3

for K3 = ((st−1)tg0f1 = (st−1)f2g3 = tf4g5), and thus

X̃3 = {(h1, h2, c0, x1, x2, c3, x4, c5) | h1h2c0x1 = h1x2c3 = h2x4c5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (bc−1, c, b−1x0, x1, x2, b
−1cx3, x4, c

−1x5)

π̃(h1, h2, c0, x1, x2, c3, x4, c5) = (h1h2c0, x1, x2, h1c3, x4, h2c5)

σ̃(h1, h2, c0, x1, x2, c3, x4, c5) = (c0, h1h2x1, h1x2, c3, h2x4, c5).
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4.1.1.5 Cell 4

In this case we have

Q4 = R[s, t−1, σ̂(R)]

' C[s, t−1, g0, f1, f2, g3, g4, f5]/K4

for K4 = (sg0f1 = st−1f2g3 = t−1g4f5), and thus

X̃4 = {(h1, h2, c0, x1, x2, c3, c4, x5) | h1c0x1 = h1h2x2c3 = h2c4x5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b, c−1, b−1x0, x1, x2, b
−1cx3, cx4, x5)

π̃(h1, h2, c0, x1, x2, c3, c4, x5) = (h1c0, x1, x2, h1h2c3, h2c4, x5)

σ̃(h1, h2, c0, x1, x2, c3, c4, x5) = (c0, h1x1, h1h2x2, c3, c4, h2x5).

4.1.1.6 Cell 5

In this case we have

Q5 = R[s−1, st−1, σ̂(R)]

' C[s−1, st−1, f0, g1, f2, g3, g4, f5]/K5

for K5 = (s−1f0g1 = st−1f2g3 = s−1(st−1)g4f5), and thus

X̃5 = {(h1, h2, x0, c1, x2, c3, c4, x5) | h1x0c1 = h2x2c3 = h1h2c4x5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b−1, bc−1, x0, bx1, x2, b
−1cx3, cx4, x5)

π̃(h1, h2, x0, c1, x2, c3, c4, x5) = (x0, h1c1, x2, h2c3, h1h2c4, x5)

σ̃(h1, h2, x0, c1, x2, c3, c4, x5) = (h1x0, c1, h2x2, c3, c4, h1h2x5).

4.1.1.7 Cell 6

In this case we have

Q6 = R[s−1t, t−1, σ̂(R)]

' C[s−1t, t−1, f0, g1, g2, f3, g4, f5]/K6
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for K6 = ((s−1t)t−1f0g1 = s−1tg2f3 = t−1g4f5), and thus

X̃6 = {(h1, h2, x0, c1, c2, x3, c4, x5) | h1h2x0c1 = h1c2x3 = h2c4x5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b−1c, c−1, x0, bx1, bc
−1x2, x3, cx4, x5)

π̃(h1, h2, x0, c1, c2, x3, c4, x5) = (x0, h1h2c1, h1c2, x3, h2c4, x5)

σ̃(h1, h2, x0, c1, c2, x3, c4, x5) = (h1h2x0, c1, c2, h1x3, c4, h2x5).

4.1.1.8 Cell 7

In this case we have

Q7 = R[s−1t, t, σ̂(R)]

' C[s−1t, t, f0, g0, f1, g1, g2, f3, f4, g5]/K7

for K7 = (f0f1 = g0g1 = s−1tg2f3 = tf4g5, s
−1tf0 = tg0, tf1 = s−1tg1), and thus

X̃7 = {(h1, h2, x0, c0, x1, c1, c2, x3, x4, c5) | x0x1 = c0c1 = h1c2x3 = h2x4c5,

h1x0 = h2c0,

h1c1 = h2x1},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b−1c, c, x0, b
−1x0.x1, bx1, bc

−1x2, x3, x4, c
−1x5)

π̃(h1, h2, x0, c0, x1, c1, c2, x3, x4, c5) = (x0, x1, h1c2, x3, x4, h2c5)

σ̃(h1, h2, x0, c0, x1, c1, c2, x3, x4, c5) = (c0, c1, c2, h1x3, h2x4, c5).

4.1.1.9 Cell 9

In this case we have

Q9 = R[s, st−1, σ̂(R)]

' C[s, st−1, g0, f1, f2, g3, f4, g4, f5, g5]/K9

for K9 = (sg0f1 = st−1f2g3 = f4f5 = g4g5, st
−1g4 = sf4, sg5 = st−1f5), and thus

X̃9 = {(h1, h2, c0, x1, x2, c3, x4, c4, x5, c5) | h1c0x1 = h2x2c3 = x4x5 = c4c5,

h2c4 = h1x4,

h1c5 = h2x5},
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with

i(b, c, x0, x1, x2, x3, x4, x5) = (b, bc−1, b−1x0, x1, x2, b
−1cx3, x4, cx4, x5, c

−1x5)

π̃(h1, h2, c0, x1, x2, c3, x4, c4, x5, c5) = (h1c0, x1, x2, h2c3, x4, x5)

σ̃(h1, h2, c0, x1, x2, c3, x4, c4, x5, c5) = (c0, h1x1, h2x2, c3, c4, c5).

4.1.1.10 Cell 10

In this case we have

Q10 = R[st−1, t−1, σ̂(R)]

' C[st−1, t−1, f0, g0, f1, g1, f2, g3, g4, f5]/K10

for K10 = (f0f1 = g0g1 = st−1f2g3 = t−1g4f5, st
−1g0 = t−1f0, t

−1g1 = st−1f1), and

thus

X̃10 = {(h1, h2, x0, c0, x1, c1, x2, c3, c4, x5) | x0x1 = c0c1 = h1x2c3 = h2c4x5,

h1c0 = h2x0,

h2c1 = h1x1},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (bc−1, c−1, x0, b
−1x0, x1, bx1, x2, b

−1cx3, cx4, x5)

π̃(h1, h2, x0, c0, x1, c1, x2, c3, c4, x5) = (x0, x1, x2, h1c3, h2c4, x5)

σ̃(h1, h2, x0, c0, x1, c1, x2, c3, c4, x5) = (c0, c1, h1x2, c3, c4, h2x5).

4.1.1.11 Cell 11

In this case we have

Q11 = R[t−1, s−1, σ̂(R)]

' C[t−1, s−1, f0, g1, f2, g2, f3, g3, g4, f5]/K11

for K11 = (s−1f0g1 = f2f3 = g2g3 = t−1g4f5, s
−1g2 = t−1f2, t

−1g3 = s−1f3), and

thus

X̃11 = {(h1, h2, x0, c1, x2, c2, x3, c3, c4, x5) | h2x0c1 = x2x3 = c2c3 = h1c4x5,

h2c2 = h1x2,

h1c3 = h2x3},
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with

i(b, c, x0, x1, x2, x3, x4, x5) = (c−1, b−1, x0, bx1, x2, bc
−1x2, x3, b

−1cx3, cx4, x5)

π̃(h1, h2, x0, c1, x2, c2, x3, c3, c4, x5) = (x0, h2c1, x2, x3, h1c4, x5)

σ̃(h1, h2, x0, c1, x2, c2, x3, c3, c4, x5) = (h2x0, c1, c2, c3, c4, h1x5).

4.1.1.12 Cell 12

In this case we have

Q12 = R[s−1, s−1t, σ̂(R)]

' C[s−1, s−1t, f0, g1, g2, f3, f4, g4, f5, g5]/K12

for K12 = (s−1f0g1 = s−1tg2f3 = f4f5 = g4g5, s
−1g4 = s−1tf4, s

−1tg5 = s−1f5),

and thus

X̃12 = {(h1, h2, x0, c1, c2, x3, x4, c4, x5, c5) | h1x0c1 = h2c2x3 = x4x5 = c4c5,

h1c4 = h2x4,

h2c5 = h1x5},

with

i(b, c, x0, x1, x2, x3, x4, x5) = (b−1, b−1c, x0, bx1, bc
−1x2, x3, x4, cx4, x5, c

−1x5)

π̃(h1, h2, x0, c1, c2, x3, x4, c4, x5, c5) = (x0, h1c1, h2c2, x3, x4, x5)

σ̃(h1, h2, x0, c1, c2, x3, x4, c4, x5, c5) = (h1x0, c1, c2, h2x3, c4, c5).

4.1.2 The functors restrict to coherent derived categories

We now show that the functors given by the kernels we’ve just constructed restrict

to functors between the coherent derived categories.

Lemma 4.1.2.1. The partial compactifications we have just constructed each give a
kernel which is an extension of the relevant equivariant diagonal O∆G ∈ Db([Xss

i ×
Xss
i /G×G]).

Proof. The argument for each of the kernels is the same as we saw for X̃8. In each

case the kernel is given by (π̃, σ̃)∗OX̃ss
i

, where X̃ss
i is defined by the relevant fibre

diagram. As the boundary ∂ is mapped to the unstable locus under σ̃ in each case,

the following square is fibre
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G×Xss
i X̃ss

i

Xss
i ×Xss

i Xss
i ×X

(π,σ) (π̃,σ̃)

and the result follows by flat base change.

We now prove a useful lemma about the functors given by the kernels we have just

constructed.

Lemma 4.1.2.2. Each of the Fourier-Mukai transforms given by the kernels we have
just constructed maps the structure sheaf to the structure sheaf, i.e.

Φ(π̃,σ̃)∗OX̃ss
i

(OXss
i

) = OX

for all cells Ci.

Proof. Using the projection formula on the following Fourier-Mukai diagram

X̃ss
i

Xss
i ×X

Xss
i X

(π̃,σ̃)

we see that Φ(π̃,σ̃)∗OX̃ss
i

(OXss
i

) ' σ̃G∗ OX̃ss
i

, where (−)G refers to taking invariants

with respect to the left copy of G in the G×G-action. Observe that Γ(X̃ss
i ,OX̃ss

i
) '

Qi and X is affine, so computing the zeroth direct image R0σ̃G∗ OX̃ss
i

corresponds to

taking the degree (0, 0, ∗, ∗) part of Qi with respect to the grading shown in Figure

4.2. A direct check verifies that this is C[g0, . . . , g5]/(g0g1 = g2g3 = g4g5) ' R in each

case, and so R0σ̃G∗ OX̃ss
i
' OX . Computing the Čech resolution for generic cells using

the affine cover of X̃ss
i by three pieces1, we find that it is exact in degree p 6= 0, 1 and

thus all higher direct images Rpσ̃ for p ≥ 2 vanish [Har77, III, Proposition 8.7], so

in particular their degree (0, 0, ∗, ∗) parts are also zero. In degree 0 the cohomology

is Qi, which recovers our earlier computation. In degree 1 the cohomology is non-

zero, but nothing in it has degree (0, 0, ∗, ∗); therefore all direct images Rpσ̃G for

p ≥ 1 vanish. For one-dimensional cells the computation is similar, with the affine

cover given by two pieces.

1c.f. the description of X̃ss
8 on p.86. Here the affine cover by three pieces is given by x1x3 6= 0,

x1x4 6= 0 and x2x4 6= 0.
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Corollary 4.1.2.3. The functors given by these kernels restrict to functors between the
coherent derived categories.

Proof. As Db([Xss
i /G]) is generated by the structure sheaf with different equivariant

structures, we need only see where these are mapped to in Db
QCoh([X/G]). The

pullback of these structure sheaves to X̃ss
i corresponds to shifts of the grading in the

first two entries of the Z4-grading on Qi. The computation of the direct images is

now the same as the preceding lemma, except we take the (i, j, ∗, ∗)-graded part of

the cohomologies of the Čech resolution, for i, j ∈ Z. These are finitely generated,

hence the corresponding sheaves are coherent, and the result follows.

4.1.3 Kernels for maps from generic cells onto the walls

In the preceding section we determined kernels for the Fourier-Mukai transform

going from any cell intoDb([X/G]). To construct our schober we also require kernels

for the transforms Db([Xss
i /G]) → Db([Xss

j /G]) for Ci generic and Cj an adjacent

one-dimensional wall, and we obtain these by restrictions of the kernels we have

already determined, as follows. As we define these functors by mapping into the big

stack and then restricting, these kernels automatically restrict to functors between

the coherent derived categories. The geometry of these kernels is particularly nice,

as we now see.

4.1.3.1 Cell 7 to Cell 1

We do the example of Db([Xss
7 /G]) → Db([Xss

1 /G]). Recall that the kernel of the

transform Db([Xss
7 /G]) → Db([X/G]) was given by the open restriction of

(π̃, σ̃)∗OX̃7
to Xss

7 × X. We now further restrict this kernel along the open

immersion to Xss
7 × Xss

1 and define X̃ss
7,1 by the following fibre diagram. By base

change, this new kernel is the same as (π̃, σ̃)∗OX̃ss
7,1

.

X̃ss
7,1 X̃ss

7 X̃7

Xss
7 ×Xss

1 Xss
7 ×X X ×X

(π̃,σ̃) (π̃,σ̃) (π̃,σ̃)

i.e. we define the map Db([Xss
7 /G])→ Db([Xss

1 /G]) by the composition

Db([Xss
7 /G])→ Db([X/G])→ Db([Xss

1 /G])

where the second map is the obvious open restriction map. As X̃ss
7,1 can be intuitively

thought of as the points of X̃7 which land in Xss
7 × Xss

1 under (π̃, σ̃), an explicit
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description of the closed points of X̃ss
7,1 is as the following subset of the closed points

of X̃7:

X̃ss
7,1 = {(h1, h2, x0, c0, x1, c1, c2, x3, x4, c5) | i)x1x3 6= 0 or x3x4 6= 0 or x0x4 6= 0

ii)h1x3 6= 0 or h2c0x4 6= 0}

where the defining relations of X̃7 must also hold. The restricted morphism (π̃, σ̃) :

X̃ss
7,1 → Xss

7 × Xss
1 is a closed immersion. In the notation of Figure 3.5, which we

reproduce here for convenience, its image is given by ∆G∪(C×(B∪D)) ⊆ Xss
7 ×Xss

1 .

{(x0, 0, x2, 0, x4, 0)} {(0, x1, 0, x3, 0, x5)}

A
B

C
D

Figure 4.4: A reminder of the geometry of Xss
1 . When you move off the wall into

Cell 7, B and D become unstable.

The kernels for the remaining 11 maps from a generic cell to a bordering

one-dimensional wall are constructed by restricting in exactly the same way, and

we omit the precise details for brevity.

4.2 Weights of pullbacks and the shifting algorithm for

OXss

Let Cj ≤ Ci be two cells in the hyperplane arrangement shown in Figure 3.1. Then

Xss
i ⊆ Xss

j , and we now illustrate the process of extending structure sheaves OXss
i

to the derived category Db([Xss
j /G]). We do the example of Cell 7, and drop any

mention of the cell number in our notation where it’s not likely to cause confusion,

e.g. we may write Xss for Xss
7 . Computing possible extensions is a more involved

process than it was for the Pn example we did in Chapter 2, as there are four

unstable strata and we must extend iteratively for each of these in turn. Recall that
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in Section 3.5 we stratified the unstable locus into four disjoint strata

X = Xss ∪ S1 ∪ S2 ∪ S3 ∪ S4.

We extend iteratively by including one more unstable stratum each time:

Db([Xss/G]) Db([Xss ∪ S4/G]) Db([Xss ∪ S3 ∪ S4/G]) · · · Db([X/G]).

The first extension, where we extend our structure sheaf to some object living on

Xss
7 ∪S4 = Xss

1 , is the extension corresponding to moving from the generic cell onto

the wall given by Cell 1. The remaining three extensions correspond to moving from

this one-dimensional wall onto the dimension zero cell at the origin.

4.2.1 Extending the structure sheaf when moving onto a
one-dimensional wall

In this section we make the obvious initial choice of extension of OXss
7

to Db(Xss
1 )

given by OXss
1

, then determine its weights and conclude for which values of w this

extension lies in the window subcategory

Gw = {F ∈ Db([Xss
1 /G]) | µ(Z, λ,H∗(σ∗j∗F )) ≤ w < µ(Z, λ,H∗(σ∗j!F ))}

first defined on p.46. As we are dealing with one KN stratification, this window is

determined by a single choice of integer w ∈ Z. We now calculate the weights of

OXss
1

to see for which values of w this is the correct extension to take. Take the

following notation: Z = {(0, 0, 0, x3, 0, 0) | x3 6= 0}, S = {(x0, 0, 0, x3, 0, x5) | x3 6=
0}, λ = (t2n, t−n, t−n), with maps

Z S Xss
1

σ j

and j!
i(−) := RHomDb([U/G])(OSi , (−)|U ), where U ⊆ Xss

1 is open and contains S4

as a closed substack. As S ⊆ Xss
1 is closed, we take U = Xss

1 .

As σ∗j∗OXss
1

= OZ , this is a complex concentrated in degree zero, so there is only

one component of H∗(σ∗j∗OX) to consider. As Z = Spec(C[c±3 ]), we work at the

level of global sections. For the 1-parameter subgroup λ, the coaction

corresponding to the action map λ× Z → Z sends 1 7→ t0, i.e. the only λ-weight of

H∗(σ∗j∗OX) is zero.

We now consider j!OX = RHom[U/G](OS ,OX |U ). In Db([Xss
1 /G]) we have the

following bounded-above2 twisted equivariant Koszul complex, which is

quasi-isomorphic to OS:
2Here we are implicitly invoking the equivalence of categories between the bounded derived

category and the full subcategory of the unbounded derived category with bounded cohomology. See
e.g. Proposition 2.30 in [Huy06].
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. . . OU ⊗ χx1 OU ⊗ χx1x4 OU ⊗ χx1

⊕ ⊕ ⊕ OU ⊗ χtriv → 0.

. . . OU ⊗ χx4 OU ⊗ χtriv OU ⊗ χx4

x4

x1

x5

x1

x4

x1

x1

x5

x0

x4

x0

x5

x0

x4

As this is a locally free resolution, j!OXss
1

is the dual complex

OU ⊗ χx0 OU ⊗ χx0x5 OU ⊗ χx0 . . .

0→ OU ⊗ χtriv ⊕ ⊕ ⊕

OU ⊗ χx5 OU ⊗ χtriv OU ⊗ χx5 . . .

x4

x0

x5

x0

x4

x0

x1

x4

x5

x1

x4

x1

x5

x1

where we view this as a complex of OS-modules. When we dualise, the characters

are inverted. The cohomology of this complex is zero except in degree 1, where it’s

OS ⊗ χx0x5; thus j!OX ' (OS ⊗ χx0x5)[−1]. This is locally free as an OS-module,

and so pulling back along σ, we get the coaction with respect to the one-parameter

subgroup

C[f±3 ]→ C[f±3 ]⊗ C[t±]

1 7→ 1⊗ t2n

and thus the sole weight of H∗(σ∗j!OXss
1

) is 2n. Thus OXss
1

lies in Gw for

0 ≤ w < 2n.

We have just observed that the correct lifting of OXss
7

to Db([Xss
1 /G]) is the obvious

choice OXss
1

when 0 ≤ w < 2n. In fact the correct lifting to take when lifting the

structure sheaf to a larger derived category is always the structure sheaf when we

choose wk = 0 for all the unstable loci in the KN stratification. As we know that

this is precisely what the Fourier-Mukai kernels we have constructed do, we now

conjecture the following result.

Db([Xss
7 /G]) Gw

∼

for 0 ≤ w < 2n.

Conjecture 4.2.1.1. The kernels we constructed via partial compactification diagrams
in Section 4.1 correspond to the equivalences
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Db([Xss
i /G]) Gw

∼

where we choose wk = 0 for each of the relevant number of unstable strata.

Remark 4.2.1.2. The idea for proving this seems clear. In particular, we need to show

that our kernels live in the weight window G′w ⊆ Db
QCoh([Xss

i ×Xss
j /G × G]) with

respect to the KN stratification given by Xss
i ×Sk, where the Sk ⊆ Xus

i are the strata

which become semistable in Xss
j . What is currently missing is a (e.g. locally free)

resolution of our kernels, which would allow us to compute the pullbacks to the

fixed loci Xss
i × Zk needed to determine the weights. As we know that the functors

defined by our kernels restrict to functors between the bounded derived categories

of coherents, if we can verify that the kernels lie in G′w for w = (0, . . . , 0), then the

conjecture follows by [Hal15, Lemma 2.16].

4.2.2 The shifting algorithm for kernels

In Section 4.1 we wrote down partial compactifications, and used these to produce

Fourier-Mukai kernels for maps to larger GIT quotients. Once we have one such

kernel, we can obtain a whole family of them by running the shifting algorithm

for each choice of integers wk. As we have seen, actually running this algorithm in

practice is non-trivial, especially where there are multiple KN strata. We now outline

the process for these Fourier-Mukai kernels.

i) Pick a cell Ci with corresponding partial compactification X̃i, semistable locus

Xss
i and KN stratification {Si}ki=1. To summarise what we have already seen:

for our first extension, we have the diagram

X̃ss
i X̃i

Xss
i × (Xss

i ∪ Sk) X ×X

(π̃,σ̃) (π̃,σ̃) (4.5)

where X̃ss
i is defined to be the fibre product. Our initial candidate for the kernel

is (π̃, σ̃)∗OX̃ss
i

in Db
QCoh(Xss

i × (Xss
i ∪ Sk)). This is a valid initial candidate by

Lemma 4.1.2.1.

ii) In the running of the shifting algorithm, we pull our kernels back to the fixed

locusXss
i ×Zk and take the highest weight subcomplex E as appropriate. Doing

this in a practical sense requires some locally free resolution of our initial kernel.
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Xss
i × Zk Xss

i × Sk Xss
i × (Xss

i ∪ Sk)
ik

πk jk

iii) Once we have shifted our kernel to live in the correct weight window with

respect to wk ∈ Z, we use the following situation

Xss
i × Zk−1 Xss

i × Sk−1 Xss
i × (Xss

i ∪ Sk)
ik−1

πk−1 jk−1

to run the algorithm with respect to wk−1. Repeat this for all remaining wk.

If Conjecture 4.2.1.1 does not hold, we can obtain the correct kernel for w = 0 via

this process.

4.3 The H-schober

We are now in a position to construct our proposed schober. Recall the cells Ci
given by the wall and chamber decomposition in Figure 3.1 and the partial

ordering of the cells by inclusion of closures Ci ≤ Cj ⇔ Ci ⊆ Cj , along with the

corresponding GIT quotient stacks [Xss
i /G]. Our candidate for the schober is

shown in Figure 4.5. Let the γij be given by open subset restrictions and, for now,

let the δji : Db([Xss
i /G])

∼−→ Gw ⊆ Db([Xss
j /G]) be given by the inclusion as the

weight window with any choice of integers wi. By the definition of these functors,

it is clear that γijδji ' idDb([Xss
i /G]) and (δjiγij)|Gw ' idGw . As the γij are given by

open restrictions, the commutativity relations on the γij in Definition 1.4.0.3 are all

clear. The corresponding commutativity statement for the δji is only slightly more

complicated, and is the subject of the following lemma. In order for this to work,

we must globally decide on the values of the wk for each unstable stratum so that

the δji are compatible with one another.

Lemma 4.3.0.1. For the inclusion δji : Db([Xss
j /G])

∼−→ Gw ⊆ Db([Xss
i /G]) by any

globally fixed choice of numbers wk on the unstable strata, the commutativity condition
on the δji holds.

Proof. Let Cj be a generic cell with corresponding unstable strata {Sk}, so that

X = Xss
j ∪

⋃
k Sk. For Ci a neighbouring cell of dimension one, the map δji extends

any object to the semistable locus on the wall, which is the semistable locus in the

generic chamber union one unstable stratum, and runs the shifting algorithm so that

the extension lies in the correct weight window with respect to this one unstable

stratum. The subsequent extension given by δi0 extends the object to Db([X/G])
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Db(X ss7 )

Db(X ss12 ) Db(X ss1 ) Db(X ss2 ) Db(X ss8 )

Db(X ss6 ) Db(X ) Db(X ss3 )

Db(X ss11 ) Db(X ss5 ) Db(X ss4 ) Db(X ss9 )

Db(X ss10 )

Figure 4.5: Our candidate for constructing a schober from the McKay
correspondence. We denote the quotient stacks X ssi := [Xss

i /G]. Each arrow
↔ denotes a pair of functors, with one going in each direction. The functors
going outwards are restrictions to open subsets, and the functors going inwards
are the Kirwan surjectivity maps given as Fourier-Mukai transforms by the kernels
constructed in Section 4.1.

with respect to the remaining wk. The functor δj0 extends objects with respect to

the same wk as we have globally fixed these, so commutativity follows.

Lemma 4.3.0.2. Fixing a global choice of w, let Ci, Cj and Ck be three collinear cells.
Then there is a natural isomorphism between the flopping functors ϕik ' ϕjkϕij , i.e.
the collinear transitivity property holds.

Proof. The proof of this requires a case-by-case analysis. As we have globally fixed

the choices of wi, Lemma 4.3.0.1 holds. We reproduce the diagram showing the

labelling of the cells for convenience:
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θ1

θ00

1

2

3
4

5

6

7

8

9

10

11

12

Throughout, let Ci, Cj , Ck be three collinear cells. We shall refer to Case

(dimCi,dimCj ,dimCk), where the dimension refers to the dimension of the cell.

Denote by Giw ⊆ Db([X/G]) the window subcategory for Cell Ci for the globally

determined choice of weights w. By the inductive argument presented in [BKS18,

§8] it is sufficient to consider the following subcases:

i) The simplest of these subcases is where there is a direct relation on two of the

cells: for Ci ≥ Cj and any Ck,

ϕjkϕij ' γ0kδj0δij

' γ0kδi0

' ϕik

and for Cj ≤ Ck and any Ci then similarly

ϕjkϕij ' γjkγ0jδi0

' γ0kδi0

' ϕik

ii) Case (2, 1, 2) where the cells are neighbours, e.g. (C7, C2, C8). In this case it is

clear that the window subcategories Giw, G
k
w ⊆ G

j
w. Thus

ϕjkϕij ' γ0kδj0γ0jδi0

' γ0kδi0

' ϕik

where the second isomorphism follows as (δj0γ0j)|Gjw ' id
Gjw

.
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iii) Case (1, 2, 1) where the cells are neighbours, e.g. (C1, C7, C2). In this case, a

look at the strata involved confirms that Gjw = Giw ∩Gkw. Thus

ϕjkϕij ' γ0kδj0γ0jδi0

' γ0kδi0

' ϕik.

The crucial step here is clearly this second isomorphism. Here δj0γ0j is the

identity on elements of Gjw = Giw ∩ Gkw. On elements of Giw \ G
j
w, δj0γ0j is in

general not the identity, but the only modification it can make is on the support

of the single stratum in Xus
j \ Xus

i . But this is exactly the stratum we restrict

away from when we apply γ0k.

iv) The three remaining cases are: Case (1, 1, 1) where the cells are neighbours,

e.g. (C1, C2, C3); Case (2, 2, 2) where the cells are neighbours, e.g. (C7, C8, C9);

Case (2, 2, 2) where the cells are not neighbours, e.g. (C7, C8, C10). In each

of these cases the argument is the same as for the previous case: the only

modifications we make by doing this intermediate restriction and re-embedding

are on the support of a stratum we subsequently restrict away from. Thus

ϕjkϕij ' γ0kδj0γ0jδi0

' ϕik

in all the remaining cases. Invoking the induction argument of [BKS18, §8]

concludes the proof.

Form now on, let the δji be given by the Fourier-Mukai kernels we constructed in

Section 4.1. We conjecture the following result.

Conjecture 4.3.0.3. The Fourier-Mukai transforms given by the kernels we constructed
in Section 4.1 are the right adjoints of the open restriction maps γij .

Remark 4.3.0.4. In the definition of an H-schober we require that the pairs of

functors (γij , δji) form an adjoint pair. As adjoints are unique (up to isomorphism),

the isomorphisms

Db([Xss
i /G])

∼−→ Gw

can only be the right adjoint of the open restriction functor γij for at most one choice

of w.
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The following result shows that the flopping functors ϕij are well-defined, even if

the δji we have constructed are not the adjoints of the open restrictions.

Corollary 4.3.0.5. For δji given by the kernels we have constructed, the composition
γijδji for any Ci ≤ Cj is the identity.

Proof. This is a corollary to Lemma 4.1.2.1. The Fourier-Mukai kernel of γijδji is

just the restriction of the Fourier-Mukai kernel of δji. For δj0 this is the equivariant

diagonal by Lemma 4.1.2.1, and so the result follows. As the FMK for going from a

generic cell Ci onto a wall Cj was defined to be the restriction of the kernel for going

from Ci into C0, base change around the following diagram gives the remaining

cases.

G×Xss
i X̃ss

ij X̃ss
i

Xss
i ×Xss

i Xss
i ×Xss

j Xss
i ×X

(π,σ) (π̃,σ̃)

The schober conditions also require the flopping functors ϕij to be equivalences

for certain wall-crossings; we now consider these. In particular, we require wall-

crossing equivalences in the following two situations:

i) Wall-crossings from a generic chamber to a neighbouring generic chamber via

the intervening one-dimensional wall.

ii) Wall-crossings from a one-dimensional cell to the opposite one-dimensional cell

via the ‘wall’ given by the zero-dimensional cell at the origin.

We consider these two situations now.

The flopping functors for going from a generic chamber to an adjacent generic

chamber via the one-dimensional wall are known to be equivalences as this is a

balanced wall-crossing, and so any choice of integer wk for the one unstable

stratum gives an equivalence. The following lemma tells us what this equivalence

is for the kernels we have constructed.

Lemma 4.3.0.6. The flopping functors for crossing from a generic chamber to an
adjacent generic chamber via a one-dimensional wall are geometric spherical twists. In
particular, they are the twists around the spherical object OE , where E is the
exceptional P1 which becomes unstable as we cross the wall. In particular, these
flopping functors are equivalences.
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Proof. We do the example of crossing from Cell 7 to Cell 12 via Cell 1, with the
other generic wall crossings following by the same argument. We determine the
convolution of the Fourier-Mukai kernels. Recall the geometry of Xss

1 given by
Figure 3.5 on p.73. In the notation of this figure, B is the exceptional curve which
is semistable in Cell 12 but not Cell 7, and vice-versa for C.

X̃ss
7,1 Xss

7 ×Xss
1 ×Xss

12 G×Xss
12

Xss
7 ×Xss

1 Xss
7 ×Xss

12 Xss
1 ×Xss

12

(π̃,σ̃)

π12
π13

π23

Γ12
G

As we have already noted, X̃ss
7,1 = ∆7

G∪ (C× (B∪D)) ⊆ Xss
7 ×Xss

1 . Thus the kernel

of the convolution is the pushforward along π13 of the intersection of X̃ss
7,1×Xss

12 and

Xss
7 ×∆12

G insideXss
7 ×Xss

1 ×Xss
12. But this is just the structure sheaf of ∆G∪(C×B) ⊆

Xss
7 × Xss

12. Now, we invoke the fact that G equivariant sheaves on Xss
i are the

same as sheaves on [Xss
i /G] and, when i is a generic chamber there is a geometric

isomorphism

[Xss
i /G]

∼−→ Ymin

x̂ 7→ x

where x̂ denotes the orbit of a point x. Applying this isomorphism to both

components, ∆G ∪ (C ×B) ⊆ Xss
7 ×Xss

12 becomes ∆∪ (P1× P1), which is known to

be the Fourier-Mukai kernel of the geometric spherical twist.

Similarly, we expect the following result:

Conjecture 4.3.0.7. The flopping functors for crossing from a one-dimensional wall
to the opposite one-dimensional wall via the dimension zero cell are equivalences.

We now describe the kernel for the flopping functor corresponding to going from a
one-dimensional wall to the opposite one-dimensional wall via the zero-dimensional
cell at the origin, doing the example of Cell 1 to Cell 4. The kernel for this transform
is given by the convolution of the kernel we determined in Section 4.1 and the
equivariant graph:

X̃ss
1 ×Xss

4 Xss
1 ×G×Xss

4

X̃ss
1 Xss

1 ×X ×Xss
4 G×Xss

4

Xss
1 ×X Xss

1 ×Xss
4 X ×Xss

4

p q
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Base changing around the two squares, the convolution of the two kernels is given

by

πG13(p∗OX̃ss
1 ×Xss

4
⊗ q∗OXss

1 ×G×Xss
4

)

where πG13 refers to taking G-invariants with regard to the middle copy of G in the

G×G×G-action.

The main difficulty in showing that the functor induced by this kernel is an

equivalence is likely to be in showing that it is fully faithful. A possible way of

doing this would be to show that an analogue of the Bondal-Orlov criterion for

fully faithfulness holds for these quotient stacks; unfortunately the author is not

aware of such a statement existing in the literature in sufficient generality. In the

stacky setting, recent work of Lim and Polishchuk [LP20] has shown that the

Bondal-Orlov criterion holds for smooth and proper Deligne-Mumford stacks with

projective coarse moduli spaces. This is clearly not sufficient for our case as the

stacks corresponding to non-generic cells are not smooth, proper or

Deligne-Mumford, and the good moduli space is not projective. In the

non-equivariant setting, the most general statement of the Bondal-Orlov criterion

the author could find [Mar17] would still not be sufficient for our purposes, even

with a suitable equivariant modification. Here the statement holds for the source

variety being smooth quasi-projective, and still requires the target variety to be

projective, so both of our varieties cause issues.

A possible route forward is to take our flopping functor for the wall crossing, e.g.

ϕ14, compose it with its left/right adjoints and show that the kernel of this

composition is given by the equivariant diagonal.

4.4 Conclusions and further work

In this thesis we have considered the A2 quotient singularity C2/Z3, constructed a

candidate for an H-schober on the wall-and-chamber decomposition induced by the

corresponding VGIT problem, and verified the majority of the schober conditions.

There are three things that remain to be checked before we can definitively say

that our proposed schober is indeed one. These are given by the conjectures in this

chapter: it remains to show that the kernels we have constructed give the inclusion

as the weight window where we choose wk = 0 for all strata, that the adjoints

condition holds, and that the dimension one to dimension one wall-crossings via

the central stack are equivalences.
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Assuming that our expectations are correct and that these remaining conditions do

indeed hold, some possible avenues for future research directions are as follows:

i) Considering An singularities for n ≥ 2, there is again an obvious collection of

derived categories of semistable loci. In this case the semistable loci in generic

chambers are again the minimal resolution, which now involves a chain of n

rational curves. There is a corresponding wall-and-chamber decomposition

given by An root system lying on a hyperplane in Rn, and it seems reasonable

to expect that this situation would also produce H-schobers.

ii) In addition to this, it also seems likely that we should be able to produce

schobers for the remaining ADE-type surface singularities, i.e. to consider

constructing H-schobers on the wall-and-chamber space given by the root

systems for Dn (n ≥ 4) and the exceptional E6, E7 and E8.

iii) In the same way as Seidel and Thomas [ST01] observed a faithful action of the

braid group Bn+1 on the group of autoequivalences of the minimal resolution

of an An surface singularity, there should be a similar statement to be made

about the partial resolutions appearing in the corresponding An schober. This

should take the form of a statement about generalised braids, see e.g. [DeB19].

Generalised braids behave like the ordinary braid group, but we count strands

with multiplicities and allow them to join and split while keeping track of this

multiplicity. The endpoints of generalised braids therefore correspond to

partitions of n + 1 ∈ N; as they have multiple endpoints, generalised braids

form a category rather than a group. In our An schober situation the minimal

resolution would correspond to the trivial partition (1, . . . , 1), with the various

partial resolutions corresponding to the different non-trivial partitions.
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