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SUMMARY 

Aims:  
1. To determine the influence of geographical location, sex, height, Body Mass Index 

(BMI), age (14-16 years old), pubertal stage, metabolic factors, atopy, breathing 

disorders, maternal smoking and alcohol consumption during pregnancy on facial 

shape.   

2. To explore the usefulness of Multilevel Principal Component Analysis (mPCA) in 

facial shape research. 

 

Method: The influence of geographical location and sex was assessed using 21 

landmarks on 3D facial scans of subjects from Croatia (n=73), England (n=79), Wales 

(n=50) and Finland (n=47).  The influence of sex, height, BMI, age (14-16 years old), 

pubertal stage, metabolic factors, atopy, breathing disorders, maternal smoking and 

alcohol consumption during pregnancy on adolescent facial shape was assessed using 

1000 and 7160 quasi-landmarks on 3D facial scans of the Avon Longitudinal Study 

of Parents and Children (ALSPAC) cohort (n=1411).  The results of mPCA were 

compared to those using landmarks only, conventional Principal Component Analysis 

(PCA), Discriminate Function Analysis (DFA) and Partial Least Squares Regression 

(PLSR).  mPCA was also assessed as a variable selection tool prior to PLSR.   

 
Results: mPCA provided more meaningful information in the exploratory phase of 

data analysis than conventional PCA and DFA.  However, the results must be 

interpreted with caution when group sizes are imbalanced.  All variables reached 

significance, except for age, in their respective mPCA models.  Geographical location, 

sex, height, BMI and fasting insulin explained greater than 5% of the total variation.  

These variables also reached significance in the PLSR models.  Therefore 5% may be 

a useful threshold for PLSR variable selection. 

 

Conclusions: Sex, geographical location, height, BMI and fasting insulin had the most 

influence on facial shape.  mPCA appears to be a useful tool for visualising the 

maximum variation between groups of subjects when group sizes are balanced and as 

a variable selection tool to inform more sophisticated models such as PLSR.   
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1 INTRODUCTION 

1.1 BACKGROUND 

The development of facial shape is influenced by complex interactions between 

genetics and the environment.  Within orthodontics, faces can be broadly categorised 

into Class I, II and III skeletal patterns, with rudimentary descriptions of facial height 

proportions, facial asymmetry and soft tissue features (Cobourne and DiBiase 2016).  

Alternative classification methods are summarised by Franco et al. (2013) which 

include: bradyfacial, mesofacial and dolichofacial; hypodivergent, neutral and 

hyperdivergent; and leptoprosopic, mesoprosopic and euryprosopic.  Collett and West 

(1993) advise that the historical focus in orthodontics has been on the sagittal plane 

and suggest that others have been more concerned about the ratio between facial height 

and width by, for example, categorising into broad, medium and narrow using Cole’s 

facial indices.  Other fields describe the overall facial shape as heart, square, 

rectangular, round and oval shaped (Sunhem and Pasupa 2016).  However, facial 

structures are far more complex and individual than broad categories suggest. 

 

Previously, radiographs were used to investigate the craniofacial region, but this 

introduces the risk of radiation (Whaites 2002b).  The advent of three-dimensional 

(3D) scanning has allowed for non-invasive research to be carried out (Toma et al. 

2009).  One of the challenges with 3D facial shape research is the large number of 

landmarks (outcome variables) that require analysing.   This can range from a small 

number of landmarks (e.g., 21 landmarks) to tens of thousands of landmarks which 

provide a detailed analysis of surface facial shape.  However, once the number of 

landmarks exceeds the number of subjects available for analysis and due to the 

correlated nature of the landmark data, traditional statistical techniques such as 

multivariate analysis of variance (MANOVA) and multiple regression can lose their 

power (Tabachnick and Fidell 1996; Shrimpton et al. 2014).  Researchers have 

subsequently utilised mathematical techniques that allow the number of outcome 

variables to be reduced.  This is known as dimension reduction. 

 

Techniques that have been used for dimension reduction include Principal Component 

Analysis (PCA), Discriminate Function Analysis (DFA) and Partial Least Squares 
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Regression (PLSR) (Fisher 1938; Wold 1966; Jolliffe 2002).  These allow statistical 

analysis to be more manageable whilst minimising the amount of information lost 

during the dimension reduction process.  Conventional PCA has a distinct 

disadvantage in that it does not consider any groupings during the dimension reduction 

of the landmark data (Farnell et al. 2017).  Conventional PCA calculates Principal 

Components (PCs), which are linear representations of the landmark points describing 

the direction and magnitude of maximum variance in multiple dimensions (Jolliffe 

2002).  However, as the influence of all potential groupings is not considered during 

the dimension reduction process, it is difficult, if not impossible, to disentangle the 

overall influence of variables on facial shape.  Furthermore, when the PCs that explain 

the least amount of variation are discarded, there is the potential to lose information.   

There is therefore the potential to reduce the amount of useful information available 

after PCA and it is more difficult to interpret the influence of variables on facial shape.  

By contrast, alternative techniques such as PLSR and DFA do take variables into 

account.   

 

A further alternative method is Multilevel Principal Component Analysis (mPCA).  

The benefits of multilevel models have previously been suggested by Lecron et al. 

(2012) and Timmerman (2006).  mPCA was subsequently developed by Farnell et al. 

(2016) for the analysis of dental radiographs and smiles.  Initial work was then focused 

on discriminating between the facial shape of populations (Farnell et al. 2017).  As 

mPCA takes variables into account within the dimension reduction process, it may 

allow more useful information to be retained and facilitate visualisations that allow 

for a succinct summary of the differences in facial shape compared to conventional 

PCA.   

 

This thesis will explore the advantages and disadvantages of mPCA, within the context 

of surface face shape research, by comparing mPCA to the analyses possible with the 

landmarks alone, conventional PCA, DFA and PLSR.  The influence of geographical 

location, sex, height, BMI, pubertal stage, metabolic factors, atopy, breathing 

disorders, maternal smoking during pregnancy and alcohol consumption during 

pregnancy on facial shape will be explored.  It is hoped that this research will highlight 

the relative advantages and disadvantages of using mPCA for analysing facial shape 

from a clinician’s perspective, whilst providing further information on the influence 
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of the above variables on facial development.  Ultimately, this information could be 

used to improve more sophisticated models aimed at progressing orthodontic 

diagnoses, predicting potential success rates of treatment modalities, growth 

prediction, personalised orthodontics, improved forensic analyses and facial 

recognition. 

 

1.2 OVERVIEW OF THESIS 

This thesis begins by discussing the development of the facial shape.  Previous growth 

theories are discussed alongside more recent findings on the genetic and 

environmental influences on facial shape.  Methods for investigating the influence of 

these factors are presented, including imaging modalities and possible analytical 

techniques.  The benefits of dimension reduction techniques are highlighted.  This 

introduces the concept of mPCA, as well as more traditional techniques, including 

conventional PCA, DFA and PLSR. 

 

The thesis is separated into three studies.  The first compares the facial shape of four 

European groupings (Croatian, English, Welsh and Finnish) with respect to 

geographical location, sex and within-group variation (i.e., every other source of 

variation excluding geographical location and sex).  Twenty-one facial landmarks 

were used in the analyses which provides an opportunity to demonstrate the 

advantages of mPCA for exploring categorical variables in comparison to the raw 

landmarks, conventional PCA and DFA.  The second study focuses on the English 

population in more detail.   mPCA is used to determine the relative importance of sex, 

age (14-16 years old), pubertal stage, height, BMI, metabolic factors, atopy, breathing 

disorders, maternal smoking during pregnancy and maternal alcohol consumption 

during pregnancy.  The advantage of using mPCA to give an indication of the relative 

importance variables is highlighted.  The issues surrounding imbalanced group sample 

sizes are also discussed.  The third and final study introduces mPCA as an aid for 

variable selection prior to further analyses.  PLSR is used to explore the variables that 

explained greater than 2% of the total variation in their respective mPCA models.  

 

The facial shape differences explained by each variable are subsequently discussed in 

relation to the information available in the published literature.  Suggestions are made 
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for improvements to the methodology to facilitate more robust investigation into the 

influence of the variables in the future.  Recommendations are also made with regards 

to mPCA, including further investigation into imbalanced data sets and principal 

component retention. 

 

1.3 NOVEL CONTRIBUTIONS 

Prior to the start of this body of work, mPCA had only been used in a two-level 

capacity in facial shape research to assess between- and within-group variation.  This 

thesis introduces a three-level mPCA model and compares mPCA to DFA and the 

results possible with the landmarks only for the first time.  This thesis provides a novel 

use for mPCA to aid variable selection prior to further analyses and compares the 

relative importance of numerous variables on facial shape for the first time.   

 

Contributions are also made with regards to clinical questions.  Prior to this thesis, the 

author is only aware of one paper describing the influence of maternal smoking on 

non-syndromic facial variation which used PLSR to assess the facial shape of one year 

old children.  The results were submitted as supplementary material (Muggli et al. 

2017).  The long-term influence of maternal smoking during pregnancy on non-

syndromic facial shape has not previously been assessed and is explored here for the 

first time using adolescent facial shapes.  The influence of pubertal stage on facial 

shape appears to be explored in detail for the first time in this thesis.  The influence of 

metabolic factors on facial shape has, to the author’s knowledge, only been explored 

in one previous paper which used conventional PCA and multiple regression 

(Djordjevic et al. 2013b).  The influence of fasting insulin was greater than any other 

metabolic factor and given its association with growth hormone, is worthy of further 

investigation here. 

 

1.4 RELATED PUBLICATIONS 

The following have been published in peer-reviewed journals and relate directly to 

topics explored in this thesis: 

• Galloway, J., Farnell, D.J.J., Zhurov, A.I., Richmond, S. 2020. Multilevel 

analysis of the influence of maternal smoking and alcohol consumption on the 
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facial shape of English adolescents. Journal of Imaging 6(34), 

p.10.3390/jimaging6050034. https://doi.org/10.3390/jimaging6050034 

• Farnell, D.J.J., Galloway, J., Zhurov, A., Richmond, S., Perttiniemi, P., Katic, V. 

2017. Initial results of multilevel principal components analysis of facial shape. 

Medical Image and Understanding Analysis. In: Valdes-Hernandez, M., 

Gonzalez-Castro, V. eds Medical Image Understanding and Analysis. MIUA 2017. 

Communications in Computer and Information Science, vol 723. Cham: Springer.  

https://doi.org/10.1007/978-3-319-60964-5_59 

 

The following book chapter is also related to work contained in this thesis: 

• Richmond, S., Wilson-Nagrani, C., Zhurov, A., Farnell, D.J.J., Galloway, J., 

Ali, A.S., Pirttiniemi, P., Katic, V. 2018. Factors influencing facial shape. In: 

Huang, G.J., Richmond, S., Vig, K.W. eds Evidence-Based Orthodontics, New 

Jersey: John Wiley and Sons. 

 

The following utilise mPCA and have been published in peer-reviewed journals 

however investigate topics out-with the scope of this thesis: 

• Farnell, D.J.J., Richmond, S., Galloway, J., Zhurov, A.I., Pirttiniemi, P., 

Heikkinen, T., Harila, V., Matthews, H., Claes, P. 2021. An exploration of 

adolescent facial shape changes with age via multilevel Partial Least Squares 

Regression. Computer Methods and Programs in Biomedicine 200, p. 105935.  

https://doi.org/10.1016/j.cmpb.2021.105935 

• Farnell, D.J.J., Richmond, S., Galloway, J., Zhurov, A.I., Pirttiniemi, P., 

Heikkinen, T., Harila, V., Matthews, H., Claes, P. 2020. Multilevel principal 

components analysis of three-dimensional facial growth in adolescents. 

Computer Methods and Programs in Biomedicine 133, p. 105272.  

https://doi.org/10.1016/j.cmpb.2019.105272 

• Farnell, D.J.J., Galloway, J., Zhurov, A.I., Richmond, S. 2020. Multilevel 

models of age-related changes in facial shape in adolescents. In: Zheng, Y., 

Williams, B., Chen, K. eds Medical Image Understanding and Analysis. MIUA 

2019. Communications in Computer and Information Science, vol 1065. Cham: 

Springer. https://doi.org/10.1007/978-3-319-95921-4_18 
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• Farnell, D.J.J., Galloway, J., Zhurov, A.I., Richmond, S., Marshall, D., Rosin, 

P.L., Al Meyah, K., Pirttiniemi, P., Lahdesmaki, R. 2019. What’s in a smile? 

Initial analyses of dynamic changes in facial shape and appearance. Journal of 

Imaging 5(1), p. 2. https://doi.org/10.3390/jimaging5010002 

• Farnell, D.J.J., Galloway, J., Zhurov, A., Richmond, S., Pirttiniemi, P., 

Lahdesmaki, R. 2018. What’s in a smile? Initial results of multilevel principal 

components analysis of facial shape and image texture. In: Nixon, M., 

Mahmoodi, S., Zwiggelaar, R. eds. Medical Image Understanding and 

Analysis. MIUA 2018. Communications in Computer and Information 

Science, vol 894. Cham: Springer. https://doi.org/10.1007/978-3-319-95921-

4_18  
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2 LITERATURE REVIEW 

2.1 PRE-NATAL DEVELOPMENT OF THE CRANIOFACIAL REGION 

The face begins development in utero, with two-thirds of the skull at its final 

dimension at birth (Medawar and Fisher 1944).  It is therefore valuable to begin 

understanding facial development from the embryonic stage to determine all the 

factors that may be involved in the differences in facial shape between individuals.  

Embryos are derived from three germ layers: ectoderm, endoderm and mesoderm 

(Sadler 2012).  However, it is the development of cranial neural crest cells during the 

formation of the neural tube, which allows for the development of important cranial 

structures (Sadler 2012).  The prechordal plate subsequently develops as an area of 

thick endoderm in the region of the forebrain.  This produces complex molecular 

signalling pathways which are initiated by homeobox genes.  This allows for the 

development of two hemispheres in the brain, alongside many other important 

processes (Mercier et al. 2011).   

 

The development of the face begins with the formation of pharyngeal arches during 

week four in utero (Sadler 2012).   Each of these arches is composed of a band of 

mesenchyme with the surface facing the outside of the embryo composed of ectoderm 

and the surface facing the inside of the embryo composed of endoderm.  The arches 

are joined by the ectodermal surface running continuously on the outer edge, 

producing clefts between the arches, and the endoderm following the same pattern on 

the inside of the embryo, producing pouches (Sadler 2012).  A cartilage bar, aortic 

arch and cranial nerves run through the middle of each arch.  Each arch develops 

distinct skeletal, muscular, vascular and soft tissue structures of the head and neck 

(Sadler 2012). 

 

Mossey et al. (2009) describe the development of prominences from these arches 

during the sixth week in utero, which begin to form the facial features around the 

stomodeum (early mouth).  The frontonasal prominence forms in the midline and 

becomes the forehead following signalling from the developing forebrain.  Two nasal 

placodes subsequently develop which become nasal pits, and on either side of these 

placodes, medial and lateral nasal processes develop bilaterally.  The lateral nasal 
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processes form the alae of the nose whilst the medial nasal processes develop into the 

tip of nose, philtrum and primary palate.  These fuse with maxillary processes on either 

side, to complete the upper cheeks, upper lip and secondary palate.  The face is 

completed by the fusion of two mandibular processes, which form the lower cheeks 

and mandible. 

 

The bones of the cranium develop through mesenchyme condensation during the 

fourth-fifth week in utero and are ossified through intramembranous ossification (Jin 

et al. 2016).  The cranial base ossifies through endochondral ossification, which begins 

with the development of primary cartilage at week six (Nie 2005).  At birth, the face 

is smaller than would be expected in relation to the size of the skull due to 

underdevelopment of the nose and jaws.  The processes that occur to this region after 

birth will therefore strongly influence facial shape at each stage of life.   

 

2.2 POST-NATAL GROWTH OF THE CRANIOFACIAL REGION 

The skull can be divided into the neurocranium and viscerocranium.  The 

neurocranium includes the structures surrounding the brain and the viscerocranium 

primarily includes the face (Moore and Dalley 2006).  Both have an influence on facial 

shape.  The neurocranium expands with the increasing size of the brain.  Bone is 

deposited at the sutures as they are passively displaced, whilst remodelling of the bony 

surface supplements this.  The length of the cranial base increases through remodelling 

and endochondral growth (Melsen 1974) and will affect the shape of the face due to 

its relationship with the jaws and frontal bone.  Most of the growth of the cranial base 

occurs at the spheno-ethmoidal and spheno-occipital synchondroses, which ossify at 

seven years old and between 13-17 years old respectively (Melsen 1972).  The 

viscerocranium is composed of the: frontal, sphenoid, ethmoid, lacrimal, zygomatic 

arches, maxilla, vomer, palatine and mandible bones.  The orbits, nasal cavity, oral 

cavity as well as the frontal, ethmoidal and maxillary sinuses are all located in the 

viscerocranium (Moore and Dalley 2006).   

 

Bjork (1963) used implants at sites known to be stable throughout development and 

radiographs to investigate facial growth.  This longitudinal study on individuals aged 

4 to 24 years old found that growth is rotational and highly individual.  Björk and 
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Skieller (1983) suggested that the increase in height of the maxillary complex occurred 

through sutural growth and selective resorption/deposition, whilst the width is 

increased via the palatal suture.  They also suggested that growth occurs in a 

downward and forwards manner.  However, this depends on the relationship between 

growth rates anteriorly and posteriorly.  The direction of the rotation subsequently 

determines the skeletal pattern of an individual, which was summarised by Solow and 

Houston (1988). 

 

2.3 GROWTH THEORIES 

Historically, craniofacial growth has been described in relation to six theories.  The 

remodelling theory suggests that growth is due to patterned resorption and deposition 

of bone, with no influence by the sutures or cartilage (Brash 1924).  This is likely to 

be partially true.  However, the importance of primary cartilage has been proven in 

research published after this by Petrovik et al. (1975).  The suture theory suggests that 

sutures and cartilage generate the force for growth (Weinmann and Sicher 1947), 

whilst the cartilaginous theory is based on the importance of cartilage driving growth 

in a particular direction, not sutures (Scott 1953; Scott 1954,1956).  The concept of 

sutures being a passive structure is more widely accepted in current practice as 

transplanting a suture produced no further growth (Ryöppy 1965).  The concept of 

cartilage driving growth is more complex, but there is evidence for nasal septum 

cartilage (Copray 1986) and the sphenooccipital synchodrosis (Copray and Duterloo 

1986) producing growth when transplanted.  However, condylar cartilage does not 

appear to have an influence on growth (Rönning and Koski 1969).  Sutures and 

cartilage appear to be under genetic control (Rönning and Koski 1969).   

 

The functional matrix theory places importance on the interaction between periosteal 

matrices (muscles and tendons) and capsular matrices (brain and eyes) on growth 

(Moss and Salentijn 1969).  They suggested that the pressure from the soft tissues 

influence growth rather than growth being genetically influenced.  This is likely to be 

partially true, particularly as an underdeveloped orbit is produced when an eye is 

congenitally missing.  However, the presence of any orbit must suggest that the eye 

itself is not the only factor involved in the orbit development.   
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The part-counterpart principal described by Enlow (1990), mapped the craniofacial 

region into areas anterior and posterior to the posterior maxillary plane.  The 

interaction between these areas vertically, produces balanced growth, allowing all 

aspects of the head to function appropriately.  The complex interaction between the 

mandible and maxilla supports this, although other elements are likely to be involved.   

 

Finally, the servosystem theory (Petrovik et al. 1975; Petrovik et al. 1981) proposes 

that growth of the midface occurs due to primary cartilages of the cranial base and 

nasal septum, which are genetically controlled.  The mandible subsequently adapts to 

its changing position by growth at the condyle and adaption of muscles and soft tissue.  

Lavergne and Petrovic (1983) subsequently attempted to map out all possible 

influences on facial growth.  Given more recent research into the influence of genetic 

and environmental factors on facial shape, as well as the potential for epigenetic 

influences, it is unlikely that any of these theories describe the influences of facial 

development in sufficient detail.  

 

2.4 THE INFLUENCE OF GENETICS AND ENVIRONMENTAL FACTORS ON 

FACIAL SHAPE 

Genetically, homeobox genes appear to be important and are observed in animals 

(Quinonez and Innis 2014).  Previously, it was suggested that intramembranous 

ossification was controlled by the transcription factors MSX-1 and MSX-2 (Ferguson 

2000), whilst Indian Hedgehog (IHH) (St-Jacques et al. 1999) and Fibroblast Growth 

Factor Receptor 3 (FGFR3) are important for regulating endochondral ossification 

(Colvin et al. 1996).    More recently, as summarised by Claes and Shriver (2016), 

genome-wide association studies (GWAS) have been conducted which have found 

associations between facial shape and single nucleotide polymorphisms (SNPs) (Cole 

et al. 2016; Shaffer et al. 2016).  A summary of the genes known to influence facial 

features in populations without craniofacial dysmorphia up to 2018 was suggested by 

Richmond et al. (2018) (Figure. 1).  However, more recent GWAS studies have 

suggested 203 genomic regions (White et al. 2021) and 472 genomic loci (Naqvi et al. 

2020) are associated with “normal” facial variation.  The genetic control surrounding 

“normal” facial variation is therefore likely far more complex than was previously 

thought. 
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Figure 1: A summary of the influence of genes on the face (reproduced from (Richmond et al. 2018) with permission from the author who is the copyright holder) 

Forehead: EYA4, GL13, 
RPS12, TBX15

Overall
Size: SCHIP17
Allometry: PDE8A
Upper facial profile prominence: PCDH15
Mid-face height: PARK2, MBTPS1 (profile)
Nasion-eye-zygoma-ear distance: C5orf50, TRPC6
Inter-tragi distance: FOXA1, MAFB, MIPOL1, 
PAX9, SLC25A2
Gonion-eye angle: OSR1-WDR35

Mandible
Mental fold: PKDCC
Chin: ASPM, DLX6, DYNC1L1, EDAR

Lips: ACAD9, FREM1, 
HOXD cluster, RAB7A

Nose
Bridge of nose: EPHB3, DVL3, PAX3, RUNX2, 
SUPT3H
Height: PRDM16
Prominence: CACNA2D3, DCHS2, ZNF219, CHB8, 
CACNA2D3, PRDM16
Nose tip: BCO39327, CASC17, KCTD15, PAX3, 
intergenic, SOX9
Alae-nose tip: CHD8, CACNA2D3, PDRM16, ZNF219
Alae breadth: PAX1, PRDM16
Alae: DCHS2, DVL3, EPHB3, KCTD15, SOX9
Nasal sidewalls: PAX3, SUPT3H, Chr1p32.1 
(intergenic)

Orbits
Eye-nasion distance: COL17A1, PAX3
Inter-eye width: ALX3, C5orf50, GSTM2, GNI13, 
HADC8, PAX3, TP63
Eye shape: HOXD1-MTX2, WRDR27

Maxilla
Nasolabial angle: DCHS2, SUPT3H



 12 

 

Previously, twin studies and family models had been used to investigate the role of 

genetics in facial development, with most of these using 2D images (Manfredi et al. 

1997; Savoye et al. 1998; Carels et al. 2001; Peng et al. 2005; Baydaş et al. 2007; 

Amini and Borzabadi-Farahani 2009; Alkhudhairi and Alkofide 2010).  Other studies 

have used 3D facial scanning to investigate twins (Weinberg et al. 2013; Djordjevic 

et al. 2016) with Djordjevic et al. (2016) suggesting that 70% of phenotypic facial 

differences can explained by genetics.  It therefore follows that 30% of facial 

differences may be explained by environmental factors.  However, the twins-model 

may not be as reliable a method as previously thought for assessing genetic influences.  

Jonsson et al. (2021) suggest that early developmental mutations can occur, with 15% 

of monozygotic twins presenting with mutations that are different to those of their 

twin.  Monozygotic twins are therefore unlikely to present with identical genetic 

profiles, thus reducing the ability of the twins-model to separate environmental and 

genetic effects. 

 

A further paper investigated the heritability of facial features from fathers to offspring.  

They used 7160 quasi-facial landmarks and divided the face into regions to assess 

whether these regions showed low, moderate or high levels of heritability.  They found 

that the upper face including the forehead, nose and cheeks showed higher levels of 

heritability compared to the lower face, particularly for boys (Hoskens et al. 2018).   

 

Environmental factors such as trauma, surgery, smoking, mastication, bruxism, 

swallowing, hormone levels, nutritional status, disease states and breathing could all 

influence facial growth.  However, due to the multifactorial nature of a patient’s 

environment, this is perhaps the most complex area to investigate reliably.  It is also 

incredibly challenging to disentangle the influence of environmental factors from 

genetic factors, particularly with the growing body of evidence around shared genetics 

between different factors; some of which may previously have been attributed to 

environmental factors in isolation.  For example, it may at first glance be assumed that 

an increased BMI is due to nutritional status in isolation, which in turn may increase 

the size of the face.  However, BMI is far more complex than this.  The Genetic 

Investigation of Anthropometric Traits (GIANT) consortium aims to investigate 

genetic loci which influence body shape and size, including height and weight.  This 
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effort has found an association between hundreds of loci and human size and shape 

(Giant Consortium 2019).  

 

Furthermore, environmental factors may have an influence on genetic factors through 

epigenetics.  Epigenetics centres around the differences between organisms that are 

not explained by differences coded in DNA (Simmons 2008).  These variances are 

thought to develop through DNA methylation (a methyl group associated with an 

environmental factor binds to DNA, influencing the expression of a gene) and histone 

modification, which can lead to silencing of genes or changes to gene expression 

(Egger et al. 2004).    

 

2.5 THE INFLUENCE OF SPECIFIC VARIABLES ON FACIAL SHAPE 

A structured approach was used when practical for conducting this section of the 

literature review.  However, given the range of analytical techniques used in the 

literature, the heterogeneity of previous studies, the number of variables assessed in 

this thesis and the limited amount of information available for many of the variables, 

a narrative presentation was deemed most meaningful.  

 

2.5.1 Geographical area 

The facial data used in this thesis is for subjects recruited from populations on the 

European continent: Croatia, England, Wales and Finland.  Previous studies have also 

investigated the differences between European facial shapes and found subtle 

differences in most of the main facial features.  In general, the differences appear to 

be very small, in the region of 0.5mm (Table 1).   
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Table 1: Studies investigating the influence of ethnicity on the facial shape of European 
populations 

Study Geographical 
area 

Analysis Differences 

Bozic et al. 
(2009) 

Welsh 
Slovenian 

Average faces Females: Differences in eyes, 
zygomatic region, mandible except 
chin prominence 
Males: Eyes, pronasale, chin 
prominence 

Hopman et al. 
(2014) 

Dutch 
British 

Average faces 
Heat/colour deviation 
maps 

Females: Dutch have increased 
facial length, shorter nose, wider 
nose and wider eyes. 
Males: Shorter nose and wider eyes. 
Differences approx. 1mm. 

Farnell et al. 
(2017) 

Croatian 
English 
Welsh 
Finnish 

Multilevel PCA (2-
level) 

Populations were differentiable from 
each other with similar vectors 
between the male and female means 
for each population 

Kau et al. (2010) Hungarian 
Welsh 
American 
Slovenian 
Egyptian 

Average faces Mean differences in European 
populations were in the region of 
0.5mm.  
Differences in eyes, nose, lips and 
forehead to varying degrees 
depending on the population 
assessed. 
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2.5.2 Sex 

For the purposes of this thesis, sex refers to the sex at birth.  The influence of sex on 

facial shape has been well documented and is in part due to the presence of androgens.  

Testosterone stimulates the secretion of growth hormone (GH), thus influencing 

growth (Silva et al. 1992).   Oestrogen influences growth in both males and females 

by stimulating epiphyseal fusion (Weise et al. 2001), thus it is important for normal 

growth and maturation (Lee and Witchel 1997).  A recent study investigated the 

influence of genetic variants associated with testosterone level on the facial shape of 

three population cohorts.  They found that the testosterone related variants were 

associated with mandibular shape and facial height to width ratios, which are in turn 

are related to sexual dimorphism in facial shape (Roosenboom et al. 2018).  The sex 

hormones are rarely found free in the blood; instead, they are bound to glycoproteins 

such as sex hormone-binding globulin (SHBG) (Selby 1990).  It is suggested that GH 

(De Moor et al. 1972), insulin (Plymate et al. 1988), dietary lipids (Reed et al. 1987) 

and BMI (Glass et al. 1977) reduce SHBG concentration and may therefore act as 

confounding factors. 

 

There are a growing number of studies which have assessed the influence of sex on 

the facial shape of European populations.  The findings of these studies are 

summarised in Table 2.  These studies all use different imaging techniques and 

analyses, as well as assessing different populations and age groups.  However, there 

is general agreement with regards to sexual dimorphism in the craniofacial region.  

Areas of contention appear to be with regards to the prominence of the mandible.  

These differences may be due to studies investigating populations that show different 

levels of dimorphism or different age groups.  Indeed, the influence of sex becomes 

more apparent after puberty (Abbas et al. 2018).  A recent study suggests that the facial 

features influenced by sexual dimorphism change with age.  In young children, eye 

fissure inclination was different between females and males, whilst mandibular 

position only differed after puberty (Kesterke et al. 2016).   
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Table 2: The influence of sex on the facial shape of European populations 

Facial 
Difference Factor Studies 

Overall 
size 

- Females: Smaller with reduced 
facial height, wider, flatter 

- Males: Larger with increased facial 
height 

Bugaighis et al. (2013) 
Ferrario et al. (1996) 
Ferrario et al. (1999a) 
Ferrario et al. (1999b) 
Ferrario et al. (2003) 
Hennessy et al. (2006) 
Nute and Moss (2000) 
Velemínská et al. (2012) 

Brow-
ridge 

- Females: Less prominent 
- Males: More prominent 

Bozic et al. (2009) 
Ferrario et al. (2003) 
Gor et al. (2010) 
Kau et al. (2006) 
Kau et al. (2010) 
Koudelová et al. (2015) 
Mydlová et al. (2015) 
Nute and Moss (2000) 
O'Toole et al. (1997) 
Velemínská et al. (2012) 

Orbits 
- Females: More prominent, more 

lateral 
- Males: Less prominent, larger 

Bozic et al. (2009) 
Bugaighis et al. (2013) 
Ferrario et al. (2001) 
Gor et al. (2010) 
Hennessy et al. (2002) 

Cheeks - Female: More prominent 
- Males: Less prominent 

Bozic et al. (2009) 
Bugaighis et al. (2013) 
Gor et al. (2010) 
Mydlová et al. (2015) 

Nose 
- Females: Smaller and less 

prominent 
- Males: Larger and more prominent 

Bozic et al. (2009) 
Ferrario et al. (1997) 
Gor et al. (2010) 
Hennessy et al. (2002) 
Kau et al. (2006) 
Koudelová et al. (2015) 
Mydlová et al. (2015) 
Nute and Moss (2000) 
Velemínská et al. (2012) 

Lips 

- Females: Fuller (especially upper 
lip), smaller overall size 

- Males: Less full, larger overall size, 
thinner upper lip 

Ferrario et al. (2000) 
Ferrario et al. (2009) 
Hennessy et al. (2002) 
Petleshkova et al. (2013) 

Mandible 

- Females: Less prominent 
- Males: More prominent, wider, 

profile more inferior and anterior 
(Some disagreement, perhaps depending 
on the population or the age of subjects) 

Bozic et al. (2009) 
Ferrario et al. (2003) 
Gor et al. (2010) 
Kau et al. (2006) 
Koudelová et al. (2015) 
Mydlová et al. (2015) 
Nute and Moss (2000) 
O'Toole et al. (1997) 
Velemínská et al. (2012) 
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2.5.3 Age and pubertal stage 

The longitudinal influence of age is not assessed in this thesis as the subjects studied 

were between 14-16 years old.  (The Croatian population assessed were older, with 

these subjects used to highlight strengths of the analytical techniques, rather than to 

explicitly model the influence of age).  It should however be noted that 14-16 years 

old is a crucial time with regards to pubertal development, particularly in boys 

(Richmond et al. 2020).  Pubertal stage was therefore assessed in this thesis.  Growth 

at puberty is determined by a complex interaction of genetic and environmental 

factors, which are explained by Soliman et al. (2014).  The time of onset, duration, 

amount of growth and time of termination of pubertal growth all vary between 

individuals.  Growth during puberty is controlled by positive and negative feedback 

loops linking neuro-kinin B, kiss 1 neuron arcuate, gonadotropin-releasing hormone 

secretion from the hypothalamus, pituitary release of luteinising hormone, follicle 

stimulating hormone, and sex steroid secretion from the gonads.  Levels of insulin, 

Insulin-like growth factor 1 (IGF-1) and their interaction with GH are also implicated 

in the process as well as thyroid hormone.  Soliman et al. (2014) also suggest that 

endocrinology pathways are further complicated by the influence of fat mass and 

energy balance on leptin, which in turn influences the hypothalamus and pituitary 

gland.  It appears that the association between obesity and pubertal growth may be 

under genetic control (Cousminer et al. 2013). 
 

2.5.4 Height and growth hormone 

The height of an individual is driven by genetic and endocrinological factors (Giant 

Consortium 2019).  GH has an important influence on somatic growth (Isaksson et al. 

1987), thus it follows that they are likely to influence growth of the craniofacial region.  

GH is involved in a complex interaction with IGF-1 as part of the GH-IGF axis 

(Martinelli et al. 2008).  Children with normal BMI and reduced levels of GH have 

been found to present with a reduced anterior cranial base length, increased facial 

height and increased mandibular plane angle (Kjellberg et al. 2000).  Others have 

suggested that a smaller facial width and reduced posterior facial height with normal 

anterior facial heights are also associated with GH deficiency (Pirinen et al. 1994).  

The maxilla appears to be affected less than the mandible, however both have been 

suggested to be retrusive and hypoplastic when GH is reduced (Kjellberg et al. 2000).  
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Conversely, excessive GH is associated with increased facial height, increased facial 

width, and increased clivus (bone behind sella turcica) length (Pirinen et al. 1994).  

Children with a short stature, but without GH deficiency, have been found to have a 

similar growth pattern to those with a GH deficiency (Van Erum et al. 1998; Kjellberg 

et al. 2000).   

 

2.5.5 BMI 

Somatic height is increased in obese children (Vignolo et al. 1988).  However, levels 

of GH are reportedly reduced in obesity and normalised when BMI is reduced 

(Argente et al. 1997).  The finding that obese children are taller in the presence of 

reduced GH levels has been attributed to increased levels of growth hormone binding 

protein (GHBP) (Hochberg et al. 1992; Argente et al. 1997).  However, to further 

complicate the picture, obese adolescents have been reported to have somatic heights 

within normal limits (Vignolo et al. 1988).   

 

Subsequently, studies have investigated the influence of obesity on craniofacial 

development in adolescents.  Obese adolescents have been found to have wider faces 

(Ferrario et al. 2004), elongated anterior cranial bases (Ohrn et al. 2002), increased 

mandibular widths and lengths (Ohrn et al. 2002; Ferrario et al. 2004; Sadeghianrizi 

et al. 2005), and decreased mandibular plane angles (Ohrn et al. 2002; Sadeghianrizi 

et al. 2005).  It has been suggested that in individuals with increased BMI, GH has a 

greater influence on the mandible compared to the maxilla due to the presence of IGF-

1 receptors in the temporomandibular joint (TMJ), and an increase in free IGF-1 (Ohrn 

et al. 2002).  There is some disagreement about whether obese faces are retrognathic 

(Ferrario et al. 2004) or protrusive (Sadeghianrizi et al. 2005), and whether anterior 

face height is reduced (Ohrn et al., 2002; Ferrario et al., 2004) or increased 

(Sadeghianrizi et al. 2005), which may be due to the different ethnicities investigated 

or analyses used.   

 

Female facial shape appears to be more affected by obesity than males (Ohrn et al. 

2002; Ferrario et al. 2004).  Adipose tissue has been found to have contrasting effects 

on males and females, with early onset puberty in females occurring with high adipose 

tissue levels (Wang 2002; Ong et al. 2009) and early onset puberty in males with 
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reduced adipose tissue levels (Lee et al. 2010).  It is therefore important to investigate 

sexual dimorphism and pubertal status in analyses. 

 

2.5.6 Metabolic factors 

The influence of insulin on growth is complex and is determined by the interaction 

between insulin and GH.  Qiu et al. (2017), suggests that the interaction between GH 

and insulin is important at three distinct stages: 1) before GH release by inhibiting GH 

producing cells (somatotropes) in the anterior pituitary gland; 2) during the binding of 

GH to its receptor; and 3) during the cell signalling cascades after GH has bound to its 

receptor.  They suggest that in non-obese and non-diabetic subjects, insulin and GH 

are regulated so that GH is released at optimal levels.  However, they advise that the 

mechanism of influence of insulin on GH is different in obese individuals, where 

obesity lowers insulin sensitivity, leading to high levels of insulin in the blood, causing 

somatostatin (GH inhibiting hormone) to increase, which subsequently decreases GH 

secretion.  In patients with diabetes, high levels of insulin in the blood desensitises the 

receptors on the GH releasing cells, which increases the level of somatostatin (GH 

inhibiting hormone) and results in reduced GH release. 

 

There appears to be only one study that has explored the influence of insulin on facial 

shape.  Djordjevic et al. (2013b) investigated the influence of metabolic factors on 

facial shape using conventional PCA and multivariate regression.  They assessed 

fasting insulin, glucose, total cholesterol, triglycerides, high density lipids (HDL) and 

low density lipids (LDL) and adjusted for age, sex, pubertal stage and BMI.  They did 

not scale the faces, thus assessed shape and size.  They found that insulin was linked 

with four principal components (PCs) which they state explain facial height, 

asymmetry of the nasal tip and columella base, asymmetry of the nasal bridge and 

depth of upper eyelids.  Triglycerides were linked to nose height and LDLs were 

linked to prominence of nose, prominence of lower lip, asymmetry of nasal tip and 

asymmetry of columella.  Notably, none of the associations were significant after 

Bonferroni correction.  However, this may be too conservative given the large 

reduction in p-value required to gain significance in multivariate analyses.  Fasting 

glucose was not found to significantly related to any of the PCs, however, fasting 
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glucose levels have previously been linked to GH (Riedel et al. 1995), thus further 

investigation of glucose may also be of benefit.   

 

Further studies have investigated the influence of diabetes on facial shape. Demayo et 

al. (2009) used two dimensional (2D) photographs and geometric morphometrics to 

assess the differences in facial shape between non-diabetics and diabetics in 18 to 60 

year olds.  They found that diabetic patients had facial asymmetry, facial features 

closer to the centre of the face and more inferior brow-ridges as well as hooded eyelids.  

Significant flaws in the methodology include the combination of type I and type II 

diabetics, no mention of the control of diabetes or compliance with insulin regimes 

and the use of 2D images.  This study does however suggest that further investigation 

into the influence of disorders of a metabolic nature on facial shape may be 

worthwhile. 

 

Nunes et al. (2018) analysed 2D images of an elderly population.  They used DFA 

with cross-validation and were able to find significant differences in facial shape with 

regards to diabetes and hypertension.  Males were classified correctly more frequently 

than females suggesting male facial shape is influenced by diabetes more than female 

facial shape.  In frontal view, 75.2% (with mouth and jaw included) and 72.4% male 

subjects (with mouth and jaw excluded) were correctly categorised as diabetic or non-

diabetic.  Females were classified correctly 62.8% (with jaw) and 71.4% (without jaw) 

of the time.  In profile, 81.2% (with jaw) and 66.3% (without jaw) of the male subjects 

were correctly classified.  Females were correctly classified 68.5% (with jaw) and 

67% (without jaw) of the time. They used thin-plate spline to determine that diabetic 

individuals presented with increased facial width in the zygomatic region, shorter 

noses and slight differences in ear form.  However, there are outstanding questions 

with regards to the methodology.  It is not stated what type of diabetes was 

investigated, however, given the age range of the subjects it is assumed the study 

relates to type II diabetics or latent autoimmune diabetes in adults (LADA) which has 

features of type I and type II diabetes (Cousminer et al. 2018).  The BMI of the subjects 

was also not considered.  As increased BMI is associated with type II diabetes the 

increased facial width may in fact be due to increased adipose tissue in the cheeks.  

Furthermore, there is no mention of how and when diabetes was diagnosed.  Those 

with a life-long diabetes diagnosis may be expected to have greater facial shape 
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differences to non-diabetics than those who developed diabetes in later life.  There is 

also no mention of any medication being taken by the subjects, which may reduce the 

impact of the insulin resistance associated with type II diabetes.  Nevertheless, there 

is a suggestion that diabetes may influence facial shape.   

 

2.5.7 Breathing disorders and atopy 

The influence of breathing disorders on facial shape is controversial.  It has been 

suggested that those with obstructed airflow through the nasal cavity attempt to 

increase air intake by mouth breathing.  This may change the position of the 

musculature and soft tissues, and facilitate a downward and backwards growth 

rotation, with increased anterior lower face height (Hannuksela 1981; Harari et al. 

2010).  This is supported by the work of Linder-Aronson (1974), who reported that 

following removal of the adenoids in children, significant dental and skeletal changes 

were seen, alongside a switch from mouth to nasal breathing.  However, cause and 

effect are difficult to ascertain when investigating breathing difficulties with facial 

growth, particularly as breathing difficulties can arise through multiple aetiologies.   

 

Atopy is a condition defined by the production of immunoglobulin E antibodies to 

common allergens (Jarvis and Burney 1998).  This chronic condition can include 

suffering from asthma, fever, eczema, utricaria and food allergies, thus may 

chronically disrupt nasopharyngeal membranes and encourage mouth breathing (Al 

Ali et al. 2014a).  Data on the diagnosis of atopy is available for the ALSPAC cohort 

at 7.5 years old (Henderson et al. 2008; Al Ali et al. 2014a) and has been linked to 

increased total face height and mid-face height (Al Ali et al. 2014a).  As part of the 

conditions associated with atopy, asthma affects breathing in a chronic manner and 

has also been found to be associated with reduced mid-face height in the ALSPAC 

population, but only in females (Al Ali et al. 2014b).  The subtle differences in the 

associations between atopy and asthma on facial shape are interesting, and thus are 

worth further investigation.  Finally, it has been shown that an increased number of 

respiratory infections might be linked to facial asymmetry (Thornhill and Gangestad 

2006).  Although respiratory infections are not assessed in this thesis, this finding 

provides further evidence for the potential link between breathing issues and facial 

shape. 
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2.5.8 Maternal smoking during pregnancy 

The likelihood of maternal smoking disrupting foetal development has been 

investigated for many decades.  Studies from the 1970s and 1980s suggested that 

maternal smoking affects foetal development by generating a state of hypoxia, with 

(Longo 1976) reporting carbon monoxide as the main teratogen.  Others have 

suggested that nicotine was the main reason for developmental abnormalities after 

comparing the influence of standard and nicotine-free smoke in rhesus monkeys 

(Socol 1982).  It has also been found that the foetus is exposed to higher levels of 

nicotine during pregnancy than the mothers, with nicotine concentrations in the 

placenta, foetal serum and amniotic fluid measured by Luck et al. (1985).  

Furthermore, it has been suggested that reduced levels of nitric oxide (a vasodilator) 

in smokers results in relative vasoconstriction, thus potentially reducing oxygen and 

nutrient availability to the foetus (Andersen et al. 2004).  Therefore, there is the 

potential for maternal smoking to affect foetal development. 

 

There has been an abundance of studies investigating maternal smoking as a potential 

risk factor for developmental conditions of the craniofacial region.  These conditions 

include reduced head size, craniosynostosis, cleft lip with or without cleft palate 

(CL/P) and facial asymmetry.  Although subjects with any obvious craniofacial 

dysmorphology were excluded from this thesis, it is feasible that subjects could 

present as a very mild case, with sub-clinical features, thus an understanding of the 

influence of maternal smoking on the phenotype of these conditions could be 

advantageous in understanding non-syndromic variation. 

 

Head circumference at birth has been investigated primarily due to the potential for it 

to be a good predictor of any neurological development problems (Lipper et al. 1981). 

Källén (2000) assessed the influence of maternal smoking on the head circumference 

of infants in a Swedish population and found that head circumference was reduced 

with increased levels of maternal smoking, despite correcting for reduced overall size 

of the infants.  The smoking groups used were any smoking, smoking <10 cigarettes 

per day, and smoking 10+ cigarettes per day, with these groupings determined via 

interview at 10-12 weeks of pregnancy.  A dose-dependent relationship was suggested 

as the odds ratios were 1.48 and 1.74 for <10 cigarettes per day and 10+ cigarettes per 
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day respectively.  Unfortunately, information is only available on the number of 

infants with head circumference <32cm or 32+ cm, thus it is difficult to assess clinical 

significance.  Clinical significance is important to assess as other studies have reported 

a reduction in head circumference with maternal smoking of the order of 0.12 +/- 

0.03cm (Wang 1997).  The influence of smoking cessation during pregnancy was also 

not assessed by Källén (2000).  Lindley (2000) subsequently investigated maternal 

smoking cessation in a proportion of the same cohort from Sweden.  It was found in 

this study that if mothers stopped smoking by the 32nd week of pregnancy, the head 

circumference of infants whose mothers stopped smoking was comparable to those 

whose mothers did not smoke.  The importance of stopping smoking was also found 

in a robust study of a Danish population, with this attributed to reduced nitric oxide 

levels in the smokers compared to those of non-smokers and ex-smokers (Andersen 

2009). 

 

However, it could be argued that any cranial differences exhibited by the infants of 

smokers and non-smokers could reduce throughout childhood as the child is exposed 

to post-natal environmental factors.  It is therefore important to consider the long-term 

influences on children of mothers that smoke during pregnancy.  Fried (1997) assessed 

the influence of maternal smoking on children aged one to two years old and found 

that head circumference was reduced in the children of smokers. However, this effect 

was most noticeable when mothers had continued to smoke into the third trimester.  

Furthermore, Kozieł et al. (2018) investigated the longer-term influence of smoking 

of mothers and fathers during pregnancy in a Polish population of 7 to 10-year-olds.  

It was found that head length was affected in the male subjects, and not the females.  

However, the male cephalic index (the ratio of head width to length) showed little 

difference between the parental smoking and non-smoking groups by 10-years-old.  

There is therefore evidence that maternal smoking may be a risk factor for reduced 

head circumference, particularly if mothers smoke for the duration of their pregnancy 

and if their child is male, although the long-term influences on head circumference 

and associated clinical significance are still in question. 

 

Craniosynostosis is a developmental condition defined by the premature fusion of at 

least one of the cranial sutures (Flaherty et al. 2016).  Craniosynostosis can influence 

facial size and shape depending on the sutures that fuse prematurely.  Many studies 
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have looked at the potential influence of maternal smoking on the development of this 

condition.  From these studies, the heterogeneity in the literature is clear because 

different smoking levels and pregnancy statuses were examined.  However, there is 

some evidence that maternal smoking may influence craniosynostosis.  There may be 

some evidence of a dose-dependent relationship (Alderman et al. 1994; Carmichael et 

al. 2008).  There is also evidence that males are more affected by craniosynostosis 

than females (Källén 1999).  Furthermore, there appears to be disagreement as to 

which sutures are more susceptible to premature closing with one study suggesting 

that the sagittal suture craniosynostosis was strongly associated with maternal 

smoking (Källén 1999) and a second study reported that the coronal suture had a 

stronger association with maternal smoking (Alderman et al. 1994).  Approaches have 

included broad categories of non-smoker against smoker (Woods and Raju 2001) or 

<10 cigarettes per day and 10+ cigarettes per day (Källén 1999), whilst others have 

distinguished smoking levels into smaller categories of up to 20+ cigarettes per day 

(Alderman et al. 1994; Wang et al. 1997).  This makes studies heterogenous and may 

explain the different conclusions regarding the influence of maternal smoking on 

developmental conditions.  A recent systematic review conducted by Hackshaw 

(2011) found that maternal smoking is a risk factor for craniosynostosis.  Five studies 

were included in the analysis with a reasonable amount of homogeneity found between 

the studies (I2=51%, p=0.09).  The authors therefore used random-effects meta-

analysis to calculate that the risk of craniosynostosis is increased with maternal 

smoking, which gave an odds ratio from meta-analysis of 1.33 (95% CI: 1.03-1.73).  

However, this finding should be interpreted with caution given the exclusion of non-

English articles, the small number of studies, the lack of funnel plots, the variability 

in clinical presentation of craniosynostosis and the heterogeneity of the included 

studies. 

 

Facial asymmetry is another aspect of craniofacial shape and size that has been 

researched with regards to maternal smoking.  Craniofacial microsomia is a condition 

affecting the structures formed by the first and second brachial arches.  It results in 

hypoplasia of one side of the face and the associated ear, which are formed during the 

first six weeks after conception (Birgfeld and Heike 2012).  Many classification 

systems have been developed, with a widely used system being the orbit, mandible, 

ear, nerve and soft tissue (OMENS) classification, which allows documentation of the 
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severity of each feature individually (Gougoutas et al. 2007).  The wide range of 

clinical manifestations can be seen and a lack of family history in some cases 

potentially indicates an environmental aetiology (Werler et al. 2009). 

 

It was initially suggested that a haematoma in the stapedial artery was the cause of 

craniofacial microsomia (Poswillo 1973), and this has led researchers to investigate 

other potential factors that could disrupt the blood flow on the affected side.  Werler 

et al. (2009) investigated the influence of maternal smoking on hemifacial microsomia 

in Canadian and United States of America (USA) populations and found that 1-10 

cigarettes per day increased the risk of hemifacial microsomia by 2.3 times but 

smoking 10+ cigarettes per day was not linked to the condition.  The mothers who 

smoked and took medications in the first trimester that influence the vasculature (non-

steroid anti-inflammatories, pseudoephedrine and phenylpropanolamine) were 4.2 

times more likely to have a child with hemifacial microsomia.  Moreover, previous 

research on the twins of the ALSPAC cohort suggested that environmental factors may 

influence asymmetry in regions of the face in different proportions (Djordjevic et al. 

2013a), whilst Pound et al. (2014) suggested that childhood ill-health was not 

implicated in the facial asymmetry of the cohort.  It could therefore be suggested that 

an investigation of maternal smoking on the ALSPAC cohort may explain some of the 

variation in the individual faces. 

 

Many studies have assessed the influence of maternal smoking on developmental 

diseases, grouped into anatomical systems.  One such study by Woods and Raju (2001) 

assessed a Cincinnati population and included conditions of the head, tongue, ear, 

nose, mouth and throat. There were no significant links between maternal smoking 

and the craniofacial regions in their study.  However, due to sample size restrictions, 

they were only able to assess non-smokers against smokers and did not differentiate 

between smoking in the different trimesters of pregnancy.  Christianson (1980) also 

found no significant differences in the head and neck region, apart from issues 

affecting sight. The mothers in this study were asked about their smoking habits at the 

beginning of their pregnancy only and they were categorised into the following 

groups: never smoked; stopped smoking before pregnancy; smoked 1-19 cigarettes 

per day; and smoked 20+ cigarettes per day.  This data formed part of the Child Health 

and Development Studies of California.  However, it could be argued that maternal 
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smoking frequency and deliverable nicotine concentrations from cigarettes may have 

changed considerably since this study as the subjects’ smoking levels were measured 

in 1959 to 1966.  A further study by Malloy et al. (1989) used a Missouri population 

born between 1980 and 1983, and again found no significant influence of maternal 

smoking on developmental conditions, with an adjusted odds ratio of 0.84 (95% CI 

0.68-1.02) for combined developmental defects related to the eye, ear, nose and throat, 

and an adjusted odds ratio of 0.84 (95% CI 0.68-1.05) for CL/P.  However, these 

reported odds ratios are in relation to non-smokers against smokers only, with no 

further categorisation.  Furthermore, a recent systematic review by Hackshaw et al. 

(2011) found that maternal smoking is a risk factor for developmental conditions of 

the face.  Thirteen studies were included, with the results of the random effects 

analysis suggest there is 19% increased odds of an infant having a facial defect if their 

mother smoked during pregnancy.  However, the authors included defects that affect 

sight only rather than facial shape alone.  Furthermore, the results should be 

interpreted with caution given the exclusion of non-English articles, the small number 

of studies, the lack of funnel plots, the variability in clinical presentation of 

craniosynostosis and the heterogeneity of the included studies. 

 

Despite the volume of evidence for the influence of maternal smoking on 

developmental conditions of the craniofacial region, there appears to be only one 

human study that assesses the influence of maternal smoking on non-syndromic or 

“normal” variation in facial shape.  In their supplementary material, Muggli et al. 

(2017) suggested that maternal smoking may have a small influence on the facial 

shape of one year old children (0.4-0.5mm).  The main differences appear to be in the 

nasal bridge (more prominent, 0.5mm), forehead (less prominent, 0.5mm), lower lip 

(less prominent, 0.5mm) and chin position vertically (more superior, 0.4mm).  The 

only other study found in the literature involves the influence of hypoxia on the facial 

shape of chick embryos.  Smith et al. (2013) used geometric morphometrics and PCA 

to assess the variation in facial shape.  They found that the control chicks who were 

exposed to normal oxygen levels varied in size only, whilst those exposed to various 

levels of reduced oxygen showed differences in the shape of the eyes, maxilla, nasal 

structures, brain and frontonasal process. The hypoxic chicks were also 

developmentally delayed, with some evidence of a dose-dependent relationship.  

However, a spectrum of differences in facial shape was evident in the chicks.  The 
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results of these previous studies indicate that research into the influence of maternal 

smoking on the facial variation of human populations would be valuable and of 

interest.  This could further our knowledge of the development of the face and the 

relative influence of environmental factors on human development.  This information 

could also be used to encourage a reduction in maternal smoking. 

 

2.5.9 Maternal alcohol consumption during pregnancy 

It has been established that high levels of maternal alcohol consumption are associated 

with Foetal Alcohol Syndrome (FAS) (Jones and Smith 1973).  Subjects present with 

short palpebral fissures, and a smooth, short upper lip (Riley et al. 2011).  There is 

also an associated with intellectual difficulties (Jones and Smith 1973).  A small 

number of studies have investigated the influence of differing levels of maternal 

alcohol consumption on non-syndromic facial shape.  Muggli et al. (2017) assessed 

the influence of alcohol on one year old children using a PLSR model.  They 

investigated the influence of low, moderate and high alcohol levels alongside maternal 

alcohol tolerance.  Low alcohol levels influenced the shape of the forehead (more 

superior and less prominent) and vertical position of the nose.  Moderate to high 

alcohol intake influenced the shape of the eyes, midface and chin, particularly in a 

vertical direction.  Maternal alcohol consumption at binge levels influenced chin 

prominence.  The authors stated that although these differences were below clinical 

significance, they could aid in the diagnosis of intellectual difficulties of previously 

unknown origin.  

 

A further study by Howe et al. (2019) investigated the long-term influence of maternal 

alcohol consumption on facial shape in the ALSPAC cohort at 15 years old.  They 

determined that although there were subtle differences in the facial shape of the 

subjects whose mothers consumed alcohol during pregnancy, those differences fell 

below the criteria for statistical significance.  It could therefore be hypothesised that 

the influence of maternal alcohol consumption reduces with age as other factors begin 

to influence facial shape.  It could however be possible that more sensitive tests are 

required to ascertain subtle differences.  A summary of the current knowledge of the 

influence of the variables discussed above on facial shape can be found in Figure 2. 
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Figure 2: Summary of the findings of previous studies on the influence of the variables investigated in this thesis on facial shape.  Growth hormone (GH), low 
density lipids (LDLs), Foetal Alcohol Syndrome (FAS). 

Forehead
Brow-ridge prominence
• More: Male
• Less: Female, maternal 

alcohol (low levels)

Overall
Size
• Larger: Male
• Smaller: Female
Head circumference
• Reduced: Maternal smoking during pregnancy
Anterior cranial base
• Elongated: Obesity
• Reduced: Reduced GH 
Width
• Wider: Female, obesity
• Narrower: Male, reduced GH
Height 
• Increased: Male, obesity (disagreement), atopy, 

asthma (mid-face in females only)
• Reduced: Female, obesity (disagreement)
• Unspecified: Insulin,
FMPA
• Increased: Reduced GH, obstructed airflow, 

mouth breathing
• Reduced: Obesity
Asymmetry
• Maternal smoking during pregnancy
• Respiratory infections

Mandible
Prominence
• More: Male (some disagreement, more obvious after 

puberty), obesity, maternal alcohol (binge)
• Less: Female (some disagreement, more obvious 

after puberty), reduced GH
Width
• Increased: Obesity
Vertical chin position
• More vertical: Maternal smoking, maternal alcohol 

(high levels)

Lips
Fullness
• More: Female
• Less: Male, 

maternal smoking
Prominence (lower)
• Unspecified: LDLs
Short (upper)
• FAS

Nose
Size
• Larger: Male
• Smaller: Female, FAS
Prominence
• More: Male, maternal smoking
• Less: Female
• Unspecified: LDLs
Height
• More superior: Maternal alcohol (low levels)
• Unspecified: Triglycerides
Asymmetry: Insulin, LDLs

Orbits
Prominence
• More: Female
• Less: Male, maternal smoking
• Unspecified: Insulin
Position
• More lateral: Female
• More superior: Maternal alcohol (high levels)
Shape
• Short palpebral fissures: FAS

Cheeks
Prominence
• More: Female
• Less: Male, reduced GH, small stature

Maxilla
Protrusive: Obesity (disagreement), maternal alcohol 
(high levels)
Retrusive: Reduced GH, obesity (disagreement), FAS
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2.6 THE IMPORTANCE OF UNDERSTANDING FACIAL SHAPE 

Facial shape is therefore a highly complex area of research with genetic, molecular 

and environmental factors all likely to have substantial influence on facial 

development.  Encapsulated in facial shape may be an individual’s genetics (White et 

al. 2021) and exposure of their ancestors and themselves to teratogens, pathogens, 

disease and environmental factors from conception to adulthood (Richmond et al. 

2018).  Improving our understanding of facial shape is therefore important for many 

fields including, orthodontics, forensic anthropology, facial recognition and 

psychology.   

 

Understanding the development of facial shape is essential for orthodontics as it forms 

an integral part of the orthodontic patient assessment and subsequent treatment 

options.  Currently, an extraoral (facial) examination includes assessment of the 

patient’s antero-posterior profile, with individuals classified into three broad 

categories.  A Class I profile represents well balanced upper and lower jaws, with the 

mandible placed 2-4mm behind the maxilla.  A class II profile exists when the 

mandible is more than 4mm behind the maxilla.  A class III profile represents an 

individual with the mandible placed less than 2mm behind the maxilla (Cobourne and 

DiBiase 2016).  This may be due to the maxilla being too small, the mandible being 

too big or a combination of the two.  

 

Transverse discrepancies in the form of facial asymmetry and vertical proportions of 

the face are also assessed (Cobourne and DiBiase 2016).  The extraoral examination 

is completed by determining the relationship between the lips and nose (nasolabial 

angle), lip competence (lips meeting or apart at rest) and tooth show on smiling and at 

rest (Cobourne and DiBiase 2016).  This is supplemented by an intraoral examination 

(assessment of the patient’s teeth and bite), with the findings used to determine 

treatment options (Cobourne and DiBiase 2016).  In reality, facial shape is far more 

complex than this assessment suggests. 

 

Improving understanding of facial shape development could help with one of the most 

complex issues with regards to determining an orthodontic treatment plan: prediction 

of how the facial shape will change over time.  In a patient with a class II profile, there 
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is the opportunity to harness the patient’s growth potential at the time of the pubertal 

growth spurt and use an orthodontic appliance that may encourage, to some extent, the 

mandible to grow forwards (myofunctional therapy).  However, there has been 

controversy around whether this type of treatment causes extra growth, concentrates 

the patient’s growth potential into a smaller period of time, or whether the changes 

seen are primarily due to tipping of teeth (O'Brien et al. 2003), which is referred to as 

camouflaging the bite.  A more thorough understanding of facial shape and its 

development could help to determine the true effects of this type of treatment in 

individual patients and perhaps establish which patient groups are more likely to 

respond favourably.  Of particular importance will be ensuring patients are classified 

by genotype-phenotype, rather than by an arbitrary overjet threshold. 

 

In patients with growth potential remaining and a class III profile, it can be challenging 

determine whether braces alone can be used to tip teeth to bring the top teeth in front 

of the bottom teeth (class I) or whether the mandible will end up too far in front of the 

maxilla for this to be possible at the end of growth.  If camouflage treatment is carried 

out too early, the patient may grow unfavourably, and present with a suboptimal bite 

after growth has finished, despite treatment being carried out.  This is clearly an 

undesirable outcome for both patients and clinicians as could result in repeat treatment 

being required.  This is even more objectionable if surgery is carried out too early and 

the patient requires a repeat operation.  Researchers have therefore attempted to find 

a method of predicting facial growth (for example, (Schulhof et al. 1977; Abu Alhaija 

and Richardson 2003; Jiménez-Silva et al. 2021).  However, there is not currently a 

method that is considered reliable enough to be certain that unfavourable growth will 

not occur.  This often means that definitive treatment is delayed until growth is 

finished which requires patients to accept their bite until their late teens or early 

twenties.  Future efforts should focus on matching phenotypes or building more 

sophisticated statistical models which requires further understanding of the factors 

involved in facial development.  This may aid researchers and clinicians in finding a 

method of predicting growth, thus determining whether treatment could be carried out 

earlier in some individuals. 

 

Currently, orthodontic patients are treated to broad population norms.   At present, 

orthodontic treatment is generally centred around active intervention, rather than 
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taking a preventative approach with regards to development of malocclusion 

(suboptimal bite).  Even interceptive treatment, which is carried out in childhood with 

the aim of alleviating the potential for orthodontic or dental health problems 

developing in future (Artese 2019), involves invasive treatment in the form of dental 

extractions and/or orthodontic appliances.  Ultimately, as understanding of facial 

shape development improves, it may be possible to move away from active 

intervention in the form of orthodontic appliances, dental extractions and jaw surgery.  

Instead, it may be possible to influence the development of the face and dentition by 

adapting genetic or environmental factors and predicting which patients will react 

most favourably.  This concept is used in medicine in the form of personalised 

medicine (Mathur and Sutton 2017).  Aside from a summary of potential areas of 

interest (Reddy et al. 2019), there does not appear to be any published personalised 

orthodontic treatments.  This is likely because the level of understanding of facial 

shape in the published literature is currently insufficient to be able to develop a 

personalised approach to orthodontic care, determine with certainty with patients will 

respond best to myofunctional therapy or predict which patients will grow 

unfavourably.   

 

Understanding facial shape is also important for the field of forensic anthropology.  

Forensic anthropology concerns itself with the identification of individuals (Scheuer 

2002).  In living individuals, this includes facial recognition.  In recent years, more 

emphasis is placed on facial recognition as technology has improved.  In deceased 

individuals, identifying a body or skeleton can be challenging (Scheuer and Black 

2007a).  Broad information such as sex, ethnicity, age and stature are all important to 

help build a picture of the individual (Scheuer 2002).  Research has been conducted 

to find features that could help categorise an individual with the skull seen as the 

easiest method to determine sex after the pelvis (Scheuer and Black 2007b).  

Improving knowledge, technologies and analytical techniques could therefore help to 

further this field. 

 

Given the expressive nature of the face and because the face is visible in most cultures 

in everyday life, psychologists have also explored facial shape.  Malocclusions, and 

therefore their associated facial shapes, have been associated with psychosocial issues 

such as being unpopular (Çokakoğlu et al. 2016).  Certain facial traits in males have 
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been associated with behaviours such as aggression (Haselhuhn et al. 2015).  Facial 

shape has also been associated with immunity levels in males due to facial adiposity 

which may subsequently influence mate preferences (Rantala et al. 2013).  However, 

more recent studies have advised caution over associated facial features with 

perceived genetic “quality” (Van Dongen et al. 2020). 

 

Furthermore, facial features have been found to be associated with bipolar disorder 

(Hennessy et al. 2010), schizophrenia (Hennessy et al. 2007) and autism (Tan et al. 

2017).  Diagnosis of psychiatric and neurological disorders can be challenging.  

Analysis of the face could therefore screen for and help with the diagnosis of 

neurological conditions.  It may also be possible to use facial shape to screen for other 

medical conditions and syndromes (Ferry et al. 2014), thus improving analytical 

techniques may be able to detect sub-clinical features that could indicate potential 

carriers of genetic conditions.  More far reaching, could be the possibility of screening 

for conditions such as diabetes in a non-invasive manner.   

 

2.7 METHODS OF ANALYSING THE CRANIOFACIAL REGION 

Given the number of potential advantages for understanding facial shape, researchers 

have investigated the craniofacial region extensively using various techniques to 

assess both hard and soft tissue.  These techniques have progressed from measuring 

distances on the faces of living subjects and on the dry skulls of deceased individuals, 

to assessing 3D facial images using sophisticated computer algorithms.   

 

Anthropologists have historically assessed individuals in real-time, using landmarks 

as described by Farkas (1981), as reference points.  Subjects are analysed with the 

Frankfurt plane horizontal.  Marks are placed directly onto specific points on the face 

to make visualisation and consistency as easy as possible (Farkas and Deutsch 1996).  

To study differences between individuals and populations, the distances between 

points of interest are often measured.  Forty-seven points and 132 measurements have 

been described Farkas (1994).  It is time consuming if a large number of points are 

used and in living individuals, subject cooperation may be an issue, particularly when 

measuring anxious or younger individuals (Farkas and Deutsch 1996).   
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In deceased individuals, the skull may be the only medium available for analysis.  The 

skull is analysed in a similar manner as above, with the distances between points 

measured as accurately as possible (Scheuer and Black 2007b).  This has advantages 

over working with living individuals, as cooperation is not problematic.  However, it 

is still time-consuming, relies on investigator skill and, most importantly, does not 

provide direct information on soft tissue profile.  Important information is therefore 

lost.  As images and image processing software are not required, the errors involved 

in image processing are avoided.  However, the investigator must be able to reproduce 

the points accurately, which takes considerable skill.   Also, the investigator must be 

available for a substantial amount of time to measure the skulls, making repeat 

measurements or checking measurements difficult.  

 

Studying both hard and soft tissue structures of the craniofacial region of living 

individuals has historically involved lateral cephalometric analysis.  These 

radiographs are taken in a standardised manner, with a collimated x-ray source placed 

two meters away from the film in the patient’s midsagittal plane.  With the head 

horizontal to the Frankfort plane, a cephalostat is used to ensure a reproducible 

position and an aluminium filter wedge is used to allow soft tissues to be visualised 

on the image with the hard tissues (Whaites 2002a).  A number of standard points are 

used routinely in orthodontics, with numerous analytical methods available depending 

on the aspect of the craniofacial region being investigated.  The standardisation 

involved in taking lateral cephalometric images is beneficial as it allows for 

comparison of different patients and during development of the same patient.  There 

are issues with magnification in the order of 10%. However, the scale included in the 

image minimises the influence of these issues (Cobourne and DiBiase 2016).  As with 

the measurement of points on skulls and on living individuals, various error rates are 

found at each of these points (Baumrind and Frantz 1971).  A further disadvantage of 

the use of lateral cephalometric analysis is the exposure of the craniofacial region to 

radiation.  The dose of a lateral cephalogram is 5-10μSv (Hoogeveen et al. 2015) with 

risks in the craniofacial region particularly important due to the presence of the eyes 

and brain.  Stochastic (random) effects are those effects that may happen when a 

patient is exposed to radiation and include cancer or genetic effects (Whaites 2002b).   

Deterministic effects or tissue reactions are effects that will definitely happen if a 
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patient is exposed to a high radiation dose, and include erythema and 

osteoradionecrosis (Whaites 2002b).  It is therefore not ethical to take these 

radiographs without clinical justification, and thus it is no longer possible to 

investigate growth and facial shape in individuals who do not require orthodontic or 

orthognathic treatment.  Also, given the 2D nature of this imaging technique, the 

information obtained is limited. 

 

Computed tomography (CT) scans can be used to produce 3D radiographic images of 

individuals, which is beneficial in gaining more robust information on shapes and 

growth of the craniofacial region.  However, the radiation dose of a CT to the maxilla 

or mandible is 100-3000μSv (Commission 2004), thus the radiation risks discussed 

for lateral cephalograms are greater.  This makes it ethically impossible to justify 

taking regular CT scans to analyse growth in a healthy individual.  The development 

of cone beam computed tomography (CBCT) has allowed for a reduction in radiation 

dose to the patient.  The dose for a typical CBCT is 10-1100μSv depending on the size 

of the area investigated (Pauwels et al. 2012).  However, the use of radiation still 

harbours risk.  Using no radiation would therefore be preferable. 

 

Non-invasive techniques include ultrasound, Magnetic Resonance Imaging (MRI), 2D 

photography and 3D scanning.  Ultrasound is a non-invasive technique, which emits 

sound waves of high frequency in thin slices.  These are reflected back, through the 

transducer, and are processed into 3D images by computer software (Papadopoulos et 

al. 2002).  It has been utilised to investigate soft tissue thickness in populations (El-

Mehallawi and Soliman 2001). However, distortions and artefacts can make the 

images inaccurate (Papadopoulos et al. 2002).   

 

MRI uses a magnetic tomograph, which utilises magnetic fields to polarise hydrogen 

atoms.  When these atoms depolarise, they release radio wave-like radiation, which is 

subsequently received and can be processed to produce 3D images (Papadopoulos et 

al. 2002).  The benefit of using MRI to analyse the craniofacial region is that no 

radiation is used.  It also allows for imaging of both hard and soft tissues, thus can 

give useful information on the relationship between the two.  Furthermore, it provides 

3D information on subjects, which allows for more detailed analysis of facial shape 
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and growth.  It is for these reasons that researchers have used MRI to investigate soft 

tissue thickness in populations (Chen et al. 2011).  However, the process of taking an 

MRI can be difficult for patients, particularly children or those who are claustrophobic.  

It cannot be used in those with metal incorporated into their body as these produce 

artefacts and the magnetic field may displace the metal, causing tissue damage 

(Papadopoulos et al. 2002).  Furthermore, it is time-consuming and a costly medium 

as it requires expensive equipment along with specialist training to take the images 

(Greene et al. 2016).   

 

Photography provides a simple, cost-effective, and safe method of imaging the 

craniofacial region.  It can be used regularly to allow for comparison of subjects in a 

longitudinal manner, as well as comparing different individuals.  In the field of facial 

recognition, Chellappa (2005) advise that lighting must be controlled to allow for high 

quality images to be taken.  It is also important that subjects have a reproducible, 

neutral expression in the photographs to allow for reliable comparisons, unless for 

analysis of dynamic processes such as smiling (Chellappa 2005).   However, ageing 

and changes to appearance such as make up, may make it more difficult to plot points 

accurately (Chellappa 2005).  As this method only allows for soft tissue analysis, bony 

growth can only be estimated.  Furthermore, although photographs can be taken in the 

sagittal and coronal planes, it has been suggested that parallax from photographs at 

different angles can cause distortions (Farkas et al. 1980).  Information is therefore 

lost as the two-dimensional nature limits the amount of information available. 

However, work has attempted to limit this (Rabey 1971).   

 

A method of gaining three-dimensional information of facial shape involves 3D facial 

images.  The benefits include the efficiency of image acquisition, 3D information and 

non-invasive nature make this a popular choice going forwards for analysing the 

craniofacial region (Papadopoulos et al. 2002).  Stereophotography can involve the 

use of two or more cameras to take a picture of the subject’s face at different angles, 

these are then stitched together using specialised software.  Recent advances have 

simplified this process further using one camera, taking pictures at different angles 

(Camison et al. 2018).  
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Alternative 3D surface technology involves laser surface scanning to project a beam 

of laser light across the surface of the face.  The distortions in the laser beam caused 

by the facial features are recorded by computer software and used to create a 3D image 

(Mah and Hatcher 2003).  This has been found to be more accurate than 

stereophotography (0.3-0.5mm compared to 0.6-1mm) (Kau et al. 2005; Zhurov et al. 

2010), while more recent studies have suggested the techniques are comparable 

(Camison et al. 2018).  However, image capture takes longer than stereophotography.  

For both stereophotography and 3D laser scanning, steps can be seen in the images 

where the computer software has had difficulty processing the image, whilst shadows 

and patient movement can also affect the reliability of the image.  As with 2D 

photography, it is important that external factors such as lighting and facial expression 

are controlled to allow for accurate images to be taken.  Issues with facial hair 

obscuring specific landmarks can also reduce the information available from the 

images (Farkas and Deutsch 1996).  The use of grey-scale images, as opposed to 

colour images can reduce bias and difficulties plotting points due to factors such as 

skin texture and make up.  As the technology is relatively new, the equipment and 

associated software have always been expensive (Ward 1994).  Although advances in 

the technology are continually being made to reduce these issues.  3D laser scanning 

was used to determine the facial shape of the subjects in this thesis. 

 

The advantages and disadvantages of the different imaging techniques are summarised 

in Table 3.
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Table 3: Methods of analysing the craniofacial region 

Method Description Advantages Disadvantages 

Direct anthropology • Visual analysis 

• Frankfort Plane horizontal 

• Marks placed directly onto face to 

increase consistency (Farkas and Deutsch 

1996).  Distances between points 

frequently measured   

• Living individuals therefore modern data 

• No image processing  

• Difficult and time consuming to reproduce 

points accurately, particularly if subject 

cooperation challenging (Farkas and 

Deutsch 1996) 

• Subject must be able available for 

considerable time 

Dry skulls • Points placed or visualised on dry skull 

• Distances between points measured as 

accurate as possible (Scheuer and Black 

2007b)  

• No cooperation required 

• No time constraints with regards to 

subject availability 

• Time consuming 

• Relies on operator skill 

• No direct information on soft tissues 

• Data could be historical if from historical 

population 

• Considerable bias possible if information 

on subject is incomplete (and may be 

difficult to obtain further information) 

Lateral 

cephalometry 

• 2D standardised radiograph in profile 

• Landmarks placed either manually or 

automatically and used to determine 

distances and angles 

• Standardised 

• Relatively low radiation dose 

• Ethically challenging to justify radiation 

dose in a healthy individual without clinical 

need  

• Magnification factor of 10% (although 

scale limits the impact of this) 

• Error rates associated with landmarks 

(Baumrind and Frantz 1971) 

• Superimposition of structures, with 

particularly difficulty in plotting those not 

in the midline 

CT  • 3D radiograph 

• Landmarks placed manually or 

automatically in order to determine shape, 

distances and angles 

• Detailed 3D information on hard and soft 

tissues 

• Ethically challenging to justify radiation 

dose in a healthy individual without clinical 

need 
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CBCT • Similar to CT radiograph but using a 

smaller radiation dose 

• Detailed 3D information on hard and soft 

tissues 

• Less radiation than CT (10-1100μSv 

depending on the size of the area 

investigated (Pauwels et al. 2012)  

• Ethically challenging to justify radiation 

dose in a healthy individual without clinical 

need 

MRI • Magnetic fields polarise hydrogen atoms 

• The atoms depolarise and release radio 

wave-like radiation 

• Processed to produce 3D images 

(Papadopoulos et al., 2002) 

• No radiation 

• Detailed 3D information on hard and soft 

tissues 

• Process can be difficult for children or those 

who are claustrophobic 

• Cannot be used in those with metal 

incorporated into their body as these 

produce artefacts and the magnetic field 

may displace the metal, causing tissue 

damage (Papadopoulos et al. 2002)  

• Time-consuming  

• Expensive equipment 

• Specialist training needed to interpret 

images 
Ultrasound • Sound waves of high frequency emitted in 

thin slices and reflected back, through a 

transducer.  Processed into 3D images by 

computer software (Papadopoulos et al. 

2002) 

• No radiation 

• Information on soft tissue thickness 

possible (El-Mehallawi and Soliman 

2001)  

• Distortions and artefacts can make the 

images inaccurate (Papadopoulos et al. 

2002)  

2D photographs • 2D images taken using a digital camera or 

using film 

• Simple 

• Cost effective 

• No radiation 

• Equipment readily available 

• Difficult to ascertain what differences are 

due to hard tissues and which are due to soft 

tissues 

• Information in 2D only 

Stereo photography • Photographs taken using a specialist 

camera at different angles and stitched 

together using computer software 

• No radiation 

• Information in 3D 

• Quick to take images 

• Difficult to ascertain what differences are 

due to hard tissues and which for soft tissues 

• Requires specialist equipment and software 

3D laser scan • Laser scans across surface with distortions 

due to the facial features recorded 

• No radiation 

• Information in 3D 

• Difficult to ascertain what differences are 

due to hard tissues and which for soft tissues 

• Takes longer to obtain an image than 

stereophotography 
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2.8 COMPARING 3D FACIAL SCANS 

There are two broad strategies for the analysis of surface facial shape.  The use of the 

full facial mesh or the use of landmarks.  The full facial mesh can be used to determine 

differences between the facial shapes of different groups via  average faces for each 

group.  This method has been used by many research groups (for example, (Kau et al. 

2006; Bozic et al. 2009)), with the differences often visualised using coloured 

heat/deviation maps.  Using average faces allows differences to be visualised between-

groups but gives no indication of the differences within the groups without additional 

standard deviations.   

 

The use of landmarks is the focus of this thesis.  This involves the placement of 

landmarks on the scanned surface to determine the position of facial features.  One 

method of placing these landmarks involves manually plotting using computer 

software.  This allows the investigator to have complete control over the positioning 

of the points.  These landmarks can be used directly to compare faces, or distances 

and angles between these points can be used to compare the facial shape of subjects.  

However, as 3D laser scans are computer images, reproducibility of the points relies 

on good anatomical descriptions, the ability of the investigator and good image 

resolution.  This can therefore limit the number of points that can be readily identified.   

 

Plotting points on 3D facial scans can be difficult and time consuming as they must 

be placed accurately in each of the three dimensions.  Aung et al. (1995) compared 

direct anthropometry to plotted points on a 3D scan and found that only 49.4% of 

linear measurements from these points were comparable between the two methods.  

However, improved technology since this study was published may produce more 

reliable comparisons.  A more recent study by Toma et al. (2009) assessed the inter- 

and intra-reliability of manually plotting 21 points onto 3D facial scans.  They found 

that approximately 50% of points were plotted with <1mm of error.  However, they 

found that the orbit is difficult to plot due to the complex anatomy of the area, which 

is confounded by the difficulty in the laser beam accurately recording the detailed 

anatomy in the area (Papadopoulos et al. 2002).  This is potentially problematic in this 

research as the eye could demonstrate differences between populations.   
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More recent research has used quasi-landmarks which can provide thousands of 

landmarks for analysis.  The process of placing quasi-landmarks used in this thesis 

was developed at KU Leuven, with the methodology explained by Claes et al. (2012) 

and outlined in the Methodology chapter (3.5 Landmarking, p. 52). 

 

This thesis begins by using 21 landmarks as described by Farkas (1994) as a proxy for 

the main facial features.  These landmarks serve as a manageable number to test the 

ability of the analyses to cope with numerous outcome variables and allowed for 

comprehensible comparisons between different statistical techniques.  However, this 

significantly limits the amount of clinical information available.  Latter analyses use 

1000 three dimensional quasi-landmarks and 7160 three-dimensional quasi-landmarks 

to increase the amount of information available. 

 

2.9 ANALYSIS OF 3D FACIAL LANDMARKS 

Analysis of differences in the facial shape of subjects can be descriptive in nature 

and/or involve inferential tests.  Both descriptive analyses and inferential tests are used 

in this thesis.  

 

2.9.1 Multivariate Analysis of Variance 

MAVOVA has been used to test if there are significant differences in shapes 

(represented here by landmark points) between groups.  MANOVA is an extension of 

analysis of variance (ANOVA) (Tabachnick and Fidell 1996), which allows multiple 

continuous outcome variables (dependent variables) to be compared with multiple 

categorical variables (independent variables).  ANOVA establishes the within-group 

and between-group variations.  These are used to determine the F-statistic, which 

subsequently allows a p-value to be calculated.  If the between-group variation is large 

and the within-group variation small, there is a significant difference between the 

groups.  If the between-group variation is small and the within-group variation large, 

there is not a significant difference between the groups (Tabachnick and Fidell 1996).   

 

However, MANOVA has several disadvantages within this field.  Firstly, MANOVA 

requires the number of outcome variables to be less than the number of subjects in 
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each group to be reliable (Tabachnick and Fidell 1996).  This is rarely the case in facial 

shape research, particularly as the number of landmarks increases.  Secondly, the 

power of MANOVA is reduced in the presence of multicollinearity (variables are 

strongly correlated) (Tabachnick and Fidell 1996), which is common in facial shape 

research.  It can therefore be beneficial to try to reduce the number of outcome 

variables that require analysing using dimension reduction (Sha et al. 2011).  This can 

also help reduce the need for increased computer power, storage space and time taken 

to analyse data.   

 

2.9.2 Conventional PCA 

A common dimension reduction technique is conventional PCA, which can be used to 

reduce the original outcome variables (landmarks) into a more manageable number of 

principal components (PCs) (Jolliffe 2002).  These can subsequently facilitate 

MANOVA.  PCs are related to the original outcome variables but must be interpreted 

afterwards to assess what they mean in the context of the original data.  PCs are linear 

combinations of the original landmarks (Jolliffe 2002).  For example, one PC might 

explain some of the variation in the subjects’ nose shape, width of the mouth and size 

of the eyes.   

 

PCA begins by calculating the direction of the maximum variation in the data set in 

as many dimensions as there are original variables and is summarised well by Ringnér 

(2008).   If there are 63 original variables (i.e., 21 three-dimensional landmarks), the 

direction of maximum variation will be calculated in 63 dimensions.  This information 

is summarised as a covariance matrix (grid of numbers) in this thesis.  Covariance is 

the amount two variables vary together (like the height of a person and the weight of 

a person in a population).  Only two dimensions can be visualised properly on a page, 

as demonstrated in Figure 3.   However, the PCA process occurs in as many 

dimensions as there are outcome variables.   

 

The lines of maximum variation have two properties.  The first is the direction, known 

as the eigenvector.  The second is the amount of variation the line explains, which is 

known as the eigenvalue.   In PCA, the eigenvectors are ordered by their eigenvalue.  

The eigenvectors with the highest eigenvalue are most important as they explain the 
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most variance in the dataset.  The eigenvector with the smallest eigenvalue explains 

the least variance.  Once they are ordered in descending order, they are renamed as 

PCs.  In a model with 63 PCs, PC1 explains the most variance and PC63 explains the 

least.  It is possible to work out how important each PC is in relation to the original 

dataset (e.g., PC1 explains 85% of the total variation, PC2 explains 12% of the 

variation and PC63 explains 0.1% of the variation).  The PCs that explain a very small 

amount of variance may either represent noise in the data or may just be seen as “not 

that important” in comparison to the other PCs.  A decision is then made about which 

PCs to look at further.   The PCs that explain the smallest amount of the variation can 

be discarded (Jolliffe 2002).  

 

 

Figure 3: Visualisation of the process involved in PCA.  This figure shows that PCA is simply a 
rotation of axes so that PC1 captures the largest amount of variation in the data (irrespective of 
any groupings in the data), PC2 captures the second largest amount of variation, PC3 (not 
shown here) the third largest, and so on. 

 

However, conventional PCA has several disadvantages.  The main issue with 

conventional PCA is that the variables or groupings of subjects are not considered in 

the dimension reduction process (e.g., sex) (Farnell et al. 2017).  There is therefore a 

risk of losing meaningful information and the interpretation of the results is less clear 

as the influence of each variable is mixed with the influence of many others in each 

PC.   

 

 

 

PC1

PC2

PC1

PC2

Covariate 1

Covariate 2

Group 1

Group 2

Group 3

Group 1

Group 2

PC1

PC2

Covariate 1

Covariate 2

Group 1

Group 2

Group 3

Group 1

Group 2

Variable 1 

Variable 2 



 43 

 

2.9.3 Multilevel Principal Component Analysis 

Unlike conventional PCA, mPCA takes variables into account when the eigenvalues 

and eigenvectors are calculated, making it a “guided” dimension reduction technique.  

mPCA was suggested by Timmerman (2006) and adapted to assess dental radiographs 

by Farnell et al. (2016), who developed an in-house mPCA code in MATLAB.  mPCA 

can model the maximum variation between groups of subjects which makes it a 

promising technique in a field where the differences between groups are likely to be 

subtle.  The mathematical techniques are described by Farnell et al. (2016, 2017).   

 

There are three main approaches to mPCA, each applicable for different data 

structures: nested, non-nested and mixed, which are discussed by Farnell et al. (2020).  

These methods use slightly different methods for the averaging of the covariance 

matrices.  Utilising a model that fits the natural structure of the data should (a priori) 

provide a better model than one that does not.  A nested model is used when a subject 

can only belong to one specific group in a particular level.  For example, if mPCA was 

carried out to assess the influence of a child’s class and school, a nested model would 

be most appropriate (level 1: class; level 2: school, level 3: subject).  If a child is a 

member of class one in school A, there is no possibility of them being a member of 

class one in school B as they cannot be enrolled in two classes simultaneously.  The 

class and the school are linked, and the model is therefore nested.  By contrast, a 

female child could attend either school A or school B, assuming each school is of 

mixed gender (level 1: school; level 2: sex; level 3: subject).  School and sex are not 

linked in this case; therefore, a non-nested model is most appropriate.  If a 2-level 

model is to be used, this is seen as a special case, and a nested model is most 

appropriate (level 1:  sex; level 2: subject).   If repeat measures are carried out on a 

subject, a mixed approach is most appropriate, for example, if facial scans are taken 

of a subject over multiple time points (level 1:  sex; level 2: subject; level 3: age).   

 

Each variable is assigned a level in the model (e.g., level 1: geographical location and 

level 2: sex).  The within-group variation (all variation not explained by the previous 

levels) is calculated as a further level (level 3 in this example).  In the same manner as 

conventional PCA, mPCA begins with covariance matrix calculation. In contrast to 

conventional PCA, a separate covariance matrix is calculated at each level of the 
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model.  At the within-group variation level, a covariance matrix is calculated for each 

of the groups (i.e., Croatian females, Croatian males, English females, English males, 

Welsh females, Welsh males, English females, and English males).  In this example, 

eight covariance matrices would be constructed.  These are then averaged to give one 

overall matrix for this level.  At the levels focused on between-group variation (i.e., 

levels 1 and 2), a covariance matrix is constructed using the mean or medians of each 

of groups with respect to the grand mean.  The direction and magnitude of maximum 

variance is therefore determined between the group means/medians (Farnell et al. 

2016; Farnell et al. 2017) (Figure 4). 
   

Level 1: Variable 1 (3 groups) Level 2: Variable 2 (2 groups) 

  

Level 3 – Within group variation (6 groups)  

 

 

Figure 4: Visualisation of mPCA.  A three-level model is described here.  Level 1 describes 
variable 1 (3 groups), level 2 describes variable 2 (2 groups) and level 3 describes the variation 
within all the groups.  At level 1 and 2, the maximum variation between the group means or 
medians is calculated.  At level 3, the maximum variation is calculated for each group.  These 
are averaged to give overall PCs for the within-group variation.  
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As with conventional statistical techniques, the use of the median can be useful for 

circumstances where outliers have the potential to impact the results, or the data is not 

normally distributed.  The median of each group was therefore used in this thesis for 

constructing the between-groups covariance matrices to attempt to control for outlying 

shapes.  A method for dealing with outliers of single landmarks is the use of robust 

covariance matrix estimation.  However, the MATLAB function “robustcov” requires 

a minimum sample size of greater than 2 x number of dimensions x number of 

landmarks.  In many of the analyses, obtaining a minimum sample size of this 

magnitude in every group was too restrictive, thus this method was not used. 

 

As per conventional PCA, the PCs with the smallest eigenvalues are discarded.  

However, when using mPCA, a restriction on the number of PCs is required.  For each 

level, the maximum number of PCs that can be retained is the number of groups minus 

one, therefore (for example), only one PC can be retained when assessing sex as there 

are two groups (female and male).  The component scores then are calculated by 

incorporating all the levels simultaneously, resulting in separate component scores for 

each subject at each level (if there are three levels, one subject will have three sets of 

component scores).   

 

There are several advantages to using mPCA.  Firstly, mPCA can provide clear 

visualisations in differences between the component scores.  This is possible as the 

groupings are considered during the mPCA process.  Further, mPCA can provide an 

indication of the relative importance of the variables assessed.  For example, if level 

1 explains 10% of the total variation and level 2 explains 15% of the total variation, 

there is a suggestion that variable 2 (e.g., geographical location) is more important 

than variable 1 (e.g., sex) at explaining facial shape variation (Galloway et al. 2020).   

 

Farnell et al. (2017) used mPCA to explore the facial shapes of four European 

populations: Croatian, English, Welsh and Finnish.  They used a two-level model.  

Level one described ethnicity (Croatian, English, Welsh and Finnish) and sex (female 

and male).  Level two described the within group variation (all the variation that is not 

explained by level one).  They advised that the multilevel nature of the technique 

provides more flexibility and control than standard models.  Clear clustering of the 

population centroids was seen, meaning that mPCA was able to separate each of the 
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groups.  Of interest was a clear vector between the male and female groups of each 

ethnicity thus warranting further investigation. 

 

2.9.4 Discriminate Function Analysis 

A related technique to mPCA is DFA.   This was originally proposed by Fisher (1938) 

and has subsequently been developed into both linear and quadratic forms. In Linear 

Discriminant Analysis (LDA) linear equations are generated to separate groups.  In 

Quadratic Discriminate Analysis (QDA) non-linear functions are generated (Figure 

5).  By calculating the between-group variation and within-group variation, DFA 

generates equations (or functions) that best separate the group centroids.  In LDA, 

these functions are perpendicular to the lines connecting the group centroids.  Scores 

can be generated by projecting the original landmark data onto this line (Adams, 

2005).  DFA can subsequently be used to predict information about subjects that were 

not included in the model initially.  This is known as classification and is out-with the 

scope of this thesis.  Like mPCA, for DFA the landmark data must be continuous, but 

the other variables of interest must be categorical.  This is very useful for naturally 

categorical variables (e.g., sex), but can limit the information possible for naturally 

continuous variables (e.g., fasting insulin) as categorisation is required. 

 

 Variable 1 (3 groups) Variable 2 (2 groups) 

 

Linear 

  

Quadratic 

  

Figure 5: Visualisation of DFA. (a) Linear, (b) Quadratic 
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2.9.5 Partial Least Squares Regression 

In contrast to DFA and mPCA, PLSR is capable of handling continuous variables (e.g., 

fasting insulin) as well as categorical variables.  PLSR was first described by Wold 

(1966) and is summarised by Geladi and Kowalski (1986) and Wold et al. (2001).  It 

is a supervised dimension reduction technique that takes features from conventional 

PCA and multiple regression (Abdi 2011).  It has been suggested that PLSR is 

beneficial in circumstances where correlated dependent variables (landmark data) are 

greater in number than the number of subjects (Shrimpton et al. 2014).  It is for this 

reason that PLSR has been used previously in facial shape research (Shrimpton et al. 

2014; Matthews et al. 2016; Muggli et al. 2017).  PLSR is also beneficial when the 

number of independent variables (e.g., sex, height etc) exceed the number of subjects 

(Abdi 2011, Shrimpton et al. 2014), however, this is not an issue in this thesis. 

 

PLSR calculates the “components” in a different way to PCA.  Instead of finding the 

maximum variation in the landmarks without considering the variables (as in PCA), 

the components explain as much of the covariance in both the landmarks and the 

variables as possible.   PLSR simultaneously decomposes the predictors (e.g., sex) and 

response variables (landmarks) with the aim of explaining the maximum amount of 

covariance between the two (SAGE 2011).  Xia (2020) advises PLSR finds the 

direction in the predictor data that explains the maximum variance in the response data 

(multidimensional).  The PLS components are therefore linear reconfigurations of the 

initial variables (de Jong 1993) but resolved in a different manner to PCA as both the 

predictor and response variables are used simultaneously. 

 

As is the norm with the MATLAB function “plsregress”, the SIMPLS algorithm is 

used here to find the weighting matrix required to reflect the covariance between the 

predictor and response variables (Farnell et al. 2021).   SIMPLS was first described 

by de Jong (1993).  In a similar manner to PCA, the first component will explain the 

highest covariance between the predictors and response variables (Noback et al. 2011).  

Regression is then performed on the components to predict the variables (Abdi 2011).  

PLSR is used here as an alternative technique to mPCA due to its ability to handle 

continuous data and to provide a complementary analysis to further investigate the 

influence of variables on facial shape. 
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The list of techniques explored in this thesis is far from exhaustive.  With the advent 

of machine learning, new and perhaps more sophisticated approaches are being 

developed regularly.  Many of these techniques have been developed to improve the 

ability of an algorithm to classify facial images into the correct groups (e.g., female or 

male), with increasing levels of accuracy for example, (Abbas et al. 2018).  However, 

as the complexity of the mathematics behind these techniques increases, the difficulty 

in understanding the true differences between the subjects increases (Montavon et al. 

2018).  The analyses that have been explored in this thesis are more traditional in 

nature than machine learning algorithms and were chosen due to their comparability 

with mPCA.  They serve to highlight the advantages and disadvantages of mPCA from 

the standpoint of a clinician who seeks to understand the differences in facial shape in 

a manner, rather than the ability of an algorithm to classify facial shapes correctly.   

 

2.10 OVERVIEW 

The first part of this thesis will investigate the claimed advantages of mPCA using 21 

landmarks to simplify the initial analyses.  A comparison of the descriptive and 

inferential results possible using the raw landmarks, conventional PCA, DFA and 

mPCA are presented using the influence of geographical location and sex on facial 

shape as an example.  Once the advantages of mPCA are determined, the analysis is 

expanded to include 1000 quasi-landmarks.  mPCA is utilised on these quasi-

landmarks to determine the influence of sex, height, BMI, age, pubertal stage, 

metabolic factors, breathing disorders, maternal smoking during pregnancy and 

maternal alcohol consumption during pregnancy on the facial shape of English 

adolescents.  Finally, the use of mPCA as a variable selection tool prior to PLSR is 

explored using 7160 quasi-landmarks, with the influence of the above variables on 

adolescent facial shape investigated in further detail. 



 49 

 

3 METHODOLOGY 

The methodology used in each of the three studies is outlined in here.  As each study 

used different landmark strategies and analyses, an overview of the relevant 

methodology is also provided at the start of each study. 

  

3.1 ETHICAL APPROVAL AND FUNDING 

Ethical approval for the Croatian cohort was provided by University of Rijeka, Faculty 

of Medicine, number 2170-24-01-15-2, class 003-08/15-01/08, dated February 9th, 

2015.  Ethical approval for the use of the English sample was obtained from the 

ALSPAC Ethics and Law Committee and the Local Research Ethics Committees 

(B3166).  Consent for samples was collected in accordance with the Human Tissue 

Act 2004.  Informed consent for the use of data collected via questionnaires and clinics 

was obtained from participants following the recommendations of the ALSPAC Ethics 

and Law Committee at the time.  Approval for the Welsh cohort was provided by the 

Southeast Wales Local Research Ethics Committee (04/WSE03/109).  Approval for 

the Finnish cohort was provided by Oulu City Health Authority (4428/2006).   

 

Although the work in this thesis was not specifically funded, The UK Medical 

Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of 

Bristol provide core support for ALSPAC.  A comprehensive list of grants funding is 

available on the ALSPAC website. The variables used in this thesis were specifically 

funded by: Wellcome Trust and MRC (core) 076467/Z/05/Z, University of Cardiff 

and NIH R01 DK077659. 

 

3.2 POPULATIONS 

3.2.1.1 Croatian sample 

This convenience sample was obtained from a student population at University of 

Rijeka, Croatia in 2015 (n=73).  The Croatian sample was older than the other 

populations but was assessed to determine the ability of mPCA to separate this group 

from the others.  To determine the influence of geographical location and sex in a less 

biased manner, the mPCA analyses were also repeated without the Croatian sample. 
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3.2.1.2 English sample 

Subjects were recruited through the ALSPAC cohort.  The mothers were enrolled from 

the Avon area of Southwest, England.  All mothers were required to be resident in the 

area and expected to give birth between 1st April 1991 and 31st December 1992.  The 

initial enrolment included 14,541 pregnancies, who all completed at least one 

questionnaire or attended at least one clinic by 19th July 1999.  Of the original 14,676 

foetuses, 14,062 resulted in live births and 13,988 survived the first year of life.  

 

When the original cohort of children were approximately seven years old, further 

subjects were recruited who had not joined the study originally.  The subjects met the 

original inclusion criteria, with information sometimes gained from obstetric notes.  

This increased the included subjects to 14,541.  Overall, there have been four 

additional phases of recruitment with 913, 456, 262 and 195 subjects enrolled in each 

respectively as of 24 years old.  Data is available for 14,901 subjects who were alive 

at one year old.  In addition, 10% of the ALSPAC cohort were enrolled in the Children 

in Focus group, who attended clinics at the University of Bristol at multiple time points 

between four and 61 months old.  These children were randomly chosen from the 

subjects born in the last six months of the enrolment period and included 1432 families 

who attended at least one clinic.  Subjects whose mothers moved to another area, did 

not attend and were therefore lost to follow-up or those included in another 

development study in the area were excluded.  Further information on the cohort is 

available from Boyd et al. (2013) and Fraser et al. (2013).  At approximately 15 years 

old, 9985 subjects were invited to attend additional clinics.  Of these, 5235 subjects 

attended the clinic for a 3D facial scan.   

 

3.2.1.3 Welsh sample 

This cohort was recruited as a convenience sample through two schools in Pontypridd, 

Wales, UK (n=50).  The facial scans were collected as part of a longitudinal study.  

The facial scans of the subjects at 15 years old were used for this thesis. 
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3.2.1.4 Finnish sample 

This cohort was also a convenience sample, recruited from a school in Oulu, Finland 

as part of a longitudinal study (n=47).  The facial scans of the subjects at 15 years old 

were used for this thesis. 

 

3.3 FACIAL SCAN ACQUISITION 

3D facial scans were taken of the English, Welsh and Finnish subjects using Konica 

Minolta VI-900 laser scanners.  Class I eye safe lasers were used which have been 

suggested as having an operating accuracy of 0.3-0.5mm (Zhurov et al. 2005; Zhurov 

et al. 2010).  Details of the image capture process are provided by Toma (2014).  The 

laser scanner was placed at a reproducible distance from the subjects with lighting 

standardised via lamps.  The camera was calibrated prior to each scanning session. 

 

Toma (2014) also describes the protocol for ensuring reproducibility of subject 

positioning.  Subjects were positioned in natural head position by asking subjects to 

look at a symbol placed between the scanners.  Reference marks standardised the 

position of the subjects relative to the laser scanners.  Subjects were asked to relax 

their facial muscles and swallow prior to the scan commencing.  The facial scans took 

approximately seven seconds.  3D images were taken of the Croatian subjects using 

3dMDface system, 3dDM Inc., Atlanta, GA, USA).  Both systems have similar 

accuracy rates of approximately 0.5mm (Kau et al. 2004; White et al. 2020).   

 

3.4 FACIAL SCAN PROCESSING 

Scans of each half of the face were processed and merged using an in-house algorithm 

in Rapidform 2006 (Zhurov et al. 2005).  This process aims to smooth the images and 

merge the images taken from the two laser scanners into one 3D facial image.  To 

facilitate landmarking, the facial shells were superimposed at mid-endocanthion.  This 

has been suggested as a possible alternative to the stable structures suggested by Björk 

(1955) in relation to lateral cephalograms given the proximity of mid-endocanthion to 

the cribriform plate (Zhurov et al. 2010).  They were subsequently aligned using a 

cylindrical template. 
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In all studies, Generalised Procrustes Analysis (GPA) was used.  GPA minimises the 

sum of the squared distances between the landmarks (Klingenberg 2021).  This 

eliminates differences due to size, rotation, and position, thus isolating the influence 

of shape (Klingenberg 2021).  The process is described by Stegmann and Gomez 

(2002).  First, one shape is selected.  The remaining shapes are aligned to this by 

calculating the centroid of each shape, aligning the shape centroids, normalising the 

shapes, and rotating the shapes to align with the new approximate mean.  This is 

repeated until no significant difference is found between the mean shapes.  In study 

one, GPA was used to facilitate manual landmarking. 

 

3.5 LANDMARKING 

This thesis uses sequentially more sophisticated landmark strategies.  In study one and 

as a comparison in study two, 21 manually plotted landmarks were used as an initial 

investigation to investigate the feasibility of mPCA as an analytical technique in facial 

shape research.  The 21 facial landmarks used were originally defined by Farkas 

(1994), and were used to represent the main facial features (Figure 6).  The landmarks 

were plotted manually in Rapidform 2006.  Previously, the 21 landmarks have been 

found to be both reliable and reproducible (Toma et al. 2009).  Each of the samples 

had previously been landmarked by different researchers.  Each of these researchers 

underwent a calibration exercise which was externally controlled by a separate, 

experienced researcher.  A minimum intra-observer reliability of 1mm was aimed for, 

but for a minority of landmarks, a reliability of greater than 1mm was achieved.  For 

these reasons, the differences between the geographical locations should be interpreted 

with caution.  Instead, the differences due to geographical location were included to 

emphasise the ability of mPCA to differentiate between the different groupings.   

 

In study two, to increase the number of landmarks assessed, 1000 quasi-landmarks 

were used as a comparison to the 21 landmark models (Figure 7).  Quasi-landmarks 

provide a method for comparing one face to another by using a template to determine 

the points to compare from one subject to another.  However, quasi-landmarks often 

do not represent an obvious facial feature (e.g., the middle of the cheek).  This 

contrasts with manually plotted landmarks where, in general, a clear clinical feature is 

represented (e.g., endocanthion).  Unfortunately, it was not possible to use the all of 
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the quasi-landmarks available (7160 quasi-landmarks) in the mPCA models due to 

restrictions on matrix sizes in MATLAB.  A downsampling algorithm written by H. 

Matthews from KU Leuven was therefore used in MATLAB R2017b to reduce the 

7160 landmarks to 1000 landmarks for the mPCA models (Figure 7).  

 

In study three, the full 7160 three-dimensional quasi-landmarks were therefore used 

to provide as much detail as possible within the analyses. 

 

 

Figure 6: The 21 facial landmarks used to describe the main facial features as per the Farkas 
(1994) definitions: 1) Glabella; 2) Nasion; 3) Endocanthion (left); 4) Endocanthion (right); 5) 
Exocanthion (left); 6) Exocanthion (right); 7) Palpebrale superius (left); 8) Palpebrale superius 
(right); 9) Palpebrale inferius (left); 10) Palpebrale inferius (right); 11) Pronasale; 12) 
Subnasale; 13) Alare (left); 14) Alare (right); 15) Labiale superius; 16) Crista philtri (left); 17) 
Crista philtri (right); 18) Labiale inferius; 19) Cheilion (left); 20) Cheilion (right); 21) Pogonion 
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Figure 7: Quasi-landmarks retained after downsampling to 1000 landmarks. (a) Front view, (b) 
Profile 

 

The quasi-landmarks were generated using the Meshmonk toolbox in MATLAB 

R2017b, developed in KU Leuven (available at 

https://github.com/TheWebMonks/meshmonk).  The process is complex and aims to 

provide a facial mesh of 1000s of landmarks automatically, using algorithms to align 

the target face (subject) with a template face.  The first step rigidly aligns the template 

face using five manually placed landmarks (endocanthion right and left, pronasale and 

cheilion right and left).  A further rigid procedure follows, then a non-rigid iterative 

procedure is carried out to allow the template to deform gradually until it represents 

the target face as accurately as is possible (deterministic annealing).  This process is 

explained in Claes et al. (2012), Snyders et al. (2014) and White et al. (2019).  Snyder 

et al. (2014) document the following processes: one-to-one correspondences, 

transformation, outlier detection, multi-scale approach, deterministic annealing, 

symmetric registration, coherent point drift and image-based surface registration. 

 

The 7160 quasi-landmarks were subsequently aligned using GPA, with a scaling 

procedure used during the process to remove the influence of size.  In total, 7160 

landmarks were generated in three dimensions (21480 datapoints).   
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3.6 VARIABLES 

In study one, geographical location (Croatia, England, Wales and Finland) and sex 

were assessed (female and male).  Sex was defined as sex at birth.  These categorical 

variables were used to assess the feasibility of mPCA. 

 

In studies two and three, the analyses focused on the ALSPAC cohort in isolation, 

with increased sample sizes.  The ALSPAC study website contains details of all the 

data that is available through a fully searchable data dictionary and variable search 

tool: (http://www.bristol.ac.uk/alspac/researchers/our-data/).  The variables assessed 

in this thesis have been suggested as having the potential to influence facial shape in 

previous research.  

 

Information on the sex of the subjects was readily available from the survey data.  

Height and weight were measured with the subjects without shoes on and in thin 

clothing (Lawlor et al. 2010).  Height and weight	were subsequently used to calculate 

the BMI (BMI = weight (kg) / height2 (m)).  The pubertal stage was self-declared using 

Tanner Staging.  This involved showing the subjects a picture scale of pubertal hair 

development and genital development and asking them to advise which picture they 

felt represented their stage of development (Emmanuel and Bokor 2020).   

 

A fasting blood sample was taken at a recall clinic when the subjects were 15-16 years 

old.  Subjects were asked to fast for a minimum of six hours, with those attending in 

the morning asked to fast overnight.  The details of how the blood specimens were 

processed are available in Lawlor et al. (2010).  After collection, the blood samples 

were spun and frozen immediately.  The levels of metabolic factors were measured 

six to nine months after this.  Cholesterol, triglycerides and HDL were determined 

using enzymatic reagents.  LDL was determined using the Friedwald equation which 

considers cholesterol, HDL and triglycerides.  Fasting insulin levels were determined 

using enzyme linked immunosorbent assay (ELISA) and glucose using an automated 

assay. 

 

Asthma was determined via questionnaire with mothers reporting the presence of 

wheezing at 7.5 years old (Al Ali et al. 2014a).  Asthma between 0-3.5 years old was 
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also determined via questionnaire and again defined as wheezing.  Mothers were asked 

to confirm if wheezing was present at six months and 42 months.  Atopy was 

determined via skin prick test on the left forearm at 7.5 years old to six common 

allergies (peanut, cat hair, milk, grass, mixed nuts and dust mites).  Positive and 

negative controls were used (1% histamine solution and dilutant respectively).   A 

positive test was determined after 10 minutes where the weal diameter was equal to or 

exceeding 1mm (Henderson et al. 2008; Al Ali et al. 2014a). 

 

Maternal smoking levels before pregnancy, during the 1st trimester and the 2nd 

trimester were self-reported via questionnaire at 18 weeks gestation.  The mothers 

were asked to declare their smoking levels on an ordinal scale: 0 cigs/day, 1-4 

cigs/day, 5-9 cigs/day, 10-14 cigs/day, 15-19 cigs/day, 20-25 cigs/day and 30+ 

cigs/day.  Maternal alcohol consumption was also determined via questionnaire at 18 

weeks gestation.  The mothers were again asked to declare this on an ordinal scale: 0 

glasses/week, less than 1 glass/week, 1+ glasses/week, 1-2 glasses/day, 3-9 

glasses/day and 10+ glasses/day).  They were asked to class a glass of alcohol as “one 

unit of spirits, half a pint of beer or cider or a glass of wine”.  Alcohol consumption 

after the baby first moved was used as a proxy for the 2nd trimester. 

 

3.7 DATA CLEANING AND EXPLORATION 

3.7.1 Exclusions 

For the English sample, a total of 399 subjects were excluded due to not having their 

face scanned at the clinic, facial scan of poor quality, not of Caucasian descent or 

facial dysmorphology present.  Facial scans were not pre-processed if they were not 

of sufficient quality after registration of the right and left facial shells and were 

therefore removed from the analyses (n=89).  This resulted in facial scans being 

available for 4747 children (2233 males and 2514 females) (Toma 2014).  Subjects 

were further excluded if they were a twin or triplet, with one subject from each family 

group retained and/or if there was missing data on any of the variables included in the 

separate models (n=3301).  The latter decision was made to keep the mPCA models 

comparable.  An alternative method would have been to include all possible subjects 
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in each model but the results of each would not have been directly comparable as each 

model would have included different numbers of subjects. 

 

Bookstein (2019) suggests that a group should not have less than ten subjects for 

between-groups PCA.  This was also used as a benchmark for mPCA, however, where 

possible, the number of subjects per group was kept as large as possible.  As four 

subjects self-declared a Tanner stage of one with regards to pubic hair and eight 

subjects self-declared their development stage of two, these subjects were excluded to 

maintain group sizes greater than ten.  To keep the pubertal stage analysis balanced, 

these groups were also removed for the Tanner stage with regards to genital 

development despite 14 subjects self-declaring a Tanner stage of two.  A final cohort 

of 1411 subjects remained. 

 

3.7.2 Distribution of landmark data 

It has been suggested that DFA requires normal distribution of the data set (Moore, 

2013).  The distribution required for PCA is less clear.  Some authors have suggested 

PCA requires normally distributed data, however, Jollifee (2002) disagrees.  To avoid 

issues, the distribution of the scaled landmark data (21 landmarks) was visualised 

using KS density plots in MATLAB R2017b and confirmed to be normally distributed 

(Figures 8-10).  These plots were used as an alternative to histograms to aid 

visualisation of multiple landmarks on one plot.   
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Figure 8: KS density plot demonstrating the normal distribution of the landmarks in the 
subjects included in the four European population analysis (n=249). 
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Figure 9: KS density plots demonstrating the normal distribution of the landmarks in three dimensions for the four European population analysis (n=249).  
Grouped by population and sex. 
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Figure 10: The 21 landmarks were normally distributed in the ALSPAC cohort and visualised 

via KS density plots (n=1411). 
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3.7.3 Outliers 

3.7.3.1 Outliers in landmark data 

As the landmarks were placed manually, outliers may be due to researcher error rather 

than true anatomical variation.  Outlying landmarks were detected using the MATLAB 

function “isoutlier” at both 3SD and 4SD thresholds.  For study one, one outlier 

(English female) was detected at 4SD in the x-axis at pronasale (Figure 11).  This 

subject was removed from the analyses.   

 

Figure 11: Scatter plots highlighting outlying landmarks at 3SD (green) and 4SD (red) for the 

four European populations.  One landmark, pronasale in the x-axis, associated with an English 

female, was an outlier at 4SD.  The subject was removed from the analyses. 

 

Outlying landmarks were also found at a 4SD level in the ALSPAC specific analyses 

(Figure 12).  However, following visual inspection of the faces and the data set as a 

whole prior to exclusions due to missing data, it was decided to include these subjects 

in the analyses.  As only one researcher placed the landmarks for the ALSPAC specific 

analyses, who had undergone a calibration as part of this process, further reassurance 

was gained with regards to including these subjects.  No outliers were detected in the 

1000 quasi-landmark data using the “isoutlier” function at a 4SD threshold. 
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Figure 12: Scatter plots highlighting outlying landmarks at 3SD (green) and 4SD (red) for the 

ALSPAC specific analyses.  Several landmarks were found to be outliers, however, following 

inspection of the faces and the data set as a whole prior to exclusions, it was decided to include 

these subjects in the analyses. 

 

3.7.3.2 Outliers in variable data 

mPCA can deal with outliers in the variables using discretisation (any subjects with 

very high or very low levels of a variable will be grouped with those closest to them).  

There was therefore no requirement to remove any subjects from the mPCA analyses 

on this basis.  However, groups with small sample sizes required removing or 

combining with other groups.  By contrast, regression methods can be sensitive to 

outliers (Tabachnick and Fidell 1996).  The PLSR models in study three were therefore 

run with and without outliers to investigate the impact of their inclusion.  This was 

carried out using the “isoutlier” function in MATLAB R2017b with a threshold of 

4SD from the mean.   No outliers were found with regards to height.  Nine subjects 

were found to be outliers with regards to BMI.  All these subjects were in the obese or 

severely obese range.  The BMIs of these subjects are not out-with potentially real 

values.  Six outliers were found with regards to insulin.  Two of these values were 

extreme outliers.  Two outliers were found for cholesterol and LDL, whilst five 

outliers were found for triglycerides and very low density lipids (VLDL) (Figure 13). 
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Height BMI Weight Insulin 

    
Number of outliers = 0 Number of outliers = 9 Number of outliers = 9 Number of outliers = 6 

Cholesterol Triglycerides VLDL LDL 

    
Number of outliers = 2 Number of outliers = 5 Number of outliers = 5 Number of outliers = 2 

 

Figure 13: Outliers detected at 4SD from the mean for the variables included in the PLSR models.
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3.7.4 Correlations 

3.7.4.1 Correlations in landmark data 

To investigate the correlation between the landmark data used in study one, a 

correlation matrix using Pearson’s correlation was visualised using MATLAB 2017b.  

The correlation matrix confirms that many of the landmarks are moderately to strongly 

correlated (Figure 14).  This is to be expected as facial features all have a similar shape 

and are relatively predicably positioned in relation to each other on the face.  This 

confirms that multicollinearity is present in the landmark data.  

 

Figure 14: Matrix of Pearson correlation coefficients showing the landmarks that are strongly 
correlated (red) and weakly correlated (more light blue).  As would be expected, the highest 
correlations are grouped by facial feature. 
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3.7.4.2 Correlation between variables 

Assessment of the correlation between the variables used in the ALSPAC specific 

studies (studies two and three) provided information on which variables were more 

likely to act as confounding factors in each of the mPCA models.  The correlations 

were visualised using scatter plots, box plots and heat plots.  The test used depended 

on the type and distribution of the data (summarised in Table 4).   Scatter plots were 

constructed as a matrix in SPSS v25 to visualise the correlation between all the 

continuous variables.  As it is difficult to ascertain patterns in the scatter plots for the 

dichotomous and ordinal data, box plots were generated in MATLAB R2020a to 

visualise the association between categorical and continuous variables.  These were 

collated using this tiled layout function.  Finally, heat/deviation maps were generated 

in MATLAB R2017b to visualise the original and constructed categorical variables.  

These were also collated as a matrix by hand.  There is no option for calculating the 

rank biserial correlation in SPSS.  Thus, the mean ranks were calculated for each group 

using the Mann Whitney U test and the following formula used, as suggested by Gray 

and Kinnear (2012): 

 

r! =
2(M" −M#)
n" + n#

 

 

Where, M1 = mean rank of group 1, M2 = mean rank of group 2, n1 = total subjects in 

group 1 and n2 = total subjects in group 2. 

 

Table 4: Correlation tests used 

 Dichotomous Ordinal 
Continuous 
(normally 
distributed) 

Continuous 
(skewed) 

Dichotomous Phi Cramer’s V Point Biserial Rank Biserial 

Ordinal Cramer’s V Spearman’s Rank Spearman’s Rank Spearman’s Rank 

Continuous 
(normally 
distributed) 

Point Biserial Spearman’s Rank Pearson’s Spearman’s Rank 

Continuous 
(skewed) Rank Biserial Spearman’s Rank Spearman’s Rank Spearman’s Rank 
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The correlations between the variables are presented in Figures 15-17.   Height is 

moderately strongly correlated with sex, which is to be expected, as after puberty 

males are in general 15cm taller than females (Desai 2000).  The strength of this 

correlation is maintained following categorisation of the height variable.  Both 

measures of pubertal stage are weakly correlated.  With regards to the metabolic 

factors, insulin is weakly correlated with BMI, with a similar magnitude seen when 

considering both the continuous variables and constructed ordinal variables.  

Cholesterol is highly correlated with LDL and weakly correlated with VLDL and 

triglycerides.  This is true when assessing the variables in their original continuous 

form and once categorisation was carried out.  In turn, triglyceride levels were highly 

correlated with VLDL, and this is again maintained after categorisation.  This is to be 

expected as the function of VLDL is to carry triglycerides to adipose tissue and muscle 

(Freeman and Walford 2016).  A weak correlation is also seen between cholesterol 

and HDL, and triglycerides and LDL.  In general, the correlation is less strong when 

assessing the categorised variables in comparison to the same variables prior to 

categorisation.  However, the strength of the correlation falls into the same broad 

description for all variables, except for VLDL and LDL, which fall from weakly 

correlated (0.336) to minimal correlation (0.274) after categorisation.  Asthma in early 

childhood is weakly correlated with asthma at 7.5 years old.  It may have been 

expected that this correlation would be higher but indicates that asthma may be 

diagnosed after 3.5 years old, or that those diagnosed with asthma in early childhood 

recover by 7.5 years old.  Atopy and hay fever are also weakly correlated.  It may have 

been expected that this correlation would have been stronger as hay fever is used in 

the diagnosis of atopy. However, as other factors are involved in an atopy diagnosis, 

these must have a strong influence on the diagnosis without the presence of asthma.  

Interestingly, smoking and alcohol consumption do not appear to be strongly 

correlated.  Alcohol consumption in the 1st trimester is weakly correlated with alcohol 

consumption before pregnancy.  This is perhaps to be expected, particularly as many 

mothers do not know that they are pregnant in the early stages of pregnancy.  The 

correlation between alcohol consumption during the 1st and 2nd trimester is stronger.  

Smoking before pregnancy highly correlated with smoking during the 1st trimester and 

continuing to smoke into the 2nd trimester. 
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Figure 15: Correlation between the continuous variables.  On the left of the diagonal are scatter 
plots, displayed as a matrix, demonstrating the relationship between the continuous variables 
prior to categorisation.  The distribution of each variable is displayed as a histogram on the 
diagonal.  On the right of the diagonal are the correlation coefficients. 
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Figure 16: Box plots displaying the correlation between the categorical and continuous 
variables.  The correlation coefficients are presented above each box plot. 
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Figure 17: Correlation between the groups after categorisation.  On the left of the diagonal are 
heat plots, displayed as a matrix, indicating the correlation between the groups. White = 0 
subjects, black >= 500 subjects.  On the right of the diagonal are the correlation coefficients. 
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3.7.4.3  Standardisation 

Standardisation has been suggested as a useful pre-processing stage prior to 

conventional PCA (Baxter 1995).  Standardisation involves subtracting the grand 

mean and dividing by the standard deviation to bring each of the variables onto the 

same scale.  In this thesis, all the landmarks were recorded in millimetres and were 

therefore on a similar scale.  After exploring the influence of standardisation in mPCA 

in Appendix 1, on balance, it was decided not to standardise the landmark data prior 

to mPCA to make the results more easily interpretable.  However, the groups of the 

standardised landmarks were separated better than the non-standardised landmarks.  

 

3.7.5 Discretisation 

Multilevel PCA requires discretisation (categorisation) of continuous data.  Where 

well established categories were available (BMI, pubertal stage) these were used.  

Where no established categories were existing, groups were constructed by initially 

separating subjects into healthy and pathological groups, where these distinctions were 

available.  Subjects within normal/healthy range were subsequently categorised so that 

the groups were of equal width, with a reasonable number of subjects per group.  This 

allowed the discretisation process to be flexible, to gain as much meaningful 

information from the data whilst maintaining groups with reasonable sample sizes.  

However, this approach introduced a level of subjectivity. 

 
3.7.6 Final sample sizes 

The final sample sizes are provided at the start of each of the relevant results chapters. 

 

3.7.7 Statistical analyses 

An overview of MANOVA, conventional PCA, DFA, mPCA and PLSR can be found 

in 2.9 Analysis of 3D facial landmarks (p.40) with further detail in the results chapters.   

• Study one (21 landmarks): Landmarks only, conventional PCA to facilitate 

MANOVA, DFA and mPCA (3-level) 

• Study two (1000 quasi-landmarks): mPCA (2-level) 

• Study three (7160 quasi-landmarks): PLSR with variables explained 2% of the 

variation in their mPCA models. 
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4 STUDY 1: INITIAL EXPLORATION OF MPCA IN FACIAL 

SHAPE RESEARCH USING A THREE-LEVEL MODEL 

(GEOGRAPHICAL LOCATION, SEX AND WITHIN-GROUP 

VARIATION) 

4.1 INTRODUCTION 

As discussed previously, it has been claimed that mPCA is a useful analytical tool for 

facial shape (Farnell et al. 2017).  The mPCA model was expanded to a three-level 

model here.  Prior to utilising mPCA to determine the influence of numerous variables 

on facial shape, the relative advantages and disadvantages of mPCA are explored in 

this study.  These were demonstrated by comparing the results possible with mPCA to 

those possible using raw landmarks only, conventional PCA and DFA.  Twenty-one 

landmarks were used to allow clear visualisation of the differences and to keep 

analyses manageable in this initial phase of exploration.  Geographical location and 

sex were investigated as these variables were anticipated to explain a relatively large 

proportion of facial shape variation, thus provided a sensible starting point for 

comparing the analytical techniques. 

 

4.2 AIMS 

• To explore the suitability of mPCA as an analytical tool for categorical data 

(similar sample sizes in each group) compared to raw landmarks, conventional 

PCA and DFA. 

• To determine the influence of geographical location and sex on the facial shape of 

four European populations. 

 

4.3 NULL HYPOTHESES 

• Geographical location is not associated with the facial shape of the subjects from 

the Croatian, English, Welsh and Finnish populations. 

• Sex is not associated with the facial shape of the subjects from the Croatian, 

English, Welsh and Finnish populations. 
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4.4 METHODOLOGY OVERVIEW 

An overview of the methodology used in this study is provided below.   

 

4.4.1 3D facial scan acquisition, processing and landmarks 

The 3D facial scans were acquired and processed as documented previously.  GPA 

was conducted on the 3D facial scans to facilitate landmarking.  Scaling of the images 

removed the influence of size, thus isolating the influence of shape (3.4. Facial scan 

processing, p; 53).  Twenty-one landmarks were placed manually using Rapidform 

2006 (3.5 Landmarking, p. 52).  The researchers who placed the landmarks underwent 

a calibration exercise. 

 

4.4.2 Variables 

Geographical location and sex were modelled explicitly in this section.  Twenty-one 

manually plotted landmarks were used as outcomes variables as a proxy for the main 

facial features.   

 

4.4.3 Data cleaning and exploration 

Subjects were excluded if they had obvious craniofacial dysmorphology or their 3D 

facial scan was of insufficient quality.  The landmarks were normally distributed (3.7.2 

Distribution of landmark data, p. 59), with multicollinearity present in the landmark 

data (3.7.4.1 Correlations in the landmarks, p. 65).  One outlier was detected at 

pronasale.  This subject was removed from the analyses (3.7.3.1 Outliers in landmark 

data, p. 62). 

 

4.4.4 Final sample 

The samples are detailed in 3.2 Populations (p. 51).  In total, 249 subjects were 

included following exclusion of one outlier in the English sample.  Subgroup sample 

sizes are available in Table 5.  Sample size calculations were not possible due to the 

novelty of the methodology.   
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Table 5: Subject demographics for investigation of the influence of geographical location and 
sex on the facial shape of four European populations 

Geographical 
location Sex Age (± SD) BMI (± SD) 

Croatia (n = 73) 
Female (n = 38) 22.98 ±	2.50 20.67 ± 1.78 
Male (n = 35) 23.11 ±	3.08 23.85 ± 2.42 

England (n = 79) 
Female (n = 39) 16.38 ±	0.29 22.08 ± 3.75 

Male (n = 40) 16.22 ±	0.18 22.42 ± 3.50 

Wales (n = 50) 
Female (n = 23) 16.15 ±	0.32 23.86 ± 2.69 

Male (n = 27) 16.11 ±	0.31 23.65 ± 4.66 

Finland (n = 47) 
Female (n = 23) 16.18 ±	0.49 20.68 ± 2.48 

Male (n = 24) 16.44 ±	0.37 20.94 ± 2.49 

 

4.4.5 Analyses 

4.4.5.1 Landmarks only 

Using MATLAB R2017b, the 21 landmarks for each of the subjects were plotted as 

scatter plots (x- against y- for a front view and z- against y- for a profile view).  The 

mean of landmarks for each group were also visualised using MATLAB 2017b.  The 

differences were visualised using scatter plots (x- against y- for a front view and z- 

against y- for a profile view).  The standard deviations were calculated in Excel v16.37 

and visualised as tables.  MANOVA was not carried out due to multicollinearity in the 

landmark data and the number of landmarks exceeding the number of subjects per 

group in the geographical location analysis (Tabachnick and Fidell 1996). 

 

4.4.5.2 Conventional Principal Component Analysis  

Conventional PCA is explained in 2.9 Analysis of 3D facial landmarks (p. 40). 

Conventional PCA was carried out for two purposes.  Firstly, to provide a comparison 

to mPCA and explore the potential benefits of mPCA in the data exploration phase.  

The second purpose was to carry out dimension reduction to facilitate MANOVA.  

Conventional PCA was conducted on the raw landmarks using the “pca” function in 

MATLAB R2017b.   

 

After inspection of the eigenvalue plot, 15 PCs were explored in further detail.  Many 

methods have been proposed to determine how many PCs to discard.  In this thesis, 

the method was based on Cattell’s scree test for factor analysis (Cattell 1966).  The 
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eigenvalues of each of the PCs were visualised with the PCs discarded after the curve 

began to plateaux (Figure 18).  This is an efficient, flexible method for choosing which 

eigenvalues to explore further.  However, it is subjective.   

 

Figure 18: Eigenvalue plot showing the pattern of eigenvalue magnitudes.  PC1 represents the 
most variation in the dataset.  PC63 explains the least.  The curve begins to plateaux at PC15. 

 

The component scores were standardised by subtracting the grand mean and dividing 

by the standard deviation (square root of the respective eigenvalue).  MANOVA was 

carried out on the standardised component scores in SPSS v25 to determine inference.  

Univariate ANOVAs were also carried out to determine how the PCs differed with 

geographical location.  These were defined in the SPSS output as “tests of between-

subjects effects” after implementation of MANOVA. Bonferroni correction was used 

to account for multiple testing, with significance set at 0.05/15 = 0.003.  The 

standardised component scores that met the significance threshold were explored in 

further detail.  As the scope of this analysis was primarily to provide a comparison 

with mPCA, post-hoc Tukey tests were not applied. 

 

The difference in the mean standardised components scores for each grouping were 

visualised via scatter plots, generated in MATLAB R2017b.  Colour coding was used 

to highlight differences due to geographical location and sex.  The facial shape 

differences associated with each PC were also visualised via scatter plot.  The square 

root of the respective eigenvalue and eigenvectors were added and subtracted to the 
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mean of the landmarks to determine the magnitude and direction of variation at each 

landmark.   

 

4.4.5.3 Discriminant Function Analysis 

DFA is explained in 2.9 Analysis of 3D facial landmarks (p. 40).  A “rule of thumb” 

with regards to sample sizes for DFA is that the number of subjects per group should 

be at least four times the number of landmarks (Stella 2019).  Others have suggested 

that the size of the smallest group should be greater than the number of outcome 

variables (Tabachnick and Fidell 1996).  Given that the former is more conservative, 

it was used to demonstrate the possible limitations of DFA in the context of data sets 

with large numbers of outcome variables.   

 

DFA was conducted in SPSS v25 on the standardised component scores rather than 

the landmark data given the sample size restriction a minimum of four times the 

subjects per group compared to the landmark data (Stella 2019). The scores were 

grouped by geographical location for the first analysis and sex for the second.  Three 

discriminant functions (DFs) were possible for geographical location (four groups 

minus one) and one DF when assessing sex (two groups minus one).  The DF scores 

were visualised using scatter plots in MATLAB R2017b.  Inference was determined 

via Wilks Lambda in SPSS v25. 

 

4.4.5.4 Multilevel Principal Compenent Analysis 

mPCA is explained in 2.9 Analysis of 3D facial landmarks (p. 40).  A three-level, non-

nested mPCA model was developed utilising the median for the covariance matrices 

– geographical location (level one), sex (level two) and within-group variation (level 

three).  The model structure is summarised in Figure 19.  Although geographical 

location was placed a level one and sex at level two, as this is a non-nested model, this 

placement is interchangeable and non-hierarchical.  The component scores were 

constrained within the model to a maximum and minimum of 3SD from the mean.  

The component scores were standardised by subtracting the grand mean of the 

component scores and dividing by the square root of the respective eigenvalue (the 

standard deviation).    
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Figure 19: Three-level mPCA model for study one.  There is no hierarchy between levels one 
and two in a non-nested model.  

 

The component scores were calculated using all model levels simultaneously.  This is 

possible using MATLAB’s Global Optimizer to fit to the final model.  100,000 

iterations were used to find the best solution for the component scores for each subject, 

at each level.   The standardised component scores for each group were visualised as 

scatter plots in MATLAB R2017b to determine patterns in the data.  The importance 

of each PC at each level (and therefore each variable) was expressed as a percentage 

of total variation: 

 
!"#$%&'"	&)*+,%$-."	+/	'$,&$0#"	(%	%+%$#	'$,&$%&+-)

= 		 (Σ(Eigenvalues	variable	of	interest))/(Σ(All	eigenvalues	in	model)) 		× 100 

 

The facial differences explained by each PC were assessed by adding and subtracting 

the square root of the respective eigenvalue/ eigenvector to the mean facial shape of 

all the subjects.  The differences were visualised as scatter plots in MATLAB R2017b. 

 

MANOVA was used to determine inference at each level of the model.  As MANOVA 

can be sensitive to outliers and to provide a robust test in the presence of non-normally 

distributed component scores, an in-house bootstrapping protocol was used in 

MATLAB R2017b to check the p-values.  Component scores were generated via the 

“datasample” function in MATLAB R2017b which randomly subsamples the data 

with replacement. 1000 subsamples were generated via this procedure to find a p-value 

of precision 10-4.  

Geographical	
location • Level	1

Sex • Level	2

Within-
group	

variation
• Level		3
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4.5 RESULTS 

4.5.1 Influence of geographical location 

4.5.1.1 Landmarks only 

The differences in the landmark data, grouped by geographical location, can be 

visualised in Figure 20.  The mean of each landmark and the associated standard 

deviations are summarised in Appendix 2.  In the transverse direction (x-axis), there 

is very little variation in the midline.  The Croatians are most differentiable at the 

orbits, presenting with increased orbital widths and therefore a reduced distance 

between the eyes.  The difference between the Croatians and the other populations is 

between 2-3mm and with the biggest difference between the Croatians and the 

Finnish.  The differences are consistent across the sexes.  The English appear most 

differentiable at the corners of the mouth by as much as 4mm.  This is consistent across 

both sexes; however, the English females have a wider mouth than the English males.   

 

In a vertical direction (y-axis), the landmarks in the midline demonstrate larger 

variation in comparison to the x-axis.  This is true between and within the groups.  The 

largest difference is between the Finnish population and the others at nasion, with the 

Finnish population presenting with a more inferior nasion position by 3-4mm.  The 

Finnish females have the most inferior nasion position. 

 

In the anteroposterior direction (z-axis), the English and Finnish populations appear to 

be the subtly more class II, with a retrusive pogonion in comparison to the other 

populations by approximately 1mm.  The Croatians appear to have the most prominent 

pronasale by 2-3mm.  This is particularly true of the Croatian males.  The corners of 

the eyes also appear more inset in the Croatians (1-2mm).   

 

When visualising the overall mean, and therefore attempting to determine the broad 

differences between the groups, the Croatians are perhaps most distinguishable.  

However, as GPA centres the faces on the mean of all the faces, the overall mean for 

each population is almost zero.   It is therefore challenging to summarise the overall 

differences between the groups as each landmark requires investigation.   
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Figure 20: The 21 landmarks (facial meshes processed via GPA with scaling) grouped by 
population.  Both between-group and within-group variation can be visualised.  (a) All of the 
landmarks are visualised. (b) The landmark means are visualised. (c) The overall mean of the 
landmarks is visualised (the means are almost zero as the GPA scaling procedure centres the 
faces on the mean), thus does not help distinguish between the groups. 
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4.5.1.2 Conventional Principal Component Analysis  

The MANOVA model was significant at a 0.05 level.  Of the 15 standardised PCs 

assessed in further detail, PC2-10 were found to be significant at a 0.003 level with 

regards to geographical location using univariate ANOVAs (Table 6).  The Croatians 

were clearly separated from the other populations at PCs 2, 4, 7 and 9.  The English 

were separated at PCs 4, 5, 6, 8 and 10.  The Welsh were separated at PCs 7, 9 and 10.  

The Finnish were separated from the other geographical locations at PCs 3 and 8 

(Figure 21).  As can be seen in Figures 21 and 22, many plots require analysis to draw 

any conclusions from the data.  The facial differences are summarised in Table 6.   The 

plots used to form this summary can be found in Appendix 2.   

 

Table 6: Total variation explained by each PC and significance level of difference in 
standardised component scores (geographical location).  The measurements refer to the 
difference between the mean shape plus/minus the respective eigenvalue/vector 

PC % Total 
variation p-value  Facial differences for PCs that were significant following 

ANOVA 
PC1 18.75 0.025 N/A 

PC2 12.23 <0.003* 
Croatian: More prominent pronasale (3mm), subnasale (2.5mm) 
and pogonion (2.5mm), more deep-set eyes (2.5mm) 

PC3 9.49 <0.003* 
Finnish: More superior nasion (3mm) and glabella (2mm), less 
prominent glabella 

PC4 7.89 <0.003* 
English: Narrower mouth (3.5mm), more superior nasion and 
glabella (2mm) 

PC5 7.17 <0.003* 
English: More superior pogonion (2mm), more inferior pronasale 
(1.75mm) 

PC6 5.92 <0.003* 

Croatian: More prominent (3.5mm) and more inferior pogonion 
(2mm) 
English: Less prominent (3.5mm) and more superior pogonion 
(2mm) 

PC7 4.54 <0.003* 
Croatian: Narrower eyes (1.5mm) 
Welsh: Wider eyes (1.5mm) 

PC8 3.26 <0.003* 

English: More prominent corners of mouth (1.5mm), more 
superior nasion (1.5mm) 
Finnish: More inset corners of mouth (1.5mm), more inferior 
nasion (1.5mm) 

PC9 2.96 <0.003* 
Croatian: More inferior pogonion (2mm) 
Welsh: More superior pogonion (2mm) 

PC10 2.56 <0.003* 
English: More inferior glabella (1mm) 
Welsh: More superior glabella (1mm) 

PC11 2.34 0.003 
English: More prominent palpebrae superius (1mm) 
Welsh: More inset palpebrae superius (1mm) 

PC12 2.18 0.104 N/A 

PC13 1.76 0.201 N/A 

PC14 1.62 0.020 N/A 

PC15 1.49 0.242 N/A 

* Significant at 0.003 level (Bonferroni correction) 
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Figure 21: Scatter plots showing the group standardised component score means (labelled to 
highlight clustering due to geographical location) in each PC.  PC1 is plotted to aid visualisation 
of the group separation in PC2.  Interpretation of 9 PCs is required.  As the influence of 
geographical location is contained in all 9 PCs, it challenging to ascertain the total difference 
between each of the groups. 
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Figure 22: The number of facial plots that require interpretation when conventional PCA is 
used.  These are presented to demonstrate the number of plots only, rather than the clinical 
differences which are exaggerated by a factor of four to make them easier to resolve.  NB. Plots 
in profile also require interpretation therefore doubling the number presented here. 
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4.5.1.3 Discriminant Function Analysis 

Along discriminate function 1 (DF1), the Croatian population was clearly separated 

from the other geographical locations.  The English and Finnish populations were 

clearly separated along DF2, whilst the Welsh were distinguishable from the other 

populations along DF3 (Figure 23).  The conventional PCs most associated with the 

Croatian population were PCs 2,4 and 6.  PC7 and 9 were associated with the other 

three populations.  Along DF2, conventional PC3 and 8 were associated with the 

English whereas PC5, 6, 7 and 10 were associated with the Finnish population.  The 

coefficient magnitudes for DF3 were very small, with all the PCs associated with the 

Welsh population.  Significance was found following inferential testing with Wilks 

Lambda (p<0.01).  Interpreting the facial differences after conducting conventional 

PCA and DFA becomes more challenging as two different dimension reduction 

techniques have been used.   

 

  

 

Figure 23: Scatter plots showing the group means of each of the populations in each DF after 
conducting conventional PCA followed by DFA.  Only two plots require interpretation. 
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4.5.1.4 Multilevel Principal Component Analysis  

As age is likely to be a confounding factor at this level, with the Croatians older than 

the other groups, mPCA was conducted with and without the Croatians included.  

When the Croatians were included in the analysis, the three retained PCs at a 

geographical location level explained 14.59% of the total variation.  Only one PC 

could be retained for sex, which explained 9.98% of the total variation.  Within-group 

variation explained the most variation.  The retained 15PCs explained 61.55% of the 

total variation.   When the Croatians were excluded from the analysis due to their older 

age, the two retained PCs at a geographical location level explained 11.34%, sex PC1 

explained 10.93% and the 15 PCs retained at the within-group level 64.70% of the 

total variation.  Eigenvalues via mPCA are visualised in the eigenvalue plots (Figure 

24). 

 

 

 

Figure 24: Eigenvalue plot for mPCA (a) with Croatians included and (b) with Croatians 
excluded.  With the Croatians included, the importance of the geographical location eigenvalues 
is slightly increased. 
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The scatter plots present the separation of the standardised component scores for each 

geographical location (Figure 25).  The facial differences explained by each of the PCs 

are summarised in Table 7.  The plots that the summaries were derived from are 

presented in Appendix 3.  As discussed previously, mPCA models were developed 

with and without the Croatian sample.  With the Croatians excluded, subtle differences 

were seen in comparison to the analysis with the Croatians included (Table 7).  The 

differences in the standardised component scores were significant (bootstrapped 

MANOVA applied to component scores: p<0.001). 

 

With the Croatians included in the mPCA model, geographical location level PC1 

explained the difference between the Croatians and the other populations (Figure 25).  

The largest differences were in the position of the eyes, with the Croatian population 

presenting with the eyes closer together (1.5-2.5mm each side).  The Croatians also 

presented with narrower mouths, a more prominent pronasale and the corners of the 

eyes more inset (all approximately 2mm differences) (Table 7).   

 

Geographical location PC2 (Croatians included) and geographical location PC1 

(Croatians excluded) explained the differences between the English and Finnish 

samples (Figure 25).  The largest differences were seen in the vertical position of 

nasion (2.5mm), followed by horizontal position of the corners of the mouth (2-2.5mm 

each side).  There was little variation in profile (Table 7).   

 

Geographical location PC3 (Croatians included) and geographical location PC2 

(Croatians excluded) explained the differences between the Welsh sample and the 

other samples (Figure 25).  Differences in the landmarks reduced considerably at this 

PC, with most of the variation seen in the vertical position of nasion (2mm) (Table 7).   
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Figure 25: Scatter plots of the standardised component scores for mPCA population PC1, PC2 
and PC3 (with and without the Croatians included in the model) 
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Table 7: Summary of the clinical differences along each geographical location PC after mPCA 

Analysis Geographical 
location PC 

% Total 
variation 

Summary of the differences explained by each PC where one 
population was isolated  

With 
Croatians 

PC1 7.44 

Croatian: Eyes closer together (1.5-2.5mm each side), mouth 
narrower (2mm), pronasale more prominent (2mm), corner of 
eyes more inset (2mm) 
Comparison: English/Welsh/Finnish 

PC2 4.77 

English: Wider mouth (2-2.5mm each side), more superior 
nasion (2mm) 
Finnish: Narrower mouth (2-2.5mm each side), more inferior 
nasion (2mm) 

PC3 2.38 Welsh: More superior nasion (2mm) 
Comparison: Croatian/English/Finnish 

Without 
Croatians 

PC1 7.39 

English: Wider mouth (2-3.5mm each side), more superior 
nasion (2.5mm), wider, closer together and more prominent eyes 
(1.5-2mm) 
Finnish: Narrower mouth (2-3.5mm each side), more inferior 
nasion (2mm), narrower, further apart and less prominent eyes 
(1.5-2mm) 

PC2 3.95 
Welsh: More superior nasion (2.5mm), more superior glabella 
(1.5mm), narrower mouth (1.5mm each side), more prominent 
pogonion (1mm) 

 

4.5.2 Overall differences due to geographical location 

In all the analyses the Croatians were most distinguishable.  The findings suggest that 

the position and width of the eyes, width of the mouth, and nose length all differed the 

most between the geographical locations.   Table 8 presents a summary of the 

differences explained by each technique.   

 

Given that 9 PCs were explored using conventional PCA it is unsurprising there are 

more descriptions using this technique, however these descriptions sometimes 

contradict the findings of the other analyses.  Most notably, the finding that the English 

population has a narrower mouth at PC4.  Not only does this contradict the finding of 

mPCA and the raw landmarks, but also the finding of conventional PC1 which showed 

the English population having wider mouths.  This finding was not displayed here as 

PC1 did not reach significance at a 0.003 level; however, the associated plots are 

available in Appendix 3.   

 

For this reason, the results of conventional PCA are interpreted with caution.  The 

features that are most distinguishable in each population using the raw landmark and 

mPCA results are presented in Figure 26. 
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Table 8: The largest facial differences due to geographical location as explained by each of the 
analyses 

 
 Raw landmarks Conventional PCA mPCA 

Glabella Subtle differences  Croatian: More inferior glabella 
English: Contradiction 
Welsh: More superior glabella  
Finnish: More superior and less 
prominent glabella 

Subtle differences 
 

Eyes Croatian: Eyes 
wider, closer 
together and more 
inset 

Croatian: More inset eyes, 
narrower eyes 
English: More prominent 
palpebrae superius  
Welsh: More inset palpebrae 
superius, wider eyes  

Croatian: Eyes wider, 
closer together, corner of 
eyes more inset  
 

Nose Croatian: Pronasale 
more prominent 
Finnish: More 
inferior nasion 

Croatian: More inferior nasion, 
more prominent pronasale, more 
prominent subnasale 
English: More superior nasion, 
more inferior pronasale 
Finnish: More superior nasion, 
more inferior nasion  

Croatian: Pronasale more 
prominent  
English: More superior 
nasion  
Welsh: More superior 
nasion  
Finnish: More inferior 
nasion  

Mouth English: Wider Croatian: Wider mouth  
English: More prominent 
corners of mouth, narrower 
mouth 
Finnish: More inset corners of 
mouth 

Croatian: Narrower  
English: Wider  
Finnish: Narrower  

Chin Subtle differences Croatian: More prominent and 
more inferior pogonion 
English: Less prominent and 
more superior pogonion  
Welsh: More superior pogonion  

Subtle differences 
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Figure 26: Overview of largest differences in facial shape due to geographical location across all analyses 
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4.5.3 Influence of sex 

4.5.3.1 Landmarks only 

The differences in the facial shapes of the male and female groups when assessing the 

landmarks are visualised in Figure 27.  The mean of each landmark and the associated 

standard deviations are summarised in Appendix 2.  In the transverse axis (x-axis), 

there are subtle differences between the sexes at the orbital landmarks.  Females have 

slightly wider eyes (approximately 1mm) recorded by exocanthion position. 

 

In the vertical axis (y-axis), glabella is more superiorly positioned in the female 

subjects.  The differences are in the region of 1mm in the Croatian and English 

populations, and slightly more pronounced at 2mm in the Welsh and Finnish 

populations.  The pogonion is also slightly more superiorly positioned in females and 

therefore the lower facial height may be slightly reduced compared to males.  This 

appears to be isolated to the English and Croatian populations, in the region of 2mm. 

 

The differences in the anteroposterior direction (z-axis) are evident in glabella, nasion, 

infra-orbital landmarks and pronasale.  The differences in glabella are in the region of 

1.5mm and are consistent across the populations with glabella more prominent in 

males.  Sexual dimorphism in the prominence of nasion is most pronounced in the 

English population (1.5mm) and least pronounced in the Croatian populations 

(0.7mm) with nasion more prominent in the male populations.  Differences in the 

prominence of the infraorbital landmarks are again more pronounced in the English 

populations (2mm). However, these differences are consistent across the populations 

with the infraorbital landmarks more pronounced in the female subjects.  Pronasale is 

more prominent in the male subjects by 1mm compared to the females in all 

populations. 

 

When assessing the overall mean, there appears to be a clear difference between the 

male and female subjects.  However, as was seen with the geographical location 

analysis, the difference is of the magnitude of x10-6mm.   
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Figure 27: The 21 landmarks grouped by sex.  Both between-group and within-group variation 
can be visualised.  The main differences appear to be in the z-axis 
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4.5.3.2 Conventional Principal Component Analysis  

The MANOVA model was found to be significant at a 0.05 level.  Of the 15 PCs 

assessed PC1, PC3, PC5 and PC7-8 were found to be significant at a 0.003 level with 

regards to sex using univariate ANOVAs (Table 9).  Bonferroni correction was used 

on the significance level to account for multiple testing.  Clustering is evident in all 

the significant PCs (Figure 28).  A summary of the facial differences explained by all 

the significant PCs is presented in Table 9.  The plots and figures used to generate this 

summary can be found in Appendix 3.    

 

Table 9: Total variation explained by each PC and significance level of difference in 
standardised component scores (sex) 

PC % Total 
variation 

p-value 
(univariate 
ANOVAs) 

Facial differences for PCs that were significant 
following ANOVA (females v males) 

PC1 18.75 <0.003* Wider eyes (3mm), wider mouths (2.5mm), less 
prominent pronasale (2mm) 

PC2 12.23 0.731 N/A 

PC3 9.49 <0.003* 
More inferior nasion (3mm), more inferior (2mm) 

and less prominent glabella (2.5mm), less prominent 
pogonion (2mm) 

PC4 7.89 0.014 N/A 

PC5 7.17 <0.003* 
More inferior pogonion (3mm), more superior 

pronasale (2mm) 
PC6 5.92 0.074 N/A 

PC7 4.54 <0.003* Eyes wider apart (1.5mm) 

PC8 3.26 <0.003* 
More inset corners of mouth (1.5mm), more inferior 

nasion (1.5mm) 
PC9 2.96 0.188 N/A 

PC10 2.56 0.739 N/A 

PC11 2.34 0.192 N/A 

PC12 2.18 0.302 N/A 

PC13 1.76 0828 N/A 

PC14 1.62 0.531 N/A 

PC15 1.49 0.797 N/A 

 
* Significant at 0.003 level (Bonferroni correction) 
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Figure 28: Scatter plots of the standardised component scores for conventional PCA PC1, PC3, 
PC4, PC5, PC7 and PC8 (labelled for clustering due to sex). PC4 is plotted only to help 
visualisation of PC5. 
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4.5.3.3 Discriminant Function Analysis  

Only one DF is possible when assessing sex as there are two groups.  Clear clustering 

was evident (Figure 29).  As was discussed with regards to the analysis on 

geographical location, it is more difficult to ascertain the clinical differences in the 

facial shapes as two different dimension reduction techniques have been used.  The 

differences were significant following inferential testing with Wilks Lambda (p<0.01). 

 

 
 

Figure 29: Visualisation of DF1 following conventional PCA 

 

4.5.3.4 Multilevel Principal Component Analysis 

With the Croatians included, sex explained 9.96% of the total variation.  With the 

Croatians excluded, sex explained 10.92% of the total variation.  At the sex level, only 

one PC is possible due to the rank of the matrices (as there are only two groups, only 

one PC is possible).  The average component scores of the females and males were 

clearly separated in both analyses (Figure 30), demonstrating that there are clear 

differences between the groups.  The differences in the standardised component scores 

were significantly different (bootstrapped ANOVA applied to component scores: 

p<0.001).  These differences appear to be mostly in the orbital landmarks and vertical 

glabella position in a frontal view, with some more subtle differences in the vertical 

position of pogonion and horizontal position of the corners of the mouth.  In profile, 

the variation is mostly present in glabella, nasion, pronasale and pogonion 

prominence.  There also appears to be differences in orbital prominence, but this is 

harder to resolve (Figure 31). 

With 
Croatians  

 
Without 
Croatians  

 

Figure 30: Scatter plots of the standardised component scores for mPCA sex PC1 (with and 
without the Croatians included in the model) 
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Figure 31: Visualisation of the facial differences due to sex (mPC1)
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4.5.3.5 Overall differences due to sex 

The differences in each of the facial features as determined by visualising the raw 

landmarks, using conventional PCA and mPCA are summarised in the Table 10 and 

Figure 32.  There is a consensus between each of the analyses with the exception of 

the vertical position of glabella.  The differences were more difficult to ascertain with 

conventional PCA due to the number of PCs to interpret.  The differences in pogonion 

prominence were different in two of the PCs.  The clinical differences explained by 

the raw landmarks and using mPCA are in agreement.  This provides validity to the 

mPCA results.   

 

Table 10: The facial differences due to sex as explained by each of the analyses 

 Raw landmarks Conventional PCA mPCA 

Glabella Females more superior and 
less prominent 

Females more inferior and 
less prominent 

Females more 
superior and less 
prominent  

Eyes Females larger and less 
prominent 

Females wider eyes and eyes 
wider apart 

Females larger 
and less 
prominent 

Nose Females less prominent 
pronasale and nasion 

Females less prominent 
pronasale and more inferior 
nasion 

Females less 
prominent 
pronasale and 
nasion 

Mouth Females mouth wider Females wider mouth and 
more inset corners of mouth 

Females mouth 
wider 

Chin Females more superior Females more superior 
Conflicting results with 
regards to prominence 

Females more 
superior 
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Figure 32: Overview of differences in facial shape due to sex that are confirmed across all analyses   
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4.5.4 Within group variation 

One of the strengths of mPCA is ability to assess within-group variation (i.e., all 

effects apart from geographical location and sex) at a separate level of the model.  

When the Croatians were included, within-group variation explained 66.63%.  When 

the Croatians were excluded, within-group variation explained 69.89% of the total 

variation.  As this level concerns within-group variation, there is expected to be little 

between-group variation.  It therefore follows that the group centroids are centred at 

the origin (p>0.05 with bootstrapped MANOVA).  The small amount of variation seen 

may be due to slightly different group sample sizes (Figure 33).   

 

Figure 33: Standardised component scores for PC1 and PC2 (within-group variation level).  
Croatians included. 

 

The facial differences explained by each of the within-group variation level PCs show 

very similar landmark variations to those seen in conventional PCA and highlight that 

most of the variation in conventional PCA is due to within group variation, rather than 

between group variation.  All the landmarks show variation at PC1, with the main 

differences in the orbits (particularly in the x-axis, followed by the vertical position).  

The vertical position of the corners of the mouth are also clear.  There was very little 

difference in the profile.  At PC2, the vertical position of the nose, mouth and pogonion 

show the most variation (Figure 34).  There are 22 more PCs that could be analysed at 

this level. However, given that the between group variation is of most interest here, 

the other PCs have not been visualised. 
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Figure 34: Interpretation of PC1 and PC2 at the within-group variation level.  Mean face +/- 
square root of the respective eigenvalue/eigenvector. 
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4.6 DISCUSSION 

The facial differences explained by geographical location, sex and within-group 

variation are discussed in General Discussion (7.1 Facial differences, p. 165).  The 

discussion below focuses on the primary objective of this study: to assess the 

feasibility of mPCA prior to the investigation of more variables in the ALSPAC 

cohort. 

 

The use of the landmarks alone was the easiest to assess with regards to the real clinical 

differences between the facial shapes of the groups as minimal mathematical 

techniques have been used.  The plots show both between and within-group variation. 

However, these become more difficult to interpret as the number of groups increases.  

As caution is required for MANOVA, this was not implemented here. 

 

Conventional PCA does not appear particularly useful from a visualisation perspective 

as the number of plots increases with the use of this technique.  As the influence of 

geographic location, sex and within-group variation is mixed in each of the plots, it is 

difficult to attribute the differences visualised at each PC to one variable in isolation.  

Furthermore, the percentage variation explained by each of the PCs is not particularly 

useful as it cannot be attributed to one variable in isolation.  Conventional PCA does 

however facilitate the use of MANOVA to determine inference.   

 

Using conventional PCA also allows DFA to be used as the dimension reduction 

reduces sample sizes to within those needed to meet the assumptions of DFA.  DFA 

increases the separation of the group means due to its supervised nature and makes it 

clear which groups are most distinguishable.  Inference is subsequently possible via 

Wilks Lambda.  It is however more challenging to interpret the facial differences as 

two mathematical techniques have been used and would require multiple steps to be 

resolved.  The percentage of the total variance explained by each DF provides little 

meaningful information in the context of facial shape. 

 

mPCA shows a very similar pattern of group mean separation to DFA, which provides 

validity.  By using the maximum variance, the group means are separated well, again 

allowing easy visualisation of the groups that are most distinguishable.  The 
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percentages highlighting the variation explained by each variable is much more 

meaningful than that possible with conventional PCA and DFA.  However, as the 

maximum variation in the data set is fundamental to the technique, mPCA may be 

susceptible to overfitting, meaning the results may not be generalisable to other 

samples from the population.  It is hoped that the linear nature of mPCA reduces this 

risk.  A further disadvantage of mPCA is that the number of retained PCs is limited to 

the number of groups minus one.  This may limit the information available for 

analysis, although this does also make the number of plots for visualisation more 

manageable. 

 

4.7 SUMMARY 

mPCA appears to be a useful tool for investigating the influence of categorical 

variables on facial shape research.  The statistical tests used are summarised in Table 

11.  As mPCA can maximise the differences between groups and allow these to be 

visualised clearly using scatter plots, mPCA could be a useful tool for investigating 

variables that may have a small influence of facial shape.  Furthermore, the possibility 

of attributing a percentage importance to each variable provides useful information for 

comparing the influence of different variables.  Given that most of the variation was 

unexplained by geographical location or sex, further work is required to ascertain 

which other variables influence facial shape.  It is for these reasons that mPCA is used 

in the next study to assess the influence of sex, height, BMI, age (14-16 years old), 

pubertal stage, metabolic factors, breathing disorders, maternal smoking during 

pregnancy and maternal alcohol consumption during pregnancy on the facial shape of 

English adolescents. 

 

Table 11: Summary of results for study one 

Test P-value Threshold for 
significance 

Null 
hypothesis Geographical 

location 
Sex 

Landmarks  N/A 
Conventional PCA and 
MANOVA 

<0.001 <0.001 0.025 Reject 

DFA and Wilks Lambda <0.001 <0.01 0.025 Reject 
mPCA and MANOVA <0.001 <0.001 0.025 Reject 
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5 STUDY 2: USING MULTILEVEL PRINCIPAL COMPONENT 

ANALYSIS TO INVESTIGATE THE INFLUENCE OF MULTIPLE 

CATEGORICAL AND CONTINUOUS VARIABLES ON THE 

FACIAL SHAPE OF ENGLISH ADOLESCENTS 

 

5.1 INTRODUCTION 

In this study, mPCA will be used to explore the influence of multiple categorical and 

continuous variables on facial shape.  Namely, sex, height, BMI, age, pubertal stage, 

metabolic factors, atopy, breathing disorders, maternal smoking during pregnancy and 

maternal alcohol consumption during pregnancy.  Many of these variables have been 

suggested previously as having the possibility of influencing facial shape, but the 

methodology used in these previous studies may not have maximised the differences 

explained by each of the variables.  It is therefore possible that the influence of these 

variables has previously been understated and subtle differences missed.  As suggested 

above, mPCA is a useful tool for maximising and visualising differences between 

groups.  It also provides a method whereby variables can be compared with regards to 

their relative importance in influencing facial shape.  For these reasons, mPCA will 

be utilised here.  This also provides an opportunity to assess the ability of mPCA to 

investigate continuous variables as well as categorical variables. 

 

5.2 AIMS 

• To explore the suitability of mPCA as an analytical tool for both categorical and 

continuous variables. 

• To determine the influence of sex, height, BMI, age, pubertal stage, metabolic 

factors, breathing disorders, maternal smoking during pregnancy and maternal 

alcohol consumption during pregnancy on the facial shape of English adolescents 

using mPCA. 
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5.3 NULL HYPTHESES 

• Sex is not associated with the facial shape of English 14 to 16 year olds. 

• Height is not associated with the facial shape of English 14 to 16 year olds. 

• BMI is not associated with the facial shape of English 14 to 16 year olds. 

• Age (14-16 years old) is not associated with the facial shape of English 14 to 16 

year olds. 

• Pubertal stage (Tanner Stage 3-5 due to sample sizes) is not associated with the 

facial shape of English 14 to 16 year olds. 

• Metabolic factors (fasting insulin, fasting glucose, cholesterol, triglycerides, HDL, 

LDL and VLDL) are not associated with the facial shape of English 14 to 16 year 

olds. 

• Atopy is not associated with the facial shape of English 14 to 16 year olds. 

• Breathing disorders (asthma from 0-3.5 years old, asthma at 7.5 years old and hay 

fever) are not associated with the facial shape of English 14 to 16 year olds. 

• Maternal smoking before pregnancy and/or during the 1st or 2nd trimesters is not 

associated with the facial shape of English to 14 to 16 year olds. 

• Maternal alcohol consumption before pregnancy and/or during the 1st or 2nd 

trimesters is not associated with the facial shape of English 14 to 16 year olds. 

 

5.4 METHODOLOGY OVERVIEW 

An overview of the methodology used in this study is provided below.   

 

5.4.1 3D facial scan acquisition, processing and landmarking 

The 3D facial scans were acquired and processed as documented previously.  GPA 

was conducted on the 3D facial scans.  Scaling of the images removed the influence 

of size, thus isolating the influence of shape (3.4. Facial scan processing (p. 53).  Initial 

analyses of the eigenvalue magnitudes utilised 21 manually placed landmarks (3.5 

Landmarking, p. 52).  The landmarks were placed by one researcher who underwent 

a calibration exercise controlled by an external researcher.  More detailed analyses 

involved 1000 quasi-landmarks placed automatically using a publicly available 

MATLAB algorithm (3.5 Landmarking, p. 52).  
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5.4.2 Variables 

Twenty-three variables were assessed in this chapter.  Information on the collection of 

these variables is detailed in 3.6 Variables (p. 56).  The outcome variables were 

initially 21 manually placed landmarks then 1000 automated quasi-landmarks. 

 

5.4.3 Data cleaning and exploration 

Subjects were excluded if they had obvious craniofacial dysmorphology or their 3D 

facial scan was of insufficient quality.  Twins and triplets were excluded alongside 

those with missing data.  Subjects reporting a pubertal stage of two or three were 

excluded due to small sample sizes (3.7.1 Exclusions, p. 58).  The 21 manually placed 

landmarks were normally distributed (3.7.2. Distribution of landmark data, p. 59). 

Multicollinearity was assumed as this was present for the landmark data in study one.  

Although outliers were detected in the 21 landmarks, the subjects were included 

following inspection of the facial shells and assessing the data set without exclusions 

due to missing data (3.7.3.1 Outliers in landmark data, p. 62).  No outliers were 

detected at a 4SD level for the quasi-landmarks .  Outliers in the variable data were 

categorised into the nearest grouping during the discretisation process (3.7.5 

Discretisation, p. 71) and therefore did not pose an issue.  Correlations were present 

between some of the 23 variables assessed (3.7.4.2 Correlation between the variables, 

p. 66).  The implications of this are discussed later. 

 

5.4.4 Final sample 

The English population that the sample is drawn from is described in 3.2 Populations 

(p. 51).  In total, 1411 subjects were included in the mPCA models.  The final 

categories used in the mPCA models following discretisation are detailed in Tables 12 

and 13.  Sample size calculations were not possible due to the novelty of the 

methodology. 
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Table 12: Descriptive analysis, sample sizes and categories for the data that was originally 
continuous  

  

1Heart UK (2021)  2Editor (2019) 3(Buppajarntham 2019) 

 

 Min Max Mean 5% 
Trimmed 
Mean 

Median SD Distribution Category  Sample 
Size 

% 

Age (months) 174.00 202.00 184.46 184.29 184.00 2.550 Right 
skewed 

<183 536 38.0 
184 - 186 660 46.8 
187 - 189 156 11.1 
190 - 192 35 2.5 
>193 24 1.7 

Height (cm) 145.00 200.10 169.58 169.403 169.00 8.316 Normal 145 – 154 34 2.4 
155 - 164 398 28.2 
165 - 174 611 43.3 
175 - 184 310 22.0 
185+ 58 4.1 

BMI 14.700 39.647 21.465 21.203 20.745 3.461 Right 
skewed 

Underweight 219 15.5 
Healthy 1001 70.9 
Overweight 153 10.8 
Obese 38 2.7 

Cholesterol 
(mmol) 

1.250 6.870 3.765 3.740 3.730 0.643 Normal <=3.00 149 10.6 
3.01 – 3.50 349 24.7 
3.51 – 4.00 466 33.0 
4.01 – 4.50 290 20.6 
4.51 – 5.00 106 7.5 
>= 5.01 
(Unhealthy1) 

51 3.6 

Triglycerides 
(mmol) 

0.130 4.600 0.823 0.740 0.740 0.347 Right 
skewed 

<0.70 615 43.6 
0.70 – 0.89 358 25.4 
0.90 – 1.09 207 14.7 
1.10 – 1.29 106 7.5 
1.30 – 1.49 57 4.0 
1.50 – 1.69 30 2.1 
>=1.70 
(Unhealthy1) 

38 2.7 

VLDL 
(mmol) 

0.059 2.100 0.376 0.360 0.338 0.159 Right 
skewed 

<=0.20 83 5.9 
0.21 – 0.40 875 62.0 
0.41 – 0.60 339 24.0 
0.61 – 0.80 89 6.3 
>0.80 25 1.8 

LDL 
(mmol) 

0.230 5.467 2.095 2.069 2.045 0.550 Normal < 1.50 177 12.5 
1.51 – 2.00 485 34.4 
2.01 – 2.50 452 32.0 
2.51 – 3.00 223 15.8 
>3.00 
(Unhealthy1) 

74 5.2 

HDL 
(mmol) 

0.550 2.870 1.293 1.283 1.260 0.291 Normal <=1.00 
(Unhealthy 
for males1) 

212 15.0 

1.01 – 1.20 
(Unhealthy 
for females1) 

367 26.0 

1.21 – 1.40 370 26.2 
1.41 – 1.60 261 18.5 
1.61 – 1.80 129 9.1 
>1.80 72 5.1 

Glucose 
(mmol) 

3.500 6.800 5.200 5.198 5.200 0.344 Normal <4.5 19 1.3 
4.5 – 4.9 457 32.4 
5.0 – 5.4 720 51.0 
5.5 – 6.9 
(Prediabetes2) 

215 15.2 

Insulin 
(iu/l) 

1.517 62.170 10.067 9.676 9.135 5.049 Right 
skewed 

<5.00 159 11.3 
5.00 – 9.99 663 47.0 
10.00 – 14.99 400 28.3 
15.00 – 19.99 132 9.4 
20.00 – 24.99 45 3.2 
>=25.00 
(Unhealthy3) 

12 0.9 
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Table 13: Descriptive analysis, sample sizes and categories for the data that was originally 
categorical                                                                                                                                                 

 Original Category Category Used in Analysis Sample Size % 

Sex 
Male Male 636 45.1 

Female Female 775 54.9 

Pubertal Stage 

(Hair) 

Stage 1 Excluded (n=2) 

Stage 2 Excluded (n=8) 

Stage 3 Stage 3 59 4.2 

Stage 4 Stage 4 666 47.2 

Stage 5 Stage 5 686 48.6 

Pubertal stage 

(Genitals) 

Stage 1 Excluded (n=5) 

Stage 2 Excluded (n=14) 

Stage 3 Stage 3 147 10.4 

Stage 4 Stage 4 733 51.9 

Stage 5 Stage 5 531 37.6 

Asthma (0-42 

months) 

Never wheezed Never wheezed 1068 75.5 

Wheezed at 6 months but not 

42 months 

Wheezed at 6 months but not 
42 months 171 12.1 

Never wheezed 6 months but 

wheezed 42 months 

Never wheezed 6 months but 
wheezed 42 months 121 8.6 

Wheezed both 6 and 42 

months 

Wheezed both 6 and 42 
months 55 3.9 

Asthma (91 months) 
No No 1250 88.6 

Yes Yes 161 11.4 

Atopy 
No No 1125 79.7 

Yes Yes 286 20.3 

Hay fever 
No No 1290 91.4 

Yes Yes 121 8.6 

Alcohol before 

pregnancy 

0 No alcohol 66 4.7 

< 1 glass/week < 1 glass/week 510 36.0 

1+ glasses/week Weekly (1+ glasses) 656 46.4 

1-2 glasses/day Daily (1+ glasses) 168 13.0 

3-9 glasses/day Combined with 1-2 glasses/day (n=15) 

Alcohol 1
st
 trimester 

0 No alcohol 625 44.2 

< 1 glass/week < 1 glass/week 582 41.1 

1+ glasses/week Weekly (1+ glasses) 187 13.2 

1-2 glasses/day Daily (1+ glasses) 21 1.5 

3-9 glasses/day Combined with 1-2 glasses/day (n=3) 

Alcohol 2
nd

 trimester 

0 No alcohol 643 45.4 

< 1 glass/week < 1 glass/week 539 38.1 

1+ glasses/week Weekly (1+ glasses) 215 15.2 

1-2 glasses/day Daily (1+ glasses) 18 1.3 

Smoking before 

pregnancy 

(cigs/day) 

0 0  1124 79.4 

1-4 1-4  43 3.0 

5-9 5-9  52 3.7 

10-14 10-14  54 3.8 

15-19 15-19  62 4.4 

20-24 20+  80 5.6 

25-29 Combined into 20+ cigs/day (n=12) 

30+ Combined into 20+ cigs/day (n=9) 

Smoking 1
st
 

trimester 

(cigs/day) 

0 0  1216 85.9 

1-4 1-4  62 4.4 

5-9 5-9  47 3.3 

10-14 10-14  42 3.0 

15-19 15-19  31 2.2 

20-24 20+  17 1.2 

25-29 Combined into 20+ cigs/day (n=4) 

30+ Combined into 20+ cigs/day (n=1) 

Smoking 2
nd

 

trimester 

(cigs/day) 

0 0  1260 89.0 

1-4 1-4  42 3.0 

5-9 5-9  39 2.8 

10-14 10-14  35 2.5 

15-19 15-19  21 1.5 

20-24 20+  18 1.3 

25-29 Combined into 20+ cigs/day (n=3) 
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5.4.5 Analyses 

mPCA is detailed in 2.9 Analysis of 3D facial landmarks (p. 40).  Separate two-level, 

nested mPCA models were used to assess the influence of each of the 23 variables on 

the facial shape of the ALSPAC cohort.  These were run using in-house mPCA code 

in MATLAB 2017b.  The variable of interest was placed at level one of the models 

and within-group variation was placed at level two (Figure 35).  The median was used 

for the covariance matrices. 

 

 

Figure 35: Two-level mPCA model structure 

 

The importance of the each of the variables was assessed using the percentage of total 

variation explained by level one.  This was visualised as a bar chart in a similar fashion 

to a Manhattan plot.  Given that the 1000 landmark analyses explained more variation 

in general than the 21 landmark analyses, the 1000 landmark analyses were explored 

in further detail.  The component scores were standardised by subtracting the mean 

and dividing by the square root of the respective eigenvalue (standard deviation).  

These were visualised via scatter plot in MATLAB R2017b.  Inference was 

determined via ANOVA or MANOVA as appropriate with an additional 

bootstrapping step as outlined in study one (4.4.5.4 mPCA, p. 76).  Following 

Bonferroni correction to adjust for multiple testing (23 variables), significance was set 

at p<0.002.   

 

The facial differences explained by each of the variables were visualised using the 3D 

viewer class in MATLAB R2017b.  Differences between the average face plus/minus 

the square root of the respective eigenvalue and eigenvectors were visualised.   

Variable	of	
interest • Level	1

Within-
group	

variation
• Level	2
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5.5 RESULTS 

5.5.1 Percentage of total variation 

For most of the variables, the variation explained using 21 landmarks was less than 

the variation using 1000 landmarks.  This is to be expected for variables that are likely 

to influence the deposition of adipose tissue as opposed to the main facial features 

(eyes, nose and mouth).  To explore as much of the facial shape differences as possible, 

the 1000 landmark models were explored in further detail in this chapter rather than 

the 21 landmark models. 

 

Of the variables explored, four variables explained more than 5% of the total variation 

when 1000 landmarks were used in the mPCA models (sex, height, BMI and insulin).  

A further seven variables (triglycerides, cholesterol, VLDL, LDL, maternal smoking 

during the first trimester, maternal smoking during the second trimester and maternal 

alcohol consumption during the first trimester) explained more than 2% of the total 

variation (Figure 36).  

 

 

Figure 36: Percentage of the total variation explained by each variable in its own two-level 
analysis using both 21 landmarks and 1000 quasi-landmarks. 
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5.5.2 Sex 

Sex explained 17.31% of the total variation in the 1000 quasi-landmark model.  This 

was the largest of all the variables investigated.  The component scores were clearly 

separated along PC1 with the component scores significantly different between the 

two groups (p<0.001).   

 

The facial shape most representative of the female subjects had more prominent 

cheeks and therefore a round facial shape.  The midface was relatively retrusive by 

comparison.  The eyes were also more prominent in the female faces.  By contrast, the 

male faces had a more prominent midface in comparison to the cheeks.  This gives a 

narrower facial shape.  The brow-ridge and nose were larger in the male faces.  The 

shape of the chin in the male faces may represent a more prominent chin or a relatively 

larger facial shape, which was constrained by the scaling procedures carried out when 

processing of the faces.  This scaling procedure limits the information available on the 

magnitude of the differences.  It is therefore best to determine the differences relative 

to each other (Figure 37).   

 

 

  

 

Figure 37: Visualisation of the component scores and facial differences due to sex PC1.  Yellow 
= larger/ more prominent; blue = smaller, more retrusive. 
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5.5.3 Age (14-16 years old) 

Age explained 1.18% of the total variation in the 1000 quasi-landmark model.  The 

separation of the component scores followed no ordered pattern, with the latter two 

groupings at opposite ends of the PC1 axis.  At PC2, again there is no ordered 

separation.  The component scores were not significantly different (p>0.05).  Older 

subjects appear to have larger supra-orbital regions, noses, mouth and chins at PC1 

but this is not replicated in the results of PC2.  Along both PC1 and PC2, the groups 

with the smallest sample size are the groups that are most separated from the other 

groups.  It is unclear whether the separation is due to true differences or whether this 

is due to a discrepancy in the sample sizes (Figure 38). 

 

 

 

 

  

 

  

Figure 38: Visualisation of the component scores and facial differences due to age (14-16 years 
old) PC1 and PC2.  Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.4 Height 

Height explained 11.05% of the total variation in the 1000 quasi-landmark model.  The 

separation of the component scores along PC1 followed an ordered pattern with 

shorter subjects presenting with negative mean component scores and taller subjects 

with positive mean component scores.  There appears to be equal separation of the 

groups despite differing sample sizes.  The separation of the component scores was 

significant (p<0.001).  Those of smaller stature had more prominent cheeks relative to 

the midface and therefore a rounder facial appearance.  Those with a taller stature had 

a relatively narrower facial shape with larger midface including the lips, nose and chin, 

and to a lesser extent, brow-ridge.  Further interpretation is required to ascertain if 

these differences are in the x-, y- or z- axis (Figure 39). 

 

 

 

  

 

Figure 39: Visualisation of the component scores and facial differences due to height PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.5 BMI 

BMI explained 17.29% of the total variation in the 1000 quasi-landmark model.  The 

separation of the component scores along PC1 followed an ordered pattern with 

underweight subjects presenting with a negative mean component score, whilst 

overweight and obese subjects produced positive mean component scores.  The 

separation of the component scores was significant (p<0.001).  The group with the 

smallest sample size, obese, is separated further than the other groups.  Those that 

were underweight had less prominent cheeks and a relatively more prominent midface.  

The forehead and supra-orbital region also appear to be influenced.  Those that were 

overweight or obese presented with more prominent cheeks and a relatively retrusive 

midface and/or reduced mid and lower facial height.  The forehead also appears to be 

influenced in a positive direction but to lesser extent than the cheeks.  Due to the 

scaling procedures, it is difficult to determine whether the differences at the facial 

periphery were due to facial shape differences or represent differing overall facial size 

but constrained by the scaling procedures (Figure 40). 

 

 

 

  

 

Figure 40: Visualisation of the component scores and facial differences due to BMI PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.6 Pubertal stage (pubic hair) 

Pubertal stage as determined through self-declared Tanner stage with regards to pubic 

hair explained 1.76% of the total variation.  The component scores show an ordered 

separation along PC1.   The mean component score of subjects at stage three of puberty 

were negative, whilst the mean component scores of subjects at stage four and five 

were near the origin.  Little separation was seen been the mean component scores of 

subjects at stage four and stage five.  Component scores were significantly different 

(p<0.001).  Stage three had the smallest sample size.   

 

Those reporting stage three development appeared to have more prominent cheeks and 

upper lip, with a relatively more retrusive chin.  By contrast, those reporting stage four 

or five development had more retrusive cheeks with a relatively larger chin.  The 

brow-ridge may also have been slightly more prominent.  Although, it is not possible 

to determine absolute magnitudes of the differences due to the scaling process, it 

should be noted that the magnitude of the differences is smaller than those seen for 

sex, height and BMI, which is reflected by the percentage of total variation explained 

(Figure 41).   

 

 

  

 

Figure 41: Visualisation of the component scores and facial differences due to pubertal stage 
(pubic hair) PC1.  Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.7 Pubertal stage (genital development) 

Pubertal stage as determined through self-declared Tanner stage with regards to 

genital development explained 0.58% of the total variation.  The component scores 

show an ordered separation along PC1, with a separation of stage three (negative mean 

component score) compared to stage four and five (mean component scores close to 

origin).  Stage three had the smallest sample size.  Subjects at stage three were less 

separated from stage four and five compared to the pubic hair model.  Component 

scores are significantly different (p<0.001).  The pattern of facial differences is like 

the pubic hair model but with the additional difference in nasal shape.  The large 

spread of component scores makes the results more unreliable (Figure 42).   

 

 

 

  

 

Figure 42: Visualisation of the component scores and facial differences due to pubertal stage 
(genital development) PC1.  Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.8 Fasting insulin 

Insulin explained 5.83% of the total variation in its 1000 quasi-landmark mPCA 

model.  The component scores showed an ordered pattern along PC1 until the two 

highest levels of insulin.  The mean component scores of the groups with less than 25 

iu/ml of fasting insulin showed a progressive increase from negative scores to positive 

scores.  The two groups with the highest levels of fasting insulin did not follow the 

ordered pattern.  These groups had the smallest sample sizes, although do not appear 

to be disproportionally separated from the other groups.  Along PC2, again there is an 

ordered pattern (close to the origin) except for the highest insulin group which 

produced negative component scores.  This group appears to be disproportionally 

separated and may therefore be due to the reduced sample size.  This, alongside, a lack 

of a consistent hierarchical pattern makes it more difficult to interpret the scores with 

confidence. However, the differences for component scores were significant 

(p<0.001).  The facial differences show a similar pattern to those seen for sex, height 

and BMI, with those with lower insulin levels displaying more retrusive cheeks and 

more prominent midface (Figure 43). 
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Figure 43: Visualisation of the component scores and facial differences due to insulin PC1 and 
PC2.  Yellow = larger/ more prominent; blue = smaller, more retrusive.  

 

 

 

  

 

  



 116 

 

5.5.9 Cholesterol 

Cholesterol explained 3.54% of the total variation in its 1000 quasi-landmark model.  

The component scores showed an ordered pattern, with the subjects with the highest 

(unhealthy) levels of cholesterol most distinguishable with a negative mean 

component score.  This group also had the smallest sample size.  The differences in 

the component scores were significant (p<0.001).  Those with unhealthy levels of 

cholesterol had larger cheeks with relative midface retrusion.  The eyes are also 

influenced.  Those with lower cholesterol levels have a larger brow-ridge as well as 

nose, lips and chin in comparison to the cheeks, orbits and upper forehead (Figure 44). 

 

 

 

  

 

Figure 44: Visualisation of the component scores and facial differences due to cholesterol PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.10 Triglycerides 

Triglycerides explained 2.25% of the total variation in its 1000 quasi-landmark model.  

There appears to be separation of those with higher levels of triglycerides compared 

to those with less than 1.49mmol/l.  These differences were significantly different 

(p<0.001) for component scores.  Those with higher levels of triglycerides had 

relatively larger cheeks and orbits compared to the midface (Figure 45). 

 

 

 

  

 

Figure 45: Visualisation of the component scores and facial differences due to triglycerides PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.11 Very Low Density Lipids 

VLDL explained 3.54% of the total variation in its 1000 quasi-landmark model.  There 

is a clear separation of the component score mean for the highest levels of VLDL.  

This group has the smallest sample size.  There is also separation of the group with 

the lowest VLDL in the opposite direction.  The differences in the component scores 

are significant (p<0.001).  VLDL appears to negatively influence the shape of the nose, 

lips and chin in comparison to the cheeks, forehead and eyes (Figure 46). 

 

 

 

  

 

Figure 46: Visualisation of the component scores and facial differences due to VLDL PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.12 Low Density Lipids 

LDL explained 2.01% of the total variation in its 1000 quasi-landmark model.  There 

was an ordered separation of the component scores with clear separation of those with 

unhealthy levels compared to the other groups (positive mean component score in 

comparison to mean component scores centred around origin or negative).  These 

differences in the component scores are significant (p<0.001).  As had been seen with 

the other variables, the group that was most separated, was also the group with the 

smallest sample size.  Those with unhealthy levels of LDL had larger cheeks and 

orbits, with a more retrusive midface, including the brow-ridge.  In those with lower 

levels of LDL, the cheeks and orbits were relatively retrusive, whilst the chin, lips, 

nose and brow-ridge were larger (Figure 47). 

 

 

 

  

 

Figure 47: Visualisation of the component scores and facial differences due to LDL PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.13 High Density Lipids 

HDL explained 1.58% of the total variation in its 1000 quasi-landmark model.  The 

component scores showed an ordered separation with those with the lowest levels of 

HDL producing positive mean component scores and those with the highest scores 

producing negative mean component scores.  However, this separation was less 

marked than that seen for the other variables.  This separation was significant for the 

component scores (p<0.001).  The group with the smallest sample size was not 

disproportionately separated from the other groups.  Higher HDL levels influenced the 

nasal tip, upper zygomatic region, and the infra-orbital region.  The area of the cheek 

influenced is different to that seen in the other variables as it appears to be isolated 

from the buccal fat pad.  The brow-ridge appears to be influenced in a negative 

direction along either the x-, y- or z- axis (Figure 48). 

 

 

 

  

 

Figure 48: Visualisation of the component scores and facial differences due to HDL PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive.  



 121 

 

5.5.14 Glucose 

Glucose explained 1.69% of the total variation in its 1000 quasi-landmark model.  

There was very little separation of the largest groups.  However, there is clear 

separation of the component score means which represents the subjects with the lowest 

glucose levels.  This group has substantially fewer subjects.  This separation was 

statistically significant (p<0.001) for the component scores.  Lower levels of glucose 

appear to influence the upper forehead shape as well as the orbits.  The area around 

the mouth appears to be relatively retrusive or narrower (Figure 49). 

 

 

 

  

 

Figure 49: Visualisation of the component scores and facial differences due to glucose PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.15 Atopy 

Atopy explained 0.14% of the total variation in its 1000 quasi-landmark model.  This 

was the least of all the models.   There was clear separation of the component scores 

which was statistically significant (p<0.001).  The size of the nose, infra-orbital 

regions, brow-ridge, and mandibular region appear to be relatively positively 

influenced along the x-, y- or z- axis with atopy, whilst the maxillary region and both 

lips appear negatively influenced.  There is also a suggestion of asymmetry with the 

left side more affected than the right (Figure 50). 

 

 

 

  

 

Figure 50: Visualisation of the component scores and facial differences due to atopy PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.16 Hay fever 

Hay fever explained 0.35% of the total variation in its 1000 quasi-landmark model.  

There was clear separation of the component scores, which was statistically significant 

(p<0.001).  The shape of the nasal tip appears to be influenced by hay fever and the 

opposite direction to the other facial structures.  The maxillary region and chin are 

more negatively influenced (Figure 51). 

 

 

 

  

 

Figure 51: Visualisation of the component scores and facial differences due to hay fever PC1.  
Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.17 Asthma (0-3.5 years old) 

Asthma in early childhood explained 0.93% of the total variation in its 1000 quasi-

landmark model.  There is almost no separation of the subjects who never wheezed 

and who wheezed at six months only.  There is clear separation of those that wheezed 

at both six months and 42 months. However, as has been seen with other variables, 

this group had the smallest sample size.  The differences between the component 

scores were significant (p<0.001). Wheezing at both six months and 42 months 

appears to influence either chin shape or lower facial height (constrained by the scaling 

procedures).  The lower lip is also positively influenced either along the x-, y- or z- 

axes.  The nose and brow-ridge are influenced in the opposite direction (Figure 52). 

 

 

 

  

 

Figure 52: Visualisation of the component scores and facial differences due to asthma  

(0-3.5 years old) PC1.  Yellow = larger/ more prominent; blue = smaller, more retrusive.  
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5.5.18 Asthma (7.5 years old) 

Asthma at 7.5 years old explained 0.40% of the total variation.  There is clear 

separation of the mean component scores for each group. However, there is a large 

range of scores.  The differences between the component scores were significant 

(p<0.001).  Asthma at 7.5 years old appears to show a similar impact to the adolescent 

facial shape but to a greater extent than that seen at 3.5 years old.  The mandibular 

shape appears to be influenced, but the lower facial height does not appear to be 

affected as the area directly below the chin does not change from the mean shape.  The 

infra-orbital region is also positively affected in either the x-, y- or z- axis, whilst the 

upper lip and maxillary region is influenced in the opposite direction suggesting a 

reduced midface height or class III malocclusion (Figure 53). 

 

 

 

  

 

Figure 53: Visualisation of the component scores and facial differences due to asthma (7.5 years 
old) PC1.  Yellow = larger/ more prominent; blue = smaller, more retrusive. 
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5.5.19 Maternal smoking before pregnancy 

Maternal smoking before pregnancy explained 1.53% of the total variation in its 1000 

quasi-landmark model.  The component scores along PC1, PC2 and PC3 show 

separation of the mean scores of the groups but this does not appear to be ordered in 

nature.  However, the differences in the component scores were significant (p<0.001).  

As there does not appear to be any ordered interpretation of the component scores, it 

is unwise to interpret the facial shape differences at this stage (Figure 54). 

 

5.5.20 Maternal smoking during the 1st trimester 

Maternal smoking during the 1st trimester explained 2.51% of the total variation in its 

1000 quasi-landmark model.  There is clear separation of the component scores of the 

highest smokers compared to the subjects whose mothers smoked along PC1 with the 

group sample sizes smallest in the highest smoking group.  The differences along PC2 

were not ordered, with those whose mothers smoked 15-19 cigarettes per day most 

differentiable from the other groups.  The differences in the component scores were 

significant (p<0.001).  There is a suggestion at PC1 of increased facial proportions 

with high levels of maternal smoking, with the exception of the nose which appears 

smaller.   PC2 suggests an element of asymmetry at the mandible but this should be 

interpreted with caution (Figure 55). 

 

5.5.21 Maternal smoking during the 2nd trimester 

Maternal smoking during the 2nd trimester explained 3.74% of the total variation in its 

1000 quasi-landmark model.  The component scores do not show an ordered pattern 

along PC1 and should therefore be interpreted with caution.   The component scores 

along PC2 do show an ordered pattern with the groups of subjects whose mothers 

smoked more heavily during pregnancy most differentiable.  These groups also have 

the smallest size.  The differences in the component scores were significant (p<0.001).  

PC1 suggests that pronasale and the forehead may between more prominent with 

increased maternal smoking, in contrast to the nasal bridge, eyes and lower border of 

the mandible.  PC2 suggests that maternal smoking during the 2nd trimester could 

influence nasal shape in a negative direction along either x-, y- or z- axis, whilst the 

cheeks and orbits are influence in the opposite direction (Figure 56).  



 127 

 

  

 

 

  

 

  

 

  

Figure 54: Visualisation of the component scores and facial differences due to maternal 
smoking before pregnancy PC1, PC2 and PC3.  Yellow = larger/ more prominent; blue = 
smaller, more retrusive. 
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Figure 55: Visualisation of the component scores and facial differences due to maternal 
smoking during the 1st trimester PC1 and PC2.  Yellow = larger/ more prominent; blue = 
smaller, more retrusive. 
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Figure 56: Visualisation of the component scores and facial differences due to maternal 
smoking during the 2nd trimester PC1 and PC2.  Yellow = larger/ more prominent; blue = 
smaller, more retrusive. 
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5.5.22 Maternal alcohol consumption before pregnancy 

Maternal alcohol consumption before pregnancy explained 1.56% of the total 

variation in its 1000 quasi-landmark model.  Those whose mothers did not drink 

alcohol before pregnancy are clearly distinguishable from those whose mothers drank 

any level of alcohol before pregnancy.  Again, the most distinguishable group had the 

smallest sample size.  The differences between the component scores were significant 

(p<0.001).   The visualisations suggest that drinking any level of alcohol before 

pregnancy could reduce the shape of the nasal tip and bridge in an x-, y- or z- direction 

and the underside of the chin.  There may also be an influence on the shape of the 

forehead in a positive direction along one or more of these axes as well as the infra-

orbital regions (Figure 57). 

 

 

 

  

 

Figure 57: Visualisation of the component scores and facial differences due to maternal alcohol 
consumption before pregnancy PC1.  Yellow = larger/ more prominent; blue = smaller, more 
retrusive. 
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5.5.23 Maternal alcohol consumption during the 1st trimester 

Maternal alcohol consumption during the 1st trimester explained 2.62% of the total 

variation in its 1000 quasi-landmark model.  There was clear separation of the 

component scores for those whose mothers drank daily during the 1st trimester of 

pregnancy compared to those whose mothers did not drink or consumed alcohol on a 

weekly or less than weekly basis.  However, this group had the smallest sample size.  

The differences in the component scores were significant (p<0.001).  Daily maternal 

alcohol consumption during the 1st trimester of pregnancy appears to negatively 

influence the shape of the nose in either x-, y- or z- directions.  The shape of the chin, 

or perhaps the lower facial height (constrained by the scaling procedures) also appears 

to be negatively affected.  In contrast, the forehead, supra-orbital region, cheeks and 

lips appear to be influenced in a positive direction along either x-, y- or z- axes (Figure 

58). 

 

 

 

  

 

Figure 58: Visualisation of the component scores and facial differences due to maternal alcohol 
consumption during the 1st trimester PC1.   Yellow = larger/ more prominent; blue = smaller, 
more retrusive. 
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5.5.24 Maternal alcohol consumption during the 2nd trimester 

Maternal alcohol consumption during the 2nd trimester explained 1.60% of the total 

variation in its 1000 quasi-landmark model.  Again, those whose mothers drank daily 

during the 2nd trimester of pregnancy were most differentiable and this group had the 

smallest sample size.  The differences in the component scores were significant 

(p<0.001).  Daily maternal alcohol consumption during the 2nd trimester appears to 

include the chin and forehead in a positive direction, with an element of asymmetry.  

The nose is influenced in a negative manner along the bridge and pronasale, it may be 

wider in the transverse axis (Figure 59). 

 

 

 

  

 

Figure 59: Visualisation of the component scores and facial differences due to maternal alcohol 
consumption during the 2nd trimester PC1.  Yellow = larger/ more prominent; blue = smaller, 
more retrusive. 

 

 

  



 133 

 

5.6 DISCUSSION 

As in study one, this discussion focuses on the relative advantages and disadvantages 

of mPCA for investigating facial shape.  Discussion of the influence of each variable 

is provided in the General Discussion (7.1 Facial differences, p. 165). 

 

mPCA was to be able to maximise the differences due to each variable and provide 

clear visualisations of the overall differences in the form of scatter plots.  mPCA 

therefore potentially provides a method of determining the influence of variables that 

have a small, but significant, influence on facial shape.  However, interpretation of the 

component scores must be tentative at this stage, given that in many examples, the 

group with the smallest sample size was isolated from the other groups.  It has been 

suggested by Bookstein (2019) that in between-groups PCA, which is a related 

technique to mPCA, group component scores can be artificially isolated to the end of 

an axis when a group sample size is much smaller than the others.  This phenomenon 

may also occur for mPCA, thus it is challenging to ascertain whether the differences 

in the component score means are due to true differences or whether this is an artefact 

due to differing group sample sizes.   

 

Perhaps the most advantageous use of mPCA that has been demonstrated in this study 

is the ability to compare the relative importance of each variable.  This process takes 

seconds and could therefore easily be added into future data exploration phases of data 

analysis.  It is important that mPCA is not carried out in isolation as the models are 

not independent of each other as there is no adjustment for variables unless they are 

added as separate levels in the model.  This is particularly salient in this study as many 

of the variables were correlated with each other (3.7.4.2 Correlation between 

variables, p. 66).  This is highlighted when comparing the results for sex, height, BMI 

and insulin.  All these variables appear to influence the same facial features, to 

differing degrees (Figure 60).  Given that sex was correlated with height and BMI with 

fasting insulin (3.7.4.2 Correlation between variables, p. 66), it is not possible to 

ascertain how much of the differences in facial features are due to the variables in 

isolation using the two-level models alone.   
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 Female Male 

Sex 
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Height 
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Figure 60: A comparison of the results for sex, height, BMI and insulin.  mPCA results show 
very similar differences in the facial shapes but on subtly different scales.  As these results were 
gained via separate two-level models, and mPCA does not correct for variables that are not in 
the model, the true influence of each variable is unclear.  Yellow = larger/ more prominent; blue 
= smaller, more retrusive. 
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Unfortunately, the sample constraints required for each group limited further 

exploration of BMI and insulin using an mPCA model with additional levels.  When 

considered using their current groupings, there were groups with no subjects (Figure 

61).  mPCA cannot currently support groups with zero subjects.  A four-level mPCA 

model was possible to assess the influence of maternal smoking, maternal alcohol 

consumption, sex and within-group variation.  However, due to sample size 

constraints, discretisation was limited to exposure and non-exposure only during the 

first and second trimesters (Galloway et al. 2020).  This limited the information 

available from the analysis.  It was felt that exploring fasting insulin and BMI further 

using different groupings in the mPCA model would also limit the impact of the 

analysis, particularly as pathological and non-pathological levels of insulin would not 

be separated if groups were merged.  Alternative methods were subsequently 

investigated that do not require discretisation of the variables.   

 

 
 

Figure 61: Heatmaps showing sample sizes for groupings if insulin and BMI added as separate 
levels in a 3-level mPCA model.  Each square of the heatmap represents the number of subjects 
in each potential group in the mPCA model.   
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PLSR provides an alternative technique that is capable of handling both continuous 

and categorical variables (Shrimpton et al. 2014).  The issue of discretisation is 

therefore overcome.  However, PLSR models are computationally expensive and, like 

all models, are prone to overfitting if excessive numbers of variables are added to the 

model (Tabachnick and Fidell 1996).  Using mPCA as a variable selection tool prior 

to PLSR by exploring variables that meet a predetermined threshold with regards to 

percentage of the total variation explained in their respective mPCA model, may 

therefore be of benefit. 

 

5.7 SUMMARY 

A summary of the inferential findings from this study are found in Table 14.  This 

study has introduced several disadvantages of using mPCA in facial shape research.  

Firstly, the requirement to categorise the variables can introduce the issue of 

imbalanced group sizes and the potential for groups with zero subjects.  This in turns 

limits the number of levels possible and the possibility of adjusting for variables in the 

analysis.  There is also uncertainty around whether group mean component scores are 

artificially placed at the end of an axis, thus it is unwise to trust mPCA results in 

isolation. 

 

Using a further analysis to confirm the results gained from the mPCA models would 

therefore be worthwhile.  A method previously used within this field is PLSR 

(Shrimpton et al. 2014).  However, difficulty can arise in deciding which variables to 

add to parsimonious PLSR models.  mPCA may provide a useful tool for variable 

selection by using the percentage of the total variation explained by each of the 

variables in their respective mPCA models as a threshold for inclusion in a PLSR 

model.  This concept will be explored in study three. 
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Table 14: Summary of results from study two 

Variable Test % Total 
variation 
explained 

P-value Threshold for 
significance 

Null 
hypothesis 

Sex mPCA + 
ANOVA 

17.31% <0.001 0.002 Reject 

Age mPCA + 
MANOVA 

1.18% >0.05 0.002 Accept 

Height mPCA + 
MANOVA 

11.05% <0.001 0.002 Reject 

BMI mPCA + 
MANOVA 

17.29% <0.001 0.002 Reject 

Pubertal stage 
(hair) 

mPCA + 
MANOVA 

1.76% <0.001 0.002 Reject 

Pubertal stage 
(genitals) 

mPCA + 
MANOVA 

0.58% <0.001 0.002 Reject 

Cholesterol mPCA + 
MANOVA 

3.55% <0.001 0.002 Reject 

Triglycerides mPCA + 
MANOVA 

2.25% <0.001 0.002 Reject 

VLDL mPCA + 
MANOVA 

3.54% <0.001 0.002 Reject 

LDL mPCA + 
MANOVA 

2.01% <0.001 0.002 Reject 

HDL mPCA + 
MANOVA 

1.58% <0.001 0.002 Reject 

Glucose mPCA + 
MANOVA 

1.69% <0.001 0.002 Reject 

Insulin mPCA + 
MANOVA 

5.83% <0.001 0.002 Reject 

Asthma  
(0-42 months) 

mPCA + 
MANOVA 

0.93% <0.001 0.002 Reject 

Asthma  
(91 months) 

mPCA + 
ANOVA 

0.40% <0.001 0.002 Reject 

Atopy mPCA + 
ANOVA 

0.15% <0.001 0.002 Reject 

Hay fever mPCA + 
ANOVA 

0.35% <0.001 0.002 Reject 

Smoking before 
pregnancy 

mPCA + 
MANOVA 

1.53% <0.001 0.002 Reject 

Smoking 1st 
trimester 

mPCA + 
MANOVA 

2.51% <0.001 0.002 Reject 

Smoking 2nd 
trimester 

mPCA + 
MANOVA 

3.74% <0.001 0.002 Reject 

Alcohol before 
pregnancy 

mPCA + 
MANOVA 

1.56% <0.001 0.002 Reject 

Alcohol 1st 
trimester 

mPCA + 
MANOVA 

2.62% <0.001 0.002 Reject 

Alcohol 2nd 
trimester 

mPCA + 
MANOVA 

1.60% <0.001 0.002 Reject 
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6 STUDY 3: USING MULTILEVEL PRINCIPAL COMPONENT 

ANALYSIS AS A VARIABLE SELECTION TOOL PRIOR TO 

PLSR TO INVESTIGATE THE INFLUENCE OF MULTIPLE 

CATEGORICAL AND CONTINUOUS VARIABLES ON THE 

FACIAL SHAPE OF ENGLISH ADOLESCENTS 

 

6.1 INTRODUCTION 

As discussed in study two, there are disadvantages to using mPCA in isolation.  These 

are emphasised when assessing continuous variables and when group sample sizes are 

imbalanced or place limits on the number of levels possible in the model.  An 

alternative technique which has been used previously in facial shape research that is 

capable of handling both continuous and categorical variables is PLSR (Shrimpton et 

al. 2014).  As PLSR can adjust for variables in the model, it has the potential to provide 

more robust results than mPCA.  However, this technique is computationally 

expensive and is at risk of overfitting as the number of variables included in the model 

increases.  mPCA may provide a method for determining which variables are most 

likely to influence facial shape and are therefore most worthwhile including in a PLSR 

model.  This concept will be explored whilst the use of an alternative technique 

provides a comparison to the results of mPCA. 

 

6.2 AIMS 

• To explore the use of mPCA as a variable selection tool prior to PLSR. 

• To compare the results of mPCA and PLSR. 

• To determine the influence of sex, height, BMI, metabolic factors, maternal 

smoking during pregnancy and maternal alcohol consumption during pregnancy 

on the facial shape of English adolescents using PLSR. 
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6.3 NULL HYPOTHESES 

• Sex is not associated with the facial shape of English 14 to 16 year olds. 

• Height is not associated with the facial shape of English 14 to 16 year olds. 

• BMI (and weight) are not associated with the facial shape of English 14 to 16 year 

olds. 

• Metabolic factors (fasting insulin, cholesterol, triglycerides, LDL and VLDL) are 

not associated with the facial shape of English 14 to 16 year olds. 

• Maternal smoking during the 1st or 2nd trimesters is not associated with the facial 

shape of English to 14 to 16 year olds. 

• Maternal alcohol consumption during the 1st trimester is not associated with the 

facial shape of English 14 to 16 year olds. 

 

6.4 METHODOLOGY OVERVIEW 

An overview of the methodology used in this study is provided below.   

 

6.4.1 3D facial scan acquisition, processing and landmarking 

The 3D facial scans were acquired and processed as documented previously.  GPA 

was conducted on the 3D facial scans.  Scaling of the images removed the influence 

of size, thus isolating the influence of shape (3.4 Facial scan processing, p. 53).  The 

analyses used 7160 quasi-landmarks placed automatically using a publicly available 

MATLAB algorithm (3.5 Landmarking, p. 52). 

 

6.4.2 Variables 

The outcome variables were the 7160 quasi-landmarks.  The predictor variables were 

selected from those assessed in study two (3.6 Variables, p. 56).  Two thresholds were 

explored based on the total variation explained by each variable in study two (5.5.1 

Percentage of total variation, p. 108). 

 

1) Variables that explained greater than 2% of the total variation in their respective 

mPCA models in study two: Sex, height, BMI (checked with weight also), fasting 
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insulin, cholesterol, triglycerides VLDL, maternal smoking during the first and second 

trimesters, and maternal alcohol consumption during the first trimester. 

 

2) Variables that explained greater than 5% of the total variation in their respective 

mPCA models in study two: Sex, height, BMI (checked with weight also) and fasting 

insulin. 

 

Sex was the only binary variable and was coded as a dummy variable (male = 0, female 

= 1).  Height, BMI, insulin, cholesterol, triglycerides and VLDL were naturally 

continuous and used in the model as such.  Maternal smoking and alcohol consumption 

during pregnancy were collected as ordinal data and were used in the PLSR model in 

this manner. 

 

6.4.3 Data cleaning and exploration 

Outliers were detected in the variables (3.7.3.2 Outliers in variable data, p. 63).  

However, it is unclear whether these are true outliers or whether they are due to 

variation in the data.  As regression methods are sensitive to outliers, the PLSR models 

were run with and without outliers for completeness.  As VLDL/cholesterol and 

LDL/triglycerides were strongly correlated (3.7.4.2 Correlation between variables, p. 

66), the appropriate models were also repeated without VLDL and LDL.  As 

discretisation is not required for PLSR, the continuous variables were used in their 

natural form.  As the maternal smoking and alcohol data was collected in an ordinal 

form, they were used in this study as such. 

 

6.4.4 Final sample 

The 1411 subjects used in this study were the same as those used in the study two 

(5.4.4 Final sample, p. 104).   

 

6.4.5 Analyses 

PLSR is detailed in 2.9 Analysis of 3D facial landmarks (p. 40).  PLSR was carried 

out in MATLAB R2017b using the PLSHypothesisTests class developed in KU 

Leuven as part of their imgGenesSoftware.  This is based around the MATLAB 
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function plsregress and is documented in Shrimpton et al. (2014).  Permutation 

methods on the partial R2 values are included in the PLSHypothesisTests class to 

provide a p-value for each of the variables included in the model.  Bonferroni 

correction was used to account for multiple testing.  The facial differences explained 

by each of the variables were visualised using the 3D viewer class in MATLAB 2017b.    

The differences in the partial R2 scores at each landmark and the coefficients attributed 

to each landmark in the PLSR model were visualised.  

 

Numerous PLSR models were used.  These explored the inclusion of variables that 

explained more than 2% and 5% of the total variation in their respective mPCA 

models; the inclusion and exclusion of outliers; the inclusion of interaction terms; and 

the separation of the sexes.  The models are summarised in Table 15. 

 

Table 15: PLSR models 

Model Permutations Outliers 
included 

Sexes 
included 

No. of variables 
included 

Interactions 
included 

1 10,000 Yes Both 11 0 
2 10,000 Yes Both 9  (VLDL and 

LDL excluded) 
0 

3 10,000 No Both 11 0 
4 10,000 No Both 9 (VLDL and 

LDL excluded) 
0 

5 10,000 No Females 10 0 
6 10,000 No Males 10 0 
7 1,000 Yes Both 4 All possible (2-

way) 
8 10,000 Yes Both 4  (Weight not 

BMI) 
All possible (2-
way) 

8 10,000 Yes Both 4 Sex * Height 
Sex * Insulin 

9 10,000 Yes Both 4 0 
10 1,000 No Both 4 All possible (2-

way) 
11 10,000 No Both 4 (Weight not 

BMI) 
All possible (2-
way) 

12 10,000 No Both 4 Sex * Height 
Sex * BMI 

13 10,000 No Both 4 Sex * BMI 
14 10,000 No Both 4 (Weight not 

BMI) 
Sex * Height 

15 10,000 No Both 4 0 
16 10,000 No Both 4 (Weight not 

BMI) 
0 

17 10,000 No Females 3 0 
18 10,000 No Males 3 0 
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6.5 RESULTS 

6.5.1 Global p-values 

The first model was run with outliers included and repeated with the outliers excluded.  

Given that VLDL and cholesterol, and LDL and triglycerides were strongly correlated 

using Pearson correlation, the model was re-run with VLDL and LDL excluded.  The 

inclusion of VLDL and LDL did not influence the global p-values of the other 

variables significantly.  The variables that resulted in a significant global p-values 

were sex, height, BMI and insulin.  The PLSR model with the outliers excluded was 

repeated for males and females separately.  Height and BMI were significant at a 

0.0045 level.  Insulin was no longer significant when the sexes were assessed 

separately (Table 16). 

 

Following the results of these models, sex, height, BMI and insulin were explored 

further.    These variables explained more than 5% of the total variation in their 

respective mPCA models.  Initial models, with and without outliers, were run 

including all the possible interactions.  When outliers were included, none of the 

interactions were significant.  The model was therefore repeated without the 

interactions.  In all the models, sex, height, BMI and fasting insulin reached 

significance at a 0.0125 level.  When outliers were excluded, the interaction between 

sex and BMI reached significance.  The model was therefore repeated for the sexes 

separately.  Again, as was seen in the initial models, height and BMI remained 

significant, but insulin was no longer significant when the sexes were explored 

separately (Table 17).  Finally, as BMI is a construct of weight and height, the model 

was re-run with weight instead of BMI (sex, height, weight, insulin and their 

interactions) with and without outliers.  This did not appear to influence the resulting 

significance levels of any of the variables (Table 18). 

 

6.5.2 Global R2 values 

The R2 values represent model fit (Farnell et al. 2021).  The global R2 values for sex 

are the highest of all the variables. However, are generally low at 0.045 to 0.047 in the 

different models.  This may be explained since sex explained a relatively low amount 

of variation in the mPCA model compared to within-group variation.  The global R2 
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values for height was also low (0.08 to 0.016).  Given that BMI has already in part 

corrected for height, this may partially explain these values.  BMI produced slightly 

higher R2 values in comparison to height (0.032 to 0.041).  Insulin produced the 

smallest global R2 out of the variables and likely reflects that it explained the least 

amount of the total variation in its mPCA model compared to the other variables that 

explained greater than 5%.  The R2 values of the variables that did not reach 

significance were zero in many of the models and reflect the variables that explained 

less than 5% but greater than 2% of the total variation in their mPCA models (Tables 

19 and 20).  

 

6.5.3 Sex 

In both models, with outliers included and excluded, sex influenced the cheeks and 

orbits in a positive direction, whilst the midface and brow-ridge were negatively 

influenced.  These findings confirm the findings of the mPCA model, with female 

faces presenting with rounder faces, more prominent eyes, smaller noses and less 

prominent brow-ridges (Figures 62 and 63).   

 

6.5.4 Height  

In the models that included both the sexes, the nasal bridge, pronasale and the chin 

were influenced in a positive direction, whilst the cheeks were influenced in a negative 

direction.  Therefore, subjects that were taller have larger noses and either a more 

prominent chin and/or increased facial height (constrained due to the scaling 

procedures).  When the sexes were assessed separately, similar facial differences were 

visualised with some subtle differences.  Pronasale appears to be less prominent in the 

female subjects, although still increased with increasing height.  The cheeks were more 

strongly influenced in the male subjects.  When weight was included in the PLSR 

model rather than BMI, height also appeared to influence the prominence of the lips 

(Figures 62 and 63).   

 

6.5.5 BMI /Weight 

In all the models, the facial differences were consistent with regards to BMI.  As the 

BMI increases, the cheeks are larger and the supra-orbital regions more prominent.  
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Conversely, the nose and lips are relatively retrusive as well as the infra-orbital region.  

The underside of the chin also appears to be negatively influenced by BMI, which 

suggests that the lower facial height is reduced as BMI increases, but that this was 

constrained by the scaling procedures used.  The use of weight rather than BMI in the 

models did not appear to affect the influence on the facial features (Figures 62 and 

63).  

 

6.5.6 Fasting insulin  

When the sexes were assessed together, increased levels of insulin influenced the 

prominence of the supra-orbital regions and buccal fat pads.  The chin is negatively 

influenced, whilst the nose also appears smaller with increasing insulin levels.  When 

the sexes were assessed separately, the global p-values were no longer significant at a 

0.05 level.  In females, the brow-ridge appears to increase in prominence with 

increasing insulin levels, whilst the corners of the mouth are also influenced in a 

positive direction.  The infra-orbital regions, and to a lesser extent the chin, are 

influenced in a negative direction.  In the male subjects, the chin is influenced the 

most, again in a negative direction.  The buccal fat pads are influenced in a positive 

direction, and to a greater extent than in the female subjects.  The brow-ridge is less 

effected than in the females.  The supra-orbital region is influenced in a positive 

direction, but only on the right eye, suggesting that increasing insulin levels may 

impact the development of facial asymmetry, particularly in the orbital region.  

However, as the separate sex models did not reach global significance with regards to 

insulin and no model reached significance when Bonferroni correction was 

considered, these findings are suggested with caution (Figures 62 and 63).   

 

6.5.7 Influence of removing variables from the model 

Removing the variables that explained less than 2% of the variation in their respective 

mPCA models did not appear to influence the results with regards to p-values, R2 

values or facial shell differences for the remaining variables (Tables 16-17, Tables 19-

20, Figure 64).
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Table 16: Global p-values for each variable using an initial PLSR model that included the variables that explained greater than 2% of the total variation in the 
two-level mPCA models [10,000 permutations].   

Outliers Model Sex Height BMI Insulin Cholesterol Triglycerides VLDL LDL Smoking 
1st Tri 

Smoking 
2nd Tri 

Alcohol 
1st Tri 

Outliers 
Included 

Both 
Sexes 

< 
0.00001* 

< 
0.00001* 

< 
0.00001* 

0.018 o 0.393 0.654 0.655^ 0.784^ 0.568 0.494 0.090 

Outliers 
Excluded 

Both 
Sexes 

< 
0.00001* 

< 
0.00001* 

< 
0.00001* 

0.027 o 0.403 0.582 0.586 0.678 0.573 0.502 0.091 

Females 
Only 

- 0.005 o 
< 

0.00001* 0.051± 0.919 0.458 0.452 0.819 0.323 0.233 0.336 

Males 
Only 

- 
< 

0.00001* 
< 

0.00001* 
0.145 0.222 0.743 0.757 0.753 0.133 0.501 0.355 

 
* significant after Bonferroni correction (0.05/11 = 0.0045) 

o significant at 0.05 level 
± almost significant at 0.05 level 
^ VLDL and LDL were strongly correlated with cholesterol and triglycerides respectively when assessed using Pearson correlation.  The model was therefore re-run without 

these variables as a check and the results remained the same. 
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Table 17: Global P values for each variable using a PLSR model that included the variables that explained greater than 5% of the total variation in the two-level 
mPCA models and were significant in the initial PLSR model.  Their interactions were included initially and removed from subsequent models if found to be non-
significant (those that were close to significant were kept initially).   

Outliers 
Number of 

Permutations 
Used 

Model Sex Height BMI Insulin Sex*Height Sex*BMI Sex*Insulin Height*BMI Height*Insulin BMI*Insulin 

Outliers 
Included 

1,000 
permutations 

Both 
sexes 

< 0.001* < 0.001* < 0.001* 0.013 o 0.081± 0.214 0.1± 0.222 0.163 0.126 

10,000 
permutations 

< 0.00001* < 0.00001* < 0.00001* 0.024 o 0.081 - 0.082 - - - 

< 0.00001* 
< 

0.00001** 
< 0.00001* 0.016 o - - - - - - 

Outliers 
Excluded 

1,000 
permutations 

Both 
sexes 

< 0.001* < 0.001* < 0.001* 0.046 o 0.06± 0.055± 0.158 0.189 0.148 0.201 

10,000 
permutations 

Both 
Sexes 

< 0.00001* < 0.00001* < 0.00001* 0.035 o 0.093 0.015* - - - - 

< 0.00001* 0.00001* < 0.00001* 0.036 o - 0.020 o - - - - 

< 0.00001* < 0.00001* < 0.00001* 0.030 o - - - - - - 

Female
s Only 

- 0.004* < 0.00001* 0.102 - - - - - - 

Males 
Only 

- < 0.00001* < 0.00001* 0.096 - - - - - - 

 
* significant after Bonferroni correction (0.05/4 = 0.0125) 

o significant at 0.05 level  
± included to be conservative in subsequent model as almost significant at 0.05 level  

Grey: model explored further via visualisations of the coefficients and R2 facial meshes 
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Table 18: Global p-values for PLSR model assessing weight rather than BMI [10,000 permutations] 

Outliers Sex Height Weight Insulin 
Sex 

*Height 
Sex 

*Weight 
Sex 

*Insulin 
Height 

*Weight 
Height 

*Insulin 
Weight 
*Insulin 

Outliers 
Included 

< 0.0001* < 0.0001* < 0.0001* 0.017 o 0.034 o 0.577 0.117 0.565 0.324 0.175 

Outliers 
Excluded 

< 0.0001* < 0.0001* < 0.0001* 0.049 o 0.017 o 0.286 0.135 0.360 0.294 0.173 

< 0.0001* < 0.0001* < 0.0001* 0.036 o 0.110 - - - - - 

< 0.0001* < 0.0001* < 0.0001* 0.034 o - - - - - - 

 
* significant after Bonferroni correction (0.05/4 = 0.0125) 

o significant at 0.05 level  

Grey: model explored further via visualisations of the coefficients and R2 facial meshes 
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Table 19: Global R2 for each variable using an initial PLSR model that included the variables that explained greater than 2% of the total variation in the two-level 
mPCA models [10,000 permutations] 

Outliers Sex Sex Height BMI Insulin Cholesterol Triglycerides VLDL LDL Smoking 
1st Tri 

Smoking 2nd 
Tri 

Alcohol 1st 
Tri 

Included Both 0.043 0.008 0.037 0.002 0 0 0 0 0 0 0.001 

Excluded 

Both 0.043 0.008 0.034 0.002 0 0 0 0 0 0 0 
Females 

Only 
- 

0.004 0.032 0.002 0 0.001 0.001 0 0.001 0.002 0.001 

Males 
Only 

- 
0.016 0.038 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002 

 

Table 20: Global R2 for each variable using a PLSR model that included the variables that explained greater than 5% of the total variation in the two-level mPCA 
models and were significant in the initial PLSR model [10,000 permutations] 

Outliers Sex Sex Height BMI Insulin Sex*Height Sex*BMI Sex*Insulin Height*BMI Height*Insulin BMI*Insulin 

Included Both  
0.047 0.007 0.041 0.002 0.001 - 0.001 - - - 

0.047 0.009 0.041 0.002 - - - - - - 

Excluded 

Both 

0.045 0.008 0.037 0.001 0.001 0.002 - - - - 

0.045 0.009 0.037 0.001 - 0.001 - - - - 

0.047 0.009 0.037 0.002 - - - - - - 

Females 
Only 

- 0.004 0.037 0.002 - - - - - - 

Males 
Only 

- 0.018 0.039 0.003 - - - - - - 

 

Grey: model explored further via visualisations of the coefficients and R2 facial meshes 
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Figure 62: PLSR model coefficients.  Yellow = larger/ more prominent; blue = smaller, more 
retrusive. 
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Figure 63: Partial R2 for each landmark in the PLSR models.  White = higher partial R2; black 
= lower partial R2 
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 Sex Height BMI Insulin 

Variables 
included that 
explained 
2% variation 
with mPCA 
(11 
variables)     

Variables 
included that 
explained 
5% variation 
with mPCA 
(4 variables) 

    

 

Figure 64: Comparing the facial shells (coefficients only) with variables reaching 2% variation explained in their mPCA model (11 variables) and 5% variation (4 
variables) – representative faces used as multiple models explored.    
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6.5.8 Other (non-significant) variables 

The findings of the variables without a significant global p-value are described for 

completeness and should be interpreted with caution.  The visualisations are available 

in Figure 65.  Increasing cholesterol appears to have a positive influence on the shape 

of the cheeks as well as the temporal region.  The nose, upper lip and chin appear to 

be influenced in a negative direction.  The influence on the supra-orbital region is 

difficult to interpret with certainty as different results are obtained when VLDL and 

LDL were removed from the model.  The supra-orbital regions appear to be influenced 

in positive direction alongside the bridge of the nose.  When VLDL and LDL were 

removed from the analysis, there was evidence of facial symmetry with the right of 

the mandible and left of the forehead influenced in a positive direction.  The cheeks 

may be influenced in a negative direction, but this differs between the models.   The 

cheeks and supra-orbital regions are influenced in a positive direction, whilst the 

bridge of the nose and mental fold are influenced in a negative direction.  The results 

for LDL were different between the PLSR and mPCA models.  In PLSR, the cheeks 

were influenced in a negative direction.  In both models, the supra-orbital regions were 

influenced in a positive direction. 

 

The results of the PLSR models with regards to maternal smoking are contradictory.  

Maternal smoking during the 1st trimester influenced the cheeks and upper lip in a 

positive direction, whilst the nose, forehead and chin were influenced in a negative 

direction.  Conversely, the PLSR model suggests that maternal smoking during the 2nd 

trimester influences the forehead, bridge of nose and chin in a positive direction, whilst 

the cheeks and infra-orbital regions were influenced in a negative direction.  Finally, 

maternal alcohol consumption during the 1st trimester influenced the cheeks in a 

positive direction.  The supra-orbital regions were also influenced in this direction.  

The chin, lips and nose were influenced in a negative direction in the PLSR models. 

 

6.5.9 Comparison of results: PLSR v mPCA 

The variables that influenced facial shape the most (sex, height, BMI and fasting 

insulin) showed similarity in the results between the PLSR and mPCA models.  

However, differences between the results became more apparent for the variables that 

had less of an influence on facial shape (Table 21). 



 153 

 

 
PLSR coefficients (p-value not significant) 

Outliers excluded Outliers included VLDL and LDL excluded 

Cholesterol 

   

Triglycerides 

   

VLDL 

  

- 

LDL 

  

- 

Smoking 1st 

trimester 

   

Smoking 2nd 

trimester 

   

Alcohol 1st 

trimester 

   

Figure 65: Coefficients of the variables that did not reach global significance in the PLSR 
models.  The results of the mPCA models are presented for comparison.  Yellow = larger/ more 
prominent; blue = smaller, more retrusive. 
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Table 21: Comparison of results from PLSR and mPCA (representative face chosen from PLSR models) 

Variable PLSR mPCA (PC1) Similarities Differences 

Sex 

  

Cheeks (larger) 

Midface (retrusive) 

Infra-orbital regions (more prominent) 

Minimal 

Height 

  

Nose (larger) 

Chin (larger) 

Brow ridge (larger) 

Cheeks (less prominent) 

Face narrower 

Lips (more prominent) - mPCA 

BMI 

  

Cheeks (larger) 

Supra-orbital region (more prominent) 

Midface (retrusive) 

Forehead (more prominent) 

Minimal 
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Fasting insulin 

  

Cheeks (larger) 

Supra-orbital region (more prominent) 

Infra-orbital region (less prominent) 

Chin (retrusive) 

Nose (smaller) 

Lower lip (more prominent) - PLSR 

Forehead (more prominent) - mPCA 

Cholesterol 

  

Cheeks (larger) 

Temporal region (more prominent) 

Nose (more retrusive) 

Subtle differences in areas of cheeks affected 

Orbital regions (less prominent) - PLSR and 

Orbital regions (more prominent) - mPCA 

Lips (more retrusive) - mPCA 

Triglycerides 

  

Supra-orbital region (more prominent) Disagreement in most features 
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VLDL 

  

Cheeks (larger) 

Lips (more retrusive) 

Nasal bridge (more retrusive) 

Forehead and chin (more prominent) - mPCA 

Supra-orbital region (more prominent) - 

mPCA 

LDL 

  

Supra-orbital regions (more prominent) 

Upper forehead (more prominent) 
Disagreement in all other areas 

Smoking 1
st
 

trimester 

  

Nose (more retrusive) 

Outer area of cheeks (larger) 
Disagreement in all other areas 
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Smoking 2
nd

 

trimester 

  

Areas of mandible (more prominent) 

Lower part of bridge of nose (more 

prominent) 

Disagreement in all other areas 

Alcohol 1
st
 

trimester 

  

Supra-orbital regions (more prominent)  

Cheeks (more prominent) 

Nose (smaller) 

Chin (less prominent) 

Forehead (more prominent) – mPCA 

Lips (less prominent) – PLSR 

Lips (more prominent) - mPCA 
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6.6 DISCUSSION 

As in studies one and two, discussion of the influence of each variable is provided in 

the General Discussion (7.1 Facial differences, p. 165).  The ability to add multiple 

variables to the PLSR models, including both continuous and categorical variables, 

gave more flexibility than mPCA.   The adjustment for variables within the PLSR 

model also made the results more reliable compared to independent mPCA models.   

 

Sex, height, BMI and fasting insulin explained more than 5% of the total variation in 

their respective mPCA models and reached significance in the PLSR models (although 

fasting insulin became non-significant after Bonferroni correction).  Those that 

explained less than 5% of the total variation in their respective mPCA models did not 

reach significance in the PLSR models.  The p-values, R2 values and facial differences 

with regards to sex, height, BMI and fasting insulin did not appear to be affected when 

these variables were included or excluded.  The inclusion of these variables may 

therefore induce overfitting and increase computational time without any benefit. 

 

6.7 SUMMARY 

A summary of the inferential results from this study are presented in Table 22.  Due 

to the lack of adjustment for variables in the mPCA models, the results from the PLSR 

models may be more reliable.  However, the use of mPCA as a variable selection tool 

prior to PLSR was beneficial as the number of variables included in the model could 

be reduced significantly and thus reduced computational time as well as the risk of 

overfitting.  It would appear sensible to suggest 5% variation explained in a mPCA 

model as a threshold with mPCA prior to inclusion PLSR models in future given these 

variables reached significance in the PLSR models. 
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Table 22: Summary of results from study three using PLSR with bootstrapping 

Variable P-value Smallest threshold for 
significance from the 
models 

Null hypothesis 

Sex <0.00001 0.0045 Reject 
Height <0.00001 0.0045 Reject 
BMI <0.00001 0.0045 Reject 
Cholesterol >0.05 0.0045 Accept 
Triglycerides >0.05 0.0045 Accept 
VLDL >0.05 0.0045 Accept 
LDL >0.05 0.0045 Accept 
Insulin 0.017 – 0.049 0.0045 Accept 
Smoking 1st trimester >0.05 0.0045 Accept 

Smoking 2nd trimester >0.05 0.0045 Accept 

Alcohol 1st trimester >0.05 0.0045 Accept 
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7 GENERAL DISCUSSION 

7.1 FACIAL DIFFERENCES 

7.1.1 Overall summary of results  

A summary of the total variation explained and inferential findings for each of the 

variables are provided in Table 23.   The results for geographical location were based 

on 21 landmarks only whilst the other results are provided for 1000 quasi-landmarks 

(mPCA) and 7160 quasi-landmarks (PLSR). 

 

Table 23: Summary of total variation and inferential tests for each variable 

Variable % Total variation 
explained (mPCA 
model) 

Null hypothesis 
(mPCA) 

Null hypothesis 
(PLSR) 

Geographical location 
(21 landmarks) 

11.34 – 14.59% Reject - 

Sex 17.31% Reject Reject 
Age 1.18% Accept - 
Height 11.05% Reject Reject 
BMI 17.29% Reject Reject 
Pubertal stage (hair) 1.76% Reject - 

Pubertal stage (genitals) 0.58% Reject - 

Cholesterol 3.55% Reject Accept 
Triglycerides 2.25% Reject Accept 
VLDL 3.54% Reject Accept 
LDL 2.01% Reject Accept 
HDL 1.58% Reject - 
Glucose 1.69% Reject - 
Insulin 5.83% Reject Accept 

(after Bonferroni) 
Asthma  
(0-42 months) 

0.93% Reject - 

Asthma  
(91 months) 

0.40% Reject - 

Atopy 0.15% Reject - 
Hay fever 0.35% Reject - 
Smoking before pregnancy 1.53% Reject - 

Smoking 1st trimester 2.51% Reject Accept 

Smoking 2nd trimester 3.74% Reject Accept 

Alcohol before pregnancy 1.56% Reject - 

Alcohol 1st trimester 2.62% Reject Accept 

Alcohol 2nd trimester 1.60% Reject - 
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7.1.2 Geographical location 

It appears that the geographical location of a subject explains more of the differences 

in the faces than the sex of the subject (both when the Croatian sample, who were 

older, were included and excluded) for the subject groups studied here.  This contrasts 

with the thoughts of Scheuer (2002) who advised that ethnicity is the more difficult to 

ascertain than sex from the skeleton.  This may be due to differences in analysing 

living individuals via facial scans and dry skulls.  However, the differences at this 

level may be exaggerated in this thesis due to the different researchers placing the 

landmarks on each sample.  Although it is hoped this issue was reduced via calibration.  

The influence of sex may also be underestimated here due to the restriction in the 

number of eigenvalues possible due to there being only two groups present (female 

and male). 

 

Differences due to geographical location can be seen in most of the main facial 

features.  The facial features that have been found to differ in different European 

populations also appear to be influenced in this study.  Previous research suggests that 

forehead shape, nose length and width, width of eyes, lip prominence, mandibular 

shape and chin prominence all differ between populations (Bozic et al. 2009; Kau et 

al. 2010; Hopman et al. 2014; Farnell et al. 2017).  Differences in nose shape, eye 

width and mouth shape were highlighted in particular in this thesis. 

 

As all the populations in this study are Caucasian, it is encouraging that differences 

between the groups were found.  The Croatian sample appears to be most 

distinguishable.  This is likely due to their older age than the other populations.   It is 

not surprising that the multilevel PCs showed no substantial areas of variation between 

the English (Bristol) and Welsh (Cardiff) populations given their proximity 

geographically.  They are therefore likely to have been exposed to similar 

environmental factors and possibly genetics.  Indeed, a recent GWAS study suggests 

that some populations in Cardiff area (although not all) may have similar genetics to 

those in the Avon area (Leslie et al. 2015).  There was clear clustering separating the 

centroids of the two populations, particularly for mPCA population level PC2 and 

PC3.   This indicates that subtle differences were found.    
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Overall, the findings support Hopman et al. (2014), who suggest that combining 

multiple populations in studies into a broad racial category, such as Caucasian, may 

be inappropriate due to the differences between subpopulations.  Hopman et al. (2014) 

also suggest that there is likely to be a high level of genetic admixture in populations 

that have undergone immigration of other populations throughout their history.  This 

holds true for the populations investigated here, and perhaps reflects the large amount 

of within-group variation seen.  

 

7.1.3 Sex 

Following puberty, the skull is the most sexually dimorphic region of the body after 

the pelvis (Scheuer and Black 2007b).  It follows that the facial features also appear 

to be highly sexually dimorphic with many studies being able to differentiate between 

the faces of males and females to a high level of sensitivity (for example, (Abbas et 

al. 2018)).  In the literature, female faces are suggested to be smaller and rounder, with 

less prominent brow-ridges, more prominent and wider apart orbits, more prominent 

cheeks, smaller noses, and fuller lips, (for example, (O'Toole et al. 1997; Graw et al. 

1999; Nute and Moss 2000; Kau et al. 2006; Bozic et al. 2009; Gor et al. 2010; 

Velemínská et al. 2012; Bugaighis et al. 2013; Koudelová et al. 2015; Mydlová et al. 

2015)). The findings in both the mPCA and PLSR models agree with all the findings, 

which is encouraging as it shows that mPCA produces meaningful results.  The 

agreement amongst all the analyses provides further validity.   

 

7.1.4 Age and pubertal stage 

This thesis was not focussed on assessing growth or the influence of age long term.  

The subjects were all between 14-16 years old (except for the Croatian population in 

study one, who were included to assess the ability of mPCA to separate groups).  Age 

was therefore assessed as a potential confounder only.  As the age range was small, it 

was expected that the variation explained would be minimal.  This could provide a 

further use for mPCA; assessing whether confounding factors have been adequately 

controlled in the sampling phase.  
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The mPCA model suggests that a reduced pubertal stage was associated with a 

retrusive chin or reduced lower facial height, less prominent forehead and more 

prominent cheeks, eyes, and lips.  As these facial features are likely to present in this 

manner prior to puberty, particularly in males (Koudelová et al. 2015), it is important 

that studies investigating age also consider subjects’ pubertal stage in future. 

 

7.1.5 Height 

Both the mPCA and PLSR models suggest that taller subjects present with more 

prominent brow-ridges, lips, and larger noses, with relatively narrower and potentially 

longer faces.  Previous studies investigating the influence of growth hormone suggest 

that those with increased growth hormone present with an increased facial height.  

However, they also suggest that increased growth hormone is associated with 

increased facial width (Pirinen et al. 1994). It would therefore be worthwhile assessing 

the influence of growth hormone on the facial shape of the ALSPAC cohort.  However, 

this is not available for the subjects at the time of their facial scans. 

 

7.1.6 BMI 

Previous studies suggest that an increased BMI is associated with increased facial 

width and increased mandibular width and length (Ohrn et al. 2002; Ferrario et al. 

2004; Sadeghianrizi et al. 2005).  There is however controversy in the literature as to 

whether obesity is linked to a retrusive or protrusive profile and whether the anterior 

facial height is increased or reduced (Ohrn et al. 2002; Ferrario et al. 2004).  Here, the 

mPCA and PLSR models agree that obesity is associated with larger cheeks and 

therefore increased facial width.  The midface appears to be retrusive in comparison. 

However, it is challenging to determine whether this is due to a true clinical retrusive 

midface or a relative retrusion in comparison to the size of the cheeks given that the 

faces are aligned using GPA without a specific, stable reference point.  The models 

suggest that the anterior facial height is reduced. However, further investigation is 

required with regards to the x-, y- and z- axes individually.  The findings at a BMI 

level make sense, in that adipose deposits are expected at the buccal fat pads.  Adipose 

tissue deposition can also be found in the orbits (Wolfram-Gabel and Kahn 2002) and 

may in part explain the influence of BMI on orbital shape. 
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7.1.7 Fasting insulin 

The metabolic factor that appears to be most promising for further investigation is 

fasting insulin, as differences were described in both the mPCA and PLSR models.  

Although the results did not reach significance in the PLSR models, which in part may 

be due to the conservative nature of Bonferroni correction.  A previous study 

suggested that insulin affects facial height, nasal asymmetry, and the depth of the 

upper eyelids (Djordjevic et al. 2013b).  Here, the mPCA model suggests that insulin 

has an influence on many more of the facial features.  High levels of insulin appear to 

influence the cheeks, forehead and supra-orbital regions in a positive direction, and 

the nose, infra-orbital regions, lips, chin and/or lower facial height in a negative 

direction.  The influence on female and male subjects appears to differ in the PLSR 

models. 

 

There is biological reasoning behind the influence of insulin on facial shape, given the 

complex relationship between insulin and GH suggested by Qiu et al. (2017).  The 

positive influence on the brow-ridge may be explained if insulin optimally stimulates 

GH.  Qiu et al. (2017) suggests this would be expected in non-obese and non-diabetic 

individuals.  Growth at the cranial base can in part be compared to growth in the long 

bones due to the similarities between the synostoses in the cranial base and the 

epiphyses in the long bones.  They may therefore be sensitive to the same factors.  

However, the pre-sphenoid and cribriform plate regions are considered stable from 

seven years old with the movement of nasion in forwards trajectory after this age 

associated with an increase in size of the frontal sinus (Afrand et al. 2014).  It follows 

that any influence of insulin on the anterior cranial base is likely to have occurred prior 

to the age of seven.  Further work is therefore required to assess whether the potential 

difference in brow-ridge prominence occurred prior to the age of seven, and was 

maintained until 15 years old, or whether these differences appeared after seven years 

old and are therefore more attributable to expansion of the frontal sinus.   

 

The negative influence on the mandible and subsequent class II skeletal pattern could 

be attributed to an increased length of the anterior and/or posterior cranial base 

(Hopkin et al. 1968; Dibbets 1996).  However, the association between cranial base 

length and skeletal pattern is conflicting in the literature, with other studies finding no 
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significant relationship (Kasai et al. 1995; Wilhelm et al. 2001; Polat and Kaya 2007; 

Kamak et al. 2013; Breh and Kamat 2015).  It is more challenging to explain a positive 

influence on growth at the brow-ridge and a negative influence on mandibular 

prominence without implicating the cranial base.  However, it is interesting that males 

appear to be more sensitive to insulin at the mandible (negative association) and 

females at the brow-ridge (positive association), albeit at levels below statistical 

significance.  Further work is required to investigate this further. 

 

It will be challenging to attempt to disentangle the influence of sex, obesity, type II 

diabetes, insulin levels, growth hormone levels and height in future models.  Given 

the constraints on the number of levels possible in mPCA due to sample sizes, it is 

unclear whether the differences seen here are due to insulin or whether they are due to 

confounding factors.  However, given that differences were also seen in the PLSR 

model, albeit in fewer facial features, there is evidence to suggest that insulin is worth 

exploring further.  Exploring the association between genetic factors, insulin and facial 

shape may also be of interest.  SNPs close to the following have been associated with 

insulin resistance. However, it does not appear that they are associated with any facial 

feature at present: Chromosome17p, VNTR, PPARG, KLF14, IRS1, GCKR, FTO, 

TCF7L2, NAT2, TMEM163, IGF1, MC4R, SC4MOL, TCERG1L and ARL15 (Le 

Stunff et al. 2000; Rich et al. 2005; Brown and Walker 2016).   

 

It is interesting that the PLSR results for insulin were significant for all analyses (prior 

to Bonferroni correction) when both sexes were combined but were not significant 

when females and males were separated.  This phenomenon may be linked to 

Simpson’s Paradox (Simpson 1951).  Simpson’s Paradox describes a situation where 

a result is significant when assessing subgroups, but when the groups are assessed 

together, the result becomes non-significant.  Here, the opposite appears to be true, as 

analysing the sexes together resulted in a significant result, but when the sexes were 

assessed separately, the results were not significant.  A visualisation is proposed in 

Figure 66.  However, this requires further investigation. 
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Figure 66: (a) Simpson’s paradox: when the groups are analysed separately, there is a positive 
relationship between x and y.  However, when the groups are analysed together, there is no 
correlation. (b) A visualisation exaggerating what might be happening with regards to insulin in 
the PLSR models: when the groups are analysed separately, there is no relationship between x 
and y. However, when there are analysed together, there is a positive relationship. 

 

7.1.8 Glucose, cholesterol, VLDL and HDL 

There does not appear to be any published findings on the influence of glucose, 

cholesterol, VLDL or HDL, apart from Djordjevic et al. (2013b), who suggested that 

these variables were not associated with any of the PCs in their study at a statistically 

significant level.  Further work, using different models other than mPCA may 

therefore be useful in future. Djordjevic et al. (2013b) did however suggest that 

triglycerides were associated with PCs that explained nose height.  The findings here, 

in the mPCA model, suggest that the cheeks are larger as well as the supra-orbital 

region and forehead when triglyceride levels are increased.  In contrast, the nose was 

smaller alongside the lips and chin.  However, as the findings do not agree with the 

PLSR model, and the findings in the PLSR model did not reach significance, further 

work is required to verify these findings, particularly as confounding factors were not 

corrected for in the mPCA model.  LDL was also investigated by Djordjevic et al. 

(2013b), who found that LDL was associated with PCs explaining nasal prominence, 

lower lip prominence and nasal asymmetry.  Here, most of the facial features were 

affected and again further work is needed to verify these findings. 

 

7.1.9 Breathing disorders 

Of all the variables assessed in this thesis, breathing disorders appear to have the 

smallest influence on facial shape.  However, given the intimate relationship between 

Simpsons paradox

Male
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Simpsons paradox
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the respiratory system and the face, it would be surprising if there was no association.  

Al Ali et al. (2014b) were able to use a larger sample from the ALSPAC cohort as 

they did not explore as many variables and therefore did not need to exclude as many 

subjects due to missing data.  They found significant differences in the facial shape of 

subjects whose mothers reported that they wheezed at 7.5 years old.  These differences 

were in nose width, mid-face angle and a reduced height of the mid-face in females 

only. However, these differences were in the region of 0.4-0.9mm.  These findings are 

like those found here, with the mPCA model suggesting that asthma at 7.5 years old 

resulted in a more retrusive and/or reduced mid-facial height.  In addition, the orbits 

and mandible appear to be influenced as well.  Wheezing between 0-3.5 years old was 

also assessed here, with subjects presenting with smaller noses.  In addition, there was 

a suggestion that the lower facial height may be increased, which would agree with 

the suggestions an elongated face could be associated with a reliance on mouth 

breathing rather than nasal breathing (Linder-Aronson 1974) 

 

Atopy explained the least amount of total variation in this thesis.  It was therefore not 

explored further in the PLSR models.  In the mPCA model, atopy appeared to be 

associated with retrusive or reduced midfacial proportions, larger noses, and 

foreheads, including the brow-ridge.  The mandible also appeared to be affected and 

well as facial symmetry. However, as atopy influenced the total variation the least, 

these results should be interpreted with caution.  A previous study on the ALSPAC 

cohort suggests that facial heights were longer in subjects with atopy (0.4-0.6mm) (Al 

Ali et al. 2014a).  Again, a larger sample size was possible as fewer variables were 

assessed.  Assessment of unscaled faces would therefore be useful in an mPCA model 

to determine the influence of atopy on facial height. 

 

A historical study investigating the influence of perennial allergic rhinitis on the facial 

shape of 5 to 10 year olds suggests that the Frankfort Mandibular Planes Angle and 

lower facial height are increased whilst the face becomes narrower.  They suggested 

that further work was required to assess whether treatment influences these facial 

features (Sassouni et al. 1985).  Trask et al. (1987) also assessed the influence of 

perennial allergic rhinitis by comparing patients with their non-allergic siblings and 

controls who were nasal breathers.  They suggested that hay fever results in longer 

facial shapes and that the allergic patients as well as their siblings presented with 
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retrusive facial profiles.  The results of the mPCA model agree that the maxillary 

region may be retrusive in nature, with a relatively more prominent pronasale.  Further 

work disentangling the influence of x-, y- and z- axes in the mPCA model would help 

determine if the differences are due to retrusive profiles or whether the mid-facial 

height is reduced or both.  

 

Other breathing disorders that would be worth exploring in future, which were not 

explored here include, the influence of snoring, sleep apnoea and mouth breathing 

were not assessed here.  These have been found to result in statistically significant 

increased face height, decreased nasal prominence and width, and mandibular 

retrognathia, in a study of the ALSPAC 3D facial scans.  However, these differences 

were small, in the region of 0.3mm (Al Ali et al. 2015).  Given that sleep apnoea is 

associated with obesity (Allison and Saunders 2000), insulin resistance, and 

dyslipidemia (Romero-Corral et al. 2010), investigating this may be worthwhile in 

future. 

 

7.1.10 Maternal smoking during pregnancy 

In this population, it appears that maternal smoking before pregnancy, during the first 

trimester and during the second trimester had a small effect on facial shape of the main 

facial features of the offspring at 15 years old.  This effect was significant in the mPCA 

models, but the influence of smoking in the 1st and 2nd trimesters did not reach 

significance in the PLSR model.  The mPCA models suggest that the nose and maxilla 

are smaller when mothers smoke during pregnancy in contrast to the cheeks.  These 

facial features appear more pronounced if smoking continues through pregnancy.  

These results agree in part with the findings of Muggli et al. (2017), who suggested 

that the nasal bridge was less prominent in one year old, as well as the forehead and 

lower lip.  They also found that the chin was more superior.  If the facial shapes of the 

ALSPAC cohort had been assessed from birth, variations may have been more 

apparent during earlier stages of development.  Certainly, it appears from the limited 

research available in the literature that the influence of maternal smoking reduces with 

age, particularly in females (Koziel 2018).  This may be due to the influence of any 

exposure factors in utero being negated by the vast array of environmental factors they 

have been exposed to since birth. 
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7.1.10.1 DNA methylation 

DNA methylation may be the mechanism through which maternal smoking influences 

foetal development, with GFI1, KLF13, ATP9A, AHRR, MYO1G, CYP1A1 and 

CNTNAP2 implicated in the ALSPAC cohort (Richmond et al. 2015).  Although these 

genes are involved in development, they do not appear to have a specific influence on 

the development of facial structures, with the except of CYP1A1 and clefts (Shi et al. 

2007).  Thus, it may be expected that at a maternal smoking level, there is little 

difference in the main facial features of non-cleft patients.  Maternal smoking has also 

been associated with a 33 SNPs in cleft patients (Beaty et al. 2013).  It would be 

worthwhile reassessing whether these also have an influence on non-cleft facial 

features as GWAS research continues. 

 

7.1.10.2 Smoking cessation 

As would be expected, many of the mothers reported reducing their smoking or 

completely stopping smoking after learning of their pregnancy.  30.5% of mothers 

reporting stopping smoking before the first trimester and a further 18.5% before the 

2nd trimester.  This level of abstinence is possibly slightly higher than other studies, 

with an American paper stating that 22% of women stopped smoking after learning of 

pregnancy and 62% reduced their smoking levels (Heil et al., 2014).  This difference 

could be attributed to the potential bias incurred due to the self-reported and 

retrospective nature of the maternal smoking status in this thesis.  The results of the 

investigation into the cessation of smoking during pregnancy have not been presented 

in this thesis.  This was explored as a four-level mPCA model with sex and maternal 

alcohol consumption in Galloway et al. (2020).  It was not possible to assess the impact 

of smoking cessation and numbers of cigarettes concurrently due to sample sizes.  The 

four-level mPCA model therefore focussed on any smoking or alcohol consumption 

before pregnancy, during the 1st trimester and during the 2nd trimester.  The percentage 

explained by the maternal smoking level was minimal (0.66%). However, there was a 

suggestion from the component scores that the faces of the subjects whose mothers 

did not smoking during pregnancy were differentiable at PC2 from those who did 

smoke.  Using alternative methodologies would be helpful for validating this finding.  

Furthermore, information is available from ALSPAC on the third trimester, which 

would also be interesting to explore.  This is of particular interest as head 
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circumference was found to normalise if mothers stopped smoking by the third 

trimester (Lindley et al. 2000; Andersen et al. 2009).   
 

7.1.10.3 Smoking topography 

It may also be important to consider smoking topography as part of any future analysis 

as this may influence the levels of toxicity experienced by a foetus.  Smoking 

tomography is an umbrella term describing how cigarettes are smoked in relation to 

the number of puffs that are taken of each cigarette; the length of each puff; the time 

between puffs; the volume of smoke consumed per puff; and the puff velocity 

(Bergeria et al. 2017).  However, although it could be suggested that pregnant women 

may be more at risk of changing their smoking tomography due to abrupt smoking 

cessation and increased nicotine metabolism, no differences were found between 

pregnant and non-pregnant women (Bergeria et al. 2017).  Furthermore, the influence 

of paternal smoking during development may have a minimal influence on foetal 

development as levels of plasma cotinine in non-smoking mothers with smoking 

partners in the ALSPAC cohort was low (Taylor et al. 2014).  However, including 

these levels in any further analyses would give a thorough account of nicotine 

exposure in utero. 

  

Additionally, the use of nicotine replacement therapy was not assessed in this study, 

which would expose the subjects to nicotine in utero, despite reduced maternal 

smoking levels.  It would be interesting to investigate this in future, particularly as 

there is evidence of determinantal effects in animal studies (Bruin et al. 2010).  

However, a recent randomised trial on the use of nicotine-replacement therapy in an 

English population showed that compliance with nicotine-replacement therapy was 

low and did not significantly reduce the number of mothers who stopped smoking 

(Coleman et al. 2012).  Nicotine-replacement may therefore have minimal impact on 

the ALSPAC sample.  However, this should be taken into consideration to ensure 

robust results. 

 

7.1.10.4 Smoking post-partum 

Exposure to cigarette smoke after birth may also have an influence on development.  

It would also be useful to investigate maternal smoking levels during breastfeeding, 
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as nicotine is present in the breast milk of mothers who smoke and the production of 

breast milk is affected by smoking (Einarson and Riordan 2009).  Furthermore, Stiby 

et al. (2013) found that in the ALSPAC population, plasma cotinine levels were 

significantly higher in 7 year olds and 15 year olds whose mothers are heavy smokers.  

Additionally, it has been found in an American study the children of smokers are more 

likely to smoke themselves (Vuolo and Staff 2013), even in a time of declining 

smoking.  A study on the ALSPAC population has found that weekly smoking in 

adolescence can cause DNA methylation of AHRR (Prince et al. 2019).  DNA 

methylation of AHRR was also found to be related to maternal smoking in a previous 

study (Richmond et al. 2018) thus highlights the importance of considering smoking 

in the adolescent as well as maternal smoking.  The smoking levels of the children and 

exposure following pregnancy was not assessed in this study although may have a 

bearing on facial development, and thus would be useful to investigate in future.   

 

7.1.10.5 Protective factors 

Furthermore, protective factors, such as folic acid intake, may have reduced the 

influence of maternal smoking.  The protective nature of folic acid was suggested by 

Carmichael et al. (2008) when assessing the influence of maternal smoking on 

craniosynostosis, although sample sizes were small and the confidence intervals all 

crossed one, thus suggesting a non-significant result.  Multivitamins have also been 

suggested as a protective factor in the literature (Shaw et al. 2002). However it is 

difficult to assess this in isolation due to the large number of potentially confounding 

factors (Johnson and Little 2008), thus it would be interesting to assess potential 

protective factors as levels in the mPCA model in future studies.   

 

7.1.11 Maternal alcohol consumption during pregnancy 

Individuals with FAS present with a small nose, short palpebral fissures, a short, 

smooth upper lip and maxillary retrusion (Riley et al. 2011).  Historically, FAS is 

associated with binge levels of alcohol consumption during pregnancy.  Muggli et al. 

(2017) found that low levels of alcohol influenced forehead and nasal shape; moderate 

levels influenced orbital shape, the midface and chin shape; whilst binge levels 

influence chin shape.   However, Howe (2019) found that the facial differences did 
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not reach significance using regression.  The mPCA model suggests that alcohol 

consumption during pregnancy influences the nose (smaller), orbital shape and 

maxillary retrusion.  This agrees with the clinical presentation of FAS and in part with 

the findings of Muggli et al. (2017).  However, in addition to these facial features, the 

mPCA models also suggest that chin shape or lower facial height may be affected 

alongside forehead shape.  There is also a suggestion of facial asymmetry in the 

subjects whose mothers consumed alcohol during the 1st and 2nd trimesters.  

Interestingly, maternal alcohol consumption before pregnancy also showed an 

influence on nose size and orbital shape, as well as forehead and chin shape.  

Determining whether this is due to epigenetic factors or due to alcohol consumption 

prior to knowledge of the pregnancy would be of interest in future work. 

 

As was discussed for maternal smoking during pregnancy, the influence of stopping 

alcohol consumption during pregnancy was not explicitly explored here in a single 

model.  This was investigated as a preliminary study using a four-level mPCA model 

with sex and maternal smoking. It was found that maternal alcohol consumption 

explained 0.48% of the variation, with little difference in the mean component scores 

of the groups (Galloway et al. 2020).  Further investigation would be worthwhile with 

other methodologies to improve the reliability of this finding.  Furthermore, many of 

the subjects reported drinking 1-2 glasses of alcohol per week.  Further work on higher 

levels of alcohol consumption throughout pregnancy would be merited.  

 

7.1.12 Within-group variation 

The within-group variation level (all variation except that modelled in the other levels 

of the mPCA model) explained the greatest amount of variation in all of the models.  

This is expected due to the large variation in the faces we encounter daily.  A recent 

GWAS has found in excess of 200 SNPs that are associated with facial shape (White 

et al. 2021) and it is likely that the number will continue to increase as GWAS research 

is replicated over time.  This influence of the numerous genetic factors on facial shape 

are likely to explain a large proportion of the within group variation seen in this study.  

It is also likely that there will be numerous other environmental factors influencing 

that variation at this level, either in isolation or in association with genetic factors 

through epigenetics and shared genetics. 
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Although calibration was undertaken by the researchers involved in placing the 21 

landmarks on the facial scans, plotting error could also contribute to variation between 

individual subjects within each group.  In 3D laser facial scans, the orbit has been 

found to be one of the most difficult areas to landmark (Toma et al. 2009), whilst lasers 

have difficulty scanning the region due to the complex anatomy (Papadopoulos et al. 

2002).  These issues may also explain the high levels of within-group variation at the 

orbits and highlights the benefit of being able to separate this variation from the 

between group variation.  Where quasi-landmarks were used (in analyses with 1000 

landmarks and the PLSR analysis), there may be some error in the landmark positions 

due to the constraints of the methodology when warping the faces to fit the facial 

template.  The ability to ascertain these differences separately to those associated with 

sex and population is essential in discerning subtle differences between faces, thus 

making mPCA an invaluable tool in 3D laser facial scanning research.  

 

7.2 COMPARISON OF THE ANALYSES USED 

This thesis used conventional PCA, DFA, PLSR and mPCA, with the aim of 

highlighting the relative advantages and disadvantages of each of these techniques in 

facial shape research.  Figure 67 provides a visual summary of the techniques used in 

each of the three studies in this thesis.  A comparison of the techniques can be found 

in Table 24. 
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Table 24: A comparison of the dimension reduction techniques used in this thesis 

 Conventional PCA DFA PLSR mPCA 
Supervised? No Yes Yes Yes 

Type of data 
(variables) N/A Categorical 

PLSR: 
Continuous 
PLS-DA: 

Categorical 

Categorical 

Number of 
variables 

Unlimited as not 
considered 

Limited to one at 
a time 

Unlimited but 
watch for 
overfitting 

Usually 2-3 
between-groups 

levels due to sample 
sizes 

Sample size 
restrictions 

More than one 
landmark 

Number of 
subjects per 

group 4x number 
of retained PCs 

Presumed more 
relaxed but 
debate in 
literature 

No groups with 0 
subjects, groups 

must have similar 
sample sizes 

Distribution Disagreement in 
literature 

Normal 
distribution of 

landmarks 

Normally 
distributed 

(although not 
essential) 

Normal distribution 
of landmarks 

Covariance 
matrix 

requirements 
Nil 

Homogeneity of 
covariance 

matrices required 
 

Unclear 

Homogeneity of 
covariance matrices 
to ensure sensible 
averaging at each 

level 

Sensitivity 
to outliers Sensitive Sensitive Very sensitive 

Reduced with robust 
methods and use of 

median of 
covariance matrices 

Descriptive 
statistics Difficult to interpret 

Very clear but 
difficult to 

interpret clinical 
differences 

Difficult to 
interpret Very clear  

Inference via MANOVA 
Multiple regression Wilks Lambda Bootstrapping 

partial R2 

MANOVA or 
ANOVA +/- 
bootstrapping 
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Figure 67: A flow chart describing the analyses used in this thesis. 
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7.2.1 Landmarks only 

When no dimension reduction is carried out, detailed information on the differences 

in each of the landmarks is possible and there is an indication of both the between- 

and within-group variation.  This can be simplified by visualising the mean of each 

landmark for each group with the addition of the standard deviation providing a 

summary of the within-group variation.  However, it is difficult to visualise differences 

clearly due to the number of data points to process.  It is slightly easier when only two 

groups are assessed but is challenging when the number of groups increases.  Separate 

plots of each landmark would determine differences in more detail; however, these 

would be labour intensive to generate and analyse.  Visualising the overall mean 

allows for a quick assessment of whether the populations are broadly different to each 

other.  However, due to the processing stage, where the faces are superimposed using 

the mean in GPA, the mean of the landmarks no longer separates the groups.  Given 

the caution required in the presence of multicollinearity and relatively small sample 

sizes, MANOVA was not used in these analyses.  Until sample sizes are adequately 

increased with cohort studies encompassing very large populations, dimension 

reduction will be recommended in facial shape research. 

 

7.2.2 Conventional Principal Component Analysis  

The use of conventional PCA reduces the outcome variables into a more manageable 

number of PCs.  Where the number of retained PCs is less than the number of subjects 

in each group, MANOVA can be used, with the hope that during the dimension 

reduction process little meaningful information is discarded.  However, as 

conventional PCA is unsupervised, the variation explained by each PC is due to the 

mixing of multiple variables.  It is therefore not possible to be certain that variation 

due to a variable of interest has not been discarded in part or in full during the 

dimension reduction process.  The variation of interest is also mixed with within group 

variation.  This is reflected in the similarity between the eigenvalue plots for 

conventional PCA and the within-group variation level of mPCA.  These plots follow 

a similar pattern, indicating that much of the variation explained by each conventional 

PC is within group variation, therefore reducing their usefulness in visualising 

differences between the groups.   
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The number of score plots that require visualising increases in comparison to the raw 

landmarks.  These score plots remain the same for each variable and are simply colour 

coded differently to visualise differences due to the different variables.  This makes 

conventional PCA less useful from a data visualisation standpoint.  It is also 

challenging, if not impossible, to attribute an overall influence on one variable as the 

results of each PC need to be combined in some way (whilst considering that the 

variation at each PC is attributable to multiple variables to greater and less extents).  

For example, if PC1 explains 18.57% of the total variation, PC2 explains 10%, PC3 

explains 5% etc, these percentages cannot simply be added together to gain an overall 

importance for geographical location or sex.  It is for these reasons that conventional 

PCA has significant disadvantages in facial shape research. 

 

7.2.3 Discriminant Function Analysis 

DFA is a method of separating the groups whilst providing a smaller number of plots 

for visualisation.  As the process takes groupings into account, it is far easier than 

conventional PCA to determine the differences between groups.  In its conventional 

form, DFA is only able to assess the influence of one variable at a time (although there 

is no restriction on the number of groups attributed to each variable).  It would be 

interesting to assess DFA as a multilevel model.  Furthermore, as DFA has sample 

size restrictions, conventional PCA was required as the number of landmarks often 

exceeded the necessary sample size for each group.  The use of two separate dimension 

reduction techniques consecutively makes interpretation of the true facial differences 

more challenging than the use of conventional PCA in isolation.  Finally, although  

100% of the total variation explained by each DF is provided, this information is not 

useful for determining the overall influence of each variable.  For example, if only one 

DF is possible (e.g., when determining the influence of sex), this DF explains 100% 

of the variation in the model.  This information therefore has minimal clinical use. 

 

7.2.4 Partial Least Squares Regression  

The PLSR model used in this thesis was kindly provided by a group in KU Leuven, 

who have utilised this technique for the investigation of facial shape previously.  They 



 178 

 

suggest itself superiority when investigating correlated landmark data when sample 

sizes are reduced in comparison to the number of landmarks (Shrimpton et al. 2014; 

Matthews et al. 2016; Muggli et al. 2017).   

 

With regards to descriptive statistics, score plots associated with PLSR are more 

difficult to interpret than those possible with conventional PCA and mPCA as the 

component consider both the variables and the landmark data simultaneously.  The 

PLSR used in this thesis did not utilise a multilevel structure.  The benefits of 

separating the variables at different levels of the model is worth exploring.  Initial 

work has begun, comparing multilevel PLSR with mPCA (Farnell et al. 2021).  

 

It may also be useful to investigate the influence of non-normality in PLSR.  Goodhue 

et al. (2012) suggests that PLSR performs in a similar manner to multiple regression 

and was relatively robust for non-normally distributed data.  Stahle and Wold (1990) 

also suggest non-normal data is unlikely to be an issue with PLSR.  However, this 

would be worthy of further investigation in future.   

 

7.2.5 Multilevel Principal Component Analysis 

mPCA is a useful extension of conventional PCA as it allows data reduction to be 

conducted in a “guided” manner, considering the group the subjects belong to (e.g., 

Croatian, English, Welsh or Finnish, male or female).  This is advantageous as it is 

possible to be more confident that the variation seen in the score plots is due to the 

variable of interest.  It is also less likely that variation due to the variable of interest is 

discarded in the dimension reduction process.  As mPCA finds the maximum variation 

between the groups, it can model subtle differences in the facial shapes.  This is 

advantageous as differences in facial shape are likely to be subtle given that it is not 

possible to determine (for example) a person’s asthma status in everyday life from 

their facial shape.   Only the variables that explained 5% of the total variation in their 

respective mPCA models reached global significance at a 0.05 level in the PLSR 

models.  It could therefore be suggested that mPCA may be more sensitive than PLSR 

in determining subtle differences in facial shape and attributing these to a particular 

variable.  However, it may therefore follow that mPCA is prone to overfitting, as by 

nature, it maximises the variation in the current data set.   
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The interpretation of the component score plots is easier than in PLSR and 

conventional PCA.  It is therefore useful for data visualisation in the exploratory data 

analysis phase when data is naturally categorical with equal numbers of subjects in 

each group.  Given that the score plots for mPCA and DFA show very similar patterns 

of group separation, there is evidence to support the results attributed to mPCA.  

However, as there are still multiple plots when there is more than one group, 

determining the true differences between the groups is more challenging than using 

the raw landmarks in isolation.   Furthermore, as was discussed in the results section, 

where there is a large discrepancy in the group sample sizes, there is a suspicion that 

the separation in the component score means is artificial.  This was also suggested by 

Bookstein (2019) with regards to between-groups variation, and therefore the score 

plots should be interpreted with caution at this stage.  A further disadvantage of mPCA 

is the requirement for categorical data.  This cannot be overcome directly, but 

alternative techniques that are capable of handling continuous variables, such as 

PLSR, can be adapted to utilise a multilevel structure (Farnell et al. 2021).  Finally, a 

large range of component scores was evident in the mPCA models.  This was further 

exaggerated when the scores were standardised.  Constraining the component scores 

generated by the mPCA model to 3SD, as suggested by Farnell (2017), may be of 

benefit in future. 

 

Given that the eigenvalues take the variables into account in mPCA, it is possible to 

calculate the percentage of the total variation each variable explains.  This is more 

useful than the information available in conventional PCA.  For example, knowing 

that PC1 explains 18.47% of the total variation, is not particularly useful.  However, 

knowing that population (14.55%), sex (9.96%) and all other variation (66.63%) 

influence facial shape in different amounts, as is possible with mPCA, is very useful 

information.  This allows variables to be compared with regards to their importance in 

explaining differences between faces and is one of the strengths of mPCA as a 

descriptive tool.  It also demonstrates the variation that has not been explained by the 

variables in the model and is represented by the within-group variation level.  

However, as the number of eigenvalues that can be retained in constrained by the 

number of groups, variation will not be modelled in all possible directions, and 

information may therefore be lost. 
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The use of the percentage of total variation as a variable selection tool prior to further 

analyses, such as PLSR, is enticing.  Variable selection is particularly useful in the 

field of facial shape as there are likely to be many variables that have a subtle influence 

either individually or in combination.  The difficulty therefore lies in finding and 

quantifying important variables to add to a statistical model.  If an important variable 

is missed from the analysis, the results could be misleading.  If too many unimportant 

variables are added, there is a risk of overfitting (Tabachnick and Fidell 1996). The 

output from mPCA is easy to understand and visualise thus making these decisions 

more intuitive from a clinician’s point of view.  However, many other methods have 

been suggested in the literature with regards to variable selection in PLSR.  Some of 

these methods were initially reviewed by Mehmood et al. (2012) and have 

subsequently been compared by the authors Mehmood et al. (2020).  The authors 

grouped the potential variable selection methods into three categories: filter methods, 

wrapper methods and embedded methods.  Filter methods involve running the PLS 

model with all possible variables and using a threshold to decide which variables to 

keep in subsequent models.  Wrapper methods use a filter method first, then involve 

re-running the PLSR model until the best combination of variables and model fit is 

found.  The embedded methods involve modified PLSR algorithms which have the 

variable selection step “embedded” in the model.  Using mPCA as a screening tool 

could be seen as a type of filter method. 
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8 LIMITATIONS AND FURTHER WORK 

8.1 CLINICAL DATA 

The differences explored here with regards to geographical location are across both 

sexes and with regards to sex are across all geographical locations.  This helped to 

keep the methods comparable and ensured that the results were as clear as possible.  

Further work on the different levels of sexual dimorphism within each population 

would be of interest and assessment of whether the differences are similar for both 

females and males. 

 

BMI was used as a proxy for body fat (visceral obesity).  However, BMI has been 

criticised as it does not distinguish between bone mass, muscle mass and excess fat.  

It also does not consider age and gender, although some effort has been made to 

account for ethnicity by adapting the cut offs for obesity (WHO Expert Consultation 

2004).  There is also debate around whether it correlates well with ill-health 

(Mahadevan and Ali 2016). However, Lawlor et al. (2010) suggest that in the 

ALSPAC sample, waist circumference and fat mass measured via x-ray absorbiometry 

are no more associated with cardiovascular risk factors than BMI.  The use of 

alternative measures would be of use in further work to improve confidence in the 

results and improve understanding of the impact of body fat on facial shape.  

Alternative methods include waist circumference (Lee and Kim 2014), dual energy x-

ray absorptiometry to assess fat mass (Lawlor et al. 2010), a standardised reference 

model based on upper arm length and sitting height (Bagust and Walley 2000) and the 

Relative Fat Mass Index (Woolcott and Bergman 2018): 

 

Men = 64 – ( !"∗	%&'(%)	
*+',)	-'.-/01&.&2-&)  Women = 76 – ( !"∗	%&'(%)	

*+',)	-'.-/01&.&2-&) 

 

The metabolic factors assessed here are snap shots of their levels at one point in time, 

close to the time of acquisition of the facial images.  However, facial shape is an 

accumulative measure and levels of these metabolic factors are likely to fluctuate over 

time.  It is therefore difficult to draw any conclusive evidence with regards to their 

influence on facial shape, although it can be used as a guide for further investigation.   
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Although subjects were excluded if they had obvious craniofacial dysmorphia, further 

information on any history of trauma, family history of craniofacial issues and the 

orthodontic status of the subjects would be beneficial.  It would also be useful to 

determine whether the subjects presented with hypodontia or any other dental 

anomalies.   Further information would also be useful with regards to the medications 

taken by the subjects.  In particular, the use of insulin or inhalers.  Detailed medical 

histories would also determine if any other variables should be investigated and allow 

for more thorough investigation with regards to the severity of the breathing disorders. 

 

Furthermore, several of the variables (pubertal stage, maternal smoking levels and 

maternal alcohol consumption) were self-declared via questionnaire.  It is therefore 

possible that the levels documented were not accurate.  The literature on the reliability 

of self-reported smoking statuses is conflicting.  There is a possibility that there is 

geographical variation in the reliability of mothers to accurately report smoking levels.  

In a Norwegian population, Kvalvik et al. (2012) found a sensitivity of 82% and 

specificity of 92% when comparing self-reported smoking and plasma cotinine levels, 

concluding that self-reporting is an accurate method of recoding smoking status.  

Furthermore, a study using a historical population from the 1950s and 60s found that 

94.9% of woman who reported they were non-smokers and 87% of smokers reported 

their smoking status correctly (Klebanoff et al. 1998).  A more recent study from 

Scotland found that self-reported smoking levels were not accurate and accounted for 

a failure to detect over 2400 smokers (Shipton 2009).  A further study on a Hungarian 

population found that the smoking status reported by the mothers was not consistent 

with information gained about their smoking status from family members (Czeizel et 

al. 2004).  In future, it may therefore be more accurate to use plasma cotinine levels 

rather than self-reported smoking levels.  The maternal plasma cotinine levels are 

available for the ALSPAC population for the first trimester (Taylor et al. 2014), thus 

this could be interesting to explore in future.  However, the use of prospective cotinine 

levels can also include biases as mothers can reduce their smoking levels prior to the 

blood test (Blood-Siegfried and Rende 2010).  
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8.2 3D FACIAL IMAGING AND INTERPRETING THE FACIAL DIFFERENCES 

 

8.2.1 Superimposition and Generalised Procrustes Analysis 

GPA minimises the sum of the squared distances between the landmarks (Klingenberg 

2021).  The use of GPA is accepted due to its easy implementation.  However, any 

processing step used on the facial meshes inherently changes the original face and thus 

can influence the results.  One of the disadvantages of GPA is described as the 

“Pinocchio effect”.  If one or a few landmarks differ greatly in shape A compared to 

the other shapes assessed, the centroid of shape A will be influenced.  This will 

subsequently affect the position of the other landmarks after GPA.  Therefore, the 

variation visualised may not represent true facial differences (Klingenberg 2021).  

Klingenberg (2021) extend the caution required when interpreting facial differences 

after GPA as the issue of landmarks being influenced by each other is not isolated to 

situations where a large difference is seen in a small number of landmarks. 

 

In cephalometry, well defined stable structures are used to superimpose images.  In 

surface facial shape research, these structures are not available.  It has previously been 

suggested that the faces could be aligned initially on mid-endocanthion during the 

superimposition process (Zhurov et al. 2005).  This has been proposed as a stable 

structure as it is in the region of the cribriform plate, which is defined as a stable 

structure by Björk (1955) due to its position on the anterior cranial base.  However, 

proceeding with GPA makes this step redundant.   

 

The lack of a stable structure or agreed reference point(s) can make it challenging to 

fully appreciate the effects each of the variables are having as the differences in the 

facial shapes are all relative to each other.  For example, the finding that BMI produces 

a more retrusive mid-face may in fact be simply that the midface is retrusive in 

comparison to the more prominent cheeks, rather than being truly retrusive.  This may 

explain some of the disagreement around whether the midface is retrusive or 

pronounced in previous studies (Ohrn et al. 2002; Ferrario et al. 2004).  One method 

that may reduce this issue would be to segment the facial mesh and analyse each facial 

structure individually.  This is demonstrated by Roosenboom et al. (2018). 
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8.2.2 Scaled data only  

Scaling was carried out during the GPA registration to isolate shape from size.  This 

allows facial shapes to be investigated together despite known facial size differences 

(e.g., male and female faces could be investigated together).  However, this process 

reduces the information available on the differences between the faces.  The biggest 

disadvantage of scaling the faces is the difficulty in determining the magnitude of the 

differences between the faces in this thesis.  Instead, the differences are relative, and 

provide information on the facial features that are more likely to change in shape to a 

greater or lesser extent with various variables.  The information in this thesis should 

therefore be used to inform further analyses when size is not removed and will aid 

with disentangling whether a variable influences size, shape or both.   

 

8.2.3 Interpreting the differences in the landmarks 

When interpreting the differences in the 21 landmarks, it was easy to disentangle the 

influences in x-, y- and z- directions so that these could be explored separately.  This 

was not so straightforward with the regards to the full facial mesh.  Therefore, the 

differences explored in the latter two sections explore the facial features that are most 

likely to be influenced by each of the variables.  Further work is required to determine 

the direction of these differences.  Furthermore, the distances between landmarks, 

rather than the positions of the landmarks in isolation, could be explored in further 

detail.  Rather than exploring Euclidean distances (i.e., the straight-line distance 

between two points), it may be prudent to explore Geodesic distances (the shortest 

distance along the curved surface of the face) (Abbas et al. 2018).   

 

8.2.4 Soft tissue only  

Investigation of facial shape using 3D facial imaging gives information on soft tissue 

features only.  It is possible to estimate differences in hard tissues from these images. 

However, it is not possible to determine the influence of variables on hard tissues with 

certainty.  As was discussed previously, investigation of hard tissues is invasive and 

either presents a radiation risk or involves an MRI scan which is expensive, time 

consuming and cooperation dependent (Greene et al. 2016).   
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8.3 MULTILEVEL PRINCIPAL COMPONENT ANALYSIS 

8.3.1 Discretisation 

There are many methods that can be utilised to undertake discretisation (Liu et al. 

2002).  In this thesis, the subjects with pathological levels of the variable of interest 

were separated from those presenting with non-pathological levels.  Groupings were 

then chosen within the non-pathological levels, attempting to keep the width of the 

groups equal.  This allowed the discretisation process to be flexible, to gain as much 

meaningful information from the data whilst maintaining groups with reasonable 

sample sizes.  However, the process is subjective, and the number of groups chosen 

for each analysis may have influenced the overall importance of each variable.  This 

is particularly salient for mPCA where the number of possible eigenvalues is 

restrained by the number of groups (the higher the number of groups, the more 

eigenvalues can be calculated and retained). 

 

The influence of the number of groups was investigated using separate two-level 

mPCA models on maternal smoking during the first trimester.  As Figure 68 shows, 

as the number of groups increases, the amount of variation attributed to maternal 

smoking also increases.  Where the results of mPCA are used for screening and 

variable selection, the number of groups chosen could therefore result in potentially 

important variables being discarded prior to further analysis or increasing the relative 

importance of unimportant variables.  Investigating different discretisation methods 

and their impact on the results would be of benefit in the future.   

 

With regards to continuous data, avoiding the requirement for discretisation 

completely would valuable.  PLSR can deal with both categorical and continuous data.  

Preliminary work has begun on the development of multilevel PLSR, which avoids 

the need to discretise continuous variables, whilst maintaining the benefits of a 

multilevel model (Farnell et al. 2019; Farnell et al. 2021).  An alternative method could 

be to use groupings whereby only one subject or very few subjects belong to each 

group.  Further work on this, including the impact on the component scores where 

group sample sizes are very small, would be beneficial.   
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Figure 68: The influence of increasing the number of groups on the total variation explained by 
the variable.  The influence of maternal smoking during the 1st trimester on 21 facial landmarks 
was used as an example. 

 

8.3.2 Imbalanced data sets 

Following discretisation, a clear imbalance of the data set was evident for many of the 

variables.  Meaning, the sample sizes in each category (or group) were different.  This 

is common in data sets.   For normally distributed ordinal or continuous data, by 

definition, there will always be a category with less subjects at both extremes if the 

categories are of equal width.  If the data is skewed, there will always be fewer subjects 

in the group(s) at the tail of the distribution (Figure 69).  For categorical data, in a 

longitudinal population study such as ALSPAC, it is far less common for a subject to 

present with a condition than without a condition (e.g., atopy) or present with 

pathological levels of a variable than non-pathological levels (e.g., fasting insulin 

levels).  Imbalanced data sets are therefore common in studies. 

 

 

Figure 69: Visualisation of why there will always be fewer subjects at the extremes in both 
normally distributed and skewed variable data. 
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Imbalanced data sets are an issue for many analytical techniques.  Bookstein (2019) 

showed that the smallest group is often falsely placed at the end of the axis when 

visualising the component score plots using between-group PCA.  This also appears 

to happen in mPCA as visualised in study two.  It may be that the arguments of 

Bookstein (2019) hold true for mPCA.  This introduces uncertainty around whether 

the component score plots show real differences or whether the apparent separation of 

the group means is an anomaly due to differential sample sizes.   

 

Imbalanced data sets may also influence the amount of variation attributed to a 

particular variable.  This was investigated by running separate two-level mPCA 

models for the 21-landmark data in two ways.  Firstly, the random groups were evenly 

weighted.  Subsequently, the random groups were generated so that they were 

weighted to mimic the sample sizes seen in the maternal smoking during the 1st 

trimester.  In both analyses, the amount of variation explained increased with the 

number of groups, but this was much more obvious when the group sample sizes 

differed (Figure 70). 

 

 

Figure 70: The influence of increasing the number of groups in mPCA in randomly grouped 
landmark data for both equally weighted group sample sizes and imbalanced groupings on the 
amount of variation explained. 
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Within the field of machine learning, it is important that data sets are balanced so that 

models are not primarily trained on one group.  If this was to happen, the model would 

be excellent at classifying subjects in the majority class (the group with many more 

subjects) but will likely struggle with the minority class (group with far fewer subjects) 

(Jain et al. 2017).  Two broad methods for balancing the sample sizes of the groups 

have been suggested for machine learning problems and include over-sampling and 

under-sampling (Haque et al. 2014).  Over-sampling involves using mathematical 

techniques to artificially generate data so that the data available for the smallest group 

increases to the size of the larger group.  Under-sampling involves randomly removing 

data from the group with the most data, so the groups become equal in size (Figure 

71).  One of the distinct disadvantages of the concept of under-sampling is the loss of 

data.   

 

Methods of over-sampling include random oversampling, Synthetic Minority 

Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN).  

Random oversampling is a simple method which involves randomly replicating data 

from the minority class.  Although simple to execute, this method risks overfitting.  

SMOTE was first proposed by Chawla et al. (2002) to reduce the chance of overfitting.  

ADASYN was suggested by Haibo et al. (2008) as an improvement on SMOTE.  

SMOTE projects lines between the real data points and randomly generates data points 

along these lines.  ADASYN uses a weighted distribution to ensure that the generated 

data points represent the original data more accurately (Haibo et al. 2008).  

Preliminary work has begun on the use of random undersampling and ADASYN prior 

to mPCA. 

 

Figure 71: Visualisation of (a) oversampling and (b) undersampling. 
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8.3.3 Overfitting 

Overfitting is a concept that describes a situation where a model fits the data it was 

generated with very well, but it does not generalise to other data due to the inclusion 

of a large number of variables (Tabachnick and Fidell 1996).  For example, if a further 

English sample was assessed using the mPCA models developed here using the 

ALSPAC cohort, the model may not represent the new data well.  However, as the 

mPCA methodology is linear in nature (uses straight lines), it is likely to be more 

generalisable than a non-linear model.  A method of overcoming overfitting is to split 

the data set into “training” and “test” sets.  Subjects in the training set are used to build 

the model, whilst subjects in the test set are afterwards to determine how good the 

model is with new data (Xu and Goodacre 2018).  The model can be given a success 

rate, in the form of percentage of the number of the new subjects are classified 

correctly.  Further work on the use of these would be beneficial in ensuring that 

overfitting is minimised so that mPCA can be used with more confidence.  

  

8.3.4 Number of eigenvalues retained  

Selecting the number of eigenvalues to retain in the analyses in this thesis involved 

visualising the eigenvalue magnitudes on an eigenvalue plot and discarding those 

deemed small.  This is based on Cattell’s scree test for factor analysis (Cattell 1966).  

This is an efficient method for choosing which eigenvalues to keep and ensures that 

most of the variation between the faces is retained in the analysis. However, it is 

subjective.  Alternative methods include the Kaiser-Guttman method (Guttman 1954), 

which retains eigenvectors with an eigenvalue above the eigenvalue that explains the 

mean amount of variation.  This was utilised by Djordjevic et al. (2013b) when using 

conventional PCA and multivariate regression to assess the influence of metabolic 

factors on facial shape, and by Toma et al. (2012) when assessing facial variation in 

the ALSPAC population.  However, this method excludes many eigenvalues and thus 

may reduce the opportunity of visualising more subtle differences in facial shape.  A 

further possible method involves retaining the PCs that have an eigenvalue that 

explains 95% or 99% of the total variation in the data.  Although this method ensures 

that the variation captured in the analyses is standardised, as it does not consider 

differences in the magnitude of the individual eigenvalues, there is the possibility of 

including eigenvectors that are noise within the data or excluding eigenvectors that 
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include meaningful data.  With regards to PLSR, cross-validation is a method by 

which a decision can be made on which eigenvalues to retain.  Work on the use of this 

in mPCA could also be beneficial. 

 

The number of eigenvalues that can be retained in the levels assessing a particular 

variable (i.e., the between-groups variation levels) is restricted to the number of groups 

minus one.   In this thesis, this did not appear to be an issue for the levels assessing 

between-groups variation where groups were equal to or exceeded three, as it was 

rarely required to retain more than two PCs for the variables.  Where there are only 

two groups, only one eigenvector can be retained (e.g., sex).  This has the potential to 

reduce the amount of information available for analysis as the data set is only analysed 

in one direction (PC1).  There is no clear solution for this issue and is likely to be one 

of the true disadvantages of the technique.  However, with regards to continuous data, 

using very small sample sizes in each grouping so that the mean or median of each 

group would represent either one individual or a small number of individuals with 

very similar levels of a continuous variable (as discussed previously) may not only 

reduce issues associated with discretisation, but also eliminate the restrictive nature of 

the number of eigenvalues that can be retained.  Further work in this area would be 

beneficial. 

 

Furthermore, it was challenging to determine how many eigenvalues to retain at the 

within-group variation level.  Preliminary investigations surrounding the number of 

eigenvalues to retain at this level suggested that the component scores of the subjects 

at the extremes are particularly influenced by the number of retained eigenvectors.  

However, these investigations also suggest that the number of retained eigenvectors 

does not influence the mean component scores for each group centroids and it is 

therefore unlikely that this would influence the results of this thesis.  Further work in 

this area would be beneficial. 

 

8.3.5 Inference 

Inference was determined for the mPCA models via ANOVA or MANOVA.  

Subsequent bootstrapping of the component scores was carried out, based on a 

baseline F-statistic determined via ANOVA or MANOVA.  Bootstrapping provides a 
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more robust estimate of p-values when data is non-normally distributed and / or 

outliers occur.  Further work on post-hoc tests to determine which groups were 

significantly different to each other could be of benefit, particularly where it is not 

clear which group is most differentiable from the others. 

 

8.3.6 Number of landmarks and computational time 

Unfortunately, in its current form, it is not possible to use the full 7160 three-

dimensional landmarks in the mPCA code as the required matrix exceeds the 

maximum matrix size in MATLAB.  Adapting the code and/or increasing computing 

power to circumvent this limitation would be beneficial.  With regards to 

computational time, generating the eigenvalues and eigenvectors, and thus 

determining the relative importance of each variable takes seconds.  This makes 

mPCA an efficient screening tool for variable selection prior to further analysis.  It is 

also quick to calculate the influence of these eigenvectors and eigenvalues on the 

individual landmarks.  However, calculating the component scores iteratively using 

the Global Optimiser can take hours depending on the number of subjects and 

landmarks as well as the number of eigenvalues retained.  To make mPCA an 

accessible and useful data exploration tool for as many researchers as possible, without 

access to high powered computer hardware, improvements in this area would be of 

benefit.  The first step is likely to utilise MATLAB’s parallel toolkit.   

 

8.3.7 Limitations of number of levels, missing data and lack of variable 

adjustment 

Although mPCA separates the between and within group variation, variables are not 

explicitly adjusted for unless they are added as different levels in the model.  This is 

suggested in study two where sex, height, BMI and fasting insulin all showed the same 

result, but on slightly different scales.  Unfortunately, it is not possible to build such a 

model with all four variables as the sample sizes in the resulting categories become 

too small and the mPCA model is unable to handle groupings with zero subjects.  

Adapting the mPCA methodology to allow for groups with zero subjects and being 

able to handle missing data would significantly help extend the number of levels 
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possible.  Also, perhaps a preliminary step could also be used to adjust for variables 

prior to using the mPCA model. 

 

8.3.8 Further alternative techniques for comparison 

It was felt that comparing mPCA to using the raw landmarks only, conventional PCA 

and DFA provided enough information to ascertain the relative advantages and 

disadvantages of each technique.  It was also hoped that presenting mPCA alongside 

PLSR demonstrated a use for mPCA within the data analysis toolkit.  However, there 

are many more techniques that could be compared to mPCA; for example, factor 

analysis, t-distributed stochastic neighbor embedding (t-SNE), support vector 

machines (SVM), Bootstrapped Response Imputation Modelling (BRIM), decision 

trees, random forests and auto-encoders (Yong and Pearce 2013; Claes et al. 2014; 

Wang et al. 2016; Zhou et al. 2018; Chao et al. 2019; Reddy et al. 2020).  Furthermore, 

there was a focus on frequentist statistics in this thesis.  The use of Bayesian statistics, 

which consider uncertainty, would also be useful to explore in future (Ashby 2006). 

 

Of particular interest, could be random forest, given that the technique is easy for 

clinicians to understand and interpret (Kotu and Deshpande 2015).  The ability to 

understand the steps of a chosen technique is essential from a clinical perspective as 

the aim is to understand differences between facial shapes (as is the case in this thesis).  

This contrasts with prediction problems of a non-clinical nature, where understanding 

the architecture of a model may not be as important.  Random forest is a technique 

that uses a collection of decision trees (Oshiro et al. 2012).  Decision trees are visually 

comparable to an upside tree (Kotu and Deshpande 2015).  They start with a base and 

propose classification options like the branches of a tree (Figure 72).  In random forest, 

each decision tree decides which group a subject should belong to, these are compared 

and the group with the most “votes” is chosen as the answer (Figure 73).   

 

One of the criticisms of decision trees and random forest is that they can be prone to 

overfitting (fits the current data well but does not perform well with new data) (Kotu 

and Deshpande 2015).  This is a common theme with regards to modelling facial shape 

and has been raised as a potential issue with all the techniques discussed in this thesis.  

It is therefore important to use appropriate techniques to mitigate against this.  A 
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method of reducing this is known as pruning, whereby sections of the model that are 

deemed unimportant are removed (Kotu and Deshpande 2015).  Exploring the use of 

mPCA in aiding this process would be worthwhile in the future. 

 

 

 

Figure 72: Diagram of a decision tree 

 

 

 

Figure 73: Diagram of a random forest 
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However, compared to decision trees and random forest, deep learning neural 

networks are likely to be more powerful.  Indeed, a study by AbdAlmageed et al. 

(2020) compared a deep learning model to DFA and random forest in their ability to 

determine facial differences between control subjects and those with Congenital 

Adrenal Hyperplasia (CAH).  The deep learning model significantly out-performed 

DFA and random forest.  They found that the nose and upper face were most 

distinguishable in CAH patients.  Their deep learning model predicted the correct 

grouping 92% of the time, outperforming DFA (86%) and random forest (83%).   

 

A clear disadvantage of deep learning models at the time of writing is the difficulty in 

interpreting the underlying structure of the model (Montavon et al. 2018).  The 

decisions made by deep neural networks are not explicitly obvious (described as a 

black box), so it is challenging to know how the algorithm has come to its decision.  It 

is therefore difficult to understand why faces are different from each other, only that 

the algorithm can differentiate between them.  Further information on understanding 

and interpreting neural networks is discussed by Montavon et al. (2018).  

 

As this field progresses further, it is likely that our understanding of facial shape 

differences will improve rapidly.  Given the complex nature of facial shape and the 

expanding number of variables associated with facial features, mPCA in isolation is 

unlikely to be able to disentangle all the necessary variables associated with facial 

shape due to the practical limitations on the number of levels possible.  More 

sophisticated techniques in the machine learning field may be more successful.  

However, caution is required to ensure that robust data collection and 

acknowledgement of variables is maintained rather than relying solely on 

progressively more complex algorithms.  The use of mPCA as a preliminary step to 

assess the relative importance of the variables introduced to deep learning models are 

known prior to building the model may help in their clinical interpretation. 
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8.4 CLINICAL RELEVANCE AND RELATED FURTHER WORK 

Translating the work in this thesis into improvements in patient care can be discussed 

with regards to short-term possibilities and more far-reaching, long-term possibilities.  

In the immediate future, the results of thesis can be used to determine which 

confounding factors to consider in further research within orthodontics, forensic 

anthropology, or psychology.  The mPCA results, confirmed by the PLSR results, 

suggest that sex, height, and BMI should be taken into account in all facial shape 

studies.  The results with regards to fasting insulin also suggest that this should also 

be considered as a potential confounding factor, particularly where the mandible and 

brow-ridge are concerned.   

 

In the near future, the development and implementation of prediction models could 

help to aid orthodontic treatment planning decisions.  As discussed at the beginning 

of this thesis, one area that could benefit is helping to predict the potential success 

rates of treatments, such as twin block appliances.  Although it is important that 

patients are not declined treatment due to an algorithm in isolation, prediction models 

could be used in conjunction with clinical expertise to optimise the timing of treatment 

commencement or help the clinician in determining when a successful outcome is no 

longer likely.  A further use of prediction models, which has been investigated 

extensively, is growth.  Again, as discussed previously, of particular use in the 

orthodontics is predicting the growth potential in class III patients to help determine 

whether a case will be camouflageable or require surgery. 

 

To build reliable prediction models, it is important that models contain as much 

information as possible whilst limiting the risk of overfitting by excluding redundant 

variables (Tabachnick and Fidell 1996).  mPCA could provide a method for screening 

variables prior to building complex models to ensure that the most important variables 

are included.  The work in this thesis has started this process.  Again, the results of 

this thesis suggest that sex, height, and BMI would be essential inclusions in any 

prediction models.  This is to be expected.  However, of particular interest is the 

relatively high variation explained by fasting insulin.  This is further emphasised by 

the possibility of increased levels of insulin restricting mandibular growth, particularly 

in males.   



 196 

 

It could therefore be suggested that screening patient insulin levels may provide useful 

information on the clinical variability seen with regards to treatment success and 

growth.  However, further work is required to determine the long-term influence of 

insulin and to determine how insulin levels fluctuate in vivo, throughout childhood 

and into adolescence.  This information, in conjunction with skeletal pattern and 

severity, would provide more robust information than the current cross-sectional 

study.  Moreover, given that insulin appears to influence GH levels differently in obese 

individuals compared to those without within a healthy BMI range (Qui et al. 2017), 

it would also be useful to stratify individuals by BMI to investigate this with relation 

to facial shape.  Further work into the potential for shared genetics will also be 

worthwhile.  Continuing to investigate females and males separately would be useful 

given the differing influence of insulin in this thesis.  Non-linear models could also be 

explored.  However, to assess these areas reliably, sample sizes need to be increased 

as well as utilising sample size calculations to mitigate type II errors.  The results of 

this thesis could help in any future sample size calculations.  Combining datasets and 

increasing dataset sizes by pooling resources nationally and internationally, will help 

to make further work more reliable. 

 

More far reaching is the possibility of interfering with the natural growth of patients 

via manipulation of growth factor levels, dietary changes or genetic modification, 

under the umbrella of personalised orthodontics.  Indeed, others have suggested that 

growth factors could be used to manipulate craniofacial shape and mitigate the need 

for active appliance therapy (Barton and Crowder 2010).  Again, of particular interest 

is the possible influence of insulin levels on the mandible.  Perhaps the reduction of 

insulin levels through dietary changes could reduce the incidence or severity of class 

II malocclusions.  From a service perspective, this in turn could reduce the requirement 

for treatment and thus eliminate or reduce the direct and indirect costs associated with 

orthodontic intervention.  Furthermore, given the documented benefits in ensuring 

optimal insulin levels for general health (Rahman et al. 2021), the possibility of 

improving facial harmony may serve to enhance public health messages.   

 

However, it is important that the variables that explained less than 5% of the variation 

in their respective models are not completely discounted. Firstly, this thesis focuses 

on the influence on the total facial shape, whilst orthodontics primarily centres around 
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the maxilla and mandible.  Segmentation of the facial shells and repeating the analyses 

here would help to determine the factors most relevant to orthodontics.  Secondly, 

when the variation explained by these variables is taken accumulatively, the total 

variation may lead to clinically significant differences in facial shape.  In a similar 

manner to the building of the PLSR models in this thesis, alternative prediction models 

could be investigated by adding and removing the variables assessed here prior to 

determining the variables that are of particular importance.  Again, increasing sample 

sizes will help mitigate type II errors and help to determine whether variables are of 

significance.  This research would also build on the work in this thesis to help 

determine the usefulness of mPCA as a variable selection method.  It would also be 

interesting to explore the magnitude of facial shape differences that lead to clinically 

distinguishable differences. 

 

Out-with orthodontics, there may also be benefits to exploring the influence of insulin 

further.  Facial shape could be used as a screening measure for increased insulin levels 

in childhood (particularly if these increased levels are chronic in nature).  This is less 

invasive than a blood test and could potentially be used in combination with measures 

of body fat.  Furthermore, knowledge of the effect of insulin on the brow-ridge could 

be used to improve identification of sex.  A prominent brow-ridge is traditionally 

associated with males (for example, (Ferrario et al. 2003; Kau et al. 2006; Bozic et al. 

2009; Gor et al. 2010)).  However, differing insulin levels may explain some of the 

overlap between the sexes with regards to this facial feature given that female subjects 

appear to have more prominent brow-ridges in the presence of increased insulin.   



 198 

 

9 CONCLUSIONS 

9.1 CLINICAL FINDINGS 

Strong evidence for association with adolescent facial shape 
Null hypothesis rejected with all tests following Bonferroni correction 

Explain greater than 5% of variation in mPCA model(s) 

 

• Geographical location  
o Tests: PCA & MANOVA, DFA & Wilks Lambda, mPCA (3-levels) & MANOVA 
o Variation explained in mPCA model (21 landmarks): 11.34 – 14.59%  

o Facial differences: All facial features influenced 

o Novel findings: Croatians most distinguishable (caution with this result), more detail 

provided on facial differences than before, agreement between landmark only data and 

mPCA suggests mPCA useful tool 

• Sex  
o Tests: PCA & ANOVA, DFA & Wilks Lambda, mPCA (2-levels) & ANOVA, mPCA (3-

levels) & ANOVA 
o Variation explained in mPCA model: 9.98 – 10.93% (21 landmarks); 17.31% (1000 

quasi-landmarks) 

o More prominent/ larger (female): Cheeks, infra-orbital regions 

o Less prominent/ smaller (male): Brow ridge, nose, lips, under chin (i.e., rounder face) 

o Novel findings: Variation explained, agreement with previous research and between 

analyses suggests mPCA useful tool 

• BMI  
o Tests: mPCA (2-levels) with ANOVA, PLSR with bootstrapping 
o Variation explained in mPCA model (1000 quasi-landmarks): 17.29% 

o More prominent/ larger: Cheeks, supra-orbital region, forehead 

o Less prominent/ smaller: Nose, lips, under chin (i.e., rounder face) 

o Novel findings: Variation explained, agreement with most previous research and between 

analyses suggests mPCA useful tool 

• Height  
o Tests: mPCA (2-levels) with ANOVA, PLSR with bootstrapping 
o Variation explained in mPCA model (1000 quasi-landmarks): 11.05% 

o More prominent/ larger: Nose, chin, brow ridge 

o Less prominent/ smaller: Cheeks 

o Novel findings: Variation explained, adolescent facial differences explained for first time 
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Strong evidence for association with adolescent facial shape with mPCA model 

and with PLSR models before Bonferroni correction but not after Bonferroni 

correction 
Tests: mPCA (2-levels) with MANOVA (with Bonferroni correction) and PLSR with bootstrapping (with 

and without Bonferroni correction) 

Null hypothesis rejected with mPCA model and PLSR model before Bonferroni correction 

Null hypothesis accepted with PLSR model after Bonferroni correction 

Explains greater than 5% of variation in mPCA model 

 

• Fasting insulin  
o Variation explained in mPCA model (1000 quasi-landmarks): 5.83% 

o More prominent/ larger: Cheeks (buccal fat pad), brow ridge/ supra-orbital region 

o Less prominent/ smaller: Chin, nose, intra-orbital region 

o Novel findings: Variation explained, more facial differences explained than previous 

research, first time finding a significant result (mPCA only) 

 

Evidence for association with adolescent facial shape with mPCA models but not 

with PLSR models 
Tests: mPCA (2-levels) with (M)ANOVA and PLSR with bootstrapping (both with Bonferroni 

correction) 

Null hypothesis rejected (mPCA) and accepted (PLSR) 

Explain greater than 2% of variation in mPCA model 

 

• Other metabolic factors (cholesterol, VLDL, triglycerides, LDL) 
o Variation explained in mPCA models (1000 quasi-landmarks): 3.55% (cholesterol), 

3.54% (VLDL), 2.25% (triglycerides), 2.01% (LDL) 

o Facial differences differ between mPCA and PLSR 

o More prominent/ larger (mPCA): Cheeks, supra-orbital regions 

o Less prominent/ smaller (mPCA): Nose, lips, under chin (i.e., rounder face) 

o Novel findings: Variation explained, significant findings for first time (mPCA only), 

facial differences explained in detail for first time 

• Maternal smoking (1st trimester, 2nd trimester) 
o Variation explained in mPCA models (1000 quasi-landmarks):  2.51% (1st trimester), 

3.74% (2nd trimester) 

o Facial differences differ between mPCA and PLSR 

o More prominent/ larger (mPCA): Outer surface of cheeks 

o Less prominent/ smaller (mPCA): Nose 



 200 

 

o Novel findings: Variation explained, significant findings for first time in non-syndromic/ 

non-cleft adolescents (mPCA only), adolescent facial differences explained in detail for 

first time 

• Maternal alcohol consumption (1st trimester) 
o Variation explained in mPCA models (1000 quasi-landmarks): 2.62% (1st trimester) 

o Facial differences differ between mPCA and PLSR 

o More prominent/ larger (mPCA): Forehead, supra-orbital region, lips 

o Less prominent/ smaller (mPCA): Nose, chin 

o Novel findings: Variation explained, significant findings for first time in non-syndromic 

adolescents (mPCA only), adolescent facial differences explained in detail for first time 

 

Evidence for association with adolescent facial shape with mPCA models but 

explain less than 2% of total variation therefore not included in PLSR models 
Tests: mPCA (2-levels) with (M)ANOVA 

Null hypothesis rejected after mPCA with (M)ANOVA and Bonferroni correction 

Explains less than 2% of variation in mPCA model 

 

• Other metabolic factors (HDL, fasting glucose) 
o Variation explained in mPCA models (1000 quasi-landmarks): 1.58% (HDL), 1.69% 

(glucose) 

o More prominent/ larger (mPCA): Cheeks (HDL), infra-orbital region (HDL and low 

glucose), nasal tip (HDL), forehead (low glucose) 

o Less prominent/ smaller (mPCA): Brow ridge (HDL), around mouth (low glucose) 

o Novel findings: Variation explained, significant findings for first time (mPCA only), 

facial differences explained in detail for first time 

• Pubertal stage (pubic hair, genital development) 
o Variation explained in mPCA models (1000 quasi-landmarks): 1.76% (pubic hair), 

0.58% (genital development) 

o More prominent/ larger (mPCA – stage 3 compared to 4/5): Nose, maxillary region, orbits 

o Less prominent/ smaller (mPCA – stage 3 compared to 4/5): Chin (genitals), brow ridge 

(both) 

o Novel findings: Variation explained, facial differences explained in detail for first time 

• Maternal smoking (before pregnancy) 
o Variation explained in mPCA models (1000 quasi-landmarks): 1.53%  

o Unwise to interpret facial differences as component scores not ordered 

o Novel findings: Variation explained, significant findings for first time (mPCA only) 

• Maternal alcohol consumption (before pregnancy, 2nd trimester) 
o Variation explained in mPCA models (1000 quasi-landmarks): 1.56% (before), 1.60% 

(2nd trimester) 
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o More prominent/ larger (mPCA): Forehead (both), chin asymmetry (2nd tri), side of nose 

(2nd tri) 

o Less prominent/ smaller (mPCA): Nose tip and bridge (both), infra-orbital regions 

(before) 

o Novel findings: Variation explained, findings for 2nd trimester generally agree with 

previous research with some new facial features implicated here 

• Breathing disorders (asthma (0-3.5 years old), asthma (7.5 years old), hay 

fever) 
o Variation explained in mPCA models (1000 quasi-landmarks):  

§ 0.90% (asthma 0-3.5 years old), 0.40% (asthma 7.5 years old), 0.35% (hay 

fever) 

o More prominent/ larger (mPCA): Nose (hay fever), longer face shape (asthma 0-3.5yo), 

mandible (asthma 7.5yo), infra-orbital regions (asthma 7.5yo) 

o Less prominent/ smaller (mPCA): Nose (asthma), maxillary sinus/ upper lip region (all) 

o Novel findings: Variation explained, general agreement with previous studies, more facial 

differences explained here 

• Atopy 
o Variation explained in mPCA models (1000 quasi-landmarks): 0.15% 

o More prominent/ larger (mPCA): Nose, forehead, supra-orbital regions, asymmetry of 

mandible 

o Less prominent/ smaller (mPCA): Maxillary sinus region, lips 

o Novel findings: Variation explained, more facial differences presented here than in 

previous study 

 

Unlikely to be associated with adolescent facial shape 
Tests: mPCA (2-levels) with MANOVA 

Null hypothesis accepted after mPCA with MANOVA and Bonferroni correction 

Explains less than 2% of variation in mPCA model 

 

• Age (14 -16 years old) 
o Variation explained in mPCA model (1000 quasi-landmarks): 1.18%  
o Novel findings: Variation explained, non-significant result at crucial timepoint during 

development 
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9.2 MULTILEVEL PRINCIPAL COMPONENT ANALYSIS 

mPCA is a technique that is easy to understand (with some basic background 

knowledge) both in terms of its methodology and in the graphics it can generate.  With 

regards to categorical variables, mPCA is more useful than conventional PCA in facial 

shape research.  mPCA also appears to be as effective as DFA in separating groups, 

but with more relaxed sample size constraints.  This negates the need for conventional 

PCA to be conducted first when sample sizes are small in comparison to the number 

of landmarks and makes interpreting the differences between faces easier with mPCA.  

When variables are continuous in nature, mPCA is currently most useful as a variable 

selection tool prior to further analysis.  It is therefore valuable as an additional 

technique in the data exploration phase of data analysis.  mPCA may find significant 

differences between groups more readily than PLSR with bootstrapping. However, 

caution is required when interpreting the component scores when the data set is 

imbalanced.   

 

Given the highly complex nature of facial shape, it is unlikely that, in isolation, mPCA 

will be able to disentangle the effects of all the possible variables reliably.  More 

complex techniques, under the machine learning umbrella are likely to prove more 

powerful.  However, their principal disadvantage at the time of writing is the difficulty 

in interpreting what the machine learning models are doing.  This makes them far less 

useful from a clinical perspective.  In future, the facial shape field requires much larger 

data sets and the ability to interpret highly complex models to disentangle the 

influence of genetic and environmental factors on facial shapes reliably. 
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11 APPENDIX 1: STANDARDISATION PRIOR TO MPCA 

11.1 INTRODUCTION 

Standardisation involves:  

!"#$%#&%'()%	+#$%,#&- = 	/&'0$#+	+#$%,#&- −,)#$	23	+#$%,#&-!"#$%#&%	%)4'#"'2$	23	+#$%,#&-  

 

The influence of standardising the landmark data prior to mPCA was investigated 

here. 

 

11.2 METHODOLOGY 

• Geographical location: Croatian, English, Welsh and Finnish males and females 

as detailed in the methodology section 

• Landmarks: 21 facial landmarks in three dimensions (63 total landmarks) 

• Variables: Geographical location and sex 

• Analysis 1: Landmarks not standardised first 

• Analysis 2: Landmarks standardised first 

• mPCA: 

o 3-level non-nested mPCA 

o Median averaging of the covariance matrices 

o Eigenvalues retained: level 1 (geographical location) – 3PCs, level 2 (sex) 

– 1PC, level 3 (average within-group variation) – 20PCs. 

 

11.3 RESULTS 

Following standardisation, the landmarks are reconfigured into a sphere (Figure 74).  

Standardising the landmarks reduces the magnitude of the within-group variation.  

This increases the relative importance of population and sex (Figure 75, Table 25).  It 

is also challenging to interpret the clinical differences that each PC explains.  This 

cannot be visualised in the same manner as the current methodology as very little 

difference is seen between the groups (Figure 76).  However, the standardised 

component scores are separated more clearly by group when standardisation is also 

carried out prior to mPCA (Figure 77). 
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Figure 74: Landmark data without standardisation (a,b) and after standardisation (c,d). 

 

  

Figure 75: Eigenvalue plot of eigenvalue magnitudes without standardisation (a) and with 
standardisation (b).  The overall pattern is the same, but with standardisation, the eigenvalue 
magnitudes are reduced.  This is to be expected following standardisation.   

 

 

a b 

c d 

a b 
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Table 25: Percentage variation explained by each level when the landmarks are not 
standardised compared to standardising prior to mPCA. 

 % Total variation explained by the retained PCs 

Without standardisation With standardisation 

Geographical location 14.59 12.55 

Sex 9.98 9.69 

Within-group variation 66.67 65.84 

 

 Standardised before mPCA Not standardised before mPCA 

Geographical 

location 

  

 Sex 

  

Within-group 

variation 

  

 

Figure 76: The clinical differences using this method when the landmarks are not standardised 
before mPCA compared to standardising.  PC1 only is displayed to demonstrate.  This method 
is only appropriate for non-standardised landmarks and is easy to understand.   
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 Not standardised before mPCA Standardised before mPCA 

Geographical 

location 

  

Sex 
  

Within-group 

variation 

  

Figure 77: Standardised component score plots (PC1 v PC2, where applicable) for the without 
standardising of landmark analysis and with standardising of landmarks analysis.  

 

11.4 CONCLUSION 

The standardised component scores are more clearly separated when standardisation 

is also carried out prior to mPCA.  However, the difficultly in interpreting the clinical 

meaning of the PCs and the exaggerated importance of levels one (geographical 

location) and two (sex) reduces the usefulness of this step.  On balance, it was decided 

not to standardise the landmarks prior to mPCA for the analyses in the rest of this 

thesis. 
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12 APPENDIX 2: SUPPLEMENTARY TABLES 

 

Table 26: Raw landmarks grouped by geographical location. Mean of each landmark +/- standard deviation. 

Red= difference >2mm between at least one of the populations, Blue = difference >1mm but < 2mm between at least one of the populations 

 

Glabella (g) Nasion (n); Endocanthion left (enL); Endocanthion right (enR); Exocanthion left (exL); Exocanthion right (exR); Palpebrale superius left (psL); Palpebrale superius 

right (psR); Palpebrale inferius left (piL); Palpebrale inferius right (piR); Pronasale (prn); Subnasale (sn); Alare left (alL); Alare right (alR); Labiale superius (ls); Crista philtri 

left (cphL); Crista philtri right (cphR); Labiale inferius (li); Cheilion left (chL); Cheilion right (chR); Pogonion (p). 

 

 
Croatian  English Welsh Finnish 

Mean SD Mean SD Mean SD Mean SD 

gX 0.204 0.505 -0.357 0.547 -0.333 0.471 -0.361 0.548 

gY 49.890 2.039 48.264 1.950 49.712 2.407 48.851 2.190 

gZ 4.903 1.771 3.920 1.859 4.032 1.857 5.110 1.998 

nX 0.192 0.429 -0.104 0.486 -0.072 0.442 -0.215 0.439 

nY 36.855 2.181 36.673 2.143 37.602 2.024 34.046 2.384 

nZ 3.579 1.589 2.840 1.707 2.927 1.537 3.166 1.628 

enLX 15.493 1.458 17.362 1.443 17.617 1.408 18.440 1.280 

enLY 26.736 1.040 26.985 1.076 27.482 1.160 27.316 0.922 

enLZ -11.682 1.129 -12.604 1.327 -12.668 1.112 -12.652 1.079 

enRX -15.881 1.247 -16.775 1.320 -17.519 1.257 -18.357 1.656 

enRY 26.827 1.236 26.596 1.034 27.448 1.140 27.492 0.860 

enRZ -11.719 1.140 -11.767 1.229 -12.169 1.156 -12.442 1.201 
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exLX 45.087 1.993 44.488 1.931 44.164 1.989 44.534 1.875 

exLY 27.439 1.419 26.845 1.367 27.344 1.266 27.704 1.124 

exLZ -18.854 1.507 -17.351 1.451 -17.229 1.398 -17.815 1.361 

exRX -45.467 2.059 -44.181 1.991 -43.637 1.756 -44.321 1.873 

exRY 27.901 1.521 27.143 1.439 27.499 1.326 28.525 1.249 

exRZ -19.479 1.485 -17.346 1.418 -17.134 1.379 -17.692 1.542 

psLX 31.115 1.725 31.297 1.551 30.687 1.655 31.356 1.525 

psLY 33.842 1.516 34.667 1.282 34.393 1.171 33.786 1.594 

psLZ -8.071 1.244 -8.021 1.400 -7.145 1.247 -7.272 1.248 

psRX -30.804 1.652 -30.926 1.563 -30.578 1.600 -31.022 1.500 

psRY 34.179 1.473 34.747 1.153 34.591 1.239 34.286 1.375 

psRZ -7.926 1.178 -7.798 1.413 -7.035 1.060 -7.090 1.227 

piLX 31.355 1.555 31.758 1.566 31.399 1.684 31.868 1.434 

piLY 22.959 1.255 23.164 1.332 23.140 1.203 23.856 1.022 

piLZ -11.081 1.237 -10.118 1.469 -11.288 1.320 -11.822 1.198 

piRX -30.642 1.808 -31.112 1.531 -30.723 1.574 -31.282 1.604 

piRY 23.165 1.323 23.441 1.146 23.408 1.276 24.082 1.130 

piRZ -10.979 1.222 -9.959 1.495 -11.134 1.361 -11.773 1.140 

prnX 0.073 1.166 -0.162 0.905 0.058 0.995 -0.124 0.804 

prnY -4.003 2.002 -2.463 1.776 -3.457 2.059 -2.846 1.869 

prnZ 28.078 2.030 26.314 1.797 26.557 1.647 25.593 2.044 

snX 0.085 0.629 -0.152 0.614 0.029 0.646 -0.101 0.531 

snY -16.507 1.764 -16.136 1.898 -16.580 1.974 -15.623 1.505 

snZ 11.724 1.553 11.083 1.444 11.443 1.403 10.906 1.472 

alLX 16.684 1.337 16.768 1.205 16.885 1.188 16.640 1.174 

alLY -7.003 1.347 -6.231 1.389 -6.610 1.621 -6.274 1.343 

alLZ 6.934 1.849 5.236 1.407 4.982 1.335 5.782 1.488 

alRX -17.184 1.376 -17.459 1.254 -17.364 1.345 -17.076 1.102 
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alRY -7.116 1.236 -6.193 1.234 -6.796 1.355 -6.364 1.319 

alRZ 7.369 1.910 5.534 1.469 5.153 1.388 6.077 1.664 

lsX 0.131 0.523 -0.205 0.491 -0.256 0.549 -0.060 0.460 

lsY -30.905 1.144 -30.327 1.358 -31.377 1.007 -31.301 1.306 

lsZ 11.651 1.034 12.303 1.151 12.230 0.913 12.927 1.157 

liX 0.266 0.555 0.103 0.388 0.155 0.523 0.171 0.523 

liY -45.700 1.680 -46.430 1.826 -46.154 1.932 -45.491 1.813 

liZ 8.712 1.417 8.846 1.382 8.793 1.583 9.436 1.137 

cphLX 6.190 0.999 6.272 1.148 5.826 0.926 5.807 0.841 

cphLY -27.793 1.146 -28.399 1.321 -28.792 0.997 -28.740 1.332 

cphLZ 10.794 0.875 11.321 1.100 11.292 0.858 11.906 0.949 

cphRX -6.401 1.095 -6.633 1.002 -6.626 1.033 -6.366 0.738 

cphRY -27.835 1.182 -28.289 1.226 -28.611 0.935 -28.689 1.329 

cphRZ 10.972 0.917 11.391 1.056 11.243 0.818 11.846 0.996 

chLX 23.710 1.944 26.833 1.976 24.797 1.895 24.753 2.029 

chLY -37.897 1.246 -38.339 1.308 -39.059 1.411 -39.158 1.287 

chLZ -5.093 2.083 -3.754 1.538 -4.077 1.570 -4.016 1.892 

chRX -24.550 1.770 -27.225 2.253 -24.475 1.880 -24.382 2.268 

chRY -37.786 1.301 -38.060 1.310 -38.612 1.441 -39.067 1.255 

chRZ -5.124 2.004 -3.604 1.502 -3.726 1.680 -3.773 1.904 

pgX 0.344 0.681 0.411 0.763 -0.036 0.836 0.098 0.753 

pgY -67.248 2.190 -67.658 2.533 -66.571 2.795 -66.393 2.033 

pgZ 5.293 2.194 3.533 2.775 4.954 2.700 3.599 2.547 
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Table 27: Raw landmarks grouped by sex.  Mean of each landmark +/- standard deviation. 

Blue = >1mm but <2mm difference between the sexes 

 

Glabella (g) Nasion (n); Endocanthion left (enL); Endocanthion right (enR); Exocanthion left (exL); Exocanthion right (exR); Palpebrale superius left (psL); Palpebrale superius 

right (psR); Palpebrale inferius left (piL); Palpebrale inferius right (piR); Pronasale (prn); Subnasale (sn); Alare left (alL); Alare right (alR); Labiale superius (ls); Crista philtri 

left (cphL); Crista philtri right (cphR); Labiale inferius (li); Cheilion left (chL); Cheilion right (chR); Pogonion (p). 

 

 
Female Male 

Mean SD Mean SD 

gX -0.230 0.631 -0.148 0.516 

gY 49.920 2.047 48.382 2.124 

gZ 3.709 1.712 5.184 1.836 

nX -0.038 0.499 -0.026 0.451 

nY 36.218 2.452 36.612 2.487 

nZ 2.530 1.535 3.727 1.532 

enLX 17.229 1.762 16.913 1.776 

enLY 26.549 0.916 27.587 0.996 

enLZ -11.794 1.166 -12.904 1.087 

enRX -16.989 1.565 -16.933 1.667 

enRY 26.535 1.055 27.462 1.052 

enRZ -11.397 1.085 -12.512 1.067 

exLX 45.214 1.818 44.014 1.933 

exLY 27.126 1.309 27.434 1.380 

exLZ -17.559 1.636 -18.144 1.479 

exRX -45.169 1.737 -43.798 2.111 

exRY 27.369 1.432 28.018 1.473 
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exRZ -17.754 1.814 -18.228 1.644 

psLX 31.650 1.513 30.627 1.583 

psLY 34.518 1.287 33.898 1.519 

psLZ -7.735 1.335 -7.702 1.376 

psRX -31.377 1.418 -30.313 1.564 

psRY 34.742 1.212 34.188 1.381 

psRZ -7.491 1.322 -7.605 1.278 

piLX 32.085 1.430 31.104 1.552 

piLY 22.758 1.249 23.690 1.099 

piLZ -10.215 1.333 -11.681 1.189 

piRX -31.409 1.468 -30.458 1.685 

piRY 23.073 1.270 23.866 1.116 

piRZ -10.095 1.335 -11.561 1.230 

prnX -0.086 0.900 0.001 1.071 

prnY -3.038 1.946 -3.331 2.068 

prnZ 26.165 1.981 27.309 2.043 

snX -0.025 0.596 -0.048 0.636 

snY -16.482 1.831 -15.998 1.803 

snZ 10.909 1.322 11.701 1.563 

alLX 16.578 1.207 16.904 1.239 

alLY -6.646 1.341 -6.440 1.543 

alLZ 5.605 1.741 5.962 1.708 

alRX -17.026 1.258 -17.541 1.264 

alRY -6.610 1.363 -6.624 1.294 

alRZ 5.937 1.788 6.254 1.886 

lsX -0.094 0.544 -0.085 0.513 

lsY -30.631 1.229 -31.145 1.297 

lsZ 12.208 1.092 12.222 1.217 
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liX 0.147 0.541 0.200 0.448 

liY -45.867 1.657 -46.097 1.988 

liZ 9.029 1.279 8.789 1.522 

cphLX 5.990 0.979 6.149 1.063 

cphLY -28.153 1.261 -28.571 1.251 

cphLZ 11.200 1.026 11.340 1.032 

cphRX -6.383 0.959 -6.641 1.017 

cphRY -28.051 1.181 -28.535 1.216 

cphRZ 11.267 0.981 11.380 1.021 

chLX 25.478 2.431 24.762 2.149 

chLY -38.526 1.291 -38.491 1.497 

chLZ -4.713 1.905 -3.819 1.710 

chRX -25.719 2.491 -24.994 2.276 

chRY -38.256 1.373 -38.305 1.431 

chRZ -4.489 1.817 -3.732 1.875 

pgX 0.174 0.852 0.309 0.677 

pgY -66.549 2.194 -67.600 2.571 

pgZ 4.683 2.575 4.019 2.725 
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Table 28: Raw landmarks grouped by geographical location and sex.  Mean of each landmark +/- standard deviation. 

Red = >2SD, blue = <1SD 

Glabella (g) Nasion (n); Endocanthion left (enL); Endocanthion right (enR); Exocanthion left (exL); Exocanthion right (exR); Palpebrale superius left (psL); Palpebrale superius 

right (psR); Palpebrale inferius left (piL); Palpebrale inferius right (piR); Pronasale (prn); Subnasale (sn); Alare left (alL); Alare right (alR); Labiale superius (ls); Crista philtri 

left (cphL); Crista philtri right (cphR); Labiale inferius (li); Cheilion left (chL); Cheilion right (chR); Pogonion (p). 

 

 
Croatian Female Croatian Male English Female English Male Welsh Female Welsh Male Finnish Female Finnish Male 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

gX 0.170 0.528 0.241 0.484 -0.437 0.607 -0.279 0.476 -0.292 0.541 -0.369 0.409 -0.477 0.625 -0.248 0.448 

gY 50.618 1.898 49.099 1.908 48.914 1.884 47.631 1.820 50.591 2.097 48.963 2.436 49.803 1.876 47.937 2.109 

gZ 4.057 1.153 5.822 1.879 3.120 1.570 4.701 1.801 3.270 1.912 4.681 1.567 4.573 2.074 5.624 1.817 

nX 0.210 0.427 0.173 0.437 -0.175 0.501 -0.035 0.466 -0.019 0.482 -0.117 0.408 -0.233 0.476 -0.197 0.410 

nY 36.922 2.047 36.783 2.345 36.290 2.072 37.045 2.170 37.304 2.054 37.856 2.001 33.844 2.583 34.239 2.215 

nZ 3.200 1.533 3.991 1.566 2.042 1.417 3.618 1.617 2.204 1.197 3.542 1.545 2.576 1.705 3.731 1.357 

enLX 15.654 1.274 15.319 1.636 17.689 1.582 17.044 1.232 17.949 1.323 17.335 1.441 18.332 1.394 18.543 1.181 

enLY 26.262 0.883 27.251 0.958 26.487 0.962 27.471 0.962 26.910 0.992 27.969 1.080 26.769 0.649 27.840 0.843 

enLZ -11.025 0.887 -12.397 0.912 -12.093 1.288 -13.102 1.178 -12.103 1.000 -13.150 0.980 -12.250 0.925 -13.037 1.093 

enRX -15.864 1.180 -15.900 1.334 -17.032 1.385 -16.525 1.218 -17.482 1.104 -17.550 1.395 -18.284 1.587 -18.428 1.750 

enRY 26.357 1.203 27.338 1.071 26.304 1.001 26.881 0.997 26.661 0.937 28.119 0.831 27.096 0.796 27.873 0.752 

enRZ -11.051 0.872 -12.445 0.940 -11.305 1.173 -12.217 1.121 -11.479 0.937 -12.757 0.998 -12.044 1.154 -12.824 1.141 

exLX 45.607 1.829 44.521 2.035 45.328 1.711 43.669 1.792 44.943 1.811 43.500 1.920 44.644 1.916 44.429 1.869 

exLY 27.164 1.404 27.737 1.395 26.621 1.279 27.063 1.430 27.279 1.194 27.400 1.344 27.763 1.018 27.648 1.237 

exLZ -18.583 1.455 -19.149 1.528 -16.853 1.545 -17.837 1.181 -17.114 1.411 -17.327 1.405 -17.507 1.505 -18.109 1.164 

exRX -46.026 1.613 -44.861 2.329 -45.148 1.542 -43.239 1.941 -44.414 1.543 -42.974 1.676 -44.545 1.898 -44.107 1.864 

exRY 27.583 1.200 28.245 1.761 26.529 1.295 27.742 1.329 27.147 1.267 27.798 1.323 28.662 1.146 28.394 1.352 

exRZ -19.410 1.343 -19.553 1.641 -16.927 1.327 -17.754 1.400 -16.722 1.366 -17.485 1.315 -17.452 1.776 -17.922 1.275 
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psLX 31.712 1.471 30.467 1.765 32.041 1.490 30.572 1.246 31.232 1.631 30.223 1.557 31.301 1.401 31.410 1.664 

psLY 34.141 1.373 33.517 1.615 34.811 1.221 34.527 1.340 34.789 1.003 34.055 1.214 34.371 1.390 33.226 1.602 

psLZ -8.060 1.277 -8.083 1.226 -8.036 1.260 -8.007 1.541 -6.920 1.224 -7.336 1.256 -7.504 1.344 -7.051 1.132 

psRX -31.442 1.274 -30.110 1.750 -31.677 1.461 -30.194 1.302 -31.081 1.630 -30.149 1.470 -31.055 1.308 -30.991 1.691 

psRY 34.433 1.360 33.902 1.559 35.003 1.058 34.497 1.200 34.701 1.278 34.497 1.221 34.853 1.082 33.743 1.425 

psRZ -7.830 1.164 -8.031 1.201 -7.790 1.443 -7.805 1.402 -6.690 1.052 -7.330 0.993 -7.227 1.270 -6.958 1.195 

piLX 31.805 1.244 30.866 1.721 32.513 1.432 31.021 1.334 32.048 1.640 30.847 1.542 31.859 1.410 31.877 1.486 

piLY 22.545 1.273 23.408 1.082 22.508 1.240 23.803 1.096 22.678 1.185 23.535 1.089 23.616 0.948 24.086 1.058 

piLZ -10.463 1.115 -11.751 0.999 -9.264 1.188 -10.950 1.226 -10.498 1.099 -11.961 1.114 -11.136 1.200 -12.480 0.754 

piRX -31.191 1.476 -30.045 1.961 -31.793 1.409 -30.447 1.354 -31.158 1.532 -30.352 1.540 -31.368 1.450 -31.200 1.766 

piRY 22.905 1.424 23.448 1.159 22.930 1.089 23.938 0.978 22.742 1.204 23.975 1.057 23.923 1.041 24.235 1.211 

piRZ -10.348 1.018 -11.665 1.051 -9.041 1.040 -10.855 1.322 -10.346 1.162 -11.805 1.154 -11.212 1.213 -12.311 0.759 

prnX 0.010 1.122 0.142 1.224 -0.098 0.867 -0.225 0.948 -0.225 0.780 0.299 1.104 -0.086 0.661 -0.161 0.933 

prnY -3.488 1.600 -4.562 2.254 -2.347 1.739 -2.576 1.826 -3.475 2.418 -3.443 1.743 -3.030 2.055 -2.670 1.697 

prnZ 27.416 1.870 28.796 25.773 1.798 1.786 26.841 1.653 25.834 1.578 27.174 1.466 25.092 1.875 26.073 2.121 

snX 0.081 0.661 0.090 0.601 -0.090 0.606 -0.212 0.624 -0.116 0.551 0.152 0.704 0.003 0.510 -0.201 0.543 

snY -16.517 1.458 -16.496 2.067 -16.469 2.189 -15.810 1.522 -16.969 1.897 -16.248 2.013 -15.956 1.614 -15.303 1.349 

snZ 11.450 1.491 12.022 1.584 10.576 1.160 11.576 1.535 10.917 1.101 11.891 1.494 10.572 1.264 11.225 1.607 

alLX 16.114 1.058 17.303 1.346 16.828 1.111 16.709 1.302 16.833 1.462 16.930 0.920 16.665 1.171 16.616 1.202 

alLY -7.232 1.163 -6.755 1.500 -6.175 1.381 -6.286 1.412 -6.573 1.448 -6.642 1.782 -6.549 1.144 -6.010 1.486 

alLZ 6.724 1.898 7.162 1.793 5.045 1.346 5.423 1.457 4.632 1.441 5.281 1.183 5.682 1.352 5.879 1.632 

alRX -16.558 1.155 -17.863 1.284 -17.464 1.233 -17.454 1.289 -17.298 1.372 -17.419 1.346 -16.786 1.079 -17.353 1.072 

alRY -7.269 1.158 -6.951 1.313 -6.015 1.278 -6.366 1.180 -6.618 1.317 -6.947 1.394 -6.520 1.454 -6.214 1.188 

alRZ 7.234 1.939 7.515 1.895 5.353 1.264 5.710 1.642 4.755 1.363 5.492 1.342 5.968 1.347 6.182 1.944 

lsX 0.170 0.511 0.088 0.541 -0.205 0.539 -0.205 0.446 -0.337 0.542 -0.186 0.555 -0.100 0.452 -0.023 0.475 

lsY -30.686 1.143 -31.144 1.112 -30.065 1.372 -30.582 1.311 -31.174 0.842 -31.549 1.116 -30.957 1.105 -31.629 1.419 

lsZ 11.744 1.022 11.550 1.053 12.223 1.155 12.381 1.158 12.283 0.893 12.185 0.944 12.875 0.956 12.977 1.341 

liX 0.145 0.611 0.397 0.460 0.068 0.414 0.137 0.363 0.304 0.599 0.029 0.419 0.128 0.549 0.212 0.505 
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liY -45.936 1.434 -45.443 1.900 -46.105 1.503 -46.746 2.063 -45.832 1.837 -46.428 2.003 -45.382 2.032 -45.595 1.613 

liZ 8.707 1.468 8.717 1.380 8.789 1.111 8.901 1.616 9.294 1.160 8.366 1.781 9.701 1.069 9.183 1.164 

cphLX 6.173 0.836 6.208 1.164 6.108 1.194 6.431 1.092 5.868 0.881 5.789 0.977 5.609 0.806 5.998 0.846 

cphLY -27.559 1.142 -28.048 1.110 -28.186 1.383 -28.606 1.239 -28.447 0.966 -29.086 0.942 -28.784 1.126 -28.698 1.527 

cphLZ 10.810 0.953 10.777 0.794 11.212 1.147 11.428 1.056 11.153 0.817 11.410 0.889 11.873 0.791 11.937 1.095 

cphRX -6.174 0.839 -6.648 1.285 -6.394 1.017 -6.867 0.941 -6.843 1.072 -6.440 0.980 -6.249 0.815 -6.478 0.654 

cphRY -27.595 1.109 -28.094 1.219 -27.997 1.296 -28.574 1.095 -28.275 0.869 -28.896 0.908 -28.672 1.094 -28.705 1.545 

cphRZ 11.041 0.922 10.897 0.918 11.293 1.115 11.485 1.000 11.139 0.758 11.331 0.871 11.724 0.929 11.963 1.063 

chLX 23.968 2.071 23.430 1.783 27.367 1.878 26.312 1.952 25.333 1.837 24.340 1.856 24.916 2.342 24.597 1.712 

chLY -38.020 1.197 -37.763 1.301 -38.300 1.185 -38.378 1.431 -38.673 1.098 -39.387 1.578 -39.600 1.197 -38.734 1.249 

chLZ -5.565 2.208 -4.580 1.833 -4.056 1.231 -3.460 1.754 -4.910 1.500 -3.367 1.267 -4.223 2.176 -3.818 1.596 

chRX -24.892 1.824 -24.179 1.656 -27.718 2.270 -26.744 2.156 -25.085 2.016 -23.956 1.616 -24.331 2.272 -24.431 2.311 

chRY -38.075 1.196 -37.472 1.354 -37.792 1.262 -38.322 1.319 -38.466 1.440 -38.736 1.457 -39.132 1.391 -39.004 1.136 

chRZ -5.413 2.081 -4.810 1.897 -3.894 1.354 -3.320 1.600 -4.510 1.618 -3.058 1.448 -3.950 1.685 -3.603 2.115 

pgX 0.328 0.775 0.361 0.573 0.289 0.818 0.529 0.695 -0.160 0.917 0.070 0.761 0.058 0.906 0.135 0.588 

pgY -66.553 1.824 -68.002 2.327 -66.948 2.268 -68.351 2.612 -66.298 2.758 -66.803 2.857 -66.117 2.016 -66.658 2.057 

pgZ 5.366 2.214 5.214 2.201 3.831 2.257 3.243 3.204 5.811 2.879 4.223 2.348 3.869 2.708 3.339 2.411 
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13 APPENDIX 3: SUPPLEMENTARY PLOTS 

13.1 CONVENTIONAL PCA: GEOGRAPHICAL LOCATION 

 
 

 
  

 PC1 (18.57%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (English v Croatian/Welsh) 

• English: wider and more prominent eyes (3mm), wider mouths (2.5mm) 
• Croatian/Welsh: more prominent pronasale (2mm) 
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 PC2 (12.23%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (English/Welsh/Finnish v Croatian) 

• Croatian: more prominent pronasale (3mm), subnasale (2.5mm) and pogonion (2.5mm), more deep-set eyes 
(2.5mm) 
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 PC3 (9.49%) 

a  

b 

 

 

 

c 

   

 
mm 

 Main differences (Finnish v Croatian/English/Welsh) 
• Finnish: more superior nasion (3mm) and glabella (2mm), less prominent glabella (2.5mm) 
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 PC4 (7.89%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (English v Croatian) 

• Croatian: wider mouth (3.5mm), more inferior nasion and glabella (2mm) 
• English: narrower mouth (3.5mm), more superior nasion and glabella (2mm) 
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 PC5 (7.17%) 

a  

b 

 

 

 

c 

   

 
mm 

 Main differences (English v Welsh/Finnish) 
• English: more superior pogonion (2mm), more inferior pronasale (1.75mm) 
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 PC6 (5.92%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (English v Croatian) 

• Croatian: more prominent pogonion (3.5mm) and more inferior pogonion (2mm) 
• English: less prominent pogonion (3.5mm) and more superior pogonion (2mm) 
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 PC7 (4.54%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (Croatian v Welsh) 
• Croatian: narrower eyes (1.5mm) 
• Welsh: wider eyes (1.5mm) 
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 PC8 (3.26%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (Finnish v English) 

• English: more prominent corners of mouth (1.5mm), more superior nasion (1.5mm) 
• Finnish: more inset corners of mouth (1.5mm), more inferior nasion (1.5mm) 
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 PC9 (2.96%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (Croatian v Welsh) 
• Croatian: more inferior pogonion (2mm) 
• Welsh: more superior pogonion (2mm) 
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Figure 78: Conventional PC1-10 (grouped by geographical location).  Significant following 

univariate ANOVA (p<0.003 to account for Bonferroni correction).  PC1 did not reach 

significance but is included to demonstrate a contradiction in the findings between the PC1 and 

PC4.  (a) Standardised component scores, (b) Mean face +/- square root of the respective 

eigenvalue/eigenvector, (c) Difference between mean + sqrt(eigenvalue)*eigenvector and mean - 

sqrt(eigenvalue)*eigenvector (mm).

 PC10 (2.56%) 

a  

b 

 

 

 

c 

   

 
mm 

 
Main differences (English v Welsh) 
• English: more inferior glabella (1mm) 
• Welsh: more superior glabella (1mm) 
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13.2 CONVENTIONAL PCA: SEX 

 

 

 PC1 (18.57%) 

a 
 

b 

 

 

 

c 

   

 
mm 

 Main differences 
• Females: wider eyes (3mm), wider mouths (2.5mm), less prominent pronasale (2mm) 
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 PC3 (9.49%) 

a 
 

b 

 

 

 

c 

   

 

mm 

 Main differences 
• Females: more inferior nasion (3mm), more inferior (2mm) and less prominent glabella (2.5mm), less 

prominent pogonion (2mm) 
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 PC5 (7.17%) 

a 
 

b 

 

 

 

c 

   

 
mm 

 Main differences 
• Females: more inferior pogonion (3mm), more superior pronasale (2mm) 
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 PC7 (4.54%) 

a 
 

b 

 

 

 

c 

   

 
mm 

 Main differences 
• Females: eyes wider apart (1.5mm) 
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Figure 79: Interpretation of conventional PC1, 3, 5, 6 and 8 (grouped by sex).  Significant 

following univariate ANOVA (p<0.003 to account for Bonferroni correction).  (a) Standardised 

component scores, (b) Mean face +/- respective eigenvalue/eigenvector, (c) Difference between 

mean + eigenvalue/eigenvector and mean - eigenvalue/eigenvector (mm). 

 

 

 

 

 

 PC8 (3.26%) 
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mm 

 Main differences 
• Females: more inset corners of mouth (1.5mm), more inferior nasion (1.5mm) 
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Finnish/English/Welsh 

Croatian 

13.3 MULTILEVEL PRINCIPAL COMPONENT ANALYSIS: GEOGRAPHICAL 

LOCATION 

 

Front  Profile 
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Figure 80: The facial differences along mPCA geographical location PC1 – Croatians included 

in model 
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Front  Profile 
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Figure 81: The facial differences along mPCA geographical location PC2 – Croatians included 

in model 
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Figure 82: The facial differences along mPCA geographical location PC3 – Croatians included 

in model 
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Front  Profile 
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Figure 83: The facial differences along mPCA geographical PC1 – Croatians excluded from 

model 
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English/Finnish 

Welsh 

Front  Profile 

 

 
 
 

 

Differences in x Differences in y Differences in z 
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Figure 84: The facial differences along mPCA geographical location PC2 – Croatians excluded 

from model 
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13.4 MULTILEVEL PRINCIPAL COMPONENT ANALYSIS: SEX 

Front  Profile 
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Figure 85: The facial differences along mPCA sex PC1 – Croatians included in the model 
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Front  Profile 
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Figure 86: The facial differences along mPCA sex PC1 – Croatians excluded from the model 

Male 

Female 
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