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Preface

This thesis is divided into two parts. Part one is the major contribution of this thesis
and considers the topic of change-point detection. The majority of research in Part
one focuses on deriving certain quantities for a particular change-point detection
procedure. The derivation of these quantities relies on the ability to evaluate (or
approximate) complicated boundary crossing probabilities for a particular Gaussian
process. Part two is a topic of extra interest and studies the covering and quantiza-
tion of high dimensional sets. As the main problem, we consider the covering and
quantization of a d-dimensional cube by n balls with reasonably large d (10 or more)
and reasonably small n, like n = 100. When considering covering problems, the
full coverage is not enforced but instead, only 95% or 99% coverage is desired. The
results of Part two establish that e�cient covering schemes have several important
properties which are not seen in small dimensions and in asymptotical considera-
tions, for very large n. One of these properties can be termed `do not try to cover
the vertices' as the vertices of the cube and their close neighbourhoods are very hard
to cover and for large d there are too many of them. The structure and content of
this thesis is based on the eight published papers of the author; the relevant paper is
referenced at the start of each chapter. Let us discuss the structure in more detail.

Part one is comprised of Chapters 1− 6. Chapter 1 provides an introduction to
the change-point problem considered in this thesis and o�ers a survey of the current
state of the �eld. It also provides a survey of the main �ndings of the author and
can be used to summarise Part one. Chapter 2 studies boundary crossing probabili-
ties for a particular Gaussian process and a number of accurate approximations are
derived. One of the key techniques is to generalise the sequential analysis results
of David Siegmund. Chapter 3 studies constants related to this Gaussian process;
their existence was posed by Larry Shepp. Chapter 4 derives previously unseen
boundary-crossing probabilities which are necessary for evaluating the power of the
change-point procedures in continuous and discrete time; Chapter 5 focuses solely on
approximating power in discrete time. Chapter 6 discusses boundary-crossing prob-
abilities related to the popular Singular Spectrum Analysis change-point detection
procedure.

Part two is comprised of Chapters 7 − 9. Chapter 7 studies the covering and
quantization properties of a number of schemes/designs. For a particular random
design, approximations to these two quantities are o�ered. Chapter 8 focuses on
a particular strongly performing set of points strongly related to the checkerboard
lattice studied by John Conway and Neil Sloane; exact expressions for quantization
and accurate approximations for its covering properties are derived. In Chapter 9, a
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generalisation of results in Chapter 7 is presented.
In Figure 0.1, the dependence between the chapters of Part one is summarised.

If an arrow points from Chapter A to Chapter B, then some important results of
Chapter B are used within Chapter A. As previously mentioned, Chapter 1 acts as
both a literature review and summarises the main �ndings from Part one. As a
result, it is dependent on many later chapters. Although Chapter 6 is not directly
related to any of the previous Chapters 1-5, the change-point procedure studied in
Chapter 6 inspired the author's research in the area of change-point detection and
has some (weak) connections to the one studied in Chapters 2-5.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Figure 0.1: Dependence between chapters within Part one

In Figure 0.2, the dependence between the chapters of Part two is summarised.
The numerical results of Chapter 7 inspired the research conducted in Chapters 8
and 9 and is the reason for the dependence.

Chapter 7

Chapter 8

Chapter 9

Figure 0.2: Dependence between chapters within Part two

To ensure a good standard of reproducibility, the R code used to support the �nd-
ings of this thesis is available at https://github.com/JackNoonan/Change-point
(or can be obtained from the author by an email request at Noonanj1@cardi�.ac.uk).

2

https://github.com/JackNoonan/Change-point


Part I

Change-point detection
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Chapter 1

Online change-point detection for

a transient change

Abstract

In this chapter, a popular online change-point problem of detecting a tran-

sient change in distributions of independent random variables is considered.

This will be the main problem considered in Part one of this thesis. For this

change-point problem, several change-point procedures are formulated and some

advanced results for a particular procedure are surveyed. Some new approx-

imations for the average run length to false alarm are o�ered and the power

of these procedures for detecting a transient change in mean of a sequence of

normal random variables are compared.

1.1 Introduction

The subject of change-point detection (or statistical quality control) is devoted to
monitoring and detecting changes in the structure of a time series. This chapter and
Part one of this thesis considers a popular online change-point problem of detecting
a change in distribution of a sequence of independent random variables. Online
change-point problems are concerned with monitoring the structure of a random
process(es) whose observations arrive sequentially. For these problems, any good
monitoring procedure should reliably alert the user to unexpected changes as soon
as possible or with highest probability, subject to a tolerance on false alarms. In
this chapter, we will assume the distributions before and after a change-point have
explicit probability density functions. This is a common assumption in the �eld, see
for example [131, 141].

Let y1, y2, . . . be a sequence of independent random variables arriving sequentially.
The purpose of this chapter is to discuss tests for the hypothesis that yi (i = 1, 2 . . .)

are identically distributed with some probability density function (pdf) f(y) against
the alternative that at some unknown change point 0 ≤ ν <∞, the random variables
y1, y2, . . . , yν and yν+l+1, yν+l+2, . . . are identically distributed with density f(y) and
yν+1, yν+2, . . . , yν+l are identically distributed with pdf g(y) such that g(y) 6= f(y).
Here, l is length of the change-point period (signal) and can be known or unknown.
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Under a standard hypothesis testing framework, the null hypothesis is H∞ : ν =∞
and hence the pdf f(y) is the density of yi for all i = 1, 2, . . ..

The alternative hypothesis is Hν : 0 ≤ ν < l ≤ ∞ and therefore

Hν :

{
yi have density f(y) if i ≤ ν or i > ν + l

yi have density g(y) if ν < i ≤ ν + l

with i = 1, 2, . . .. Under Hν , the arrival time of the signal is ν + 1 (it is unknown).
Most classical results assume f and g are known completely; by this, we mean no
nuisance parameters are present in the distributions. In later sections, tests designed
to tackle the change-point problem with nuisance parameters are discussed.

A thorough introduction to the �eld of online (quickest) change-point detection
mainly for the case of l =∞ can be found in, for example, [4, 102, 131, 143]. Some
of the most popular online change-point algorithms used in practice are Shewhart's
X̄-chart [115], the CUSUM algorithm [87], the Shiryaev-Roberts procedure [109, 116]
and the Exponentially Weighted Moving Average (EWMA) chart [110]. The case of
l =∞, and hence when a change in distribution occurs it does so permanently, is by
far the most popular scenario considered in the change-point literature; a number of
in�uential papers are [37, 60, 68, 75, 92, 108]. The CUSUM and Shiryaev Roberts
procedures bene�t with their simplicity and proven optimality under suitable op-
timality criteria; these two procedures will be the focus of discussion for the case
l =∞. The case of �nite l, and hence when a change occurs it does so temporarily,
has seen considerable attention in the past, see [5, 6, 18, 33, 34, 39, 40, 59]. More
recently it has been the focus of attention in the papers of [83, 84, 145]. Examples of
areas where detecting a transient change in distributions is extremely important can
be found in radar and sonar [8, 101, 126], nondestructive testing [111], and medicine
[10]. Non-parametric online change-point detection methods have also become very
popular [15, 74]. For the state of the art techniques for multiple change-point detec-
tion, see [17, 25, 26, 56].

This chapter is organised as follows. In Section 1.2, we survey results for l =∞
and discuss known optimality results for the CUSUM and Shiryaev-Roberts proce-
dures. This section contains well known classical results but is included to introduce
the reader to change-point concepts that will be used when considering the transient
change-point problem. In Section 1.3, we assume l < ∞ and discuss a number of
online tests for transient changes; the likelihood ratio test providing the inspiration
behind all tests. In this section, we compare procedures when applied for detecting
a temporary change in mean of a sequence of Gaussian random variables. We also
apply tests for monitoring stability of components used in the Oil and Gas industry.

Throughout this chapter we shall use the notation Pr∞ and E∞ to denote proba-
bility and expectation under H∞. Under the alternative Hν , we shall use the notation
Prν and Eν to denote probability and expectation assuming the change-point occurs
at ν <∞.
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1.2 Permanent change in distributions

In this section, we assume l =∞; if a change occurs, it does so permanently. Suppose
y1, y2, . . . , yn have been sampled. The likelihood ratio for testing H∞ against Hν is

Λν,n =
n∏

i=ν+1

g(yi)

f(yi)

assuming ν < n, otherwise Λν,n = 1.

1.2.1 The CUSUM and Shiryaev-Roberts procedures

By maximising the statistic Λν,n over all possible locations of ν, we obtain the cu-
mulative sum (CUSUM) statistic

Vn := max
0≤ν≤n−1

Λν,n, n ≥ 1 . (1.2.1)

The CUSUM stopping rule (when to alert the user to a potential change-point) is

τV (H) := inf{n ≥ 1 : Vn > H} . (1.2.2)

An appealing property of statistic (1.2.1) is the recursive property

Vn = max{Vn−1, 1} ·
g(yn)

f(yn)
, V0 = 1 .

The threshold H in τV (H) is chosen on the users tolerance to false alarm risk. Page
[87] and Lorden [68] measured false alarm risk through the Average Run Length
to false alarm (ARL). The ARL criterion corresponds to choosing H such that
E∞τV (H) = C, where C is a pre-de�ned value chosen by the user but is typically
large. How to compute E∞τV (H) will be discussed later in this section.

The famous CUSUM chart of Page [87] introduces a re�ective barrier at zero.
This procedures is de�ned as:

Pn := max

{
Pn−1 + log

g(yn)

f(yn)
, 0

}
, P0 = 0 . (1.2.3)

The statistics (1.2.3) and log Vn are equivalent on the positive half plane and
hence the rule

τP (log(H)) = inf{n ≥ 1 : Pn > logH} ,

and τV (H) are equivalent for H > 1. The stopping rule τV is more general than τP
as thresholds H ≤ 1 are permissable. An approximation for E∞τP (H) for general
distributions f and g was derived in [100]. Let If := −E∞(log(g(y1)/f(y1))) and
Ig = E0(log(g(y1)/f(y1))) (to compute Ig we assume the change-point occurs at time
zero). Then

E∞τP (H) ' eH

Igζ2
− H

If
− 1

Igζ
. (1.2.4)
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Here the constant ζ is called the limiting exponential overshoot. Let
Zn =

∑n
i=1 log(g(yi)/f(yi)) be the random walk. For a non-negative barrier a, de�ne

the stopping rule τa := inf{n ≥ 1 : Zn > a} and de�ne the excess over the barrier
by κa := Zτa − a. Then ζ := lima→∞ E0[e−κa ]. It was shown in [117, Ch. VIII] that

ζ =
1

Ig
exp

{
−
∞∑
k=1

1

k
[Pr∞(Zk > 0) + Pr0(Zk ≤ 0)]

}
.

The approximation (1.2.4) seems extremely accurate. For example, suppose pre-
change observations are i.i.d. N(0, 1) random variables and post-change observations
are i.i.d. N(A, 1) for some known A > 0. We have

f(y) =
1√
2π

exp(−y2/2), g(y) =
1√
2π

exp(−(y −A)2/2) . (1.2.5)

For A = 1, Monte Carlo simulations with 100, 000 iterations provide E∞τP (4.39) =

500. Application of the approximation in (1.2.4) provides 498. The draw back of the
approximation in (1.2.4) is that ζ requires expensive numerical evaluation.

To construct the Shiryaev-Roberts (SR) procedure, de�ne the generalised Bayesian
detection statistic as:

Rn :=

n∑
ν=0

Λν,n . (1.2.6)

Then the SR test is:

τR(H) := inf{n ≥ 1 : Rn > H} ,

where H is the solution of E∞τR(H) = C for some pre-determined C. The SR
statistic (1.2.6) satis�es the following recurrence:

Rn = (1 +Rn−1) · g(yn)

f(yn)
, n ≥ 1, R0 = 0 .

1.2.2 Evaluating ARL for CUSUM and SR tests

Explicit expressions for E∞τV (H) and E∞τR(H) are not known. However, they
can be numerically obtained by numerically solving particular Fredholm integral
equations as proved in [77]. Here it was shown that E∞τV (H) and E∞τR(H) can
be computed by a uni�ed approach for general Markov statistics. Set H > 0. For a
su�ciently smooth positive valued function ξ and s ∈ [0, H], let

Sn = ξ(Sn−1) · g(yn)

f(yn)
, n ≥ 1, S0 = s ∈ [0, H]

be a Markov detection statistic with stopping rule

τS(H) := inf{n ≥ 1 : Sn > H} .

Let φ(s) = E∞(τS(H)) be the ARL (note the dependence on S0 = s) and set
F (x) = Pr∞(g(y1)/f(y1) ≤ x). Then φ(s) is the solution of the following Fredholm
integral equation:

φ(s) = 1 +

∫ H

0
φ(x)

[
d

dx
F

(
x

ξ(s)

)]
dx . (1.2.7)
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For the CUSUM and SR procedures we have ξ(s) = max(1, s) and ξ(s) = 1 + s,
respectively. To solve this integral equation, see [77].

Approximations for ARL of the CUSUM and SR procedures have been specif-
ically developed for the problem of detecting the change in mean of normal ran-
dom variables. Here we operate under (1.2.5). To approximate ARL for both the
CUSUM and SR procedures or to narrow the domain of search and more e�ciently
numerically solve the Fredholm equation (1.2.7), one could use the following simple
approximations developed in [129] and [93] respectively:

E∞τV (H) ' 2H/(Aκ2(A)) , (1.2.8)

E∞τR(H) ' H/κ(A) , (1.2.9)

where

κ(A) =
2

A2
exp

{
−2

∞∑
ν=1

1

ν
Φ

(
−A

2

√
ν

)}
and Φ(x) =

∫ x

−∞
f(y)dy .

The approximations in (1.2.8) and (1.2.9) are extremely accurate. In Table 1.1,
one can observe the high accuracy of approximation (1.2.8) for di�erent thresholdsH.
In fact, (1.2.9) is remarkably accurate and frequently leads to exact values of ARL.
The only slight inconvenience of both approximations is the numerical evaluation
required to compute κ(A). This quantity is frequently approximated, see [117, Ch.
IV], with κ(A) ' exp(−ρ · A), where the constant ρ is de�ned later in (1.3.16) but
can be approximated to three decimal places by ρ ' 0.583. Using this approximation
for κ in (1.2.8) and (1.2.9) still results in excellent approximations. In this table,
E∞τV (H) has been approximated Monte Carlo simulations with 100, 000 repetitions.

H 9.32 17.33 80.65 159.35 788.00
E∞τV (H) 50 100 500 1000 5000

Approximation (1.2.8) 59 110 513 1014 5018
(1.2.8) with κ(A) ' exp(−ρ ·A) 60 111 517 1023 5058

Table 1.1: Approximations for E∞τV (H) with A = 1.

1.2.3 Optimality criteria

Denote by ∆(C) the set of all stopping times of change-point procedures with ARL
of at least C. More precisely, ∆(C) := {τ : E∞τ ≥ C}, C > 1, where τ = τ(H)

is a stopping time for a sequential change-point procedure. A common criterion for
comparing change-point procedures when l =∞ is the supremum Average Delay to
Detection (ADD) introduced by Pollak [92]. De�ne ADDν(τ) := Eν(τ − ν|τ > ν).
Then

SADD(τ) := sup
0≤ν<∞

ADDν(τ) . (1.2.10)

An optimal change-point procedure would satisfy SADD(τopt) = infτ∈∆(C) SADD(τ)

for all C > 1. Finding an optimal procedure for this criterion is very di�cult, where
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in general only asymptotic optimality as C → ∞ (low false alarm rate) is known
[92]. Another popular criterion is the worst-case minimax scenario of Lorden [68]
de�ned as

L(τ) := sup
ν≥0

ess supEν [(τ − ν)+|y1, y2, . . . , yν ] . (1.2.11)

In other words, the conditional ADD is �rst maximized over all possible trajectories
of observations up to the change-point and then over the change-point. We refer
the reader to Section 6.3.3 of [131] for further discussions regarding this criterion.
Asymptotic optimality (as C →∞) of the CUSUM chart of Page was proved in [68].
It was subsequently proved in [75] that the CUSUM chart of Page is in fact optimal
under this criterion for every C > 1. We refer the reader to Section 6.3.3 of [131] for
further discussions regarding this criterion.

The SR procedure is optimal for every C > 1 under the Stationary Average
Delay to Detection (STADD) criterion. The STADD criterion rewards detection
procedures that detect the change as quickly as possible, at the expense of raising
many false alarms (using a repeated application of the same stopping rule). Formally,
the STADD criterion is de�ned as follows. Let τ1, τ2 . . . be a sequence of independent
copies of the stopping time τ . Let Tj = τ1 + τ2 + . . .+ τj be the time the jth alarm
is raised. Let Iν = min{j > 1 : Tj > ν}; this is the index of the �rst alarm which is
not false after Iν − 1 false alarms. Then

STADD(τ) := lim
ν→∞

Eν [TIν − ν] .

It was proved in [96] that the STADD criterion is equivalent to the Relative
Integral Average Detection Delay (RIADD) measure (see [77]):

RIADD(τ) :=

∑∞
ν=0 Eν [(τ − ν)+]

E∞[τ ]
.

It is discussed in [77] for both CUSUM and the Shiryaev�Roberts procedure, Lor-
den's essential supremum measure (1.2.11) and Pollak's supremum measure SADD
de�ned in (1.2.10) are attained at ν = 0, that is:

L(τV (H)) = SADD(τV (H)) = E0τV (H), L(τR(H)) = SADD(τR(H)) = E0τR(H) .

Similarly to the computation of E∞τV (H) and E∞τR(H), to obtain E0τV (H) and
E0τR(H) one can numerically solve a Fredholm equation. Instead of setting φ(s) =

E∞(τ(H)), let φ(s) = E0(τ(H)). Also set F (x) = Pr0(g(y1)/f(y1) ≤ x). Then from
[77], φ(s) is the solution of the Fredholm integral equation given in (1.2.7). The
computation of STADD requires solving a slightly more di�cult integral equation,
see [77] for more discussions.

For the Gaussian example considered in (1.2.5), the �ndings of [77] indicate
that for small values of A, say A = 0.01 , the CUSUM noticeably outperforms
the SR procedure under Lordens criterion. Vice versa, the SR procedure noticeably
outperforms CUSUM under the STADD framework. When the change in A becomes
large, say A = 1, the bene�ts a procedure has over the other diminishes.
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1.3 Transient change in distributions

In this section, we assume 1 ≤ l < ∞ and therefore study procedures aimed at de-
tecting a transient change in distributions. Suppose y1, y2, . . . , yn have been sampled.
The log likelihood ratio for testing H∞ against Hν is

Γν,ν+l := log Λν,ν+l =

ν+l∑
i=ν+1

log
g(yi)

f(yi)
. (1.3.1)

1.3.1 A collection of procedures

For l unknown, the log likelihood ratio statistic is obtained by maximising (1.3.1)
over all possible change point locations ν and transient change lengths:

Kn := max
0≤ν<ν+l≤n

Γν,ν+l , (1.3.2)

with the stopping rule

τK(H) := inf{n ≥ 1 : Kn > H} .

Note that in (1.3.2), we are maximising over l too. If there are no nuisance parameters
present in f and g that require estimation, the statistic (1.3.2) satis�es the recursive
property:

Kn = max{Kn−1, max
0≤ν≤n−1

Γν,n}, K0 = 0 . (1.3.3)

For large n, the statistic (1.3.2) is very expensive to compute despite the recursive
property given in (1.3.3). This is because in max0≤ν≤n−1 Γν,n, one has to maximise
over all possible change-point locations which is expensive for large n. For o�ine
change-point problems, this large computational expense may be an inconvenience
but it is not a fundamental problem as time is often not an issue. However, for online
procedures that require calculations in real time, the statistic Kn is not practical.
The assumption of no prior knowledge about the transient change length is unlikely.
One can imagine that some knowledge about the length of transient change is likely,
for example it may be bounded l0 ≤ l ≤ l1. From here on, this assumption will be
made. The log likelihood ratio statistic is:

Zn = Zn(l0, l1) := max
0≤ν<ν+l≤n
l0≤l≤l1

Γν,ν+l , (1.3.4)

with the stopping rule

τZ(H) := inf{n ≥ l1 : Zn(l0, l1) > H} . (1.3.5)

If no nuisance parameters require estimation, the statistic Zn satis�es the following
recursive property:

Zn = max

{
Zn−1, max

n−l1≤ν≤n−l0
Γν,n

}
, Zl1 = max

0≤ν<ν+l≤l1
l0≤l≤l1

Γν,ν+l . (1.3.6)
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This is much easier to compute than (1.3.2) for n large. If we make the additional
assumption that l is known exactly and is completely contained within the sample of
size n, i.e. ν + l ≤ n, then the MOSUM statistic is obtained by maximising (1.3.1)
over all valid change-point locations ν:

Mn := max
0≤ν≤n−l

Γν,ν+l , (1.3.7)

The MOSUM statistic can be obtained by setting l0 = l1 = l in (1.3.4). For this
reason, the statistic Zn can be called the generalised MOSUM procedure.

The stopping rule associated with MOSUM procedure is:

τM (H) := inf{n ≥ l : Mn > H} .

In what follows, we de�ne the MOSUM test for a general window length L, with
L a �xed positive integer. The reason for doing so is as follows. The MOSUM test
will be the main change-point algorithm theoretically studied in this chapter and
therefore the main algorithm studied in Part one of this thesis. We will be interested
in studying quantities like the loss of power, when incorrect information is provided
for the true l. Hence L could now be di�erent to l. Results for the likelihood ratio
test can still be obtained by setting L = l. De�ne the moving sums

Sn,L := Sn,L,L =
n+L∑
j=n+1

log
g(yi)

f(yi)
(n = 0, 1, . . .) .

Then the stopping rule τM (H) for a given window length L can be expressed as

τM (H) = τS,L(H) + L, where τS,L(H) := inf{n ≥ 0 : Sn,L > H} (1.3.8)

and therefore E∞τM (H) = E∞τS,L(H) + L. The moving sum Sn,L provided the
motivation for the MOSUM name.

For the transient change-point problem, the false alarm risk can be measured
through ARL. However, this is not the only approach taken in the change-point
literature. In [39] and [61] , the false alarm risk is measured through:

sup
k≥1

Pr∞(k ≤ τ < k +mα) ≤ α ,

where τ is a stopping rule, α is your false alarm tolerance (type 1 error) and
lim inf mα/| log(α)| > I−1

g but logmα = o(| logα|) as α→ 0; recall
Ig = E0(log(g(y1)/f(y1))). Another alternative to the usual ARL constraint has
been proposed in [129, 130]. Here, the suggested criterion is

sup
k≥1

Pr∞(τ < k +mα|τ ≥ l) ≤ α.

From now on, we measure false alarm risk through ARL E∞τ and simply refer to
[39, 61, 129, 130] for more discussions on other approaches. The majority of research
has focused on detecting transient changes in the mean of a sequence of Gaussian
random variables. The next section is devoted solely to this problem.

12



1.3.2 Detecting a transient change in Gaussian random variables

Consider the problem of detecting the change in mean of normal random variables.
Suppose pre-change observations are i.i.d. N(µ, 1) random variables and post-change
observations are i.i.d. N(µ + A, 1) for some A > 0. The values of µ, l and A may
be known or unknown, with µ and A playing the roles of nuisance parameters if
unknown. We have

f(y) =
1√
2π

exp(−(y − µ)2/2), g(y) =
1√
2π

exp(−(y − µ−A)2/2) . (1.3.9)

The o�ine version of this change-point problem is devoted to testing for change-
points in a sample of �xed length and has seen signi�cant attention in the past, see
[43, 64, 118, 119, 139]. An excellent survey of several statistics aimed at addressing
the o�ine problem can be found in [141]. Despite the fact Zn de�ned in (1.3.4)
is a generalisation of Mn given in (1.3.7), we will initially discuss recent results for
Mn. These results will provide inspiration for addressing the much more complicated
problems associated with Zn.

1.3.2.1 The MOSUM statistic

The MOSUM stopping rule given in (1.3.8) specialised for this Gaussian example is

τ ′M (H ′) = τ ′S,L(H ′) + L, τ ′S,L(H ′) = inf{n ≥ 0 : S′n,L > H ′}

with S′n,L = A

n+L∑
j=n+1

(yj − µ−A/2) .

Knowledge of A is required to set the ARL constraint E∞τ ′M (H ′) = C. However, if
we consider the stopping rule

τM (H) = τS,L(H) + L, τS,L(H) = inf{n ≥ 0 : Sn,L > H} (1.3.10)

with Sn,L =
n+L∑
j=n+1

yj ,

then one can show that τ ′M (H ′)
d
= τM (H ′/A + µL + AL/2). As a result, the stop-

ping rules τ ′M (H ′) and τM (H) are equal in distribution provided with E∞τ ′M (H ′) =

E∞τM (H) = C. The stopping rule τM (H) has the bene�t of not requiring knowledge
of A to set the ARL constraint. We will refer to the stopping rule τM (H) as the
MOSUM test in this Gaussian setting.

The problem of approximating E∞τS,L(H) assuming µ is known is a main consid-
ered in Chapter 2 (Section 1.3). Here will recall the main steps in the construction
and refer to Chapter 2 for the speci�c details. De�ne

h =
H − µL√

L
so that H = µL+ h

√
L

13



and consider the standardised versions of Sn,L:

ξn,L :=
Sn,L − E∞ Sn,L√

Var∞(Sn,L)
=
Sn,L − µL√

L
, n = 0, 1, . . . .

Then the stopping time τS,L(H) is equivalent to the stopping rule

τξ(h) := inf{n ≥ 0 : ξn,L ≥ h}

and hence E∞τξ(h) = E∞τS,L(H).
For any integer M ≥ 0, the discrete time process ξ0,L, ξ1,L, . . . , ξM,L is approxi-

mated by a continuous time analogue S(t) on [0, T = M/L]. The process S(t) is a
zero mean and variance one, stationary Gaussian process with correlation function
R(t) = max{0, 1 − |t|}. The ARL E∞τξ(h) then has the continuous-time approxi-
mation

E∞τξ(h) ∼= −L
∫ ∞

0
s dFs(h) , (1.3.11)

where FT (h) := Pr∞(S(t) < h for all t ∈ [0, T ]).
Explicit formulas for the probability FT (h) with T ≤ 1 were �rst derived in [122].

Here it was shown for Z = T/(2− T ):

FT (h) =

∫ h

−∞
Φ

(
h(Z+1)−x(−Z+1)

2
√
Z

)
ϕ(x)dx

− 2
√
Z

Z + 1
ϕ(h)

[
h
√
Z Φ(h

√
Z)+

1√
2π

(
√

2πϕ(h))Z
]
.

For T = 1 this reduces to

F1(h) = Φ2(h)− ϕ(h)
[
hΦ(h) + ϕ(h)

]
. (1.3.12)

For T > 1, formulae for FT (h) were �rst derived in [113]; these expressions take
di�erent forms depending on whether or not T is integer. The result of [113, p.949]
states than if T = n is a positive integer then

Fn(h) =

∫ h

−∞

∫
Dx

det[ϕ(yi − yj+1 + h)]ni,j=0 dy2 . . . dyn+1dx (1.3.13)

where y0 = 0, y1 = h − x, Dx = {y2, . . . , yn+1 | h − x < y2 < y3 < . . . < yn+1}. For
non-integer T ≥ 1, the exact formula for FT (h) is even more complex (the integral
has the dimension d2T e+ 1), see [113, p.950]. For T = 2, (1.3.13) yields

F2(h) = Φ3(h)− 2hϕ(h)Φ2(h) +
h2−3+

√
πh

2
ϕ2(h)Φ(h) +

h+
√
π

2
ϕ3(h)

+

∫ ∞
0

Φ(h− y)
[
ϕ(h+ y)Φ(h− y)−

√
πϕ2(h)Φ(

√
2y)
]
dy. (1.3.14)

The complicated nature of these expressions for FT (h) made them impractical
for the use in the ARL approximation (1.3.11). One simple yet still very accurate
approximation has the form:

FT (h) ' F2(h) [θ(h)]T−2 , where θ(h) = F2(h)/F1(h) (1.3.15)
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and the probabilities F1(h) and F2(h) are given in (1.3.12) and (1.3.14) respectively.
This approximation is derived in Chapter 3 of this thesis (see Approximation 4 in
that chapter). Here, ϕ(x) and Φ(x) are the standard normal density and distribution
functions respectively. The intuition behind the form of approximation (1.3.15) is
as follows, but more detail can be obtained in Chapter 3. Using laws of conditional
probability, we can express FT (h) as:

FT (h) = Pr∞(S(t) < h for all t ∈ (T − 1, T ] |S(t) < h for all t ∈ [0, T − 1])

× Pr∞(S(t) < h for all t ∈ (T − 2, T − 1] |S(t) < h for all t ∈ [0, T − 2])

× · · · × Pr∞(S(t) < h for all t ∈ (2, 3] |S(t) < h for all t ∈ [0, 2])

× F2(h) .

The process S(t) has a short memory of length one, i.e. S(t) and S(t−1) are indepen-
dent. As a result, under the condition S(t) remains under the barrier h, the process
reaches stationary behaviour quickly. Consequently, we make the approximation:

Pr∞(S(t) < h for all t ∈ (T − 1, T ] |S(t) < h for all t ∈ [0, T − 1])

' Pr∞(S(t) < h for all t ∈ (T − 2, T − 1] |S(t) < h for all t ∈ [0, T − 2])

' Pr∞(S(t) < h for all t ∈ (1, 2] |S(t) < h for all t ∈ [0, 2])

= θ(h).

The initial term F2(h) in (1.3.15) should not be reduced further and exists to allow
the process S(t) to reach stationarity.

The approximation given in (1.3.15) applied to (1.3.11) results in the following
continuous-time ARL approximation:

E∞τξ(h) ' − L · F2(h)

θ(h)2 log(θ(h))
.

This approximation was then corrected in Chapter 2, see Section 2.8, for discrete
time to improve results for small L. This amounted to correcting the probabilities
F1(h) and F2(h) for discrete time; this was performed by specialising results of D.
Siegmund; primarily on expected overshoot a discrete time normal random walk has
over a threshold. From [117, p. 225], this expected overshoot was computed as

ρ := −π−1

∫ ∞
0

λ−2 log{2(1− exp(−λ2/2))/λ2} dλ ' 0.582597. (1.3.16)

De�ne the probability

FL(h,M) := Pr∞

(
max

n=0,1,...,M
ξn,L < h

)
.

From Section 2.8 Chapter 2 (also [83, p. 18]):

E∞τS,L(H) = E∞τξ(h) ' − L · FL(h, 2L)

θL(h)2 log(θL(h))
(1.3.17)

with θL(h) =
FL(h, 2L)

FL(h, L)
,
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where the probabilities FL(h, L) and FL(h, 2L) can be approximated using the
formulas (2.4.19) and (2.4.20) of Chapter 2 respectively. Although Φ(x) is formally
a one-dimensional integral, in this chapter and thesis we adopt the convention that
it is explicit. This is because Φ(x) can be easily evaluated by all statistical software.
By using this convention, only a one-dimensional integral has to be numerically
evaluated for approximating FL(h, 2L). Tables 1.2 and Tables 1.3 demonstrate that
(1.3.17) using the formulas of Chapter 2 is extremely accurate.

h 2 2.25 2.5 2.75 3 3.25 3.5
(1.3.17) 126 217 395 759 1551 3375 7837
E∞τξ(h) 127 218 396 757 1550 3344 7721

Table 1.2: Approximations for E∞τξ(h) with L = 10.

h 2 2.25 2.5 2.75 3 3.25 3.5
(1.3.17) 471 791 1392 2587 5099 10695 23918
E∞τξ(h) 472 792 1397 2588 5085 10749 24131

Table 1.3: Approximations for E∞τξ(h) with L = 50.

For approximating the boundary-crossing probability FL(h,M) for all M , the
discrete time corrected form of (1.3.15) suggests using the approximation

FL(h,M) ' FL(h, 2L) [θL(h)]M/L−2 . (1.3.18)

This approximation is studied in Chapter 2 (see (2.4.21)), where one approxi-
mates FL(h, 2L) and θL(h) using (2.4.19) and (2.4.20) respectively. For a compre-
hensive assessment of the accuracy of this approximation, see Chapter 2.

1.3.2.2 The stopping rule τZ(H)

Here, we assume l is not known exactly but can be bounded between l0 and l1.
We will initially assume µ and A are known. The stopping rule given in (1.3.5)
specialised for this Gaussian example is tantamount to:

τZ(H) = inf

n ≥ l1 : max
0≤ν<ν+l≤n
l0≤l≤l1

Zn(l0, l1)

 , (1.3.19)

with Zn = Zn(l0, l1) = A
ν+l∑

j=ν+1

(
yj − µ−

A

2

)
Using the recursive property outlined in (1.3.6), for n > l1 the statistic Zn satis-

�es:

Zn = max {Zn−1, Sn,l0,l1} , with Sn,l0,l1 := max
n−l1≤ν≤n−l0

A

n∑
j=ν+1

(
yj − µ−

A

2

)

and Zl1 = max
0≤ν<ν+l≤l1
l0≤l≤l1

A
ν+l∑

j=ν+1

(
yj − µ−

A

2

)
.
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The short memory of the MOSUM statistic is paramount to the form of the
approximation given in (1.3.18). This short memory is also present within the gen-
eralised moving sum statistic Zn if one considers its recursive de�nition above. After
the initialising value Zl1 , Zn essentially becomes a moving sum process given by
Sn,l0,l1 . The process {Sn,l0,l1} exhibits a short memory, where dependence between
two values is lost after l1 observations i.e. Sn,l0,l1 and Sn+l1,l0,l1 are independent for all
n. This suggests that stationary behaviour of the combined process (Zl1 , {Sn,l0,l1}),
under the condition of not crossing the barrier H, should be attained quickly. One
would then anticipate that the form of approximations (1.3.17) and (1.3.18) would
also be suitable when applied to Zn. For M ≥ 0, introduce the probability:

Fl0,l1(H,M) := Pr∞(ZM+l1 < H) = Pr∞{Zl1 < H,Sj,l0,l1 < H ∀ j = l1 + 1, . . . l1 +M} .

Then one would expect (as an educated guess) the following approximation to be
accurate:

Fl0,l1(H,M) ' Fl0,l1(H, 2l1) [θl1(H)]M/l1−2 with θl1(H) =
Fl0,l1(H, 2l1)

Fl0,l1(H, l1)
, (1.3.20)

E∞τZ(H) ' l1 −
l1 · Fl0,l1(H, 2l1)

[θl1(H)]2 log(θl1(H))
. (1.3.21)

Unfortunately, the probability Fl0,l1(H;M) is complex and to the author's knowl-
edge no formula or approximations are known. The probabilities Fl0,l1(H; 2l1) and
Fl0,l1(H; l1) can be approximated via simulations; this is not too cumbersome as at
most 3l1 random variables need to be simulated at each iteration. As commonly
E∞τZ(H) = C with C large, the right tail of the distribution of the random vari-
able max{Zl1 ,maxj=0...M Sj,l0,l1} is of the most interest. Large deviation theory,
see [118, 139, 140], could be used to approximate the right tail of this distribution,
however numerical results indicate approximations of these kind would not be ac-
curate enough for general l0 and l1 (those that are not astronomically large). If
the prior knowledge that 1 ≤ l ≤ l1 is known, and an explicit formula to approx-
imate F1,l1(H;M) or E∞τZ(H) is desired, the following heuristic argument could
be used. Using inspiration from [43], a continuous time analogue of the probability
F1,l1(H;M) that allows for the application of existing large deviation results is:

Pr

 max
0≤s<t≤M+l1

0≤t−s≤l1

[
W (t)−W (s)− A

2
(t− s)

]
<
H

A

 , (1.3.22)

where W (t), 0 ≤ t < ∞, is standard Brownian motion. Ideally, a large deviation
approximation for (1.3.22) should be computed explicitly. However, for M = l1,
M = 2l1 and A large, say A ≥ 1, simulation studies indicate that the additional
maximisation constraint in (1.3.22) of 0 < t− s < l1 has very little in�uence on this
probability. If this constraint is ignored, the following large deviation result of [43]
can be applied.
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Lemma 1.3.1 Suppose γ > 0, m→∞ and u→∞ such that mγu−1 is some �xed

number in (1,∞). Then

Pr

{
max

0≤s<t≤m
[W (t)−W (s)− γ(t− s)] > u

}
= [2γ(mγ − u) + 3 + o(1)] exp(−2γu) .

To subsequently correct this result for discrete time, it is recommended in [43] to
increase the barrier H by 2ρ, where ρ is de�ned in (1.3.16). This results in the
approximations

F1,l1(H, l1) ' 1− (A(Al1 −H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}

F1,l1(H, 2l1) ' 1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)} .

As a result, using the approximations given in (1.3.20) and (1.3.21):

F1,l1(H,M) ' 1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}
[
θ̂l1(H)

]M/l1−2

(1.3.23)

with

θ̂l1(H) =
1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}

1− (A(Al1 −H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}
.

Also

E∞τZ(H) ' l1 −
l1[1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}]

[θ̂l1(H)]2 log(θ̂l1(H))
.

(1.3.24)

The accuracy of the approximation in (1.3.20) is demonstrated in Figure 1.1 for
di�erent l0, l1,M and A as a function of H. In this approximation, Fl0,l1(H, 2l1) and
Fl0,l1(H, l1) have been approximated using Monte Carlo simulations with 50, 000

repetitions. In this �gure, the probability Fl0,l1(H;M) is depicted with a thick
dashed black line and is obtained from 50, 000 simulations. The approximation in
(1.3.20) is depicted with a solid blue line. From this �gure, the high accuracy of
approximation (1.3.20) is clearly demonstrated. In Figures 1.2-1.3, we assess the
accuracy of the approximation in (1.3.23). In these �gures, for A = 1 and various
M , the probability F1,l1(H;M) is depicted with a thick dashed black line whereas
the approximation provided in (1.3.23) is shown with a solid red line. The number
present on the �gure is used to show the value of l1 used. From these �gures, we see
for large H the approximation in (1.3.23) is adequate. In Tables 1.4-1.5 the accuracy
of the approximations provided in (1.3.21) and (1.3.24) are assessed for di�erent
H. We see the approximation in (1.3.21) is extremely accurate for all H. For large
H, the approximation in (1.3.24) is fairly accurate and has the bene�t of explicit
evaluation. For small H and small A, the accuracy of (1.3.24) should deteriorate. In
these tables, E∞τZ(H) has been approximated using Monte Carlo simulations with
10, 000 repetitions and Fl0,l1(H, l1) and Fl0,l1(H, 2l1) used in approximation (1.3.21)
have been approximated using 50, 000 repetitions.
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Figure 1.1: Empirical probabilities of reaching the barrier H (dashed black) and
approximation (1.3.20) (solid blue). Left: A = 1, M/l1 = 4 with l0 = 25 and
l1 = 50. Right: A = 0.5, M/l1 = 25 with l0 = 10 and l1 = 20.

Figure 1.2: Empirical probabilities of reaching the barrier H (dashed black) and
corresponding versions of approximation (1.3.23) (solid red). Left: A = 1, M/l1 = 1
with (a) l1 = 10 and (b) l1 = 50. Right: A = 1, M/l1 = 2 with (a) l1 = 10 and (b)
l1 = 50.

H -5 -4.5 -4 -3.5 -3 -2.5 -2
(1.3.21) 126 145 166 196 228 268 319
E∞τZ(H) 127 144 167 194 229 272 323

Table 1.4: Approximations for E∞τZ(H) with l0 = 25, l1 = 50, A = 1.

H 2 2.25 2.5 2.75 3 3.25 3.5
(1.3.24) 30 42 59 81 111 148 195
(1.3.21) 41 53 70 91 120 156 205
E∞τZ(H) 41 54 70 91 120 157 207

Table 1.5: Approximations for E∞τZ(H) with l0 = 1, l1 = 10, A = 1.

1.3.2.3 The presence of nuisance parameters

Here we brie�y consider statistics aimed at detecting a transient change when certain
nuisance parameters require estimation. The brevity of this discussion is because (in
the authors opinion) in practice for online change-point problems, the behaviour of
the time series under the null hypothesis of no change-point is often observed for a
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Figure 1.3: Empirical probabilities of reaching the barrier H (dashed black) and
corresponding versions of approximation (1.3.23) (solid red). Left: A = 1, M/l1 = 5
with (a) l1 = 10 and (b) l1 = 50. Right: A = 1, M/l1 = 10 with (a) l1 = 10 and (b)
l1 = 50.

lengthy period of time. This allows for the accurate estimation of certain nuisance
parameters and they can therefore be assumed known. The counterargument to
this is that small trend changes or small undetectable changes may contaminate
estimates. For the situation of small trend changes, the use of singular spectrum
analysis (SSA) could be used to extract the trend allowing for the study of only the
residuals, see Section 1.3.5 where an approach similar to this is discussed. Many
of the following statistics appear in some form in [141] when addressing the o�ine
change-point problem, and a number of approximations for the false alarm error are
provided. The log likelihood ratio given in (1.3.1), where f and g are given in (1.3.9),
is

Γν,ν+l = A

ν+l∑
j=ν+1

(
yj − µ−

A

2

)
.

Using motivation from [64], if µ is unknown, l is unknown but bounded l0 ≤ l ≤ l1
and A is known, then one can replace µ with its maximum likelihood estimator under
H∞; µ̂ :=

∑n
i=1 yi/n to obtain:

Z1
n := max

0≤ν<ν+l≤n
l0≤l≤l1

A

ν+l∑
j=ν+1

(
yj − µ̂−

A

2

)
.

In [118], µ was replaced with its average over the null and alternative hypotheses
to obtain the true likelihood ratio statistic:

Z2
n := max

0≤ν<ν+l≤n
l0≤l≤l1

A

ν+l∑
j=ν+1

(
yj − µ̂−

A

2

(
1− l

n

))
.

If µ and A are both unknown, the square root of the log likelihood ratio statistic
is:

Z3
n := max

0≤ν<ν+l≤n
l0≤l≤l1

(∑ν+l
j=ν+1 yj

)
− lµ̂√

l(1− l
n)

.
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The statistic Z3
n is also studied in [106, p. 497] for detecting a transient change

in mean of random variables in an o�ine setting. Here the statistic is formulated
without likelihood arguments and is therefore used when yj are not necessarily Gaus-
sian. In [106], the authors view the change-point statistic as a discretizations of some
Holder norms or semi-norms allowing them to obtain limiting distributions under the
null hypothesis of no change in mean.

Instead of testing for the existence of a single transient change in the mean, the
problem of detecting multiple changes in the means of i.i.d. random variables has
been studied in [23]. Here, a MOSUM-like statistic is used for detecting any possible
number of changes in a sample of �xed length n and the values of the mean after the
change-point do not necessarily have to be known. This can be seen as a signi�cant
generalisation of the problems considered in this chapter and in [141], if one considers
only the o�ine setting. The statistic studied in [23] is proportional to the following
quantity:

max
L≤ν≤n−L

|Tν,n(L)|, (1.3.25)

with

Tν,n(L) =
1√
2L

(
ν+L∑
i=ν+1

yi −
ν∑

i=ν−L+1

yi

)
.

The statistic Tν,n(L) has a simple interpretation of comparing at every time
point L ≤ ν ≤ n−L the mean of the subsample yν−L+1, . . . , yν with the mean of the
subsample yν+1, . . . , yν+L. Naturally, a large di�erence between the two means (the
sign is irrelevant because of the absolute value in (1.3.25)) would indicate a change at
this point. As mentioned in [23], at a point ν this statistic is similar to the likelihood
ratio statistic for the sample yν+1, . . . , yν+L at the potential change-point ν. The
asymptotic behaviour of a normalised form of the statistic in (1.3.25) as n → ∞ is
given Theorem 2.1 of [23] (here we are ignoring a number of technical details) and
is shown to follow a Gumbel extreme value distribution. The Gumbel extreme value
distribution for the MOSUM test given in (1.3.10) will be mentioned in Section 2.7
of Chapter 2.

For the statistics considered in this section, it is not obvious how one can translate
the o�ine change-point results of [23, 43, 64, 106, 118, 119, 139] to address the online
change-point problem in the presence of nuisance parameters.

1.3.3 Optimality criteria

For online detection of transient changes, optimality criteria like (1.2.10) and (1.2.11)
do not have much meaning as the change in distributions is not permanent (signal
can be missed). Instead, optimality involving the maximisation of the probability of
detection under a constraint on the false alarm risk is more appropriate, see [3, 41].
One could use a worst-case criterion of the form:

inf
ν

Prν{τ(H)− ν <T | τ(H)>ν} , (1.3.26)
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where T > 1 is the maximum length of time after the change-point occurs that it
must be detected; this is problem speci�c and is therefore chosen by the user. By
imposing the condition of a long run with no false alarms, another possible criterion
is

lim
ν→∞

Prν{τ(H)− ν <T | τ(H)>ν}. (1.3.27)

Using ARL as the measure of false alarm risk, a stopping rule τ ∈ ∆(C) is then
optimal for a given C if it maximises (1.3.26) or (1.3.27); recall ∆(C) = {τ : E∞τ ≥
C}, C > 1.

1.3.3.1 MOSUM procedure

For the MOSUM procedure given in (1.3.10), the quantity (1.3.27) is the focus of
study in Chapter 5 and builds on the continuous time results the will be demonstrated
in Chapter 4. For T = l + L, the quantity (1.3.27) is equivalent to:

PS(H,A,L) := (1.3.28)

lim
ν→∞

Prν{Sn,L>H for some n∈ [ν ′+1, ν+l−1] | τS,L(H)>ν ′}.

with ν ′ := ν − L.
Formally, we require ν → ∞ in (1.3.28). This is to ensure that the sequence

of moving sums {Sn,L}n reaches the stationary behaviour under the null hypothesis
and given that we have not crossed the threshold H. However, as shall be dis-
cussed in Chapters 4 and 5, this stationary regime is reached very quickly and in all
approximations it is enough to only require ν ≥ 2L.

The reasoning behind the choice T = l+L is as follows. Assume Hν with ν <∞,
and that ν is suitably large. If the barrier H is reached for any sum Sn,L with
n ≤ ν ′ then, since there are no parts of the signal in the sums S0,L, . . . Sν′,L, we
classify the event of reaching the barrier as a false alarm. Each one of the sums
Sν′+1,L, . . . , Sν+l−1,L has mean larger than Lµ as it contains at least a part of the
signal. Reaching the barrier H by any of these sums will be classi�ed as a correct
detection of the signal. If neither of these sums reaches H, then we say that we failed
to detect the signal and further events when Sn,L ≥ H with n ≥ ν + l will again be
classi�ed as false alarms. In Figure 1.4 we display the values EνSn,L as a function of
n.

De�ne the function

Q(n;A,L, ν′) :=


0 for n ≤ ν′ or n ≥ ν + l

A(n− ν′) for ν′ < n ≤ ν′ + min(l, L)

Amin(l, L) for ν′+min(l, L) < n ≤ ν′+max(l, L)

A(L+ l + ν′ − n) for ν′ + max(l, L) < n ≤ ν + l − 1 .

Then Figure 1.4 is also a plot of µL + Q(n;A,L, ν ′). By subtracting EνSn,L from
the threshold H and standardising the random variables Sn,L the power of the test
given in (1.3.28) can be expressed in terms of probability under H∞:

Pξ(h,A,L) :=

lim
ν→∞

Pr∞

{
ξn,L>h−

Q(n;A,L, ν ′)

σ
√
L

for some n∈ [ν ′+1, ν+l−1]

∣∣∣∣ τξ(h)>ν ′
}
,
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Figure 1.4: EνSn,L as a function of n

where PS(H,A,L) = Pξ(h,A,L). Recall the relation H = µL + h
√
L. To approx-

imate Pξ(h,A,L), the approach taken in Chapter 4 (and [84]) was similar to the
approach taken to approximate ARL in Section 1.3.2.1. The approach is as follows.
We �rstly approximate the problem in the continuous-time setting and compute
probabilities for the Gaussian process S(t). Then, use the results of D. Siegmund to
correct the continuous time probability for discrete time. Fix γ = A

√
L, κ = ν ′/L,

λ = l/L and de�ne the function

Q(t; γ, κ, λ) =


0 for t ≤ κ or t ≥ κ+ 1 + λ.

γ(t− κ) for κ < t ≤ κ+ min(1, λ)

γmin(1, λ) for κ+ min(1, γ) < t ≤ κ+ max(1, λ)

γ(1 + λ+ κ− t) for κ+ max(1, λ) < t ≤ κ+ 1 + λ .

The di�usion approximation for the power of the test is

P(h,A) := (1.3.29)

lim
κ→∞

Pr∞{S(t) > h−Q(t; γ, κ, λ) for some t ∈ [κ, κ+ 1 + λ] | τ̃(h) > κ},

where τ̃(h) = inf{t > 0 : S(t) > h}. We refer to Lemma 5.4.1 in Chapter 4 for
more details about this approach. That is, by assuming L → ∞, we make the
approximation

Pξ(h,A,L) ∼= P(h,A) .

The complexity of computation of the di�usion approximation P(h,A) and its
discrete-time corrected version depends on the choice of L in comparison to l. Here,
we will only consider the scenario of λ = l/L = 1 which corresponds to the case of l
known at the MOSUM construction stage. The two other cases of λ > 1 and λ < 1

are studied in Chapter 4.
For λ = 1, the di�usion approximation for Pξ(h,A,L) given in (1.3.29) reduces

to

P(h,A)= (1.3.30)

lim
κ→∞

Pr∞
{
S(t) ≥ h−Q(t; γ, κ) for some t∈ [κ, κ+ 2]

∣∣ τ̃(h) > κ
}
,

where Q(t; γ, κ) = γmax {0, 1− |t− (κ+ 1)|}. The barrier h−Q(t; γ, κ) is depicted
in Figure 1.5.
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Figure 1.5: Barrier h − Q(t; γ, κ)
for λ = 1.

h

1 2 30

h+γ−γt h−3γ+γt

h−γ

t

Figure 1.6: Barrier
B(t;h, 0,−γ, γ).

The probability (1.3.30) is considered in Chapter 4, where approximations accu-
rate to more than 4 decimal places are developed. De�ne the following two condi-
tional probabilities:

Fh,0(1|x) := Pr∞(S(t) < h for all t ∈ [0, 1] | S(0) = x) ,

Fh,0,−γ,γ(3|x) := Pr∞(S(t) < B(t;h, 0,−γ, γ) for all t ∈ [0, 3] | S(0) = x),

where the barrier B(t;h, 0,−γ, γ) is de�ned as

B(t;h, 0,−γ, γ) =


h, 0 ≤ t ≤ 1

h− γ(t− 1), 1 < t ≤ 2

h− γ + γ(t− 2), 2 < t ≤ 3

0 otherwise,

and is depicted in Figure 1.6. From (4.5.7) in Chapter 4 we obtain

P(h,A) ∼= 1−
Fh,0,−γ,γ(3|0)

Fh,0(1|0)
, (1.3.31)

where

Fh,0(1 |x) = Φ(h)− exp
(
−(h2 − x2)/2

)
Φ(x)

and

Fh,0,−γ,γ(3 |x) =
eγ

2/2

ϕ(x)

∫ ∞
−x−h

∫ ∞
x2−h+γ

e−γ(x3−x2)dx3dx2 ×

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+γ) Φ(−x3−2h+γ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+γ) Φ(−x−x3−h+γ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+γ) Φ(x2−x3+γ)

ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2) ϕ(h) Φ(h)

.
To compute the approximation (1.3.31) one needs to numerically evaluate a two-

dimensional integral which is a routine problem for modern computers.

24



Correcting approximation (1.3.31) for discrete time can be performed in the same
manner as correcting the ARL approximations in Section 1.3.2.1. This results in the
approximation

Pξ(h,A,L) ∼= 1−
FhL,0,−γ,γ(3|0)

FhL,0(1|0)
, where hL := h+ ωL, ωL :=

√
2ρ/
√
L. (1.3.32)

The quantity ωL corresponds to the specialised discrete time correction of D.
Siegmund (see Section 2.4.5.2 in Chapter 2 and/or Section 5.4.3.2 in Chapter 5).

In Figures 1.7, the thicker black dashed line corresponds to the empirical values
of the boundary crossing probability Pξ(h,A,L) computed from 100, 000 simulations
with di�erent values of L and γ, where µ = 0. The solid red line corresponds to
the approximation in (1.3.32). The dot-dashed blue line corresponds to the di�usion
approximation given in (1.3.31). The axis are: the x-axis shows the value of γ. The
y-axis denotes the probabilities of reaching the barrier. The graphs, therefore, show
the empirical probabilities of Pξ(h,A,L) and values of approximation (1.3.32).

Figure 1.7: Empirical probabilities of Pξ(h,A,L) (thick dashed black) and its Ap-
proximation 1 (solid red) for two di�erent values of h. Left: h = 3. Right: h = 4.

From Figure 1.7, we see that approximation (1.3.32) is very accurate even for
a very small L = 5. We also see the signi�cance of the discrete-time correction;
whilst the di�usion approximation provides sensible results should you compare it
with L = 100, for L = 5 the di�usion approximation is very far o�.

1.3.4 Comparison of tests

In this section, we compare the power of the MOSUM test in (1.3.10) against the
generalised MOSUM statistic (1.3.19) and the CUSUM test given in (1.2.2) spe-
cialised for this Gaussian example when used to detect a transient change. Further
comparisons will be made in Section 5.5 of Chapter 5. The CUSUM statistic in
(1.2.1) can be expressed as:

Vn = max
0≤ν≤n−1

n∏
j=ν+1

exp

(
(yj − µ)2 − (yj − µ−A)2

2

)
,

with the CUSUM test being

τV (H) = inf{n ≥ 1 : Vn > H} .
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(The choice of H will be discussed shortly.) Secondly, but also simultaneously, we
compare the power of the MOSUM test as λ = l/L varies in [0.5, 2]; the purpose is
to demonstrate when the generalised MOSUM statistic becomes bene�cial when the
exact value of l is unknown and we make a potentially poor guess in the MOSUM
test. This corresponds to a reasonable choice of l/l0 = 2 and l/l1 = 0.5. Here, we
shall consider the power criterion given in (1.3.27) and set T = 2l. That is, we want
to detect the presence of the change point within 2l− 1 after its occurence. For the
MOSUM test, the power is then

PS(H1, A, L) :=

lim
ν→∞

Prν{Sn,L>H1 for some n∈ [ν − L+1, ν− L+2l−1] | τS,L(H1)>ν − L}.

For the generalised MOSUM test, the power is

PZ(H2, A, l0, l1) :=

lim
ν→∞

Prν{Zn(l0, l1)>H2 for some n∈ [ν +1, ν+2l−1] | τZ(H2)>ν}.

The power of the CUSUM test for the transient change considered in then equivalent
to

PV (H3, A) := lim
ν→∞

Prν{Vn>H3 for some n∈ [ν +1, ν+2l−1] | τV (H3)>ν}.

To compare the three tests, the thresholds H1, H2 and H3 have been set such that
E∞τM (H1) = E∞τZ(H2) = E∞τV (H3) = 500. Determination of H1 for MOSUM
has been computed using the accurate approximation in (1.3.17). For the generalised
MOSUM procedure, H2 is found via Monte Carlo simulations with 50, 000 repeti-
tions. Determination of H3 for CUSUM was obtained using tabulated values given
in [77, p. 3237].

In the �rst example shown in Figure 1.8 (left), we have set A = 1 and l = 10. For
the MOSUM test, we consider values of L ∈ [5, 20] to ensure λ ∈ [0.5, 2]. For each
λ, the values of PS(H1, A, L) can be accurately approximated using the results of
Chapter 5 or via Monte Carlo methods and are displayed with a solid black line. The
dashed orange line depicts PZ(H2, A, 5, 20) which corresponds to prior knowledge
that l is between [5, 20]. The shorter dashed blue line corresponds to PV (H3, A)

which has been obtained via Monte Carlo simulations. In Figure 1.8 (right), we set
A = 0.5 and l = 20. For the MOSUM procedure, we consider values of L ∈ [10, 40]

to ensure λ ∈ [0.5, 2]. In this �gure, the dashed orange line depicts PZ(H2, A, 10, 40)

which corresponds to prior knowledge that l is between [10, 40]. The shorter dashed
blue line corresponds to PV (H3, A) obtained via Monte Carlo simulations. In all
Monte Carlo simulations, we have used 50,000 repetitions.

From Figure 1.8 (left) and (right), one can observe the advantage of knowing
l since the largest value of PS(H1, A, L) is the largest power of all three tests and
is obtained for λ = l/L = 1. In these �gures, the values of λ = l/L such that
PS(H1, A, L) exceeds PZ(H2, A, 5, 20) (left) and PZ(H2, A, 10, 40) (right) shows the
freedom in the choice of L such that when l is unknown, you still bene�t over only
assuming l is bounded (similarly for CUSUM case when considering the dashed blue
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Figure 1.8: Left: Power of three tests with A = 1 and l = 10 and ARL= 500. Right:
Power of three tests with A = 0.5 and l = 20 and ARL= 500.

line). From these �gures it is clear that unless you are very fortunate in choosing L
close to l for the MOSUM test, one should use the generalised MOSUM test if A is
known. Unfortunately, there are no convenient analytic results for this test. More-
over, both the generalised MOSUM procedure and CUSUM procedures require the
additional knowledge of A; this is not true for MOSUM. For the choice of parameters
considered in both examples, the additional knowledge of a transient change leads
to obvious bene�ts in power; those is seen by comparing the generalised MOSUM
orange lines with the blue CUSUM lines. Of course, PZ(H2, A, l0, l1)→ PS(H1, A, l)

as l0, l1 → l.

1.3.5 An application to real world data

Hydrostatic pressure testing is important safety precaution for the Oil and Gas indus-
try, see [70]. Pressure testing is performed to con�rm a pressure containing system is
structurally sound and not leaking. Tests are performed by increasing the pressure
in the system, expanding the pressure body, until the pressure reaches a pre-de�ned
value typically equal to or larger than the body rated design pressure, then holding
it there for a long enough time period to con�rm there are no leaks, until eventually
releasing the pressure. When performing tests o�shore on �oating Vessel/Drilling
Rigs (Rig) this is complicated by the Rig's movement due to the ocean waves, which
introduce nearly sinusoidal �uctuations in pressure. Many of these tests are per-
formed in real time and in parallel. Locating automatically when a test has been
performed is essential for pressure analysis to determine if a leak is present and this
is not obvious when noise is large. Typical example data is shown in Figure 1.9. Note
that the data motivating this section is con�dential and cannot be disclosed here.
As a result, all tests that are performed are �ctitious. When performing pressure
tests, the hold periods can di�er in length and amplitudes (pressure).

A sensible way of modelling the data under the null hypothesis of no pressure
test could be zt = st + yt, where st represents the signal introduced by the wave
motion and yt can be modelled as i.i.d. N(µ, σ2) and re�ects the random noise that
is present in the system. In most scenarios, there is signi�cant pre-test data so st, µ
and σ can be estimated with great accuracy and therefore assumed known. How
to estimate st or in general how to remove all main components of a signal leaving
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Figure 1.9: Typical pressure data

only noise can be performed using Singular Spectrum Analysis, see [35, 36]. When
a pressure test begins, this can be re�ected with a change in mean of the yt; that is,
under a pressure test Eyt = µ+ A. The value of A is often constant, but can di�er
between tests and is generally unknown. Each test can di�er in duration but typical
lengths vary between l ∈ [50, 100] units of time. One has to detect a transient change
in mean of yt = zt − st. The behaviour of zt − st is shown in Figure 1.10 (left). In
Figure 1.10 (right), we depict the MOSUM statistic setting L = 75. The horizontal
line in this �gure corresponds to the threshold required for an ARL of 5000. Note
that the choice of ARL depends on the users tolerance to false alarms and has been
�xed at 5000 as an example. The MOSUM statistic indicates the location of three
performed pressure tests and has the great advantage of not requiring knowledge A
when determining the ARL threshold unlike the generalised MOSUM and CUSUM
procedures. A similar example is shown in Figure 1.11, where L = 150 has been
selected; three tests have been clearly located. Note that in Figure 1.10 (right)
and Figure 1.11 (right), the MOSUM statistic is depicted with a shift in time by L
(t→ t− L). This explains the early exceedance seen in Figure 1.11 (right).

Figure 1.10: Left: Behaviour of yt. Right: MOSUM statistic with L = 50 and
ARL= 5000.
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Figure 1.11: Left: Behaviour of yt. Right: MOSUM statistic with L = 150 and
ARL= 5000.
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Chapter 2

Approximations for the boundary

crossing probabilities of moving

sums of normal random variables

Abstract

In this chapter, we study approximations for boundary crossing probabili-

ties for the moving sums of i.i.d. normal random variables. As will become clear

later, the boundary crossing probabilities studied in this chapter are strongly

related to the MOSUM test discussed in Chapter 1. To develop our approxima-

tions, we approximate a discrete time problem with a continuous time problem,

allowing the application of developed theory for stationary Gaussian processes

and a number of approximations (some well known and some not). Particular

attention is paid to the strong performance of a newly developed approximation

that corrects the use of continuous time results in a discrete time setting. Re-

sults of extensive numerical comparisons are reported. These results show that

the developed approximations are very accurate even for small window length.

Also, they have high accuracy when the original r.v. are not exactly normal

and when the weights in the moving window are not all equal. Accurate and

simple approximations are then provided for ARL, the average run length until

crossing the boundary. The content of this chapter contains results from the

two published papers [82, 83].

2.1 Introduction: Statement of the problem

Let ε1, ε2, . . . be a sequence of i.i.d. normal random variables (r.v.) with mean µ

and variance σ2 > 0. For a �xed positive integer L, the moving sums are de�ned by

Sn,L :=

n+L∑
j=n+1

εj (n = 0, 1, . . .). (2.1.1)

The sequence of the moving sums (2.1.1) will be denoted by S so that S = {S0,L, S1,L, . . .}.
The main aim of this chapter is to develop accurate approximations for the

following related characteristics of S (note that for the sake of simplicity of notation
we are not indicating the dependence of these characteristics on L).
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(a) The boundary crossing probability (BCP) for the maximum of the moving
sums:

PS(M,H) := Pr

(
max

n=0,1,...,M
Sn,L ≥ H

)
, (2.1.2)

where M is a given positive integer and H is a �xed threshold. Note that the
total number of r.v. εi used in (2.1.2) isM+L and PS(M,H)→ 1 asM →∞,
for all H and L. We aim to provide an approximation to PS(M,H) that is
uniformly accurate for all H and not just for large H.

(b) The probability distribution of the moment of time τH(S) :=min{n≥0: Sn,L≥H}
when the sequence Sn,L reaches the threshold H for the �rst time. The BCP
PS(M,H), considered as a function of M , is the c.d.f. of this probability
distribution: PS(M,H) = Pr (τH(S) ≤M).

(c) The average run length (ARL) until S reaches H for the �rst time:

ARLH(S) :=

∞∑
n=0

nPr{τH = n} =

∫ ∞
0

MdPS(M,H) . (2.1.3)

Developing accurate approximations for the BCP PS(M,H) and the associated
ARL (2.1.3) for generic parameters H, M , L is very important in various areas
of statistics, predominantly in applications related to change-point detection as is
discussed in Chapter 1; see also [18, 33, 34, 74]. Engineering applications of MOSUM
(moving sums charts) are extremely important and have been widely discussed in
literature; see e.g. [5, 32, 33, 136]. The BCP PS(M,H) is an (M + 1)-dimensional
integral and therefore direct evaluation of this BCP is hardly possible even with
modern software.

To derive approximations for the BCP (2.1.2) one can use some generic approx-
imations such as Durbin and Poisson Clumping Heuristic considered below. These
approximations, however, are not accurate especially for small window length L;
this is demonstrated below in this chapter. Furthermore, they only begin to work
for large H. There is, therefore, a need for derivation of speci�c approximations
for the BCP (2.1.2) and the ARL (2.1.3). Such a need was well understood in the
statistical community and indeed very accurate approximations for the BCP and the
ARL have been developed in a series of papers by J. Glaz and coauthors, see for
example [30, 34, 137, 138] (the methodology was also extended to the case when εj
are integer-valued r.v., see [31]). We will call these approximations 'Glaz approxima-
tions' by the name of the main author of these papers; they will be formally written
down in Sections 2.4 and 2.8.

The approximations developed in this chapter take two fundamentally di�erent
forms depending on whether M ≤ L or M > L. To derive the approximations when
M ≤ L, we will use the methodology developed in [143, Ch.2,�2] for the continuous-
time case, which has to be modi�ed for discrete time. The approximations developed
for M ≤ L are able to utilise the conditionally Gauss-Markov property which is
present for the continuous time analogue of S. For M > L, we will formulate a
number of approximations by correcting the continuous time results of L. Shepp
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in [113] for discreteness. The accuracy of these approximations is very high and
similar to the Glaz approximations; this is discussed in Sections 2.6 and 2.8. The
methodologies of derivation of Glaz approximations and the approximations of this
chapter are very di�erent. The practical advantage of the approximations developed
in this chapter (they require approximating either a one-dimensional integral or an
eigenvalue of an integral operator) is their relative simplicity as to compute the Glaz
approximations one needs to numerically approximate L+ 1 and 2L+ 1 dimensional
integrals. This is not an easy task even taking into account the fact of existence of
a sophisticated software; see references in Section 2.4.1. This chapter is structured
as follows.

In Section 2.2 we reformulate the problem and discuss how to approximate our
discrete-time problem with a continuous-time problem. Here we state a number of
classical and simple approximations. In Section 2.3, we consider the case of M ≤ L

and derive new approximations that correct the use of continuous time results in a
discrete time setting; they will be referred to as the `Corrected Di�usion Approxi-
mations' or simply CDA's. In Section 2.4, we consider the case when M > L and
begin by stating the Glaz approximation. We subsequently provide exact formulas
for the �rst-passage probabilities (in the continuous-time setup) due to L. Shepp
[113] and give their alternative representation which will be crucial for deriving some
of our approximations. In this section we adapt the methodology of D. Siegmund
to correct Shepp's formulas for discrete time and de�ne a version of the Glaz ap-
proximation which we will call Glaz-Shepp-Siegmund approximation. In Section 2.5
we develop continuous-time approximations based on approximating eigenvalues of
integral operators and subsequently correct them for discrete time. In Section 2.6
we present results of large-scale simulation studies evaluating the performance of the
approximations (also, in the cases when the original r.v. εj are not normal and the
weights in the moving window are not equal). In Section 2.7, we brie�y discuss an
approximation with connections to Extreme value theory and assess its accuracy. In
Section 2.8, we develop an approximation for ARLH(S) and compare its accuracy to
the one developed in [34].

2.2 Boundary crossing probabilities and related

characteristics: discrete and continuous time

2.2.1 Standardisation of the moving sums

For convenience, we standardise the moving sums Sn,L de�ned in (2.1.1).
The �rst two moments of Sn,L are

ESn,L = µL, var(Sn,L) = σ2L. (2.2.1)

De�ne the standardized r.v.'s:

ξn,L :=
Sn,L − ESn,L√

var(Sn,L)
=
Sn,L − µL
σ
√
L

, n = 0, 1, . . . , (2.2.2)
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and denote X = {ξ0,L, ξ1,L, . . . , }. All r.v. ξn,L are N(0, 1); that is, they have the
probability density function and c.d.f.

ϕ(x) :=
1√
2π
e−x

2/2 , Φ(t) :=

∫ t

−∞
ϕ(x)dx . (2.2.3)

Unlike the original r.v. εi, the r.v. ξ0,L, ξ1,L, . . . are correlated with correlations
depending on L, see Section 2.2.2 below.

The BCP PS(M,H) de�ned by (2.1.2) is equal to the BCP

PX(M,h) := Pr
(

max
n=0,1,...,M

ξn,L ≥ h
)
, (2.2.4)

where

H = µL+ σh
√
L so that h =

H − µL
σ
√
L

. (2.2.5)

Similarly, τH(S) = τh(X) and ARLH(S) = ARLh(X).
Note that studying the probability PX(M,h) is equivalent to studying the prob-

ability

FX(M,h) := Pr
(

max
n=0,1,...,M

ξn,L < h

)
, (2.2.6)

where PX(M,h) = 1 − FX(M,h). In accordance with the terminology of [122] and
[113] we shall call FX(M,h) `�rst-passage probability'.

In what follows, we derive approximations for (2.2.4) and hence the distribution
of τh(X) and ARLh(X). These approximations will be based on approximating the
sequence {ξi,L}i by a continuous time random process and subsequently correcting
the obtained approximations for discreteness.

2.2.2 Correlation between ξn,L and ξn+k,L

In order to derive our approximations, we will need explicit expressions for the cor-
relations Corr(ξn,L, ξn+k,L). For a proof of the following Lemma, see Appendix A in
Section 2.9.

Lemma 2.2.1 Let ξn,L be as de�ned in (2.2.2). Then Corr(ξ0,L, ξk,L) = Corr(ξn,L, ξn+k,L)

and

Corr(ξ0,L, ξk,L) =
E(ξ0,Lξk,L)− (E ξ0,L)2

var(ξ0,L)
= 1− k/L . (2.2.7)

for 0 ≤ k ≤ L. If k > L then Corr(ξ0,L, ξk,L) = 0.

2.2.3 Continuous-time (di�usion) approximation

For the purpose of approximating the BCP PX(M,h) and the associated character-
istics introduced in Introduction, we replace the discrete-time process ξ0,L, . . . , ξM,L

with a continuous process S(t), t ∈ [0, T ], where T = M/L. This is done as follows.
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Set ∆ = 1/L and de�ne tn = n∆ ∈ [0, T ] n = 0, 1, . . . ,M. De�ne a piece-wise
linear continuous-time process SL(t), t ∈ [0, T ] :

SL(t) =
1

∆
[(tn − t)ξn−1,L+(t− tn−1)ξn,L] for t ∈ [tn−1, tn], n = 1, . . . ,M.

By construction, the process SL(t) is such that SL(tn) = ξn,L for n = 0, . . . ,M . Also
we have that SL(t) is a second-order stationary process in the sense that ESL(t),

var(SL(t)) and the autocorrelation functionR(L)(t, t+k∆) = Corr(SL(t), SL(t+ k∆))

do not depend on t.

Lemma 2.2.2 Assume L → ∞. The limiting process S(t) = limL→∞ SL(t), where

t ∈ [0, T ], is a Gaussian second-order stationary process with marginal distribution

S(t) ∼ N(0, 1) for all t ∈ [0, T ] and autocorrelation function R(t, t + s) = R(s) =

max{0, 1−|s|} .

This lemma is a simple consequence of Lemma 2.2.1. Note that although we are
letting L tend to in�nity (also M →∞ since T is �xed), subsequent results will be
corrected to produce approximations for �nite L.

2.2.4 Di�usion approximations for the main characteristics of

interest

The above approximation of a discrete-time process S with a continuous process
S(t), t ∈ [0, T ], allows us to approximate the characteristics introduced in Introduc-
tion by the continuous-time analogues as follows.

(a) BCP PX(M,h) is approximated by P(T, h), which is the probability of reaching
the threshold h by the process S(t) on the interval [0, T ]:

P(T, h) :=Pr

{
max

0≤t≤T
S(t) ≥ h

}
=Pr

{
S(t)≥h for at least one t∈ [0,T ]

}
. (2.2.8)

Note that P(0, h) = 1− Φ(h) > 0.

At times, it will be convenient to use the �rst-passage probability

F(T, h) = Pr

{
max

0≤t≤T
S(t) < h

}
= 1− P(T, h) .

Since ξ0,L = S(0) ∼ N(0, 1), we have F(0, h) = 1− P(0, h) = Φ(h).

(b) The time moment τH(S) = τh(X) is approximated by τh(S(t)) := min{t ≥ 0 :

S(t) ≥ h}, which is the time moment when the process S(t) reaches h. The
distribution of τh(S(t)) has the form:

(1− Φ(h))δ0(ds) + q(s, h, S(t))ds , s ≥ 0,

where δ0(ds) is the delta-measure concentrated at 0 and

q(s, h, S(t)) =
d

ds
P(s, h), 0 < s <∞ . (2.2.9)
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The function q(s, h, S(t))/Φ(h), considered as a function of s, is a probability
density function on (0,∞) since∫ ∞

0
q(s, h, S(t))ds = 1− P(0, h) = Φ(h) .

(c) ARLh(X)/L is approximated by

ARLh(S(t)) = E[τh(S(t))] =

∫ ∞
0

s q(s, h, S(t))ds . (2.2.10)

We will call approximations (2.2.8) and (2.2.10) di�usion approximations, see Sec-
tion 2.3.1. As indicated by numerical results shown in Section 2.3.4, if L and M are
very large then the di�usion approximations are rather accurate. For not very large
values of L and M these approximations will be much improved with the help of the
methodology developed by D.Siegmund and adapted to our setup in Sections 2.3.3
and 2.4.5.

2.2.5 Durbin and Poisson Clumping approximations for the BCP

P(T, h)

Derivation of the exact formulas for the BCP P(T, h) has been discussed in sev-
eral papers including [71, 112, 113, 114, 143]; exact formulas will be provided in
Sections 2.3.1 and 2.4.2.

In this section, we provide explicit formulas for two simple approximations for
the BCP P(T, h) based on general principles. We will assess the accuracy of these
approximations in Section 2.3.4 and will �nd that the accuracy of both of them
is quite poor. The purpose of including these two approximations into our collec-
tion is only to demonstrate that the original problems stated in Introduction are
not easy and cannot be handled by general-purpose techniques. More sophisticated
techniques using the speci�city of the problem should be used, which is exactly what
is done in this chapter. The �rst generic approximation considered is the Durbin
approximation which is constructed on the base of [22] and is explained in Appendix
B in Section 2.10.

Approximation 1. Durbin approximation for the BCP (2.2.8): P(T, h) ∼= hT ϕ(h) .

Let us now state the second approximation for the BCP de�ned in (2.2.8), which
is the Poisson Clumping Heuristic (PCH) formulated as Lemma 2.2.3 according to
[2] p. 81; the PCH heuristic appears in many places within the boundary crossing
literature, see [120, 121].

Lemma 2.2.3 Let X(t) be a stationary Gaussian process with mean zero and co-

variance function satisfying R(t) = 1− |t| as t→ 0. Then for large h, Th = min{t :

X(t) ≥ h} is approximately exponential with parameter hϕ(h).

From Lemma 2.2.3 we obtain:
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Approximation 2. PCH approximation for BCP (2.2.8):

P(T, h) ∼= 1− exp(−hϕ(h)T ).

As can be seen from Fig. 2.1 and Fig. 2.2 in Section 2.3.4, Approximations 1 and
2 are poor approximations for P(T, h) and PX(M,h) when M/L ≤ 1 and M/L > 1;
the caseM/L > 1 is discussed in Section 4.6 in [82] and is not included in this thesis.

2.3 Di�usion approximation with and without

discrete-time correction; M ≤ L

In this section, we assume M ≤ L and hence T = M/L ≤ 1. The more complicated
case M > L will be considered in Section 2.4 and beyond.

2.3.1 Di�usion approximation, formulation

Here we collect explicit formulas for the BCP P(T, h) that can be obtained in [71,
122, 143]; the proofs are given in Section 2.3.2 to provide insight for later results.
We have:

P(T, h) = 1− Φ2(h) + ϕ(h)
[
hΦ(h) + ϕ(h)

]
, T = 1 ; (2.3.1)

P(T, h) = 1−
∫ h
−∞Φ

(
h(Z+1)−x(−Z+1)

2
√
Z

)
ϕ(x)dx+

+ 2
√
Z

Z+1ϕ(h)
[
h
√
Z Φ(h

√
Z) + 1√

2π
(
√

2πϕ(h))Z
]
, 0 < T ≤ 1 ,

(2.3.2)

where Z = T/(2− T ). If T = 1 then (2.3.2) simpli�es to (2.3.1). We refer to the
above stated formulas for P(T, h) as Approximation 3 or `Di�usion approximation'.

Approximation 3. The Di�usion approximation for the BCP PX(M,h) de�ned

in (2.2.4) in case M ≤ L: formula (2.3.2) with T = M/L; if M = L then (2.3.2)
reduces to (2.3.1).

In Section 2.3.3, we will derive a discrete-time correction for the Di�usion ap-
proximation. In order to do this, we need to correct the steps used for deriving
(2.3.2). This explains that, despite the formula (2.3.2) is known, we need to derive it
(in order to correct certain steps of its derivation). This is done in the next section
which follows from [143], p.69.

2.3.2 Derivation of (2.3.2)

2.3.2.1 Conditioning on the initial value.

From Lemma 2.2.2, {S(t), t ∈ [0,∞)}, is a stationary Gaussian process with mean
ES(t) = 0 and covariance function ES(t)S(t+u) = max{0, 1−|u|}. By conditioning
on the initial state of the process S(t), we de�ne

Qh(T, x0) := Pr

{
max
t∈[0,T ]

S(t) > h

∣∣∣∣S(0) = x0

}
.
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Since x0 ∼ N(0, 1) the BCP P(T, h) is

P(T, h) =

∫ h

−∞
Qh(T, x0)ϕ(x0)dx0 + 1− Φ(h) , (2.3.3)

where ϕ(·) and Φ(·) are de�ned in (2.2.3). In order to proceed we seek an explicit
expression for Qh(T, x0). We shall �rstly discuss a known BCP formula for the
Brownian motion before returning to explicit evaluation of Qh(T, x0).

2.3.2.2 Boundary crossing probabilities for the Brownian Motion.

Let W (t) be the standard Brownian Motion process on [0,∞) with W (0) = 0 and
EW (t)W (s) = min(t, s). For given a,R > 0 and b ∈ R, de�ne

PW (R; a, b) := Pr {W (t) > a+ bt for at least one t ∈ [0, R]} , (2.3.4)

which is the probability that the Brownian motion W (t) reaches a sloped boundary
a+ bt within the time interval [0, R]. Using results of [118], for any a,R > 0 and any
real b we have

PW (R; a, b) = 1− Φ

(
bR+ a√

R

)
+ e−2abΦ

(
bR− a√

R

)
. (2.3.5)

In particular, for R = 1 we have

PW (1; a, b) = 1− Φ(b+ a) + e−2abΦ(b− a) . (2.3.6)

2.3.2.3 Boundary crossing probabilities for S(t).

Let {S0(t), t ∈ [0,∞)} be a process obtained by considering only the sample functions
of {S(t), t ∈ [0,∞)} which are equal to x0 at t = 0. For 0 ≤ t ≤ 1, we obtain from
[71], p.520, that S0(t) can be expressed in terms of the Brownian motion:

S0(t) = (2− t)W (g(t)) + x0(1− t) (2.3.7)

with g(t) = t/(2− t). It then follows from (2.3.7) that for T ≤ 1 and x0 < h we have

Qh(T, x0) =Pr{S0(t) ≥ h for at least one t ∈ [0, T ]}

=Pr

{
W (g(t)) ≥ h− x0(1− t)

2− t
for at least one t ∈ [0, T ]

}
.

Noting that t = 2g(t)/(1 + g(t)) we obtain

Qh(T, x0) = Pr

{
W (g(t)) ≥

(
(h− x0)(1 + g(t))

2

)
+ x0g(t) for at least one t ∈ [0, T ]

}
= Pr

{
W (t′) ≥

(
h− x0

2

)
+ t′

(
h+ x0

2

)
for at least one t′ ∈

[
0,

T

2− T

]}
=PW (Z; a, b), (2.3.8)

where Z = T/(2− T ), b = (h+ x0)/2 and a = (h− x0)/2. Using (2.3.5), we
conclude

Qh(T, x0) = 1− Φ

(
bZ + a√

Z

)
+ e−2abΦ

(
bZ − a√

Z

)
.
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One can then show that by using this explicit form for Qh(T, x0) in the integral
(2.3.3), we obtain (2.3.1) and (2.3.2).

It is now evident how BCP formula (2.3.5) for the Brownian motion can be used
to obtain (2.3.1) and (2.3.2). To improve the di�usion approximations for discrete
time, we aim at correcting the conditional probability Qh(T, x0) for discrete time.
Because of the relation shown in (2.3.8), the approach taken in this chapter is to
correct (2.3.5) for discrete time.

2.3.3 Discrete Time Correction

2.3.3.1 Discrete time correction for the BCP of cumulative sums.

Let X1, X2, . . . be i.i.d. N(0, 1) r.v's and set Yn = X1 +X2 + . . .+Xn. Consider the
sequence of cumulative sums {Yn} and de�ne the stopping time τY,a,b = inf{n ≥ 1 :

Yn ≥ a+ bn} for a > 0 and b ∈ R. Consider the problem of evaluating

Pr(τY,a,b ≤ N) = Pr(Yn ≥ a+ bn for at least one n ∈ {1, 2, . . . N}). (2.3.9)

Exact evaluation of (2.3.9) is di�cult even if N is not very large but it was
accurately approximated by D. Siegmund see e.g. [118, p. 19]. Let W (t) be the
standard Brownian Motion process on [0,∞). For a > 0 and b ∈ R, de�ne τW,a,b =

inf{t : W (t) ≥ a+ bt} so that

Pr(τW,a,b ≤ N) = PW (N, a+ bt). (2.3.10)

In [118], (2.3.10) was used to approximate (2.3.9) after translating the barrier
a+ bt by a suitable scalar ρ ≥ 0. Speci�cally, the following approximation has been
constructed:

P (τY,a,b ≤ N) ∼= PW (N, (a+ ρ) + bt) ,

where the constant ρ approximates the expected excess of the process {Yn} over the
barrier a+ bt. From [117] (p. 225)

ρ = −π−1

∫ ∞
0

λ−2 log{2(1− exp(−λ2/2))/λ2} dλ ∼= 0.5826. (2.3.11)

Whence, by denoting â = a+ ρ and recalling (2.3.5), D. Siegmund's formulas of
[118] imply the approximation:

Pr(τY,a,b ≤ N) ∼= Pr(τW,â,b ≤ N) = 1− Φ

(
bN + â√

N

)
+ e−2âbΦ

(
bN − â√

N

)
.

2.3.3.2 Discretized Brownian motion.

In this section, we modify D. Siegmund arguments discussed in previous section to
the case when the r.v. are indexed by points on the uniform grid in an interval
and therefore the sequence of cumulative sums compares with a limiting Brownian
motion process which lies within this interval.
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Assume that Z > 0 and M is a positive integer. De�ne ε = Z/M and let
t′n = nε ∈ [0, Z], n = 0, 1, . . . ,M. Let X1, X2, . . . be i.i.d. N(0, 1) r.v's and set
W (t′n) =

√
ε
∑n

i=1Xi. For a > 0 and b ∈ R, de�ne the stopping time

τW,a,b = inf{t′n : W (t′n) ≥ a+ bt′n} (2.3.12)

and consider the problem of approximating

Pr(τW,a,b ≤ Z) = Pr

(
W (t′n) ≥ a+bt′n for at least one t′n ∈ {0, ε, . . . ,Mε = Z}

)
.

(2.3.13)
As M → ∞, the piecewise linear continuous-time process W ε(t), t ∈ [0, Z],

de�ned by:

W ε(t) :=
1

ε

[
(t′n − t)W (t′n−1)+(t− t′n−1)W (t′n)

]
for t ∈ [t′n−1, t

′
n], n = 1, . . . ,M,

converges to the Brownian motion on [0, Z]. For this reason, we refer to the sequence
{W (t′1), . . .W (t′M ), } as discretized Brownian motion. We make the following con-
nection between W (t′n) and the random walk Yn:

W (t′n) =
√
ε Yn = Yn/

√
M/Z , n = 1, 2, . . .M.

Then by using (2.3.11), we approximate the expected excess over the boundary for
the process W (t′n) by ρM/Z = 0.5826/

√
M/Z .

Thus, using the same methodology as D. Siegmund, in order to obtain an accu-
rate approximation for (2.3.13), we translate the barrier a+ bt by the discrete time
correction factor ρM/Z and apply (2.3.5). By denoting â = a+ ρM/Z , we obtain the
approximation to (2.3.13):

Pr(τW,a,b ≤ Z) ∼= 1− Φ

(
bZ + â√

Z

)
+ e−2âbΦ

(
bZ − â√

Z

)
. (2.3.14)

2.3.3.3 Corrected Di�usion Approximation.

Let Qh,ρ(M,x0) denote the discrete time corrected equivalent of Qh(T, x0), where
T = M/L ≤ 1. Using (2.3.14) and the relation shown in (2.3.8),

Qh,ρ(M,x0) = 1− Φ

(
bZ + â√

Z

)
+ e−2âbΦ

(
bZ − â√

Z

)
(2.3.15)

with

T =
M

L
, Z =

T

2− T
, â =

h− x0

2
+ ρM/Z , b =

h+ x0

2
, ρM/Z =

0.5826√
M/Z

.

Using Qh,ρ(M,x0) in (2.3.3), the equivalent probability P(T, h) after correction
for discrete time will be denoted by Pρ(M,h).
Approximation 4. For M ≤ L (that is, T ≤ 1), the corrected di�usion approxi-

mation (CDA) for the BCP (2.2.4) is given by

PX(M,h) ∼= Pρ(M,h) :=

∫ h

−∞
Qh,ρ(M,x0)ϕ(x0)dx0 + 1− Φ(h) , (2.3.16)
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where Qh,ρ(M,x0) is given in (2.3.15).
For M = L we have T = Z = 1 and the CDA Pρ(M,h) can be explicitly

evaluated:

Pρ(L, h) = 1−Φ(h+ ρL) Φ(h) +
ϕ(h+ ρL)

ρL
Φ(h)− ϕ(h)e−2hρL

ρL
Φ(h− ρL) , (2.3.17)

where ρL := 0.5826/
√
L. For a proof of (2.3.17), see Appendix C in Section 2.11.

2.3.4 Simulation study, T ≤ 1

In this section, we study the quality of the Durbin (Approximation 1), PCH (Ap-
proximation 2), Di�usion (Approximation 3) approximations and the CDA (Approx-
imation 4) for the BCP PX(M,h), de�ned in (2.2.4), when M ≤ L (that is, T ≤ 1).
Without loss of generality, εj in (2.1.1) are normal r.v.'s with mean 0 and variance 1.
In Figures 2.1�2.2, the black dashed line corresponds to the empirical values of the
BCP PX(M,h) de�ned by (2.2.4) computed from 100, 000 simulations with di�erent
values of L andM (for given L andM , we simulate L+M normal random variables
100, 000 times). For j = 1, . . . , 4, the number j next to a line corresponds to Ap-
proximation j. The axis are: the x-axis shows the value of the normalized barrier h,
see (2.2.5); the y-axis denotes the probabilities of reaching the barrier. The graphs,
therefore, show the empirical probabilities of reaching the barrier h (for the dashed
line) and values of considered approximations for these probabilities.

In Table 2.1, we display the relative error of the CDA with respect to the empirical
BCP PX(M,h) for all considered parameter choices. Numerical study of this section
shows that in the case T ≤ 1, the accuracy of the CDA (Approximation 4) is excellent,
even for rather small L and M . Furthermore, the CDA is uniformly accurate in h.
At the same time, the Durbin, PCH and Di�usion approximations are generally
poor (note however that the accuracy of the Di�usion approximation improves as
L increases). The discrete time correction factor brings a signi�cant improvement
to the Di�usion approximation resulting in a very small relative errors shown in
Table 2.1.

Figure 2.1: Empirical probabilities of reaching the barrier h and four approximations.
Left: L = 5, M = 5, T = 1. Right: L = 10, M = 5, T = 1/2.
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Figure 2.2: Empirical probabilities of reaching the barrier h and four approximations.
Left: L = 100, M = 100, T = 1. Right: L = 200, M = 100, T = 1/2.

Table 2.1: Relative error of the CDA with respect to the empirical BCP (in percent)

BCP L=5,M=5 L=10,M=5 L=100,M=100 L=200,M=100

0.05 0.225 % 0.238 % 0.041 % 0.132 %
0.10 0.316 % 0.284 % 0.093 % 0.103 %
0.15 0.474 % 0.326 % 0.155 % 0.059 %
0.20 0.390 % 0.296 % 0.228 % 0.101 %

2.4 Approximations for the BCP in continuous and

discrete time; M > L

In this section, we assume M is any integer larger than L and thus T = M/L > 1.
Apart from the obvious failure in (2.3.7) when T > 1, perhaps an intuitive reason why
the case of T > 1 requires a di�erent approach theoretically is related to correlation.
On the interval [0, T ] with T ≤ 1, at all values of t, t′ ∈ [0, T ] we have S(t) and S(t′)

are correlated. For T > 1, there exists values of t, t′ ∈ [0, T ] such that S(t) and S(t′)

that are uncorrelated, e.g. S(0) and S(T ), since the dependence lasts for length one.

2.4.1 Glaz approximation for PX(M,h)

The approximation for the BCP PX(M,h) developed in [30, 34, 137, 138] and dis-
cussed in the introduction of this chapter is as follows.

Approximation 5. For M ≥ 2L (that is, T = M/L ≥ 2), the Glaz approximation
for the BCP (2.2.4) is

PX(M,h) ' 1− FX(2L, h)

[
FX(2L, h)

FX(L, h)

]T−2

, (2.4.1)

where to approximate the �rst-passage probabilities FX(L, h) and FX(2L, h) de�ned
in (2.2.6), which are L+1 and 2L+1 dimensional integrals respectively, it is advised
to use the so-called `GenzBretz' algorithm for numerical evaluation of multivariate
normal probabilities; see [28, 29].
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Approximation 5 is very accurate. However, its computational cost is also high,
especially for large L. Moreover, the main option in the `GenzBretz' package requires
the use of Monte-Carlo simulations so that for reliable estimation of high-dimensional
integrals one needs to make a lot of averaging; see Section 2.6.1 and 2.8 for more
discussion on these issues.

2.4.2 Shepp's formulas

De�ne the conditional �rst-passage probability

F(T, h |x) := Pr
{
S(t)<h for all t∈ [0,T ]

∣∣S(0) = x
}
. (2.4.2)

Since F(T, h |x) = 0 for x > h, for the unconditional �rst-passage probability F(T, h)

we have F(T, h) =
∫ h
−∞ F(T, h |x)ϕ(x)dx.

The result of [113, p.949] states than if T = n is a positive integer then

F(n, h |x) =
1

ϕ(x)

∫
Dx

det[ϕ(yi − yj+1 + h)]ni,j=0 dy2 . . . dyn+1 (2.4.3)

where y0 = 0, y1 = h − x, Dx = {y2, . . . , yn+1 | h − x < y2 < y3 < . . . < yn+1}.
For non-integer T ≥ 1, the exact formula for F(T, h |x) is even more complex (the
integral has the dimension d2T e) and completely impractical for computing P(T, h)

with T > 2, see [113, p.950].
For n = 1, we obtain

F(1, h) =

∫ h

−∞

∫ ∞
−x−h

det

[
ϕ(x) ϕ(−x2−h)

ϕ(h) ϕ(−x−x2)

]
dx2dx

= Φ(h)2 − ϕ(h)[hΦ(h) + ϕ(h)]. (2.4.4)

For n = 2, (2.4.3) yields

F(2, h)=

∫ h

−∞

∫ ∞
−x−a

∫ ∞
x2−a

det

 ϕ(x) ϕ(−x2−a) ϕ(−x3−2a)

ϕ(a) ϕ(−x−x2) ϕ(−x−a−x3)

ϕ(x2+2a+x) ϕ(a) ϕ(x2−x3)

dx3dx2dx.

(2.4.5)

The three-dimensional integral in (2.4.5) can be reduced to a one-dimensional, see
(2.4.20) below with hL = h.

2.4.3 An alternative representation of the Shepp's formula (2.4.3)

Set si = h + yi − yi+1 (i = 0, 1, . . . , n) with s0 = x, y0 = 0, y1 = h − x. It follows
from Shepp's proof of (2.4.3) that s0, s1, . . . , sn have the meaning of the values of
the process S(t) at the times t = 0, 1, . . . , n: S(i) = si (i = 0, 1, . . . , n). The range
of the variables si is (−∞, h). Changing the variables in (2.4.3), we obtain

F(n, h |x) =
1

ϕ(x)

∫ h

−∞
. . .

∫ h

−∞
det[ϕ(si + ai,j)]

n
i,j=0 ds1 . . . dsn , (2.4.6)

where

ai,j = yi+1−yj+1 =


0 for i = j

(i− j)h−sj+1−. . .−si+1 for i > j

(i− j)h+ si+1 + . . .+ sj for i < j .

43



2.4.4 Joint density for the values {S(i)} and associated transition

densities

From (2.4.6), we obtain the following expression for the joint probability density
function for the values S(0), S(1), . . . , S(n) under the condition S(t) < h for all
t ∈ [0, n]:

p(s0, s1, . . . sn) =
1

ϕ(s0)F(n, h | s0)
det[ϕ(si + ai,j)]

n
i,j=0 . (2.4.7)

From this formula, we can derive the transition density from s0 =x to sn conditionally
S(t)<h, ∀t ∈ [0, n]:

q
(0,n)
h (x→ sn) =

1

ϕ(x)

∫ h

−∞
. . .

∫ h

−∞
det[ϕ(si + ai,j)]

n
i,j=0 ds1 . . . dsn−1 . (2.4.8)

For this transition density,
∫ h
−∞ q

(0,n)
h (x→ z)dz = F(n, h |x). Moreover, since S(0) ∼

N(0, 1), the non-normalized density of S(n) under the condition S(t) < h for all
t ∈ [0, n] is

p
(0,n)
h (z) :=

∫ h

−∞
q

(0,n)
h (x→ z)ϕ(x)dx (2.4.9)

with z < h and
∫ h
−∞ p

(0,n)(z)dz = F(n, h). In the case n = 1, (2.4.8) gives for
z = s1 < h:

q
(0,1)
h (x→ z) =

1

ϕ(x)
det

(
ϕ(x) ϕ(x−h+z)

ϕ(h) ϕ(z)

)
= ϕ(z)

[
1− e−(h−z)(h−x)

]
.

(2.4.10)
From this and (2.4.9) we get

p
(0,1)
h (z) =

∫ h

−∞
q

(0,1)
h (x→ z)ϕ(x)dx = Φ(h)ϕ(z)− Φ(z)ϕ(h)

with z < h and
∫ h
−∞ p

(0,n)(z)dz = F(1, h).
Rather than just recovering the transition density from s0 = x to sn, we can

also use (2.4.7) and (2.4.9) to obtain the transition density from x = sj to z = sn,
0 < j < n, under the condition S(t) < h for all t ∈ [0, n]:

q
(j,n)
h (x→z)=

1

p
(0,j)
h (z)

∫ h

−∞
. . .

∫ h

−∞
det[ϕ(si+ai,j)]

n
i,j=0 ds0ds1 . . . dsj−1dsj+1 . . . dsn−1,

(2.4.11)

where sj = x and sn = z. For j = 1 and n = 2 we obtain the transition density from
x = s1 to z = s2 under the condition S(t) < h for all t ∈ [0, 2]:

q
(1,2)
h (x→ z) =

1

p
(0,1)
h (z)

∫ h

−∞
det

 ϕ(s0) ϕ(s0−h+x) ϕ(s0−2h+x+z)

ϕ(h) ϕ(x) ϕ(x+z−h)

ϕ(2h−x) ϕ(h) ϕ(z)

 ds0

=
1

Φ(h)ϕ(x)− Φ(x)ϕ(h)
det

 Φ(h) Φ(x) Φ(x+z − h)

ϕ(h) ϕ(x) ϕ(x+z−h)

ϕ(2h−x) ϕ(h) ϕ(z)

 .

(2.4.12)
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2.4.5 Correcting Shepp's formula (2.4.3) for discrete time

2.4.5.1 Rewriting (2.4.3) in terms of the Brownian motion

Let W (t) be the standard Brownian Motion process on [0,∞) with W (0) = 0 and
EW (t)W (s) = min(t, s). Recall the conditional probability F(T, h |x) de�ned in
(2.4.2). Suppose T ≥ 1 is an integer and de�ne the event

Ω = {W (t) < W (t+ 1) + h < W (t+ 2) + 2h < · · · < W (t+ T ) + Th, ∀ 0 ≤ t ≤ 1}

= {W (t)−W (t+ 1) < h, . . . ,W (t+ T − 1)−W (t+ T ) < h, ∀ 0 ≤ t ≤ 1}.

If W (i) = xi, i = 0, 1, . . . , T + 1, we obtain from [113, p.948]

F(T, h |x)=

∫
· · ·
∫

Pr{Ω
∣∣W (i) = xi, i = 0, 1, . . . , T+1, W (0)=0, W (0)−W (1)=x}

×Pr{W (i) ∈ dxi, i = 0, 1, . . . , T+1
∣∣W (0) = 0, W (0)−W (1) = x}.

(2.4.13)

It follows from the proof of (2.4.3) that to correct (2.4.13) for discrete time, one must
correct the following probability for discrete time

Pr{Ω
∣∣ W (i) = xi, i = 0, 1, 2, . . . , T + 1, W (0) = 0, W (0)−W (1) = x}

=Pr{
√

2W1(t) < h, . . . ,
√

2WT (t) < h, ∀ 0 ≤ t ≤ 1
∣∣W (i) = xi, i = 0, 1, . . . , T+1,

W (0) = 0, W (0)−W (1) = x} (2.4.14)

where Wi(t) =
√

2
2 [W (t+ i− 1)−W (t+ i)], i = 1, 2, . . . , T . Due to the conditioning

on the rhs of (2.4.14), the processes Wi(t) can be treated as independent Brownian
motion processes. Therefore, the independent increments of the Brownian motion
means correcting formula (2.4.3) for discrete time is equivalent to correcting the
probability Pr(

√
2W (t) < h, ∀ 0 ≤ t ≤ 1 ) for discrete time.

2.4.5.2 Discretised Brownian motion

To correct the probability Pr(
√

2W (t) < h, ∀ 0 ≤ t ≤ 1 ) for discrete time, we can
use the results of Section 2.3.3.2. Using the notation of that section, let Z = 1 and
M = L. This results in ε = 1/L and t′n = nε ∈ [0, 1], n = 0, 1, . . . , L. Make the
following slight modi�cation of the stopping rule τW,h,b:

τ̂W,h,b = inf{t′n :
√

2W (t′n) ≥ h} = τW,h/
√

2,b (2.4.15)

and consider the problem of approximating

Pr(τ̂W,h,b > 1) = Pr
(√

2W (t′n) < h for all t′n ∈ {0, ε, . . . , Lε = 1}
)
. (2.4.16)

With these choice of parameters, as L → ∞ the piecewise linear continuous-time
process W ε(t), t ∈ [0, 1], de�ned in Section 2.3.3.2 converges to W (t) on [0, 1] and
so we can refer to W (t′n) as discretised Brownian motion. We have the following
connection between

√
2W (t′n) and the random walk Yn:

√
2W (t′n) =

√
2ε Yn =

√
2√
L
Yn , n = 1, 2, . . .M,
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where we recall Yn is a random walk of independent standard normal random vari-
ables. Then by using (2.3.11), we approximate the expected excess over the boundary
for the process

√
2W (t′n) by

ωL :=
0.82√
L
'
√

2ρ√
L
.

Therefore ωL '
√

2ρL, where ρL is de�ned in (2.3.17). We have deliberately rounded
the value

√
2ρ ' 0.8239... to 0.82 as for small h and small L it provides marginally

better approximation (2.4.18).
Thus, using the same methodology as D. Siegmund and Section 2.3.3.2, to correct

the probability Pr(
√

2W (t) < h, ∀ 0 ≤ t ≤ 1 ) for discrete time and obtain an
accurate approximation for Pr(τ̂W,h,b > 1), we translate the barrier h by the discrete
time correction factor ωL.

2.4.5.3 Corrected version of (2.4.3)

Set hL = h+ωL. To correct (2.4.3) for discrete time we substitute the barrier h with
hL. From this and the relation F(T, h) =

∫ h
−∞ F(T, h |x)ϕ(x)dx, the discrete-time

corrected form of F(T, h) is

F(T, h, hL) :=

∫ h

∞
F(T, hL |x)ϕ(x)dx

=

∫ h

−∞

∫
Dx

det[ϕ(yi − yj+1 + hL)]Ti,j=0 dy2 . . . dyT+1 dx, (2.4.17)

where y0 = 0, y1 = hL−x, and Dx = {y2, . . . , yT+1 |hL−x < y2 < y3 < . . . < yT+1}.

2.4.5.4 A generic approximation involving corrected Shepp's formula

Approximation 6. For T = M/L an integer with T ≥ 1, the CDA for the BCP

(2.2.4) is

PX(M,h) ∼= P(T, h, hL) := 1− FL(T, h, hL), (2.4.18)

where FL(T, h, hL) is given in (2.4.17).

Whilst Approximation 6 is very accurate (see the next subsection), computation
of P(T, h, hL) requires numerical evaluation of a T + 1 dimensional integral which is
impractical for large T . To overcome this, in Section 2.5.2 we develop approximations
that can be easily used for any T > 0 (which is not necessarily integer).

2.4.5.5 Particular cases: T = 1 and T = 2

For T = 1, evaluation of (2.4.17) yields

F(1, h, hL) = Φ(h)Φ(hL)− ϕ(hL)[hΦ(h) + ϕ(h)] . (2.4.19)

This approximation appears simpler than (2.3.17) and is derived under a com-
pletely di�erent approach (no use of conditional Gauss Markov properties). For
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T = 1, our recommendation is to use the simpler Approximation 6 obtained with
the use of (2.4.19). For T < 1, we recommend the use of (2.3.16).

For T = 2, (2.4.17) can be expressed (after some manipulations) as follows:

F(2, h, hL) = (2.4.20)

ϕ2(hL)

2

[
(h2−1+

√
πh)Φ (h)+(h+

√
π)ϕ (h)

]
−ϕ (hL) Φ (hL) [(h+hL) Φ (h)+ϕ (h)]

+Φ (h) Φ2(hL) +

∫ ∞
0

Φ(h−y)
[
ϕ(hL + y)Φ(hL − y)−

√
πϕ2(hL)Φ(

√
2y)
]
dy.

Recall from Chapter 1 that in this thesis we treat Φ as if it is explicit and not an
integral. This is because Φ(x) can be easily evaluated by all statistical software. Only
a one-dimensional integral has to be numerically evaluated for computing F(2, h, hL).

2.4.5.6 Simulation study

In this section, we assess the quality of the approximations (2.4.19) and (2.4.20) as
well as the sensitivity of the BCP PX(M,h) to the value of L. In Figures 2.3 and
2.4, the black dashed line corresponds to the empirical values of the BCP PX(M,h)

(for T = M/L = 1, 2) computed from 100, 000 simulations with di�erent values of L
and M (for given L and M , we simulate L + M normal random variables 100, 000

times). The solid red line corresponds to Approximation 6. The axis are: the x-axis
shows the value of the barrier h in Figure 2.3 and value of L in Figure 2.4; the
y-axis denotes the probabilities of reaching the barrier. The graphs, therefore, show
the empirical probabilities of reaching the barrier h (for the dashed line) and values
of considered approximations for these probabilities. From these graphs we can
conclude that Approximation 6 is very accurate, at least for T = 1, 2. Furthermore,
Approximation 6 is uniformly accurate in h. We can also conclude that the BCP
PX(M,h) is very sensitive to the value of L. From Figure 2.4 we can observe a
counter-intuitive fact that even for very high value L = 1000, the BCP PX(M,h)

is not even close to P(T, h). This may be explained by the fact that for any �xed
T and h, the inaccuracy |PX(M,h) − P(T, h)| decreases with the rate const/

√
L as

L→∞.

2.4.6 The Glaz-Shepp-Siegmund approximation

Combining (2.4.1) and the approximation (2.4.18) for Shepp's formula (2.4.3), we
arrive at the following approximation to which we name the `Glaz-Shepp-Siegmund
approximation'.

Approximation 7. For all T = M/L > 0,

PX(M,h) ' 1− F(2, h, hL) · µL(h)T−2 with µL(h) =
F(2, h, hL)

F(1, h, hL)
, (2.4.21)

where F(1, h, hL) and F(2, h, hL) are de�ned in (2.4.19) and (2.4.20) respectively.

Approximations 5 and 7 look similar but computing Approximation 5 is very hard
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Figure 2.3: Empirical probabilities of reaching the barrier h (dashed black) and
corresponding versions of Approximation 6 (solid red). Left: T = 1 with (a) L =
M = 5 and (b) L = M = 100. Right: T = 2 with (a) L = 5, M = 10 and (b)
L = 100, M = 200 .

Figure 2.4: Empirical probabilities of reaching the barrier h = 2 as a function of L
(dashed black), uncorrected di�usion approximation P(T, 2) (dot-dashed blue) and
corresponding version of PL(T, h), which is Approximation 2 (solid red). Left: M=L
(T =1). Right: M=2L (T =2).

and Approximation 7 is very easy (only a one-dimensional integral should be numer-
ically computed).

Note that we have de�ned Approximation 7 to hold for all T > 0. This di�ers
from the original Glaz approximation given in Approximation 5 which is de�ned for
T ≥ 2. For T ∈ [1, 2), Approximation 7 remains very accurate. This is demonstrated
in Figure 2.5 (left) with L = 10 and T = 1.5 and con�rmed by additional numerical
studies not shown here. For T < 1, this approximation still remains accurate but is
less accurate than Approximation 4, which has been designed to operate speci�cally
for this choice of T < 1. This is re�ected in Figure 2.5 (right) where we have set
L = 10 and T = 0.2. In these �gures, Approximation 7 is depicted with a solid red
line, Approximation 4 is depicted with a solid blue line and the dashed black line
corresponds to Monte Carlo simulations calculated with 100,000 repetitions.

A more comprehensive assessment of the accuracy of Approximation 7 is provided
in Section 2.6. De�ning Approximation 7 to hold for all T > 0 will be bene�cial when
approximating ARLH(S) = ARLh(X), which will become evident in Section 2.8.
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Figure 2.5: Empirical probabilities of reaching the barrier h (dashed black), Approx-
imation 4 (solid blue) and Approximation 7 (solid red). Left: T = 1.5 with L = 10.
Right: T = 0.2 with L = 10.

2.5 Approximations for the BCP PX(M,h) through

eigenvalues of integral operators; M > L

The approximations derived in this section still apply to the case where M is larger
than L and thus T = M/L > 1. The form of approximations in section utilise theory
on eigenvalues of integral operators.

2.5.1 Continuous time: approximations for F (T, h)

Let m be a positive integer, and q(x→ z) be the transition density q(m−1,m)
h (x→ z)

de�ned by (2.4.10) for m = 1 (2.4.12) for m = 2 and (2.4.11) for m > 2.
Let us approximate the distributions of the values si = S(i) for integral i > m

in the following way. Let pi(x) be the density of S(i) under the condition that S(t)

does not reach h for t ∈ [0, i]. By ignoring the past values of S(t) in [0, i), the
non-normalized density of S(i+ 1) under the conditions that S(i) ∼ pi(x) and S(t)

does not reach h for t ∈ [i, i+ 1] is

p̃i+1(x) =

∫ h

−∞
qh(x→ z)pi(y)dy, for x < h . (2.5.1)

We can then de�ne pi+1(x) = p̃i(x)/ci, x < h, where ci =
∫ h
−∞ p̃i(x)dx. We then

replace formula (2.5.1) with

p̃i(x) =

∫ h

−∞
qh(x→ z)p(y)dy, for x < h, (2.5.2)

where p(x) is an eigenfunction of the integral operator with kernel (2.4.10) corre-
sponding to the maximum eigenvalue λm(h):

λm(h)p(x) =

∫ h

−∞
p(y)q

(m−1,m)
h (x→ z)dy, x < h . (2.5.3)

This eigenfunction p(x) is a probability density on (−∞, h] with p(x) > 0 for all
x ∈ (−∞, h) and

∫ h
−∞ p(x)dx = 1 . Moreover, the maximum eigenvalue λm(h) of

49



the operator with kernel K(x, y) = q
(m−1,m)
h (x → z) is simple and positive. The

fact that such maximum eigenvalue λm(h) is simple and real (and hence positive)
and the eigenfunction p(x) can be chosen as a probability density follows from the
Ruelle-Krasnoselskii-Perron-Frobenius theory of bounded linear positive operators,
see e.g. Theorem XIII.43 in [107].

Using (2.5.2) and (2.5.3), we derive recursively: F (i+ 1, h) ' F (i, h)λm(h) (i =

m,m+ 1, . . .). By induction, for any integer T ≥ m we then have

F(T, h) ' F(m,h) · [λm(h)]T−m . (2.5.4)

The approximation (2.5.4) can be used for any T > 0 which is not necessarily an
integer. The most important particular cases of (2.5.4) are with m = 1 and m = 2.
In these two cases, the kernel q(m−1,m)

h (x→ z) and hence the approximation (2.5.4)
will be corrected for discrete time in the next section.

2.5.2 Correcting approximation (2.5.4) for discrete time

To correct the approximation (2.5.4) for discrete time we need to correct: (a) the
�rst-passage probability F(m,h) and (b) the kernel q(m−1,m)

h (x→ z). The discrete-
time correction of F(m,h) can be done using FL(m,h, hL) from (2.4.17) so that what
is left is to correct the kernel q(m−1,m)

h (x→ z) and hence λm(h).

2.5.2.1 Correcting the transition kernels for discrete time

As explained in Section 2.4.5, to make a discrete-time correction in the Shepp's for-
mula (2.4.3) we need to replace the barrier h with hL = h+ ωL in all places except
for the upper bound for the initial value S(0). Therefore, using the notation of Sec-
tion 2.4.3, the joint probability density function for the values S(0), S(1), . . . , S(m)

under the condition S(t) < h for all t ∈ [0,m] corrected for discrete time is:

p̂(s0, s1, . . . sm) =
1

ϕ(s0)F(m,h | s0)
det[ϕ(si + âi,j)]

m
i,j=0 (2.5.5)

with −∞ < s0 < h, −∞ < sj < hL (j = 1, . . . ,m),

âi,j = yi+1−yj+1 =


0 for i = j

(i− j)hL−sj+1−. . .−si+1 for i > j

(i− j)hL + si+1 + . . .+ sj for i < j .

This provides the discrete-time corrected transition density from s0 = x to sm
conditionally S(t)<h, ∀t ∈ [0,m]:

q
(0,m)
hL

(x→ sm) =
1

ϕ(x)

∫ hL

−∞
. . .

∫ hL

−∞
det[ϕ(si + âi,j)]

m
i,j=0 ds1 . . . dsm−1 ; (2.5.6)

which is exactly (2.4.8) with hL is substituted for h. In a particular case m = 1, the
corrected transition density is

q
(0,1)
hL

(x→ s1) =
1

ϕ(x)
det

(
ϕ(x) ϕ(x−hL+s1)

ϕ(hL) ϕ(s1)

)

= ϕ(s1)
[
1− e−(hL−s1)(hL−x)

]
(2.5.7)
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with s1 < hL.
Let us now make the discrete-time correction of the transition density q(1,2)

h (x→
z). Denote by p(0,1)

h,L (z), z < h, the non-normalized density of S(1) under the condi-

tion S(t) < h for all t ∈ [0, 1] corrected for discrete time; it satis�es
∫ h
−∞ p

(0,1)
h,L (z)dz =

F(1, h, hL). Using (2.5.7), we obtain

p
(0,1)
h,L (z) =

∫ h

−∞
q

(0,1)
hL

(x→ z)ϕ(x)dx = ϕ(z)Φ(h)− ϕ(hL)Φ(h− hL + z).

From (2.5.5) and (2.5.7), the transition density from x = s1 to z = s2 under the
condition S(t) < h for all t ∈ [0, 2] corrected for discrete time (the corrected form of
(2.4.12)) is given by

q
(1,2)
h,L (x→ z) =

1

p
(0,1)
h,L (x)

∫ h

−∞
det

 ϕ(s0) ϕ(s0−hL+x) ϕ(s0−2hL+x+z)

ϕ(hL) ϕ(x) ϕ(x+z−hL)

ϕ(2hL−x) ϕ(hL) ϕ(z)

 ds0

=
1

p
(0,1)
h,L (x)

det

 Φ(h) Φ(h−hL+x) Φ(h−2hL+x+z)

ϕ(hL) ϕ(x) ϕ(x+z−hL)

ϕ(2hL−x) ϕ(hL) ϕ(z)

 (2.5.8)

Unlike the transition density (2.5.6) (and (2.5.7) in the particular casem = 1), which
only depends on hL and not on h, the transition density q(1,2)

h,L (x → z) depends on
both h and hL and hence the notation. The dependence on h has appeared from
integration over the s0 ∈ (−∞, h).

2.5.2.2 Approximations for the BCP PX(M,h)

With discrete-time corrected transition densities q(0,1)
h (x→ z) and q(1,2)

h (x→ z), we
obtain the corrected versions of the approximations (2.5.4).

Approximation 8: PX(M,h) ' 1 − F(1, h, hL) · [λL,1(h)]T−1 , where T = M/L,

F(1, h, hL) is given in (2.4.19) and λL,1(h) is the maximal eigenvalue of the integral

operator with kernel K(x, z) = q
(0,1)
hL

(x→ z) de�ned in (2.5.7).

Approximation 9: PX(M,h) ' 1 − F(2, h, hL) · [λL,2(h)]T−2 , where T = M/L,

F(2, h, hL) is given in (2.4.20) and λL,2(h) is the maximal eigenvalue of the integral

operator with kernel K(x, z) = q
(1,2)
h,L (x→ z) de�ned in (2.5.8).

Similarly to λm(h) from (2.5.3), the maximum eigenvalues λL,1(h) and λL,2(h)

of the operators with kernels K(x, z) = q
(0,1)
hL

(x → z) and K(x, z) = q
(1,2)
h,L (x → z)

are simple and positive; the corresponding eigenfunctions p(x) can be chosen as
probability densities. Both approximations can be used for any T > 0.

In numerical examples below we approximate the eigenvalues λL,k(h) (k = 1, 2)
using the methodology described in [72], p.154. This methodology is based on the
Gauss-Legendre discretization of the interval [−c, h], with some large c > 0, into
an N -point set x1, . . . , xN (the xi's are the roots of the N -th Legendre polynomial
on [−c, h]), and the use of the Gauss-Legendre weights wi associated with points
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xi; λL,k(h) and p(x) are then approximated by the largest eigenvalue and associated
eigenvector of the matrix D1/2AD1/2, where D = diag(wi) and Ai,j = K(xi, xj) with
the respective kernel K(x, z). If N is large enough then the resulting approximation
to λL,k(h) is arbitrarily accurate. With modern software, computing Approximations
8 and 9 (as well as Approximation 7) with high accuracy takes only milliseconds on
a regular laptop.

As discussed in the next section, Approximation 9 is more accurate than Ap-
proximation 8, especially for small h; the accuracies of Approximations 7 and 9
are very similar. Note also that a version of Approximation 8 has been developed
in the authors previous work in [82] (not shown in this thesis); this version was
based on a di�erent discrete-time approximation (discussed in Section 2.4.5.5) of the
continuous-time BCP probability P (T, h).

2.6 Simulation study

2.6.1 Accuracy of approximations for the BCP PX(M,h)

In this section we study the quality of Approximations 8 and 9 for the BCP PX(M,h)

de�ned in (2.2.4). Approximation 7 is visually indistinguishable from Approxima-
tion 9 and is therefore not plotted (see Table 2.2). Without loss of generality, εj
in (2.1.1) are normal r.v.'s with mean 0 and variance 1. The style of Figure 2.6 is
exactly the same as of Figure 2.3 and is described in the beginning of Section 2.4.5.5.
In Figure 2.6, the dashed green line corresponds to Approximation 8 and the solid red
line corresponds to Approximation 9. Like in Figure 2.3, for Monte Carlo simulations
we have take 100, 000 repetitions.

Figure 2.6: Empirical probabilities of reaching the barrier h (dashed black), Approx-
imation 8 (dashed green) and Approximation 9 (solid red). Left: T = 10 with (a)
L = 5 and (b) L = 100. Right: T = 50 with (a) L = 5 and (b) L = 100.

From Figure 2.6 we see that the performance of Approximations 8 and 9 is very
strong across all values of h even for small L. For small h, Approximation 9 is
slightly more accurate than Approximation 8 in view of its better accommodation
to the non-Markovian nature of the process S(t).

In Table 2.2, we display the values of λL,1(h), λL,2(h) and µL(h) with L = 20

for a number of di�erent h. From this table, we see only a small di�erence be-
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h=0 h=0.5 h=1 h=1.5 h=2 h=2.5 h=3 h=3.5 h=4

λL,1(h) 0.28494 0.46443 0.65331 0.81186 0.91687 0.97090 0.99209 0.99835 0.99974
λL,2(h) 0.25744 0.43811 0.63472 0.80239 0.91348 0.97005 0.99195 0.99833 0.99974
µL(h) 0.25527 0.43677 0.63432 0.80241 0.91353 0.97007 0.99195 0.99833 0.99974

Table 2.2: Values of λL,1(h), λL,2(h) and µL(h) with L = 20 for di�erent h.

tween λL,2(h) and µL(h); this di�erence is too small to visually di�erentiate between
Approximations 7 and 9 in Figure 2.6.

In Tables 2.3, 2.4 and 2.5 we numerically compare the performance of Approx-
imations 5 and 7 for approximating PX(M,h) across di�erent values of L and h.
Since Approximation 5 relies on Monte-Carlo methods, we present the average over
100 evaluations and denote this by x̄. We have also provided values for the standard
deviation and maximum and minimum of the 100 runs to illustrate the randomised
nature of this approximation. These are denoted by s, max(xi) and min(xi) re-
spectively. The values of PX(M,h) presented in the tables below are the empirical
probabilities of reaching the barrier h obtained by 106 simulations. Approximation 9
is not included in these tables as results are identical to Approximation 7 up to four
decimal places.

h=2.5 h=2.75 h=3 h=3.25 h=3.5 h=3.75 h=4

x̄ 0.855957 0.627299 0.376337 0.191122 0.086253 0.033769 0.013156
s 0.004127 0.008588 0.013805 0.015181 0.012826 0.008510 0.005131

max(xi)− x̄ 0.010665 0.023748 0.029819 0.027066 0.025629 0.016208 0.011609
x̄−min(xi) 0.012176 0.021268 0.033211 0.041322 0.041350 0.022650 0.018146
Approx 7 0.854844 0.625113 0.373863 0.188933 0.083981 0.033833 0.012551
PX(M,h) 0.855429 0.627463 0.376681 0.191625 0.085697 0.034675 0.013116

Table 2.3: Average values from 100 evaluations of Approximation 5 for di�erent h
along with maximum and minimum with L = 5 and T = 100.

h=2.5 h=2.75 h=3 h=3.25 h=3.5 h=3.75 h=4

x̄ 0.952007 0.802073 0.554613 0.315085 0.155331 0.066113 0.025608
s 0.001479 0.004856 0.012540 0.015050 0.015160 0.011647 0.008129

max(xi)− x̄ 0.004746 0.013360 0.027078 0.030940 0.033991 0.024111 0.030014
x̄−min(xi) 0.003662 0.010894 0.031463 0.037715 0.041021 0.043283 0.016997
Approx 7 0.952475 0.802100 0.555109 0.316076 0.153803 0.066438 0.026143
PX(M,h) 0.952818 0.803078 0.555530 0.315784 0.153446 0.066642 0.026244

Table 2.4: Average values from 100 evaluations of Approximation 5 for di�erent h
along with maximum and minimum with L = 20 and T = 100.

h=2.5 h=2.75 h=3 h=3.25 h=3.5 h=3.75 h=4

x̄ 0.979027 0.878031 0.661247 0.402887 0.211894 0.093329 0.039110
s 0.000884 0.005502 0.014418 0.021283 0.018493 0.020459 0.015536

max(xi)− x̄ 0.001995 0.009243 0.039695 0.040615 0.063578 0.064306 0.037958
x̄−min(xi) 0.002414 0.020613 0.025530 0.093876 0.038484 0.05694 0.033748
Approx. 7 0.979119 0.878481 0.660662 0.405674 0.209313 0.094517 0.038529

Table 2.5: Average values from 100 evaluations of Approximation 5 for di�erent h
along with maximum and minimum with L = 100 and T = 100.
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From Tables 2.3, 2.4 and 2.5 we see that with this choice of T = 100, the errors of
approximating FX(2L, h) and FX(L, h) via the 'GenzBretz' algorithm can accumulate
and lead to a fairly signi�cant variation of Approximation 5. This demonstrates
the need to average the outcomes of Approximation 5 over a signi�cant number
of runs, should one desire an accurate approximation. This may require rather
high computational cost and run time, especially if L is large. On the other hand,
evaluation of Approximation 7 is practically instantaneous for all L. Even for a
very small choice of L = 5, Table 2.3 shows that Approximation 7 still remains
very accurate. As L increases from 5 to 20, Table 2.4 shows that the accuracy of
Approximation 7 increases. The averaged Approximation 5 is also very accurate but
a larger L appears to produce a larger range for max(xi) and min(xi) when h is large;
this is seen in Table 2.5. Note the empirical values of PX(M,h) are not included in
Table 2.5 due to the large computational cost.

2.6.2 Approximation for the BCP in the case of non-normal

moving sums

Approximations 7, 8 and 9 remain very accurate when then the original εi in (2.1.1)
are not exactly normal. We consider two cases: (a) εi are uniform r.v's on [0,1] and
(b) εi are Laplace r.v's with mean zero and scale parameter 1. Simulation results are
shown in Figure 2.7; this �gure has the same style as �gures in Sections 2.4.5.6 and
2.6.1 and Monte Carlo simulations have been performed with 100, 000 simulations.

Figure 2.7: Empirical probabilities of reaching the barrier h (dashed black), Approx-
imation 8 (dashed green) and Approximation 9 (solid red). Left: εi ∼ Uniform[0, 1]
and T = 10 with (a) L = 20 and (b) L = 100. Right: εi ∼ Laplace[0, 1] and T = 10
with (a) L = 20 and (b) L = 100.

Some selected values used for plots in Figure 2.7 are:
h = 2, L = 20: Emp: 0.6045±0.0030 (0.6123±0.0030) [0.5894±0.003]; Ap. 4(5): 0.5921(0.6054);

h = 2, L =100: Emp: 0.6771±0.0029 (0.6801±0.0029) [0.6722±0.003]; Ap. 4(5): 0.6633(0.6775);

h = 3, L = 20: Emp: 0.0788±0.0017 (0.0710±0.0016) [0.0915±0.002]; Ap. 4(5): 0.0777(0.0789);

h = 3, L =100: Emp: 0.1039±0.0019 (0.1033±0.0019) [0.1048±0.002]; Ap. 4(5): 0.1022(0.1034).

Here we provide means and 95% con�dence intervals for the empirical (Emp)
values of the BCP PX(M,h) (with T = M/L = 10) computed from 100, 000 Monte-
Carlo runs of the sequences of the moving sums (2.1.1) with normal (no brack-
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ets), uniform (regular brackets) and Laplace (square brackets) distributions for εi in
(2.1.1). Values of Approximations (Ap.) 8 and 9 are also given.

From Figure 2.7 and associated numbers we can make the following conclusions:
(a) the BCP PX(M,h) for the case where εi in (2.1.1) are uniform is closer to the
case where εi are normal, than for the case where εi have Laplace distribution;
(b) as L increases, the probabilities PX(M,h) in the cases of uniform and Laplace
distributions of εi become closer to the BCP for the case of normal εi and hence the
approximations to the BCP become more precise; (c) accuracy of Approximation 9 is
excellent for the case of normal εi and remains very good in the case of uniform εi; it is
also rather good in the case when εi have Laplace distribution; (d) Approximation 8
is slightly less accurate than Approximation 9 (and Approximation 7) for the case of
normal and uniform εi (this is in a full agreement with discussions in Sections 2.5.2.2
and 2.6.1); however, Approximation 8 is very simple and can still be considered as
rather accurate.

2.6.3 Approximation for the BCP in the case of moving weighted

sums

The author has also investigated the performance of Approximation 9 (and 7) after
introducing particular weights into (2.1.1). The following two ways of incorporating
weights has been explored:

(i) L random weights w1, w2, . . . , wL, with wi i.i.d. uniform on [0, 2], are associated
with a position in the moving window; this results in the moving weighted sum

Sn,w,L :=

n+L∑
j=n+1

wj−nεj (n = 0, 1, . . . ,M) ;

(ii) M + L random weights w1, . . . , wM+L are associated with r.v. ε1, . . . , εM+L;
here wj are i.i.d. uniform r.v's on [0,2]; this gives the moving weighted sum

Sn,w,L :=
n+L∑
j=n+1

wjεj (n = 0, 1, . . . ,M).

Simulations results are shown in Figure 2.8. In both cases, we have repeated
simulations 1,000 times and plotted all the curves representing the BCP as functions
of h in grey colour and Approximation 9 for the BCP for the non-weighted case
(when all weights wj = 1) as red dashed line. We can see that for both scenarios
the Approximation 9 for the BCP in the non-weighted case gives fairly accurate
approximation for the weighted BCP. Similar results have been observed for other
values of L and T .

2.7 Approximation using Extreme value theory; M > L

ForM large and signi�cantly greater than L, it is possible to use results from Extreme
value theory. For L = [c logM ] with c > 0, from Theorem 1.5 in [48] it was proved

lim
M→∞

PX(M,h) = 1− exp(−e−(h−aM )/bM ) , (2.7.1)
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Figure 2.8: BCP for the weighted sums (grey) against Approximation 9 for the BCP
for non-weighted moving sums (red dotted line). Left: case (i) with L = 20,M =
200, T = 10. Right: case (ii) with L = 20,M = 200, T = 10.

where the constants aM and bM are given by

aM =
√

2 logM +
−1/2 log logM + log((4/c)F (4/c))− log(2

√
π)√

2 logM
, bM =

1√
2 logM

.

The function F (a) satis�es

F (a) =
p2(a)

a
, where p(a) = exp

(
−
∞∑
k=1

1

k
Pr(Zk > 0)

)

and Zn =
∑n

i=1Xi with Xi i.i.d. Gaussian with mean −a/2 and variance a. The
constant p(a) requires numerical evaluation. We remark that similar �ndings are in
[120]. As a result, for a �nite M we make the following approximation.

Approximation 10: Extreme value approximation for the BCP (2.2.4): ForM/L >

1 and c = L/ log(M): PX(M,h) ' 1− exp(−e−(h−aM )/bM ) .

Of course, this approximation will only perform well for largeM and hence large h, as
is shown in Figure 2.9. In this �gure, the dashed black line corresponds to PX(M,h)

obtained by Monte Carlo simulations with 100, 000 iterations. The solid red line
depicts Approximation 10. The accuracy of this approximation seems comparable
to Approximation 1 and Approximation 2 and is poor for small T (see Figure 2.9
right) and clearly not uniform in h as is desired.

2.8 Approximating Average Run Length (ARL)

As discussed in (2.2.10), the di�usion approximation for ARLh(X)/L is

ARLh(S(t)) = E(τh(S(t))) =

∫ ∞
0

s q(s, h, S(t))ds . (2.8.1)

The di�usion approximation (2.8.1) should be corrected for discrete time; oth-
erwise it is poor, especially for small L. As shown in Section 2.6 and recalling the
discussion towards the end of Section 2.4.6, Approximations 7 and 9 are very accu-
rate approximations for PX(M,h) for all T > 0 (M > 0). In the results below, one
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Figure 2.9: Empirical probabilities of reaching the barrier h (dashed black) and
Approximation 10 (solid red). Left: T = 100 with L = 20. Right: T = 5 with
L = 10.

could implement the approximations derived in Section 2.3 for when T ≤ 1, however
the additional complexity is undesirable. We shall use Approximation 7 to formulate
our approximations but note that the use of Approximation 9 would provide very
similar results.

We de�ne the approximation q̂(s, h) for the probability density function of τh(X)/L

by

q̂(s, h) =
d

ds

{
1− F(2, h, hL) · µL(h)s−2

}
= −F(2, h, hL) log (µL(h)) · µL(h)s−2,

for s > 0. The corresponding approximation for ARLh(X) is

ARLh(X) = E τh(X) ∼= L

∫ ∞
0

sq̂(s, h)ds = − L · F(2, h, hL)

µL(h)2 log(µL(h))
. (2.8.2)

The standard deviation of τh(X), denoted SD(τh(X)), is approximated by:

SD(τh(X)) ∼= L

[∫ ∞
0

s2 q̂(s, h)ds−
(∫ ∞

0
s q̂(s, h)ds

)2
]1/2

. (2.8.3)

In this chapter, we de�ne ARL in terms of the number of random variables ξn,L
rather than number of random variables εj . This means we have to modify the ap-
proximation for ARL of [34] by subtracting L. The standard deviation approximation
in [34] is not altered.

The Glaz approximations for ARLh(X) and SD(τh(X)) are as follows:

EG(τh(X)) =
2L∑
j=L

(FX(j − L, h))+
FX(L, h)

FX(L, h)− FX(2L, h)

L∑
j=1

(FX(L+ j, h)) , (2.8.4)

SDG(τh(X))=

[
L(L− 1)+2

3L∑
j=L

j(FX(j − L, h)) +
2Lx(3− 2x)

(1− x)2

L∑
j=1

(FX(j + L, h))

+
2x

1− x

L∑
j=1

j(FX(j + L, h))+EG(τh(X))−EG(τh(X))2

]1/2

, (2.8.5)
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where x = FX(2L, h)/FX(L, h).
In Tables 2.6 and 2.7 we assess the accuracy of the approximations (2.8.2) and

(2.8.3) and also Glaz approximations (2.8.4) and (2.8.5). In these tables, the values of
ARLh(X) and SD(τh(X)) have been calculated using 100, 000 simulations. Since the
Glaz approximations rely on Monte Carlo methods, in the tables we have reported
value 2s-con�dence intervals computed from 150 evaluations.

h 2 2.25 2.5 2.75 3 3.25 3.5

(2.8.2) 126 217 395 759 1551 3375 7837
(2.8.4) 126±1 218±2 394±5 756±17 1545±65 3388±300 7791±1100

ARLh(X) 127 218 396 757 1550 3344 7721

h 2 2.25 2.5 2.75 3 3.25 3.5

(2.8.3) 129 220 397 761 1553 3377 7839
(2.8.5) 129±1 220±2 397±5 758±17 1549±65 3389±300 7793±1100

SD(τh(X)) 129 221 395 758 1550 3341 7716

Table 2.6: Approximations for ARLh(X) and SD(τh(X)) with L = 10.

h 2 2.25 2.5 2.75 3 3.25 3.5

(2.8.2) 471 791 1392 2587 5099 10695 23918
(2.8.4) 471±3 791±7 1393±25 2597±75 5101±270 10708±1250 24639±5800

ARLh(X) 472 792 1397 2588 5085 10749 24131

h 2 2.25 2.5 2.75 3 3.25 3.5

(2.8.3) 485 804 1404 2598 5109 10704 23924
(2.8.5) 481±3 802±7 1404±25 2608±75 5147±270 10716±1250 24649±5800

SD(τh(X)) 485 804 1407 2600 5093 10762 24105

Table 2.7: Approximations for ARLh(X) and SD(τh(X)) with L = 50.

Tables 2.6 and 2.7 show that the approximations developed in this chapter per-
form strongly and are similar, for small or moderate h, to the Glaz approximations.
For h≥3, the Glaz approximation produces rather large uncertainty intervals and the
uncertainty quickly deteriorates with the increase of h. This is due to the fairly large
uncertainty intervals formed by Approximation 5 when approximating PX(M,h) with
large h and hence small PX(M,h), as discussed in Section 2.6.1. The approximations
developed in this chapter are deterministic and are much simpler in comparison to
the Glaz approximations. Moreover, they do not deteriorate for large h.

2.9 Appendix A: Proof of Lemma 2.2.1

As correlation is invariant under linear transformations, Corr(S0,L, Sk,L) = Corr(ξ0, ξk).
From the de�nition (2.1.1) we have Corr(S0,L, Sk,L) = Corr(Sn,L, Sn+k,L). The sum
Sk,L can be represented as

Sk,L = S0,L −
k∑
j=1

εj +
L+k∑
j=L+1

εj .
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Using this representation, we obtain

Cov(S0,L, Sk,L) = (σ2L+ µ2L2)︸ ︷︷ ︸
ES2

0,L

−kσ2 − µ2L2︸ ︷︷ ︸
(ES0,L)2

= σ2L− kσ2 .

Dividing this by var(S0,L), from (2.2.1), we obtain Corr(S0,L, Sk,L) = 1−k/L in the
case k ≤ L. The case k > L is obvious.

2.10 Appendix B: Derivation of Durbin approximation

We shall initially show R′(0+) = −1 6= 0. We have

∂R(t, s)

∂s

∣∣∣∣
s=t+

= R(0+).

Using (2.2.7) and the fact that ∆ = 1/L, we have

R′(0+) = lim
L→∞

R(∆)−R(0)

∆
= − lim

L→∞

L

L
= −1.

The Durbin approximation for q(t, h, ζt) can be written as

q(t, h, S(t)) ∼= b0(t, h)f(t, h) ,

where

f(t, h)=
1√

2πR(t, t)
e
− h2(t)

2R(t,t) , b0(t, h)=− h(t)

R(t, t)

∂R(s, t)

∂s

∣∣∣∣
s=t+

− dh(t)

dt
.

In view of (2.2.9) the related approximation for the �rst passage probability P(T, h)

is

P(T, h) ∼=
∫ T

0
b0(t, h)f(t, h)dt .

In the case when the threshold h(t) = h is constant, using Lemma 2.2.2 we obtain

b0(t, h) = −hR′(0+) = h, q(t, h, S(t)) ∼=
h√
2π

e−h
2/2

and therefore we obtain the following approximation.

PX(M,h) ∼= P(T, h) ∼=
hT√
2π
e−h

2/2.

2.11 Appendix C: Derivation of (2.3.17)

As M = L, Pρ(L, h) =
∫ h
−∞

(
1− Φ (b+ â) + e−2âbΦ (b− â)

)
ϕ(x0)dx0 + 1 − Φ(h).

Using the fact â = (h− x0)/2 + ρL and b = (h+ x0)/2, we obtain:

Pρ(L, h) = 1−
∫ h

−∞
Φ (h+ ρL)ϕ(x0)dx0 +

∫ h

−∞
e−h

2/2+x20/2−ρLh−ρLx0Φ (x0−ρL)ϕ(x0)dx0

= 1− Φ(h+ ρL)Φ(h) + ϕ(h)e−ρLh
∫ h

−∞
e−ρLx0

∫ x0−ρL

−∞
ϕ(z)dz dx0.
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Making the substitution k = z + ρL in the rightmost integral, we obtain

ϕ(h)e−ρLh
∫ h

−∞

∫ x0

−∞
e−ρLx0ϕ(k − ρL)dk dx0.

By then changing the order of integration:

ϕ(h)e−ρLh
∫ h

−∞

∫ h

k
e−ρLx0ϕ(k − ρL)dx0 dk =

ϕ(h)e−ρLh

ρL

∫ h

−∞
(e−ρLk − e−ρLh)ϕ(k − ρL)dk.

By expanding the brackets, we obtain:

ϕ(h)e−ρLh

ρL

∫ h

−∞
(e−ρLk − e−ρLh)ϕ(k − ρL)dk =

ϕ(h)e−ρLh−ρ
2
L/2

ρL

∫ h

∞
ϕ(k)dk

− ϕ(h)e−2ρLh

ρL

∫ h

∞
ϕ(k − ρL)dk

=
ϕ(h+ ρL)

ρL
Φ(h)− ϕ(h)e−2ρLh

ρL
Φ(h− ρL).

Thus we obtain the required:

Pρ(L, h) = 1− Φ(h+ ρL)Φ(h) +
ϕ(h+ ρL)

ρL
Φ(h)− ϕ(h)e−2hρL

ρL
Φ(h− ρL) .
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Chapter 3

Approximating Shepp's constants

for the Slepian process

Abstract

Slepian process S(t) is a stationary Gaussian process with zero mean and

covariance ES(t)S(t′) = max{0, 1 − |t − t′|} . For any T ≥ 0 and real h, de�ne

FT (h) = Pr
{

maxt∈[0,T ] S(t) < h
}
and the constants Λ(h) = − limT→∞

1
T logFT (h)

and λ(h) = exp{−Λ(h)}; we will call them `Shepp's constants'. The aim of this

chapter is to construct accurate approximations for FT (h) and hence for the

Shepp's constants. We will demonstrate that at least some of the approxima-

tions are extremely accurate. The content of this chapter has been published

in [81].

3.1 Introduction

Let S(t), t ∈ [0, T ], be a Gaussian process with mean 0 and covariance

ES(t)S(t′) = max{0, 1− |t− t′|} . (3.1.1)

This process is often called Slepian process. For any real h and x < h, de�ne

FT (h | x) := Pr

{
max
t∈[0,T ]

S(t) < h
∣∣ S(0) = x

}
; (3.1.2)

if x ≥ h we set FT (h | x) = 0. Assuming that x has Gaussian distribution N(0, 1),
and hence the stationarity of the process S(t), we average FT (h | x) and thus de�ne

FT (h) :=

∫ h

−∞
FT (h | x)ϕ(x)dx , (3.1.3)

where ϕ(x) = (2π)−1/2 exp{−x2/2}.
Key results on the boundary crossing probabilities for the Slepian process have

been established by L. Shepp in [113]. In particular, Shepp has derived an explicit
formula for FT (h) with T integer, see (3.2.5) below. As this explicit formula is quite
complicated, in (3.7) in the same paper, Shepp has conjectured the existence of the
following constant (depending on h)

Λ(h) = − lim
T→∞

1

T
logFT (h) (3.1.4)
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and raised the question of constructing accurate approximations and bounds for this
constant.

The importance of this constant is related to the asymptotic relation

FT (h) ' const[λ(h)]T as T →∞ , (3.1.5)

where λ(h) = exp{−Λ(h)}. We will call Λ(h) and λ(h) `Shepp's constants'.
In this chapter, we are interested in deriving approximations for FT (h) in the

form (3.1.5) and hence for the Shepp's constants. In formulation of approximations,
we o�er approximations for FT (h) for all T > 2 and hence approximations for Λ(h)

and λ(h). Note that computation of FT (h) for T ≤ 2 is a relatively easy problem,
see [122] for T ≤ 1 and [113] for 1 < T ≤ 2.

In Section 3.2 we derive several approximations for FT (h) and λ(h) and pro-
vide numerical results showing that at least some of the derived approximation are
extremely accurate. In Section 3.3 we compare the upper tail asymptotics for the
Slepian process and some other stationary Gaussian processes. Section 3.4 contains
some minor technical details.

3.2 Construction of approximations

3.2.1 Existence of Shepp's constants and the approximations

derived from general principles

The fact that the limit in (3.1.4) exists and hence that Λ(h) is properly de�ned
for any h has been proven in [66]. The proof of existence of Λ(h) is based on the
inequalities

− 1

T + 1
log[FT (h)] ≤ Λ(h) ≤ − 1

T
log[FT (h)] for any T > 0 ; (3.2.1)

see (3.5) in [66]. The upper estimate in (3.2.1) follows directly from the celebrated
`Slepian inequality' established in [123]; the Slepian inequality holds for any Gaussian
stationary process whose correlation function is non-negative. The lower estimate
in (3.2.1) can be obtained by a simple extension of the arguments in [123, p.470]; it
holds for any Gaussian stationary process which correlation function vanishes outside
the interval [−1, 1]. The inequalities (3.2.1) are not sharp: in particular, for T = 2

and h = 0, (3.2.1) gives 1.336 < Λ(0) < 2.004; see [73, Remark 3]. From Tables 1
and 3, an accurate approximation for Λ(0) is Λ(0) ' 1.5972, where the author claims
all four decimal places are accurate.

If n is not too small, the bounds (3.2.1) are very di�cult to compute. For small h,
these bounds are not sharp even if n is large, see Figure 3.1a. The bounds improve as
h grows, see Figure 3.1b. It is not very clear how to use these bounds for construction
of accurate approximations for Λ(h). In particular, from Figure 3.1b we observe that
the upper bound of (3.2.1) can be much closer to the true Λ(h) than the lower bound.

One may apply general results shown in [62, 69], see also formula (2.1.3) in [1],
to approximate FT (h) for large h but these results only show that λ(h) → 1 as
h → ∞ and therefore are of no use here. A more useful tool, which can be used
for approximating λ(h), is connected to the following result of J. Pickands proved in
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(a) h = 0 (b) h = 2

Figure 3.1: Lower and upper bounds (3.2.1) (red dotted lines) for Λ(h) (solid black
line).

[90]. Assume that {ξ(t)} is a stationary Gaussian random process with Eξ(t) = 0,
Eξ2(t) = 1 and covariance function

ρ(t) = Eξ(0)ξ(t) = 0 = 1− C|t|α + o(|t|α) as t→ 0 (3.2.2)

and supε≤t≤T ρ(t) < 1, ∀ε > 0. Then

Pr

{
sup

0≤t≤T
ξ(t) ≤ h

}
= 1− TC1/αHαh

2/α−1ϕ(h) (1 + o(1)) as h→∞ , (3.2.3)

where Hα is the so-called `Pickands constant'. By replacing 1− x with e−x (x→ 0)
and removing the term (1 + o(1)) in (3.2.3) we obtain a general approximation

Pr

{
sup

0≤t≤T
ξ(t) ≤ h

}
' exp{−TC1/αHαh

2/α−1ϕ(h)} . (3.2.4)

As shown in [42], the value of the Pickands constant Hα is only known for α = 1, 2

and hence the approximation (3.2.4) can only be applied in these cases. When ξ(t)
is the Slepian process S(t) with covariance function (3.1.1) we have α = 1, H1 = 1

and C = 1. Hence we obtain from (3.2.4)

Approximation 0: FT (h) ' exp(−hϕ(h)T ) , Λ(0)(h) = hϕ(h) , λ(0)(h) = e−hϕ(h) .

Note that Approximation 0 can also be obtained as a Poisson clumping heuristic,
see formula (D10g) in [2]. If h is not large, then Approximation 0 is quite poor, see
Tables 1 and 2 and Figure 2. For small and moderate values of h, the approximations
derived below in this section are much superior to Approximation 0.
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3.2.2 Shepp's formula for Fn

As previously discussed in Section 2.4.2 of Chapter 2, the following formula is the
result (2.15) in [113]:

Fn(h
∣∣x) =

1

ϕ(x)

∫
Dx

det |ϕ(yi − yj+1 + h)|n|i,j=0 dy2 . . . dyn+1, (3.2.5)

where T = n is a positive integer, Dx = {y2, . . . , yT+1 |h−x < y2 < y3 < . . . < yn+1},
y0 = 0, y1 = h − x. L. Shepp in [113] has also derived explicit formulas for FT (h

∣∣x)

with non-integral T > 0 but these formulas are more complicated and are realistically
applicable only for small T (say, T ≤ 3).

From (3.2.5) we straightforwardly obtain

F1(h
∣∣x) = Φ(h)− ϕ(h)

ϕ(x)
Φ(x) , (3.2.6)

F1(h) =

∫ h

−∞
F1(h

∣∣x)ϕ(x)dx = Φ2(h)− ϕ(h)
[
hΦ(h) + ϕ(h)

]
, (3.2.7)

where Φ(x) =
∫ x
−∞ ϕ(t)dt. Derivation of explicit formulas for FT (h

∣∣x) and FT (h)

with T ≤ 1 is relatively easy as the process S(t) is conditionally Markovian in the
interval [0, 1], see [71]. Formula (3.2.6) has been �rst derived in [122].

In what follows, F2(h) also plays a very important role. Using (3.2.5) and chang-
ing the order of integration where suitable, F2(h) can be expressed through a one-
dimensional integral as follows:

F2(h)= Φ3(h)− 2hϕ(h)Φ2(h) +
h2−3+

√
πh

2
ϕ2(h)Φ(h) +

h+
√
π

2
ϕ3(h)

+

∫ ∞
0

Φ(h− y)
[
ϕ(h+ y)Φ(h− y)−

√
πϕ2(h)Φ(

√
2y)
]
dy. (3.2.8)

This expression can be approximated as shown in Appendix; see (3.4.1).

3.2.3 An alternative representation of the Shepp's formula (3.2.5)

From the discussions of Section 2.4.3 in Chapter 2, for T = n a positive integer,
y0 = 0, y1 = h− x and (for i = 0, 1, . . . , n) by setting si = h+ yi− yi+1 with s0 = x,
it follows from Shepp's proof of (3.2.5) that s0, s1, . . . , sn have the meaning of the
values of the process S(t) at the times t = 0, 1, . . . , n: S(i) = si (i = 0, 1, . . . , n).
Changing the variables in (3.2.5), we obtain

Fn(h
∣∣x) =

1

ϕ(x)

∫ h

−∞
. . .

∫ h

−∞
det |ϕ(si + ai,j)|n|i,j=0 ds1 . . . dsn , (3.2.9)

where

ai,j = yi+1−yj+1 =


0 for i = j

(i− j)h−sj+1−. . .−si+1 for i > j

(i− j)h+ si+1 + . . .+ sj for i < j .
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Expression (3.2.9) for the probability Fn(h
∣∣x) implies that the function

p(s0, s1, . . . sn) =
1

ϕ(s0)Fn(h
∣∣s0)

det |ϕ(si + ai,j)|n|i,j=0 . (3.2.10)

is the joint probability density function for the values S(0), S(1), . . . , S(n) under the
condition S(t) < h for all t ∈ [0, n].

Since sn is the value of S(n), the formula (3.2.10) also shows the transition density
from s0 = x to sn conditionally S(t) < h for all t ∈ [0, n]:

p
(n)
h (x→ sn) =

1

ϕ(x)

∫ h

−∞
. . .

∫ h

−∞
det |ϕ(si + ai,j)|n|i,j=0 ds1 . . . dsn−1 . (3.2.11)

For this transition density,
∫ h
−∞ p

(n)
h (x→ z)dz = Fn(h

∣∣x).

3.2.4 Approximating λ(h) through eigenvalues of integral

operators

3.2.4.1 One-step transition

In the case n = 1 we obtain from (3.2.11):

p
(1)
h (x→ z) =

1

ϕ(x)
det

(
ϕ(x) ϕ(x−h+z)

ϕ(h) ϕ(z)

)
= ϕ(z)

[
1− e−(h−z)(h−x)

]
(3.2.12)

with z = s1 < h. Let λ1(h) be the largest eigenvalue of the the integral operator
with kernel (3.2.12):

λ1(h)p(z) =

∫ h

−∞
p(x)p

(1)
h (x→ z)dx, z < h ,

where eigenfunction p(x) is some probability density on (−∞, h]. The Ruelle-
Krasnoselskii-Perron-Frobenius theory of bounded linear positive operators (see e.g.
Theorem XIII.43 in [107]) implies that the maximum eigenvalue λ of the operator
with kernel K(x, z) = p

(1)
h (x→ z) is simple, real and positive and the eigenfunction

p(x) can be chosen as a probability density.
Similarly to what is done below in Section 3.2.4.2, we can suggest computing

good numerical approximations to λ1(h) using Gauss-Legendre quadrature formulas.
However, the use of (4.15) from [82] (a results not derived explicitly in this thesis)
helps us to obtain the following simple but rather accurate approximation to λ1(h):

λ̂1(h) = Φ(h) + ϕ(h)/h−ϕ(h)[ϕ(h) + hΦ(h)]t/
[
Φ(h)− e−h2/2/2

]
.

Approximation 1: FT (h) ' F1(h)
[
λ̂1(h)

]T−1
(T ≥ 1); Λ(1)(h) = − log λ̂1(h) ,

λ(1)(h) = λ̂1(h) .
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3.2.4.2 Transition in a twice longer interval

Consider now the interval [0, 2]. We could have extended the method of Section 3.2.4.1
and used the eigenvalue (square root of it) for the transition s0 → s2 with transition
density expressed in (3.2.11) with n = 2. This would improve Approximation 1 but
this improvement is only marginal. Instead, we will use another approach: we con-
sider the transition s1 → s2 but use the interval [0, 1] just for setting up the initial
condition for observing S(t) at t ∈ [1, 2].

For n = 2, the expression (3.2.10) for the joint probability density function for
the values S(0), S(1), S(2) under the condition S(t) < h for all t ∈ [0, 2] has the form

p(s0, s1, s2) =
1

ϕ(s0)F2(h
∣∣s0)

det

 ϕ(s0) ϕ(s0−h+s1) ϕ(s0−2h+s1+s2)

ϕ(h) ϕ(s1) ϕ(s1+s2−h)

ϕ(2h−s1) ϕ(h) ϕ(s2)

 .

Denote by p1(z), z < h, the `non-normalized' density of S(1) under the condition
S(t) < h for all t ∈ [0, 1] that satis�es

∫ h
−∞ p1(z)dz = F1(h). Using (3.2.12), we

obtain

p1(z) =

∫ h

−∞
p

(1)
h (x→ z)ϕ(x)dx = Φ(h)ϕ(z)− Φ(z)ϕ(h).

Then the transition density from x = s1 to z = s2 under the condition S(t) < h

for all t ∈ [0, 2] is achieved by integrating s0 out and renormalising the joint density:

qh(x→ z) =
1

p1(x)

∫ h

−∞
det

 ϕ(s0) ϕ(s0−h+x) ϕ(s0−2h+x+z)

ϕ(h) ϕ(x) ϕ(x+z−h)

ϕ(2h−x) ϕ(h) ϕ(z)

 ds0

=
1

Φ(h)ϕ(x)− Φ(x)ϕ(h)
det

 Φ(h) Φ(x) Φ(x+z − h)

ϕ(h) ϕ(x) ϕ(x+z−h)

ϕ(2h−x) ϕ(h) ϕ(z)

 .

Let λ2(h) be the largest eigenvalue of the integral operator with kernel qh:

λ2(h)q(z) =

∫ h

−∞
q(x)qh(x→ z)dx, z < h ,

where eigenfunction q(x) is some probability density on (−∞, h]. Similarly to the
case n = 1, λ2(h) is simple, real and positive eigenvalue of the operator with kernel
K(x, z) = qh(x → z) and the eigenfunction q(x) can be chosen as a probability
density.

In numerical examples below we approximate λ2(h) with λ̂2(h) using the method-
ology described in [72], p.154. We refer the reader to the end of Section 2.5.2.2 of
Chapter 2 for a brief summary of this methodology.

Approximation 2: FT (h) ' F2(h)
[
λ̂2(h)

]T−2
(T ≥ 2); Λ(2)(h) = − log λ̂2(h) ,

λ(2)(h) = λ̂2(h) .
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3.2.4.3 Quality of Approximations 1 and 2

Approximation 1 is more accurate than Approximation 0 but it is still not accurate
enough. This is related to the fact that the process S(t) is not Markovian and the
behaviour of S(t) on the interval [i, i+1] depends on all values of S(t) in the interval
[i − 1, i] and not only on the value si = S(i), which is a simpli�cation we used for
derivation of Approximation 1. Approximation 2 corrects the bias of Approximation
1 by considering twice longer intervals [i− 1, i+ 1] and using the behaviour of S(t)

in the �rst half of the interval [i− 1, i+ 1] just for setting up the initial condition at
[i, i + 1]. As shown in Section 3.2.7, Approximation 2 is much more accurate than
Approximations 0 and 1. The approximations developed in the following section also
carefully consider the dependence of S(t) on its past; they could be made arbitrarily
accurate (on expense of increased computational complexity).

3.2.5 Main approximations

As mentioned above, the behaviour of S(t) on the interval [i, i + 1] depends on all
values of S(t) in the interval [i− 1, i] and not only on the value si = S(i). The exact
value of the Shepp's constant λ(h) can be de�ned as the limit (as i → ∞) of the
probability that S(t) < h for all t ∈ [i, i + 1] under the condition S(t) < h for all
t ≤ i. Using the formula for conditional probability, we obtain

λ(h) = lim
i→∞

Fi+1(h)/Fi(h) . (3.2.13)

Waiting a long time without reaching h is not numerically possible and is not what
is really required for computation of λ(h). What we need is for the process S(t)

to (approximately) reach the stationary behaviour in the interval [i− 1, i] under the
condition S(t) < h for all t < i. Since the memory of S(t) is short (it follows from the
representation S(t) = W (t)−W (t+1), whereW (t) is the standard Wiener process),
this stationary behaviour of S(t) is practically achieved for very small i, as is seen
from numerical results of Section 3.2.7. Moreover, since ratios Fi+1(h)/Fi(h) are
very close to Fi+1(h|xh)/Fi(h|xh) for i ≥ 1, we can use ratios Fi+1(h|xh)/Fi(h|xh)

in (3.2.13) instead. Here xh = −ϕ(h)/Φ(h) is the mean of the truncated normal
distribution with density ϕ(x)/Φ(h), x ≤ h. For computing the approximations,
it makes integration easier. Note also another way of justifying the approximation
λ(h) ' Fi+1(h)/Fi(h): divide (3.1.5) with T = i+ 1 by (3.1.5) with T = i.

The above considerations give rise to several approximations formulated below.
We start with simpler approximations which are easy to compute and end up with
approximations which are extremely accurate but are harder to compute. Approxi-
mation 7 is very precise, see Table 3.5. However, we would not recommend extremely
accurate Approximations 6 and 7 since Approximations 4 and 5 are already very ac-
curate, see Tables 1 and 2, but are much easier to compute. Approximation 3, the
simplest in the family, is also quite accurate. Note that all approximations for FT (h)

can be applied for any T > 0 (the accuracy of Approximations 4 and 7 for small T
is shown in Table 3.3).
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Approximation 3: FT (h) ' F2(h)
[
λ(3)(h)

]T−2
, where λ(3)(h) = F2(h|xh)/F1(h|xh) .

Approximation 4: FT (h) ' F2(h)
[
λ(4)(h)

]T−2
, where λ(4)(h) = F2(h)/F1(h) .

Approximation 5: FT (h) ' F2(h)
[
λ(5)(h)

]T−2
, where λ(5)(h) = F3(h|xh)/F2(h|xh) .

Approximation 6: FT (h) ' F3(h)
[
λ(6)(h)

]T−3
, where λ(6)(h) = F4(h|xh)/F3(h|xh) .

Approximation 7: FT (h) ' F4(h)
[
λ(7)(h)

]T−4
, where λ(7)(h) = F4(h)/F3(h) .

Numerical complexity of these approximation is related to the necessity of com-
puting either Fn(h|0) or Fn(h) for suitable n. It follows from (3.2.9) that Fn(h|0) is
an n-dimensional integral. Consequently, Fn(h) is an (n + 1)-dimensional integral.
In both cases, the dimensionality of the integral can be reduced by one, respectively
to n − 1 and n. In view of results of Sections 3.4.1 and 3.4.2, computation of Ap-
proximations 3 and 4 is easy, computation of Approximation 5 requires numerical
evaluation of a one-dimensional integral (which is not hard) but to compute Ap-
proximation 7 we need to approximate a three-dimensional integral, which has to
be done with high precision as otherwise Approximation 7 is not worth using: in-
deed, Approximations 4�6 are almost as good but are much easier to compute. As
Approximation 7 provides us with the values which are practically indistinguishable
from the true values of λ(h), we use Approximation 7 only for the assessment of the
accuracy of other approximations and do not recommend using it in practice.

3.2.6 Consistency of approximations when h is large

Assume that h→∞. We shall show that Approximations 3-7 for Λ(h) give consistent
results with Approximation 0 which is Λ(0)(h) = hϕ(h).

Roughly, this consistency follows if we simply use Λ(0)(h) for Λ(h) in (3.1.5) and
then substitute the asymptotically correct values of Fi(h) and Fi+1(h) in Λ(h) '
logFi(h) − logFi+1(h). Similar argument works in the case Λ(h) ' logFi(h|xh) −
logFi+1(h|xh).

Consider now Approximation 4 for Λ(h), which is Λ(4)(h) = logF1(h)−logF2(h).
From explicit formulas (3.2.7) and (3.2.8) for F1(h) and F2(h) we obtain

F1(h)=1−
(
h+

2

h
+O

(
1

h3

))
ϕ(h) , F2(h)=1−

(
2h− 2

h
+O

(
1

h2

))
ϕ(h) , h→∞ .

(3.2.14)

Expansion of F1(h) is straightforward. To obtain the expansion of expansion of F2(h)

from (3.2.8), we observe as h→∞:

Φ3(h) = 1−
(

3

h
+O

(
1

h3

))
ϕ(h) , 2hϕ(h)Φ2(h) =

(
2h+O

(
1

h3

))
ϕ(h)

and ∫ ∞
0

Φ2(h− y)ϕ(h+ y)dy =

(
1

h
+O

(
1

h3

))
ϕ(h) ;
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all other terms in (3.2.8) converge to zero (as h → ∞) faster than ϕ(h)/h2. Using
the expansion log(1− x) = −x+O(x−2) as x→ 0, this gives

Λ(4)(h) = logF1(h)− logF2(h) =

(
h− 4

h
+O

(
1

h2

))
ϕ(h) as h→∞ .

Similar considerations for the Approximation 5 give

Λ(5)(h) = logF2(h|xh)− logF3(h|xh) =

(
h− 3

h
+O

(
1

h2

))
ϕ(h) as h→∞ .

This is fully consistent with approximation Λ(0)(h) and all the discussion of Sec-
tion 3.2.1.

3.2.7 Numerical results

In this section we discuss the quality of approximations introduced in Section 3.2. In
Table 3.1, we present the values of λ(i)(h), i = 0, 1, . . . , 7, for a number of di�erent
h; see also Table 3.5 in Appendix at the end of this chapter. As mentioned above,
λ(7)(h) is practically the true λ(h) and therefore we compare all other approximations
against λ(7)(h). A plot of the relative errors can be seen in Figure 3.2a, where the
number next to the line corresponds to the approximation. Approximations 2 and 4
suggest accurate lower bounds for the true λ(h). Approximations 0 and 1 appear to
provide upper bounds for λ(h) for all h. In Table 3.2 we present the relative errors
of all other approximations against λ(7)(h); that is, the values λ(i)(h)/λ(7)(h) − 1

for i = 0, 1, . . . , 6. From these two tables we see that Approximations 2-6 are very
accurate especially for h > 1.

(a) Relative errors of λ(i)(h), i = 0, . . . , 6,
against λ(7)(h)

(b) λ(0)(h) (dotted red), λ(1)(h) (dashed
blue) and λ(6)(h) (solid green)

Figure 3.2: Approximations and their relative errors as functions of h.

As mentioned in Section 3.2.4.3, Approximation 1 is not as accurate as Approxi-
mations 2�7 because it does not adequately take into account the non-Markovianity
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of S(t). In Figure 3.2b we have plotted λ(0)(h) (dotted red line), λ(1)(h) (dashed red
line) and λ(6)(h) (solid green line) for a range of interesting h. Visually, all λ(i)(h)

with i = 2, 4, 5, 6, 7 would be visually indistinguishable from each other on the plot
in Figure 3.2b and λ(3)(h) would be very close to them. The number next to the line
corresponds to which approximation was used.

h=0 h=1 h=2 h=3 h=4

λ(0)(h) 1.000000 0.785079 0.897644 0.986792 0.999465

λ(1)(h) 0.250054 0.596156 0.885025 0.986738 0.999466

λ(2)(h) 0.201909 0.563246 0.879719 0.986566 0.999464

λ(3)(h) 0.199421 0.564851 0.880220 0.986532 0.999463

λ(4)(h) 0.200045 0.562888 0.879831 0.986570 0.999464

λ(5)(h) 0.202269 0.564446 0.879943 0.986571 0.999464

λ(6)(h) 0.202455 0.564377 0.879945 0.986571 0.999464

λ(7)(h) 0.202434 0.564371 0.879945 0.986571 0.999464

Table 3.1: λ(i)(h), i = 0, 1, . . . , 7, for di�erent h.

h = 0 h=1 h=2 h=3 h=4
λ(0)(h) 3.94e+00 3.91e-01 2.01e-02 2.25e-04 6.12e-07
λ(1)(h) 2.35e-01 5.63e-02 5.77e-03 1.69e-04 1.88e-06
λ(2)(h) -2.59e-03 -1.99e-03 -2.57e-04 -4.61e-06 -7.82e-09
λ(3)(h) -1.49e-02 8.51e-04 3.12e-04 -3.88e-05 -1.28e-06
λ(4)(h) -1.18e-02 -2.63e-03 -1.29e-04 -2.06e-07 1.35e-09
λ(5)(h) -8.13e-04 1.33e-04 -2.49e-06 -1.34e-07 9.09e-11
λ(6)(h) 1.03e-04 1.09e-05 -1.83e-07 4.12e-11 6.09e-12

Table 3.2: Relative errors of λ(i)(h), i = 0, 1, . . . , 6, against λ(7)(h).

In Table 3.3 we display values of FT (h) (numerically computed via (3.2.5)) and
Approximations 4 and 7 for h = 0, 1, 2 and T = 1, 2, 3, 4. For larger values of T ,
a large-scale simulation study has been performed where FT (h) has been estimated
for di�erent h using 106 trajectories of S(t) and all approximations for FT (h) con-
sidered above. Visually, Approximations 5-7 are virtually exact for all h ≥ 0 and
also Approximations 2-4 are visually undistinguishable from them for h ≥ 0.5. In
Figure 3.3, we show the strong performance of Approximation 7 for FT (h), where
we have chosen T = 10 and T = 50.

Table 3.4 provides results of one run of a simulation experiment, where we have
simulated the process S(t). In this experiment (its results are very typical), we have
chosen the interval [0, 10) and repeated the simulation N = 105 times. To simulate
the process S(t), we have discretized the interval [0, 10) into 104 points j/1000 (j =

0, . . . , 104 − 1) and run the moving window of size 1000. The value of the Shepp's
constant λ(2) corrected for discrete time is approximately 0.8851 (the uncorrected
value of Shepp's constant λ(2) is approximately 0.8799). Table 3.4 records values of
Ni, the numbers of trajectories which have not reached the barrier h = 2 in [0, i) (they
were still running at time i), for i = 1, . . . , 9. N10 = 28629 trajectories, out of the

70



T=1 T=2 T=3 T=4
FT (h) 0.090845 0.018173 0.003674 0.000744

h = 0 Approximation 4 0.090845 0.018173 0.003635 0.000727
Approximation 7 0.089643 0.018149 0.003674 0.000744

FT (h) 0.445730 0.250896 0.141584 0.079906
h = 1 Approximation 4 0.445730 0.250896 0.141227 0.079495

Approximation 7 0.444515 0.250871 0.141584 0.079906
FT (h) 0.846577 0.744845 0.655423 0.576737

h = 2 Approximation 4 0.846577 0.744845 0.655338 0.576587
Approximation 7 0.846465 0.744844 0.655423 0.576737

Table 3.3: Values of FT (h) and Approximations 4 and 7 for di�erent values of h and
T .

Figure 3.3: Empirical versions of FT (h) (dashed black) and Approximation 7 (solid
red).

total number 105 of them, have not crossed the barrier in [0, 10). The frequencies fi =

Ni+1/Ni (i = 1, . . . , 9) are empirical versions of Fi+1(h)/Fi(h) appearing in (3.2.13)
with h = 2. The standard deviations associated with fi's are si =

√
fi(1− fi)/Ni.

The weighted empirical mean of {fi} is f̂ =
∑9

i=1 fiNi

/∑9
i=1Ni ' 0.8855, which

perfectly agrees with the Shepp's constant ' 0.8851. Both of these values lie well
inside the 2s-con�dence intervals [fi−2si, fi+ 2si] for all i 6= 8 (for i = 8, these two
values are very close to fi+2si). All numerical results fully support the considerations
of Section 3.2.5.

i 1 2 3 4 5 6 7 8 9

Ni 85473 75732 67118 59405 52485 46516 41164 36367 32325
fi .8860 .8862 .8851 .8835 .8863 .8849 .8835 .8888 .8857
2si .0022 .0023 .0025 .0026 .0028 .0030 .0032 .0033 .0035

Table 3.4: Summary of results for an experiment involving N = 105 runs of S(t) in
[0, 10) with h = 2.
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3.3 Comparison of the upper tail asymptotics for the

Slepian process against some other stationary

Gaussian processes

Consider the following three stationary Gaussian processes.

1. ξ1(t) (t ≥ 0) is the Ornstein-Uhlenbeck process with mean 0, variance 1 and
correlation function ρ1(t) = exp(−|t|).

2. Let a > 0 be �xed real number and set α = (1 +a+a2)/(2 + 2a+a2). Then, if
W (t) denotes the standard Wiener process, we de�ne the process ξ2(t) (t ≥ 0)
as follows:

ξ2(t) =
1√

1 + a+ a2
{(1 + a)W (t+ 2α)− aW (t+ α)−W (t)} .

The process ξ2(t) has mean 0, variance 1 and correlation function

ρ2(t) =


1− |t|, for 0 ≤ |t| ≤ α
(1+a)(2α−|t|)

1+a+a2
, for α ≤ |t| ≤ 2α

0 for |t| ≥ 2α .

3. Let c ≥ 1 be a �xed real number and set β = 1/(c + 2). De�ne the process
ξ3(t) by

ξ3(t) =
1√

1 + c2
{W (t+ 1) + cW (t+ (c+ 1)β)− cW (t+ β)−W (t)} .

The process ξ3(t) has mean 0, variance 1 and correlation function

ρ3(t) =



1− |t| for 0 ≤ |t| ≤ β
(1+c)(1+c2β−|t|(1+c))

1+c2
for β ≤ |t| ≤ cβ

1+c+c2β−|t|(1+2c)
1+c2

for cβ ≤ |t| ≤ (c+ 1)β,
1−|t|
1+c2

for (c+ 1)β ≤ |t| ≤ 1

0 for |t| ≥ 1.

It follows from [71, Theorem 3], that the above three processes provide a very
good representation of the entire class of conditionally Markov stationary Gaussian
processes. Indeed, there is only one process in this class where α 6= 1 in (3.2.2) (this
is the process with covariance function ρ(t) = cosωt with ω 6= 0) and the three types
of processes we consider cover well the case where α = 1 and C = 1 in (3.2.2) (the
case C 6= 1 reduces to the case C = 1 by substituting h/C for h). For a graphical
representation of the chosen covariance functions, see Figure 3.4b.

Below we compare Shepp's constant Λ(h) de�ned in (3.1.4) to similar quantities
of the processes {ξi(t)}, (i = 1, 2, 3) de�ned above. More precisely, let

FT,i(h) := Pr

{
max
t∈[0,T ]

ξi(t) < h

}
, i = 1, 2, 3.
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We are interested in comparing Shepp's constant Λ(h) with

Λi(h) = − lim
T→∞

1

T
logFT,i(h), (3.3.1)

for i = 1, 2, 3. Importantly, each process has Eξi(t) = 0, Eξ2
i (t) = 1 and correlation

function ρi(t) = Eξi(0)ξi(t) which satis�es ρ′i(0
+) = d

dtρi(t)|t=0+ = −1, for i = 1, 2, 3.
The existence and evaluation of the constant Λ1(h) de�ned in (3.3.1) for the

Ornstein-Uhlenbeck process has been considered in [7], where it was shown that
0 < Λ1(h) < 1 for all h > 0, and that Λ1(h) is the root of a parabolic cylinder
function (de�ned in [7]) closest to zero. It is also shown that limh→0+ Λ1(h) = 1

and limh→∞ Λ1(h) = hϕ(h). The existence of the constants Λ2(h) and Λ3(h) follows
from similar arguments for the existence of Shepp's constant Λ(h). Moreover, the
constants are approximated by the same methodology as Shepp's constant, namely:

λi(h) = exp(−Λi(h)) = lim
j→∞

Fj+1,i(h)/Fj,i(h) . (3.3.2)

The justi�cation why we expect Fj+1,i(h)/Fj,i(h) (with, say, j ≥ 3) to be a good
approximation of λi(h) is related to the property of `fast loss of memory', which
processes ξ2(t) and ξ3(t) possess, as the process S(t) does. In view of the complex
structure of ξ2(t) and ξ3(t), the values of FT,2(h) and FT,3(h) are evaluated via Monte
Carlo simulations. In Figure 3.4a, we compare Λi(h) with Shepp's constant Λ(h) (red
solid line). Λ1(h) (orange dot-dash line) has been computed as in [7]. Λ2(h) (blue
dashed line) and Λ3(h) (dark green dotted line) have been approximated using (3.3.2)
with j = 3. For Λ2(h) we have taken a = 1 in the de�nition of ξ2(t) and for Λ3(h)

we have taken c = 1 in the de�nition of ξ3(t). In Figure 3.4b, we plot the correlation
functions: ρ(t) (red solid line); ρ1(t) (orange dot-dash line); ρ2(t) (blue dashed line);
ρ3(t) (dark green dotted line). Note that the results obtained are fully consistent
with the celebrated `Slepian's lemma', a Gaussian comparison inequality, see Lemma
1 in [123]. In our terms, Slepian's lemma says that if for two stationary Gaussian
processes with non-negative covariance functions ρ1 and ρ2 we have ρ1(t) ≥ ρ2(t) for
all t ≥ 0, then for the corresponding values of Λ(h) we have Λ1(h) ≤ Λ2(h), for all
h.

3.4 Appendix

3.4.1 Approximations for Λ(h)

In Table 3.5 we use Approximation 7 (the most accurate approximation provided
in this chapter) to approximate Λ(h) over increments 0.1 for h. Bold font indicates
the decimal places which the author claims as accurate. Note that h = 0 has been
treated as a special case, see for example [123] and [91]. For h = 0, instead of Ap-
proximation 7, the approximation Λ(8)(h) = − log(F5(h)/F4(h)) has been used; the
author does not recommend using this approximation in general because of its high
complexity.
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(a) Shepp's constant Λ(h) and Λi(h), i =
1, 2, 3

(b) Correlation functions ρ(t) and ρi(t), i =
1, 2, 3

Figure 3.4: Comparison of the upper tail asymptotics for several Gaussian stationary
process

h Λ(h) h Λ(h) h Λ(h) h Λ(h) h Λ(h)
0.0 1.5972 0.8 0.7240 1.6 0.250519 2.4 0.0578944 3.2 0.0077016

0.1 1.4632 0.9 0.6450 1.7 0.213929 2.5 0.0464986 3.3 0.0057244

0.2 1.3365 1.0 0.5720 1.8 0.181484 2.6 0.0370122 3.4 0.0042111

0.3 1.2170 1.1 0.5051 1.9 0.152902 2.7 0.0291909 3.5 0.0030658

0.4 1.1047 1.2 0.4438 2.0 0.127896 2.8 0.0228058 3.6 0.0022087

0.5 0.9995 1.3 0.3879 2.1 0.106178 2.9 0.0176462 3.7 0.0015747

0.6 0.9010 1.4 0.3372 2.2 0.087460 3.0 0.0135203 3.8 0.0011109

0.7 0.8092 1.5 0.2915 2.3 0.071458 3.1 0.0102561 3.9 0.0007755

Table 3.5: Approximations for Λ(h) with accurate decimal digits in bold.

3.4.2 An approximation for F2(h)

Using approximations for Φ(t), it is possible to accurately approximate the one-
dimensional integral

I =

∫ ∞
0

Φ(h− y)
[
ϕ(h+ y)Φ(h− y)−

√
πϕ2(h)Φ(

√
2y)
]
dy

from the formula (3.2.8) for F2(h). For example, using the approximation (see [67])

Φ(t) =

{
0.5 exp(0.717t− 0.416t2) for t ≤ 0

1− 0.5 exp(−0.717t− 0.416t2) for t > 0 ,
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we obtain the following approximation:

I ' Î = Φ(2h)−Φ(h)−
√
πϕ2(h)C1

2
[U(0.416, 0.832h− 0.717)− U(1.248, 0.832h− 1.731)/2]

− 1

4
√

2π
[4C2J(0.916, 0.717−0.168h)−C3J(1.332, 1.434+0.664h)−C4U(1.332, 0.664h−1.434)]

−
√
πϕ2(h)

[
h−J(0.832,−1.014)/2−C5

2
{J(0.416, 0.717+0.832h)−J(1.248,−0.297+0.832h)/2}

]
where C1=e

0.717h−0.416h2 , C2=e
−0.717h−0.916h2 , C3=e

−1.434h−1.332h2 , C4=e
1.434h−1.332h2 ,

C5 = e−0.717h−0.416h2 , K(x, y, z) =
√
πx−1/2ey

2/(4x)Φ
(√

2xz − y/
√

2x
)
, J(x, y) =

K(x, y, h)−K(x, y, 0) and U(x, y) = K(x, y,∞)−K(x, y, h).
Table 3.6 shows that Î is a rather accurate approximation for I across all h of

interest.

h = 0 h=0.5 h=1 h=1.5 h=2 h=2.5 h=3 h=3.5

I -0.043731 -0.046973 -0.016129 0.009474 0.011033 0.004760 0.001242 0.000228

Î -0.043358 -0.047742 -0.016829 0.009355 0.011041 0.004763 0.001243 0.000228

Table 3.6: Values of I and its approximation Î for di�erent values of h.
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Chapter 4

First passage times for Slepian

process with linear and piecewise

linear barriers

Abstract

In this chapter, we derive explicit formulas for the �rst-passage probabilities

of the process S(t) = W (t) −W (t + 1), where W (t) is the Brownian motion,

for linear and piece-wise linear barriers on arbitrary intervals [0, T ]. Previously,

explicit formulas for the �rst-passage probabilities of this process were known

only for the cases of a constant barrier or T ≤ 1. The �rst-passage probabilities

results are used to derive explicit formulas for the power of a familiar test for

change-point detection in the Wiener process. They will be useful when we

consider the discrete-time analogue change-point problem in Chapter 5. The

content of this chapter has been published in [145].

4.1 Introduction

Let T > 0 be a �xed real number and let S(t), t ∈ [0, T ], be a Gaussian process with
mean 0 and covariance

ES(t)S(t′) = max{0, 1− |t− t′|} .

This process is often called Slepian process and can be expressed in terms of the
standard Brownian motion W (t) by

S(t) = W (t)−W (t+ 1), t ≥ 0. (4.1.1)

Let a and b be �xed real numbers and x < a. We are interested in an explicit formula
for the �rst-passage probability

Fa,b(T |x) := Pr(S(t) < a+ bt for all t ∈ [0, T ] | S(0) = x); (4.1.2)

note Fa,b(T |x) = 0 for x ≥ a.
The case of a constant barrier, when b = 0, has attracted signi�cant attention

in literature. In his seminal paper [122], D. Slepian has shown how to derive an
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explicit expression for Fa,0(T |x) in the case T ≤ 1; see also [71]. The case T > 1 is
much more complicated than the case T ≤ 1. Explicit formulas for Fa,0(T |x) with
general T were derived by L. A. Shepp in [113]; these formulas are special cases of
results formulated in Section 4.2 and have been discussed previously in Chapter's
and 3. This chapter can be considered as a natural extension of the methodology
developed in [113] and [122]; hence the title of this chapter. Expressions of the �rst
passage probability Fa,b(T |x) (and extensions including piecewise linear barriers)
are necessary for computing the power of the MOSUM test when applied to the
change-point problem of identifying a transient change in the mean of a Wiener
process; see Section 4.5. The results of this chapter are crucial for Chapter 5, where
the discrete time analogue change-point problem of identifying a transient change in
mean of i.i.d. normal random variables is considered.

In the case T ≤ 1, Slepian's method for deriving formulas for Fa,0(T |x) can be
easily extended to the case of a general linear barrier. An explicit formula for the �rst-
passage probability Fa,b(T |x) was �rst derived in 1988 in [143, p.81] (published in
Russian) and more than 20 years later it was independently derived in [11] and [21].
In [143], the �rst-passage probability Fa,b(T |x) for T ≤ 1 was obtained by using
the fact that S(t) is a conditionally Markov process on the interval [0, 1]. It was
shown in [71], and discussed in Section 2.3.2 of Chapter 2, that after conditioning
on S(0) = x, S(t) can be expressed in terms of the Brownian motion by S(t) =

(2 − t)W (g(t)) + x(1 − t) (0 ≤ t ≤ 1) with g(t) = t/(2 − t). Consequently, the
�rst-passage probabilities for S(t), t ∈ [0, T ] with T ≤ 1 can be obtained using �rst-
passage formulas for the Brownian motion. This methodology, like many others, fails
for T > 1.

For general T > 0, including the case T > 1, explicit formulas for Fa,b(T |x) were
unknown. Derivation of these formulas is the main objective of this chapter. To do
this, we generalise Shepp's methodology of [113]. The principal distinction between
Shepp's methodology and the results of this chapter is the use of an alternative way
of computing coincidence probabilities. Shepp's proofs heavily rely on the so-called
Karlin-McGregor identity, see [49]; we use an extension of this identity formulated
in [50] and discussed in Section 4.2.1.

The Karlin-McGregor identity has many deep implications in probability. In
[50, 54], the identity was used to show a connection between n independent Brownian
motion processes conditioned to never collide and eigenvalues of random matrices.
More speci�cally, if X(t) represents a system of n independent Brownian motions
starting from the origin and conditioned never to collide with each other, then the
distribution of X(t) can be obtained using the probability density of eigenvalues of
random matrices in the Gaussian Unitary Ensemble, also see [52, 55]. Moreover, if
an appropriate initial distribution of X(t) is used, then it can be shown that non-
colliding Brownian motion is a determinantal process; by this, we mean that any joint
transition density can be expressed by a determinant of a matrix kernel, see [53]. In
[13], after a slight generalisation of the Karlin-McGregor identity (a generalisation
di�erent to the one used in this chapter), the authors show applications in queuing
theory. Another important application of the Karlin-McGregor identity deals with
�nding boundary crossing probabilities for various scan statistics, see [33, 78, 83].
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The structure of this chapter is as follows. In Section 4.2.2, we provide an ex-
pression for Fa,b(T |x) for integer T and in Section 4.2.4 we extend the results for
non-integer T . In Sections 4.3 and 4.4, we extend the results to the case of piecewise-
linear barriers. In Section 4.5, we outline an application to a change-point detection
problem; this application was the authors main motivation for this research. In
the appendix located at the end of the chapter, we provide detailed proofs of all
theorems.

4.2 Linear barrier a+ bt

The key result of this section is Theorem 4.2.1, where an explicit formula is derived
for the �rst-passage probability Fa,b(T |x) de�ned in (4.1.2) under the assumption
that T is a positive integer, T = n. First, we formulate a lemma that is key to the
advances of this chapter and can be obtained from [50, p. 5] or [51, p.40]. In this
lemma, we use the notation

ϕs(z) :=
1√
2πs

e−z
2/(2s) (4.2.1)

for the normal density with variance s. For the standard Brownian motion process
W (t), ϕs(a − c)dc = Pr(W (s) ∈ dc |W (0) = a) is the transition probability. We
shall also use

Wn+1 = {x = (x0, . . . , xn)′ ∈ Rn+1 : x0 < x1 < . . . < xn}

for the so-called Weyl chamber of type An, see [27] for details. The Weyl chamber
of type An has a natural appearance when considering the �rst passage probability
Fa,b(T |x) as we shall highlight here; see the proof of Theorem 4.2.2 for exact details.
For example, if one considers the probability Fa,b(1|x), then using (4.1.1) we have

Fa,b(1|x) = Pr(W (t) < a+ bt+W (t+ 1) for all t ∈ [0, 1] | S(0) = x) .

From this, it is clear we are interested in the probability one Brownian motion process
never collides with another slightly shifted Brownian motion process (here for brevity,
we are disregarding the fact the Brownian motions are correlated). As a result, we
are interested in the probability that two Brownian motion processes remain in the
Weyl chamber of type An.

4.2.1 An important auxiliary result

Lemma 4.2.1 (From [50, p. 5]) For any s > 0 and a positive integer n, let

Wµ(t) := (W0(t),W1(t), . . . ,Wn(t)), t ∈ [0, s], be an (n + 1)-dimensional Brow-

nian motion process with drift µ = (µ0, µ1, . . . , µn)′. Then

Pr
{
Wµ(t) ∈Wn+1 ∀t ∈ [0, s],Wµ(s) ∈ dc

∣∣Wµ(0) = a

}
= exp

(
−s

2
‖µ‖2 + µ′(c− a)

)
det [ϕs(ai − cj)]ni,j=0 dc0dc1 . . . dcn (4.2.2)

where ‖ · ‖ denotes the Euclidean norm, a = (a0, a1, . . . , an)′ ∈Wn+1,

c = (c0, c1, . . . , cn)′ ∈ Wn+1 and dc = (dc0, . . . , dcn), where dc0, . . . , dcn are in-

�nitesimal intervals around c0, . . . , cn.
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Lemma 4.2.1 is an extension of the Karlin-McGregor identity of [49], when applied
speci�cally to the Brownian motion, and accommodates for di�erent drift parameters
µi of Wi(t).

Corollary 4.2.1 Under the same assumptions as Lemma 4.2.1, we have

Pr
{
Wµ(t) ∈Wn+1 ∀t ∈ [0, s]

∣∣Wµ(0) = a,Wµ(s) = c
}

= exp
(
−s

2
‖µ‖2+µ′(c− a)

)
det [ϕs(ai − cj)]ni,j=0

/ n∏
i=0

ϕs(ai−ci+µis). (4.2.3)

Proof. Denote the transition density for the process Wi(t) by ϕs,µi(a− c); that is,
ϕs,µi(a− c)dc = Pr(Wi(s) ∈ dc |Wi(0) = a). Using the relation ϕs,µi(a − c) =

ϕs(a− c+ µis) and dividing both sides of (4.2.2) by Pr(Wµ(s) ∈ dc |Wµ(0) = a),
we obtain the result. �

4.2.2 Linear barrier a+ bt with integer T

Let ϕ(t) = ϕ1(t) and Φ(t) =
∫ t
−∞ ϕ(u)du be the density and the c.d.f. of the

standard normal distribution. Assume that T = n is a positive integer. De�ne
(n+1)-dimensional vectors

µ =


0

b

2b
...
nb

 , a =


0

x1+a

x2+2a+b
...

xn+na+ (n−1)n
2 b

 , c =


x1

x2+a+b

x3+2a+3b
...

xn+1+(a+b)n+ (n−1)n
2 b

 (4.2.4)

and let µi, ai and ci be i-th components of vectors µ, a and c respectively (i =

0, 1, . . . , n). Note that we start the indexation of vector components at 0.

Theorem 4.2.1 For any integer n ≥ 1 and x < a,

Fa,b(n |x)=
1

ϕ(x)

∫ ∞
−x−a−b

∫ ∞
x2−a−2b

. . .

∫ ∞
xn−a−nb

exp(−‖µ‖2/2 + µ′(c− a))

×det [ϕ(ai − cj)]ni,j=0 dxn+1 dxn. . . dx2 , (4.2.5)

where µ, a and c are given in (4.2.4).

Theorem 4.2.1 is a special case of Theorem 4.3.1 with (using the notation of Theo-
rem 4.3.1) n = T and T ′ = 0. Theorem 4.2.1 is formulated as a separate theorem
as it is the �rst natural extension of Shepp's results of [113]. Indeed, if b = 0 then
µ = 0 and (4.2.5) coincides with Shepp's formula (2.15) in [113] expressed in the
variables yi = xi + ia (i = 0, 1, . . . , n).

4.2.3 An alternative representation of formula (4.2.5)

It is easier to interpret Theorem 4.2.1 by expressing the integrals in terms of the
values of S(t) at times t = 0, 1, . . . , n. Let x0 = 0, x1 = −x. For i = 0, 1, . . . , n we
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set si = xi−xi+1 with s0 = x. It follows from the proof of (4.2.5), see Section 4.6.2,
that s0, s1, . . . , sn have the meaning of the values of the process S(t) at times t =

0, 1, . . . , n; that is, S(i) = si (i = 0, 1, . . . , n). The range of the variables si in (4.2.5)
is (−∞, a + bi), for i = 0, 1, . . . , n. The variables x1, . . . , xn+1 are expressed via
s0, . . . , sn by xk = −s0−s1− . . .−sk−1 (k = 1, . . . , n+1) with x0 = 0. Changing the
variables, we obtain the following equivalent expression for the probability Fa,b(n |x):

Fa,b(n |x)=
1

ϕ(x)

∫ a+b

−∞

∫ a+2b

−∞
· · ·
∫ a+bn

−∞
exp(−‖µ‖2/2 + µ′(c− a))

×det [ϕ(ai − cj)]ni,j=0 dsn. . . ds2ds1 ,

where µ is given by (4.2.4) but expressions for a and c change:

a =


0

a−s0

2a+b−s0−s1
...

na+ (n−1)n
2 b−s0−s1−. . .−sn−1

, c =


−s0

a+b−s0−s1

2a+3b−s0−s1−s2
...

(a+b)n+ (n−1)n
2 b−s0−s1−. . .−sn

 .

In a particular case of n = 1 we obtain:

Fa,b(1 |x) =
1

ϕ(x)

∫ a+b

−∞
exp(−b2/2+b(b− s1)) det

[
ϕ(x) ϕ(x+ s1 − a− b)
ϕ(a) ϕ(s1 − b)

]
ds1

= Φ(a+ b)− exp
(
−(a2 − x2)/2− b(a− x)

)
Φ(x+ b), (4.2.6)

which agrees with results in [11, 21, 143].

4.2.4 Linear barrier a+ bt with non-integer T

In this section, we shall provide an explicit formula for the �rst-passage probability
Fa,b(T |x) de�ned in (4.1.2) assuming T > 0 is not an integer. Represent T as
T = m + θ, where m = bT c ≥ 0 is the integer part of T and 0 < θ < 1. Set
n = m+ 1 = dT e.

Let ϕθ(t) and ϕ1−θ(t) be as de�ned in (4.2.1). De�ne the (n+ 1)- and n-
dimensional vectors as follows: µ1 = µ is as de�ned in (4.2.4),

a1 =


0

u1+a

u2+2a+b
...

un+na+ n(n−1)
2 b

 , c1 =


v0

v1+a+bθ

v2+2(a+bθ)+b
...

vn+n(a+bθ)+ n(n−1)
2 b

 , (4.2.7)

µ2 =


0

b

2b
...
mb

 , a2 =


v0

v1+a+bθ

v2+2(a+bθ)+b
...

vm+m(a+bθ)+ (m−1)m
2 b

 , c2 =


u1

u2+a+b

u3+2a+3b
...

um+1+m(a+b)+ (m−1)m
2 b

 ,

(4.2.8)
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and let a1i and c1i be i-th components of vectors a1 and c1 respectively (i =

0, 1, . . . , n). Similarly, let a2i and c2i be i-th components of vectors a2 and c2 respec-
tively (i=0, 1, . . . ,m). Recall that we start the indexation of vector components at
0.

Theorem 4.2.2 For x < a and non-integer T = m+ θ with 0 < θ < 1, we have

Fa,b(T |x) =
1

ϕ(x)

∫ ∞
−x−a−b

· · ·
∫ ∞
um−a−mb

∫ ∞
−∞

∫ ∞
v0−a−bθ

· · ·
∫ ∞
vm−a−bθ−mb

exp(−θ‖µ1‖2/2 + µ′1(c1 − a1)) exp(−(1−θ)‖µ2‖2/2 + µ′2(c2 − a2))×

det[ϕθ(a1i − c1j)]
n
i,j=0 det[ϕ1−θ(a2i − c2j)]

m
i,j=0 dvm+1 . . . dv1dv0dum+1 . . . du2 .

A proof of Theorem 4.2.2 is provided in Section 4.6.1. If b = 0 then the above
formula for Fa,b(T |x) coincides with Shepp's formula (2.25) in [113] expressed in
variables xi = ui + ia and yi = vi + ia (i = 0, 1, . . . , n). For m = 0 and hence T = θ,
Theorem 4.2.2 agrees with results in [11, 21, 143].

4.3 Piecewise linear barrier with one change of slope

4.3.1 Boundary crossing probability

In this section, we provide an explicit formula for the �rst-passage probability for S(t)

with a continuous piecewise linear barrier, where not more than one change of slope
is allowed. For any non-negative T, T ′ and real a, b, b′ we de�ne the piecewise-linear
barrier BT,T ′(t; a, b, b′) by

BT,T ′(t; a, b, b
′) =

{
a+ bt t ∈ [0, T ],

a+ bT + b′(t− T ) t ∈ [T, T + T ′] ;

for an illustration of this barrier, see Figure 4.1. We are interested in �nding an
expression for the �rst-passage probability

Fa,b,b′(T, T
′ |x) :=Pr(S(t) < BT,T ′(t; a, b, b

′) for all t ∈ [0, T + T ′] |S(0)=x). (4.3.1)

We only consider the case when both T and T ′ are integers. The case of general T, T ′

can be treated similarly but the resulting expressions are much more complicated.
De�ne the (T + T ′+1)-dimensional vectors as follows:

µ3 =



0

b

2b
...
Tb

b′ + Tb

2b′ + Tb
...

T ′b′ + Tb


, a3 =



0

x1 + a

x2 + 2a+ b
...

xT + Ta+ (T−1)T
2 b

xT+1 + (T + 1)a+ bT + (T−1)T
2 b

xT+2 + (T + 2)a+ 2bT + b′ + (T−1)T
2 b

...
xT+T ′ + (T + T ′)a+ bTT ′ + (T ′−1)T ′

2 b′ + (T−1)T
2 b


,

(4.3.2)
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a

a+ bT + b′T ′

T T + T ′0

a+bt

(a+ bT )+ b′(t−T )

a+ bT

t

Figure 4.1: Graphical depiction of a general boundary BT,T ′(t; a, b, b′) with b < 0
and b′ > 0.

c3 =



x1

x2 + a+ b

x3 + 2a+ 3b
...

xT + (T − 1)(a+ b) + (T−2)(T−1)
2 b

xT+1 + T (a+ b) + (T−1)T
2 b

xT+2 + a(T + 1) + bT + (T−1)T
2 b+ b′ + Tb

...
xT+T ′+1 + a(T + T ′) + bTT ′ + (T ′−1)T ′

2 b′ + (T−1)T
2 b+ T ′b′ + Tb.


, (4.3.3)

and let a3i and c3i be i-th components of vectors a3 and c3 respectively (i =

0, 1, . . . , T + T ′).

Theorem 4.3.1 For x < a and any positive integers T and T ′, we have

Fa,b,b′(T, T
′ |x) =

1

ϕ(x)

∫ ∞
−x−a−b

∫ ∞
x2−a−2b

. . .

∫ ∞
xT−a−bT

∫ ∞
xT+1−a−bT−b′

· · ·
∫ ∞
xT+T ′−a−bT−b′T ′

exp(−‖µ3‖2/2 + µ′3(c3 − a3)) det
[
ϕ(a3i − c3j)

]T+T ′

i,j=0
dxT+T ′+1 . . . dx2 . (4.3.4)

The proof of Theorem 4.3.1 is included in the appendix, see Section 4.6.2. Note that
if b = b′ then (4.3.4) reduces to (4.2.5) with n = T + T ′.

4.3.2 Two particular cases of Theorem 4.3.1

Below we consider two particular cases of Theorem 4.3.1; �rst, the barrier isB1,1(t; a,−b, b)
with b > 0; second, the barrier is B1,1(t; a, 0,−b′) with b′ > 0. See Figures 4.2 and
4.3 for a depiction of both barriers. As we demonstrate in Section 4.5, these cases
are important for problems of change-point detection.
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a

1 20

a−bt a−2b+bt

a−b
t

Figure 4.2: Barrier B1,1(t; a,−b, b)
with b > 0.

a

1 20

a+b′−b′t

a−b′
t

Figure 4.3: Barrier B1,1(t; a, 0,−b′)
with b′>0.

For the barrier B1,1(t; a,−b, b), an application of Theorem 4.3.1 yields

Fa,−b,b(1, 1 |x) =
eb

2/2−bx

ϕ(x)

∫ ∞
−x−a+b

e−bx2 (4.3.5)

×det

 ϕ(x) ϕ(−x2−a+b) Φ(−x2−a+b)

ϕ(a) ϕ(−x−x2+b) Φ(−x−x2+b)

ϕ(x2+2a−b+x) ϕ(a) Φ(a)

 dx2 .

For B1,1(t; a, 0,−b′), Theorem 4.3.1 provides:

Fa,0,−b′(1, 1 |x) =
eb
′2/2

ϕ(x)

∫ ∞
−x−a

∫ ∞
x2−a+b′

e−b
′(x3−x2) (4.3.6)

× det

 ϕ(x) ϕ(−x2 − a) ϕ(−x3 − 2a+ b′)

ϕ(a) ϕ(−x− x2) ϕ(−x− x3 − a+ b′)

ϕ(x2 + 2a+ x) ϕ(a) ϕ(x2 − x3 + b′)

 dx3dx2.

4.4 Piecewise linear barrier with two changes in slope

4.4.1 Boundary crossing probability

Theorem 4.3.1 can be generalized to the case when we have more than one change
in slope. In the general case, the formulas for the �rst-passage probability become
very complicated; they are already rather heavy in the case of one change in slope.

In this section, we consider just one particular barrier with two changes in slope.
For real a, b, b′, b′′, de�ne the barrier B(t; a, b, b′, b′′) as

B(t; a, b, b′, b′′) =


a+ bt, t ∈ [0, 1],

a+ b+ b′(t− 1), t ∈ [1, 2],

a+ b+ b′ + b′′(t− 2), t ∈ [2, 3] .

As will be explained in Section 4.5, the corresponding �rst-passage probability

Fa,b,b′,b′′(3|x) := Pr(S(t) < B(t; a, b, b′, b′′) for all t ∈ [0, 3] | S(0) = x) (4.4.1)

84



is important for some change-point detection problems.
De�ne the four-dimensional vectors as follows:

µ4 =


0

b

b+ b′

b+ b′ + b′′

 , a4 =


0

x1 + a

x2 + 2a+ b

x3 + 3a+ 2b+ b′

 , c4 =


x1

x2 + a+ b

x3 + 2a+ 2b+ b′

x4 + 3a+ 3b+ 2b′ + b′′


(4.4.2)

and let a4i and c4i be i-th components of vectors a4 and c4 respectively (i = 0, 1, 2, 3).

Theorem 4.4.1 For any real a, b, b′, b′′ and x < a

Fa,b,b′,b′′(3 |x) =
1

ϕ(x)

∫ ∞
−x−a−b

∫ ∞
x2−a−b−b′

∫ ∞
x3−a−b−b′−b′′

exp(−‖µ4‖2/2 + µ′4(c4 − a4)) det
[
ϕ(a4i − c4j)

]3
i,j=0

dx4dx3dx2. (4.4.3)

For the proof of Theorem 4.4.1, see Section 4.6.3 in the appendix.

4.4.2 A particular case of Theorem 4.4.1

In this section, we consider a special barrier B(t;h, 0,−µ, µ) (depicted in Figure 4.4),
which will be used in Section 4.5. In the notation of Theorem 4.4.1, a = h, b = 0,
b′ = −µ, b′′ = µ and we obtain

Fh,0,−µ,µ(3 |x) =
eµ

2/2

ϕ(x)

∫ ∞
−x−h

∫ ∞
x2−h+µ

e−µ(x3−x2)dx3dx2× (4.4.4)

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+µ) Φ(−x3−2h+µ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+µ) Φ(−x−x3−h+µ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+µ) Φ(x2−x3+µ)

ϕ(x3+3h−µ+x) ϕ(x3+2h−µ−x2) ϕ(h) Φ(h)

.

h

1 2 30

h+µ−µt h−3µ+µt

h−µ
t

Figure 4.4: Barrier B(t;h, 0,−µ, µ) with µ>0.
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4.4.3 Another linear barrier with two changes in slope

For real h and µ, de�ne the barrier B(t;h, 0, 0,−µ, µ) by

B(t;h, 0, 0,−µ, µ) =


h, t ∈ [0, 2],

h− µ(t− 2), t ∈ [2, 3],

h− µ+ µ(t− 3), t ∈ [3, 4] .

The barrier B(t;h, 0, 0,−µ, µ) looks similar to the barrier depicted in Figure 4.4, ex-
cept the constant part is two units long. The corresponding �rst-passage probability

Fh,0,0,−µ,µ(4|x) :=Pr(S(t) < B(t;h, 0, 0,−µ, µ) for all t ∈ [0, 4] |S(0) = x) (4.4.5)

will be important in Section 4.5.

Theorem 4.4.2 For any real h, µ and x < h

Fh,0,0,−µ,µ(4|x)=
eµ

2/2

ϕ(x)

∫ ∞
−x−h

dx2

∫ ∞
x2−h

dx3

∫ ∞
x3−h+µ

dx4 e
−µ(x4−x3)× (4.4.6)

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h) ϕ(−x4−3h+µ) Φ(−x4−3h+µ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h) ϕ(−x−x4−2h+µ) Φ(−x−x4−2h+µ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3) ϕ(x2−x4−h+µ) Φ(x2−x4−h+µ)

ϕ(x3+3h+x) ϕ(x3+2h−x2) ϕ(h) ϕ(x3+µ−x4) Φ(x3+µ−x4)

ϕ(x4+4h−µ+x) ϕ(x4+3h−µ−x2) ϕ(x4+2h−µ−x3) ϕ(h) Φ(h)

 .

The proof of Theorem 4.4.2 is very similar to the proof of Theorem 4.4.1.

4.5 Application to change-point detection

4.5.1 Formulation of the problem

In this section, we illustrate the natural appearance of the �rst-passage probabilities
for the Slepian process S(t) for piece-wise linear barriers and in particular the barriers
considered in Sections 4.3.2 and 4.4.2.

Suppose one can observe the stochastic process X(t) (t ≥ 0) governed by the
stochastic di�erential equation

dX(t) = µ1{ν≤t<ν+l}dt+ dW (t) , (4.5.1)

where ν > 0 is the unknown (non-random) change-point and µ 6= 0 is the drift
magnitude during the `epidemic' period of duration l with 0 < l < ∞; µ and l may
be known or unknown. The classical change-point detection problem of �nding a
change in drift of a Wiener process is the problem (4.5.1) with l =∞; that is, when
the change (if occurred) is permanent, see for example [76, 94, 98, 99].

In (4.5.1), under the null hypothesis H0, we assume ν = ∞ meaning that the
process dX(t) has zero mean for all t ≥ 0. On the other hand, under the alternative
hypothesis H1, ν <∞. In the de�nition of the test power, we will assume that ν is
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large. However, for the tests discussed below to be well-de�ned and approximations
to be accurate, we only need ν ≥ 1 (under H1).

In this section, we only consider the case of known l, in which case we can
assume l = 1 (otherwise we change the time-scale by t → t/l and the barrier by
B → B/

√
l). When testing for an epidemic change on a �xed interval [0, T ] with

l unknown, one possible approach is to construct the test statistic on the base of
max0<s<t<T [W (t)−W (s)], the maximum over all possible choices of l and locations.
This idea was discussed in [118], where asymptotic approximations are o�ered. The
case when l is unknown is more complicated and the �rst-passage probabilities that
have to be used are more involved.

We de�ne the test statistic used to monitor the epidemic alternative as

S1(t) =

∫ t+1

t
dX(t) t ≥ 0 .

The stopping rule for S1(t) is de�ned as follows

τ(h) = inf{t : S1(t) ≥ h}, (4.5.2)

where the threshold h is chosen to satisfy the average run length (ARL) constraint
E0(τ(h)) = C for some (usually large) �xed C (here E0 denote the expectation under
the null hypothesis). Since l is known, for any µ > 0 the test with the stopping rule
(4.5.2) is optimal in the sense of the Abstract Neyman-Pearson lemma, see Theorem
2, [38, p 110].

The process S1(t)−ES1(t) = W (t+ 1)−W (t) is stochastically equivalent to the
Slepian process S(t) of (4.1.1). Under H0, ES1(t) = 0 for all t ≥ 0 and under H1 we
have

ES1(t) =


µ(t− ν + 1) for ν − 1 < t ≤ ν
µ(1− t+ ν) for ν < t ≤ ν+1

0 otherwise.

4.5.2 Approximation for E0(τ(h))

To construct accurate approximations for E0(τ(h)), we shall utilise some of the ap-
proximations derived in Section 3.2.5 of Chapter 3. The resulting approximation
will have the same form as the approximation provided in Section 2.8 of Chapter 2,
without the discrete time correction. Consider the unconditional probability (taken
with respect to the standard normal distribution):

Fh,0(T ) :=

∫ h

−∞
Fh,0(T |x)ϕ(x)dx .

Under H0, the distribution of τ(h) has the form (1 − Φ(h))δ0(ds) + qh(s)ds , s ≥ 0,

where δ0(ds) is the delta-measure concentrated at 0 and

qh(s) = − d

ds
Fh,0(s), 0 < s <∞

is the �rst-passage density. This yields

E0(τ(h)) =

∫ ∞
0

sqh(s)ds. (4.5.3)
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There is no easy computationally convenient formula for qh(t) as expressions for
Fh,0(s) are very complex. One of the simplest (yet very accurate) approximation for
Fh,0(s) takes the form:

Fh,0(T ) ' Fh,0(2) · λ(h)T−2, for all T > 0, (4.5.4)

with λ(h) = Fh,0(2)/Fh,0(1). This corresponds to Approximation 4 in Chapter 3.
Using (4.5.4), we approximate the density qh(s) by

qh(s) ' −Fh,0(2) log[λ(h)] · λ(h)s−2, 0 < s <∞.

Subsequent evaluation of the integral in (4.5.3) yields the approximation

E0(τ(h)) ∼= −
Fh,0(2)

λ(h)2 log[λ(h)]
. (4.5.5)

Numerical study shows that the approximation (4.5.5) is very accurate for all h ≥ 3.
Setting h = 3.63 in (4.5.5) results in C ' 500.

4.5.3 Approximating the power of the test

In this section we formulate several approximations for the power of the test (4.5.2)
which can be de�ned as

P(h, µ) := lim
ν→∞

P1 {S1(t) ≥ h for at least one t ∈ [ν − 1, ν + 1] | τ(h) > ν − 1} ,

(4.5.6)

where P1 denotes the probability measure under the alternative hypothesis. De�ne
the piecewise linear barrier Qν(t;h, µ) as follows

Qν(t;h, µ) = h− µmax{0, 1− |t− ν|}.

The barrier Qν(t;h, µ) is visually depicted in Figure 4.5. The power of the test with
the stopping rule (4.5.2) is then

P(h, µ) = lim
ν→∞

P {S(t) ≥ Qν(t;h, µ) for at least one t ∈ [ν − 1, ν + 1] | τ(h) > ν − 1} .

Consider the barrier B(t;h, 0,−µ, µ) of Section 4.4 with t ∈ [0, 3]. De�ne the
conditional �rst-passage probability

γ3(x, h, µ) :=P{S(t)≥B(t;h, 0,−µ, µ) for some t∈ [1, 3]
∣∣S(0)=x;S(t) < h,∀t∈ [0, 1]}

=1−
P
{
S(t) < B(t;h, 0,−µ, µ) for all t ∈ [0, 3]

∣∣S(0) = x
}

P
{
S(t) < h for all t ∈ [0, 1]

∣∣S(0) = x
} =1−

Fh,0,−µ,µ(3|x)

Fh,0(1|x)
.

(4.5.7)

The denominator in (4.5.7) is very simple to compute, see (4.2.6) with b = 0

and a = h. The numerator in (4.5.7) can be computed by (4.4.4). Computation
of γ3(x, h, µ) requires numerical evaluation of a two-dimensional integral, which is
not di�cult. Recall that in this thesis we use the convention that Φ(x) is explicit
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and not an integral. This is because Φ(x) can be easily evaluated by all statistical
software.

The �rst approximation to the power P(h, µ) is γ3(0, h, µ). In view of (4.1.1)
the process S(t) forgets the past after one unit of time hence quickly reaches the
stationary behaviour under the condition S(t) < h for all t < ν−1. By approximating
P(h, µ) with γ3(0, h, µ), we assume that one unit of time is almost enough for S(t) to
reach this stationary state. In Figure 4.6, we plot the ratio γ3(x, h, µ)/γ3(0, h, µ) as a
function of x for h = 3 and µ = 3. Since the ratio is very close to 1 for all considered
x, this veri�es that the probability γ3(x, h, µ) changes very little as x varies implying
that the values of S(t) at t = ν−2 have almost no e�ect on the probability γ3(x, h, µ).
This allows us to claim that the accuracy |P(h, µ)−γ3(0, h, µ)| of the approximation
P(h, µ) ' γ3(0, h, µ) is smaller than 10−4 for all h ≥ 3.

Consider the barrier B(t;h, 0, 0,−µ, µ) of Section 4.4.3 with t ∈ [0, 4]. De�ne the
conditional �rst-passage probability

γ4(x, h, µ) :=P{S(t)≥B(t;h, 0, 0,−µ, µ) for some t∈ [2, 4]
∣∣S(0)=x,S(t) < h,∀t∈ [0, 2]}

=1−
P
{
S(t) < B(t;h, 0, 0,−µ, µ) for all t ∈ [0, 4]

∣∣S(0) = x
}

P
{
S(t) < h for all t ∈ [0, 2]

∣∣S(0) = x
} =1−

Fh,0,0,−µ,µ(4|x)

Fh,0(2|x)
.

The numerator in γ4(x, h, µ) requires numerical evaluation of the three-dimensional
integral in (4.4.6). The denominator can be computed using Theorem 4.2.1 with
a = h and b = 0. The second approximation to the power P(h, µ) is γ4(0, h, µ). The
accuracy of the approximation P(h, µ) ' γ4(0, h, µ) is smaller than 10−6 for all h ≥ 3

and µ ≥ 0. In particular, |γ4(1, 3, 3)/γ4(−1, 3, 3) − 1| < 10−7, compare this with
Figure 4.6. For h = 3.11 and hence C ' 100, we have |γ4(0, h, 3)/γ3(0, h, 3) − 1| <
3 · 10−5 and |γ4(0, h, 4)/γ3(0, h, 4) − 1| < 6 · 10−6. The approximation γ3(0, h, µ) is
the most favourable since it is almost as precise as γ4(0, h, µ) but computationally
γ3(0, h, µ) is much cheaper.

h

ν ν+1ν − 1

h−µ(t−ν+1) h−µ+µ(t−ν)

h−µ
t

Figure 4.5: Graphical depiction of
the boundary Qν(t;h, µ).

Figure 4.6: Ratio γ(x, h, µ)/γ(0, h, µ)
for h = 3 and µ = 3.

As seen from Figures 4.2 and 4.4, the barrier B1,1(t;h,−µ, µ) is the main com-
ponent of the barrier B(t;h, 0,−µ, µ). Instead of using the approximation P(h, µ) '
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γ3(0, h, µ) it is therefore tempting to use a simpler approximation P(h, µ) ' γ2(0, h, µ),
where

γ2(x, h, µ) :=P{S(t)≥B1,1(t;h,−µ, µ) for some t∈ [0, 2]
∣∣S(0)=x}=1− Fh,−µ,µ(1, 1|x) .

To compute values of γ2(0, h, µ) we only need to evaluate the one-dimensional integral
in (4.3.5) with b = µ.

To assess the impact of the �nal line-segment in the barrier B(t;h, 0,−µ, µ) on
the power (the line-segment with gradient µ in Fig 4.5, t ∈ [ν, ν + 1]), let

γ1(x, h, µ) := P{S(t)≥B1,1(t;h, 0,−µ) for some t ∈ [1, 2]
∣∣S(0) = x, S(t) < h,∀t ∈ [0, 1]}

= 1−
P
{
S(t) < B1,1(t;h, 0,−µ) for all t ∈ [0, 2]

∣∣S(0) = x
}

P
{
S(t) < h for all t ∈ [0, 1]

∣∣S(0) = x
} = 1−

Fh,0,−µ(1, 1|x)

Fh,0(1|x)
.

Then we make the approximation P(h, µ) ' γ1(0, h, µ), where the quantity Fh,0,−µ(1, 1| 0)

can be computed using (4.3.6) with b′ = µ. The denominator can be computed using
(4.2.6) with b = 0 and a = h.

In Table 4.1, we provide values of P(h, µ), γ2(0, h, µ) and γ1(0, h, µ) for dif-
ferent µ, where the values of h have been chosen to satisfy E0(τ(h)) = C for
C = 100, 500, 1000; see (4.5.5) regarding computation of the ARL E0(τ(h)). Since
the values in Table 4.1 are given to three decimal places, these values of P(h, µ) can
be obtained from either γ3(0, h, µ) or γ4(0, h, µ); both of these two approximations
provide a better accuracy than 3 decimal places. Comparing the entries of Table 4.1
we can observe that the quality of the approximation P(h, µ) ' γ2(0, h, µ) is rather
good, especially for large µ. By looking at the columns corresponding to γ1(0, h, µ),
one can also see the expected diminishing impact which the �nal line-segment in
B(t;h, 0,−µ, µ) has on power, as µ increases. However, for small µ the contribution
of this part of the barrier to power is signi�cant suggesting it is not be sensible to
approximate the power of the test considered here with γ1(0, h, µ).

µ

2
2.25
2.5
2.75
3

3.25
3.5
3.75
4

4.25
4.5
4.75
5

h = 3.11, C ' 100

P γ2 γ1

0.305 0.292 0.239
0.388 0.375 0.315
0.476 0.464 0.402
0.568 0.557 0.494
0.656 0.647 0.587
0.737 0.730 0.676
0.808 0.802 0.757
0.865 0.861 0.825
0.910 0.907 0.880
0.943 0.941 0.922
0.965 0.964 0.951
0.980 0.980 0.971
0.989 0.989 0.984

h = 3.63, C ' 500

P γ2 γ1

0.138 0.131 0.104
0.195 0.187 0.152
0.264 0.255 0.213
0.345 0.336 0.288
0.434 0.426 0.373
0.527 0.520 0.466
0.620 0.613 0.561
0.706 0.701 0.653
0.782 0.778 0.737
0.846 0.843 0.810
0.896 0.894 0.869
0.933 0.932 0.913
0.959 0.958 0.946

h = 3.83, C ' 1000

P γ2 γ1

0.096 0.090 0.071
0.140 0.134 0.108
0.198 0.191 0.157
0.269 0.262 0.221
0.351 0.344 0.297
0.442 0.435 0.385
0.536 0.530 0.479
0.629 0.623 0.574
0.715 0.710 0.666
0.790 0.787 0.749
0.852 0.850 0.819
0.901 0.899 0.876
0.937 0.936 0.919

Table 4.1: P(h, µ), γ2(0, h, µ) and γ1(0, h, µ) for di�erent µ for three choices of ARL.
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To summarize the results of this section, for approximating the power function
P(h, µ), we propose one the following two approximations: a very accurate ap-
proximation γ3(0, h, µ) requiring numerical evaluation of a two-dimensional integral
and γ2(0, h, µ), a less accurate but simpler approximation requiring evaluation of
a one-dimensional integral only. The approximation P(h, µ) ' γ4(0, h, µ) is ex-
tremely accurate but too costly whereas the approximation γ1(0, h, µ) is less accu-
rate than γ2(0, h, µ) but slightly cheaper, requiring the numerical evaluation of a
two-dimensional integral. The approximation P(h, µ) ' γ1(0, h, µ) has been studied
mainly for assessing the impact which the �nal line-segment in B(t;h, 0,−µ, µ) has
on the power.

4.6 Appendix

4.6.1 Proof of Theorem 4.2.2

Using (4.1.1), the �rst-passage probability Fa,b(T |x) can be equivalently expressed
as follows

Fa,b(T |x)

= Pr{W (t)−W (t+1)<a+bt for all t∈ [0,m+ θ] | W (0)−W (1)=x}

= Pr(W (t)−W (t+ 1) < a+ bt, W (t+ 1)−W (t+ 2) < a+ b(t+ 1), . . . ,

W (t+m)−W (t+m+ 1) < a+ b(t+m) for all t ∈ [0, θ] and

W (τ + θ)−W (τ + θ + 1) < a+ bθ + bτ,W (τ + θ + 1)−W (τ + θ + 2)

< a+ b+ bθ + bτ, . . . ,W (τ + (m− 1) + θ)−W (τ +m+ θ) <

a+ bθ + (m− 1)b+ bτ for all τ ∈ [0, 1− θ]| W (0)−W (1) = x)

= Pr

{
W (t)<W (t+1)+a+bt<. . .<W (t+m+1)+(m+1)(a+bt)+

(m+1)m

2
b

∀t∈ [0, θ] and W (τ+θ)<W (τ+θ+1)+a+bθ+bτ <. . .<

W (τ+θ+m) +m(a+bθ+bτ)+
(m−1)m

2
b ∀τ ∈ [0, 1− θ]|W (0)−W (1)=x

}
.

Let Ω be the event

Ω =

{
W (t)<W (t+1)+a+bt<. . .<W (t+m+1)+(m+1)(a+bt)+

(m+1)m

2
b

∀t∈ [0, θ] and W (τ+θ)<W (τ+θ+1)+a+bθ+bτ <. . .<W (τ+θ+m) +

m(a+bθ+bτ) +
(m−1)m

2
b ∀τ ∈ [0, 1− θ]

}
.
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By integrating out over the values ui and vi ofW at times i and i+θ, i = 0, 1, . . . ,m+

1, by the law of total probability we have

Fa,b(T |x) =

∫
· · ·

∫
Pr{Ω

∣∣W (0)=u0, . . . ,W (m+1)=um+1,W (θ)=v0, . . . ,

W (m+1+θ)=vm+1,W (0)−W (1)=x} ×

Pr{W (0)∈du0, . . . ,W (m+1)∈dum+1,W (θ)∈dv0, . . . ,

W (m+1+θ)∈dvm+1 |W (0)−W (1)=x}. (4.6.1)

Since W (0) − W (1) = x and W (0) = 0, we have W (1) = x1 = −x. De�ne the
processes

Wi(t) = W (t+ i) + i(a+ bt) +
(i− 1)i

2
b, 0 ≤ t ≤ θ, i = 0, 1, . . . ,m+ 1 ,

W ′j(t) = W (τ + θ + j) + j(a+ bθ + bτ) +
(j − 1)j

2
b, 0 ≤ τ ≤ 1− θ, j = 0, 1, . . . ,m .

Then the event Ω can be equivalently expressed as Ω = Ω1 ∩ Ω2 with

Ω1 = {W0(t) < W1(t) < · · · < Wm+1(t) for all t ∈ [0, θ]},

Ω2 = {W ′0(τ) < W ′1(τ) < · · · < W ′m(τ) for all τ ∈ [0, 1− θ]}.

Under the conditioning introduced in (4.6.1) we have for i = 0, 1, . . . ,m + 1 and
j=0, 1, . . . ,m:

Wi(0) = W (i) + ia+
(i− 1)i

2
b = ui + ia+

(i− 1)i

2
b ,

Wi(θ) = W (i+ θ) + i(a+ bθ) +
(i− 1)i

2
b = vi + i(a+ bθ) +

(i− 1)i

2
b ,

W ′j(0) = W (j + θ) + j(a+ bθ) +
(j − 1)j

2
b = vj + j(a+ bθ) +

(j − 1)j

2
b ,

W ′j(1− θ) = W (j + 1) + j(a+ b) +
(j − 1)j

2
b = uj+1 + j(a+ b) +

(j − 1)j

2
b .

Now under the above conditioning, the processes are independent and so the condi-
tional probability of Ω in (4.6.1) becomes a product of the conditional probabilities
of Ω1 and Ω2. Therefore, (4.6.1) becomes

Fa,b(T |x)=∫
· · ·

∫
Pr

{
Ω1

∣∣Wi(0)=ui+ia+
(i−1)i

2
b,Wi(θ)=vi+i(a+bθ)+

(i−1)i

2
b,

(0≤ i≤m+1)

}
× Pr

{
Ω2

∣∣W ′j(0)=vj+j(a+bθ)+
(j−1)j

2
b

W ′j(1−θ)=uj+1+j(a+b)+
(j−1)j

2
b (0≤j ≤m)

}
×Pr{W (0)∈du0

, . . . ,W (m+1)∈dum+1,W (θ)∈dv0, . . . ,W (m+1+θ)∈dvm+1

|W (0)−W (1)=x}. (4.6.2)
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The region of integration for the variables ui in (4.6.2) is determined from the fol-
lowing chain of inequalities:

−x− a < u2 + 2a+ b < . . . < um +ma+
(m− 1)m

2
b < um+1 + (m+ 1)a+

(m+ 1)m

2
b .

Whence, the upper limit of integration with respect to ui+1 is in�nity and the lower
limit for the integral with respect to ui+1, i = 1, . . . ,m is given by the formula
ui−a− ib. For the variables vj in (4.6.2), we have the following chain of inequalities

v0 < v1+a+bθ< . . .< vm+m(a+ bθ)+
(m− 1)m

2
b < vm+1+(m+ 1)(a+ bθ)+

(m+ 1)m

2
b .

Once again, the upper limit of integration with respect to vi+1 is in�nity and the
lower limit for the integral with respect to vi+1 (i = 0, . . . ,m) is vi − a − bθ − ib.
For v0, the upper and lower limits of integration are in�nite. Now using (4.2.3) with
n = m+ 1 we obtain

Pr

{
Ω1

∣∣Wi(0)=ui+ia+
(i−1)i

2
b,Wi(θ)=vi+i(a+bθ)+

(i−1)i

2
b, (0 ≤ i ≤ m+1)

}

= exp(−θ‖µ1‖2/2 + µ′1(c1 − a1)) det[ϕθ(a1i − c1j)]
m+1
i,j=0

/m+1∏
i=0

ϕθ(a1i − c1i + θµ1i),

where ϕθ(·) is given in (4.2.1), a1 and c1 are given in (4.2.7). Similarly, using (4.2.3)
with n = m we have

Pr

{
Ω2

∣∣W ′j(0)=vj+j(a+bθ)+
(j−1)j

2
b,W ′j(1−θ)=uj+1+j(a+b)+

(j−1)j

2
b, (0≤j≤m)

}
= exp(−(1−θ)‖µ2‖2/2 + µ′2(c2 − a2)) det[ϕ1−θ(a2i − c2j)]

m
i,j=0/ m∏

i=0

ϕ1−θ(a2i−c2i + (1−θ)µ2i),

where ϕ1−θ(·) is given in (4.2.1), a2 and c2 are given in (4.2.8). The third probability
in the right-hand side of (4.6.2) is simply

1

ϕ(x)

m∏
j=0

m+1∏
i=0

ϕθ(ui − vi)ϕ1−θ(vj − uj+1) dviduj+1.

By noticing

m∏
j=0

m+1∏
i=0

ϕθ(a1i−c1i + θµ1i)ϕ1−θ(a2j−c2j+(1−θ)µ2j) =
m∏
j=0

m+1∏
i=0

ϕθ(ui−vi)ϕ1−θ(vj−uj+1)

and collating all terms, we obtain the result. �

4.6.2 Proof of Theorem 4.3.1 (and Theorem 4.2.1)

We recall that the proof of Theorem 4.2.1 can be obtained by setting n = T and
T ′ = 0 in the following proof of Theorem 4.3.1.
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Using (4.1.1) we rewrite Fa,b,b′(T, T ′ |x) as

Fa,b,b′(T, T
′ |x)

= Pr{W (t)−W (t+1)< a+bt for all t∈ [0, T ],

W (t)−W (t+1)< a+bT + b′(t− T ) for all t∈ [T, T + T ′] | W (0)−W (1)=x}

= Pr{W (t)−W (t+1) < a+ bt, W (t+1)−W (t+2) <a+ b(t+1), . . . ,

W (t+T−1)−W (t+T )<a+b(t+T− 1),W (t+T )−W (t+T + 1)<a+bT + b′t,

W (t+T + 1)−W (t+T + 2)<a+bT + b′(t+ 1) . . . ,

W (t+T + T ′ − 1)−W (t+T + T ′)<a+bT + b′(t+ T ′ − 1) ∀t∈ [0, 1]∣∣ W (0)−W (1)=x}

= Pr

{
W (t) < W (t+ 1) + a+ bt < . . . < W (t+ T ) + T (a+ bt) +

(T − 1)T

2
b

< W (t+ T + 1) + a(T + 1) + bT +
(T − 1)T

2
b+ (b′ + Tb)t < . . . <

W (t+T+T ′)+ a(T+T ′)+ bTT ′+
(T ′ − 1)T ′

2
b′+

(T − 1)T

2
b+ (T ′b′ + Tb)t

for all t ∈ [0, 1]
∣∣ W (0)−W (1)=x

}
.

Let Ω be the event de�ned as follows

Ω=

{
W (t) < W (t+ 1) + a+ bt < . . . < W (t+ T ) + T (a+ bt) +

(T − 1)T

2
b

< W (t+ T + 1) + a(T + 1) + bT +
(T − 1)T

2
b+ (b′ + Tb)t < . . . <

W (t+ T + T ′) + a(T + T ′) + bTT ′ +
(T ′ − 1)T ′

2
b′ +

(T − 1)T

2
b+ (T ′b′ + Tb)t

for all t ∈ [0, 1]

}
,

and let xi = W (i), i = 0, . . . , T + T ′ + 1. Integrating out over the values xi, by the
law of total probability we obtain:

Fa,b,b′(T, T
′ |x)

=

∫
· · ·
∫

Pr{Ω |W (0)=x0, . . . ,W (T + T ′ + 1)=xT+T ′+1,W (0)−W (1)=x}

× Pr{W (0)∈dx0, . . . ,W (T + T ′ + 1)∈dxT+T ′+1 | W (0)−W (1)=x}. (4.6.3)

Note that W (1) = x1 = −x, since W (0) −W (1) = x and W (0) = 0. De�ne the
following processes which take di�erent forms depending on the value of i:

Wi(t) = W (t+ i) + i(a+ bt) +
(i− 1)i

2
b , for 0 ≤ i ≤ T ;

Wi(t) = W (t+ i)+ai+bT (i− T )+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b+{(i−T )b′+Tb}t,
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for T+1 ≤ i ≤ T + T ′, with 0 ≤ t ≤ 1 for all processes. The event Ω can now be
expressed as

Ω = {W0(t) < W1(t) < . . . < WT (t) < . . . < WT+T ′(t) for all t ∈ [0, 1]}. (4.6.4)

Under the conditioning introduced in (4.6.3), depending on the size of i we have: for
0 ≤ i ≤ T

Wi(0) = xi + ia+
(i− 1)i

2
b , Wi(1) = xi+1 + i(a+ b) +

(i− 1)i

2
b ;

and for T + 1 ≤ i ≤ T + T ′

Wi(0) = xi + ai+ bT (i− T )+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b ,

Wi(1) = xi+1 + ai+ bT (i− T )+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b+(i−T )b′+Tb .

Whence (4.6.3) can be expressed as

Fa,b,b′(T, T
′ |x)

=

∫
· · ·

∫
Pr

{
Ω

∣∣∣∣Wi(0) = xi + ia+
(i− 1)i

2
b ,Wi(1) = xi+1

+ i(a+ b) +
(i− 1)i

2
b (0 ≤ i ≤ T ),Wi(0) = xi+ai+bT (i−T )

+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b ,Wi(1) = xi+1+ai+bT (i−T )

+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b+(i−T )b′+Tb

(T ≤ i ≤ T+T ′), W0(0)−W0(1)=x

}
×

Pr{W (0)∈dx0, . . . ,W (T+T ′+1)∈dxT+T ′+1 |W (0)−W (1)=x}. (4.6.5)

The region of integration in (4.6.5) is determined from the following inequalities
which ensure that the inequalities in (4.6.4) hold at t = 0 and t = 1:

x1 < . . . < xT+1+T (a+ b)+
(T−1)T

2
b < xT+2+a(T+1)+bT+

(T−1)T

2
b+b′+Tb

< . . . <xT+T ′+1 + a(T + T ′) + bTT ′ +
(T ′−1)T ′

2
b′ +

(T−1)T

2
b+T ′b′+Tb.

From this, the upper limit of integration is in�nity for all xi. For 0 ≤ i ≤ T + 1,
the lower limit for xi is xi−1 − a − (i − 1)b. For T + 2 ≤ i ≤ T + T ′ + 1, the lower
limit for xi is xi−1 − a− bT − b′(i− T − 1). Since the conditioned Brownian motion
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processes Wi(t) are independent, application of (4.2.3) with n = T + T ′ provides

Pr

{
Ω

∣∣∣∣Wi(0) = xi + ia+
(i− 1)i

2
b ,Wi(1) = xi+1 + i(a+ b) +

(i− 1)i

2
b (0 ≤ i ≤ T )

Wi(0) = xi + ai+ bT (i− T )+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b ,

Wi(1) = xi+1 + ai+ bT (i− T )+
(i−T−1)(i−T )

2
b′+

(T−1)T

2
b+(i−T )b′+Tb

(T ≤ i ≤ T + T ′),W0(0)−W0(1)=x

}

= exp(−‖µ3‖2/2 + µ′3(c3 − a3)) det[ϕ(a3i, c3j)]
T ′+T
i,j=0 /

T+T ′∏
i=0

ϕ(a3i − c3i + µ3i),

where µ3 and a3 are given in (4.3.2) and c3 is given in (4.3.3). The second probability
in the right-hand side of (4.6.5) is

∏T+T ′

i=1 ϕ(xi−xi+1)dxi+1. We �nish the proof by
collating all terms and noting

T+T ′∏
i=0

ϕ(a3i − c3i + µ3i) =

T+T ′∏
i=0

ϕ(xi − xi+1) .

�

4.6.3 Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is similar to the proof of Theorem 4.3.1. We modify the
event Ω as follows:

Ω=
{
W (t) < W (t+ 1) + a+ bt < W (t+ 2) + 2a+ b+ bt+ b′t <

W (t+ 3) + 3a+ 2b+ b′ + (b+ b′ + b′′)t for all t ∈ [0, 1]
}
.

By the law of total probability,

Fa,b,b′,b′′(3 |x)=

∫
· · ·
∫

Pr{Ω |W (0)=x0, . . . ,W (4)=x4,W (0)−W (1)=x}

×Pr{W (0)∈dx0, . . . ,W (4)∈dx4 | W (0)−W (1)=x}. (4.6.6)

De�ne individually the following processes:

W0(t) = W (t)

W1(t) = a+ bt+W (t+ 1)

W2(t) = 2a+ b+ (b+ b′)t+W (t+ 2)

W3(t) = 3a+ 2b+ b′ + (b+ b′ + b′′)t+W (t+ 3)

with 0 ≤ t ≤ 1 for all processes. The event Ω can be re-written as

Ω = {W0(t) < W1(t) < W2(t) < W3(t) for all t ∈ [0, 1]}.

The conditioning introduced in (4.6.6) results in:
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W0(0) = 0

W1(0) = a+ x1

W2(0) = 2a+ b+ x2

W3(0) = 3a+ 2b+ b′ + x3

W0(1) = x1

W1(1) = a+ b+ x2

W2(1) = 2a+ 2b+ b′ + x3

W3(1) = 3a+ 3b+ 2b′ + b′′ + x4.

From this, we can express (4.6.6) as

Fa,b,b′,b′′(3 |x)

=

∫
· · ·

∫
Pr
{

Ω
∣∣W0(0) = 0, . . . ,W3(0)=3a+2b+b′+x3,W0(1) = x1, . . . ,

W3(1) = 3a+ 3b+ 2b′ + b′′ + x4,W0(0)−W0(1)=x
}

×Pr{W (0)∈dx0, . . . ,W (4)∈dx4 | W (0)−W (1)=x}. (4.6.7)

The region of integration for (4.6.7) is determined from the following inequalities
(see proof of (4.2.5) for similar discussion):

x1 < x2 + a+ b < x3 + 2a+ 2b+ b′ < x4 + 3a+ 3b+ 2b′ + b′′.

Thus, the upper limit of integration is in�nity for all xi. For integration with respect
to x4, the lower limit is x3−a−b−b′−b′′. For integration with respect x3, the lower
limit is x2 − a − b − b′. Finally, for x2, the lower limit is x1 − a − b = −x − a − b.
Now using (4.2.3) with n = 3 we obtain

Pr
{

Ω |W0(0) = 0, . . . ,W3(0) = 3a+ 2b+ b′ + x3

W0(1) = x1, . . . ,W3(1) = 3a+ 3b+ 2b′ + b′′ + x4,W0(0)−W0(1)=x
}

= exp(−‖µ4‖2/2 + µ′4(c4 − a4)) det[ϕ(a4i, c4j)]
3
i,j=0/

3∏
i=0

ϕ(a4i − c4i + µ4i),

µ4, a4 and c4 are given in (4.4.2). The second probability in the right-hand side of
(4.6.7) is

∏3
i=1 ϕ(xi − xi+1)dxi+1. Using the fact

3∏
i=0

ϕ(a4i − c4i + µ4i) =
3∏
i=0

ϕ(xi − xi+1),

and collecting all results we complete the proof. �
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Chapter 5

Power of the MOSUM test for

online detection of a transient

change in mean

Abstract: In this chapter we discuss an on-line moving sum (MOSUM) test for detection

of a transient change in the mean of a sequence of i.i.d. normal random variables. By

using newly developed theory for a continuous time Gaussian process derived in Chapter 4,

and subsequently correcting the results for discrete time, accurate approximations for the

Average Run Length (ARL) and power of the test are provided. We check theoretical re-

sults against simulations, compare the power of the MOSUM test with that of the CUSUM

and brie�y consider the cases of non-normal r.v.'s and weighted sums. The content of this

chapter has been published in [84].

5.1 Introduction: Statement of the problem

This chapter considers the discrete-time analogue of the continuous-time change-
point detection problem studied in Section 4.5 of Chapter 4. The results of the
chapter will utilise many of the boundary crossing probabilities derived in Chapter 4
after subsequently correcting the expressions for discreteness. Let us formulate the
change-point problem in discrete time.

Suppose one sequentially observes the i.i.d. normal random variables ε1, ε2 . . .

with known mean µ and variance σ2. At some unknown change-point ν, the random
variables εi (ν+1 ≤ i ≤ ν+ l) see a change in mean to µ+A for some positive A and
then the pre-change state is resumed. The goal of any detection procedure for this
type of change is to detect the change with high probabilty, subject to a false alarm
constraint. Formatting under the hypothesis testing framework, the null hypothesis
is H0 : ν = ∞ and hence Eεj = µ for all j = 1, 2, . . .. The alternative hypothesis is
H1: ν <∞ and therefore

H1 : Eεj =

{
µ if j ≤ ν or j > ν + l

µ+A if ν < j ≤ ν + l,
(5.1.1)
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with j = 1, 2, . . .. Under H1, the arrival time of the signal is ν + 1 (it is unknown),
the length of the signal is l (it can be known or unknown) and the amplitude is A > 0

(it can be known or unknown). Figure 5.1 displays the values Eεj under H1.
In this chapter, we study characteristics of an on-line moving sum (MOSUM)

test for detecting this transient change. This test is discussed comprehensively in
Chapter 1. For a �xed sample size, an excellent survey of several tests related to the
o�-line MOSUM procedure also designed to detect a transient change in the mean
value of a sequence of normal random variables is provided in [141]. Here the author
considers tests where the length of the transient change is not known in advance
and hence the test statistic depends on the maximum over all potential lengths
of transient change and all possible locations, see discussions in Section 1.3.2.3 in
Chapter 1 and also [140]. Also for the o�ine regime only, the problem of testing
for the existence of a multiple changes in the means of i.i.d. random variables has
been studied in [23]. Here, a MOSUM like statistic is used for detecting any possible
number of change-points in a sample of �xed length and the values of the mean
after the change-point do not necessarily have to be known. This can be seen as a
generalisation of the problem considered in this chapter, if one considers only the
o�ine setting. When considering the power of the test, it was shown in Theorem 2.2
of [23] that the MOSUM variant test rejects with asymptotic power one. We refer
to Section 1.3.2.3 of Chapter 1 for a brief introduction to statistic studied in [23].

The MOSUM test applied for testing a change in mean of a sequence of i.i.d.
r.v.'s was considered in [5] in the o�-line regime. Here, the authors consider the
cases when µ is known or unknown and σ2 is known or unknown. In [6], application
of MOSUM with squared residuals was used to detect a change in variance. In both
papers, the critical values for the test were approximated unsatisfactorily by ignoring
correlations between the moving sums. For a �xed sample size, the asymptotic
critical values for the o�-line MOSUM test were correctly obtained in [18] but there
was no attempt made to correct results for discrete time; this idea was considered
in Chapter 2. Moreover, to the best of the authors knowledge, only Monte Carlo
methods have been used to approximate the power of the MOSUM test and no
explicit approximations have been developed. The multivariate extension of this
change-point when the length of transient change is in�nitely long is discussed in
[16]. Here the authors propose a new method for the online multivariate change-
point problem and compare against the limited number of existing procedures.

The chapter is structured as follows. In Section 5.2 we formulate the MOSUM
test and de�ne the characteristics of interest: ARL (average run length) and the
power of the test. In Section 5.3 we brie�y recall previous results on approximations
for ARL. Section 5.4 forms the bulk of this chapter. In this section we develop
approximations for the power of the test for di�erent cases depending on the relation
between l and the width of the chosen MOSUM window. In Section 5.5, we study the
power of the MOSUM test and compare it with the power of the celebrated CUSUM
test. Here we will investigate the power as a function of l/L where L is the window
length associated with the MOSUM test (to be formulated shortly). The purpose
is to investigate the loss of power when the exact value of l is not known, and L is
misspeci�ed. Finally, in Section 5.6 we assess the accuracy of approximations when
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the original r.v.'s are not normal and the weights are not uniform.

1

µ

A+µ

ν+1 ν+l

Figure 5.1: Means of r.v. εj under the alternative.

5.2 Formulation of MOSUM statistic and its

characteristics

5.2.1 De�nition of MOSUM test

Let Pi and Ei denote probability and expectation under Hi for i = 0, 1, respectively.
For a �xed positive integer L, de�ne the moving sums

Sn,L :=
n+L∑
j=n+1

εj (n = 0, 1, . . .). (5.2.1)

As demonstrated in Section 1.3.2.1, the MOSUM test is motivated by the log-
likelihood ratio test and is de�ned as follows. After sequentially observing ε1, ε2, . . . , εL−1

without actioning, the MOSUM stopping rule is

τ(H) := inf

{
n ≥ L : max

0≤k≤n−L
Sk,L ≥ H

}
, (5.2.2)

where H is a threshold suitably chosen to satisfy a false alarm constraint; in this
case, the ARL constraint E0τ(H) = C for some (usually large) pre-speci�ed constant
C.

Instead of τ(H), it is sometimes more convenient to use form outlined in (1.3.10)
of Chapter 1. By de�ning

τS(H) := inf {n ≥ 0 : Sn,L ≥ H} , (5.2.3)

then the relation between τ(H) and τS(H) is simply

τ(H) = τS(H) + L. (5.2.4)

5.2.2 Main characteristics of interest

In this chapter we shall discuss and derive approximations for the following two
characteristics of the test (5.2.2):

1. The ARL to false alarm: E0τ(H) = E0τS(H) + L.
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2. The power of the test: For ν ′ = ν − L,

PS(H,A,L) := lim
ν→∞

P1{Sn,L>H for some n∈ [ν ′+1, ν+l−1] | τS(H)>ν ′}.

(5.2.5)

Formally, we require ν → ∞ in (5.2.5). This is to ensure that the sequence of
moving sums {Sn,L}n reaches the stationary behaviour under the null hypothesis and
given that we have not crossed the threshold H. However, as discussed below in Sec-
tion 5.4.4.3, this stationary regime is reached very quickly and in all approximations
below it is enough to only require ν ≥ 2L.

5.2.3 Standardisation of MOSUM statistics

It will be more convenient to use the standardised moving sums Sn,L. Under H0,
E0 Sn,L = µL and Var0(Sn,L) = σ2L, and we de�ne the standardised moving sum
process

ξn,L :=
Sn,L − E0 Sn,L√

Var0(Sn,L)
=
Sn,L − µL
σ
√
L

, n = 0, 1, . . . .

De�ne

h =
H − µL
σ
√
L

so that H = µL+ σh
√
L . (5.2.6)

The stopping time

τξ(h) := inf{n ≥ 0 : ξn,L ≥ h} (5.2.7)

is equivalent to τS(H); that is τξ(h) = τS(H) and hence E0τξ(h) = E0τS(H). More-
over, by de�ning

Pξ(h,A,L) := lim
ν→∞

P1{ξn,L > h for some n ∈ [ν ′ + 1, ν + l − 1] | τξ(h) > ν ′},

(5.2.8)

we have Pξ(h,A,L) = PS(H,A,L).

5.3 Approximation for ARL, the average run length to

false alarm

As discussed comprehensively in Chapter 1, see Section 1.2.1 as an example, the
threshold H in (5.2.2) is chosen so that E0τ(H) = C for some (usually large) pre-
speci�ed constant C > 0. In view of the relations (5.2.4) and (5.2.7), this corresponds
to choosing h such that

E0τξ(h) = C − L . (5.3.1)

Approximating the quantity E0τξ(h) was a focus of study in Section 2.8 of Chap-
ter 2. Here we recall one of the main results and refer to Chapter 2 for details of its
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derivation.

Approximation 0. From (2.8.2), by setting hL = h+ 0.8239/
√
L:

E0τξ(h) ∼= − L · F2(h;L)

θL(h)2 log(θL(h))
, with θL(h) =

F2(h;L)

F1(h;L)
,

F1(h;L) = Φ(h)Φ(hL)− ϕ(hL)[hΦ(h) + ϕ(h)] ,

and

F2(h;L) =
ϕ2(hL)

2

[
(h2−1+

√
πh)Φ (h)+(h+

√
π)ϕ (h)

]
− ϕ (hL) Φ (hL) [(h+hL) Φ (h)+ϕ (h)] +Φ (h) Φ2(hL)

+

∫ ∞
0

Φ(h−y)
[
ϕ(hL + y)Φ(hL − y)−

√
πϕ2(hL)Φ(

√
2y)
]
dy .

Here, ϕ(x) and Φ(x) are the standard normal density and distribution functions
respectively and are obtained by setting θ = 1 in the following

ϕθ(x) :=
1√
2πθ

e−x
2/(2θ) , Φθ(t) :=

∫ t

−∞
ϕθ(x)dx . (5.3.2)

As comprehensively shown in Section 2.8 of Chapter 2, Approximation 0 is very
accurate. For example, with h = 3 and L = 10, Approximation 0 yields E0τS(h) ∼=
1551 whereas Monte Carlo simulations with a sample size of 100,000 yield 1550± 1.
The author refers the reader to Chapter 2 for a deeper assessment of the accuracy of
Approximation 0. In the next section we will develop approximations for the power
of the MOSUM test. These will be developed in a similar manner to how E0τξ(h)

was approximated in the sense that we approximate a discrete-time problem with
a continuous-time problem and subsequently correct results for discrete time (see
Chapter 2).

5.4 Power of the test

5.4.1 Equivalent de�nition for the power of the test Pξ(h,A, L)

Assume H1 so that ν < ∞, and that ν is suitably large. Recall ν ′ = ν − L. If the
barrier H is reached by the test (5.2.3) for any sum Sn,L with n ≤ ν ′ then, since
there are no parts of the signal in the sums S0,L, . . . Sν′,L, we classify the event of
reaching the barrier as a false alarm. Each one of the sums Sν′+1,L, . . . , Sν+l−1,L

has mean larger than Lµ as it contains at least a part of the signal. Reaching the
barrier H by any of these sums will be classi�ed as a correct detection of the signal.
If neither of these sums reaches H, then we say that we failed to detect the signal
and further events when Sn,L ≥ H with n ≥ ν + l will again be classi�ed as false
alarms. In Figure 5.2 we display the values E1Sn,L as a function of n.

In this chapter, from the de�nition of PS(H,A,L), which is given in (5.2.5), we
are interested in detecting a change when ν occurs in the distant future (ν → ∞)
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0

µL

(A+µ) min(l, L)

ν ′ ν+l

ν ′+max(l,L)ν ′+min(l,L)

n

Figure 5.2: E1Sn,L as a function of n

given a false alarm has not been raised up to its arrival; this is to ensure the process
{Sn,L}n reaches the stationary state before the change occurs. In some sense, letting
ν →∞ is excessive. The results developed in this chapter are more general and can
be applied for all ν > 2L; this is due to the fact that the stationary behaviour of
{Sn,L}n is achieved very quickly.

De�ne the function

Q(n;A,L, ν ′) :=


0 for n ≤ ν ′ or n ≥ ν + l

A(n− ν ′) for ν ′ < n ≤ ν ′ + min(l, L)

Amin(l, L) for ν ′+min(l, L) < n ≤ ν ′+max(l, L)

A(L+ l + ν ′ − n) for ν ′ + max(l, L) < n ≤ ν + l − 1 .

By subtracting E1Sn,L from the thresholdH, the power of the test given in (5.2.5)
can be expressed in terms of probability under H0:

PS(H,A,L) =

lim
ν→∞

P0{Sn,L > H−Q(n;A,L, ν ′) for some n ∈ [ν ′+1, ν+l − 1]
∣∣ τS(H) > ν ′}.

After standardisation of Sn,L, the equivalent de�nition of the power is

Pξ(h,A,L) = (5.4.1)

lim
ν→∞

P0

{
ξn,L>h−

Q(n;A,L, ν ′)

σ
√
L

for some n∈ [ν ′+1, ν+l−1]

∣∣∣∣ τξ(h)>ν ′
}
,

where we once again recall PS(H,A,L) = Pξ(h,A,L). To approximate Pξ(h,A,L),
we shall �rstly approximate the problem in the continuous-time setting by deriving
what we shall call the di�usion approximation. We will then correct the di�usion
approximation for discrete time.

5.4.2 Continuous-time (di�usion) approximation for Pξ(h,A, L)

For deriving the di�usion approximation of (5.4.1) we replace the discrete time pro-
cess ξ0,L, . . . , ξν+l,L with a continuous time process S(t), t ∈ [0, T ] with T = (ν+l)/L,
as follows.

Set ∆ = 1/L and de�ne tn = n∆ ∈ [0, T ] with n = 0, 1, . . . , ν + l. De�ne a
piece-wise linear continuous-time process S(L)

t , t ∈ [0, T ] :

S
(L)
t =

1

∆
[(tn − t)ξn−1,L+(t− tn−1)ξn,L] for t ∈ [tn−1, tn], n = 1, . . . , ν + l.
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By construction, the process S(L)
t is such that S(L)

tn = ξn,L for n = 0, . . . , ν + l. Fix
γ = A

√
L/σ, κ = ν ′/L, λ = l/L and de�ne the function

Q(t; γ, κ, λ) =


0 for t ≤ κ or t ≥ κ+ 1 + λ.

γ(t− κ) for κ < t ≤ κ+ min(1, λ)

γmin(1, λ) for κ+ min(1, γ) < t ≤ κ+ max(1, λ)

γ(1 + λ+ κ− t) for κ+ max(1, λ) < t ≤ κ+ 1 + λ .

Lemma 5.4.1 Let A = A(L) = γσ/
√
L for some γ > 0 and assume L→∞. Then

under H1 the limiting process S(t) = limL→∞ S
(L)
t , where t ∈ [0, T ], is a Gaussian

process with marginal distributions S(t) ∼ N(Q(t; γ, κ, λ), 1) for all t ∈ [0, T ] and

autocorrelation function RS(t, t + s) = R(s) = max{0, 1−|s|} . Under H0, the

limiting process S(t) is a Gaussian second-order stationary process with marginal

distributions S(t) ∼ N(0, 1) for all t ∈ [0, T ] and the same autocorrelation function

R(t).

The Gaussian process S(t) with zero mean and autocorrelation function R(s) =

max{0, 1−|s|} is referred to as the Slepian process. The Slepian process S(t) can
be expressed in terms of the standard Brownian motion process W (t) as follows:

S(t) = W (t)−W (t+ 1), for t ≥ 0. (5.4.2)

Values of E1S(t) are shown in Figure 5.3.

0

γmin(1, λ)

κ κ+1+λ

κ+max(1, λ)κ+min(1, λ)
t

Figure 5.3: E1S(t) as a function of t

The di�usion approximation for the power of the test is

P(h,A) := (5.4.3)

lim
κ→∞

P0{S(t) > h−Q(t; γ, κ, λ) for some n ∈ [κ, κ+ 1 + λ] | τ̃(h) > κ},

where τ̃(h) = inf{t > 0 : S(t) > h}. That is, we make the approximation

Pξ(h,A,L) ∼= P(h,A) (5.4.4)

by assuming L → ∞. The di�usion approximation should provide fairly accurate
approximations if L is very large. It should, however, be corrected for discrete time
for smaller L. The complexity of computation of the di�usion approximation P(h,A)

and its discrete-time corrected version depends on the choice of L in comparison to
l. We consider three di�erent cases which are distinguished by the value of λ = l/L:
(a) λ = 1, (b) λ > 1 and (c) λ < 1.
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5.4.3 Case (a): λ = 1

In this section, we consider the case when L = l or, equivalently, λ = 1. In this case,
the di�usion approximation for Pξ(h,A,L) given in (5.4.3) reduces to

P(h,A)= lim
κ→∞

P0

{
S(t) ≥ h−Q(t; γ, κ) for some t∈ [κ, κ+ 2]

∣∣ τ̃(h) > κ
}
, (5.4.5)

where Q(t; γ, κ) = γmax {0, 1− |t− (κ+ 1)|}. The barrier h−Q(t; γ, κ) is depicted
in Figure 5.4.

h

κ+1 κ+2κ

h−γ(t−κ) (h−γ)+γ(t−κ−1)

h−γ
t

Figure 5.4: Barrier h−Q(t; γ, κ)
for λ=1.

h

1 2 30

h+γ−γt h−3γ+γt

h−γ
t

Figure 5.5: Barrier
B(t;h, 0,−γ, γ).

5.4.3.1 Approximation for the di�usion approximation

The probability (5.4.5) was considered in of Section 4.5 Chapter 4, where approxi-
mations accurate to more than 4 decimal places were developed. De�ne the following
two conditional probabilities:

Fh,0(1|x) := P0(S(t) < h for all t ∈ [0, 1] | S(0) = x) ,

Fh,0,−γ,γ(3|x) := P0(S(t) < B(t;h, 0,−γ, γ) for all t ∈ [0, 3] | S(0) = x),

where the barrier B(t;h, 0,−γ, γ) is de�ned as

B(t;h, 0,−γ, γ) =


h, 0 ≤ t ≤ 1

h− γ(t− 1), 1 < t ≤ 2

h− γ + γ(t− 2), 2 < t ≤ 3

0 otherwise,

and is depicted in Figure 5.5. From (4.5.7) in Chapter 4 (and [145]) we obtain

P(h,A) ∼= 1−
Fh,0,−γ,γ(3|0)

Fh,0(1|0)
, (5.4.6)

where

Fh,0(1 |x) = Φ(h)− exp
(
−(h2 − x2)/2

)
Φ(x) (5.4.7)
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and

Fh,0,−γ,γ(3 |x) =
eγ

2/2

ϕ(x)

∫ ∞
−x−h

∫ ∞
x2−h+γ

e−γ(x3−x2)dx3dx2 ×

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+γ) Φ(−x3−2h+γ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+γ) Φ(−x−x3−h+γ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+γ) Φ(x2−x3+γ)

ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2) ϕ(h) Φ(h)

.
To compute the approximation (5.4.6) one needs to numerically evaluate a two-

dimensional integral which is a routine problem for modern computers. Recall that
in this thesis we use the convention that Φ(x) is explicit and not an integral. This
is because Φ(x) can be easily evaluated by all statistical software.

5.4.3.2 Correcting the di�usion approximation (5.4.6) for discrete time

To correct (5.4.6) for discrete time, we must correct the continuous-time probabili-
ties Fh,0(1|x) and Fh,0,−γ,γ(3|x) for discrete time. In Section 2.4.5 of Chapter 2 it is
explained that correcting the probability Fh,0(1|x) for discrete time amounts to re-
placing the threshold h by hL := h+ωL, where ωL = 0.8239/

√
L. Here we shall show

that correcting Fh,0,−γ,γ(3|x) for discrete time can be performed in the same manner.

Let W (t) be the standard Brownian Motion process on [0,∞) with W (0) = 0

and EW (t)W (s) = min(t, s). De�ne the event

Ω = {W (t)−W (t+1)<h,W (t+1)−W (t+2)<h−γt,

W (t+2)−W (t+3)<h−γ+γt, ∀ 0 ≤ t ≤ 1}.

If W (i) = xi, i = 0, 1, . . . , 4, we obtain from the proof of Theorem 4.4.1 in Chapter
4:

Fh,0,−γ,γ(3 |x)=∫
· · ·
∫

Pr{Ω
∣∣W (i) = xi, i = 0, 1, 2, 3, 4, W (0)=0, W (0)−W (1)=x}

×Pr{W (i) ∈ dxi, i = 0, 1, 2, 3, 4
∣∣ W (0)=0, W (0)−W (1)=x}. (5.4.8)

It follows from the proof of (5.4.8) that correcting for discrete time amounts to
correcting the following probability for discrete time

Pr{Ω
∣∣ W (i) = xi, i = 0, 1, 2, . . . 4, W (0) = 0, W (0)−W (1) = x}

= Pr{
√

2W1(t)<h,
√

2W2(t)<h−γt,
√

2W3(t) < h−γ+γt, ∀ 0 ≤ t ≤ 1
∣∣

W (i) = xi, i = 0, 1, 2, . . . , 4,W (0)=0, W (0)−W (1)=x}, (5.4.9)

whereWi(t) =
√

2
2 [W (t+i−1)−W (t+i)], i = 1, 2, 3. Due to the conditioning on the

rhs of (5.4.9), the processes Wi(t) can be treated as independent Brownian motion
processes. In view of the fact that Brownian motion has independent increments,

107



correcting formula (5.4.8) for discrete time is equivalent to correcting the probabil-
ities Pr(

√
2W (t) < h + bt, ∀ 0 ≤ t ≤ 1 ) for discrete time, where b ∈ {0,−γ, γ}.

Correction of Pr(
√

2W (t) < h + bt, ∀ 0 ≤ t ≤ 1 ) for discrete time is discussed
in Section 2.4.5.2 of Chapter 2. In particular, it is shown in Section 2.4.5.2 that
the expected excess over the boundary for a discretised form of

√
2W (t) does not

depend on the value of b. Hence, results from Section 2.4.5.2 imply that to cor-
rect Fh,0,−γ,γ(3 |x) for discrete time, one should simply replace the threshold h by
hL := h+ ωL.

Approximation 1. For λ = 1, the corrected di�usion approximation for the power

of the test is

Pξ(h,A,L) ∼= 1−
FhL,0,−γ,γ(3|0)

FhL,0(1|0)
, where hL := h+ ωL. (5.4.10)

5.4.3.3 Simulation studies

In this section, we evaluate the performance of Approximation 1. In Figures 5.6, the
thicker black dashed line corresponds to the empirical values of the BCP Pξ(h,A,L)

computed from 100, 000 simulations with di�erent values of L and γ, where µ = 0

and σ = 1. The solid red line corresponds to Approximation 1. The dot-dashed
blue line corresponds to the di�usion approximation given in (5.4.6). The axis are:
the x-axis shows the value of γ. The y-axis denotes the probabilities of reaching the
barrier. The graphs, therefore, show the empirical probabilities of Pξ(h,A,L) and
values of approximation (5.4.10).

Figure 5.6: Empirical probabilities of Pξ(h,A,L) (thick dashed black) and its Ap-
proximation 1 (solid red) for two di�erent values of h. Left: h = 3. Right: h = 4.

From Figure 5.6, we see that Approximation 1 is very accurate even for a very
small L = 5. We also see the signi�cance of the discrete-time correction; whilst
the di�usion approximation provides sensible results should you compare it with
L = 100, for L = 5 the di�usion approximation is very far o�.
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5.4.4 Case (b): λ > 1

For λ > 1, the di�usion approximation for Pξ(h,A,L) given in (5.4.3) reduces to

P(h,A)= (5.4.11)

lim
κ→∞

P0

{
S(t) ≥ h−Q(t; γ, κ) for some t∈ [κ, κ+ 1 + λ]

∣∣ τ̃(h) > κ
}
,

where

Q(t; γ, κ) =


γ(t− κ) κ ≤ t ≤ κ+ 1

γ κ+ 1 < t ≤ κ+ λ

γ(κ+1+λ−t) κ+ λ < t ≤ κ+ 1 + λ

0 otherwise.

The barrier h−Q(t; γ, κ) is depicted in Figure 5.7. In this section we only consider
1 < λ ≤ 2 since larger values of λ result in ungainly high-dimensional integrals. The
methodology, however, could still be applied if one has the patience to evaluate
integrals of dimension �ve or higher accurately.

h

κ+1 κ+λ κ+1+λκ

h−γ(t−κ) h−γ+γ(t−κ−λ)

h− γ
t

Figure 5.7: Barrier h−Q(t; γ, κ) for λ>1.

h

1 2 1+λ 2+λ0

h−γ(t−1) h−γ+γ(t−1−λ)

h− γ
t

Figure 5.8: Barrier B(t;h, 0,−γ, 0, γ).

5.4.4.1 Approximating (5.4.11) when λ = 2

To approximate (5.4.11), one could adopt the same approach in Chapter 4 which led
to the form of approximation (5.4.6). Namely, de�ne the conditional probability

Fh,0,−γ,0,γ(2 + λ|x) := P0(S(t) < B(t;h, 0,−γ, 0, γ) for all t ∈ [0, 2 + λ] | S(0) = x),

where

B(t;h, 0,−γ, 0, γ) =



h, 0 ≤ t ≤ 1

h− γ(t− 1), 1 < t ≤ 2

h− γ, 2 < t ≤ λ+ 1

h− γ + γ(t− λ− 1), λ+ 1 < t ≤ 2 + λ

0 otherwise.

The barrier B(t;h, 0,−γ, 0, γ) is depicted in Figure 5.8. The approximation to
(5.4.11) is then

P(h,A) ∼= 1−
Fh,0,−γ,0,γ(2 + λ|0)

Fh,0(1|0)
. (5.4.12)

109



Unfortunately, whilst the probability Fh,0,−γ,0,γ(2 + λ|0) can be computed, it is
often intractable because of the requirement to evaluate a high dimensional integral.
For integer λ, a (λ + 1)-dimensional integral must be evaluated. For non-integer
λ, the situation is harder as a 4dλe dimensional integral must be evaluated. The
only case of interest where this methodology produces practical formulas is when
λ = 2. The following theorem allows one to evaluate the numerator in (5.4.12). The
denominator can be obtained from (5.4.7).

Theorem 5.4.1 For x < h we have

Fh,0,−γ,0,γ(4|x) =
eγ

2

ϕ(x)

∫ ∞
−x−h

dx2

∫ ∞
x2−h+γ

dx3

∫ ∞
x3−h+γ

e−γ(x4−x2) dx4× (5.4.13)

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+γ) ϕ(−x4−3h+2γ) Φ(−x4−3h+2γ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+γ)ϕ(−x−x4−2h+2γ) Φ(−x−x4−2h+2γ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+γ) ϕ(x2−x4−h+2γ) Φ(x2−x4−h+2γ)

ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2) ϕ(h) ϕ(x3−x4+γ) Φ(x3−x4+γ)

ϕ(x4+4h−2γ+x) ϕ(x4+3h−2γ−x2) ϕ(x4+2h−γ−x3) ϕ(h) Φ(h)

.
The proof of Theorem 5.4.1 is given in Appendix A in Section 5.7.

5.4.4.2 Correcting the di�usion approximation (5.4.12) for discrete time

To correct approximation (5.4.12) for discrete time, we adopt the methodology of
Section 5.4.3.2; exactly the same arguments can be used to justify replacement of
the threshold h with hL. This yields the following.

Approximation 2. For λ = 2, the corrected di�usion approximation for the power

of the test is

Pξ(h,A,L) ∼= 1−
FhL,0,−γ,0,γ(4|0)

FhL,0(1|0)
,

where hL = h + ωL, FhL,0,−γ,0,γ(4|0) can be computed using (5.4.13) and FhL,0(1|0)

can be computed from (5.4.7).
Approximation 2 is very accurate; for simulation results see, in particular, Section

5.4.4.5.

5.4.4.3 Approximating (5.4.11) when 1 < λ < 2

For non-integer λ > 1 the previous methodology requires the evaluation of a 4dλe-
dimensional integral which is too demanding. To simplify the evaluation of our
approximation to (5.4.11), we treat the process S(t) as if it was Markovian. We keep
the restriction 1 < λ < 2 as for λ > 2, even assuming a Markovian nature cannot
reduce the dimension of integration to a reasonable number. Also, as follows from
the numerical results discussed in Section 5, the case 1 < λ < 2 is practically much
more interesting than the case λ > 2 as the power of the MOSUM test becomes poor
as λ becomes large.

For a, b ∈ R and x < a, de�ne Fa,b(T |x) := P0(S(t) < a + bt for all t ∈
[0, T ] | S(0) = x). Deriving our approximation to P(h,A) in case 1 < λ < 2 will
require the following auxiliary results.
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Lemma 5.4.2 For T = 1, from (4.2.6) of Chapter 4,

Fa,b(1 |x) =
1

ϕ(x)

∫ a+b

−∞
exp(−b2/2+b(b− s1)) det

[
ϕ(x) ϕ(x+ s1 − a− b)
ϕ(a) ϕ(s1 − b)

]
ds1

= Φ(a+ b)− exp
(
−(a2 − x2)/2− b(a− x)

)
Φ(x+ b). (5.4.14)

From here, it follows

P0(S(1)∈ds1|S(t) < a+ bt ∀t∈ [0, 1), S(0)=x) = fa,b(s1|x)ds1,

where

fa,b(s1|x) =
eb

2/2−bs1

ϕ(x)
det

[
ϕ(x) ϕ(x+s1−a−b)
ϕ(a) ϕ(s1−b)

]

=
eb

2/2−bs1

ϕ(x)
[ϕ(x)ϕ(s1−b)−ϕ(a)ϕ(x+s1−a− b)].

For T = θ with 0 < θ < 1, we obtain from Theorem 4.2.2 of Chapter 4

Fa,b(θ |x) =
eθb

2/2

ϕ(x)

∫ ∞
−∞

∫ ∞
v0−a−bθ

eb(v1+x)ϕ1−θ(v0+x)

× det

[
ϕθ(−v0) ϕθ(−v1−a−bθ)

ϕθ(−x+a−v0) ϕθ(−x−v1−bθ)

]
dv1dv0 ,

where ϕθ(·) is de�ned in (5.3.2). By making the substitution sθ = v0 − v1, we
can express the integral above in terms of the random variable S(θ) to obtain the
following lemma.

Lemma 5.4.3 For T = θ with 0 < θ < 1,

Fa,b(θ |x) =
eθb

2/2

ϕ(x)

∫ ∞
−∞

∫ a+bθ

−∞
eb(v0−sθ+x)ϕ1−θ(v0+x)

× det

[
ϕθ(−v0) ϕθ(sθ − v0−a−bθ)

ϕθ(−x+a−v0) ϕθ(sθ − v0 − x−bθ)

]
dsθdv0.

From here, it follows

P0(S(θ)∈dsθ|S(t) < a+ bt ∀t∈ [0, θ), S(0)=x) = f
(θ)
a,b (sθ|x)dsθ,

where

f
(θ)
a,b (sθ|x) =

eθb
2/2

ϕ(x)

∫ ∞
−∞

eb(v0−sθ+x)ϕ1−θ(v0+x) det

[
ϕθ(−v0) ϕθ(sθ − v0−a−bθ)

ϕθ(−x+a−v0) ϕθ(sθ − v0 − x−bθ)

]
dv0

=
1√

2πϕ(x)

{
esθx/(θ−2)ϕθ(2−θ)(sθ − x)− eb(x−a)+a(sθ+x−a)/θϕθ(2−θ)(sθ + x)

}
.
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In [95] and [97], where general Markovian test statistics including CUSUM a
Shiryaev-Roberts tests were considered, the distribution of the test statistic under
the null hypothesis and under the condition that a false alarm has not been raised
for very long time, was called quasi-stationary distribution; below we shall adopt
this term for the statistic of moving sums.

To formulate our approximation we require an approximation to the quasi-stationary
distribution of S(t). More speci�cally, we require an approximation to

qh(x) =
d

dx
Qh(x), where Qh(x) = lim

t→∞
P0(S(t) < x|τ̃(h) > t);

recall τ̃(h) = inf{t > 0 : S(t) > h}. Whilst the exact form of qh(x) is not known, it
is possible to obtain a sequence of approximations increasing in accuracy (but also
in computational di�culty):

qh(x) ∼= q
(i)
h (x) =

d

dx
P0(S(i) < x|τ̃(h) > i), i = 0, 1, 2, . . . .

In view of (5.4.2) the process S(t) forgets the past after one unit of time hence
quickly reaches the stationary behaviour under the condition S(t) < h for all t < i.
Therefore the quasi-stationary density function can be well approximated simply by
taking i = 1. That is,

qh(s) ∼= q
(1)
h (s) =

∫ h
−∞ fh,0(s|x)ϕ(x)dx∫ h

−∞
∫ h
−∞ fh,0(s|x)ϕ(x)dxds

=
Φ(h)ϕ(s)− ϕ(h)Φ(s)

Φ2(h)− ϕ(h)[hΦ(h) + ϕ(h)]
,

where fh,0(s|x) is given in Lemma 5.4.3. Taking i = 2 would have resulted in a more
accurate approximation to qh(s) at the price of needing to numerically evaluate a
one-dimensional integral. Numerical studies show that q(2)

h (s) is extremely close to

q
(1)
h (s) which has the bene�t of being explicitly written, see Figure 5.9. Taking i = 0

results in q(0)
h (s) = ϕ(x)/Φ(h); numerical studies and Figure 5.9 (left) show that for

small h this density is far from q
(1)
h (s) and q(2)

h (s). However, if h is large, the density

q
(0)
h (s) gives a perfectly satisfactory approximation to the quasi-stationary density
qh(s); this is seen in Figure 5.9, right.

Figure 5.9: The transition densities q(0)
h (s) (dashed black) , q(1)

h (s) (solid red) and

q
(2)
h (s) (dotted blue) for two di�erent values of h. Left: h = 2. Right: h = 3.
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h

1 λ 1+λ0

h−γt h−γ +γ(t−1)

h− γ
t

Figure 5.10: Barrier B1(t;h,−γ, 0, γ)

By treating the process S(t) as if it was Markovian, we can use Lemma 5.4.2 on
the interval [0, 1], Lemma 5.4.3 on the interval [1, λ] and Lemma 5.4.2 again on the in-
terval [λ, 1+λ] to approximate the probability P0(S(t) < B1(t;h,−γ, 0, γ) for all t ∈
[0, 1 + λ] | S(0) = x), where the barrier B1(t;h,−γ, 0, γ) is de�ned as

B1(t;h,−γ, 0, γ) =


h− γt, 0 < t ≤ 1

h− γ, 1 < t ≤ 1 + λ

h− γ + γ(t− λ), λ+ 1 < t ≤ λ+ 1

0 otherwise,

and is depicted in Figure 5.10. Combining this with the approximation q(1)
h (s) for

the quasi-stationary density qh(s) leads to the following approximation for P(h,A):

P(h,A)∼=1−
∫ h

−∞

∫ h−γ

−∞

∫ h−γ

−∞
q

(1)
h (s0)fh,−γ(s1|s0)f

(λ−1)
h−γ,0(sλ|s1)Fh−γ,γ(1 | sλ)dsλds1ds0.

(5.4.15)

5.4.4.4 Correcting the di�usion approximation (5.4.15) for discrete time

Correcting approximation (5.4.15) for discrete time relies on correcting Lemma 5.4.2,Lemma
5.4.3 and the quasi-stationary density approximation q(1)

h (s0) for discrete time. We
apply exactly the same arguments as in Section 5.4.3.2. As a result, we obtain in
the discrete-time corrected forms of f (1)

h,−γ(s1|s0), f (λ−1)
h−γ,0(sλ|s1) and q(1)

h (s0).

Approximation 3. For 1 < λ < 2, the corrected di�usion approximation for the

power of the test is obtained by replacing h with hL = h+ ωL in (5.4.15).

5.4.4.5 Simulation studies

In this section, we evaluate the performance of Approximations 2 and 3. The style
of Figure 5.11 is the same as Figure 5.6 where the solid red line corresponds to the
approximations, the dashed black line corresponds to Monte Carlo approximations

113



for Pξ(h,A,L) and the dot-dashed blue line corresponds to the di�usion approxima-
tion given in (5.4.15). As in Section 5.4.3.3, empirical values of the BCP Pξ(h,A,L)

are computed from 100, 000 simulations with µ = 0 and σ = 1.
From Figure 5.11 we see that both Approximations 2 and 3 perform very well.

Figure 5.11: Empirical probabilities of Pξ(h,A,L) (dashed black) and its approxi-
mations (solid red). Left: h = 3, λ = 1.5 with Approximation 3. Right: h = 3, λ = 2
with Approximation 2.

5.4.5 Case (c): λ < 1

The �nal case to consider is that of 0 < λ < 1. For 0 < λ < 1, the di�usion
approximation for Pξ(h,A,L) given in (5.4.3) reduces to

P(h,A)= (5.4.16)

lim
κ→∞

P0

{
S(t) ≥ h−Q(t; γ, κ) for some t∈ [κ, κ+ 1 + λ]

∣∣ τ̃(h) > κ
}
,

where

Q(t; γ, κ) =


γ(t− κ) κ ≤ t ≤ κ+ λ

γλ κ+ λ < t ≤ κ+ 1

γ(κ+ 1 + λ− t) κ+ 1 < t ≤ κ+ 1 + λ

0 otherwise.

The barrier h−Q(t; γ, κ) is depicted in Figure 5.12.

5.4.5.1 Approximating (5.4.16) when 0 < λ < 1

For λ ∈ (0, 1), an approximation to P(h,A) of the form similar to (5.4.6) and (5.4.12)
would lead to intractable integrals. As a result, we adopt the same methodol-
ogy as Section 5.4.4.3, where we form our approximation by treating the process
S(t) as if it was Markovian. Repeated application of Lemma 5.4.3 on the inter-
vals [0, λ], [λ, 1] and [1, 1 + λ] allows one to approximate the probability P0(S(t) <

B2(t;h,−γ, 0, γ) for all t ∈ [0, 1 + λ] | S(0) = x), where B2(t;h,−γ, 0, γ) is de�ned
by

B2(t;h,−γ, 0, γ) =


h− γt, 0 < t ≤ λ
h− γλ, λ < t ≤ 1

h− γλ+ γ(t− 1), λ+ 1 < t ≤ λ+ 1

0 otherwise,
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h

κ+λ κ+1 κ+1+λκ

h−γ(t−κ) h−γλ+γ(t−κ−1)

h− γλ
t

Figure 5.12: Barrier h −
Q(t; γ, κ) for λ<1.

h

λ 1 1+λ0

h−γt h−γλ+γ(t−1)

h− γλ
t

Figure 5.13: Barrier
B2(t;h,−γ, 0, γ).

and is depicted in Figure 5.13. Combining this with the approximation for the
quasi-stationary density leads to the following approximation of P(h,A):

P(h,A)∼= (5.4.17)

1−
∫ h

−∞

∫ h−γλ

−∞

∫ h−γλ

−∞
q
(1)
h (s0)f

(λ)
h,−γ(sλ|s0)f

(1−λ)
h−γλ,0(s1|sλ)Fh−γλ,γ(λ | s1)ds1dsλds0.

5.4.5.2 Correcting the di�usion approximation (5.4.17) for discrete time

Correcting (5.4.17) for discrete time can be done in exactly the same manner as for
(5.4.15), see Section 5.4.4.4.

Approximation 4. The corrected di�usion approximation for the power of the test

when 0 < λ < 1 can be obtained by replacing h with hL = h+ ωL in (5.4.17).

5.4.5.3 Simulation studies

In this section, we evaluate the performance of Approximation 4. The style of Fig-
ure 5.14 is the same as Figures 5.6 and 5.11. For Monte Carlo simulations, we have
use 100, 000 runs.

Figure 5.14: Empirical probabilities of Pξ(h,A,L) (dashed black) and Approximation
4 (solid red) Left: h = 3, λ = 0.5. Right: h = 3, λ = 0.75.
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5.5 Comparison of MOSUM and CUSUM tests

In this section, we draw two comparisons of the MOSUM test. Firstly, we compare
the power of the MOSUM test against the well known CUSUM test; a detailed
description of the CUSUM test including properties such as ARL can be found in
Chapter 1 and [131, Section 8.2]. Secondly, but also simultaneously, we compare
the power of the MOSUM test as λ varies in [0.5, 2]. The CUSUM test considered
in this section assumes the post-change mean A is known. There are variations of
the CUSUM test that do not make this assumption, see for example [24], (see also
Section 1.3.2.3 in Chapter 1 for variations of the MOSUM test when A is unknown),
however these will inevitably have lower power for the case of A known as they utilise
less information. The purpose of this section is to make a worst case comparison
between the MOSUM process (which does not need to know A to determine its
ARL threshold) and the CUSUM test under an ideal scenario with A known. By
design, the CUSUM test (for this problem) aims to detect a permanent change in
mean rather than a transient change in mean, see Section 1.2 in Chapter 1. We
draw comparisons between the two tests to quantify the potential gain in power the
MOSUM test has over the CUSUM test by having the additional knowledge that
a transient change is present. Furthermore, by studying the power of the MOSUM
test as λ varies in [0.5, 2], we investigate when this (potential) advantage is lost.

By de�ning

Vn = max
1≤k≤n

n∏
j=k

exp

(
(εj − µ)2 − (εj − µ−A)2

2σ2

)
,

the CUSUM test is

τCS(HCS) = inf{n ≥ 1 : Vn > HCS} , (5.5.1)

where HCS is chosen such that E0τCS(HCS) = CCS for some usually large CCS .
The power of the CUSUM test for the transient change considered in this chapter is
de�ned as

PCS(HCS , A) := lim
ν→∞

P1{Vn>HCS for some n∈ [ν +1, ν+2l−1] | τCS(HCS)>ν}.

To compare the MOSUM test with the CUSUM test, the threshold H in (5.2.2) and
the threshold HCS in (5.5.1) are chosen such that E0τ(H) = E0τCS(HCS) = 5000.
Determination of HCS for CUSUM was obtained using tabulated values given in [77,
p. 3237] whereas suitable values ofH for MOSUMwas obtained using Approximation
0 of Section 5.3.

In the �rst example, we set A = 1.25 and l = 10. For the MOSUM test, we
considered values of L ∈ [5, 20] to ensure λ ∈ [0.5, 2]. For each λ, the values of the
approximations developed in this chapter for the power Pξ(h,A,L) are displayed in
Figure 5.15 (left) with a solid black line. The dot-dashed blue line corresponds to
PCS(HCS , A) which has been obtained via Monte Carlo simulations with 100, 000

runs (analytical approximations for the power of CUSUM test are unavailable). In
Figure 5.15 (right), we plot the approximations to the power of the MOSUM test
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against η = max{1,λ}
min{1,λ} . The purpose of such a �gure is to compare the power of the

test when L = l/λ is selected η = 1/λ > 1 times larger than l against the case when
L is chosen η = λ > 1 times smaller than l; η ∈ [1, 2].

Figure 5.15: Left: Comparison of power between the MOSUM test (solid black) as
a function of λ and the CUSUM test (dot-dashed blue) with A = 1.25 and l = 10.
Right: Power of the MOSUM test against η for di�erent λ with A = 1.25 and l = 10:
λ < 1 (red-dotted) λ > 1 (solid black).

From Figure 5.15 (left), one can observe the advantage of knowing l since the
largest power is obtained for λ = l/L = 1. For the choice of parameters considered
in this example, Figure 5.15 (left) shows that the CUSUM test has power close but
still lower than the MOSUM test with λ = 1. It should be noted, however, that
the knowledge of A is required for construction of the CUSUM test but not for the
MOSUM test. The values of the approximations in Figure 5.15 (right) suggest the
strategy which chooses L which may slightly overestimate (rather than underesti-
mate) l if the exact value of l is not known. For example, for λ = 0.5, the power
of the test is approximately 0.512. The equivalent value with underestimated l is
obtained with λ = 2 and is approximately 0.488. Another sensible strategy for de-
tecting a transient change would be to run several MOSUM tests with di�erent L
(and hence H) in parallel; plotting the maximum value of the detection statistics (as
a function of L) in case of a change is expected to look like Figures 5.15 (left) and
5.16 (left) distorted by noise.

In the second example, we set A = 0.5 and l = 50. We considered values
of L ∈ [25, 100] to ensure λ ∈ [0.5, 2]. The style of Figure 5.16 is the same as
Figure 5.15. For computing PCS(HCS , A), we have used Monte Carlo simulations
with 100, 000 runs. The behaviour for the MOSUM test is very similar to the �rst
example considered; the choice of parameters in this example leads to higher power
but the general shape, as λ varies, is very similar. More interestingly, in this example
the MOSUM test has a signi�cant power advantage over the CUSUM test and this
lasts for a wider range of λ when compared to the �rst example.

5.6 Robustness to non-normality and non-uniform

weights
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Figure 5.16: Left: Comparison of power between the MOSUM test (solid black) as
a function of λ and the CUSUM test (dot-dashed blue) with A = 0.5 and l = 50.
Right: Power of the MOSUM test against η for di�erent λ with A = 0.5 and l = 50:
λ < 1 (red-dotted) λ > 1 (solid black).

5.6.1 Robustness to non-normality

Here we assess the quality of approximations developed in this chapter when the
original r.v's εi are not exactly normal. We consider two cases: (a) εi are uniform r.v's
on [0,1] and (b) εi are Laplace r.v's with mean zero and scale parameter 1. In both
cases, the boundary crossing probability approximations developed in Chapter 2 for
the probability Fξ(M,h) := P0(ξn,L < h for all n ∈ [0,M ]) were shown to be quite
robust. This suggests Approximation 0 will also provide fairly robust approximations
for the ARL in the non-normal case. Here, we shall only focus on the performance
of Approximations 1-4 for the power of the test.

Simulation results are shown in Figures 5.17 and 5.18. The style of Figures 5.17
and 5.18 is very similar to many previous �gures starting with Figure 5.6. The
thick black dashed line corresponds to Monte Carlo approximations of Pξ(h,A,L)

computed with 100, 000 simulations. The red solid lines correspond to the approxi-
mations developed in this chapter. The �gures below show that the approximation
remain rather accurate, at least for the chosen distributions of the r.v. εi.

Figure 5.17: Monte Carlo approximations of Pξ(h,A,L) (dashed black) and its
approximations (solid red). Left: εi ∼ Laplace(0, 1) with L = 5. Right: εi ∼
Laplace(0, 1) with L = 20.
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Figure 5.18: Monte Carlo approximations of Pξ(h,A,L) (dashed black) and its (solid
red). Left: εi ∼ Uniform[0, 1] with L = 5. Right: εi ∼ Uniform[0, 1] with L = 20.

5.6.2 Robustness to non-uniform weights

The author explored the following two ways of incorporating weights.

(i) L random weights w1, w2, . . . , wL, with wi i.i.d. uniform on [0.5, 1.5], are as-
sociated with a position in the moving window; this results in the moving
weighted sum

Sn,w,L :=
n+L∑
j=n+1

wj−nεj ;

(ii) Random weights w1, w2 . . . are associated with r.v. ε1, ε2 . . .; here wj are i.i.d.
uniform r.v's on [0,2]; this gives the moving weighted sum

Sn,w,L :=
n+L∑
j=n+1

wjεj

Simulations results are shown in Fig. 5.19. In both cases, simulations have been
repeated 500 times and plotted all the curves representing the power Pξ(h,A,L) in
grey colour. For simplicity, only considered the case of λ = 1 has been considered;
Approximation 1 is plotted as red solid line.

5.7 Appendix A

In this section, we shall prove result (5.4.13). Using (5.4.2) we rewrite Fh,0,−γ,0,γ(4|x)

as

Fh,0,−γ,0,γ(4|x)

= Pr{W (t)−W (t+1)< B(t;h, 0,−γ, 0, γ) for all t∈ [0, 4] | W (0)−W (1)=x}

= Pr{W (t)−W (t+1) < h,W (t+1)−W (t+2) < h−γt,W (t+ 2)−W (t+ 3)

<h−γ,W (t+ 3)−W (t+ 4)<h− γ + γt for all t∈ [0, 1]
∣∣W (0)−W (1)=x}

= Pr {W (t)<W (t+1)+ h < W (t+2)+ 2h− γt < W (t+3) + 3h− γ − γt <

W (t+4) + 4h− 2γ for all t∈ [0, 1] | W (0)−W (1)=x}.
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Figure 5.19: Monte Carlo approximations of Pξ(h,A,L) with weights (solid grey)
and Approximation 1 (solid red). Left: case (i) with L = 20 and h = 3. Right: case
(ii) with L = 20 and h = 3.

Let Ω be the event de�ned as follows

Ω =
{
W (t)<W (t+1)+h < W (t+2)+ 2h− γt < W (t+3) + 3h− γ − γt

< W (t+4) + 4h− 2γ for all t∈ [0, 1]
}

and let xi = W (i), i = 0, 1, . . . , 5. Integrating out over the values xi, by the law of
total probability we obtain:

Fh,0,−γ,0,γ(4|x)=

∫
· · ·
∫

Pr{Ω | W (0)=x0, . . . ,W (5)=x5,W (0)−W (1)=x}

×Pr{W (0)∈dx0, . . . ,W (5)∈dx5 |W (0)−W (1)=x}. (5.7.1)

Note that W (1) = x1 = −x, since W (0) − W (1) = x and W (0) = 0. De�ne
individually the following processes:

W0(t) = W (t)

W1(t) = h+W (t+ 1)

W2(t) = 2h− γt+W (t+ 2)

W3(t) = 3h− γ − γt+W (t+ 3)

W4(t) = 4h− 2γ +W (t+ 4)

with 0 ≤ t ≤ 1 for all processes. The event Ω can be re-written as

Ω = {W0(t) < W1(t) < W2(t) < W3(t) < W4(t) for all t ∈ [0, 1]}.

The conditioning introduced in (5.7.1) results in:

W0(0) = 0

W1(0) = h+ x1

W2(0) = 2h+ x2

W3(0) = 3h− γ + x3

W4(0) = 4h− 2γ + x4

W0(1) = x1

W1(1) = h+ x2

W2(1) = 2h− γ + x3

W3(1) = 3h− 2γ + x4

W4(1) = 4h− 2γ + x5.
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From this, we can express (5.7.1) as

Fh,0,−γ,0,γ(4|x)=

∫
· · ·
∫

Pr{Ω
∣∣W0(0) = 0, . . . ,W4(0)=4h− 2γ + x4,W0(1) = x1, . . . ,

W4(1) = 4h− 2γ + x5,W0(0)−W0(1)=x}

×Pr{W (0)∈dx0, . . . ,W (5)∈dx5 | W (0)−W (1)=x}. (5.7.2)

The region of integration for (5.7.2) is determined from the following inequalities:

x1 < x2 + h < x3 + 2h− γ < x4 + 3h− 2γ < x5 + 4h− 2γ.

Thus, the upper limit of integration is in�nity for all xi. For integration with respect
to x5, the lower limit is x4 − h. For integration with respect x4, the lower limit is
x3 − h + γ. For x3, the lower limit is x2 − h + γ. Finally, for x2 the lower limit of
integration in x1 − h = −x− h. Now using Corollary 4.2.3 in Chapter 4 with n = 4

we obtain:

Pr{Ω | W0(0) = 0, . . . ,W4(0) = 4h− 2γ + x4,

W0(1) = x1, . . . ,W4(1) = 4h− 2γ + x5,W0(0)−W0(1)=x}

= exp(−|µ|2/2 + µ · (c− a)) det[ϕ(ai, cj)]
4
i,j=0/

4∏
i=0

ϕ(ai − ci + µi),

µ, a and c are given by:

µ =


0

0

−γ
−γ
0

 , a =


0

x1+h

x2+2h

x3+3h−γ
x4+4h− 2γ

 , c =


x1

x2+h

x3+2h−γ
x4+3h−2γ

x5+ 4h− 2γ.



The second probability in the right-hand side of (5.7.2) is
∏4
i=1 ϕ(xi − xi+1).

Using the fact

4∏
i=0

ϕ(ai − ci + µi) =

4∏
i=0

ϕ(xi − xi+1),

and collecting all results we obtain:
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Fh,0,−γ,0,γ(4|x) =
eγ

2

ϕ(x)

∫ ∞
−x−h

dx2

∫ ∞
x2−h+γ

dx3

∫ ∞
x3−h+γ

dx4

∫ ∞
x4−h

e−γ(x4−x2) dx5 ×

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+γ) ϕ(−x4−3h+2γ) ϕ(−x5−4h+2γ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+γ) ϕ(−x−x4−2h+2γ) ϕ(−x−x5−3h+2γ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+γ) ϕ(x2−x4−h+2γ) ϕ(x2−x5−2h+2γ)

ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2) ϕ(h) ϕ(x3−x4+γ) ϕ(x3−x5−h+γ)

ϕ(x4+4h−2γ+x) ϕ(x4+3h−2γ−x2) ϕ(x4+2h−γ−x3) ϕ(h) ϕ(x4−x5)


=

eγ
2

ϕ(x)

∫ ∞
−x−h

dx2

∫ ∞
x2−h+γ

dx3

∫ ∞
x3−h+γ

e−γ(x4−x2) dx4 ×

det


ϕ(x) ϕ(−x2−h) ϕ(−x3−2h+γ) ϕ(−x4−3h+2γ) Φ(−x4−3h+2γ)

ϕ(h) ϕ(−x−x2) ϕ(−x−x3−h+γ) ϕ(−x−x4−2h+2γ) Φ(−x−x4−2h+2γ)

ϕ(x2+2h+x) ϕ(h) ϕ(x2−x3+γ) ϕ(x2−x4−h+2γ) Φ(x2−x4−h+2γ)

ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2) ϕ(h) ϕ(x3−x4+γ) Φ(x3−x4+γ)

ϕ(x4+4h−2γ+x) ϕ(x4+3h−2γ−x2) ϕ(x4+2h−γ−x3) ϕ(h) Φ(h)

.
�
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Chapter 6

Application to the Singular

Spectrum Analysis (SSA)

change-point detection algorithm

Abstract

In this chapter, we study approximations of boundary crossing probabilities

for the maximum of moving weighted sums of i.i.d. random variables. We

consider a particular case of weights obtained from a trapezoidal weight function

which, under certain parameter choices, can also result in an unweighted sum.

It is demonstrated that the approximations based on classical results of extreme

value theory provide some scope for improvement, particularly for a range of

values required in practical applications. The problem considered in this chapter

is a generalisation of the problem considered in previous chapters, in particular

the boundary crossing probabilities studied in Chapter 2. The content of this

chapter has been published in [80].

6.1 Introduction: Statement of the problem

This chapter considers the approximation of a more complex boundary crossing prob-
ability than the one studied in previous chapters; in particular the boundary crossing
probability de�ned in (2.1.2) of Chapter 2. The main di�erence in this chapter to
previous chapters, is that we consider a moving weighted sum process rather than
a simple moving sum process. The particular weights in the moving sum arise from
the singular spectrum analysis (SSA) change-point detection algorithm described
in [74]; more details about this connection with SSA are provided in Section 6.2.2.
For Q = 1 in wL,Q(t) de�ned later in Section 6.1.2, if the random variables under
consideration are i.i.d. normal, then the moving weighted sum considered in this
chapter becomes the MOSUM change-point procedure studied comprehensively in
previous chapters. Therefore, the problem considered here is a generalisation but is
signi�cantly more complex. Let us formulate the problem.

Let ε1, ε2, . . . be a sequence of independent identically distributed random vari-
ables with �nite mean µ and variance σ2 and some c.d.f. F . De�ne the moving
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weighted sum as

Sn;L,Q =

n+L+Q−1∑
s=n+1

wL,Q(s− n)εs (n = 0, 1, . . .), (6.1.1)

where the weight function wL,Q(·) is de�ned by

wL,Q(t) =


t for 0 ≤ t ≤Q,
Q for Q ≤ t ≤L,
L+Q−t for L ≤ t ≤L+Q− 1.

(6.1.2)

where L and Q are positive integers with Q ≤ L.

0 Q L L+Q

Q

t

Figure 6.1: The weight function wL,Q(·), 1 ≤ Q ≤ L.

The weight function wL,Q(·) is depicted in Figure 6.1. In the special case Q = 1,
the weighted moving sum (6.1.1) becomes an ordinary moving sum.

The main aim of this chapter is to study precision of di�erent approximations of
boundary crossing probabilities for the maximum of the moving weighted sum; that
is,

P

(
max

n=0,1,...,M
Sn;L,Q > H

)
, (6.1.3)

where H is a given threshold, M is reasonably large and L,Q are �xed parameters.

This chapter is structured as follows. In Section 6.2 we reformulate the problem
and provide motivation why a trapezoidal weight function is considered. In Sec-
tion 6.3, a number of approximations to (6.1.3) are introduced based on the classical
extreme value theory. Using the classical approximations, which do not perform very
well, we also derive another approximation (called `combined') which appears to be
more accurate. The performance of these approximations is analyzed by a large
simulation study described in Section 6.4.

6.2 Boundary crossing probabilities: discrete and

continuous time

6.2.1 Reformulation of the problem

For convenience of dealing with the probability (6.1.3), we standardise the moving
weighted sum Sn;L,Q. Derivation of the following lemma is straightforward.
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Lemma 6.2.1 The �rst two moments of Sn;L,Q are

ESn;L,Q = µLQ, var(Sn;L,Q) =
σ2Q

3
(3LQ−Q2 + 1) . (6.2.1)

We now de�ne the standardized random variables (r.v.)

ζn :=
Sn;L,Q − ESn;L,Q√

var(Sn;L,Q)
=

√
3 (Sn;L,Q − µLQ)

σ
√
Q(3LQ−Q2 + 1)

, (6.2.2)

n = 0, 1, . . . . If the r.v. ε1, ε2, . . . are normal then the r.v. ζ1, ζ2, . . . are also normal.
Otherwise, using the Central Limit Theorem, we obtain that ζn ∼ N(0, 1) holds
asymptotically, as L→∞.

Using the notation ζn, the problem (6.1.3) is equivalent to studying approxima-
tions for the boundary crossing probability (abbreviated BCP)

PM,h(ζn) := P

(
max

n=0,1,...,M
ζn > h

)
, (6.2.3)

where

H = µLQ+ σh

√
Q(3LQ−Q2 + 1)

3
.

A number of approaches could be used to approximate (6.2.3). We could have
ignored the dependence structure of the sequence of moving weighted sums and
used either asymptotic normality alone or the limiting extreme value distribution to
choose h. Instead, in what follows we study several approximations of (6.2.3) which
are based on approximating the sequence ζn by a continuous time random process.
Before we proceed, let us consider a special case of εj , which has important practical
signi�cance.

6.2.2 Motivation for the problem

If we let εj = ξ2
j , where ξ1, ξ2, . . . are i.i.d. random variables with zero mean, variance

δ2 and �nite fourth moment µ4 = Eξ4
i , then Sn;L,Q can be seen as a moving weighted

sum of squares. In this case, the mean µ = Eεj = δ2 and σ2 = var(εj) = µ4−δ4. By
approximating (6.1.3) we are considering a particularly interesting case linked to the
SSA change-point detection algorithm proposed in [74]. A good approximation for
the BCP for the maximum of the moving weighted sums of squares is needed in the
theory of sequential change-point detection because the BCP de�nes the signi�cance
levels for the SSA change-point detection statistic. For an extensive introduction to
SSA, see [35, 36].

6.2.3 Continuous time approximation

By the de�nition, the probability PM,h(ζn) is an (M + 1)-dimensional integral which
is di�cult to compute. We assume that L → ∞ and consider a transformation de-
scribed below in Section 6.3 from the time series ζn, n = 0, 1, . . . ,M , to a continuous-
time process ζt, t ∈ [0, T ], where T = M/

√
LQ for large Q, see (6.3.2), and T = M/L
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in the case of small Q, see beginning of Section 6.3.2. Like the time series ζn, the
process ζt is standardized so that Eζt = 0 and Eζ2

t = 1 for all t. Also, the process
ζt is Gaussian and stationary with some autocorrelation function R(s) = Eζ0ζs.

By such a transformation, the probability PM,h(ζn) is approximated by P (T, h, ζt),
which is the probability of reaching the threshold h by the process ζt on the interval
[0, T ]; that is,

PM,h(ζn) ∼= P (T, h, ζt) = Pr

{
max

0≤t≤T
ζt ≥ h

}
= Pr

{
ζt≥h for at least one t ∈ [0,T ]

}
. (6.2.4)

For the continuous process ζt, two main useful characteristics are the probability
density function of reaching the threshold h for the �rst time

q(t, h, ζt) =
d

dt
P (t, h, ζt), 0 < t <∞ , (6.2.5)

and the average time %(h, ζt) until the process ζt reaches the threshold h

E(%(h, ζt)) =

∫ ∞
0

tq(t, h, ζt)dt =

∫ ∞
0

tdP (t, h, ζt) .

From the practical point of view, we are interested in �nding good approximations
of (6.2.3) for small and moderate M . But the mathematical theory guarantees
accurate approximations just for large M .

To proceed further, we need to discuss results concerning the autocorrelation
function of the continuous process ζt. This can be done through computing the
correlations between Sn;L,Q and Sn+ν,L,Q for ν > 0.

6.2.4 Correlation between Sn;L,Q and Sn+1;L,Q

For �xed L and Q, the moving weighted sum Sn;L,Q is a function of n. The index n
can be treated as time and thus the sequence S0;L,Q, S1;L,Q, . . . de�ned in (6.1.1) can
be considered as a time series. In order to derive the approximations of this chapter,
we need explicit expressions for the correlation Corr(Sn;L,Q,Sn+1;L,Q). The general
case Corr(Sn;L,Q, Sn+ν;L,Q), ν > 1 need not be considered for these approximations.

Without loss of generality, we can assume that n = 0 and we denote Sν := Sν;L,Q

where ν = 0, 1.

Lemma 6.2.2 The correlation Corr(S0, S1) = Corr(Sn;L,Q,Sn+1;L,Q), where Sn;L,Q

is de�ned in (6.1.1), is

Corr(S0,S1) =
E(S0S1)− (ES0)2

var(S0)
= 1− 3

3LQ−Q2 + 1
.

Proof. From the de�nition (6.1.1), the quadratic forms S0 and S1 can be repre-
sented as

S0 =

Q−1∑
i=1

iεi +Q
L∑
i=Q

εi +

Q+L−1∑
i=L+1

(Q+L−i)εi
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and

S1 =S0−
Q∑
i=1

εi +

Q∑
i=1

εL+i.

Using these representations, we can easily obtain E(S0S1) = ES2
0 − Qσ2 . Then by

substituting the explicit expressions (6.2.1) for ES0 and var(S0) = ES2
0, we obtain

the desired result. �

Note that the correlation does not depend on the distribution of errors εj (unlike
the covariance which depends on the mean µ and variance σ2 of εj). This also can
be seen in relation to the fact (see, for example, [104]) that the spectral density of
the moving average process depends only on the weight function, which is wL,Q(t)

in our case.

6.3 Approximations of the boundary crossing

probabilities

In this section we formulate four di�erent approximations for the BCP PM,h(ζn)

de�ned in (6.2.4). These approximations depend on the behaviour of the autocorre-
lation function R(s) = Eζ0ζs at 0 which in its turn depends on parameters Q and
L of the weight function in (6.1.2). We consider the following two cases: (i) large Q
and large L, (ii) small Q and large L.

6.3.1 Case of large Q and large L

Consider the sequence of random variables ζ0, ζ1, . . . , ζM de�ned in (6.2.2). In view
of Lemma 6.2.2, the correlation between ζn and ζn+1 is

Corr(ζn, ζn+1) = 1− 3

3LQ−Q2 + 1
. (6.3.1)

Assume that both L and Q are large. Moreover, assume that L and Q tend to in�nity
in such a way that the limit λ = limQ/L exists and 0 < λ ≤ 1. Set ∆ = 1/

√
LQ

and

tn = n∆, n = 0, 1, . . . ,M, so that tn ∈ [0, T ] with T = M∆ . (6.3.2)

De�ne a piece-wise linear continuous-time process ζ(L)
t , t ∈ [0, T ], as follows

ζ
(L)
t =

1

∆

[
(tn − t)ζn−1+(t− tn−1)ζn

]
for t ∈ [tn−1, tn], n = 1, . . . ,M. (6.3.3)

By construction, the process ζ(L)
t is such that ζ(L)

tn = ζn for n = 0, . . . ,M . Also we

have that ζ(L)
t is a second-order stationary process in the sense that Eζ(L)

t , var(ζ
(L)
t )

and the autocorrelation function R(L)
ζ (t, t+ k∆) = Corr(ζ

(L)
t , ζ

(L)
t+k∆) do not depend

on t.

Lemma 6.3.1 Let λ = limL,Q→∞Q/L and assume that 0 < λ ≤ 1. Consider the

process ζ
(L)
t de�ned in (6.3.3). The limiting process ζt = limL,Q→∞ ζ

(L)
t is stationary

Gaussian with some autocorrelation function Rζ(t, t+ s) = R(s). Moreover, R′(0) =

0 and R′′(0) = −6/(3−λ).
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Proof. For the autocorrelation function R(·) we have R′(0) = 0 since

R′(0−) = R′(0+) = lim
L,Q→∞

R(∆)− 1

∆
= lim

L,Q→∞

−3
√
LQ

3LQ−Q2 + 1
= 0,

where we used the relations ∆=1/
√
LQ, R(∆)=1− 3/(3LQ−Q2+1) and R(0)=1.

We similarly obtain

R′′(0)= lim
L,Q→∞

R(∆)+R(−∆)−2R(0)

∆2
= lim

L,Q→∞

−6LQ

3LQ−Q2+1
=− 6

3−λ
< 0 .

�
For a Gaussian stationary process ζt with Eζt = 0 and Eζ2

t = 1 and autocorrela-
tion function R(·) such that R′(0) = 0 and R′′(0) < 0 we can use the following two
well-known approximations.

Approximation 1 (App 1). From Theorem 8.2.7 in [63] we have

lim
T→∞

P

 max
0≤t≤T

ζt ≤
u+ log

√
−R′′(0)

2π√
2 log T

+
√

2 log T︸ ︷︷ ︸
h

 = exp(−e−u) .

Expressing u in terms of h, we obtain the approximation 1

P (T, h, ζt) ∼= 1−exp(−e−u) (6.3.4)

with u = γ(h− γ) + c, where

γ =
√

2 log T and c = − log

√
−R′′(0)

2π = − log 1
2π

√
6

3−λ . (6.3.5)

Approximation 2 (App 2). From [20], we have

lim
T→∞

P

 max
0≤t≤T

ζt ≤
√

2 logµ+
v√

2 logµ︸ ︷︷ ︸
h

 = exp(−e−v),

where

µ =
T
√
−R′′(0)

2π
=

T

2π

√
6

3− λ
.

Expressing v in terms of h, we obtain the approximation 2

P (T, h, ζt) ∼= 1−exp(−e−v) (6.3.6)

with
v =

√
2 logµ (h−

√
2 logµ).

Note that 2 logµ=γ2−2c and√
2 logµ=

√
γ2−2c = γ − c

γ
+O

(
1

γ3

)
,
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as γ →∞, where γ and c are de�ned in (6.3.5). Therefore, for large T (and, therefore,
large γ) we have

v ∼=
(
γ − c

γ

)(
h− γ +

c

γ

)
= (h− γ)γ + c︸ ︷︷ ︸

u

−(h− γ)c

γ
− c2

γ2
.

Let us construct another approximation by combining the approximations 1 and
2.

Approximation 3 (combined). Consider the approximation

P (T, h, ζt) ∼= 1−exp(−e−z) (6.3.7)

where

z =

{
u− (h−γ)c

γ − c2

γ2
for h ≤ γ − c

γ ,

u for h ≥ γ − c
γ .

Formally, λ = limL,Q→∞Q/L = 0 still satis�es Lemma 6.3.1 in the sense that
R′(0) = 0 and R′′(0) = −2 < 0; however, the above approximations are poor when
Q is small; this shall be demonstrated in Section 6.4. The case of small Q should be
treated di�erently and is considered in the following subsection.

6.3.2 Case of small Q and large L

Consider again the sequence of random variables ζn de�ned by (6.2.2). Unlike in
Section 6.3.1, now we look at the asymptotic transformation when L → ∞ but Q
is �xed. Set ∆ = 1/L and T = M∆. De�ne tn, n = 0, 1, . . . ,M, as in (6.3.2) and
consider the piece-wise linear continuous-time process ζ(L)

t de�ned by (6.3.3).

Lemma 6.3.2 Let Q be �xed. The limiting process ζt as L → ∞ is a Gaussian

second-order stationary process with autocorrelation function Rζ(t, t + s) = R(s).

Moreover, R′(0+) = − 1
Q 6= 0.

Proof. We �rst note that

∂Rζ(t, s)

∂s

∣∣∣∣
s=t+

= R(0+).

Using (6.3.1) and the fact that ∆ = 1/L, we have

R′(0+) = lim
L→∞

R(∆)−R(0)

∆
= − lim

L→∞

3L

3LQ−Q2 + 1
= − 1

Q
.

�
Let us now formulate the tangent approximation suggested in [22]; it is one of the

most known approximations for the density function q(t, h, ζt) of the �rst passage
time de�ned in (6.2.5). Using this, we can approximate the �rst passage proba-
bility P (T, h, ζt) de�ned in (6.2.4) in the case of a Gaussian process ζ(t) on [0, T ]

with Eζ(t)=0, some autocorrelation function Rζ(t, s) and the possibly non-constant
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threshold h = h(t).

The Durbin approximation for q(t, h, ζt) can be written as

q(t, h, ζt) ∼= b0(t, h)f(t, h) ,

where

f(t, h)=
1√

2πRζ(t, t)
e
− h2(t)

2Rζ(t,t) , b0(t, h)=− h(t)

Rζ(t, t)

∂Rζ(s, t)

∂s

∣∣∣∣
s=t+

− dh(t)

dt
.

In view of (6.2.5) the related approximation for the �rst passage probability P (T, h, ζt)

is

P (T, h, ζt) ∼=
∫ T

0
b0(t, h)f(t, h)dt .

In the case when the threshold h(t) = h is constant, using Lemma 6.3.2 we obtain

b0(t, h) = −hR′(0+) =
h

Q
, q(t, h, ζt) ∼=

h√
2πQ

e−h
2/2

and therefore we obtain the following approximation.

Approximation 4 (App 4). The Durbin approximation for the BCP (6.2.4) is

P (T, h, ζt) ∼=
hT√
2πQ

e−h
2/2. (6.3.8)

6.4 Simulation study

In this section we study quality of approximations for the BCP PM,h(ζn) de�ned
in (6.2.3), where εt are normal r.v.'s with mean 0 and variance 1. Asymptotically
(for large L and M), the approximations we study can also be used for the BCP
connected to the weighted sum of squares discussed in Section 2.2 and therefore for
setting signi�cance levels for the SSA change-point statistic de�ned in [74].

In Figures 6.2�6.6, the 'Sum of normal' line corresponds to the empirical value
of (6.2.3) computed from 100, 000 simulations with di�erent values of L, Q and
M . In simulations leading to Figures 6.2�6.4 the value of Q can be considered as
large and hence we compare Approximations 1�3. In Figure 6.5 we present analysis
demonstrating the lack of accuracy of Approximations 1�3 when Q is small. We
then analyse the performance of the Durbin approximation in Figure 6.6, which is
constructed speci�cally under the assumption that Q is small; in this case we set
Q = 1. We observe that for large L and Q approximation 3 is typically superior to
the approximations 1 and 2 for all h (note that approximations 1 and 3 coincide for
large values of h). Listed in Tables 6.1�6.4 are the approximated threshold values h
(for approximations 1 and 2 only) for a speci�ed true BCP, when this BCP is small
enough. In these tables, R.E. denotes the relative error.

As seen in Figure 6.2, for the chosen parameters approximation 2 is generally
poor; for small BCP we see particularly high relative errors in Table 6.1. On the other
hand, approximation 1 performs well for small BCP and, although discrepancies can
be seen for small h, we see that approximation 3 performs quite well across all values
of h.
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Figure 6.2: The BCP for the weighted sum of normal r.v. and its approximations:
L = 150, Q = 50, M = 1000.

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 2.833 2.907 3.510 2.612 23.897
0.10 2.572 2.582 3.004 0.389 16.796
0.15 2.401 2.386 2.700 0.625 12.453
0.20 2.264 2.243 2.477 0.928 9.408

Table 6.1: Threshold for a given BCP for the weighted sum of normal r.v. and
approximations: L = 150, Q = 50, M = 1000

Approximation 2, whilst still being considerably worse than approximations 1
and 3, shows signs of improvement with this choice of L and Q. At the BCP of
0.05, approximation 1 produces the lowest relative error with the parameter choices
considered so far.

Table 6.2: Threshold for a given BCP for the weighted sum of normal r.v. and its
approximations: L = 100, Q = 50, M = 1000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 2.911 2.984 3.460 2.508 18.859
0.10 2.654 2.671 3.004 0.641 13.188
0.15 2.491 2.483 2.730 0.321 9.595
0.20 2.362 2.345 2.530 0.720 7.113
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Figure 6.3: The BCP for the weighted sum of normal r.v. and approximations:
L = 100, Q = 50, M = 1000.

Figure 6.4: The BCP for the weighted sum of normal r.v. and its approximations:
L = 100, Q = 100, M = 2000.

We see a considerable improvement in approximation 2 with the increase in M
from 1000 to 2000, however approximation 3 still remains far superior. For this
larger M , approximation 1 shows the smallest relative error at a BCP of 0.05 which
is arguably the most important case.

We shall now consider the performance of approximations 1�3 for small Q. We
conclude that all three approximations perform poorly when Q is not large enough
(of order L).
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Table 6.3: Threshold for a given BCP for the weighted sum of normal r.v. and
approximations: L = 100, Q = 100, M = 2000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 3.063 3.135 3.455 2.351 12.798
0.10 2.816 2.841 3.066 0.888 8.878
0.15 2.659 2.664 2.831 0.188 6.469
0.20 2.541 2.534 2.660 0.275 4.683

Figure 6.5: The BCP for the weighted sum of normal r.v. and its approximations:
L = 100, Q = 5, M = 2000.

As can be seen from Figure 5 and Table 4, all three approximations are poor for
Q = 5. Relative errors are high and thus the use of these approximations for the
case of small Q and large L cannot be justi�ed.

Table 6.4: Threshold for a given BCP for the weighted sum of normal r.v. and
approximations: L = 100, Q = 5, M = 2000

BCP Sum of normal App 1 App 2 R.E. for App 1 (%) R.E. for App 2 (%)

0.05 3.380 3.494 3.664 3.373 8.402
0.10 3.150 3.254 3.371 3.302 7.016
0.15 3.007 3.109 3.194 3.392 6.219
0.20 2.896 3.004 3.065 3.729 5.836

For checking the quality of the Durbin approximation we will use the same set-
tings as for the approximations 1, 2 and 3. In Figure 6.6, we show results for the
Durbin approximation for a few particular values of L and Q.
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Figure 6.6: The BCP for the weighted sum of normal random variables and the
Durbin approximation: L = 300, Q = 1, T = 10 (top) and L = 300, Q = 1, T = 1
(bottom)

We can conclude that the quality of the Durbin approximation (6.3.8) is poor
unless the threshold h is very large. This is seen graphically in Figure 6.6 as well as
numerically in Table 6.5, where there is a sharp increase in the relative error as the
BCP increases. For the BCP of 0.05 the relative error for the Durbin approximation
is higher than all relative errors of approximation 1 considered in this chapter.

Table 6.5: Threshold for a given BCP for the weighted sum of normal r.v. and
Durbin approximation: L = 300, Q = 1, T = 1

BCP Sum of normal Durbin Approx. R.E. for Durbin Approx. (%)

0.05 2.520 2.436 3.333
0.10 2.190 2.049 6.438
0.15 1.970 1.756 10.863
0.20 1.794 1.464 18.395
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Part II

High-dimensional Covering
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Chapter 7

Covering of high-dimensional

cubes and quantization

Abstract

In this chapter, as the main problem we consider covering of a d-dimensional

cube by n balls with reasonably large d (10 or more) and reasonably small n,

like n = 100 or n = 1000. We do not require the full coverage but only 90%

or 95% coverage. We establish that e�cient covering schemes have several im-

portant properties which are not seen in small dimensions and in asymptotical

considerations, for very large n. One of these properties can be termed `do

not try to cover the vertices' as the vertices of the cube and their close neigh-

bourhoods are very hard to cover and for large d there are far too many of

them. We clearly demonstrate that, contrary to a common belief, placing balls

at points which form a low-discrepancy sequence in the cube, results in a very

ine�cient covering scheme. For a family of random coverings, we are able to

provide very accurate approximations to the coverage probability. We then ex-

tend our results to the problems of coverage of a cube by smaller cubes and

quantization, the latter being also referred to as facility location. Along with

theoretical considerations and derivation of approximations, we provide results

of a large-scale numerical investigation. The content of this chapter has been

published in [144].

7.1 Introduction

In this chapter, we develop and study e�cient schemes for covering and quantiza-
tion in high-dimensional cubes. In particular, we will demonstrate that the proposed
schemes are much superior to the so-called `low-discrepancy sequences'. This chapter
starts by introducing the main notation. Then we formulate the main problem of
covering a d-dimensional cube by n Euclidean balls. This is followed by a discussion
on the main principles adopted for construction of algorithms in this chapter. Then
we brie�y formulate problems of covering a cube by smaller cubes (which are balls in
the L∞-norm) and the problem of quantization. Both problems have many similari-
ties with the main problem of covering a cube by n balls. At the end of this section,
we describe the structure of the remaining sections of the chapter and summarise
the main �ndings of the chapter.
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7.1.1 Main notation

� Rd: d-dimensional space; vectors in Rd are row-vectors;

� ‖ · ‖ and ‖ · ‖∞: Euclidean and L∞-norms in Rd;

� Bd(Z, r) = {Y ∈ Rd : ‖Y − Z‖ ≤ r}: d-dimensional ball of radius r centered
at Z ∈ Rd;

� Bd(r) = Bd(0, r) = {Y ∈ Rd : ‖Y ‖ ≤ r};

� Sd(Z, r) = {Y ∈ Rd : ‖Y −Z‖ = r}: d-dimensional sphere of radius r centered
at Z ∈ Rd;

� Cd(Z, δ) = {Y ∈ Rd : ‖Y − Z‖∞ ≤ δ}: d-dimensional cube of side length 2δ

centered at Z (it is also the d-dimensional ball in the L∞-norm with radius δ
and center Z);

� Cd(δ) = [−δ, δ]d = Cd(0, δ);

� Cd = [−1, 1]d = Cd(1).

7.1.2 Main problem of interest

The main problem discussed in this chapter is the following problem of covering a
cube by n balls. Let Cd = [−1, 1]d be a d-dimensional cube, Z1, . . . , Zn be some
points in Rd and Bd(Zj , r) be the corresponding balls of radius r centered at Zj
(j = 1, . . . , n). The dimension d, the number of balls n and their radius r could be
arbitrary.

We are interested in the problem of choosing the locations of the centers of the
balls Z1, . . . , Zn so that the union of the balls ∪jBd(Zj , r) covers the largest possible
proportion of the cube Cd. That is, we are interested in choosing a design (a collection
of points) Zn = {Z1, . . . , Zn} so that

Cd(Zn, r) :=vol(Cd ∩ Bd(Zn, r))/2d (7.1.1)

is as large as possible (given n, r and the freedom we are able to use in choosing
Z1, . . . , Zn). Here

Bd(Zn, r) =

n⋃
j=1

Bd(Zj , r) (7.1.2)

and Cd(Zn, r) is the proportion of the cube Cd covered by the balls Bd(Zj , r) (j =

1, . . . , n). If points Zj ∈ Zn are random then by Cd(Zn, r) we will mean EZnCd(Zn, r)
but we are not going to stress this in notation unless it is important.

For a design Zn, its covering radius is de�ned by
CR(Zn) = maxX∈Cd minZj∈Zn ‖X−Zj‖. In computer experiments, covering radius is
called minimax-distance criterion, see [47] and [105]; in the theory of low-discrepancy
sequences, covering radius is called dispersion, see [79, Ch. 6].

The problem of optimal covering of a cube by n balls has very high importance
for the theory of global optimization and many branches of numerical mathematics.
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In particular, the n-point designs Zn with smallest CR provide the following: (a)
the n-point min-max optimal quadratures, see [128, Ch.3,Th.1.1], (b) min-max n-
point global optimization methods in the set of all adaptive n-point optimization
strategies, see [128, Ch.4,Th.2.1], and (c) worst-case n-point multi-objective global
optimization methods in the set of all adaptive n-point algorithms, see [147]. In all
three cases, the class of (objective) functions is the class of Lipschitz functions, where
the Lipschitz constant may be unknown. The results (a) and (b) are the celebrated
results of A.G. Sukharev obtained in the late nineteen-sixties, see e.g. [127], and (c)
is a recent result of A. �ilinskas, see [147].

If d is not small (say, d > 5) then computation of the covering radius CR(Zn) for
any non-trivial design Zn is a very di�cult computational problem. This explains
why the problem of construction of optimal n-point designs with smallest covering
radius is notoriously di�cult, see for example recent surveys [133, 134].

If r =CR(Zn), then Cd(Zn, r) de�ned in (7.1.1) is equal to 1, and the whole cube
Cd gets covered by the balls. However, we are only interested in reaching the values
like 0.9, when a large part of the ball is covered. There are two main reasons why
we are not interested in reaching the value Cd(Zn, r) = 1: (a) practical impossibility
of making a numerical checking of the full coverage, if d is large enough, and (b) our
approximations lose accuracy when Cd(Zn, r) closely approaches 1.

If, for a given γ ∈ [0, 1), we have Cd(Zn, r) ≥ 1 − γ, then the corresponding
coverage of Cd will be called (1−γ)-coverage; the corresponding value of r can be called
(1−γ)-covering radius. If γ = 0 then the (1−γ)-coverage becomes the full coverage
and 1-covering radius of Zn becomes Cd(Zn, r). Of course, for any Zn = {Z1, . . . , Zn}
we can reach Cd(Zn, r) = 1 by means of increasing r. Likewise, for any given r we
can reach Cd(Zn, r) = 1 by sending n→∞. However, we are not interested in very
large values of n and try to get the coverage of the most part of the cube Cd with
the radius r as small as possible. We will keep in mind the following typical values
of d and n: d = 10, 20, 50; n = 64, 128, 512, 1024. Correspondingly, we will illustrate
our results in such scenarios.

7.1.3 Two contradictory guiding principles and a compromise

In choosing Zn = {Z1, . . . , Zn}, the following two main guiding principles must be
followed:

(i) the volumes of intersections of the cube Cd and each individual ball Bd(Zj , r)
are not very small;

(ii) the volumes of intersections Bd(Zj , r) ∩ Bd(Zi, r) are small for all i 6= j (i, j =

1, . . . , n).

These two principles do not agree with each other. Indeed, intuitively and as
shown in Section 7.2 (see formulas (7.2.9)�(7.2.12)), the volume of intersection of the
ball Bd(Z, r) and the cube Cd decreases with an increasing ‖Z‖ and hence criterion
(i) favours Zj with small norms. However, if at least some of the points Zj get close
to 0, then the distance between these points gets small and, in view of the formulas
of Section 7.6.7, the volumes of intersections Bd(Zj , r) ∩ Bd(Zi, r) get large.
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This yields that the above two guiding principles require a compromise in the rule
of choosing Zn = {Z1, . . . , Zn} as the points Zj should not be too far from 0 but at
the same time, not too close. In particular, and this is clearly demonstrated in many
examples throughout this chapter, the so-called `uniformly distributed sequences
of points' in Cd, including `low-discrepancy sequences' in Cd, provide poor covering
schemes. This is in a sharp contrast with the asymptotic case n → ∞ (and hence
r → 0), when one of the recommendations, see [44, p.84], is to choose Zj 's from a
uniformly distributed sequence of points from a set which is slightly larger than Cd;
this is to facilitate covering of the boundary of Cd, as it is much easier to cover the
interior of the cube Cd than its boundary.

In our considerations, n is not very large and hence the radius of balls r cannot
be small. One recommendation for choosing Zn = {Z1, . . . , Zn} is to choose Zj 's at
random in a cube Cd(δ) = [−δ, δ]d (with 0 < δ ≤ 1) with components distributed
according to a suitable Beta-distribution. The optimal value of δ is always smaller
than 1 and depends on d and n. If d is small or n is astronomically large, then the
optimal value of δ could be close to 1 but in most interesting instances this value is
signi�cantly smaller than 1. This implies that the choice δ = 1 (for example, if Zj 's
form a uniformly distributed sequence of points in the whole cube Cd) often leads to
very poor covering schemes, especially when the dimension d is large (see Tables 7.1�
7.3 in discussed in Section 7.3). More generally, we show that for construction of
e�cient designs Zn = {Z1, . . . , Zn}, either deterministic or randomized, we have to
restrict the norms of the design points Zj . We will call this principle `δ-e�ect'.

7.1.4 Covering a cube by smaller cubes and quantization

In Section 7.4 we consider the problem of (1− γ)-coverage of the cube Cd = [−1, 1]d

by smaller cubes (which are L∞-balls). The problem of 1-covering of cube by cubes
has attracted a reasonable attention in mathematical literature, see e.g. [45, 58].
The problem of (1 − γ)-coverage of a cube by cubes happened to be simpler than
the main problem of (1 − γ)-coverage of a cube by Euclidean balls and we have
managed to derive closed-form expressions for (a) the volume of intersection of two
cubes, and (b) (1 − γ) coverage, the probability of covering a random point in Cd
by n cubes Cd(Zi, r) for a wide choice of randomized schemes of choosing designs
Zn = {Z1, . . . , Zn}. The results of Section 7.4 show that the δ-e�ect holds for the
problem of coverage of the cube by smaller cubes in the same degree as for the main
problem of Section 7.3 of covering with balls.

Section 7.5 is devoted to the following problem of quantization also known as
the problem of facility location. Let X = (x1, . . . , xd) be uniform on Cd = [−1, 1]d

and Zn = {Z1, . . . , Zn} be an n-point design. The mean square quantization error
is θn = θ(Zn) := EX mini=1,...,n ‖X − Zi‖2. In the case where Z1, . . . , Zn are i.i.d.
uniform on Cd(δ), we will derive a simple approximation for the expected value
of θ(Zn) and clearly demonstrate the δ-e�ect. Moreover, we will notice a strong
similarity between e�cient quantization designs and e�cient designs constructed in
Section 7.3.

140



7.1.5 Structure of the chapter and main results

In Section 7.2 we derive accurate approximations for the volume of intersection of an
arbitrary d-dimensional cube with an arbitrary d-dimensional ball. These formulas
will be heavily used in Section 7.3, which is the main section of the chapter dealing
with the problem of (1 − γ)-coverage of a cube by n balls. These approximations
utilise the central limit theorem (CLT) and, as shall be demonstrated later, have the
very appealing property of only depending on ‖Z‖. One could investigate the use of
exponential inequality type arguments, see Chapter 2 in [135], to develop approxi-
mations and bounds to the quantities of interest. The Hoe�ding inequality used in
Section 7.6.4 is an example of such exponential inequality. However, it does not seem
that these inequalities will share the same appealing property the CLT approxima-
tions have, by depending only on ‖Z‖. In Section 7.4 we extend some considerations
of Section 7.3 to the problem of (1 − γ)-coverage of the cube Cd by smaller cubes.
In Section 7.5 we argue that there is a strong similarity between e�cient quanti-
zation designs and e�cient designs of Section 7.3. In Appendix A, Section 7.6, we
brie�y mention several facts, used in the main part of the chapter, related to high-
dimensional cubes and balls. In Appendix B, Section 7.7, we prove two simple but
very important lemmas about distribution and moments of certain random variables.

The main contributions of this chapter are:

� an accurate approximation (7.2.16) for the volume of intersection of an arbi-
trary d-dimensional cube with an arbitrary d-dimensional ball;

� an accurate approximation (7.3.8) for the expected volume of intersection of
the cube Cd with n balls with uniform random centers Zj ∈ Cd(δ);

� closed-form expression of Section 7.4.2 for the expected volume of intersection
the cube Cd with n cubes with uniform random centers Zj ∈ Cd(δ);

� construction of e�cient schemes of quantization and (1 − γ)-coverage of the
cube Cd by n balls;

� large-scale numerical study.

7.2 Volume of intersection of a cube and a ball

7.2.1 The main quantity of interest

Consider the following problem. Let us take the cube Cd = [−1, 1]d of volume
vol(Cd) = 2d and a ball Bd(Z, r) = {Y ∈ Rd : ‖Y − Z‖ ≤ r} centered at a point
Z = (z1, . . . , zd) ∈ Rd; this point Z could be outside Cd. Denote the fraction of the
cube Cd covered by the ball Bd(Z, r) by

Cd,Z,r = vol(Cd ∩ Bd(Z, r))/2d . (7.2.1)

Our aim is to approximate Cd,Z,r for arbitrary d, Z and r. To do this, we shall use
CLT (Central Limit Theorem). We will derive a CLT-based normal approximation in
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Section 7.2.3 and then, using an asymptotic expansion in the CLT for non-identically
distributed r.v., we will improve this normal approximation in Section 7.2.4. In
Section 7.6.8 we consider a more direct approach for approximating Cd,Z,r based on
the use of characteristic functions and the fact that Cd,Z,r is a c.d.f. of ‖U − Z‖,
where U = (u1, . . . , ud) is random vector with uniform distribution on Cd. From
this, Cd,Z,r can be expressed through the convolution of one-dimensional c.d.f's.
Using this approach we can evaluate the quantity Cd,Z,r with high accuracy but the
calculations are rather time-consuming. Moreover, entirely new computations have
to be made for di�erent Z and, therefore, the approximation of Section 7.2.4 is more
appealing.

Note that in the special case Z = 0, several approximations for the quantity Cd,0,r
have been derived in [132] but their methods cannot be generalized to arbitrary Z.

7.2.2 A generalization of the quantity (7.2.1)

In the next sections, we will need another quantity which slightly generalizes (7.2.1).
Assume that we have the cube Cd(δ) = [−δ, δ]d of volume vol(Cd(δ)) = (2δ)d, the
ball Bd(Z ′, r′) = {Y ∈ Rd : ‖Y −Z ′‖ ≤ r′} with a center at a point Z ′ = (z′1, . . . , z

′
d).

Denote the fraction of the cube Cd(δ) covered by the ball Bd(Z ′, r′) by

C
(δ)
d,Z′,r′ = vol(Cd(δ) ∩ Bd(Z ′, r′))/(2δ)d . (7.2.2)

Then, by changing the coordinates and the radius

Z = Z ′/δ = (z′1/δ, . . . , z
′
d/δ) and r = r′/δ , (7.2.3)

we obtain

C
(δ)
d,Z′,r′ = Cd,Z,r . (7.2.4)

7.2.3 Normal approximation for the quantity (7.2.1)

Let U = (u1, . . . , ud) be a random vector with uniform distribution on Cd so that
u1, . . . , ud are i.i.d.r.v. uniformly distributed on [−1, 1]. Then for given Z =

(z1, . . . , zd) ∈ Rd and any r > 0,

Cd,Z,r=P {‖U−Z‖≤r}=P
{
‖U−Z‖2 ≤ r2

}
=P


d∑
j=1

(uj−zj)2 ≤ r2

 .

That is, Cd,Z,r, as a function of r, is the c.d.f. of the r.v. ‖U − Z‖.
Let u have a uniform distribution on [−1, 1] and |z| ≤ 1. In view of Lemma 1 of

Section 7.7, the density of the r.v. ηz = (u− z)2 is

ϕz(t) =


1/(2
√
t) for 0 < t ≤ (1− |z|)2

1/(4
√
t) for (1− |z|)2 < t ≤ (1 + |z|)2

0 otherwise

(7.2.5)

and

Eηz = z2 +
1

3
, var(ηz) =

4

3

(
z2 +

1

15

)
, µ(3)

z =
16

15

(
z2 +

1

63

)
, (7.2.6)
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where µ(3)
z is the third central moment: µ(3)

z = E [ηz − Eηz]3.
For |z| > 1, the density of ηz = (u− z)2 is

ϕz(t) =

{
1/(4
√
t) for (1− |z|)2 < t ≤ (1 + |z|)2

0 otherwise
(7.2.7)

with expressions (7.2.6) for Eηz, var(ηz) and µ
(3)
z not changing.

Consider the r.v.

‖U − Z‖2 =
d∑
i=1

ηzj =
d∑
j=1

(uj − zj)2 . (7.2.8)

From (7.2.6), its mean is

µd,Z = E‖U − Z‖2 = ‖Z‖2 +
d

3
. (7.2.9)

Using independence of u1, . . . , ud, we also obtain from (7.2.6):

σ2
d,Z = var(‖U − Z‖2) =

4

3

(
‖Z‖2 +

d

15

)
(7.2.10)

and

µ
(3)
d,Z = E

[
‖U − Z‖2 − µd,Z

]3
=

d∑
j=1

µ(3)
zj =

16

15

(
‖Z‖2 +

d

63

)
. (7.2.11)

If d is large enough then the conditions of the CLT for ‖U−Z‖2 are approximately
met and the distribution of ‖U − Z‖2 is approximately normal with mean µd,Z and
variance σ2

d,Z . That is, we can approximate Cd,Z,r by

Cd,Z,r ∼= Φ

(
r2 − µd,Z
σd,Z

)
, (7.2.12)

where Φ(·) is the c.d.f. of the standard normal distribution:

Φ(t) =

∫ t

−∞
ϕ(v)dv with ϕ(v) =

1√
2π
e−v

2/2 .

The approximation (7.2.12) has acceptable accuracy if Cd,Z,r is not very small;
for example, it falls inside a 2σ-con�dence interval generated by the standard normal
distribution; see Figures 7.1�7.2 as examples.

For a given β, let pβ satisfy Φ(β) = 1 − pβ ; for example, pβ ' 0.025 for β = 2.
(β is the 1 − pβ quantile). As follows from (7.2.9), (7.2.10) and the approximation
(7.2.12), we expect the approximate inequality Cd,Z,r ' pβ if

r ≥ Rd,‖Z‖,β =
[
‖Z‖2 + d/3− 2β

√
‖Z‖2/3 + d/45

]1/2
. (7.2.13)

In many cases discussed in Section 7.3, the radius r does not satisfy the inequality
(7.2.13) with β = 2 and even β = 3 and hence the normal approximation (7.2.12) is
not satisfactorily accurate; this can be evidenced from Figures 7.1 � 7.16 below.

In the next section, we improve the approximation (7.2.12) by using an Edgeworth-
type expansion in the CLT for sums of independent non-identically distributed r.v.

143



7.2.4 Improved normal approximation

General expansion in the central limit theorem for sums of independent non-identical
r.v. has been derived by V. Petrov, see Theorem 7 in Chapter 6 in [88], see also Propo-
sition 1.5.7 in [103]. The �rst three terms of this expansion have been specialized by
V. Petrov in Section 5.6 in [89]. By using only the �rst term in this expansion, we
obtain the following approximation for the distribution function of ‖U − Z‖2:

P

(
‖U − Z‖2 − µd,Z

σd,Z
≤ x

)
∼= Φ(x) +

µ
(3)
d,Z

6(σ2
d,Z)3/2

(1− x2)ϕ(x),

leading to the following improved form of (7.2.12):

Cd,Z,r ∼= Φ(t) +
‖Z‖2 + d/63

5
√

3(‖Z‖2 + d/15)3/2
(1− t2)ϕ(t) , (7.2.14)

where

t = td,‖Z‖,r =
r2 − µd,Z
σd,Z

=

√
3(r2 − ‖Z‖2 − d/3)

2
√
‖Z‖2 + d/15

. (7.2.15)

From the viewpoint of Section 7.3, the range of most important values of t from
(7.2.15) is−3±1. For such values of t, the uncorrected normal approximation (7.2.12)
signi�cantly overestimates the values of Cd,Z,r, see Figures 7.1 � 7.16 below. The
approximation (7.2.14) brings the normal approximation down and makes it much
more accurate. The other terms in Petrov's expansion of [88] and [89] continue to
bring the approximation down (in a much slower fashion) so that the approximation
(7.2.14) still slightly overestimates the true value of Cd,Z,r (at least, in the range of
interesting values of t from (7.2.15)). However, if d is large enough (say, d ≥ 20)
then the approximation (7.2.14) is very accurate and no further correction is needed.

A very attractive feature of the approximations (7.2.12) and (7.2.15) is their
dependence on Z through ‖Z‖ only. We could have specialized for our case the
next terms in Petrov's approximation but these terms no longer depend on ‖Z‖
only (this fact can be veri�ed from the formula (7.7.5) for the fourth moment of the
r.v. νz = (z−u)2) and hence the next terms are much more complicated. Moreover,
adding one or two extra terms from Petrov's expansion to the approximation (7.2.14)
does not �x the problem entirely for all Z and r. Instead, the author proposes a
slight adjustment to the r.h.s of (7.2.14) to improve this approximation, especially
for small dimensions. Speci�cally, the author suggests the approximation

Cd,Z,r ∼= Φ(t) + cd
‖Z‖2 + d/63

5
√

3(‖Z‖2 + d/15)3/2
(1− t2)ϕ(t) , (7.2.16)

where cd = 1+3/d if the point Z lies on the diagonal of the cube Cd and cd = 1+4/d

for a typical (random) point Z. This small adjustment was chosen manually (and
non theoretically) on the basis of making the approximation closer to simulation
results; it is clear the adjustment should tend to zero as d increases, but the rate
and the multiplying constant were chosen after trial and error.

For typical (random) points Z ∈ Cd, the values of Cd,Z,r are marginally smaller
than for the points on the diagonal of Cd having the same norm, but the di�erence is
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very small. In addition to the points on the diagonal, there are other special points:
the points whose components are all zero except for one. For such points, the values
of Cd,Z,r are smaller than for typical points Z with the same norm, especially for
small r. Such points, however, are of no value for us as they are not typical and the
author has never observed in simulations random points that come close to these
truly exceptional points.

7.2.5 Simulation study

In Figures 7.1 � 7.16 we demonstrate the accuracy of approximations (7.2.12), (7.2.14)
and (7.2.16) for Cd,Z,r in dimensions d = 10, 50 for the following locations of Z:

(i) Z = 0, the center of the cube Cd;

(ii) ‖Z‖ =
√
d, with Z being a vertex of the cube Cd;

(iii) Z lies on a diagonal of Cd with |zj | = λ ≥ 0 for all j = 1, . . . , d and ‖Z‖ = λ
√
d;

(iv) Z is a random vector uniformly distributed on the sphere Sd(0, v) with some
v > 0.

There are �gures of two types. In the �gures of the �rst type, we plot Cd,Z,r
over a wide range of r ensuring that values of Cd,Z,r lie in the whole range [0, 1].
In the �gures of the second type, we plot Cd,Z,r over a much smaller range of r
with Cd,Z,r lying in the range [0, ε] for some small positive ε such as ε = 0.015.
For the purpose of using the approximations of Section 7.3, we need to assess the
accuracy of all approximations for smaller values of Cd,Z,r and hence the second type
of plots are often more insightful. In Figures 7.1 � 7.14, the solid black line depicts
values of Cd,Z,r computed via Monte Carlo methods with 200, 000 repetitions, the
blue dashed, the red dot-dashed and green long dashed lines display approximations
(7.2.12), (7.2.14) and (7.2.16), respectively.

In the case where Z is a random vector uniformly distributed on a sphere Sd(0, v),
the style of the �gures of the second type is slightly changed to adapt for this choice
of Z and provide more information for Z which do or do not belong to the cube
Cd. In Figure 7.15 and Figure 7.16, the thick dashed red lines correspond to random
points Z ∈ Sd(0, v) ∩ Cd. The thick dot-dashed orange lines correspond to random
points Z ∈ Sd(0, v) such that Z 6∈ Cd. Approximations (7.2.12) and (7.2.14) are
depicted in the same manner as previous �gures but the approximation (7.2.16) is
now represented by a solid green line. The thick solid red line displays values of
Cd,Z,r for Z on the diagonal of Cd with ‖Z‖ = v with v = 1.5 for d = 10 and v = 1.75

for d = 50.
From the simulations that led to Figures 7.1 � 7.16 we can make the following

conclusions.

� The normal approximation (7.2.12) is quite satisfactory unless the value Cd,Z,r
is small.

� The accuracy of all approximations improves as d grows.
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Figure 7.1: d = 10, Z = 0, r ∈
[1, 2.5].

Figure 7.2: d = 50, Z = 0, r ∈
[3.2, 4.9].

Figure 7.3: d = 10, Z = 0, r ∈
[0.95, 1.25].

Figure 7.4: d = 50, Z = 0, r ∈
[3.2, 3.5].

Figure 7.5: d = 10, Z is a vertex
of Cd, r ∈ [2, 5].

Figure 7.6: d = 50, Z is a vertex
of Cd, r ∈ [6.5, 9.5].

� The approximation (7.2.16) is very accurate even if the values Cd,Z,r are very
small.

� If d is large enough then the approximations (7.2.14) and (7.2.16) are practically
identical and are extremely accurate.

We remark that large values of Cd,Z,r are of little interest here for the following
reason. If the coverage from a single ball results in a large value of Cd,Z,r, then
covering a cube by n of these balls (as we shall discuss in the next section) will result
in an ine�cient and trivial complete covering of the cube, where the value of r will
be signi�cantly larger than the smallest radius required to obtain full coverage. It is
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Figure 7.7: d = 10, Z is a vertex
of Cd, r ∈ [1.9, 2.5].

Figure 7.8: d = 50, Z is a vertex
of Cd, r ∈ [6.5, 7].

Figure 7.9: Z is at half-diagonal
with ‖Z‖ = 1

2

√
10

Figure 7.10: Z is at half-diagonal,
‖Z‖ = 1

2

√
50

Figure 7.11: Z is at half-diagonal,
‖Z‖ = 1

2

√
10

Figure 7.12: Z is at half-diagonal,
‖Z‖ = 1

2

√
50

only when contributions from each individual ball is small e.g. small values of Cd,Z,r,
that the problem of computing covering with n balls becomes non-trivial.

7.3 Covering a cube by n balls

In this section, we consider the main problem of covering the cube Cd = [−1, 1]d by
the union of n balls Bd(Zj , r) as formulated in Section 7.1.2. We will discuss di�erent
schemes of choosing the set of ball centers Zn = {Z1, . . . , Zn} for given d and n.
The radius r will then be chosen to achieve the required probability of covering:
Cd(Zn, r) ≥ 1− γ. Most of the schemes will involve one or several parameters which
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Figure 7.13: d = 10, Z ∈
S10(0, 1.5), r ∈ [1, 3.5]

Figure 7.14: d = 50, Z ∈
S50(0, 1.75), r ∈ [3.5, 5.5]

Figure 7.15: d = 10, Z ∈
S10(0, 1.5), r ∈ [1, 1.4]

Figure 7.16: d = 50, Z ∈
S50(0, 1.75), r ∈ [3.5, 3.75]

we will want to choose in an optimal way.

7.3.1 The main covering scheme

The following will be our main scheme for choosing Zn = {Z1, . . . , Zn}.

Scheme 1. Z1, . . . , Zn are i.i.d. random vectors uniformly distributed in the

cube Cd(δ) = [−δ, δ]d, where δ ∈ [0, 1] is a parameter.

We will formulate several other covering schemes and compare them with Scheme 1.
The reasons why Scheme 1 has been chosen as the main scheme are the following.

� It is easier to theoretically investigate than all other non-trivial schemes.

� It includes, as a special case when δ = 1, the scheme which is very popular
in practice of Monte-Carlo [79] and global random search [142, 146] and is
believed to be rather e�cient (this is not true).

� Numerical studies provided below show that Scheme 1 with optimal δ provides
coverings which are rather e�cient, especially for large d; see Section 7.3.5 for
a discussion regarding this issue.
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7.3.2 Theoretical investigation of Scheme 1

Let Z1, . . . , Zn be i.i.d. random vectors uniformly distributed in the cube Cd(δ) with
0 < δ ≤ 1. Then, for given U = (u1, . . . , ud) ∈ Rd (we will later assume U is
uniformly distributed in [−1, 1]d):

P {U ∈ Bd(Zn, r)} = 1−
n∏
j=1

P {U /∈ Bd(Zj , r)}

= 1−
n∏
j=1

(1− P {U ∈ Bd(Zj , r)})

= 1−
(

1− PZ {‖U − Z‖ ≤ r}
)n

, (7.3.1)

where Bd(Zn, r) is de�ned in (7.1.2). The main characteristic of interest Cd(Zn, r),
de�ned in (7.1.1), the proportion of the cube covered by the union of balls Bd(Zn, r),
is simply

Cd(Zn, r) = EUP {U ∈ Bd(Zn, r)} , (7.3.2)

where the expectation is taken with respect to the uniformly distributed U ∈ [−1, 1]d.
Continuing (7.3.1), note that

PZ {‖U − Z‖ ≤ r} = PZ


d∑
j=1

(zj − uj)2 ≤ r2

 = C
(δ)
d,U,r , (7.3.3)

where C(δ)
d,U,r is de�ned by the formula (7.2.2). From (7.2.3) and (7.2.4) we have

C
(δ)
d,U,r = Cd,U/δ,r/δ where Cd,U/δ,r/δ is the quantity de�ned by (7.2.1). This quantity

can be approximated in a number of di�erent ways as shown in Section 7.2. We will
compare (7.2.12), the simplest of the approximations, with the approximation given
in (7.2.16). Approximation (7.2.12) gives

C
(δ)
d,U,r = Cd,U/δ,r/δ ∼= Φ

(
(r/δ)2 − ‖U‖2/δ2 − d/3
2
√
‖U‖2/(3δ2) + d/45

)
, (7.3.4)

whereas approximation (7.2.16) provides

C
(δ)
d,U,r

∼= Φ(tδ) + cd
‖U‖2/δ2 + d/63

5
√

3(‖U‖2/δ2 + d/15)3/2
(1− t2δ)ϕ(tδ) , (7.3.5)

with cd = 1 + 4/d and

tδ =
(r/δ)2 − ‖U‖2/δ2 − d/3
2
√
‖U‖2/(3δ2) + d/45

.

From (7.6.6), E‖U‖2 = d/3 and var(‖U‖2) = 4d/45. Moreover, if d is large
enough then ‖U‖2 =

∑d
j=1 u

2
j is approximately normal.

We shall simplify the expression (7.3.1) by using the approximation

(1− t)n ' e−nt , (7.3.6)
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which is a good approximation for small values of t and moderate values of nt; this
agrees with the ranges of d, n and r we are interested in.

We can combine the expressions (7.3.2) and (7.3.1) with approximations (7.3.4),
(7.3.5) and (7.3.6) as well as with the normal approximation for the distribution of
‖U‖2, to arrive at two �nal approximations for Cd(Zn, r) that di�er in complexity.
If the original normal approximation of (7.3.4) is used then we obtain

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ1(s, r)ϕ(s)ds, (7.3.7)

with

ψ1(s, r) = exp {−nΦ(cs,r)} , cs,r =
3(r/δ)2 − s′ − d

2
√
s′ + d/5

, s′ = (d+ 2s
√
d/5)/δ2 .

If approximation (7.3.5) is used, we obtain:

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ2(s, r)ϕ(s)ds, (7.3.8)

with

ψ2(s, r) = exp

{
−n
(

Φ(cs,r) +

(
1 +

4

d

)
s′ + d/21

5[s′ + d/5]3/2
(1− c2

s,r)ϕ(cs,r)

)}
.

7.3.3 Simulation study for assessing accuracy of approximations

(7.3.7) and (7.3.8)

In Figures 7.17�7.22, Cd(Zn, r) is represented by a solid black line and has been
obtained via Monte Carlo methods with 50, 000 repetitions. Approximation (7.3.7)
is indicated by a dashed blue line and approximation (7.3.8) is represented by long
dashed green lines. All �gures demonstrate that approximation (7.3.8) is extremely
accurate across di�erent dimensions and values of n. This approximation is much
superior to approximation (7.3.7). In these �gures, the value of r has been chosen
such that Cd(Zn, r) ' 0.9. The values of r used are included in the Figure captions.

Figure 7.17: Cd(Zn, r) and ap-
proximations: n=128, r=1.520.

Figure 7.18: Cd(Zn, r) and ap-
proximations: n = 512, r=1.291.
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Figure 7.19: Cd(Zn, r) and ap-
proximations: n = 128, r=2.460.

Figure 7.20: Cd(Zn, r) andap-
proximations: n = 512, r=2.290.

Figure 7.21: Cd(Zn, r) and ap-
proximations: n = 512, r=4.020.

Figure 7.22: Cd(Zn, r) and ap-
proximations: n = 512, r=5.175.

7.3.4 Other schemes

In addition to Scheme 1, the following schemes for choosing Zn = {Z1, . . . , Zn} have
also been considered.

Scheme 2. Z1 = 0; Z2, . . . , Zn are i.i.d. random vectors uniformly distributed

in the cube Cd(δ) = [−δ, δ]d.

Scheme 3. Z1, . . . , Zn are taken from the minimum-aberration fractional facto-

rial design on vertices of the cube Cd(δ) = [−δ, δ]d. (See [14].)

Scheme 4. Z1, . . . , Zn are i.i.d. random vectors on Cd(δ) with independent

components distributed according to Beta-distribution with density (7.6.3) with some

α > 0.

Scheme 5. Z1, . . . , Zn are i.i.d. random vectors uniformly distributed in the ball

Bd(δ).

Scheme 6. Z1, . . . , Zn are i.i.d. random vectors uniformly distributed on the

sphere Sd(δ).
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Scheme 7. Z1, . . . , Zn are taken from a low-discrepancy Sobol's sequence on the

cube Cd(δ). (See [124, 125].)

The rationale behind the choice of these schemes is as follows. By studying
Scheme 2, we test the importance of inclusion of 0 into Zn. The author propositioned
that if we included 0 into Zn, the optimal value of δ may increase for some of the
schemes making them more e�cient; this e�ect has not been detected.

Scheme 3 with optimal δ is an obvious candidate for being the most e�cient.
Unlike all other schemes considered, Scheme 3 is only de�ned for the values of n of
the form n = 2k with k ≤ d.

By using Scheme 4, we test the possibility of improving Scheme 1 by changing
the distribution of points in the cube Cd(δ). The author has found that the e�ect of
distribution is strong and smaller values of α lead to more e�cient covering schemes.
By choosing α small enough, like α = 0.1, we achieve the average e�ciency of the
covering schemes which is rather close to the e�ciency of Scheme 3. Tables 7.1�7.3
contain results obtained for Scheme 4 with α = 0.5 and α = 1.5; if α = 1 then
Scheme 4 becomes Scheme 1.

From Section 7.6.4, we know that for constructing e�cient designs we have to
somehow restrict the norms of Zj 's. In Schemes 5 and 6, we are trying to do this in
an alternative way to Schemes 1 and 4.

Scheme 7 is a natural improvement of Scheme 1. As a particular case with δ = 1,
it contains one of the best known low-discrepancy sequences and hence Scheme 7
with δ = 1 serves as the main benchmark with which we compare other schemes.
For construction, the author has used the R-implementation of the Sobol's sequences;
it is based on [46].

For all the schemes excluding Scheme 3, the sequences Zn = {Z1, . . . , Zn} are
nested so that Zn ⊂ Zm for all n < m; using the terminology of [58], these schemes
provide on-line coverings of the cube. Note that for the chosen values of n, Scheme
7 also has some advantage over other schemes considered. Indeed, despite Sobol's
sequences are nested, the values n of the form n = 2k are special for the Sobol's
sequences and for such values of n the Sobol's sequences possess extra uniformity
properties that they do not possess for other values of n.

7.3.5 Numerical comparison of schemes

In Tables 7.1�7.3, for Schemes 1,2,4,5,6 we present the smallest values of r required to
achieve an 0.9-coverage on average. For these schemes, the value inside the brackets
shows the value of δ required to obtain 0.9-coverage. For Schemes 3 and 7, we give
the smallest value of r needed for a 0.9-coverage. To determine the values of r and
δ, we have used Monte Carlo simulations with 50,000 iterations (note for Scheme 1
we could use Approximation (7.3.8) which is very accurate). To compute Scheme 3,
we have used the R-package "FrF2".

In Figures 7.23�7.30 we plot Cd(Zn, r) as a functions of δ ∈ [0, 1] across a number
schemes, n and d. For these plots we have used the values of r provided in Tables 7.1�
7.3 such that for Figures 7.23�7.26 which correspond to Scheme 1 and Scheme 2, the
maximum coverage is very close to 0.9 and the optimal δ is very close to the values

152



presented in Tables 7.1�7.3. For Figures 7.27�7.30 the maximum coverage 0.9 is
attained with δ provided in Tables 7.1�7.3. In Figures 7.23�7.30 the solid green
line, long dashed red line, dashed blue line and dot dashed orange line correspond
to n = 64, 128, 512, 1024 respectively. The vertical lines on these plots indicate the
value of δ where the maximum coverage is obtained.

d = 10

n = 64 n = 128 n = 512 n = 1024

Scheme 1 1.632 (0.70) 1.520 (0.78) 1.291 (0.86) 1.195 (0.90)
Scheme 1, δ = 1 1.720 (1.00) 1.577 (1.00) 1.319 (1.00) 1.215 (1.00)
Scheme 2 1.634 (0.70) 1.520 (0.78) 1.291 (0.86) 1.195 (0.90)
Scheme 3 1.530 (0.44) 1.395 (0.48) 1.115 (0.50) 1.075 (0.50)
Scheme 4, α = 0.5 1.629 (0.58) 1.505 (0.65) 1.270 (0.72) 1.165 (0.75)
Scheme 4, α = 1.5 1.635 (0.80) 1.525 (0.88) 1.310 (1.00) 1.210 (1.00)
Scheme 5 1.645 (1.40) 1.530 (1.50) 1.330 (1.75) 1.250 (1.75)
Scheme 6 1.642 (1.25) 1.532 (1.35) 1.330 (1.50) 1.250 (1.70)
Scheme 7 1.595 (0.72) 1.485 (0.80) 1.280 (0.85) 1.170 (0.88)
Scheme 7, δ = 1 1.678 (1.00) 1.534 (1.00) 1.305 (1.00) 1.187 (1.00)

Table 7.1: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 10.

d = 20

n = 64 n = 128 n = 512 n = 1024

Scheme 1 2.545 (0.50) 2.460 (0.55) 2.290 (0.68) 2.205 (0.70)
Scheme 1, δ = 1 2.840 (1.00) 2.702 (1.00) 2.444 (1.00) 2.330 (1.00)
Scheme 2 2.545 (0.50) 2.460 (0.55) 2.290 (0.68) 2.205 (0.70)
Scheme 3 2.490 (0.32) 2.410 (0.35) 2.220 (0.40) 2.125 (0.44)
Scheme 4, α = 0.5 2.540 (0.44) 2.455 (0.48) 2.285 (0.55) 2.220 (0.60)
Scheme 4, α = 1.5 2.545 (0.60) 2.460 (0.65) 2.290 (0.76) 2.215 (0.78)
Scheme 5 2.550 (1.40) 2.467 (1.60) 2.305 (1.75) 2.235 (1.90)
Scheme 6 2.550 (1.40) 2.467 (1.58) 2.305 (1.75) 2.235 (1.90)
Scheme 7 2.520 (0.50) 2.445 (0.60) 2.285 (0.68) 2.196 (0.72)
Scheme 7, δ = 1 2.750 (1.00) 2.656 (1.00) 2.435 (1.00) 2.325 (1.00)

Table 7.2: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 20.

Figure 7.23: Scheme 1: Cd(Zn, r)
across δ for d = 10

Figure 7.24: Scheme 1: Cd(Zn, r)
across δ for d = 50
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d = 50

n = 128 n = 512 n = 1024

Scheme 1 4.130 (0.38) 4.020 (0.45) 3.970 (0.46)
Scheme 1, δ = 1 4.855 (1.00) 4.625 (1.00) 4.520 (1.00)
Scheme 2 4.130 (0.38) 4.020 (0.45) 3.970 (0.46)
Scheme 3 4.110 (0.21) 4.000 (0.25) 3.950 (0.28)
Scheme 4 α = 0.5 4.130 (0.30) 4.020 (0.36) 3.970 (0.40)
Scheme 4 α = 1.5 4.130 (0.42) 4.020 (0.48) 3.970 (0.52)
Scheme 5 4.130 (1.50) 4.020 (1.75) 3.970 (2.00)
Scheme 6 4.130 (1.50) 4.020 (1.75) 3.970 (2.00)
Scheme 7 4.115 (0.40) 4.015 (0.45) 3.965 (0.47)
Scheme 7, δ = 1 4.395 (1.00) 4.379 (1.00) 4.366 (1.00)

Table 7.3: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 50.

Figure 7.25: Scheme 2: Cd(Zn, r)
across δ for d = 10

Figure 7.26: Scheme 2: Cd(Zn, r)
across δ for d = 50

Figure 7.27: Scheme 3: Cd(Zn, r)
across δ for d = 10

Figure 7.28: Scheme 3: Cd(Zn, r)
across δ for d = 50

From Tables 7.1�7.3 and Figures 7.23�7.30 we arrive at the following conclusions:

� the δ-e�ect is very important and getting much stronger as d increases; the ex-
istence of the δ-e�ect is in agreement with the result of Section 7.6.4 describing
the area of volume concentration in the cube Cd.

� coverage of unadjusted low-discrepancy sequences is extremely low;

� properly δ-tuned deterministic Scheme 3, which uses fractional factorial designs
of minimum abberation, provides excellent covering;
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Figure 7.29: Scheme 7: Cd(Zn, r)
across δ for d = 10

Figure 7.30: Scheme 7: Cd(Zn, r)
across δ for d = 50

� randomized Scheme 4 with suitably chosen parameters of the Beta-distribution,
also provides very high quality coverage (on average);

7.4 Covering a cube by cubes

7.4.1 Volume of intersection of two cubes

Let us take two cubes: Cd = [−1, 1]d and Cd(Z, r)={Y ∈ Rd : ‖Y −Z‖∞≤r}, a cube
of side length 2r centered at a point Z = (z1, . . . , zd) ∈ Cd. Denote the fraction of
the cube Cd covered by Cd(Z, r) by

Fd,Z,r = vol(Cd ∩ Cd(Z, r))/2d . (7.4.1)

Let, like in Section 7.2.3, U = (u1, . . . , ud) be a random vector with uniform
distribution on Cd so that u1, . . . , ud are i.i.d.r.v. uniformly distributed on [−1, 1].
Then

Fd,Z,r = P {‖U − Z‖∞ ≤ r} = P
{

max
1≤j≤d

|uj − zj | ≤ r
}
.

That is, Fd,Z,r, as a function of r, is the c.d.f. of the r.v. ‖U−Z‖∞ = max1≤j≤d |uj−
zj |.

From Lemma 2 of Section 7.7 the c.d.f. of the r.v. |uj − zj | is

Gd,zj (t) = P{|uj−zj | ≤ t} =


0 for t ≤ 0

t for 0 < t < 1− |zj |
1
2(1+t−|zj |) for 1− |zj | ≤ t ≤ 1 + |zj |

1 1 + |zj | < t .

Since the c.d.f. of a maximum of independent r.v. is the product of marginal
c.d.f.'s, we obtain

Fd,Z,r =

d∏
j=1

Gd,zj (r) .

Two extreme particular cases of location of Z are:

(i) Z = 0: Fd,0,r = rd, 0 ≤ r ≤ 1;
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(ii) ‖Z‖ =
√
d, when Z is a vertex of the cube Cd: Fd,V,r = (r/2)d, 0 ≤ r ≤ 2.

Assume now that we have the cube Cd(δ) = [−δ, δ]d of volume (2δ)d and another
cube Cd(Z ′, r′) = {Y ∈ Rd : ‖Y − Z ′‖∞ ≤ r′} with a center at a point Z ′ =

(z′1, . . . , z
′
d). Denote the fraction of the cube Cd(δ) covered by Cd(Z ′, r′) by

F
(δ)
d,Z′,r′ = vol(Cd(δ) ∩ Cd(Z ′, r′))/(2δ)d .

Then by changing the coordinates and the radius using (7.2.3) we get F (δ)
d,Z′,r′ =

Fd,Z′/δ,r′/δ .

7.4.2 Proportion of a cube covered by smaller cubes with random

centers

Let us take the cube Cd = [−1, 1]d and n smaller cubes Cd(Zj , r) = {Y ∈ Rd :

‖Y −Zj‖∞ ≤ r} with centers at points Zj ∈ Rd. Denote the fraction of the cube Cd
covered by Cd(Zn, r) = ∪nj=1Cd(Zj , r), the union of these cubes, by

Cd,Zn,r = vol(Cd ∩ Cd(Zn, r))/2d .

Our aim is to obtain a closed form expression for this quantity for arbitrary d, r
and n in the case when Z1, . . . , Zn are i.i.d. random vectors uniformly distributed
in the cube Cd(δ) = [−δ, δ]d with 0 < δ ≤ 1.

Similarly to the combination of (7.3.1) with (7.3.3), for a given U = (u1, . . . , ud) ∈
Rd,

P {U ∈ Cd(Zn, r)} = 1−
(

1− Fd,U/δ,r/δ
)n

.

Similarly to (7.3.2),

Cd,Zn,r = EUP {U ∈ Cd(Zn, r)} = 1− EU

(
1− Fd,U/δ,r/δ

)n
.

For an integer k, set

Ik =
1

2

∫ 1

−1

[
Gd,u/δ(r/δ)

]k
du . (7.4.2)

Then, using the binomial theorem, we have

Cd,Zn,r = 1−
n∑
k=0

(−1)k
(
n

k

)
Idk . (7.4.3)

It is possible to evaluate (7.4.2) explicitly. For k = 0 and for r ≥ δ + 1, we clearly
have Ik = 1. For k ≥ 1 and 0 ≤ r ≤ δ + 1, the integral Ik takes di�erent forms
depending on the values of r and δ:

Ik =



(δ − r)
(
r
δ

)k − 2δ
(k+1)

{(
δ+r−1

2δ

)k+1 −
(
r
δ

)k+1
}

for r ≤ δ

(r − δ)− 2δ
(k+1)

{(
δ+r−1

2δ

)k+1 − 1
}

for 0 ≤ r − δ ≤ 1, r + δ ≥ 1

(r − δ) + 2δ/(k + 1) for 0 ≤ r − δ ≤ 1, r + δ ≤ 1.
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In Figures 7.31�7.32, we depict values of Cd,Zn,r (computed using (7.4.3)) as a
function of δ for a number of choices of r. As in Section 7.3.5, we note that the
δ-e�ect holds for the problem of coverage of the cube by smaller cubes.

Figure 7.31: n = 50, r ∈
[0.7, 0.85] increasing by 0.05.

Figure 7.32: n = 128, r ∈
[0.6, 0.8] increasing by 0.05.

7.5 Quantization

In this section, we brie�y consider the following problem of quantization also known
as the problem of facility location. Let X = (x1, . . . , xd) be uniform on Cd = [−1, 1]d

and Zn = {Z1, . . . , Zn} be an n-point design. The mean square quantization error
is θn = θ(Zn) = EX mini=1,...,n ‖X − Zi‖2. In the case where Z1, . . . , Zn are i.i.d.
uniform on Cd(δ), we will derive a simple approximation for the expected value of
θ(Zn) in order to demonstrate the δ-e�ect. We shall also notice a strong correlation
in design e�ciency used for quantization and for (1 − γ)-covering as studied in
Section 7.3.

The two characteristics, Cd(Zn, r) and θ(Zn), are related as follows:

EZnθ(Zn) = EZnEX min
i=1,...,n

‖X − Zi‖2 = EXEZn min
i=1,...,n

‖X − Zi‖2

=

∫
r≥0

r2dEZnCd(Zn, r) . (7.5.1)

The relationship between quantization error and Cd(Zn, r) is discussed in more
detail in Chapter 8, see Section 8.1.3.

Using approximation (7.3.8) we obtain

d

dr
(EZnCd(Zn, r)) ∼= fδ(r) :=

n · r
δ

∫ ∞
−∞

ϕ(s)ϕ(cs,r)ψ2(s, r)√
s′ + k

×

×

√3 +

(
1 +

4

d

) (
s′ + dδ2

63

)
5 (s′ + k)3/2

{
δ(c3

s,r − cs,r)−
√

3(r2 − dδ2

3 − s
′)

√
s′ + k

} ds
with

ψ2(s, r) = exp

−n
Φ(cs,r) +

(
1 +

4

d

) δ
[
s′ + dδ2

63

]
5
√

3 [s′ + k]3/2
(1− c2

s,r)φ(cs,r)


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and

cs,r =

√
3
(
r2 − s′ − dδ2

3

)
2δ
√
s′ + k

, s′ = s

√
4d

45
+ d/3, k =

dδ2

15
.

Therefore using relation (7.5.1) the approximation for EZnθ(Zn) for Scheme 1 is:

Eθn = EZnθ(Zn) ∼=
∫
r≥0

r2fδ(r)dr . (7.5.2)

In Figures 7.33�7.36, we asses the accuracy of the approximation (7.5.2). In these
�gures, the solid black line corresponds to Eθn obtained via Monte Carlo methods
with 50, 000 runs and the dashed red line depicts the approximation. We see that the
accuracy of approximation (7.5.2) is very high for small n and large d. However, as
Figure 7.34 shows, if d is not large enough but n is large, then the errors accumulate
and the resulting approximation may not be accurate enough.

Figure 7.33: Eθn and approxima-
tion (7.5.2); n = 128.

Figure 7.34: Eθn and approxima-
tion (7.5.2); n = 512.

Figure 7.35: Eθn and approxima-
tion (7.5.2); n = 128.

Figure 7.36: Eθn and approxima-
tion (7.5.2); n = 512.

As follows from results of [79, Ch.6], for e�cient covering schemes the order of
convergence of the covering radius to 0 as n→∞ is n−1/d. Therefore, for the mean
squared distance (which is the quantization error) we should expect the order n−2/d

as n → ∞. Therefore, for sake of comparison of quantization errors θn across n we
renormalize this error from Eθn to n2/dEθn.
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In Tables 7.4�7.6, we present the minimum value of n2/dEθn for a selection of the
schemes among those considered in Section 7.3. These values have been obtained via
Monte Carlo methods with 50,000 iterations (note for Scheme 1 we could have used
the accurate approximation given in (7.5.2)). In these tables, the value within the
brackets corresponds to the value of δ where the minimum of n2/dEθn was obtained.
For Scheme 3, typical behaviour of Eθn across δ for a number and n and d is presented
in Figures 7.37�7.40.

d = 10

n = 64 n = 128 n = 512 n = 1024

Scheme 1 4.153 (0.68) 4.105 (0.72) 3.992 (0.80) 3.925 (0.84)
Scheme 3 3.663 (0.40) 3.548 (0.44) 3.221 (0.48) 3.348 (0.52)
Scheme 4, α = 0.5 4.072 (0.56) 4.013 (0.60) 3.839 (0.68) 3.770 (0.69)
Scheme 7 3.998 (0.68) 3.973 (0.76) 3.936 (0.80) 3.834 (0.82)
Scheme 7, δ = 1 4.569 (1.00) 4.425 (1.00) 4.239 (1.00) 4.094 (1.00)

Table 7.4: Minimum value of n2/dEθn and δ (in brackets) across schemes and n for
d = 10.

d = 20

n = 64 n = 128 n = 512 n = 1024

Scheme 1 7.552 (0.52) 7.563 (0.56) 7.528 (0.64) 7.484 (0.68)
Scheme 3 7.298 (0.32) 7.270 (0.33) 7.133 (0.36) 7.016 (0.40)
Scheme 4, α = 0.5 7.541 (0.40) 7.515 (0.44) 7.457 (0.52) 7.421 (0.54)
Scheme 7 7.445 (0.48) 7.464 (0.56) 7.487 (0.64) 7.453 (0.66)
Scheme 7, δ = 1 9.089 (1.00) 9.133 (1.00) 8.87 (1.00) 8.681 (1.00)

Table 7.5: Minimum value of n2/dEθn and δ (in brackets) across schemes and n for
d = 20.

d = 50

n = 128 n = 512 n = 1024

Scheme 1 17.608 (0.36) 17.634 (0.40) 17.643 (0.44)
Scheme 3 17.483 (0.20) 17.511 (0.24) 17.554 (0.27)
Scheme 4, α = 0.5 17.590 (0.28) 17.670 (0.36) 17.620 (0.38)
Scheme 7, δ = 1 20.196 (1.00) 21.231 (1.00) 21.711 (1.00)

Table 7.6: Minimum value of n2/dEθn and δ (in brackets) across schemes and n for
d = 50.

We make the following two main conclusions from analyzing results of this nu-
merical study:

(a) the presence of a strong δ-e�ect, very similar to the e�ect observed in Sec-
tion 7.3, and

(b) for a given design Zn, there is a very strong correlation between the covering
probability as studied in Section 7.3 and the normalized quantization error
n2/dEθ(Zn).
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Figure 7.37: Eθn with n = 128. Figure 7.38: Eθn with n = 512.

Figure 7.39: Eθn with n = 128. Figure 7.40: Eθn with n = 512.

By comparing the values of δ in Tables 7.4�7.6 with Tables 7.1�7.3, we see a strong
similarity between e�cient quantization schemes and e�cient covering schemes.

7.6 Appendix A: Several facts about d-dimensional

balls and cubes

In this appendix, we brie�y consider several facts, used in the main part of the
chapter, related to high-dimensional cubes and balls. Many of these facts are some-
what counter-intuitive and often lead to creation of wrong heuristics in multivariate
optimization and misunderstanding of the behaviour of even simple algorithms in
high-dimensional spaces. For more details concerning the material of Sections 7.6.1-
7.6.4, see [12].

7.6.1 Volume of the ball

The volume of the ball Bd(r) = {x ∈ Rd : ‖x‖ ≤ r} can be computed by the formula

vol(Bd(r)) = rdVd, where Vd = vol(Bd(1)) =
πd/2

Γ(d/2 + 1)
. (7.6.1)

The volumes Vd decrease very fast as d grows. For example, V100 ' 2.368 · 10−40. As
d→∞,

V
1/d
d '

√
2πe

1√
d

+O

(
log d

d3/2

)
. (7.6.2)
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7.6.2 Radius of the ball of unit volume

De�ne rd by vol(Bd(rd)) = 1. Table 7.7 gives approximate values of rd.

d 1 2 3 4 5 6 7 8 9
rd 0.5 0.564 0.62 0.671 0.717 0.761 0.8 0.839 0.876

d 10 20 30 40 50 100 200 500 1000
rd 0.911 1.201 1.43 1.626 1.8 2.49 3.477 5.45 7.682

Table 7.7: Radius of the ball of unit volume for di�erent dimensions

From (7.6.2), for large d we have

rd =

√
d√

2πe
+O

(
1√
d

)
,

where 1/
√

2πe ' 0.242. This is only about twice smaller than
√
d/2, the length of

the half-diagonal of the d-dimensional unit cube [0, 1]d.
For rd,2δ de�ned by vol(Bd(rd,2δ)) = vol(Cd(δ)) = (2δ)d, we have rd,2δ = 2δrd.

7.6.3 Almost all the volume is near the boundary

First, consider the cube Cd(δ) = [−δ, δ]d, with 0 < δ < 1, as interior to the cube Cd =

[−1, 1]d. For the ratio of the volumes of these two cubes, we have vol(Cd(δ))/vol(Cd) =

δd which tends to 0 (as d→∞) exponentially fast for any δ ∈ (0, 1).
If, as d→∞, δ changes getting closer to 1 but 1− δ tends to 0 slower than 1/d,

then the ratio of the two volumes still tends to 0. In particular, if 1 − δ = c/d1−δ

with 0 < δ < 1 then

vol(Cd(δ))
vol(Cd)

= δd ' exp{−cd1−δ} → 0 , d→∞ .

Consider now the balls Bd(1) and Bd(1 − ε). The di�erence Bd(1) \ Bd(1 − ε) is
called the annulus. Using (7.6.1) we can compute the ratio of volume of this annulus
to the volume of the unit ball:

vol [Bd(1) \ Bd(1− ε)]
vol(Bd(1))

= 1− εd .

This ratio tends to 1 exponentially fast as d → ∞. The ratio of volume of the ball
Bd(1 − ε) to the volume of the unit ball Bd(1) is, similarly to the case of the cubes
above, (1 − ε)d. This result extends to any measurable set A ⊂ Rd. Indeed, de�ne
the set A1−ε = {(1− ε)x : x ∈ A}. Then, by splitting A and A1−ε into in�nitesimal
cubes and adding up their volumes, we �nd vol(A1−ε) = (1− ε)dvol(A) .

7.6.4 The area of volume concentration in a cube

Let X = (x1, . . . , xd) be uniformly distributed on Cd = [−1, 1]d. Then x2
1, . . . , x

2
d are

independent r.v. on [0, 1]. Hoe�ding's inequality gives

P
{∣∣∣∣ 1

d
(x2

1 + . . .+ x2
d)−

1

d
E
(
x2

1 + . . .+ x2
d

) ∣∣∣∣ ≥ ε} ≤ 2e−2dε2 .
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Since Ex2
i = 1

3 , we obtain

P
{∣∣∣∣ ‖X‖2 − d

3

∣∣∣∣ ≥ εd} ≤ 2e−2dε2 .

Therefore, the main volume in the cube Cd is concentrated in the annulus around
the sphere with radius

√
d/3.

7.6.5 Squared norm of a random point in a cube

Let Z = (z1, . . . , zd) be a random vectors on Cd(δ) = [−δ, δ]d consisting of i.i.d.
random components zi having a distribution with density p(t), t ∈ [−δ, δ], δ > 0.

Set η =
∑d

j=1 z
2
j . We have Eη = dµ2 and var(η) = dvar(z2

1) = d(µ4 − µ2
2), where

µj be the moments of the distribution with density p(t).
For example, when zi have Beta(α, α) distribution with density

pα,δ(t) =
(2δ)1−2α

Beta(α, α)
[δ2 − t2]α−1 , −δ < t < δ , α > 0, (7.6.3)

where Beta(·, ·) is the Beta-function, then

µ2 =
δ2

2α+ 1
, µ4 =

3δ4

(2α+ 1)(2α+ 3)
(7.6.4)

and therefore

Eη =
dδ2

2α+ 1
, var(η) =

4dδ4α

(2α+ 1)2(2α+ 3)
. (7.6.5)

If α = 1, when Z is uniform in the cube Cd(δ), then

Eη =
1

3
dδ2 , var(θ) =

4

45
dδ4 . (7.6.6)

7.6.6 Distance between two random points in a cube

Assume Z = (z1, . . . , zd) and Z ′ = (z′1, . . . , z
′
d) are independent random vectors on

Cd(δ) = [−δ, δ]d consisting of i.i.d. random components zi and z′i which have some
distribution with density p(t), t ∈ [−δ, δ], δ > 0. Let µj be the moments of the
distribution with density p(t). Assume that the density p(t) is symmetric around 0
and hence all odd moments are zero: µ2k+1 = 0 for k = 1, 2, . . .

The distribution of the squared distances

θ = ‖Z − Z ′‖2 =
d∑
i=1

(zi − z′i)2

has the mean and variance that can be easily computed as follows:

Eθ = dE(z1 − z′1)2 = 2dµ2 ,

var(θ) = dvar(z1 − z′1)2 = d
[
[E(z1 − z′1)4 − [E(z1 − z′1)2)]2

]
= 2d

[
µ4 + µ2

2

]
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For example, when zi and z′i have Beta(α, α) distribution with density (7.6.3) and
hence moments (7.6.4), we obtain

Eθ =
2dδ2

2α+ 1
, var(θ) =

4dδ4(4α+ 3)

(2α+ 1)2(2α+ 3)
. (7.6.7)

If α = 1 (that is, when Z and Z ′ are uniform in the cube Cd(δ)), then

Eθ =
2

3
dδ2 , var(θ) =

28

45
dδ4 (7.6.8)

7.6.7 Volume of the intersection of two balls of the same radius

Let Bd(Zj , r) and Bd(Zi, r) be two balls in Rd with same radius and di�erent centers
Z and Z ′. To compute the volume of the intersection Bd(Z, r) ∩ Bd(Z ′, r), we will
use the formula, see , for the volume of the d-dimensional cap (cut in the direction
of Z ′) of height h from a d-dimensional ball Bd(Z, r):

Kd,r,h =
1

2
rdVdI1−h2/r2

(
d− 1

2
,
1

2

)
− h

d
(r2 − h2)(d−1)/2Vd−1 , (7.6.9)

where Vd is de�ned in (7.6.1), Γ(·) is the Gamma-function and

It(α, β) =

∫ t

0
uα−1(1− u)β−1du

/∫ 1

0
uα−1(1− u)β−1du

is the normalised incomplete Beta-function. In the rhs of (7.6.9), the �rst term
is the volume of the related d-dimensional hyper-sector (this expression is derived
in [65]) and the second term is the volume of the cone with height h and base
Bd−1((Z + Z ′)/2, r′), where r′ =

√
r2 − h2.

The volume of the intersection of the balls Bd(Z, r) and Bd(Z ′, r) is therefore

vol(Bd(Z, r) ∩ Bd(Z ′, r)) = 2Kd,r,h (7.6.10)

where h = 1
2‖Z − Z

′|| and Kd,r,h is de�ned in (7.6.9).

7.6.8 A direct computation of Cd,Z,r

For computing values of Cd,Z,r, we can employ the following direct approach based
on the use of characteristic functions (c.f.).

(a) Compute the c.f. ψz(s) =
∫
eitsϕz(t)dt for z = zj (j = 1, . . . , d), with the

density ϕz(t) de�ned either by (7.2.5) or (7.2.7).

(b) As uj are independent, the c.f. of ‖U−Z‖2 is the product ψZ(s) =
∏d
j=1 ψzj (s).

(c) The density of ‖U − Z‖2 is found using the inversion formula

pd,Z(x) =
1

2π

∫ ∞
−∞

e−isxψZ(s)ds , x ≥ 0 .
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For computing the c.f. ψz(s) =
∫
eitsϕz(t)dt we can use the formula∫ b

a

ext√
t
dt = 2

∫ √b
√
a
exu

2
du =

√
π

x

(
erfi(
√
bx)− erfi(

√
ax)
)

for any 0 ≤ a < b < ∞ and any complex x 6= 0. Here erfi(x) is the imaginary error
function

erfi(x) =
2√
π

∫ x

0
et

2
dt =

2√
π

∞∑
j=0

x2j+1

j!(2j + 1)
;

the series in the right-hand side of this formula converges for all complex x.
This approach allows very accurate computation of Cd,Z,r but it is very compu-

tationally intensive and can only be performed for given Z.

7.7 Appendix B: Important auxiliary results

Lemma 1. Let δ > 0, x ∈ R and ηx,δ be a r.v. ηx,δ = (ξ − x)2, where r.v. ξ has

uniform distribution on [−δ, δ]. Then the c.d.f. of the r.v. ηx,δ is

Fx,δ(t) = P{ηx,δ ≤ t} =


0 for t ≤ 0√
t
δ · 1[ |x|≤δ] for 0 < t < (δ − |x|)2

δ−|x|+
√
t

2δ for (δ − |x|)2 ≤ t ≤ (δ + |x|)2

1 (δ + |x|)2 < t ,

(7.7.1)

where

1[ |x|≤δ] =

{
1 if |x| ≤ δ
0 if |x| > δ .

The corresponding density of ηx,δ is

ϕx,δ(t) =


1/(2δ

√
t) · 1[ |x|≤δ] for 0 < t < (δ − |x|)2

1/(4δ
√
t) for (δ − |x|)2 < t ≤ (δ + |x|)2

0 otherwise.

(7.7.2)

The �rst four central moments of the r.v. ηx,δ are:

µ
(1)
x,δ = Eηx,δ = x2 +

δ2

3
, µ

(2)
x,δ = var(ηx,δ) =

4δ2

3

(
x2 +

δ2

15

)
, (7.7.3)

µ
(3)
x,δ = E [ηx,δ − Eηx,δ]3 =

16δ4

15

(
x2 +

δ2

63

)
, (7.7.4)

µ
(4)
x,δ = E [ηx,δ − Eηx,δ]4 = 3µ

(1)
x,δµ

(3)
x,δ . (7.7.5)

Proof. Clearly, if t ≤ 0 then Fx,δ(t) = 0 and so we only consider the case t > 0.
In view of symmetry, for all x ∈ R, δ > 0 and t ≥ 0, we have Fx,δ(t) = F−x,δ(t) and
therefore we only need to consider x ≥ 0. Also, ηx,δ ≤ (|x| + δ)2 with probability 1
implying Fx,δ(t) = 1 for all t ≥ (|x|+ δ)2.
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Assume 0 ≤ x ≤ δ. We then have for all t ≥ 0:

Fx,δ(t) = P{(ξ − x)2 ≤ t} = P{(ξ − x)2 ≤ t, ξ ≤ x}+ P{(ξ − x)2 ≤ t, ξ > x}

= P{x− ξ ≤
√
t, ξ ≤ x}+ P{ξ − x ≤

√
t, ξ > x}

= P{x−
√
t ≤ ξ ≤ x}+ P{x < ξ ≤ x+

√
t}

with

P{x−
√
t ≤ ξ ≤ x} =

{ √
t/(2δ) if

√
t < x+ δ

(x+ δ)/(2δ) if
√
t ≥ x+ δ ,

P{x < ξ ≤ x+
√
t} =

{ √
t/(2δ) if

√
t < δ − x

(δ − x)/(2δ) if
√
t ≥ δ − x .

This yields the expression (7.7.1) for Fx,δ(t) in the case |x| ≤ δ.
If x > δ then ηx,δ ≥ (x − δ)2 with probability 1 implying Fx,δ(t) = 0 for all

t ≤ (x− δ)2 and P{x < ξ ≤ x+
√
t} = 0 for all t. Therefore

Fx,δ(t) = P{x−
√
t ≤ ξ ≤ x} =


0 if

√
t ≤ x− δ

δ−(x−
√
t)

2δ if x− δ <
√
t < x+ δ

1 if
√
t ≥ x+ δ ,

This yields the expression (7.7.1) for Fx,δ(t) in the case |x| > δ.
Deduction of the formulas (7.7.2) for the density and (7.7.3) for the moments

from the expression (7.7.1) for the c.d.f. Fx,δ(t) is an easy exercise.
�

Lemma 2. Let δ > 0, x ∈ R and η′x,δ be a r.v. η′x,δ = |ξ − x|, where r.v. ξ has

uniform distribution on [−δ, δ]. Then the c.d.f. of the r.v. η′x,δ is

F ′x,δ(t) = P{η′x,δ ≤ t} =


0 for t ≤ 0
t
δ · 1[ |x|≤δ] for 0 < t < |δ − |x| |
δ−|x|+t

2δ for |δ − |x| | ≤ t ≤ δ + |x|
1 δ + |x| < t ,

(7.7.6)

The corresponding density of η′x,δ is

ϕ′x,δ(t) =


1
δ · 1[ |x|≤δ] for 0 < t < |δ − |x| |
1
2δ for |δ − |x| | < t ≤ δ + |x|
0 otherwise.

(7.7.7)

Lemma 2 follows from Lemma 1 by noting that η′x,δ =
√
ηx,δ.

Note that 1[ |x|≤δ] = 0 for |x| > δ and one of the two non-trivial cases in (7.7.1),
(7.7.2), (7.7.6) and (7.7.7), when |x| > δ, become trivial as expressions vanish to
zero.
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Chapter 8

E�cient quantization and weak

covering of high dimensional cubes

Abstract

Let Zn = {Z1, . . . , Zn} be a design; that is, a collection of n points Zj ∈
[−1, 1]d. In this chapter, we study the quality of quantization of [−1, 1]d by the

points of Zn and the problem of quality of covering of [−1, 1]d by Bd(Zn, r),
the union of balls centred at Zj ∈ Zn. We concentrate on the cases where

the dimension d is not small (d ≥ 5) and n is not too large, n ≤ 2d. As a

result of the strong performance of Scheme 3 in Chapter 7, we de�ne the design

Dn,δ as the maximum-resolution 2d−1 design de�ned on vertices of the cube

[−δ, δ]d, 0 ≤ δ ≤ 1. For this design, we derive a closed-form expression for

the quantization error and very accurate approximations for the coverage area

vol([−1, 1]d ∩ Bd(Zn, r)). It is conjectured that the design Dn,δ with optimal δ

is the most e�cient quantizer of [−1, 1]d under the assumption n ≤ 2d and it is

also makes a very e�cient (1−γ)-covering. The results of a large-scale numerical

investigation con�rming the accuracy of the developed approximations and the

e�ciency of the designs Dn,δ is provided. The content of this chapter has been
submitted for publication and can be viewed also at [85].

8.1 Introduction

8.1.1 Main notation

� ‖ · ‖: the Euclidean norm;

� Bd(Z, r) = {Y ∈ Rd : ‖Y − Z‖ ≤ r}: d-dimensional ball of radius r centered
at Z ∈ Rd;

� Zn = {Z1, . . . , Zn}: a design; that is, a collection of n points Zj ∈ Rd;

� Bd(Zn, r) =
⋃n
j=1 Bd(Zj , r);

� Cd(Zn, r) =vol([−1, 1]d ∩ Bd(Zn, r))/2d: the proportion of the cube [−1, 1]d

covered by Bd(Zn, r);

� vectors in Rd are row-vectors;
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� for any a ∈ R, a = (a, a, . . . , a) ∈ Rd.

8.1.2 Main problems of interest

We will study the following two main characteristics of designs Zn.
1. Quantization error. Let X = (x1, . . . , xd) be uniform random vector on

[−1, 1]d. The mean squared quantization error for a design Zn = {Z1, . . . , Zn} ⊂ Rd

is de�ned by

θ(Zn) = EX%2(X,Zn) , where %2(X,Zn) = min
Zi∈Zn

‖X − Zi‖2 . (8.1.1)

2. Weak coverage. Denote the proportion of the cube [−1, 1]d covered by the
union of n balls Bd(Zn, r) =

⋃n
j=1 Bd(Zj , r) by

Cd(Zn, r) :=vol([−1, 1]d ∩ Bd(Zn, r))/2d .

For given radius r > 0, the union of n balls Bd(Zn, r) makes the (1− γ)-coverage of
the cube [−1, 1]d if

Cd(Zn, r) = 1− γ . (8.1.2)

Complete coverage corresponds to γ = 0. In this chapter, the complete coverage of
[−1, 1]d will not be enforced and we will mostly be interested in weak coverage, that
is, achieving (8.1.2) with some small γ > 0.

Two n-point designs Zn and Z′n will be di�erentiated in terms of performance as
follows: (a) Zn dominates Z′n for quantization if θ(Zn) < θ(Z′n); (b) if for a given
γ ≥ 0, Cd(Zn, r1) = Cd(Z′n, r2) = 1 − γ and r1 < r2, then the design Zn provides a
more e�cient (1− γ)-covering than Z′n and is therefore preferable. In Section 8.1.5
we extend these de�nitions by allowing the two designs to have di�erent number of
points and, moreover, to have di�erent dimensions.

8.1.3 Relation between quantization and weak coverage

The two characteristics, Cd(Zn, r) and θ(Zn), are related: Cd(Zn, r), as a function
of r ≥ 0, is the c.d.f. of the r.v. %(X,Zn) while θ(Zn) is the second moment of the
distribution with this c.d.f.:

θ(Zn) =

∫
r≥0

r2dCd(Zn, r) . (8.1.3)

In particular, this yields that if an n-point design Z∗n maximizes, in the set of all
n-point designs, Cd(Zn, r) for all r > 0, then it also minimizes θ(Zn). Moreover, if
r.v. %(X,Zn) stochastically dominates %(X,Z′n), so that Cd(Z′n, r) ≤ Cd(Zn, r) for
all r ≥ 0 and the inequality is strict for at least one r, then θ(Zn) < θ(Z′n).

The relation (8.1.3) can alternatively be written as

θ(Zn) =

∫
r≥0

r dCd(Zn,
√
r) , (8.1.4)

where Cd(Zn,
√
r), considered as a function of r, is the c.d.f. of the r.v. %2(X,Zn)

and hence θ(Zn) is the mean of this r.v. Relation (8.1.4) is simply another form of
(8.1.1).
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8.1.4 Re-normalization of the quantization error

To compare e�ciency of n-point designs Zn with di�erent values of n, one must
suitably normalise θ(Zn) with respect to n. A classical characteristic for quantization
in space, as formulated in [19, f-la (86), Ch.2], we obtain

Qd(Zn) :=
1

d

1
n

∑n
i=1

∫
V (Zi)

‖X − Zi‖2 dX[
1
n

∑n
i=1 vol(V (Zi))

]1+ 2
d

. (8.1.5)

Note that Qd(Zn) is re-normalised with respect to dimension d too, not only with
respect to n. Normalization 1/d with respect to d is very natual in view of the
de�nition of the Euclidean norm.

Using (8.2.1) below, for the cube [−1, 1]d the quantity in (8.1.5) can be expressed
as

Qd(Zn) =
n2/dθ(Zn)

d [
∑n

i=1 vol(V (Zi))]
2/d

=
n2/dθ(Zn)

d · vol([−1, 1]d)2/d
=
n2/d

4d
θ(Zn) . (8.1.6)

The normalising factor n2/d is explained in Section 7.5 of Chapter 7.

8.1.5 Renormalised versions and formulation of optimal design

problems

In view of (8.1.6), the naturally de�ned re-normalized version of θ(Zn) is Qd(Zn) =

n2/dθ(Zn)/(4d). From (8.1.3) and (8.1.4), Qd(Zn) is the expectation of the r.v.
n2/d%2(X,Zn)/(4d) and the second moment of the r.v. n1/d%(X,Zn)/(2

√
d) respec-

tively. This suggests the following re-normalization of the radius r with respect to n
and d:

R = n1/dr/(2
√
d) . (8.1.7)

We can then de�ne optimal designs as follows. Let d be �xed, Zn = {Zn} be the set
of all n-point designs and Z = ∪∞n=1Zn be the set of all designs.

De�nition 8.1.1 The design Z∗m with somem is optimal for quantization in [−1, 1]d,

if

Qd(Z∗m) = min
n

min
Zn∈Zn

Qd(Zn) = min
Z∈Z

Qd(Z) . (8.1.8)

De�nition 8.1.2 The design Z∗m with some m is optimal for (1 − γ)-coverage of

[−1, 1]d, if

R1−γ(Z∗m) = min
n

min
Zn∈Zn

R1−γ(Zn) = min
Z∈Z

R1−γ(Z) . (8.1.9)

Here 0 ≤ γ ≤ 1 and for a given design Zn ∈ Zn,

R1−γ(Zn) = n1/dr1−γ(Zn)/(2
√
d) , (8.1.10)

where r1−γ(Zn) is de�ned as the smallest r such that Cd(Zn, r) = 1− γ.

Importance of the factor
√
d in (8.1.7) will be seen in Section 8.3.6 where we shall

study the asymptotical behaviour of (1− γ)-coverings for large d.
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8.1.6 Thickness of covering

Let γ = 0 in De�nition 8.1.2. Then r1(Zn) is the covering radius associated with Zn
so that the union of the balls Bd(Zn, r) with r = r1(Zn) makes a covering of [−1, 1]d.
Let us tile up the whole space Rd with the translations of the cube [−1, 1]d and
corresponding translations of the balls Bd(Zn, r). This would make a full covering of
the whole space; denote this space covering by Bd(Z(n), r). The thickness Θ of any
space covering is de�ned, see [19, f-la (1), Ch. 2], as the average number of balls
containing a point of the whole space. In our case of Bd(Z(n), r), the thickness is

Θ(Bd(Z(n), r)) =
n vol(Bd(0, r))
vol([−1, 1]d)

=
n rd vol(Bd(0, 1))

2d
.

The normalised thickness, θ, is the thickness Θ divided by vol(Bd(0, 1)), the volume
of the unit ball, see [19, f-la (2), Ch. 2]. In the case of Bd(Z(n), r), the normalised
thickness is

θ(Bd(Z(n), r)) =
n rd

2d
= dd/2

[
R1(Z(n))

]d
,

where we have recalled that r = r1(Zn) and R1−γ(Zn) = n1/dr1−γ(Zn)/(2
√
d) for any

0 ≤ γ ≤ 1.
We can de�ne the normalised thickness of the covering of the cube by the same

formula and extend it to any 0 ≤ γ ≤ 1:

De�nition 8.1.3 Let Bd(Zn, r) be a (1 − γ)-covering of the cube [−1, 1]d with 0 ≤
γ ≤ 1. Its normalised thickness is de�ned by

θ(Bd(Zn, r)) = (
√
dR)d , (8.1.11)

where R = n1/dr/(2
√
d), see (8.1.7).

In view of (8.1.11), we can reformulate the de�nition (8.1.9) of the (1−γ)-covering
optimal design by saying that this design minimizes (normalised) thickness in the
set of all (1− γ)-covering designs.

8.1.7 The design of the main interest

We will be mostly interested in the following n-point design Zn = Dn,δ de�ned only
for n = 2d−1:

Design Dn,δ: a maximum-resolution 2d−1 design de�ned on vertices of the cube

[−δ, δ]d, 0 ≤ δ ≤ 1.

The design Dn,1/2 extends to the lattice Dd (shifted by 1
2
) containing points

X = (x1, . . . , xd) with integer components satisfying x1 + . . .+ xd = 0 (mod 2), see
[19, Sect. 7.1, Ch. 4]; this lattice is sometimes called `checkerboard lattice'. The
motivation to theoretically study the design Dn,δ is a consequence of numerical re-
sults reported for Scheme 3 in Chapter 7 (see also [144]). In Chapter 7 it is shown
that for all dimensions d ≥ 7, the design Dn,δ with suitable δ provides the best
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quantization and covering per point among all other designs considered. In Chapter
7, we consider n-point designs in d-dimensional cubes providing good covering and
quantization. Aiming at practical applications in computer experiments, optimiza-
tion and numerical integration, the aim was to consider the designs with n which is
not too large and in any case does not exceed 2d. In fact, as a result of extensive
numerical comparisons performed in Chapter 7 and the analysis performed in this
chapter, the author states the following conjecture.

Conjecture. For all d ≥ 7, the design Dn,δ with optimal δ determined by

(8.2.11), is the optimal design for quantization, if we add the restriction m ≤ 2d

in (8.1.8).

The author does not think that the conjecture is true without a restriction on
m in (8.1.8) as for very large m we can construct one of the very e�cient lattice
space quantizers, see [19, Sect. 3, Ch. 2], take the lattice points belonging to a very
large cube and scale the cube back to [−1, 1]d; this may result in a better quantizer
than the design Dn,δ. It is di�cult to study (both, numerically and theoretically)
properties of such designs since they have to have very large number of points n and
are expected to have several non-congruent types of Voronoi cells due to boundary
conditions. As we are interested in practical applications, designs with practically
reachable values of n are more important. The author does not state a conjecture
concerning the structure of the best covering designs as formulated in De�nition 2, as
the structure of such designs depends on both d and γ, see discussions in Section 8.4.

For theoretical comparison with design Dn,δ, we shall consider the following sim-
ple design, which extends to the integer point lattice Zd (shifted by 1

2
) in the whole

space Rd:

Design D(0)
n : the collection of 2d points (±1

2 , . . . ,±
1
2), all vertices of the cube

[−1
2 ,

1
2 ]d.

Without loss of generality, while considering the design Dn,δ we assume that the
point Z1 ∈ Dn,δ = {Z1, . . . , Zn} is Z1 = δ = (δ, . . . , δ). Similarly, the �rst point in
D(0)
n is Z1 = 1

2
= (1

2 , . . . ,
1
2). Note also that for numerical comparisons, in Section 8.4

we shall introduce one more design.

8.1.8 Structure of the rest of the chapter and the main results

In Section 8.2 we study Qd(Dn,δ), the normalized mean squared quantization error
for the design Dn,δ. There are two important results, Theorems 8.2.1 and 8.2.2. In
Theorems 8.2.1, we derive the explicit form for the Voronoi cells for the points of the
design Dn,δ and in Theorem 8.2.2 we derive a closed-form expression for Qd(Dn,δ)
for any δ > 0. As a consequence, in Corollary 8.2.1 we determine the value of the
optimal value of δ.

The main result of Section 8.3 is Theorem 8.3.1, where we derive closed-form
expressions (in terms of Cd,Z,r, the fraction of the cube [−1, 1]d covered by a ball
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Bd(Z, r)) for the coverage area with vol([−1, 1]d ∩ Bd(Zn, r)). Then, using accurate
approximations for Cd,Z,r, we derive approximations for vol([−1, 1]d ∩Bd(Zn, r)). In
Theorem 8.3.2 we derive asymptotic expressions for the (1 − γ)-coverage radius for
the design Dn,1/2 and show that for any γ > 0, the ratio of the (1−γ)-coverage radius
to the 1-coverage radius tends to 1/

√
3 as d→∞. Numerical results of Section 8.3.6

con�rm that even for rather small d, the 0.999-coverage radius is much smaller than
the 1-coverage radius providing the full coverage.

In Section 8.4 we demonstrate that the approximations developed in Section 8.3
are very accurate and make a comparative study of selected designs used for quan-
tization and covering.

In Appendices A�C located at the end of this chapter, proofs of the most technical
results are provided.

The main results of this chapter are: a) derivation of the closed-form expres-
sion for the quantization error for the design Dn,δ, and b) derivation of accurate
approximations for the coverage area vol([−1, 1]d ∩ Bd(Zn, r)) for the design Dn,δ.

8.2 Quantization

8.2.1 Reformulation in terms of the Voronoi cells

Consider any n-point design Zn = {Z1, . . . , Zn}. The Voronoi cell V (Zi) for Zi ∈ Zn
is de�ned as

V (Zi) = {x ∈ [−1, 1]d : ‖Zi − x‖ ≤ ‖Zj − x‖ for j 6= i} .

The mean squared quantization error θ(Zn) introduced in (8.1.1) can be written
in terms of the Voronoi cells as follows:

θ(Zn) = EX min
i=1,...,n

‖X − Zi‖2 =
1

vol([−1, 1]d)

n∑
i=1

∫
V (Zi)

‖X − Zi‖2 dX , (8.2.1)

where X = (x1, . . . , xd) and dX = dx1dx2 · · · dxd.
This reformulation has signi�cant bene�t when the design Zn has certain regular

structure. In particular, if all of the Voronoi cells V (Zi), i = 1, . . . , n, are congruent,
then we can simplify (8.2.1) to

θ(Zn) =
1

vol(V (Z1))

∫
V (Z1)

‖X − Z1‖2 dX . (8.2.2)

In Section 8.2.3, this formula will be the starting point for derivation of the closed-
form expression for θ(Zn) for the design Dd,δ.

8.2.2 Voronoi cells for Dn,δ

Proposition 8.2.1 Consider the design D(0)
n,δ, the collection of n = 2d points (±δ, . . . ,±δ),

0 < δ < 1. The Voronoi cells for this design are all congruent. The Voronoi cell for

the point δ = (δ, δ, . . . , δ) is the cube

C0 =
{
X=(x1, . . . , xd)∈Rd : 0 ≤ xi ≤ 1, i = 1, 2, . . . , d

}
. (8.2.3)

172



Proof . Consider the Voronoi cells created by the design D(0)
n,δ in the whole space Rd.

For the point δ = (δ, δ, . . . , δ), the Voronoi cell is clearly {X=(x1, . . . , xd) : xi ≥ 0}.
By intersecting this set with the cube [−1, 1]d we obtain (8.2.3). �

Theorem 8.2.1 The Voronoi cells of the design Dn,δ = {Z1, . . . , Zn} are all con-

gruent. The Voronoi cell for the point Z1 = δ = (δ, δ, . . . , δ) ∈ Rd is

V (Z1) = C0

⋃ d⋃
j=1

Uj

 (8.2.4)

where C0 is the cube (8.2.3) and

Uj =
{
X = (x1, x2, . . . , xd)∈Rd : −1 ≤ xj ≤ 0, |xj | ≤ xk ≤ 1 for all k 6= j

}
.(8.2.5)

The volume of V (Z1) is vol(V (Z1)) = 2.

Proof . The design Dn,δ is symmetric with respect to all components implying
that all n = 2d−1 Voronoi cells are congruent immediately yielding that their volumes
equal 2. Consider V (Z1) with Z1 = δ.

Since Dn,δ ⊂ D(0)
n,δ, where design D(0)

n,δ is introduced in Proposition 8.2.1, and C0

is the Voronoi set of δ for design D(0)
n,δ, C0 ⊂ V (δ) for design Dn,δ too.

Consider the d cubes adjacent to C0:

Cj =
{
X = (x1, x2, . . . , xd)∈Rd : −1 ≤ xj ≤ 0, 0 ≤ xi ≤ 1 for all i 6= j

}
; j = 1, . . . , d.

A part of each cube Cj belongs to V (Z1). This part is exactly the set Uj de�ned by
(8.2.5). This can be seen as follows. A part of Cj also belongs to the Voronoi set of
the point Xjk = δ − 2δej − 2δek, where el = (0, . . . , 0, 1, 0, . . . , 0) with 1 placed at
l-th place; all components of Xjk are δ except j-th and k-th components which are
−δ. We have to have |xj | ≤ xk, for a point X ∈ Cj to be closer to Z1 than to Xjk.
Joining all constraints for X = (x1, x2, . . . , xd) ∈ Cj (k = 1, . . . , d, k 6= j) we obtain
(8.2.5) and hence (8.2.4).

�

8.2.3 Explicit formulae for the quantization error

Theorem 8.2.2 For the design Dn,δ with 0 ≤ δ ≤ 1, we obtain:

θ(Dn,δ) = d

(
δ2 − δ +

1

3

)
+

2δ

d+ 1
, (8.2.6)

Qd(Dn,δ) = 2−2/d

(
δ2 − δ +

1

3
+

2δ

d(d+ 1)

)
. (8.2.7)

Proof . To compute θ(Dn,δ), we use (8.2.2), where, in view of Theorem 8.2.1,
vol(V (Z1)) = 2. Using the expression (8.2.4) for V (Z1) with Z1 = δ, we obtain

θ(Zn) =
1

2

∫
V (Z1)

‖X − Z1‖2 dX=
1

2

[∫
C0

‖X − Z1‖2 dX+d

∫
U1

‖X − Z1‖2 dX
]
.

(8.2.8)
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Consider the two terms in (8.2.8) separately. The �rst term is easy:∫
C0

‖X − Z1‖2 dX =

∫
C0

d∑
i=1

(xi − δ)2dx1 . . . dxd = d

∫ 1

0
(x− δ)2dx

= d

(
δ2 − δ +

1

3

)
. (8.2.9)

For the second term we have:∫
U1

‖X − Z1‖2 dX =

∫ 0

−1

[∫ 1

|x1|
. . .

∫ 1

|x1|

d∑
i=1

(xi − δ)2dx2 . . . dxd

]
dx1

=

∫ 0

−1
(x1 − δ)2(1 + x1)d−1dx1

+ (d− 1)

∫ 0

−1
(1 + x1)d−2

∫ 1

|x1|
(x2 − δ)2dx2dx1

= δ2 − δ +
1

3
+

4δ

d(d+ 1)
. (8.2.10)

Inserting the obtained expressions into (8.2.8) we obtain (8.2.6). The expression
(8.2.7) is a consequence of (8.1.6), (8.2.6) and n = 2d−1. �

A simple consequence of Theorem 8.2.2 is the following corollary.

Corollary 8.2.1 The optimal value of δ minimising θ(Dn,δ) and Qd(Dn,δ) is

δ∗ =
1

2
− 1

d(d+ 1)
; (8.2.11)

for this value,

Qd(Dn,δ∗) = min
δ
Qd(Dn,δ) = 2−2/d

[
1

12
+
d2 + d− 1

(d+ 1)2 d2

]
. (8.2.12)

From (8.2.7), for the design Dn,δ with δ = 1/2 we get

Qd(Dn,1/2) = 2−2/d

[
1

12
+

1

(d+ 1) d

]
, (8.2.13)

which is always slightly larger than (8.2.12). Let us make �ve more remarks.

1. For the one-point design D(0) = {0} with the single point 0 and the design
D(0)
n with n = 2d points (±1

2 , . . . ,±
1
2) we have Qd(D(0)) = Qd(D

(0)
n ) = 1/12,

which coincides with the value of Qd in the case of space quantization by the
integer-point lattice Zd, see [19, Ch. 2 and 21].

2. The quantization error (8.2.13) for the design Dn,1/2 have almost exactly the
same form as the quantization error for the `checkerboard lattice' Dd in Rd;
the di�erence is in the factor 1/2 in the last term in (8.2.13), see [19, f-la
(27), Ch.21]. To understand quantization error for a lattice, we consider the
quantization of a uniform distribution over a large ball in Rd, see [19, p.59,
Ch.21] for a detailed explanation. Naturally, the quantization error Qd for Dd

in Rd is slightly smaller than Qd for Dn,1/2 in [−1, 1]d.
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3. The optimal value of δ in (8.2.11) is smaller than 1/2. This is caused by a
non-symmetrical shape of the Voronoi cells V (Zj) for designs Dn,δ, which is
clearly visible in (8.2.4).

4. The minimal value of Qd(Dn,δ∗) is achieved with d = 15.

5. Formulas (8.2.11) and (8.2.12) are in agreement with numerical results seen in
Table 7.4 of Chapter 7.

Let us brie�y illustrate the results above. In Figure 8.1, the black circles depict
the quantity Qd(Dn,δ∗) as a function of d. The quantity Qd(D

(0)
n ) = 1/12 is shown

with the solid red line. We conclude that from dimension seven onwards, the design
Dn,δ∗ provides better quantization per points than the design D(0)

n . Moreover for d >
15, the quantity Qd(Dn,δ∗) slowly increases and converges to 1/12. Typical behaviour
of Qd(Dn,δ) as a function of δ is shown in Figure 8.2. This �gure demonstrates the
signi�cance of choosing δ optimally.

Figure 8.1: Qd(Dn,δ∗) and
Qd(Dn,1/2) as functions of d and

Qd(D
(0)
n ) = 1/12; d = 3, . . . , 50.

Figure 8.2: Qd(Dn,δ) as a function
of δ and Qd(D

(0)
n ) = 1/12 with

d = 10.

8.3 Closed-form expressions for the coverage area with

Dn,δ and approximations

In this section, we will derive explicit expressions for the coverage area of the cube
[−1, 1]d by the union of the balls Bd(Dn,δ, r) associated with the design Dn,δ in-
troduced in Section 8.1.2. That is, we will derive expressions for the quantity
Cd(Dn,δ, r) for all values of r. Then, in Section 8.3.4, we shall obtain approximations
for Cd(Dn,δ, r). The accuracy of the approximations will be assessed in Section 8.4.2.

8.3.1 Reduction to Voronoi cells

For an n-point design Zn = {Z1, . . . , Zn}, denote the proportion of the Voronoi cell
around Zi covered by the ball Bd(Zi, r) as:

Vd,Zi,r := vol(V (Zi) ∩ Bd(Zi, r))/vol(V (Zi)) .

Then we can state the following simple lemma.
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Lemma 8.3.1 Consider a design Zn = {Z1, . . . , Zn} such that all Voronoi cells

V (Zi) are congruent. Then for any Zi ∈ Zn, Cd(Zn, r) = Vd,Zi,r.

In view of Theorem 8.2.1, for design Dn,δ all Voronoi cells V (Zi) are congruent
and vol(V (Zi)) = 2; recall that n = 2d−1. By then applying Lemma 8.3.1 and
without loss of generality we have choosen Z1 = δ = (δ, δ, . . . , δ) ∈ Rd, we have for
any r > 0

Vd,δ,r =
1

2
vol(V (δ) ∩ Bd(δ, r)) = Cd(Dn,δ, r) . (8.3.1)

In order to formulate explicit expressions for Vd,δ,r, we need an important quan-
tity, proportion of intersection of [−1, 1]d with one ball.

8.3.2 Intersection of [−1, 1]d with one ball

Take the cube [−1, 1]d and a ball Bd(Z, r) = {Y ∈ Rd : ‖Y − Z‖ ≤ r} centered at a
point Z = (z1, . . . , zd) ∈ Rd; this point Z could be outside [−1, 1]d. The fraction of
the cube [−1, 1]d covered by the ball Bd(Z, r) is denoted by

Cd,Z,r = vol([−1, 1]d ∩ Bd(Z, r))/2d .

The following relation will prove useful. Assume that we have the cube [−β, β]d

of volume (2β)d, the ball Bd(Z ′, r′) = {Y ∈ Rd : ‖Y − Z ′‖ ≤ r′} with a center at a
point Z ′ = (z′1, . . . , z

′
d). Denote the fraction of the cube [−β, β]d covered by the ball

Bd(Z ′, r′) by

C
(β)
d,Z′,r′ = vol([−β, β]d ∩ Bd(Z ′, r′))/(2β)d .

Then the change of the coordinates Z = Z ′/β = (z′1/β, . . . , z
′
d/β) and the radius

r = r′/β gives

C
(β)
d,Z′,r′ = Cd,Z,r . (8.3.2)

8.3.3 Expressing Cd(Dn,δ, r) through Cd,Z,r

Theorem 8.3.1 The quantity Cd(Dn,δ, r) can be expressed through Cd,Z,r for suitable

Z as follows.

� For r ≤ δ:

Cd(Dn,δ, r) =
1

2
Cd,2δ−1,2r . (8.3.3)

� For δ ≤ r ≤ 1 + δ:

Cd(Dn,δ, r) =
1

2

[
Cd,2δ−1,2r + d

∫ r−δ

0
C
d−1,2δ−1−x

1−x ,
2
√
r2−(x+δ)2

1−x

(1− x)d−1 dx

]
.

(8.3.4)
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� For r ≥ 1 + δ:

Cd(Dn,δ, r) =
1

2

[
Cd,2δ−1,2r + d

∫ 1

0
C
d−1,2δ−1−x

1−x ,
2
√
r2−(x+δ)2

1−x

(1− x)d−1 dx

]
.

(8.3.5)

The proof of Theorem 8.3.1 is given in Appendix A, see Section 8.5.

8.3.4 Approximation for Cd(Dn,δ, r)

Accurate approximations for Cd,Z,r for arbitrary d, Z and r were developed in Chap-
ter 7. By using the general expansion in the central limit theorem for sums of
independent non-identical r.v., we obtain from (7.2.14) in Chapter 7:

Cd,Z,r ∼= Φ(t) +
‖Z‖2 + d/63

5
√

3(‖Z‖2 + d/15)3/2
(1− t2)ϕ(t) , (8.3.6)

where

t =

√
3(r2 − ‖Z‖2 − d/3)

2
√
‖Z‖2 + d/15

.

Using (8.3.6), we formulate the following approximation for Cd(Dn,δ, r).

Approximations for Cd(Dn,δ, r). Approximate the values C·,·,· in formulas

(8.3.3),(8.3.4),(8.3.5) with corresponding approximations (8.3.6).

8.3.5 Simple bounds for Cd(Dn,δ, r)

Lemma 8.3.2 For any r ≥ 0, 0 < δ < 1 and δ = (δ, δ, . . . , δ) ∈ Rd, the quantity

Cd(Dn,δ, r) can be bounded as follows:

1

2
[Cd,2δ−1,2r + Cd,A,2r] ≤ Cd(Dn,δ, r) ≤ Cd,2δ−1,2r . (8.3.7)

where A = (2δ + 1, 2δ − 1, . . . , 2δ − 1) ∈ Rd.

The proof of Lemma 8.3.2 is given in Appendix B, see Section 8.6.
In Figures 8.3 and 8.4, using the approximation given in (8.3.6) we study the

tightness of the bounds given in (8.3.7). In these �gures, the dashed red line, dashed
blue line and solid black line depict the upper bound, the lower bound and the
approximation for Cd(Dn,δ, r) respectively. We see that the upper bound is very
sharp across r and d; this behaviour is not seen with the lower bound.

8.3.6 `Do not try to cover the vertices'

In this section, we theoretically support the authors recommendation `do not try
to cover the vertices' which was the main message of Chapter 7 but was based on
numerical evidence. In other words, we will show on the example of the design Dn,1/2
that in large dimensions the attempt to cover the whole cube rather than 0.999 of it
leads to a dramatic increase of the required radius of the balls.
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Figure 8.3: Cd(Dn,δ, r) with upper
and lower bounds: d = 20, δ=1/2

Figure 8.4: Cd(Dn,δ, r) with upper
and lower bounds: d=100, δ=1/2

Theorem 8.3.2 Let γ be �xed, 0 ≤ γ ≤ 1. Consider (1 − γ)-coverings of [−1, 1]d

generated by the designs Dn,δ and the associated normalized radii R1−γ(Dn,δ), see
(8.1.10). For any 0 < γ < 1 and 0 ≤ δ ≤ 1, the limit of R1−γ(Dn,δ), as d → ∞,

exits and achieves minimal value for δ = 1/2. Moreover, R1−γ(Dn,1/2)/R1(Dn,1/2)→
1/
√

3 as d→∞, for any 0 < γ < 1.

Proof is given in Appendix C, see Section 8.7.
In Figures 8.5-8.6 using a solid red line we depict the approximation of Cd(Dn,δ, r)

as a function of R with δ = 1/2, where we recall r = 2
√
dn−1/dR . The ver-

tical green line illustrates the value of R0.999 and the vertical blue line depicts
R1 = n1/dr1/(2

√
d) = n1/d

√
d+ 8/(4

√
d), where for design Dn,1/2 one can easily

calculate (using Lemma 8.3.1) that r1 =
√
d+ 8/2. This corresponds to computing

the distance between the point 1/2 = (1/2, . . . , 1/2) and the furthest point in the
Voronoi cell around 1/2 which is (using Theorem 8.2.1) the point (−1, 1, . . . , 1).
These �gures clearly illustrate that as d increases, for all γ we have R1−γ/R1 slowly
tending to 1/

√
3 (that is, the ratio of the radius depicted with the green line and the

radius shown with the blue line tends to 1/
√

3).
In Figures 8.7-8.10, instead of plotting with respect to the normalised radius R,

we have returned to the non-normalised radius r. In these �gures the solid red line
depicts the approximation of Cd(Dn,δ, r) developed in Section 8.3.4 as a function of
r with δ = 1/2. The vertical green line indicates the value of r0.999 and the vertical
blue line depicts r1 =

√
d+ 8/2. One can clearly see in these �gures how much

smaller r0.999 is relative to r1, the radius guaranteeing the full coverage.

8.4 Numerical studies

For comparative purposes, we introduce another design which is one of the most
popular designs (both, for quantization and covering) considered in applications:

Design Sn: Z1, . . . , Zn are taken from a low-discrepancy Sobol's sequence on the

cube [−1, 1]d. (See Scheme 7 in Chapter 7 and references therein.)
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Figure 8.5: Cd(Dn,δ, r) with
R0.999 and R1: d = 5

Figure 8.6: Cd(Dn,δ, r) with
R0.999 and R1: d = 50

Figure 8.7: Cd(Dn,δ, r) with r0.999

and r1: d = 5
Figure 8.8: Cd(Dn,δ, r) with r0.999

and r1: d = 10

Figure 8.9: Cd(Dn,δ, r) with r0.999

and r1: d = 50
Figure 8.10: Cd(Dn,δ, r) with
r0.999 and r1: d = 500

For constructing the design Sn, we use the R-implementation provided in the
`SobolSequence' package, see [57]. For Sn, we have set n = 1024 and F2 = 10 (an
input parameter for the Sobol sequence function).

8.4.1 Quantization and weak covering comparisons

In Table 8.1, we compare the normalised mean squared quantization error Qd(Zn)

de�ned in (8.1.6) across three designs: Dn,δ∗ with δ∗ given in (8.2.11), D(0)
n and

Sn. Table 8.1 and similar comparisons with the other designs have inspired us to
formulate the conjecture in Section 8.1.7.

In Table 8.2, we compare the normalised statistic R1−γ introduced in (8.1.9),
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d = 5 d = 7 d = 10 d = 15 d = 20

Qd(Dn,δ∗) 0.0876 0.0827 0.0804 0.0798 0.0800
Qd(D

(0)
n ) 0.0833 0.0833 0.0833 0.0833 0.0833

Qd(Sn) 0.0988 0.1003 0.1022 0.1060 0.1086

Table 8.1: Normalised mean squared quantization error Qd for four designs and
di�erent d.

where we have �xed γ = 0.01. For designs Dn,δ,Dn,0.5 and D(0)
n we have also included

R1, the smallest normalised radius that ensures the full coverage. For design Dn,δ
and for each d, the optimal values of δ for this γ are provided in brackets and have
been obtained using the approximation of Section 8.3.4.

d = 5 d = 7 d = 10 d = 15 d = 20
R1−γ(Dn,δ) 0.4750 (0.54) 0.3992 (0.53) 0.3635 (0.52) 0.3483 (0.51) 0.3417 (0.50)
R1−γ(Dn,0.5) 0.4765 0.4039 0.3649 0.3484 0.3417

R1−γ(D(0)
n ) 0.4092 0.3923 0.3766 0.3612 0.3522

R1−γ(Sn) 0.4714 0.4528 0.4256 0.4074 0.3967

R1(Dn,δ) 0.6984 (0.54) 0.6555 (0.53) 0.6178 (0.52) 0.5856 (0.51) 0.5714 (0.50)
R1(Dn,0.5) 0.7019 0.6629 0.6259 0.5912 0.5714

R1(D(0)
n ) 0.5000 0.5000 0.5000 0.5000 0.5000

Table 8.2: Normalised statistic R1−γ across d with γ = 0.01 (value in brackets corre-
sponds to optimal δ)

Let us make some remarks on Tables 8.1 and 8.2:

� In conjunction with Figure 8.1, Table 8.1 shows that for d ≥ 7, the quantization
for design Dn,δ∗ is superior over all other designs considered.

� For the weak covering statistic R1−γ , the superiority of Dn,δ over all other
designs considered is seen for d ≥ 10.

� For the design Dn,δ, the optimal value of δ minimizing R1−γ is not the same as
the optimal δ for quantization.

� From one of the �ve remarks given in Section 8.2.3, the minimal value of
Qd(Dn,δ∗) is attained with d = 15. For d > 15, the quantity Qd(Dn,δ∗) increases
with d, slowly converging to Qd(D

(0)
n ) = 1/12. This non-monotonic behaviour

can be seen by looking at d = 20 in Table 8.1.

� Similar non-monotonic behaviour is not seen for the quantityR1−γ , asR1−γ(Dn,δ)
monotonically decreases as d increases. Also, Theorem 8.3.2 and its proof imply
the asymptotically optimal value of δ is 1/2 and that R1−γ(Dn,δ)→ 1/(2

√
3) ∼=

0.289 as d→∞. The latter statement follows from the proof of Theorem 8.3.2
where it is shown that r1−γ =

√
d

2
√

3
. After normalisation, the result can be

obtained.
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8.4.2 Accuracy of covering approximation and dependence on δ

In this section, we assess the accuracy of the approximation of Cd(Dn,δ, r) developed
in Section 8.3.4 and the behaviour of Cd(Dn,δ, r) as a function of δ. In Figures 8.11 �
8.16, the thick dashed black lines depict Cd(Dn,δ, r) for several di�erent choices of r;
these values are obtained via Monte Carlo simulations with 50, 000 repetitions. The
thinner solid lines depicts its approximation of Section 8.3.4. These �gures show that
the approximation is extremely accurate for all r, δ and d; we emphasise that the
approximation remains accurate even for very small dimensions like d = 3. These
�gures also demonstrate the δ-e�ect saying that a signi�cantly more e�cient weak
covering can be achieved with a suitable choice of δ. This is particularly evident in
higher dimensions, see Figures 8.15 and 8.16.

Figure 8.11: Cd(Dn,δ, r) and its
approximation: d = 3,r from 0.6
to 1 increasing by 0.1

Figure 8.12: Cd(Dn,δ, r) and its
approximation: d = 5, r from 0.7
to 1.1 increasing by 0.1

Figure 8.13: Cd(Dn,δ, r) and its
approximation: d = 7, r from 0.8
to 1.1 increasing by 0.075

Figure 8.14: Cd(Dn,δ, r) and its
approximation: d = 10, r from
0.95 to 1.15 increasing by 0.05

Figures 8.17 and 8.18 illustrate Theorem 8.3.2 and show the rate of convergence of
the covering radii as d increases. Let the probability density function f(r) be de�ned
by dCd(Dn,δ, r) = f(r)dr, where Cd(Dn,δ, r) as a function of r is viewed as the c.d.f. of
the r.v. r = %(X,Zn), see Section 8.1.3. Trivial calculations yield that the density for

the normalised form of %(X,Zn) using (8.1.7) is pd(R) := 2
√
dn−1/df

(
2
√
dn−1/dR

)
.

In Figure 8.17, we depict the density pd(·) for d = 5, 10 and 20 with blue, red and
black lines respectively. The respective c.d.f.'s

∫ R
0 pd(τ)dτ are shown in Figure 8.18

under the same colour scheme.
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Figure 8.15: Cd(Dn,δ, r) and its
approximation: d = 15, r from
1.15 to 1.35 increasing by 0.05

Figure 8.16: Cd(Dn,δ, r) and its
approximation: d = 50, r from
2.05 to 2.35 increasing by 0.075

Figure 8.17: Densities fd(R) for
the design Dn,δ∗ ; d = 5, 10, 20

Figure 8.18: c.d.f.'s of R for the
design Dn,δ∗ ; d = 5, 10, 20

8.4.3 Stochastic dominance

In Figures 8.19 and 8.20, we depict the c.d.f.'s for the normalized distance
n1/d%(X,Zn)/(2

√
d) for two designs: Dn,δ∗ in red, and D(0)

n in black. We can see that
the design Dn,δ∗ stochastically dominates the design D(0)

n for d = 10 but for d = 5

there seem to be a reverse domination; this is in line with �ndings from Sections 8.2.3
and 8.4.1, see e.g. Figure 8.1, Tables 8.1 and 8.2.

In Figure 8.21, we depict the c.d.f.'s for the normalized distance n1/d%(X,Zn)/(2
√
d)

for design D(0)
n (in red) and design Sn (in black). We can see that for d = 5, the

design D(0)
n stochastically dominates the design Sn. The style of Figure 8.22 is the

same as �gure Figure 8.21, however we set d = 10 and the design D(0)
n is replaced

with the design Dn,δ∗ . Here we see a very clear stochastic dominance of the design
Dn,δ∗ over the design Sn. All �ndings are consistent with �ndings from Section 8.4.1,
see Tables 8.1 and 8.2.

8.5 Appendix A: Proof of Theorem 8.3.1

In view of (8.3.1), Cd(Dn,δ, r) = Vd,δ,r for all 0 ≤ δ ≤ 1 and r ≥ 0 and we shall derive
expressions for Vd,δ,r rather than Cd(Dn,δ, r).

Case(a) : r ≤ δ.
Let Y = (y1, y2, . . . , yd), where yi (i = 1, 2, . . . , d) are i.i.d. random variables
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Figure 8.19: d = 5: design D(0)
n

seems to stochastically dominate
Dn,δ∗

Figure 8.20: d = 10: design
Dn,δ∗ stochastically dominates de-
sign D(0)

n

Figure 8.21: d = 5: design
D(0)
n stochastically dominates de-

sign Sn

Figure 8.22: d = 10: design
Dn,δ∗ stochastically dominates de-
sign Sn

with uniform distribution on [0, 1]. Then for Case (a) we have:

Vd,δ,r =
1

2
vol
(
Bd(δ, r) ∩

{
X∈Rd : 0 ≤ xi ≤ 1, i = 1, 2, . . . , d

})
=

1

2
Pr {‖Y − δ‖ ≤ r}

=
1

2
Pr

{
d∑
i=1

(yi − δ)2 ≤ r2

}
.

By making the substitution y′i = yi − 1
2 , we have y

′
i are i.i.d. random variables

with uniform distribution on [−1
2 ,

1
2 ], i = 1, 2, . . . , d. Therefore

Vd,δ,r =
1

2
Pr

{
d∑
i=1

(y′i +
1

2
− δ)2 ≤ r2

}
=

1

2
C

(1/2)

d,δ−1
2
,r
.

Whence, by using relation (8.3.2) with β = 1/2, we obtain

Vd,δ,r =
1

2
Cd,2δ−1,2r .

Case(b): δ ≤ r ≤ 1 + δ
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Using (8.2.4) we obtain

Vd,δ,r =
1

2

[
vol (Bd(δ, r) ∩ C0) + d · vol (Bd(δ, r) ∩ U1)

]
.

The �rst quantity in the brackets has been considered in case (a) and it is simply
Cd,2δ−1,2r. Therefore we aim to reformulate the second quantity within the brackets,
V := vol (Bd(δ, r) ∩ U1), in a probabilistic setting. Let Y = (y1, y2, . . . , yd), where
y1 has a uniform distribution on [−1, 0] and yi are i.i.d. random variables with a
uniform distribution on [|y1|, 1], i = 2, . . . , d. By conditioning on y1 and invoking the
law of total probability, we obtain

V =

=

∫ 0

−1
Pr {‖Y − δ‖ ≤ r | y1} · vol({|y1| ≤ yi ≤ 1, i 6= 1})dy1

=

∫ 0

δ−r
Pr {‖Y − δ‖ ≤ r | y1} · (1− |y1|)d−1dy1. (8.5.1)

The limits of integration have changed from [−1, 0] to [δ−r, 0] since for δ ≤ r ≤ 1+δ

we have

Pr {‖Y − δ‖ ≤ r | y1} = 0 for y1 < δ − r.

By focusing on the integrand in (8.5.1), we have:

P := Pr {‖Y − δ‖ ≤ r | y1}

= Pr

{
d∑
i=1

(yi − δ)2 ≤ r2
∣∣ y1

}

= Pr

{
d∑
i=2

(yi − δ)2 ≤ r2 − (y1 − δ)2

∣∣∣∣ y1

}
.

For i = 2, 3, . . . d, by making the substitution y′i = yi − 1+|y1|
2 , we have y′i are i.i.d.

with uniform distribution on
[

1
2(|y1| − 1), 1

2(1− |y1|)
]
. Let δ′ = (1 − |y1|)/2. This

results in:

P = Pr

{
d∑
i=2

(
y′i − δ +

1 + |y1|
2

)2

≤ r2 − (y1 − δ)2

∣∣∣∣ y1

}

= C
(δ′)

d−1,
2δ−1−|y1|

2
,
√
r2−(y1−δ)2

.

Using relation (8.3.2) with β = δ′ = (1− |y1|)/2 we obtain:

P = C
d−1,

2δ−1−|y1|
1−|y1|

,
2
√
r2−(y1−δ)2

1−|y1|

,

whence

V =

∫ 0

δ−r
C
d−1,

2δ−1−|y1|
1−|y1|

,
2
√
r2−(y1−δ)2

1−|y1|

· (1− |y1|)d−1dy1
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and we conclude:

Vd,δ,r =
1

2

[
Cd,2δ−1,2r + d

∫ 0

δ−r
C
d−1,

2δ−1−|x|
1−|x| ,

2
√
r2−(x−δ)2
1−|x|

(1− |x|)d−1 dx

]
(8.5.2)

=
1

2

[
Cd,2δ−1,2r + d

∫ r−δ

0
C
d−1,2δ−1−x

1−x ,
2
√
r2−(x+δ)2

1−x

(1− x)d−1 dx

]
.

Case(c): r ≥ 1 + δ:
Case (c) is almost identical to Case (b), with the only change occurring within

the lower limit of integration in (8.5.2) . Since y1 is constrained within [−1, 0] and
r ≥ 1 + δ, the lower limit of the integral remains at −1 for all r ≥ 1 + δ. Since the
steps are almost identical to Case (b), they are omitted and we simply conclude:

Vd,δ,r =
1

2

[
Cd,2δ−1,2r + d

∫ 1

0
C
d−1,2δ−1−x

1−x ,
2
√
r2−(x+δ)2

1−x

(1− x)d−1 dx

]
.

�

8.6 Appendix B: Proof of Lemma 8.3.2

(a) Let us �rst prove the upper bound in (8.3.7). Consider the set Uj de�ned in
(8.2.5) and the associated set

U ′j =
{
X = (x1, x2, . . . , xd)∈ [0, 1]d : |xj | ≤ xk ≤ 1 for all k 6= j

}
⊂ C0 .

We have vol(Uj)=vol(U ′j)= 1/d and

V (δ) = C0

⋃ d⋃
j=1

Uj

 , d⋃
j=1

U ′j = C0 = [0, 1]d (8.6.1)

Let us prove that for any r ≥ 0 we have vol(Uj ∩ Bd(δ, r))≤ vol(U ′j ∩ Bd(δ, r)).
With any point X = (x1, x2, . . . , xd)∈U ′1, we associate the point
X ′ = (−x1, x2, . . . , xd)∈U1 by simply changing the sign in the �rst component. For
these two points, we have

‖δ −X‖2 = (x1 − δ)2 +
d∑

k=2

(xk − δ)2 < (−x1 − δ)2 +
d∑

k=2

(xk − δ)2 = ‖δ −X ′‖2

Therefore, ‖δ −X‖2 ≤ r ⇒ ‖δ −X ′‖2 ≤ r yielding:

vol(Uj ∩ Bd(δ, r)) ≤ vol(U ′j ∩ Bd(δ, r)) . (8.6.2)

To prove the upper bound in (8.3.7) for all r we must consider two cases: r ≤ δ

and r ≥ δ.
For r ≤ δ, we clearly have

Vd,δ,r =
1

2
Cd,2δ−1,2r ≤ Cd,2δ−1,2r
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For r ≥ δ,using (8.6.2) we have

Vd,δ,r =
1

2

[
vol (Bd(δ, r) ∩ C0) + d · vol (Bd(δ, r) ∩ U1)

]
≤ 1

2

[
vol (Bd(δ, r) ∩ C0) + d · vol

(
Bd(δ, r) ∩ U ′1

) ]
= vol(Bd(δ, r) ∩ C0)

= Cd,2δ−1,2r

and hence the upper bound in (8.3.7).
(b) Consider now the lower bound in (8.3.7). With the set Uj we now associate

the set

Vj ={
X̃ = (x1, . . . , xd) : −1 ≤ x1 ≤ 0, 0 ≤ xm ≤ 1 ( for m > 1), |xj | ≤ |xk| ≤ 1 for k 6= j

}
.

With any point X = (x1, x2, . . . , xd)∈Uj (here xj is negative and |xj | ≤ |xk| ≤
1 for k 6= j) we associate point X̃ = (−x1, x2, . . . , xj−1,−xj , xj+1, . . . , xd)∈ Vj by
changing sign in the �rst and j-the component of X ∈ Uj .

Setting without loss of generality j = 2, we have for these two points:

‖δ −X‖2 = (x1 − δ)2 + (x2 − δ)2 +
d∑

k=3

(xk − δ)2

≤ (−x1 − δ)2 + (−x2 − δ)2 +

d∑
k=3

(xk − δ)2 = ‖δ − X̃‖2 ,

where the inequality follows from the inequalities x1 ≥ 0, x2 < 0 and |x2| < x1

containing in the de�nition of U2.
Therefore, ‖δ −X‖2 ≤ r ⇒ ‖δ − X̃‖2 ≤ r implying:

vol(Uj ∩ Bd(δ, r)) ≥ vol(Vj ∩ Bd(δ, r)) . (8.6.3)

To prove the lower bound in (8.3.7) for all r we must consider two cases: r ≤ δ

and r ≥ δ.
For r ≥ δ, using (8.6.3) and the neighbouring cube C1 de�ned in the proof of

Theorem 8.2.1, we have

Vd,δ,r =
1

2

[
vol (Bd(δ, r) ∩ C0) +

d∑
i=1

vol ((Bd(δ, r) ∩ Ui))
]

≥ 1

2

[
vol (Bd(δ, r) ∩ C0) + vol(Bd(δ, r) ∩ U1) +

d∑
i=2

(Bd(δ, r) ∩ Vi))
]

=
1

2

[
vol (Bd(δ, r) ∩ C0) + vol(Bd(δ, r) ∩ C1)

]
.
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Let y1 have uniform distribution on [−1, 0] and yi have uniform distribution on
[0, 1] for i ≥ 2. We have

vol(Bd(δ, r) ∩ C1) = Pr {‖Y − δ‖ ≤ r } =Pr

{
d∑
i=1

(yi − δ)2 ≤ r2

}
.

For y1, make the substitution y′1 = y1 + 1
2 , we have y

′
1 has uniform distribution

on
[
−1

2 ,
1
2

]
. For i = 2, 3, . . . d, by making the substitution y′i = yi − 1

2 , we have y′i
are i.i.d. with uniform distribution on

[
−1

2 ,
1
2)
]
. This results in:

vol(Bd(δ, r) ∩ C1) = Pr

{(
y′1 −

1

2
− δ
)2

+
d∑
i=2

(y′i +
1

2
− δ)2 ≤ r2

}
= C

(1/2)
d,B,r ,

where B =
(
δ + 1

2 , δ −
1
2 , . . . , δ −

1
2

)
. By then using relation (8.3.2) we obtain:

vol(Bd(δ, r) ∩ C1) = Cd,2B,2r

and hence we can conclude:

Vd,δ,r ≥
1

2

[
vol (Bd(δ, r) ∩ C0) + vol(Bd(δ, r) ∩ C1)

]
=

1

2
[Cd,2δ−1,2r + Cd,A,2r] ,

where A = 2B = (2δ + 1, 2δ − 1, . . . , 2δ − 1).

For r ≤ δ, since vol(Bd(δ, r) ∩ C1) = Cd,A,2r = 0, we have

Vd,δ,r =
1

2
[Cd,2δ−1,2r + Cd,A,2r]

and hence the lower bound in (8.3.7). �

8.7 Appendix C: Proof of Theorem 8.3.2.

Before proving Theorem 8.3.2, we prove three auxiliary lemmas.

Lemma 8.7.1 Let r = rα,d = α
√
d with α ≥ 0 and Za,b;d = (a, b, b, . . . , b) ∈ Rd.

Then the limit limd→∞Cd,Za,b;d,2r exists and

lim
d→∞

Cd,Za,b;d,2r =


0 if α < 1

2

√
1
3 + b2

1/2 if α = 1
2

√
1
3 + b2

1 if α > 1
2

√
1
3 + b2

.

Proof. De�ne

tα =

√
3(d(4α2 − b2 − 1/3) + b2 − a2)

2
√
a2 + (d− 1)b2 + d/15

.
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Let u have the uniform distribution on [−1, 1] and z ∈ R. As the r.v. ηz :=

(u − z)2 is concentrated on a �nite interval, for �nite a and b the quantities of
ρa := E(|ηa − a2 − 1

3 |
3) and ρb := E(|ηb − b2 − 1

3 |
3) are bounded. By applying

Berry-Esseen theorem, see [9], to Cd,Za,b,2r, there exists some constant C such that

−
C ·max{ρa/σ2

a, ρb/σ
2
b}(

σ2
a + (d− 1)σ2

b

)1/2 + Φ (tα) ≤ Cd,Za,b,2r ≤ Φ (tα) +
C ·max{ρa/σ2

a, ρb/σ
2
b}(

σ2
a + (d− 1)σ2

b

)1/2 ,

where σ2
a = var(ηa) and σ2

b = var(ηb). By the squeeze theorem, it is clear that if

4α2 − b2 − 1/3 > 0 and hence α > 1
2

√
1
3 + b2, then Cd,Za,b,2r → 1 as d→∞. If α <

1
2

√
1
3 + b2, then Cd,Za,b,2r → 0 as d → ∞. If α = 1

2

√
1
3 + b2, then Cd,Za,b,2r → 1/2

as d→∞. �

Lemma 8.7.2 Let r = α
√
d. Then for δ = (δ, δ, . . . , δ), we have:

lim
d→∞

Vd,δ,r = lim
d→∞

Cd,2δ−1,2r =


0 if α <

√
1/3+(2δ−1)2

2

1/2 if α =

√
1/3+(2δ−1)2

2

1 if α >

√
1/3+(2δ−1)2

2

Proof. Using Lemma 8.7.1 with Za,b = A = (2δ + 1, 2δ − 1, . . . , 2δ − 1), we
obtain:

lim
d→∞

Cd,A,2r = lim
d→∞

Cd,2δ−1,2r =


0 if α <

√
1/3+(2δ−1)2

2

1/2 if α =

√
1/3+(2δ−1)2

2

1 if α >
√

1/3+(2δ−1)2

2

By then applying the squeeze theorem to the bounds in Lemma 8.3.2 using the fact
from Lemma 8.3.1 we have Vd,δ,r = Cd(Zn, r), we obtain the result. �

To determine the value of r that leads to the full coverage, we utilise the following
simple lemma.

Lemma 8.7.3 For design Dn,δ, the smallest value of r that ensures a complete cov-

ering of [−1, 1]d as d→∞ is:

r1 =

{
(1− δ)

√
d if δ ≤ 1/2

δ
√
d if δ > 1/2

.

Proof. Using Lemma 8.3.1, we can, without loss of generality, focus on the complete
covering of V (δ), which is given in (8.6.1). In this Voronoi cell, the only possible
candidate points that could lead to r1 are (−1, 1, . . . , 1), (0, 0, . . . , 0) and (1, 1, . . . , 1).
For these three points, for a �xed d we have:

‖δ − (−1, 1, . . . , 1)‖ =
√

(−1− δ)2 + (d− 1)(1− δ)2

‖δ − (0, 0, . . . , 0)‖ = δ
√
d

‖δ − (1, 1, . . . , 1)‖ =
√
d(1− δ)2 .
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Therefore, as d → ∞, depending on the value of δ we either have r1 = δ
√
d or

r1 = (1− δ)
√
d. We have δ

√
d ≤ (1− δ)

√
d when δ ≤ 1/2 and hence for δ ≤ 1/2, we

have r1 = (1− δ)
√
d. Likewise, for δ > 1/2 we obtain r1 = (1− δ)

√
d. �

Proof of Theorem 8.3.2.

From Lemma 8.7.2, it is clear that the smallest α and hence r is attained with
δ = 1/2. Moreover, Lemma 8.7.2 provides:

lim
d→∞

Vd,1/2,r = lim
d→∞

Cd,0,2r =


0 if α < 1

2
√

3

1/2 if α = 1
2
√

3

1 if α > 1
2
√

3

(8.7.1)

meaning for any 0 < γ < 1, r1−γ =
√
d

2
√

3
. By then applying Lemma 8.7.3 with

δ = 1/2, we obtain r1 =
√
d/2 and hence r1−γ/r1 → 1/

√
3 as d→∞. The quantity

on the r.h.s. of (8.7.1) is a pointwise limit and is not a distribution function (it is
not right continuous). If we consider convergence in distributions, we converge to
the distribution function

F (α) :=

0 if α < 1
2
√

3

1 if α ≥ 1
2
√

3

since for all α at which F (α) is continuous, we have limd→∞ Vd,1/2,r = F (α). �
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Chapter 9

Non-lattice covering and

quanitization of high dimensional

sets

Abstract

The main problem considered in this chapter is construction and theoretical

study of e�cient n-point coverings of a d-dimensional cube [−1, 1]d. Targeted

values of d are between 5 and 50; n can be in hundreds or thousands and

the designs (collections of points) are nested. This chapter is a continuation

of Chapter 7, where we have theoretically investigated several simple schemes

and numerically studied many more. In this chapter, we extend the theoretical

constructions of Chapter 7 for studying the designs which were found to be

superior to the ones theoretically investigated in Chapter 7. In this chapter,

we extend our constructions for new construction schemes which provide even

better coverings (in the class of nested designs) than the ones numerically found

in Chapter 7. In view of a close connection of the problem of quantization to

the problem of covering, we extend our theoretical approximations and prac-

tical recommendations to the problem of construction of e�cient quantization

designs in a cube [−1, 1]d. In the last section, we discuss the problems of cov-

ering and quantization in a d-dimensional simplex. The content of this chapter

has been published in [86].

9.1 Introduction

The problem of the main importance in this chapter is the following problem of
covering a cube [−1, 1]d by n balls. Let Z1, . . . , Zn be a collection of points in Rd

and Bd(Zj , r) = {Z : ‖Z − Zj‖ ≤ r} be the Euclidean balls of radius r centered at
Zj (j = 1, . . . , n). The dimension d, the number of balls n and their radius r could
be arbitrary.

We are interested in choosing the locations of the centers of the balls Z1, . . . , Zn
so that the union of the balls ∪jBd(Zj , r) covers the largest possible proportion of
the cube [−1, 1]d. More precisely, we are interested in choosing a collection of points
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(called `design') Zn = {Z1, . . . , Zn} so that

Cd(Zn, r) :=vol([−1, 1]d ∩ Bd(Zn, r))/2d (9.1.1)

is as large as possible (given n, r and the freedom we are able to use in choosing
Z1, . . . , Zn). Here Bd(Zn, r) is the union of the balls

Bd(Zn, r) =

n⋃
j=1

Bd(Zj , r) (9.1.2)

and Cd(Zn, r) is the proportion of the cube [−1, 1]d covered by Bd(Zn, r). If Zj ∈ Zn
are random then we shall consider EZnCd(Zn, r), the expected value of the proportion
(9.1.1); for simplicity of notation, we will drop EZn while referring to EZnCd(Zn, r).

For a design Zn, recall from Chapter 7 that its covering radius is de�ned by
CR(Zn) = maxX∈Cd minZj∈Zn ‖X − Zj‖. If r =CR(Zn), then Cd(Zn, r) de�ned in
(9.1.1) is equal to 1, and the whole cube Cd gets covered by the balls. However, like
Chapter 7 we are only interested in reaching the values like 0.95 or 0.99, when only
a large part of the ball is covered. This is because the computation of CR(Zn) is
too di�cult for large d. We refer the reader to the Introduction of Chapter 7 for
discussions about why determining an optimal covering is an important problem.

We will say that Bd(Zn, r) makes a (1− γ)-covering of [−1, 1]d if

Cd(Zn, r) = 1− γ ; (9.1.3)

the corresponding value of r will be called (1−γ)-covering radius and denoted r1−γ or
r1−γ(Zn). If γ = 0 then the (1−γ)-covering becomes the full covering and 1-covering
radius r1(Zn) becomes the covering radius CR(Zn). The problem of construction
of e�cient designs with smallest possible (1−γ)-covering radius (with some small
γ > 0) will be referred to as the problem of weak covering.

Two strong arguments why the problem of weak covering could be even more
practically important than the problem of full covering are as follows.

� Numerical checking of weak covering (with an approximate value of γ) is
straightforward while numerical checking of the full covering is practically im-
possible, if d is large enough.

� For a given design Zn, Cd(Zn, r) de�ned in (9.1.1) and considered as a func-
tion of r, is a cumulative distribution function (c.d.f.) of the random variable
(r.v.) %(U,Zn) = minZi∈Zn ‖U − Zi‖, where U is a random vector uniformly
distributed on [−1, 1]d, see (9.7.1) below. The covering radius CR(Zn) is the
upper bound of this r.v. while in view of (9.1.3), r1−γ(Zn) is the (1 − γ)-
quantile. Many practically important characteristics of designs such as quanti-
zation error considered in Section 9.7 are expressed in terms of the whole c.d.f.
Cd(Zn, r) and their dependence on the upper bound CR(Zn) is marginal. As
shown in Section 9.7.5, numerical studies indicate that comparison of designs
on the base of their weak coverage properties is very similar to quantization
error comparisons, but this may not be true for comparisons with respect to
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CR(Zn). This phenomenon is similar to the well-known fact in the theory of
space covering by lattices (see surveys [133, 134] and the excellent book [19]),
where best lattice coverings of space are often poor quantizers and vice-versa.
Moreover, Figures 9.1-9.2 below show that CR(Zn) may give a totally inad-
equate impression about the c.d.f. Cd(Zn, r) and could be much larger than
r1−γ(Zn) with very small γ > 0.

In Figures 9.1�9.2 we consider two simple designs for which we plot their c.d.f.
Cd(·, r), black line, and also indicate the location of the r1=CR and r0.999 by vertical
red and green line respectively. In Figure 9.1, we take d = 10, n = 512 and use a 2d−1

design of maximum resolution concentrated at the points1 (±1/2, . . . ,±1/2) ∈ Rd

as design Zn; this design is a particular case of Design 4 of Section 9.8 and can be
de�ned for any d > 2. In Figure 9.2, we keep d = 10 but take the full factorial
2d design with m = 2d points, again concentrated at the points (±1/2, . . . ,±1/2);
denote this design Z′m.

For both designs, it is very easy to analytically compute their covering radii
(for any d > 2): CR(Zn) =

√
d+ 8/2 and CR(Z′m) =

√
d/2; for d = 10 this gives

CR(Zn) ' 2.1213 and CR(Z′m) ' 1.58114. The values of r0.999 are: r0.999(Zn) '
1.3465 and r0.999(Z′m) ' 1.2708. Their values have been computed using very accu-
rate approximations developed in Chapter 8, see Theorem 8.3.1. We will return to
this example in Section 9.2.1.

Figure 9.1: Cd(Zn, r) with r0.999

and r1: d = 10, Zn is a 2d−1-
factorial design with n = 2d−1

Figure 9.2: Cd(Z′m, r) with r0.999

and r1: d = 10, Zm is a 2d-
factorial design

Of course, for any Zn = {Z1, . . . , Zn} we can reach Cd(Zn, r) = 1 by means of
increase of r. Likewise, for any given r we can reach Cd(Zn, r) = 1 by sending n→∞
(for any non-trivial design). However, we are not interested in very large values of
n and try to get the coverage of the most part of the cube Cd with the radius r as
small as possible. We will keep in mind the following typical values of d and n which
we will use for illustrating our results: d = 5, 10, 20, 50; n = 2k with k = 6, . . . , 11

(the author has chosen n as a power of 2 since this a favourable number for Sobol's
sequence (Design 3) as well as Design 4 de�ned in Section 9.8).

1For simplicity of notation, vectors in Rd are represented as rows.
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The structure of the rest of the chapter is as follows. In Section 9.2 we discuss the
concept of weak covering in more detail and introduce three generic designs which we
will concentrate our attention on. In Sections 9.3, 9.4 and 9.5 we derive approxima-
tions for the expected volume of intersection the cube [−1, 1]d with n balls centred
at the points of these designs. In Section 9.6, we provide numerical results showing
that the developed approximations are very accurate. In Section 9.7, we derive ap-
proximations for the mean squared quantization error for chosen families of designs
and numerically demonstrate that the developed approximations are very accurate.
In Section 9.8, we numerically compare covering and quantization properties of dif-
ferent designs including scaled Sobol's sequence and a family of very e�cient designs
de�ned only for very speci�c values of n. In Section 9.9 we numerically investigat-
ing the importance of the e�ect of scaling points away from the boundary (we call
it δ-e�ect) for covering and quantization in a d-dimensional simplex. In Appendix,
Section 9.10, we formulate a simple but important lemma about the distribution and
moments of a certain random variable.

The main theoretical contributions of this chapter are:

� derivation of accurate approximations (9.3.8) and (9.4.3) for the probability
PU,δ,α,r de�ned in (9.3.1);

� derivation of accurate approximations (9.3.10), (9.4.5) and (9.5.2) for the ex-
pected volume of intersection of the cube [−1, 1]d with n balls centred at the
points of the selected designs;

� derivation of accurate approximations (9.7.4), (9.7.6) and (9.7.7) for the mean
squared quantization error for the selected designs.

The author has performed a large-scale numerical study and provided a number
of �gures and tables. The following are the key messages containing in these �gures
and tables.

� Figures 9.1�9.2: weak covering could be much more practically useful than the
full covering;

� Figures 9.3�9.14: developed approximations for the probability PU,δ,α,r de�ned
in (9.3.1) are very accurate;

� Figures 9.15�9.28: (a) developed approximations for Cd(Zn, r) are very accu-
rate, (b) there is a very strong δ-e�ect for all three types of designs, and (c)
this δ-e�ect gets stronger as d increases;

� Tables 9.1 and 9.2 and Figures 9.29-9.30: smaller values of α are bene�cial in
Design 1 but Design 2 (where α = 0) becomes ine�cient when n gets close to
2d;

� Figures 9.31�9.44: developed approximations for the quantization error are
very accurate and there is a very strong δ-e�ect for all three types of designs
used for quantization;
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� Tables 9.3�9.4 and Figures 9.45-9.46: (a) Designs 2a and especially 2b pro-
vide very high quality coverage for suitable n, (b) properly δ-tuned deter-
ministic non-nested Design 4 provides superior covering, (c) coverage proper-
ties of δ-tuned low-discrepancy sequences are much better than of the origi-
nal low-discrepancy sequences, and (d) coverage properties of unadjusted low-
discrepancy sequences is very low, if dimension d is not small;

� Tables 9.5 and 9.6, Figures 9.47 and 9.48: very similar conclusions to the above
but made with respect to the quantization error;

� Figures 9.51�9.62: the δ-e�ect for covering and quantization schemes in a sim-
plex is de�nitely present (this e�ect is more apparent in quantization) but it
is much weaker than in a cube.

9.2 Weak covering

In this section, we consider the problem of weak covering de�ned and discussed in
Section 9.1. The main characteristic of interest will be Cd(Zn, r), the proportion of
the cube covered by the union of balls Bd(Zn, r); it is de�ned in (9.1.1). We start
the section with short discussion on comparison of designs based on their covering
properties.

9.2.1 Comparison of designs from the view-point of weak covering

Two di�erent designs will be di�erentiated in terms of covering performance as fol-
lows. Fix d and let Zn and Z′n be two n-point designs. For (1 − γ)-covering with
γ ≥ 0, if Cd(Zn, r) = Cd(Z′n, r′) = 1 − γ and r < r′, then the design Zn provides
a more e�cient (1 − γ)-covering and is therefore preferable. Moreover, the natural
scaling for the radius is rn = n1/dr and therefore we can compare an n-point design
Zn with an m-point design Z′m as follows: if Cd(Zn, r) = Cd(Z′m, r′) = 1 − γ and
n1/dr < m1/dr′, then we say that the design Zn provides a more e�cient (1 − γ)-
covering than the design Z′m.

As an example, consider the designs used for plotting Figures 9.1 and 9.2 in
Section 9.1: Zn with n = 2d−1 and Z′m with m = 2d. For the full covering, we have
for any d:

n1/dr1(Zn) = 2−1/d
√
d+ 8 >

√
d = r1(Z′m)m1/d

so that the design Z′m is better than Zn for the full covering for any d and the
di�erence between normalized covering radii is quite signi�cant. For example, for
d = 10 we have

n1/dr1(Zn) ' 3.9585 and r1(Z′m)m1/d ' 3.1623

For 0.999-covering, however, the situation is reverse, at least for d = 10, where
we have:

n1/dr0.999(Zn) ' 2.5126 < 2.5416 ' r1(Z′m)m1/d

and therefore the design Zn is better for 0.999-covering than the design Z′m for
d = 10.
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9.2.2 Reduction to the probability of covering a point by one ball

In the designs Zn, which are of most interest to us, the points Zj ∈ Zn are i.i.d.
random vectors in Rd with a speci�ed distribution. Let us show that for these designs,
we can reduce computation of Cd(Zn, r) to the probability of covering [−1, 1]d by
one ball. This is performed in the same manner as Chapter 7, see Section 7.3.2

Let Z1, . . . , Zn be i.i.d. random vectors in Rd and Bd(Zn, r) be as de�ned in
(9.1.2). Then, for given U = (u1, . . . , ud) ∈ Rd (we will later assume U is uniformly
distributed in [−1, 1]d):

P {U ∈ Bd(Zn, r)} = 1−
n∏
j=1

P {U /∈ Bd(Zj , r)}

= 1−
n∏
j=1

(1− P {U ∈ Bd(Zj , r)})

= 1−
(

1− PZ {‖U − Z‖ ≤ r}
)n

. (9.2.1)

Cd(Zn, r), de�ned in (9.1.1), is simply

Cd(Zn, r) = EUP {U ∈ Bd(Zn, r)} , (9.2.2)

where the expectation is taken with respect to the uniformly distributed U ∈ [−1, 1]d.
For numerical convenience, we shall simplify the expression (9.2.1) by using the
approximation

(1− t)n ' e−nt , (9.2.3)

where t = PZ {‖U − Z‖ ≤ r}. This approximation is very accurate for small values
of t and moderate values of nt, which is always the case of our interest. Combining
(9.2.1), (9.2.2) and (9.2.3), we obtain the approximation

Cd(Zn, r) ' 1− EU exp(−n · PZ {‖U − Z‖ ≤ r}) . (9.2.4)

In the next section we will formulate three schemes that will be of theoretical interest
in this chapter. For each scheme and hence di�erent distribution of Z, we shall
derive accurate approximations for PZ {‖U − Z‖ ≤ r} and therefore, using (9.2.4),
for Cd(Zn, r).

9.2.3 Designs of theoretical interest

The three designs that will be the focus of theoretical investigation in this chapter are:

Design 1. Z1, . . . , Zn ∈ Zn are i.i.d. random vectors on [−δ, δ]d with indepen-

dent components distributed according to the following Betaδ(α, α) distribution with

density:

pα,δ(t) =
(2δ)1−2α

Beta(α, α)
[δ2 − t2]α−1 , −δ < t < δ , for α > 0 and 0 ≤ δ ≤ 1. (9.2.5)
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Design 2a. Z1, . . . , Zn ∈ Zn are i.i.d. random vectors obtained by sampling with

replacement from the vertices of the cube [−δ, δ]d.
Design 2b. Z1, . . . , Zn ∈ Zn are random vectors obtained by sampling without

replacement from the vertices of the cube [−δ, δ]d.

All three designs above are nested so that Zn ⊂ Zn+1 for all eligible n. Designs 1
and 2a are de�ned for all n = 1, 2, . . . whereas Design 2b is de�ned for n = 1, 2, . . . , 2d.
The appealing property of any design whose points Zi are i.i.d. is the possibility of
using (9.2.1); this is the case of Designs 1 and 2a. For Design 2b, we will need to
make some adjustments, see Section 9.5. Design 1. has previously been studied in
Chapter 7, where we called it Scheme 4, and was shown to have some appealing
covering properties along with its nested nature.

In the case of α = 1 in Design 1, the distribution Betaδ(α, α) becomes uniform
on [−δ, δ]d. This case has been comprehensively studied in Chapter 7 with a number
of approximations for Cd(Zn, r) being developed. The approximations developed in
Section 9.3 are generalizations of the approximations of Chapter 7. Numerical results
of Chapter 7 indicated that Beta-distribution with α < 1 provides more e�cient
covering schemes; this explains the importance of the approximations of Section 9.3.
Design 2a is the limiting form of Design 1 as α → 0. Theoretical approximations
developed below for Cd(Zn, r) for Design 2a are, however, more precise than the
limiting cases of approximations obtained for Cd(Zn, r) in case of Design 1. For
numerical comparison, in Section 9.6 we shall also consider several other designs.

9.3 Approximation of Cd(Zn, r) for Design 1

As a result of (9.2.4), our main quantity of interest in this section will be the prob-
ability

PU,δ,α,r := PZ {‖U−Z‖≤r}=PZ
{
‖U−Z‖2 ≤ r2

}
=P


d∑
j=1

(uj−zj)2 ≤ r2

 (9.3.1)

in the case when Z has the Beta-distribution with density (9.2.5). We shall develop
a simple approximation based on the Central Limit Theorem (CLT) and then sub-
sequently re�ne it using the general expansion in the CLT for sums of independent
non-identical r.v.

9.3.1 Normal approximation for PU,δ,α,r

Let ηu,δ,α = (z − u)2, where z has density (9.2.5). In view of Lemma 9.10.1, the r.v.
ηu,δ,α is concentrated on the interval [(max(0, δ− |u|))2, (δ+ |u|)2] and its �rst three
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central moments are:

µ(1)
u = Eηu,δ,α = u2 +

δ2

2α+ 1
, (9.3.2)

µ(2)
u = var(ηu,δ,α) =

4δ2

2α+ 1

[
u2 +

δ2α

(2α+ 1) (2α+ 3)

]
, (9.3.3)

µ(3)
u = E

[
ηu,δ,α − µ(1)

u

]3
=

48α δ4

(2α+ 1)2 (2α+ 3)

[
u2 +

δ2 (2α− 1)

3 (2α+ 5) (2α+ 1)

]
.

(9.3.4)

For a given U = (u1, . . . , ud) ∈ Rd, consider the r.v.

‖U − Z‖2 =
d∑
i=1

ηui,δ,α =
d∑
j=1

(uj − zj)2 ,

where we assume that Z = (z1, . . . , zd) is a random vector with i.i.d. components zi
with density (9.2.5). From (9.3.2), its mean is

µ = µd,δ,α,U := E‖U − Z‖2 = ‖U‖2 +
dδ2

2α+ 1
.

Using independence of z1, . . . , zd and (9.3.3), we obtain

σ2
d,δ,α,U := var(‖U − Z‖2) =

4δ2

2α+ 1

[
‖U‖2 +

dδ2α

(2α+ 1) (2α+ 3)

]
,

and from independence of z1, . . . , zd and (9.3.4) we get

µ
(3)
d,δ,α,U := E

[
‖U − Z‖2 − µ

]3
=

d∑
j=1

µ(3)
uj =

48α δ4

(2α+ 1)2 (2α+ 3)

[
‖U‖2 +

dδ2 (2α− 1)

3 (2α+ 5) (2α+ 1)

]
.

If d is large enough then the conditions of the CLT for ‖U − Z‖2 are ap-
proximately met and the distribution of ‖U − Z‖2 is approximately normal with
mean µd,δ,α,U and variance σ2

d,δ,α,U . That is, we can approximate the probability
PU,δ,α,r = PZ {‖U−Z‖≤r} by

PU,δ,α,r∼= Φ

(
r2 − µd,δ,α,U
σd,δ,α,U

)
, (9.3.5)

where Φ(·) is the c.d.f. of the standard normal distribution:

Φ(t) =

∫ t

−∞
ϕ(v)dv with ϕ(v) =

1√
2π
e−v

2/2 .

The approximation (9.3.5) has acceptable accuracy if the probability PU,δ,α,r is not
very small; for example, it falls inside a 2σ-con�dence interval generated by the
standard normal distribution. In the next section, we improve approximations (9.3.5)
by using an Edgeworth-type expansion in the CLT for sums of independent non-
identically distributed r.v.
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9.3.2 Re�ned approximation for PU,δ,α,r

From the discussion of Section 7.2.4 in Chapter 7, which is based around the general
expansion in the central limit theorem for sums of independent non-identical r.v.
derived by V. Petrov, we obtain (by using the �rst term in this expansion) the
following approximation for the distribution function of ‖U − Z‖2:

P
(
‖U − Z‖2 − µd,δ,α,U

σd,δ,α,U
≤ x

)
∼= Φ(x) +

µ
(3)
d,δ,α,U

6σ3
d,δ,α,U

(1− x2)ϕ(x), (9.3.6)

leading to the following improved form of (9.3.5):

PU,δ,α,r ∼= Φ(t)+
αδ
[
‖U‖2 + dδ2(2α−1)

3(2α+5)(2α+1)

]
(2α+ 3)(2α+ 1)1/2

[
‖U‖2 + dδ2α

(2α+1)(2α+3)

]3/2
(1−t2)ϕ(t) , (9.3.7)

where

t :=
r2 − µd,δ,α,U
σd,δ,α,U

=

√
2α+ 1(r2 − ‖U‖2 − dδ2

2α+1)

2δ
√
‖U‖2 + dδ2α

(2α+1)(2α+3)

.

For α = 1, we obtain

PU,δ,α,r ∼= Φ(t) +
δ
[
‖U‖2 + dδ2/63

]
5
√

3 [‖U‖2 + dδ2/15]3/2
(1− t2)ϕ(t)

with t =

√
3(r2 − ‖U‖2 − dδ2/3)

2δ
√
‖U‖2 + dδ2/15

,

which coincides with formula (7.2.15) of Chapter 7 (with δ = 1).
A very attractive feature of the approximations (9.3.5) and (9.3.7) is their de-

pendence on U through ‖U‖ only. We could have specialized for our case the next
terms in Petrov's approximation but these terms no longer depend on ‖U‖ only and
hence the next terms are much more complicated. Moreover, adding one or two extra
terms from Petrov's expansion to the approximation (9.3.7) does not �x the problem
entirely for all U , δ, α and r. Instead, the author proposes a slight adjustment to
the r.h.s of (9.3.7) to improve this approximation, especially for small dimensions.
Speci�cally, the author suggests the approximation

PU,δ,α,r ∼= Φ(t) + (9.3.8)

cd,α
αδ
[
‖U‖2 + dδ2(2α−1)

3(2α+5)(2α+1)

]
(2α+ 3)(2α+ 1)1/2

[
‖U‖2 + dδ2α

(2α+1)(2α+3)

]3/2
(1− t2)ϕ(t) ,

where cd,α = 1 + 3/(αd).
Below, there are �gures of two types. In Figures 9.3�9.4, we plot PU,δ,α,r over

a wide range of r ensuring that values of PU,δ,α,r lie in the whole range [0, 1]. In
Figures 9.5�9.8, we plot PU,δ,α,r over a much smaller range of r with PU,δ,α,r lying
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roughly in the range [0, 0.02]. For the purpose of using formula (9.2.1), we need
to assess the accuracy of all approximations for smaller values of PU,δ,α,r and hence
the second type of plots are more useful. In these �gures, the solid black line de-
picts PU,δ,α,r obtained via Monte Carlo methods with 50, 000 iterations where for
simplicity we have set U = (1/2, 1/2, . . . , 1/2) and δ = 1/2. Approximations (9.3.5)
and (9.3.8) are depicted with a dotted blue and dash green line respectively. From
numerous simulations and these �gures, we can conclude the following. Whilst the
basic normal approximation (9.3.5) seems adequate in the whole range of values of
r, for particularly small probabilities, that we are most interested in, approximation
(9.3.8) is much superior and appears to be very accurate for all values of α.

Figure 9.3: PU,δ,α,r and approxi-
mations: d = 10, α = 0.5.

Figure 9.4: PU,δ,α,r and approxi-
mations: d = 20, α = 0.5.

Figure 9.5: PU,δ,α,r and approxi-
mations: d = 10, α = 0.5.

Figure 9.6: PU,δ,α,r and approxi-
mations: d = 10, α = 1.

9.3.3 Approximation for Cd(Zn, r) for Design 1

Consider now Cd(Zn, r) for Design 1, as expressed via PU,δ,α,r in (9.2.4). As U is
uniform on [−1, 1]d, E‖U‖2 = d/3 and var(‖U‖2) = 4d/45. Moreover, if d is large
enough then ‖U‖2 =

∑d
j=1 u

2
j is approximately normal.

We will combine the expressions (9.2.4) with approximations (9.3.5) and (9.3.8)
as well as with the normal approximation for the distribution of ‖U‖2, to arrive
at two �nal approximations for Cd(Zn, r) that di�er in complexity. If the original
normal approximation (9.3.5) of PU,δ,α,r is used then we obtain:
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Figure 9.7: PU,δ,α,r and approxi-
mations: d = 20, α = 0.5.

Figure 9.8: PU,δ,α,r and approxi-
mations: d = 20, α = 1.

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ1,α(s, r)ϕ(s)ds (9.3.9)

with

ψ1,α(s, r) = exp {−nΦ(cs,r)} , cs,r =
(2α+ 1)1/2

(
r2−s′− dδ2

2α+1

)
2δ
√
s′ + κ

, s′ = s

√
4d

45
+ d/3,

κ =
dδ2α

(2α+1)(2α+3)
.

If the approximation (9.3.8) is used, we obtain:

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ2,α(s, r)ϕ(s)ds, (9.3.10)

with

ψ2,α(s, r) = exp

−n
Φ(cs) + cd,α

αδ
[
s′ + dδ2(2α−1)

3(2α+5)(2α+1)

]
(2α+ 3)(2α+ 1)1/2 [s′ + κ]3/2

(1− c2
s,r)ϕ(cs,r)

 .

For α = 1, we get

ψ2,1(s, r) = exp

−n
Φ(cs,r) + cd,α

δ
[
s′ + dδ2

63

]
5
√

3
[
s′ + dδ2

15

]3/2
(1− c2

s,r)ϕ(cs,r)


(9.3.11)

and the approximation (9.3.10) coincides with the approximation (7.3.8) in Chapter
7. The accuracy of approximations (9.3.9) and (9.3.10) will be assessed in Sec-
tion 9.6.1.

9.4 Approximating Cd(Zn, r) for Design 2a

Our main quantity of interest in this section will be the probability PU,δ,0,r de�ned
in (9.3.1) in the case where components zi of the vector Z = (z1, . . . , zd) ∈ Rd are
i.i.d.r.v with Pr(zi = δ) = Pr(zi = −δ) = 1/2; this is a limiting case of PU,δ,α,r as
α→ 0.
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9.4.1 Normal approximation for PU,δ,0,r

Using the same approach that led to approximation (9.3.5) in Section 9.3.1, the
initial normal approximation for PU,δ,0,r is:

PU,δ,0,r∼= Φ

(
r2 − µd,δ,U
σd,δ,U

)
, (9.4.1)

where, from Lemma 9.10.1, we have

µd,δ,U = ‖U‖2 + dδ2 and σ2
d,δ,U = 4δ2‖U‖2 .

9.4.2 Re�ned approximation for PU,δ,0,r

From (9.10.2), we have µ(3)
d,δ,α,U = 0 and therefore the last term in the rhs of (9.3.6)

with α = 0 is no longer present. By taking an additional term in the general
expansion, see V. Petrov in Section 5.6 in [89], we obtain the following approximation
for the distribution function of ‖U − Z‖2:

P
(
‖U − Z‖2 − µd,δ,U

σd,δ,U
≤ x

)
∼= Φ(x)− (x3 − 3x)

κ
(4)
d,δ,0,U

24σ4
d,δ,0,U

ϕ(x), (9.4.2)

where κ(4)
d,δ,0,U is the sum of d fourth cumulants of the centred r.v. (z − u)2, where z

is concentrated at two points ±δ with Pr(z = ±δ) = 1/2. From (9.10.2),

κ
(4)
d,δ,0,U :=

d∑
j=1

(µ(4)
uj − 3[µ(2)

uj ]2) = −32δ4
d∑
i=1

u4
i .

Unlike (9.3.6), the rhs of (9.4.2) does not depends solely on ‖U‖2. However, the
quantities ‖U‖2 and

∑d
i=1 u

4
i are strongly correlated; one can show that for all d

corr

(
‖U‖2,

d∑
i=1

u4
i

)
=

3
√

5

7
∼= 0.958 .

This suggests (by rounding the correlation above to 1) the following approxima-
tion:

d∑
i=1

u4
i
∼=

4
√
d

15

‖U‖2 − d/3√
4d
45

+
d

5
.

With this approximation, the rhs of (9.4.2) depends only on ‖U‖2. As a result, the
following re�ned form of (9.4.1) is:

PU,δ,0,r ∼= Φ(t) + (t3 − 3t)
2(‖U‖2 − d/3)/

√
5 + d/5

12‖U‖4
ϕ(t),

where

t :=
r2 − µd,δ,0,U
σd,δ,0,U

=
(r2 − ‖U‖2 − dδ2)

2δ‖U‖
.
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Similarly to approximation (9.3.8), a slight adjustment to the r.h.s of the approx-
imation above is recommended:

PU,δ,0,r ∼= Φ(t) +

(
1 +

3

d

)
(t3 − 3t)

2(‖U‖2 − d/3)/
√

5 + d/5

12‖U‖4
ϕ(t). (9.4.3)

In the same style as at the end of Section 9.3.2, below there are �gures of two
types. In Figures 9.9�9.10, we plot PU,δ,0,r over a wide range of r ensuring that
values of PU,δ,0,r lie in the range [0, 1]. In Figures 9.11�9.14, we plot PU,δ,0,r over a
much smaller range of r with PU,δ,0,r lying in the range [0, 0.02]. In these �gures,
the solid black line depicts PU,δ,α,r obtained via Monte Carlo methods with 50, 000

repetitions where we have set δ = 1/2 and U is a point sampled uniformly on
[−1, 1]d; for reproducibility, in the caption of each �gure the random seed used in R
is provided. Approximations (9.4.1) and (9.4.3) are depicted with a dotted blue and
dash green line respectively. From these �gures, we can conclude the same outcome
as in Section 9.3.2. Whilst the approximation (9.4.1) is rather good overall, for
small probabilities the approximation (9.4.3) is much superior and is very accurate.
Note that since random vectors Zj are taking values on a �nite set, which is the
set of points (±δ, . . . ,±δ), the probability PU,δ,0,r considered as a function of r, is a
piece-wise constant function.

Figure 9.9: PU,δ,0,r and approxi-
mations: d = 10, seed = 10.

Figure 9.10: PU,δ,0,r and approxi-
mations: d = 20, seed = 10.

Figure 9.11: PU,δ,0,r and approxi-
mations: d = 10, seed = 10.

Figure 9.12: PU,δ,0,r and approxi-
mations: d = 10, seed = 15.
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Figure 9.13: PU,δ,0,r and approxi-
mations: d = 20, seed = 10.

Figure 9.14: PU,δ,0,r and approxi-
mations: d = 20, seed = 15.

9.4.3 Approximation for Cd(Zn, r)

Consider now Cd(Zn, r) for Design 2a, as expressed via PU,δ,α,r in (9.2.4). Using the
normal approximation for ‖U‖2 as made in the beginning of Section 9.3.3, we will
combine the expressions (9.2.4) with approximations (9.4.1) and (9.4.3) to arrive at
two approximations for Cd(Zn, r) that di�er in complexity.

If the original normal approximation (9.4.1) of PU,δ,0,r is used then we obtain:

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ3,n(s, r)ϕ(s)ds, (9.4.4)

with

ψ3,n(s) = exp {−nΦ(cs,r)} , cs,r =

(
r2 − s′ − dδ2

)
2δ
√
s′

, s′ = s

√
4d

45
+ d/3 .

If the approximation (9.4.3) is used, we obtain:

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ4,n(s, r)ϕ(s)ds, (9.4.5)

with

ψ4,n(s, r)=exp

{
−n

(
Φ(cs,r)+

(
1+

3

d

)
(c3
s,r−3cs,r)

2(s′−d/3)/
√

5+d/5

12(s′)2
ϕ(cs,r)

)}
(9.4.6)

and

cs,r =

(
r2 − s′ − dδ2

)
2δ
√
s′

, s′ = s

√
4d

45
+ d/3 .

The accuracy of approximations (9.4.4) and (9.4.5) will be assessed in Sec-
tion 9.6.1.

9.5 Approximating Cd(Zn, r) for Design 2b

Designs whose points Zi have been sampled from a �nite discrete set without re-
placement have dependence, for example Design 2b, and therefore formula (9.2.1)
cannot be used.
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In this section, we suggest a way of modifying the approximations developed in
Section 9.4 for Design 2a. This will amount to approximating sampling without
replacement by a suitable sampling with replacement.

9.5.1 Establishing a connection between sampling with and

without replacement: general case

Let S be a discrete set with k distinct elements, where k is reasonably large. In
case of Design 2b, the set S consists of k = 2d vertices of the cube [−δ, δ]d. Let
Zn = {Z1, . . . , Zn} denote an n−point design whose points Zi have been sampled
without replacement from S; n < k. Also, let Z′m = {Z ′1, . . . , Z ′m} denote an associ-
ated m−point design whose points Z ′i are sampled with replacement from the same
discrete set S; Z ′1, . . . , Z ′m are i.i.d. random vectors with values in S. Our aim in
this section is to establish an approximate correspondence between n and m.

When sampling m times with replacement, denote by Xi the number of times
the ith element of S appears. Then the vector (X1, X2, . . . , Xk) has the multino-
mial distribution with number of trials m and event probabilities (1/k, 1/k, . . . , 1/k)

with each individual Xi having the Binomial distribution Binomial(m, 1/k). Since
corr(Xi, Xj) = −1/k2 when i 6= j, for large k the correlation between random vari-
ables X1, X2, . . . , Xk is very small and will be neglected. Introduce the random
variables:

Yi =

{
1, if Xi = 0

0, if Xi > 0.

Then the random variable N0 =
∑k

i=1 Yi represents the number of elements of S
not selected. Given the weak correlation between Xi, we approximately have N0 ∼
Binomial(k, P (X1 = 0)). Using the fact P (X1 = 0) = (1 − 1/k)m, the expected
number of unselected elements when sampling with replacement is approximately
EN0

∼= k(1 − 1/k)m . Since, when sampling without replacement from S we have
chosen N0 = k − n elements, to choose the value of m we equate EN0 to k − n. By
solving the equation

k − n = k

(
1− 1

k

)m
[ ∼= EN0 ]

for m we obtain

m =
log(k − n)− log(k)

log(k − 1)− log(k)
. (9.5.1)

9.5.2 Approximation of Cd(Zn, r) for Design 2b.

Consider now Cd(Zn, r) for Design 2b. By applying the approximation developed in
the previous section, the quantity Cd(Zn, r) can be approximated by Cd(Zm, r) for
Design 2a with m given in (9.5.1):

Approximation of Cd(Zn, r) for Design 2b. We approximate it by Cd(Zm, r)
where m is given in (9.5.1) and Cd(Zm, r) is approximated by (9.4.5) with n substi-

tuted by m from (9.5.1).
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Specifying this, we obtain:

Cd(Zn, r) ' 1−
∫ ∞
−∞

ψ4,m(s, r)ϕ(s)ds, (9.5.2)

where

m = mn,d =
log(2d − n)− d log(2)

log(2d − 1)− d log(2)
(9.5.3)

and the function ψ4,·(·, r) is de�ned in (9.4.6). The accuracy of the approximation
(9.5.2) will be assessed in Section 9.6.1.

9.6 Numerical study

9.6.1 Assessing accuracy of approximations of Cd(Zn, r) and
studying their dependence on δ

In this section, we present the results of a large-scale numerical study assessing the
accuracy of approximations (9.3.9), (9.3.10), (9.4.4), (9.4.5) and (9.5.2). In Fig-
ures 9.15�9.28, by using a solid black line we depict Cd(Zn, r) obtained by Monte
Carlo methods with 50, 000 run, where the value of r has been chosen such that the
maximum coverage across δ is approximately 0.9. In Figures 9.15�9.20, dealing with
Design 1, approximations (9.3.9) and (9.3.10) are depicted with a dotted blue and
dashed green lines respectively. In Figures 9.21�9.24 (Design 2a) approximations
(9.4.4) and (9.4.5) are illustrated with a dotted blue and dashed green lines respec-
tively. In Figures 9.25�9.28 (Design 2b) the dashed green line depicts approximation
(9.5.2). From these �gures, we can draw the following conclusions.

� Approximations (9.3.10) and (9.4.5) are very accurate across all values of δ and
α. This is particularly evident for d = 20, 50.

� Approximations (9.3.9) and (9.4.4) are accurate only for very large values of
d, like d = 50.

� Approximation (9.4.5) is generally accurate. For δ close to one (for such values
of δ the covering is very poor) and n close to 2d this approximation begins to
worsen, see Figures 9.26 and 9.28.

� A sensible choice of δ can dramatically increase the coverage proportion Cd(Zn, r).
This e�ect, which we call `δ-e�ect', is evident in all �gures and is very impor-
tant. It gets much stronger as d increases.

9.6.2 Comparison across α

In Table 9.1, for Design 2a and Design 1 with α = 0.5, 1, 1.5 we present the smallest
values of r required to achieve the 0.9-coverage on average. For these schemes, the
value inside the brackets shows the average value of δ required to obtain this 0.9-
coverage. Design 2b is not used as d is too small (for this design, we must have
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Figure 9.15: Design 1: Cd(Zn, r)
and approximations; d = 10, α =
0.5, n = 128.

Figure 9.16: Design 1: Cd(Zn, r)
and approximations; d = 20, α =
0.1, n = 128.

Figure 9.17: Design 1: Cd(Zn, r)
and approximations; d = 20, α =
0.5, n = 512.

Figure 9.18: Design 1: Cd(Zn, r)
and approximations; d = 20, α =
0.1, n = 512.

Figure 9.19: Design 1: Cd(Zn, r)
and approximations; d = 50, α =
0.5, n = 512.

Figure 9.20: Design 1: Cd(Zn, r)
and approximations; d = 50, α =
0.1, n = 512.

n < 2d and in these cases Design 2b provides better coverings than the other designs
considered).

From Tables 9.1 and 9.2 we can make the following conclusions:

� For small n (n < 2d or n ' 2d), Design 2a provides a more e�cient covering
than other three other schemes and hence smaller values of α are better.

� For n > 2d, Design 2a begins to become impractical since a large proportion
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Figure 9.21: Design 2a: Cd(Zn, r)
and approximations; d = 10, α =
0, n = 128.

Figure 9.22: Design 2a: Cd(Zn, r)
and approximations; d = 20, α =
0, n = 128.

Figure 9.23: Design 2a: Cd(Zn, r)
and approximations; d = 20, α =
0, n = 512.

Figure 9.24: Design 2a: Cd(Zn, r)
and approximations; d = 50, α =
0, n = 512.

Figure 9.25: Design 2b: Cd(Zn, r)
and approximation (9.5.2); d =
10, n = 128.

Figure 9.26: Design 2b: Cd(Zn, r)
and approximation (9.5.2); d =
10, n = 256.

of points duplicate. This is re�ected in Table 9.1 by comparing n = 100 and
n = 500 for Design 2a; there is only a small reduction in r despite a large
increase in n. Moreover, for values of n >> 2d, Design 2a provides a very
ine�cient covering.

� For n >> 2d, from looking at Design 1 with α = 0.5 and n = 500, it would
appear bene�cial to choose α ∈ (0, 1) rather than α > 1 or α = 0.
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Figure 9.27: Design 2b: Cd(Zn, r)
and approximation (9.5.2); d =
20, n = 512.

Figure 9.28: Design 2b: Cd(Zn, r)
and approximation (9.5.2); d =
20, n = 2048.

d = 5

n = 25 n = 50 n = 100 n = 500

Design 2a (α = 0) 1.051 (0.44) 0.885 (0.50) 0.812 (0.50) 0.798 (0.50)
Design 1, α = 0.5 1.072 (0.68) 0.905 (0.78) 0.770 (0.78) 0.540 (0.80)
Design 1, α = 1 1.072 (0.78) 0.931 (0.86) 0.798 (0.98) 0.555 (1.00)
Design 1, α = 1.5 1.091 (0.92) 0.950 (0.96) 0.820 (0.98) 0.589 (1.00)

Table 9.1: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 5.

d = 10

n = 500 n = 1000 n = 5000 n = 10000

Design 2a (α = 0) 1.228 (0.50) 1.135 (0.50) 1.073 (0.50) 1.071 (0.50)
Design 1, α = 0.5 1.271 (0.69) 1.165 (0.73) 0.954 (0.76) 0.886 (0.78)
Design 1, α = 1 1.297 (0.87) 1.194 (0.90) 0.992 (0.93) 0.917 (0.95)
Design 1, α = 1.5 1.320 (1.00) 1.220 (1.00) 1.032 (1.00) 0.953 (1.00)

Table 9.2: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 10.

Using approximations (9.3.10) and (9.4.5), in Figures 9.29�9.30 we depict Cd(Zn, r)
across δ for di�erent choices of α. In Figures 9.29�9.30, the red line, green line, blue
line and cyan line depict approximation (9.4.5) (α = 0) and approximation (9.3.10)
with α = 0.5, α = 1 and α = 1.5 respectively. These �gures demonstrate the clear
bene�t of choosing a smaller α, at least for these values of n and d.

Figure 9.29: d = 10, n = 512,
r = 1.228

Figure 9.30: d = 10, n = 1024,
r = 1.13
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9.7 Quantization in a cube

9.7.1 Quantization error and its relation to weak covering

In this section, we will study the following characteristic of a design Zn.

Quantization error. Let U = (u1, . . . , ud) be uniform random vector on
[−1, 1]d. The mean squared quantization error for a design Zn = {Z1, . . . , Zn} ⊂ Rd

is de�ned by

θ(Zn) = EU%2(U,Zn) , where %(U,Zn) = min
Zi∈Zn

‖U − Zi‖ . (9.7.1)

If the design Zn is randomized then we consider the expected value EZnθ(Zn) of
θ(Zn) as the main characteristic without stressing this.

The mean squared quantization error θ(Zn) is related to our main quantity
Cd(Zn, r) de�ned in (9.1.1), in the following way:

θ(Zn) =

∫
r≥0

r2dCd(Zn, r) . (9.7.2)

This relation will allow us to use the approximations derived above for Cd(Zn, r) in
order to construct approximations for the quantization error θ(Zn).

9.7.2 Quantization error for Design 1

Using approximation (9.3.10) for the quantity Cd(Zn, r), we obtain

d

dr
(Cd(Zn, r)) ∼= fα,δ(r) :=

n · r
δ

∫ ∞
−∞

ϕ(s)ϕ(cs,r)ψ2,α(s, r)×

×

√2α+1√
s′ + k

+cd,α
α
(
s′ + dδ2(2α−1)

3(2α+5)(2α+1)

)
(2α+ 3) (s′ + k)2

{
δ(c3

s,r−cs,r)−
√

2α+ 1(r2− dδ2

2α+1−s
′)

√
s′ + k

} ds .
(9.7.3)

By then using relation (9.7.2) we obtain the following approximation for the mean
squared quantization error with Design 1:

θ(Zn) ∼=
∫ ∞

0
r2fα,δ(r)dr . (9.7.4)

By taking α = 1 in (9.7.3) we obtain:

f1,δ(r) :=
n · r
δ

∫ ∞
−∞

ϕ(s)ϕ(cs,r)ψ2,1(s, r)×

×

 √
3√

s′ + k
+ cd,1

(
s′ + dδ2

63

)
5 (s′ + k)2

{
δ(c3

s,r − cs,r)−
√

3(r2 − dδ2

3 − s
′)

√
s′ + k

} ds .
with ψ2,1 de�ned in (9.3.11). The resulting approximation

θ(Zn) ∼=
∫ ∞

0
r2f1,δ(r)dr .

coincides with (7.5.2) of Chapter 7.
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9.7.3 Quantization error for Design 2a

Using approximation (9.4.5) for the quantity Cd(Zn, r), we have:

d

dr
(Cd(Zn, r)) ∼= f0,δ;n(r) :=

n · r
δ

∫ ∞
−∞

ϕ(s)ϕ(cs,r)ψ4,n(s, r)√
s′

[
1+

(
1+

3

d

)
(2(s′ − d/3)/

√
5 + d/5)(6c2

s,r−c4
s,r−3)

12(s′)2

]
ds ,

(9.7.5)

where ψ4,n(·) is de�ned in (9.4.6). From (9.7.2) we then obtain the following
approximation for the mean squared quantization error with Design 2a:

θ(Zn) ∼=
∫ ∞

0
r2f0,δ;n(r)dr . (9.7.6)

9.7.4 Quantization error for Design 2b

Similarly to (9.7.6), for Design 2b, we use the approximation

θ(Zn) ∼=
∫ ∞

0
r2f0,δ;m(r)dr . (9.7.7)

where f0,δ,m(r) is de�ned by (9.7.5) and m = mn,d is de�ned in (9.5.3).

9.7.5 Accuracy of approximations for quantization error and the

δ-e�ect

In this section, we assess the accuracy of approximations (9.7.4), (9.7.6) and (9.7.7).
Using a black line we depict EZnθ(Zn) obtained via Monte Carlo simulations with
50, 000 iterations. Depending on the value of α, in Figures 9.31�9.36 approxima-
tion (9.7.4) or (9.7.6) is shown using a red line. In Figures 9.41�9.44, approximation
(9.7.7) is depicted with a red line. From the �gures below we can see that all approx-
imations are generally very accurate. Approximation (9.7.6) is much more accurate
than approximation (9.7.4) across all choices of δ and n and this can be explained
by the additional term taken in the general expansion; see Section 9.4.2. This high
accuracy is also seen with approximation (9.7.7). The accuracy of approximation
(9.7.4) seems to worsen for large δ, n and d not too large like d = 20, see Fig-
ures 9.33�9.34. For d = 50, all approximations are extremely accurate for all choices
of δ and n. Figures 9.31�9.36 very clearly demonstrate the δ-e�ect implying that a
sensible choice of δ is crucial for good quantization.

9.8 Comparative numerical studies of covering

properties for several designs

Let us extend the range of designs considered above by additing the following two
designs.
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Figure 9.31: Eθ(Zn) and approx-
imation (9.7.4): d = 20, α = 1,
n = 500

Figure 9.32: Eθ(Zn) and approx-
imation (9.7.4): d = 20, α = 0.5,
n = 500

Figure 9.33: Eθ(Zn) and approx-
imation (9.7.4): d = 20, α = 0.5,
n = 1000

Figure 9.34: Eθ(Zn) and approx-
imation (9.7.4): d = 20, α = 1,
n = 1000

Figure 9.35: Eθ(Zn) and approx-
imation (9.7.4): d = 50, α = 0.1,
n = 1000

Figure 9.36: Eθ(Zn) and approx-
imation (9.7.4): d = 50, α = 1,
n = 1000

Design 3. Z1, . . . , Zn are taken from a low-discrepancy Sobol's sequence on the

cube [−δ, δ]d.

Design 4. Z1, . . . , Zn are taken from the minimum-aberration 2d−k fractional

factorial design on the vertices of the cube [−δ, δ]d.

Unlike Designs 1, 2a, 2b and 3, Design 4 is non-adaptive and de�ned only for a
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Figure 9.37: Eθ(Zn) and approx-
imation (9.7.6): d = 10,α = 0,
n = 100

Figure 9.38: Eθ(Zn) and approx-
imation (9.7.6): d = 10, α = 0,
n = 500

Figure 9.39: Eθ(Zn) and approx-
imation (9.7.6): d = 20, α = 0,
n = 500

Figure 9.40: Eθ(Zn) and approx-
imation (9.7.6): d = 50, α = 0,
n = 500

Figure 9.41: Eθ(Zn) and approxi-
mation (9.7.7): d = 10, n = 100

Figure 9.42: Eθ(Zn) and approxi-
mation (9.7.7): d = 10, n = 500

particular n of the form n = 2d−k with some k ≥ 0. The author has included this
design into the list of all designs as "the golden standard". In view of the numerical
study in Chapter 7 and theoretical arguments in Chapter 8, Design 4 with k = 1 and
optimal δ provides the best quantization the author could �nd; moreover, the author
conjectures in Chapter 8 that Design 4 with k = 1 and optimal δ provides minimal
normalized mean squared quantization error for all designs with n ≤ 2d. We repeat,
Design 4 is de�ned for one particular value of n only.
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Figure 9.43: Eθ(Zn) and approxi-
mation (9.7.7): d = 20, n = 500

Figure 9.44: Eθ(Zn) and approxi-
mation (9.7.7): d = 20, n = 1000

9.8.1 Covering comparisons

In Tables 9.3�9.4, we present results of 50, 000 Monte Carlo runs where we have
computed the smallest values of r required to achieve the 0.9-coverage on average
(on average, for Designs 1, 2a, 2b). The value inside the brackets shows the value of
δ required to obtain the 0.9-coverage.

d = 10

n = 64 n = 128 n = 512 n = 1024

Design 1, α = 0.5 1.629 (0.58) 1.505 (0.65) 1.270 (0.72) 1.165 (0.75)
Design 1, α = 1.5 1.635 (0.80) 1.525 (0.88) 1.310 (1.00) 1.210 (1.00)
Design 2a 1.610 (0.38) 1.490 (0.46) 1.228 (0.50) 1.132 (0.50)
Design 2b 1.609 (0.41) 1.475 (0.43) 1.178 (0.49) 1.075 (0.50)
Design 3 1.595 (0.72) 1.485 (0.80) 1.280 (0.85) 1.170 (0.88)
Design 3, δ = 1 1.678 (1.00) 1.534 (1.00) 1.305 (1.00) 1.187 (1.00)
Design 4 1.530 (0.44) 1.395 (0.48) 1.115 (0.50) 1.075 (0.50)

Table 9.3: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 10.

d = 20

n = 64 n = 128 n = 512 n = 1024

Design 1, α = 0.5 2.540 (0.44) 2.455 (0.48) 2.285 (0.55) 2.220 (0.60)
Design 1, α = 1.5 2.545 (0.60) 2.460 (0.65) 2.290 (0.76) 2.215 (0.84)
Design 2a 2.538 (0.28) 2.445 (0.30) 2.270 (0.36) 2.180 (0.42)
Design 2b 2.538 (0.29) 2.445 (0.30) 2.253 (0.37) 2.173 (0.42)
Design 3 2.520 (0.50) 2.445 (0.60) 2.285 (0.68) 2.196 (0.72)
Design 3, δ = 1 2.750 (1.00) 2.656 (1.00) 2.435 (1.00) 2.325 (1.00)
Design 4 2.490 (0.32) 2.410 (0.35) 2.220 (0.40) 2.125 (0.44)

Table 9.4: Values of r and δ (in brackets) to achieve 0.9 coverage for d = 20.

From Tables 9.3�9.4 we can draw the following conclusions:

� Designs 2a and especially 2b provide very high quality coverage (on average)
whilst being online procedures (that is, nested designs);

� Design 2b has signi�cant bene�ts over Design 2a for values of n close to 2d;
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� properly δ-tuned deterministic non-nested Design 4 provides superior covering;

� coverage properties of δ-tuned low-discrepancy sequences are much better than
of the original low-discrepancy sequences;

� coverage of an unadjusted low-discrepancy sequence is poor.

In Figures 9.45�9.46, after �xing n and δ, we plot Cd(Zn, r) as a function of r for
the following designs: Design 1 with α = 1 (red line), Design 2a (blue line), Design 2b
(green line) and Design 3 with δ = 1 (black line). For Design 1 with α = 1, Design 2a
and Design 2b, we have used approximations (9.3.11), (9.4.6) and (9.5.2) respectively
to depict Cd(Zn, r) whereas for Design 3, we have used Monte Carlo simulations with
50, 000 iterations. For the �rst three designs, depending of the choice of n, the value
of δ has been �xed based on the optimal value for quantization; these are the values
inside the brackets in Tables 9.5�9.6.

From Figure 9.45, we see that Design 2b is superior and uniformly dominates all
other designs for this choice of d and n (at least when the level of coverage is greater
than 1/2). In Figure 9.46, since n << 2d, the values of Cd(Zn, r) for Designs 2a and
2b practically coincide and the green line hides under the blue. In both �gures we
see that Design 3 with an unadjusted δ provides a very ine�cient covering.

Figure 9.45: Cd(Zn, r) as a func-
tion of r for several designs: d =
10, n = 512

Figure 9.46: Cd(Zn, r) as a func-
tion of r for several designs: d =
20, n = 1024

9.8.2 Quantization comparisons

As follows from results of [79, Ch.6], for e�cient covering schemes the order of
convergence of the covering radius to 0 as n→∞ is n−1/d. Therefore, for the mean
squared distance (which is the quantization error) we should expect the order n−2/d

as n → ∞. Therefore, for sake of comparison of quantization errors θn across n we
renormalize this error from Eθn to n2/dEθn.

In Figure 9.47�9.6, we present the minimum value of n2/dEθn for a selection of
designs. In these tables, the value within the brackets corresponds to the value of δ
where the minimum of n2/dEθn was obtained.

In Figure 9.47, we depict the c.d.f.'s for the distance %(X,Zn) for Design 2a with
δ = 0.5 (in red) and Design 3 with δ = 0.8 (in black). We can see that for d = 10

and n = 512, Design 2a stochastically dominates Design 3. The style of Figure 9.48
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d = 10

n = 64 n = 128 n = 512 n = 1024

Design 1, α = 0.5 4.072 (0.56) 4.013 (0.60) 3.839 (0.68) 3.770 (0.69)
Design 1, α = 1 4.153 (0.68) 4.105 (0.72) 3.992 (0.80) 3.925 (0.84)
Design 1, α = 1.5 4.164 (0.80) 4.137 (0.86) 4.069 (0.96) 4.026 (0.98)
Design 2a 3.971 (0.38) 3.866 (0.44) 3.670 (0.48) 3.704 (0.50)
Design 2b 3.955 (0.40) 3.798 (0.44) 3.453 (0.48) 3.348 (0.50)
Design 3 3.998 (0.68) 3.973 (0.76) 3.936 (0.80) 3.834 (0.82)
Design 3, δ = 1 4.569 (1.00) 4.425 (1.00) 4.239 (1.00) 4.094 (1.00)
Design 4 3.663 (0.40) 3.548 (0.44) 3.219 (0.49) 3.348 (0.50)

Table 9.5: Minimum value of n2/dEθn and δ (in brackets) across selected designs;
d = 10.

d = 20

n = 64 n = 128 n = 512 n = 1024

Design 1, α = 0.5 7.541 (0.40) 7.515 (0.44) 7.457 (0.52) 7.421 (0.54)
Design 1, α = 1 7.552 (0.52) 7.563 (0.56) 7.528 (0.64) 7.484 (0.68)
Design 1, α = 1.5 7.561 (0.60) 7.571 (0.64) 7.556 (0.74) 7.527 (0.78)
Design 2a 7.488 (0.30) 7.461 (0.33) 7.346 (0.35) 7.248 (0.39)
Design 2b 7.487 (0.29) 7.458 (0.34) 7.345 (0.36) 7.234 (0.40)
Design 3 7.445 (0.48) 7.464 (0.56) 7.487 (0.64) 7.453 (0.66)
Design 3, δ = 1 9.089 (1.00) 9.133 (1.00) 8.871 (1.00) 8.681 (1.00)
Design 4 7.298 (0.32) 7.270 (0.33) 7.133 (0.36) 7.016 (0.40)

Table 9.6: Minimum value of n2/dEθn and δ (in brackets) across selected designs;
d = 20.

is the same as �gure Figure 9.47, however we set n = 1024 and Design 2a is replaced
with Design 2b with δ = 0.5 (we also set δ = 0.82 for Design 3). Here we see a
very clear stochastic dominance of the Design 2b over Design 4. All �ndings are
consistent with Tables 9.5 and 9.6. In Figures 9.47 and 9.48, values of the parameter
δ for all designs are chosen as numerically optimal, in accordance with Table 9.5.

Figure 9.47: d = 10, n = 512: De-
sign 2a with δ = 0.5 stochastically
dominates Design 3 with δ = 0.8.

Figure 9.48: d = 10, n = 1024:
Design 2b with δ = 0.5 stochas-
tically dominates Design 3 with
δ = 0.82.

We make the following conclusions from analyzing results of this section:
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� Designs 2a and 2b provide very good quantization per point. As expected,
Design 2b is superior over Design 2a when n is close to 2d; see Table 9.5.

� Properly δ-tuned non-nested Design 4 is provides the best quantization per
point of all designs considered.

� Properly δ-tuned Design 3 is comparable in performance to Design 1 but it is
not as e�cient as Designs 2a, 2b and 4.

Note that for the special case of n = 2d−1, for Design 4 we could use the results of
Chapter 8 to obtain the exact value of n2/dEθn. In particular, using Theorem 8.2.2
with the optimal value of δ obtained from Corollary 8.2.1, we obtain the minimal
value of n2/dEθn is

n2/dEθn = 22−2/d

[
d

12
+

1

d+ 1

]
.

This is consistent with the n = 512 column of Table 9.5. The �gures in this column
do not violate the conjecture stated in Chapter 8 for Design 4 with n = 2d−1.

9.9 Covering and quantization in the d-simplex

9.9.1 Characteristics of interest

Consider the standard orthogonal d-simplex

Sd :=

{
(u1, u2, . . . , ud) ∈ Rd

∣∣∣∣ d∑
i=1

ui ≤ 1 and ui ≥ 0 for all i

}

with vol(Sd) = 1/d!. For a design Zn = {Z1, . . . , Zn}, consider the following two
characteristics:

(a) the proportion of the simplex Sd covered by Bd(Zn, r):

Cd(Zn, r) := d! vol(Sd ∩ Bd(Zn, r)) , (9.9.1)

(b) θ(Zn) = EU mini=1,...,n ‖U −Zi‖2, the mean squared quantization error for Zn,
where U = (u1, . . . , ud) is a random vector uniformly distributed in Sd.

In this section, we investigate whether the δ-e�ect seen in Sections 9.6, 9.7.5 and
9.8 for the cube is present for the simplex Sd. We will consider two possible ways of
scaling points in Sd. De�ne the two δ-simplices S(δ)

d,1 and S(δ)
d,2 as follows:

S(δ)
d,1 := δ · Sd ,

S(δ)
d,2 :=

{
(u1, u2, . . . , ud) ∈ Rd

∣∣∣∣ d∑
i=1

ui ≤
d+ δ

d+ 1
and ui ≥

1− δ
d+ 1

for all i

}
.
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(0, 0) (1, 0)

(0, 1)

(0, 0) (1/2, 0)

(0, 1/2)

Figure 9.49: Sd and S
(δ)
d,1 with d =

2 and δ = 0.5

(0, 0) (1, 0)

(0, 1)

(1/6,1/6) (2/3, 1/6)

(1/6,2/3)

S∗d

Figure 9.50: Sd and S
(δ)
d,2 with d =

2 and δ = 0.5

By construction, the value of δ in S(δ)
d,2 scales the simplex around its centroid

S∗d =
(

1
d+1 ,

1
d+1 , . . . ,

1
d+1

)
, where for δ = 1, we have S(δ)

d,2 = Sd. Simple depictions of

S(δ)
d,1 and S(δ)

d,2 are given in Figures 9.49�9.50.
We will numerically assess covering and quantization characteristics for the fol-

lowing two designs.

Design S1. Z1, . . . , Zn are i.i.d. random vectors uniformly distributed in the

δ-scaled simplex S(δ)
d,1 , where δ ∈ [0, 1] is a parameter.

Design S2. Z1, . . . , Zn are i.i.d. random vectors uniformly distributed in the

δ-scaled simplex S(δ)
d,2 , where δ ∈ [0, 1] is a parameter.

To simulate points Y uniformly distributed in the simplex Sd, one can simply
generate d i.i.d. uniformly distributed points in [0, 1], add 0 and 1 to the collection
of points and take the �rst d spacings (out of the total number d + 1 of these
spacings). Points Y ′ = δY and Y ′′ = δ · (Y − S∗d) + S∗d are then uniform in S(δ)

d,1 and

S(δ)
d,2 respectively. This procedure can be easily performed in R using the package

`uniformly'.

9.9.2 Numerical investigation of the δ-e�ect for d-simplex

Using the above procedure, we numerically study characteristics of Designs S1 and
S2. In Figures 9.51�9.54 we plot Cd(Zn, r) as a functions of δ ∈ [0, 1] across n, r and
d for Design S1. The corresponding results for Design S2 are given in Figures 9.55�
9.58. In Figures 9.59�9.60 and Figures 9.61�9.62, we depict Eθ(Zn) for Designs S1
and S2 respectively for di�erent n and d. In each �gure we plot values of Eθ(Zn) for
di�erent values of r; a step in r increase gives the next curve up.

From the above �gures, we arrive at the following conclusions:
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Figure 9.51: Cd(Zn, r) for Design
S1: d = 5, n = 128, r from 0.11
to 0.17 increasing by 0.02.

Figure 9.52: Cd(Zn, r) for Design
S1: d = 10, n = 512, r from 0.13
to 0.19 increasing by 0.02.

Figure 9.53: Cd(Zn, r) for Design
S1: d = 20, n = 1024, r from 0.13
to 0.17 increasing by 0.01.

Figure 9.54: Cd(Zn, r) for Design
S1: d = 50, n = 1024,r from 0.12
to 0.15 increasing by 0.01.

Figure 9.55: Cd(Zn, r) for Design
S2: d = 5, n = 128, r from 0.11
to 0.17 increasing by 0.02.

Figure 9.56: Cd(Zn, r) for Design
S2: d = 10, n = 512, r from 0.13
to 0.19 increasing by 0.02.

� The δ-e�ect for the simplex is much less prominent than for the cube.

� Between Designs S1 and S2, the δ-e�ect is more apparent for Design S2; for
example, compare Figure 9.60 with Figure 9.62.
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Figure 9.57: Cd(Zn, r) for Design
S2: d = 20, n = 1024, r from 0.13
to 0.17 increasing by 0.01.

Figure 9.58: Cd(Zn, r) for Design
S2: d = 50, n = 1024, r from 0.11
to 0.14 increasing by 0.01.

Figure 9.59: Eθ(Zn) for Design
S1: d = 20, n = 1024.

Figure 9.60: Eθ(Zn) for Design
S1: d = 50, n = 1024.

Figure 9.61: Eθ(Zn) for Design
S2: d = 20, n = 1024.

Figure 9.62: Eθ(Zn) for Design
S2: d = 50, n = 1024.

9.10 Appendix: An auxiliary lemma

Lemma 9.10.1 Let δ > 0, u ∈ R and ηu,δ be a r.v. ηu,δ = (ξ − u)2, where r.v. ξ ∈
[−δ, δ] has Betaδ(α, α) distribution with density

pα,δ(t) =
(2δ)1−2α

Beta(α, α)
[δ2 − t2]α−1 , −δ < t < δ , α > 0; (9.10.1)
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Beta(·, ·) is the Beta-function. The r.v. ηu,δ is concentrated on the interval

[(max(0, δ − |u|))2, (δ + |u|)2]. Its �rst three central moments are:

µ
(1)
u,δ = Eηu,δ = u2 +

δ2

2α+ 1
,

µ
(2)
u,δ = var(ηu,δ) =

4δ2

2α+ 1

[
u2 +

δ2α

(2α+ 1) (2α+ 3)

]
,

µ
(3)
u,δ = E [ηu,δ − Eηu,δ]3 =

48α δ4

(2α+ 1)2 (2α+ 3)

[
u2 +

δ2 (2α− 1)

3 (2α+ 5) (2α+ 1)

]
.

In the limiting case α = 0, where the r.v. ξ is concentrated at two points ±δ with
equal weights, we obtain: µ

(1)
u,δ = Eηu,δ = u2 + δ2 and

µ
(2k)
u,δ = [2δu]2k , µ

(2k+1)
u,δ = 0, for k = 1, 2, . . . (9.10.2)
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Chapter 10

Summary of this thesis

10.0.1 Summary of Part one and next steps

In Part one of this thesis, we considered the topic of change-point detection.We
addressed the problem of detecting a transient change in distributions of i.i.d. ran-
dom variables. The majority of research in Part one focused on deriving important
change-point detection quantities, like average run length and power, for the MO-
SUM change-point procedure. In Chapter 1, we provided an introduction to the
change-point problem considered in this thesis and o�ered a survey of the current
state of the �eld. It also provided a survey of the main �ndings of the author and
can be used as a summary of Part one of this thesis. Here it was highlighted that
a lot of research has been focused on detecting transient changes in i.i.d. random
variables with and without nuisance parameters in the o�ine change point setting,
where observations do not arrive sequentially. However, to the author's knowledge
there is no immediate way to implement these impressive o�ine results for the on-
line change-point problem. In Chapter 2, we derived accurate approximations for
boundary crossing probabilities for the MOSUM statistic and derived a very accu-
rate approximation for average run length. The key methodology used in this thesis
is to use boundary crossing probabilities for the MOSUM test in continuous time
which can be computed explicitly, and subsequently correct the results for discrete
time by generalising the sequential analysis results of David Siegmund. In Chapter
3, we studied constants related to continuous time MOSUM procedure. In Chapter
4, we derived previously unseen boundary-crossing probabilities for the continuous
time MOSUM statistic. By deriving results for the �rst-passage probability when
the barrier under consideration is piece-wise linear, we could evaluate the power of
the change-point procedure in continuous time. Subsequently in Chapter 5, we cor-
rected the expressions for power for discreteness to obtain accurate approximations
to power in discrete time. In Chapter 6, we discussed boundary-crossing probabilities
related to the popular Singular Spectrum Analysis change-point detection procedure
and derived a number of approximations.

For future research, di�erent forms of transient changes will be considered. For
certain problems, the so-called epidemic change in distributions considered in this
thesis (constant change in mean) can sometimes be deemed impractical. Instead,
detecting a linear change in mean is potentially more useful. This will have immediate
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implications to the SSA change-point detection algorithm mentioned in Chapter 6.
The algorithm can be easily adapted to detect transient changes in a faster manner
by considering a certain weighted distance. By likelihood ratio arguments, one can
show that weights should approximately correspond to the change you expect, at
least when considering transient changes in mean.

10.0.2 Summary of Part two and next steps

In Part two, we considered the problem of covering and quantization of high di-
mensional sets. In particular, we considered the covering and quantization of a
d-dimensional cube by n balls with reasonably large d (10 or more) and reasonably
small n. We focused on the notion of weak covering (say 99% covering of the cube)
and the results of Part two establish that e�cient covering schemes have several
important properties which are not seen in small dimensions and in asymptotical
considerations, for very large n. One of these properties can be termed `do not try
to cover the vertices' as the vertices of the cube and their close neighbourhoods are
very hard to cover and for large d there are too many of them. The results of Chap-
ter 8 highlight this, where we proved that in high dimensions for an arrangement of
points related to a famous lattice, we could cover 99.99% of the cube with a radius
1/
√

3 times smaller than the one required for full coverage.
For future research, the performance of other lattices constrained to the cube

should be theoretically studied. This will be important in checking the validity of
the conjecture stated in Chapter 8. Instead of covering the d-dimensional cube,
research into covering of discrete sets in high dimensions should also be explored.
Discrete sets like the vertices of the d-dimensional cube have immediate connections
to the �eld of group testing; it would be rewarding if the notion of weak covering
introduced in this thesis can be adapted to enhance results in this �eld.
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