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RS-Net: Robust Segmentation of Green Overlapped Apples 

Weikuan Jia1, 2, Zhonghua Zhang1, Wenjiang Shao1, Ze Ji3, Sujuan Hou1, 4 

 

 

Abstract:  

Fruit detection and segmentation will be essential for future agronomic management, with 

applications in yield estimation, growth monitoring, intelligent picking, disease detection and etc. 

In order to more accurately and efficiently realize the recognition and segmentation of apples in 

natural orchards, a robust segmentation net (RS-Net) framework specially developed for fruit 

production is proposed. This model was improved for the more challenging problem which 

segments the overlapped apples from the monochromatic background regardless of various 

corruptions. The method extends Mask R-CNN by embedding an attention mechanism for focusing 

more on the informative pixels but also suppressing the noise caused by adverse factors (occlusions, 

overlaps, etc.), which could be more suitable and robust for operating in complex natural 

environment. Specifically, the Gaussian non-local attention mechanism is transplanted into Mask 

R-CNN for refining the semantic features generated continuously by Residual Network (ResNet) 

and Feature Pyramid Network (FPN), then the model forward processing based on the balanced 

feature levels and finally segments the regions where the apples are located. Experimental results 

verify the hypothesis of current work and show that the proposed method outperforms other start-

of-the-art detection and segmentation models, the AP box and AP mask metric values have reached 

85.6% and 86.2% in a reasonable run time, respectively, which can meet the precision and 

robustness of vision system in agronomic management.  
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Abbreviations 

AP Average precision % 

AR Average recall % 

BFP Balanced feature pyramid 

CHT Circular hough transform 

CNN Convolutional neural networks 

FCN Fully convolution network 

FN False negative 

FPN Feature pyramid network 

IoU Intersection of union 

MLP Multiscale multilayered perceptron 

NMS Non-maximum suppression 

R-CNN  Region-based convolutional network  

ResNet Residual network 

RoI Region of interests 

RPN Region proposal network 

RS-Net Robust segmentation net 

TP True positive 

WS Watershed segmentation 

 

Introduction  

To supply the nutrition and health needs of the growing population around the world, a major 

challenge in agricultural communities is to find innovative ways to increase the production of fruits 

and vegetables (Siegel et al., 2014), especially in the context of rising farming costs and the shortage 

of skilled labor. Efficient and sustainable agronomic management is one of the effective ways to 

alleviate this situation, which is required to reduce economic and environmental costs while 

increasing orchard productivity. Recently, advances in technologies such as robotics and computers 

provide farmers with means to increase agricultural production in an efficient and sustainable way 

(Underwood et al., 2016). In addition, these new technologies has been widely applied in the 

optimization of processes in agronomic management such as irrigation, fertilization, pruning, 

thinning and deinsectization (Auat Cheein and Carelli, 2013; Bargoti and Underwood, 2017b), 

through the detection and quantification of fruit distribution in canopy, farmers can obtain valuable 



information and provide reference for optimizing these processes, which will significantly facilitate 

the spatial and temporal management of agricultural production. 

Among the many links to realize efficient and sustainable agronomic management, vision 

system as the most fundamental yet important section, used to parse the specified targets from the 

complex and diverse scenes, has been widely used in many practical applications, such as crop yield 

estimation (Koirala el al., 2019a), growth monitoring (Fu et al., 2020b), intelligent picking (Bac et 

al., 2015), disease detection (Zhang et al., 2019), and so on. Design of vision system with the goal 

of rapid positioning and accurate segmentation will significantly affect the real-time and reliability 

of these intelligent agriculture applications. However, there are many different types of interference 

under natural conditions, such as various scales, occlusions, overlaps, illuminations, etc., especially 

in the monochromatic background, which are all unfavorable to visual system and need to be taken 

these factors into consideration. Therefore, how to enhance the discriminative ability of vision 

system regardless of the above interference is crucial and necessary. In this paper, a robust 

segmentation net framework is specifically designed to segment the overlapped apples from the 

monochromatic background, which will be more challenging than previous works (Zhang et al., 

2016; Jia et al., 2020b).  

 In recent years, many researchers have been attracted and proposed different methods for the 

improvement and robustness of detection model in complex orchard scenes. Some methods for 

detecting used colorspace transformations where the objects of interest stand out, or extraction of 

features such as shape and texture (Kapach et al., 2012; Liu et al., 2016b; Rong et al., 2012; Jia et 

al., 2015; Gongal et al., 2015). In most of these solutions based on hand-crafted features, the 

discriminative information depends partly on developers, not entirely on algorithms themselves, 

which may not enough to deal with the level of variability and complexity which commonly appear 

in natural orchards. In addition, some scholars proposed computer vision solutions based on deep 

learning network architecture (Chen et al., 2017; Jia et al., 2020a; Fu et al., 2020a; Li et al., 2021; 

Vasconez et al., 2020). Although these methods can deeply mine the characteristics of targets by 

themselves, some inconspicuous targets are easily disturbed by dominated salient objects and cause 

wrong judgments. This situation is sharper when recognizing overlapped fruits at monochromatic 

background, which still cannot meet the needs of real-world application.  

Through the analysis of the above problems, the objective of this study linking image 

processing with agronomic management was to develop a model architecture with strong robustness 

to segment apples regardless of interference caused by sensors and natural orchard elements. The 

whole network framework can be divided into three parts: (1) Feature Acquisition, (2) RoIs (Region 

of Interests) Generation and (3) Results Prediction. Firstly, the pipeline of ‘Feature Acquisition’ 

also consists of three steps: extraction, fusion and refining, which are respectively performed by 

residual network (ResNet) (Targ et al., 2016), feature pyramid network (FPN) (Kim et al., 2018) 

and balanced feature pyramid (BFP) (Pang et al., 2019). The features of each image were extracted 

by ResNet and fused by FPN successively, which can make different scales caused by diverse 

factors (occlusion, camera distance and angle, etc.) be all well perceived. Sequentially, BFP 

strengthen the features from FPN with the embedding of Gaussian non-local attention mechanism, 

which can retain more semantic information of inconspicuous object by selectively integrating the 

similar features rather than simple contextual embedding. Then, at the stage of ‘RoIs Generation’, 

the region proposal network (RPN) (Ren et al., 2017) takes the features refined by BFP as input and 

outputs a set of rectangular object proposals on original images, each with a score that belongs to 



the foreground. Afterwards, the RoI Align layer convert the features inside any valid region of 

interest into a small feature map with a fixed spatial extent of H ×W, where H and W represent 

the height and width of RoIs respectively. The RoIs with same size are transported into three 

branches of ‘Results Prediction’ for class probability, bounding box (bbox) regression and mask 

generation respectively. Finally, based on the results generated by three branches and combine with 

them, the model will get the final segmentation results.  

It should be noted that the method is more effective and flexible than previous methods which 

also based on network architecture when dealing with complex and diverse scenes. Specifically, 

some fruits are inconspicuous or incomplete due to lighting and occlusion. If simple contextual 

embedding is explored, the semantic information from dominated salient object (e.g. leaves, 

branches) would harm those inconspicuous objects labeling near the edge. By contrast, the 

embedding Gaussian non-local attention module selectively aggregates the similar features of 

inconspicuous objects to highlight their feature representations and avoid the influence of salient 

objects. In addition, through the way that explicitly take spatial relationships into account, so that 

images understanding for segmentation could benefit from the whole building long-range 

dependency. Compared with previous published work, the current work contributes to the 

development of a solution for vision system in agronomic management by examining the hypothesis 

that Gaussian non-local attention mechanism can be easily embedded into deep learning based 

vision model and effectively improve the accuracy and robustness of fruit detection by aggregating 

the similar features of inconspicuous objects through the image. In general, this study offers at least 

the following contribution as: 

(I) Gaussian non-local attention mechanism is embedded to focus on the informative pixels but 

also suppress the noise.  

(II) The proposed methods outperform the start-of-the-art models in terms of both accuracy 

and robustness, which could be more suitable for detecting fruits in complex scenes.  

(III) Provide valuable reference for practical application of other fruit detection and 

segmentation methods.  

The rest of this paper is organized as follows: Firstly, section 2 briefly outlines the 

breakthrough of related works and unresolved issues. Next, section 3 introduces image acquisition 

and related dataset processing and annotations. The detailed improvement of model architecture and 

whole network’s pipeline will be illustrated in section 4. In section 5, the experiment is shown to 

validate that the method outperforms others from different perspectives including precision, recall 

and robustness. Finally, section 6 summarizes the characteristics of the proposed method and 

elaborates the other unsolved problems in this field, which will be the future research directions.  

 

Related work 

Design of vision system with the goal of rapid positioning and accurate segmentation is a very 

challenging task. This is due to various complicated and changeable situations in natural orchards. 

For example, occlusions and overlaps will lead to incomplete shape features, angle and intensity of 

illuminations will lead to the indistinct texture features, etc. In the domain of agriculture, earlier 

work about this used “classical” machine vision techniques, involving detection, classification and 

segmentation tasks based on hand-crafted features. For example, Ji used SVM classifier to classify 

and recognize apples, and the recognition rate of bagged apples reached 89%, however, it took 



352ms to recognize an image, the recognition efficiency was not enough high and could not meet 

the real-time requirements (Ji et al., 2012). Tian proposed an optimized graph-based recognition 

algorithm by utilizing depth images and paired RGB images without extra manual labeling, which 

achieves both accuracy and speed improvement, but there were obvious defects in the segmentation 

of overlapping and clustered apples (Tian et al., 2019a). Liu proposed a recognition method for 

bagged apples based on block classification, watershed algorithm was employed to segment original 

images into irregular block, and then SVM divided these blocks into fruit blocks and non-fruit 

blocks, which can restrain the interference of light efficiently (Liu et al., 2018). Rakun used to 

recognize apples by combining texture and color features, but the bags and drops on the apples 

would weaken or even change the features and make it difficult to recognize them (Rakun et al., 

2011). Bargoti and Underwood proposed a pipeline for mango and apple detection and counting. 

They used a general-purpose image segmentation approach with two feature learning algorithms—

convolutional neural networks (CNN) and multiscale multilayered perceptrons (MLP). Their 

approaches were designed to include contextual information about how the image data were 

captured. Circular Hough transform (CHT) and watershed segmentation (WS) algorithms were used 

to detect and count individual fruits from the pixel-wise fruit segmentation (Bargoti and Underwood, 

2017a; Bargoti and Underwood, 2017b). Linker proposed a yield prediction model specifically for 

night-time apple images. In addition, the classifier trained with images from one dataset was 

successfully applied to the second dataset, and the same prediction effect as the previous work was 

achieved (Linker, 2018). Hung demonstrated a generalised multi-scale feature learning approach to 

multi-class segmentation of tree crops. The segmentation results were applied to the problem of fruit 

counting and compared against manual counting, which shows a squared correlation coefficient of 

R2 = 0.81 between the two (Hung et al., 2015). Similarly, there are other methods to realize fruit 

detection by combining color, texture, shape and other features (Aggelopoulou et al., 2011; 

Kurtulmus et al., 2011; Wang et al., 2013), these ‘classical’ machine vision based methods rely 

heavily on hand-crafted features to refine discriminative information, so that they could not yet 

comprehensively consider more aspects into account, which will be eliminated in complex real-

world environment.  

With the gradual maturity of deep learning, it has become prevalent to migrate this novel 

revolution to various professions for better results. This also has stimulated the development of 

vision system in precision agricultural field. More recent works draw support from deep learning 

due to its various flavors and strong adaptability. Gené-Mola used RGB-D cameras to collect 

geometrical information with color data and adapted Faster R-CNN model for use with five channels 

input images including color (RGB), depth (D) and range-corrected intensity signal (S).  Results 

show an improvement of 4.46% in F1-score when adding depth and range-corrected intensity 

channels, which can be concluded that the RGB-D sensors give valuable information for fruit 

detection (Gené-Mola et al., 2019). Li optimized U-Net with gated and atrous convolution to make 

the model more suitable for small apple segmentation in monochromatic background, and the 

recognition time is 0.39 seconds. However, the optimized U-Net still belongs to semantic 

segmentation model, which can only achieve pixel-level classification instead of instance-level. 

This results in overlapping and clustered fruits being divided into an area, which is not suitable for 

fruit counting and picking (Li et al., 2021). Koirala compared six existing deep learning 

architectures for the task of mango detection, and developed a new architecture named 

MangoYOLO based on features of YOLOv3 and YOLOv2(tiny) on the design criteria of accuracy 



and speed. The MangoYOLO achieves a F1 score of 0.968 with a detection speed of 8 ms, which 

realizes a good trade-off between speed and accuracy (Koirala et al., 2019b). Tian employed the 

improved YOLOv3 architecture to detect apples during different growth stages. Images of young 

apples, expanding apples and ripe apples were initially collected and subsequently augmented. 

These augmented images were sent into DenseNet for feature extraction.(Tian et al., 2019b). Sa 

adapted an object detector by using a Faster R-CNN through transfer learning with images obtained 

from two modalities—color (RGB) and Near-Infrared (NIR). However, this model used vgg16 as 

the backbone of the whole model pipeline to extract features, the large capacity (more than 500 

megabytes) of the model may make it difficult to deploy the model to mobile agriculture devices 

(Sa el al., 2016). Rahnemoonfar and Sheppard trained a CNN using features on multiple scales based 

on an Inception-ResNet architecture. The model was trained with synthetic images and tested on 

real images of tomato plants, reaching 91% of accuracy. However, such network was tested using 

128 × 128 pixel images, which may not take into account important features from the fruit due to 

the low resolution (Rahnemoonfar and Sheppard, 2017). Vasconez tested the effect of two most 

common CNN detectors (Faster-RCNN with Inception and SSD with MobileNet) in fruits detection, 

and compared the results of the two models on three fruits datasets (avocado, apple and lemon). 

Extensive experiments provide insightful analysis of the usability of such technique in fruit counting 

tasks in groves, which can lead to further improve the decision making process in agricultural 

practices (Vasconez et al., 2020). Though improved network enhanced the feature propagation and 

reusability, research data shows that the algorithm would still easily affected by occluded objects.  

Although many researches in this field have made breaks through various ways, the above 

methods could only realize one of the functions between detection and segmentation, Mask R-CNN 

(He et al., 2019; Wei et al., 2018) provides a framework for prediction of both the bounding box and 

pixel mask for each object with only adding a mask branch on Faster R-CNN (Ren et al., 2017), 

which can efficiently eliminate interference caused by overlaps and occlusions.  Considerable 

amount of researches about Mask R-CNN based methods are under study and gain some progress. 

Jia improved the backbone of Mask R-CNN by combining ResNet with DenseNet, which greatly 

reduce input parameters and efficiently strengthen feature extraction (Jia et al. 2020b). Yu applied 

Mask R-CNN for detecting strawberries and get ideal effect in terms of both robustness and 

universality, particularly for inconspicuous fruits (Yu et al., 2019). Otherwise, many works about 

attention mechanism (Fu et al., 2019; Wang et al., 2018; Chen et al., 2016) also make great 

breakthroughs, which can provide references for detecting overlapped apple from monochromatic 

background. Inspired by these two innovations and combined with the goal of segmenting occluded 

apples in monochromatic background, the current work proposed an improved model based on 

Mask R-CNN by embedding the Gaussian non-local attention mechanism for better focusing on the 

informative pixels but also suppressing the noise.  

 

Dateset Generation 

Images acquisition 

The images were acquired at the Longwangshan apple production base in Fushan District, 

Yantai City, Shandong Province (agricultural information technology experimental base of 

Shandong Normal University) with 6000 × 4000 pixel resolution. Generally, the performance of 

models based on deep learning relies heavily on datasets, in order to satisfy the diversity of 



overlapped fruit recognition and minimize variability in lighting conditions due to direct sunlight or 

cloud cover, images was taken at multiple directions and multiple time interval (morning, noon and 

evening). Totally, 268 apple images with different illumination and different amounts were 

collected. Otherwise, considering that the detection of overlapped apple in the monochromatic 

background is taken as the research object of this paper, these collected images contains a large 

proportion of apples occluded by leaves and branches or overlapped by another fruits. Specifically 

illustrated in the first two rows of Figure 1.  

Images annotation and dataset production 

Although the aforementioned factors have benn taken into account when collecting photos,  

some literatures (Dodge et al., 2016; Michaelis et al., 2019) have proved that most standard detection 

and segmentation models encounter a serious detection loss when images getting corrupted(down 

to 30-60% of the original), which are inevitable caused by sensor degradation or poor weather and 

extremely unfavorable for real-world applications of agronomic management. For example, the 

state-of-the-art segmentation algorithm such as Mask R-CNN failed to segment partial apples when 

the fog gets thicker(as shown in the third row of Figure 1), even though the apples are still clearly 

visible to human eyes, which means that the vision system will be a bad alternative of manual labor 

if the robustness of models cannot get improved. Considering that the ability of the model to detect 

apples regardless of image distortions is also crucial for real-world application of agronomic 

management, several data augmentation modes were employed to mitigate the severe performance 

degradation which usually caused by hardware-degraded or poor whether environment in actual 

application. Otherwise, in order to increase the networks capability of generalizing and reduce the 

probability of overfitting, the training set was corrupted with six image distortions, each spanning 

three levels of severity, as data augmentation (as shown in the last row of Figure 1). In addition, in 

order to adapt the trained algorithm to target recognition at low resolution more, the original images 

were cropped to the size of 4000×4000 pixels and further downscaled to 512×512 pixels. Finally, 

after filtering and cropping, 268 images were manually annotated using the labelme annotation tool. 

And without any additional labelling costs or architecture changes. 2813 images containing 5831 

apples were totally generated for model training and 1000 images containing 2142 apples were 

totally generated for model evaluation. More detailed data set information is shown in Table 1. 

Otherwise, it should be noted that the training process drew support from transfer learning by 

migrating the pretrained model weights to RS-Net architecture before formal training, in which the 

pretrained weights were obtained by extracting the 1586 images containing 5851 apples from MS 

COCO (Lin et al., 2014) and then trained on RS-Net model. Through pre-training on these extracted 

images, model could accelerate convergence speed and get better performance.  

Table 1 Image acquisition and data set division. 

Specific 

environment 

 

场景 

division 

training 

images / instances 

validation 

images / instances 

total 

images / instances 

pretraing set 

images / instances 

Day 1581 / 2936 646 / 1153 2227 / 4089 - / - 

Night 1232 / 2895 354 / 989 1586 / 3884 - / - 

Total 2813 / 5831 1000 / 2142 3813 / 7973 2586 / 5851 

 



 

Fig. 1 a-d represent the images taken in different time intervals and different illumination angles; e-f show different 

types of occlusion(inter-fruits overlapped, leaves occlusion, branches occlusion and their combination);i is the 

ground truth corresponding to this image, and j-l are both segmented by Mask R-CNN which equipped with same 

weights and configurations. Apparently, as the fog gets thicker, the segmentation effect gets worse, which commonly 

appears in most segmentation methods. m-p show four of six corruption types (gaussian noise, impulse noise, 

brightness, fog, snow and contrast) with middle severity.  

RS-Net 

Mask R-CNN is a start-of-the-art instance segmentation algorithm which extends many 

previous excellent researches works (Shelhamer et al., 2017). This approach efficiently detects 

objects while simultaneously generating a high-quality segmentation mask for each instance in an 

image. In this paper, RS-Net is extended by original Mask R-CNN and make it more suitable for 

the segmentation of overlapped fruits in complex scenes. The overall pipeline of RS-Net is shown 

in Figure 2, It consists of three-part: (1) Feature Acquisition, (2) RoIs Generation, and (3) Results 

Prediction. Firstly, the pipeline of ‘Feature Acquisition’ consists of three steps: extraction, fusion 

and refining, which are respectively performed by ResNet, FPN and BFP (specifically in Figure 3). 

Then, based on the features generated by BFP, RPN produces abundant anchors on original images 

and outputs a set of object proposals that have been initially filtering. Finally, the mask is generated 

by FCN to indicate the detailed area where the apples are located.  

The goal of RS-Net is to focus on the informative pixels but also suppress the noise by 

selectively aggregating the similar features of inconspicuous fruits, thus exploiting the potential of 



the proposed model architectures for applying on vision system of agronomic management as much 

as possible. All components will be detailed in the following sections.  

 

 

Fig. 2 Overview of the improved Mask R-CNN:an overall pipeline design for apple segmentation consists of three 

parts:(1) Feature Acquisition, (2) RoIs Generation, and (3) Results Prediction.   

 

Feature Acquisition (ResNet+FPN+BFP) 

The overall pipeline of ‘Feature Acquisition’ is shown in Figure 3. This section can be divided 

into three parts: extraction, fusion and refining, which are respectively performed by ResNet, FPN 

and BFP. Specifically, the combination of ResNet and FPN has been widely applied in many 

detection and segmentation architectures due to its excellent effect of feature representation, which 

also fits with the research goal of this paper. Generally, the depth of the network is crucial for 

learning the features with stronger representation ability, but with network depth increasing, it will 

bring about the problems such as gradient vanishing and explosion, which will lead to model 

degradation. In case the problems aforementioned, ResNet effectively solves this contradictory 

phenomenon by explicitly let shallower layers and deeper layers fit a residual mapping, thus 

improving the discriminative ability of the networks with deeper layers. According to the efficient 

feature extraction ability of ResNet, RS-Net could better mean and represent the image features on 

the basis of labeling information.  

Generally, the output of last layer of ResNet has been provided sufficient semantic information, 

but also with the cost of missing detailed information related to object boundaries and resolution 

due to the consecutive down sampling operations (convolution and pooling), this will make the 

semantic information of smaller objects seriously diluted and finally cause the detection to fail. 

Considering that the design of vision system in agronomic management also needs to accurately 

recognize smaller area apples in an image due to the distance between sensors and objects, FPN is 

introduced to RS-Net architecture Typically, deep high-level features in backbones are with more 

semantic meanings while the shallow low-level features are more content descriptive. In other words, 

low level and high-level information is complementary in terms of semantic meanings and content 

details. Based on this point, FPN develops a top-down architecture with lateral connections for 

building high-level semantic feature maps at all scales, so as to improve the final accuracy on small 

area objects in this way. The details are shown in the left of Figure 3. Specifically, FPN uses the 

feature activations produced by each stage’s last residual block of ResNet, and denotes the outputs 



of these last residual blocks as 5432 ,,, FFFF for conv2, conv3, conv4 and conv5 stages. The set of 

feature maps integrated by FPN is called 5432 ,,, AAAA , corresponding to 5432 ,,, FFFF
 
that 

are respectively of the same spatial sizes.  

 

 

Fig. 3 Overall pipeline of ‘Feature Acquisition’ section.  Images will be processed continuously as above to get the 

final finer feature maps (P2-P5) for the next steps. In this figure, feature maps are indicate by different color outlines, 

and thicker outlines denote semantically stronger features. Detailed pipeline of ‘Attention Module’ is illustrated in 

Figure 4.  

 

Normally, the features via ResNet and FPN can be enough served as the basis for detection and 

segmentation, but considering two important factors, BFP module is introduced to the architecture 

for further refining the extracted features. The first point is that a large percentage of apples in 

collected images are inconspicuous or incomplete due to adverse factors such as lighting, occlusions, 

overlaps, etc., this will make the semantic information of inconspicuous fruits easily be disturbed 

by dominated salient object (e.g. leaves, branches) and diluted by consecutive down sampling 

operations. The second point is that some studies reveals that the best integrated features methods 

should possess balanced information from each resolution. But the sequential manner in FPN 

methods will make integrated features focus more on adjacent resolution but less on others. The 

semantic information contained in non-adjacent levels would be diluted once per fusion during the 

information flow. Therefore, in order to relieve the two aforementioned dilemmas simultaneously, 

BFP module is introduced the model architecture, which is illustrated in the right of Figure 3 and 

detailed in Figure 4.  

 
Fig. 4 Detailed description of attention module which illustrated in the BFP section of Figure 3 

 

Features at level l  and the number of features generated by FPN are respectively denoted as

lA  and L . The indexes of involved smallest and biggest levels are denoted as minl and maxl .  In 

Figure 3, 2A has the biggest resolution. BFP first rescales the features  5432 ,,, AAAA  to an 



intermediate size
4A , with interpolation or adaptive max-pooling operation respectively. Finally, 

the balanced semantic features are obtained by simply averaging as: 

 
=

=
m ax

m in

1 l

ll

lA
L

A  (1)

 

Through this simple procedure as Eqn. (1) shown, each feature level contains equal information 

from others by resizing and averaging operations without any extra parameters. Next, the balanced 

semantic feature A  will be further refined to get more discriminative by embedded Gaussian non-

local operation, Firstly, a general formula for non-local operation is defined as Eqn. (2): 
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Here
WHCRA  is the balanced semantic feature map and i  denotes the position index whose 

similarity map will be computed, j  denotes the index that enumerates all positions of A . f is 

the pairwise function to compute a scalar that represent the relationship between i  and all j . E

is the output signal of point i  and with the same spatial size of A . The unary function g  

computes a representation of A  at the position j , for simplicity, only consider g  in the form 

of a linear embedding: ( ) jgjj AWDA ==g , where gW is a weight matrix to be learned and 

implemented with 1×1 convolution. As for pairwise function, BFP employs embedding Gaussian 

function to compute the similarity.  

Specifically, non-local operation first feeds A  into 1×1 convolution layers(  and  ) to 

generate two new feature maps B and C , respectively, where{ B , C }
WHCR  . Then it 

reshapes them to 
NCR 

, where WHN = is the number of pixels. After that BFP performs a 

matrix multiplication between the transpose of B andC , and applies a softmax layer to calculate 

the correlation intensity matrix between any two points 
NNRS  : 

 
 =

•

•
=

N
j

CB

CB

ji

ji
ij

1
)exp(

)exp(
s

 (3)

 

where ijs  measures the relationship between 
thi  position and 

thj  position. The more similar 

feature representations of the two positions contributes to greater correlation between them.   

Meanwhile, non-local operation also feeds feature A  into another convolution layer g to 

generate a new feature map D WHCR  and reshapes it to
NCR 

. Then non-local operation 

performs a matrix multiplication between D  and the transpose of S  and reshapes the result to  
WHCR 

. Finally, non-local operation performs a element-wise sum operation with the features A  

to obtain the final output 
WHCRE   as follows:  

 ( )
i

N

j

jiji ADsE +=
=1

 (4)

 

It can be inferred from Eqn. (4) that the resulting feature E  at each position is a weighted 

sum of the features across all positions and original features. Therefore, it has a global contextual 

view and selectively aggregates contexts according to the correlation intensity matrix S . The 

similar semantic features achieve mutual gains, thus improving semantic similar information but 

also suppressing noises. 

 



RoIs generation  

For each feature map Pi in {P2, P3, P4, P5} generated by last stage, it will be input into the RPN 

(Figure 5) to generate abundant anchors of different shapes, which are mapped to different apple 

shapes caused by overlaps and occlusions as possible. Then RPN initially filters the generated 

anchors given the probability of being a foreground. The architecture of RPN just consists of one 

3*3 convolutional layer and followed by two 1*1 convolutional layers (for regression\classification, 

and denoted as reg\cls respectively), which is nearly cost-free given detection network computation. 

Concretely, 3*3 convlutional layer could be seen as a sliding-window to traverse all points at Pi, at 

each sliding-window center location, RPN simultaneously predicts multiple region anchors at 

original images. Considering that FPN has been adopted to alleviate scale variation, thus RPN only 

employs single area scale 8*8 with three aspect ratios (1:2, 1:1, 2:1) for each feature map level. For 

a convolutional feature map of a size W*H, there are 3*W*H anchors in total. Sequentially, cls is 

responsible for predicting the probability of each anchor being an foreground and reg is responsible 

for predicting a 4-D vector representing the 4 parameterized coordinates of the predicted bounding 

box for each anchor. Finally, Non-Maximum Suppression (NMS) is applied to filter out partial 

anchors based on the confidence scores predicted by cls and bbox offsets predicted by reg. The 

remaining anchors are the outputs of RPN, which are called ‘proposals’. The embedding of RPN 

just makes the extra cost of two convolutional layers but act an important role in the while network 

structure.  

 

 
Fig. 5 Detailed description of RPN. 256-D represents a 256 dimensional vector after 3*3 convolution at each 

spatial location in feature map 

Due to the proposals were generated at original images, model should map them into 

corresponding level to get features inside proposals, which are called Regions of Interest (RoIs). 

Since there are multiple feature maps owing to FPN, RoI Align layer needs to assign proposals of 

different scales to the certain pyramid level. Formally, the corresponding relationship between 

proposal (with width w and height h) to the level Pk of feature pyramid by: 

 ( ) 512/log 20 whkk +=  (5)
 

Here 512 is the uniform image size, and 0k is the target level on which a proposal with 

512512=hw should be mapped into. Intuitively, Eqn. (5) means that if the area of proposal 

become bigger, it should be mapped into a coarser-resolution level. Next, RoIs are fed into RoI 



Align layer improved from spatial pyramid pooling (SPP) for stretching them to same scale, which 

removed the harsh quantization of RoIPool and will play a key role in the next mask prediction.  

 

Results Prediction 

A RS-Net has three sibling output branches with different tasks for final predictions. The first 

outputs a probability distribution (per RoI) of being an apple. Although in the task of current work, 

only one category needs to be identified, the comprehensive evaluation metric AP which will be 

explained next needs the probability value to calculate precision and recall over each intersection of 

union (IoU) threshold, thus the model retains this branch for model evaluation and intuitive 

comparison with other methods. The second sibling layer outputs bounding-box regression offsets 

for adjusting proposals. Finally, the third branch employs Fully Convolution Network (FCN) at each 

RoI to achieving instance segmentation task. Specifically, this branch predicts a m*m mask from 

each RoI using an FCN without collapsing it into a vector representation that lacks spatial 

dimensions and make a pixel-wise prediction for each point in RoI through up- and down-sampling 

continuously. By combining the prediction results of three sibling branches, the final segmentation 

targets are obtained.  

 

Implementation Details 

 

Since a lot of hyper-parameters are needed in the implementation process, and the results are 

sensitive to the setting of these elements, thus these hyper-parameters are found for better 

segmentation performance by trial and error empirically.  

In the training phase, the whole architecture can be trained end-to-end by stochastic gradient 

descent (SGD) and back propagation. Images first normalized with mean = [0.50, 0.42, 0.34]and 

std = [0.28, 0.27, 0.28] which are calculated from training dataset. ResNet50 is used as the main 

backbone to reduce the running time and publicly available. For each iteration, employ 2 images as 

a batch and BN (batch normalization) while updating weights. Initial learning rate, momentum and 

weight decay is set to 0. 0025, 0. 9 and 0. 0001 respectively, decrease it by 0. 1 after 8 and 11 epochs 

respectively if not specifically noted. Set base anchor scales and aspect ratios as 8 and [0. 5, 1, 2] 

while training RPN. As for loss function, the overall could be mainly divided into two parts: the 

losses of classification and offset regression from RPN section, and the multi-task losses from 

‘Results Prediction’ section which includes classification branch, coordinate regression branch and 

mask segmentation branch. As shown in below: 

 
m askregclsregcls

PredictionResultsRPNfinal

LLLLL

LLL

++++=

+= −

2211

 (6)

 

Here finalL denotes the final loss which will use for back propagation, RPNL consists of 11, regcls LL

and PredictionResultsL −  consists of 22 , regcls LL and m askL represent losses from RPN section and 

Results Prediction section respectively. Specifically, model employs cross entropy loss function for 

1clsL , 2clsL and m askL , and L1 loss function for 1regL and 2regL . For each feature level generated 

by BFP, 256 anchors are randomly sampled as a mini-batch for computing RPNL  , where sampled 

negative anchors and positive anchors with a 1:1 ratio. Replace the batch with negative ones if there 

are fewer than 128 positive samples in the original image.  



 

Experiments 

 

Evaluation metric 

In order to evaluate the detection performance more comprehensively and strictly, AP

(average precision) is employed as main evaluation metric which averages the precision values 

calculated over IoUs from 0.5 to 0.95 with an interval of 0.05. Firstly, define I as a set of equally 

spaced IoUs thresholds levels [0.5, 0.55, …, 0.95]. For each threshold i in I , if the IoU between 

predicted bbox and the matched ground truth exceeds i , this example is defined as true positive (TP) 

example, else, as false positive (FP), and the ground truth which are not detected successfully by 

detector is defined as false negative (FN). Then, at most the top 100 predicted bboxes given 

confidence scores are selected and then used to calculate the precision (P) and recall (R) (Eq. (7)) 

pair corresponding to sorted confidence thresholds in turn, thus the precision/recall pairs over a 

specific IoU threshold and multiple confidence thresholds are calculated.  

 
FNTP

TP
R

FPTP

TP
P

+
=

+
=  (7)

 

AP over a specific IoU threshold i could be seen as the approximate area under the precision/recall 

curve ( AUC ), and is defined as the mean precision at a set of 101 equally spaced recall levels R : 

[0, 0. 01, . . . , 1]: 

 ( )


= =
Rr

interp

iIoU rpAP
101

1
 (8)

 

The precision at each recall level r is interpolated by taking the maximum precision measured from 

which the corresponding recall exceeds r: 

 ( ) ( )rprp
rrr

interp
~max

~:~ 
=  (9)

 

where ( )rp ~  is the measured precision at recall r~ . Similarly, all ( )IiAP iIoU =
 could get by 

following the above steps and the final evaluation metric AP  could be formulated as: 

 


==
Ii

iIoUAPAP
10

1
 (10) 

The factor “10” corresponds to the number of the IoUs thresholds tested in set I .
 
Intuitively, AP 

evaluates the result over different IoU thresholds, confidence scores, precisions and recalls, thus can 

measure RS-Net accurately and comprehensively. Both box AP and mask AP are evaluated. In 

addition, AR (average recall) is also used as an evaluation metric, which is obtained by taking the 

average value of ARIoU=is over 10 IoU thresholds tested given the top 100 predicted bboxes at most. 

Since the task of the model only needs to identify one category, ARIoU=i under a specific threshold 

is equal to R in Eq. (7). More information about evaluation metrics please refer to MS COCO for 

detailed explanation.  

 

Model training 

Totally, 2813 images containing 5831 apples are used for training process. RS-Net is trained 

with 12 epochs and a total of 16884 iterations (2 images/iteration). In addition, despite dataset is 

extended over different corruptions, due to that there is only one category, which makes the training 



process easier to overfitting. To eliminate this hidden trouble and accelerate network convergence, 

RS-Net is pretrained over 1586 images which extracted from MS COCO dateset without extra 

annotation works and then loads the pretrained weights into model architecture as initialization 

parameters for formal training. Intuitively, the loss value curve changes with iterations on the above 

two situations are illustrated in Figure 6.  

Obviously, thicker curve begins at a remarkably smaller value than thinner one and the loss 

value is about 0.1 smaller when the end of two curves tend to be stable. It can be inferred from this 

figure that the formal training of model can get benefit from 1586 images used for pre-training, 

which makes the model learn more distinguishing features and less risk of over-fitting. Comparing 

the obvious gap between two results, the pre-training way is adopted to carry out the following 

processes for better performance.  

 

Fig. 6 Loss value curve changes with iterations. Thicker curve represents training process equipped with pretained 

weights and thinner curve represents no pre-training. 

 

Ablation Experiments 

For fair comparisons in ablation experiments and validate the effect of attention module, 

experiment employs original Mask R-CNN built on MMDetection v2.0 (Chen et al., 2018) as 

baseline and both same hyper-parameters as RS-Net except section of BFP. Since Mask R-CNN 

and RS-Net both have a relatively good segmentation effect, thus experiment directly employs 

IoU=0. 90 as strict threshold for defining a bbox as TP or FP to measure the high-quality effect gap 

between the baseline and RS-Net. Table 2 lists the specific comparison results of two methods.  

Table 2 Specific comparison results of two methods 

Method AP box 

90  /% AR box 

90  /% AP mask 

90  /% AR mask 

90  /% 

Baseline 78.8 80.0 80.8 80.7 



RS-Net 82.6 82.7 81.1 84.6 

As shown in Table 1, except for average precision, RS-Net can also enhance the average recall 

of predicted bboxes. The embedding of attention module brings 3.7 points higher AR box 

90  and 2.9 

points higher AR mask 

90  compared with baseline method. This phenomenon is due to that BFP could 

make the similar semantic features achieve mutual gains across inconspicuous and salient apples, 

the heavily inconspicuous apples caused by overlapped, occlusion and illumination could get help 

from salient apples, thus the proportion of boxes judged as TP in the whole ground truth will rise  

and AR metrics will be significantly improved. Several images containing heavily incomplete apples 

are visualized for intuitively feeling the gap between the two in Figure 7.  

Fig. 7 Visualization of comparison results over two methods. Ellipses represent apples that were labeled as ground 

truth, and the baseline method did not detect it successfully but RS-Net did. Circles represent apple that were not 

labeled as ground truth due to severe occlusion, but RS-Net still detected it.  

As shown in the above figure, two methods both have good segmentation effect when detecting 

conspicuous apples, However, due to the attention mechanism employed in RS-Net, severely 

occluded apples can also be well segmented by drawing information from salient parts, which even 

includes the severely occluded apples that are not labeled as ground truth. This is also the reason 

why RS-Net get higher metric values. Therefore, RS-Net is better in segmenting overlapped apples 

in the same color background and more suitable for deploying on vision system of harvesting robot. 

 

Comparison with state-of-the-arts methods 

For further validation of the improved Mask R-CNN, experiments compare the proposed model 

with the state-of-the-art detection and instance segmentation methods with identical experimental 

configuration. It should be noted that all experiments reported in current work are tested on the same 

environment equipped with Tesla V100 GPU, CUDA V10.0, and Pytorch 1.4 for studies.  

 



Detection Effect 

Since the main body of RS-Net is extended on the detector architecture by adding a mask 

branch, and the mask segmentation is operated based on the predicted boxes, in other words, the 

detection effect of the model directly affects the segmentation effect, thus experiments first compare 

the detection effect of RS-Net with the start-of-the-art detectors. As for evaluation metrics, in 

addition to using the box Average Precision (AP box) metric which averages APs across IoU 

thresholds from 0.5 to 0.95 with an interval of 0.05, AP box 

50  and AP box 

90 (AP at different IoU 

thresholds) are reported as loose and strict boundaries, respectively. The specific comparison results 

are shown in Table 3.  

Table 3 Comparison with state-of-the-art detection methods on validation dateset 

Method Backbone AP box/% AP box 

50
 /% AP box 

90 /% 

SSD512 VGG16 78.2 88.5 70.9 

Faster R-CNN R-50-FPN 83.4 89.0 77.5 

RetinaNet R-50-FPN 80.6 88.4 73.6 

Mask R-CNN R-50-FPN 84.5 88.4 78.8 

RS-Net R-50-FPN-BFP 85.6 90.0 82.6 

 

Intuitively, the detection effect of original Mask R-CNN outperforms the other advanced 

detectors with the same extraction capability of backbone while detecting on test set. It achieves 

7.4%, 1.1% and 3.9% AP box gains compared with SSD (Liu et al., 2016a), Faster R-CNN, RetinaNet 

(Lin et al., 2020) respectively. By adding attention module to naive Mask R-CNN, the improved 

Mask R-CNN obtains further performance which brings 1.1%, 1.6% and 3.8% gains in terms of AP 
box, AP box 

50
 and AP box 

90 . Comprehensively, from the above analysis, RS-Net achieves better detection 

effect, which could be more suitable and robust for deploying on vision system of apple harvesting 

robots.  

 

Segmentation Effect 

Due to the aim of this paper is to explore the ability of the model to segment overlapped fruits 

in the same color background, thus in-depth comparative experiments with start-of-the-art instance 

segmentation methods are carried out and experimental results of them are analyzed to validate the 

effectiveness of RS-Net. The specific comparison results are shown in Table 4. 

Table 4 Comparison with state-of-the-art instance segmentation methods on validation dateset. 

Method AP box /% AP mask /% AP mask 

50
 /% AP mask 

90 /% 

YOLACT 67.4 75.6 89.1 69.8 

YOLACT++ 78.0 78.8 89.1 76.3 

RetinaMask 82.8 83.6 88.8 82.2 

RS-Net 85.6 86.2 90.0 84.1 

 

All models employed ResNet50 as feature extractor for fair comparison. In contrast, RS-Net 

achieves the best results in terms of both box AP and mask AP metrics. In particular, compared to 

RetinaMask (Fu CY et al., 2019) which has similar architecture (detector + mask branch), RS-Net 

achieves 2.8% AP box gain and 2.6% AP mask gain respectively. Otherwise, it should be noted that the 

gap between AP mask, AP mask 

50  and AP mask 

90  is smaller than YOLACT (Bolya et al., 2019), 

YOLACT++ (Bolya et al., 2020) and RetinaMask, which means that the most masks segmented by 



RS-Net are concentrated in high quality area (higher IoU with ground truth). In order to more 

intuitively feel the effect of RS-Net, several representative images which containing different 

numbers of apples are selected and used different methods to segment. The visualization results are 

shown in Figure 8. Obviously, the effect of the proposed method is much better than other methods 

in terms of both recognition accuracy and segmentation effect. In addition, since RS-Net introduces 

attention module into architecture, most heavily overlapped apples are also well segmented, 

including some are not even labeled as ground truth.  

 

Fig. 8 Visualization results of different test images segmented by RS-Net, RetinaMask, YOLACT and YOLACT++ 

respectively. 

 

Conclusion 

In order to effectively detect overlapped fruits in natural environment, RS-Net architecture 

which extends Mask R-CNN by adding an embedding Gaussian attention module is proposed, thus 

make the similar semantic features achieve mutual gains and reduce the impact of adverse factors 

such as occlusion, illumination, overlapped, etc. The experimental result shows that the proposed 

RS-Net outperforms other start-of-the-art deep learning-based methods when applying on vision 

system of harvesting robot, and achieve both higher accuracy and stronger robustness, which could 

be more suitable for operating in real-world scene for harvesting robot’s vision system.  

Although RS-Net has achieved relatively ideal experimental results, there are still some aspects 

and rooms that need to be improved continuously in architecture. For example, the average 

segmentation time of each image with size 512 512 on GPU is 65.79 ms, while the fastest model 

in experiments (YOLACT++) only needs 20.43 ms. The shortest inference times of other researches 

which also reported on 512*512 resolutions in fruit detection and segmentation field need 15ms 

(Koirala et al., 2019b) and 390ms (Li et al., 2021) respectively. In contrast, the inference time of 

RS-Net is in a lower middle position. Though this has been able to meet the real-time needs of 

practical deployment, it is still a little longer than other methods in terms of time-consuming. This 

phenomenon is suspected to be caused by two reasons: 1) The Faster R-CNN which Mask R-CNN 

extends is a two-stage architecture for better accuracy, which will inevitably lead to bigger 

consumption of computation and time than other one-stage methods. 2) The RS-Net is anchor-based 

for achieving a higher recall rate, which will require the model to densely place anchor boxes on the 

original images, it also leads to more time-consuming. Based on this defect, extending mask branch 



to other one-stage or anchor-based detection methods is considered to strike the better trade-off 

between speed and accuracy simultaneously in the future works.  
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