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Abstract. Symbolic reasoning and deep learning are two fundamen-
tally different approaches to building AI systems, with complementary
strengths and weaknesses. Despite their clear differences, however, the
line between these two approaches is increasingly blurry. For instance,
the neural language models which are popular in Natural Language Pro-
cessing are increasingly playing the role of knowledge bases, while neural
network learning strategies are being used to learn symbolic knowledge,
and to develop strategies for reasoning more flexibly with such knowl-
edge. This blurring of the boundary between symbolic and neural meth-
ods offers significant opportunities for developing systems that can com-
bine the flexibility and inductive capabilities of neural networks with the
transparency and systematic reasoning abilities of symbolic frameworks.
At the same time, there are still many open questions around how such
a combination can best be achieved. This paper presents an overview of
recent work on the relationship between symbolic knowledge and neural
representations, with a focus on the use of neural networks, and vector
representations more generally, for encoding knowledge.

1 Introduction

Artificial Intelligence (AI) is built on two fundamentally different traditions, both
of which go back to the early days of the field. The first tradition is focused on
formalising human reasoning using symbolic representations. This tradition has
developed into the Knowledge Representation and Reasoning (KRR) sub-field.
The second tradition is focused on learning from examples. This tradition has
developed into the Machine Learning (ML) sub-field. These two different tradi-
tions have complementary strengths and weaknesses. Due to the use of symbolic
representations, KRR systems are explainable, often come with provable guar-
antees (e.g. on correctness or fairness) and they can readily exploit input from
human experts. Moreover, due to their use of systematic reasoning processes,
KRR systems are able to derive conclusions that require combining numerous
pieces of knowledge in intricate ways. However, symbolic reasoning is too rigid
for many applications, where predictions may need to be made about new situ-
ations that are not yet covered in a given knowledge base. On the other hand,
ML systems often require little human input, but lack explainability, usually
come without guarantees, and tend to struggle in applications where systematic



reasoning is needed [1–3]. Accordingly, there is a growing realisation that future
AI systems will need to rely on an integration of ideas from ML and from KRR.

The integration of symbolic reasoning with neural models already has a long
tradition within the context of neuro-symbolic AI [4, 5]. However, our main fo-
cus in this overview is not on the integration of symbolic reasoning with neural
network learning, but on the ability of neural network models, and vector space
encodings more generally, to play the role of knowledge bases. First, in Section
2, we focus on the use of neural models for capturing knowledge graphs (i.e.
sets of dyadic relational facts). Knowledge graphs play an important role in
research fields such as Natural Language Processing, Recommendation and Ma-
chine Learning, essentially giving AI system access to factual world knowledge.
The interest in studying the relationship between neural models and knowledge
graphs is two-fold. On the one hand, learning vector representations of knowl-
edge graphs makes it easier to use these resources in downstream tasks. On the
other hand, existing pre-trained neural language models, trained from large text
collections, implicitly capture a lot of the information that is stored in open-
domain knowledge graphs. Neural models can thus also play an important role
in constructing or extending knowledge graphs. In Section 3, we then look at
the ability of neural models to capture rules, e.g. the kind of knowledge that
would normally be encoded in ontologies. Studying this ability is important be-
cause it can suggest mechanisms to combine traditional strategies for rule-based
reasoning with neural network learning. Moreover, large pre-trained neural lan-
guage models can also be used as a source of ontological knowledge, at least to
a certain extent. Finally, in Section 4 we look at cases where neural models and
symbolic knowledge are jointly needed. This includes, for instance, the use of
existing rule bases, along with traditional labelled examples, for training neural
models. Moreover, symbolic representations are also used for querying neural
representations. As a final example, we look at mechanisms to exploit neural
representations for making symbolic reasoning more flexible or robust.

2 Encoding Knowledge Graphs

A knowledge graph (KG) is a set of triples of the form (h, r, t) ∈ E × R × E ,
with E a set of entities and R a set of relations. A triple (h, r, t) intuitively ex-
presses that the head entity h and tail entity t are in relation r. For instance,
(Cardiff, capital-of,Wales) asserts that Cardiff is the capital of Wales. KGs are
among the most popular frameworks for encoding factual knowledge. Open-
domain KGs such as Wikidata [6], YAGO [7] and DBpedia [8], can be seen as
providing a structured counterpart to Wikipedia. Such KGs are commonly used
as a source of factual encyclopedic information about the world, for instance to
enrich neural network models for Natural Language Processing (NLP) [9]. Com-
monsense KGs such as ConceptNet [10] and ATOMIC [11] are similarly used as
a source of knowledge that may otherwise be difficult to obtain. Furthermore, a
large number of domain-specific KGs have been developed, for instance covering
the needs of a specific business. We refer to [12, 13] for a comprehensive overview



about knowledge graphs. Here we focus on neural representations of KGs. The
aim of using neural representations is to generalise from the facts that are ex-
plicitly asserted in a given KG and to make it easier to take advantage of KGs in
downstream tasks. In Section 2.1, we first discuss KG embedding (KGE) meth-
ods, i.e. strategies for learning vector representations of entities and relations
that capture the knowledge encoded in a given KG. Such methods have seen a
lot of attention from the research community throughout the last decade, hav-
ing the advantage of being conceptually elegant and computationally efficient. In
Section 2.2 we then discuss the use of Contextualised Language models (CLMs)
such as BERT [14] for capturing knowledge graph triples.

2.1 Knowledge Graph Embeddings

Let a knowledge graph K ⊆ E × R × E be given. The aim of knowledge graph
embedding (KGE) methods is to learn (i) a vector representation e for each
entity e from E , and (ii) the parameters of a scoring function fr : E × E → R
for each relation r ∈ R, such that fr(h, t) reflects the plausibility of the triple
(h, r, t). The main focus is usually on the task of link prediction, i.e. given a head
entity h and relation r, predicting the most likely tail entity t that makes (h, r, t)
a valid triple. Embeddings are typically real-valued, i.e. e ∈ Rn, but other choices
have been considered as well, including complex embeddings [15–17], hyperbolic
embeddings [18] and hypercomplex embeddings [19]. In most models, the scoring
function fr is parameterised by a vector r of the same dimensionality as the entity
vectors. For example, in the seminal TransE model [20], we have:

fr(h, t) = −d(h + r, t)

where d is either the Euclidean or Manhattan distance. In other words, relations
are viewed as vector translations, and (h, r, t) is considered plausible if applying
the translation for r to h yields a vector that is similar to t. As another popular
example, in DistMult [21], the scoring function is defined as follows:

fr(h, t) = h� r� t

where � denotes the component-wise product of vectors. To learn the entity
vectors and the scoring functions fr, several loss functions have been considered,
which are typically based on the idea that fr(h, t) should be higher than fr(h, t′)
whenever (h, r, t) ∈ K and (h, r, t′) /∈ K. An important lesson from research
on KGE is that the performance of different methods often crucially depends
on the chosen loss function, the type of regularisation that is used, how the
negative examples (h, r, t′) are chosen, and hyper-parameter tuning [22]. This
has complicated the empirical comparison of different KGE models, especially
given that these models are typically only evaluated on a small set of benchmarks.

Leaving empirical considerations aside, an important question is whether
KGE models have any theoretical limitations on the kinds of KGs they can
encode. In other words, is it always possible to find entity vectors and scoring
functions such that the triples (h, r, t) which are predicted to be valid by the



KGE model are exactly those that are contained in a given KG? Formally, a
KGE model is called fully expressive [23] if for any knowledge graph K, we can
find entity vectors and parameters for the scoring functions such that fr(h, t) > γ
if (h, r, t) ∈ K and fr(h, t) < γ otherwise, for some constant γ ∈ R. In other
words, a fully expressive model is capable of capturing any knowledge graph
configuration. It turns out that basic translation based methods such as TransE
are not fully expressive (see [23] for details). However, many other methods have
been found to be fully expressive [23, 15], provided that vectors of sufficiently
high dimensionality are used. This also includes BoxE [24], which is translation
based but avoids the limitations of other translation based models by using a
region based representation.

2.2 Contextualised Language Models as Knowledge Bases

In recent years, the state-of-the-art in NLP has been based on large pre-trained
neural language models (LMs) such as BERT [14]. These LMs are essentially
deep neural networks that have been pre-trained on large text collections using
different forms of self-supervision. The most common pre-training strategy is
based on masked language modelling, where the model is trained to predict
words from a given input sentence or paragraph that have been masked. Despite
the lack of any explicit supervision signal, the resulting LMs have been found to
capture a wealth of syntactic and semantic knowledge [25]. Interestingly, these
models also capture a lot of factual world knowledge. For instance, [26] found
that presenting BERT with an input such as “Dante was born in <mask>” leads
to the correct prediction (Florence). In fact, it turns out that pre-trained LMs
can be used to answer a wide array of questions, without being given acccess
to any external knowledge or corpus [27]. Rather than using KG embeddings
to provide NLP models with access to knowledge about the world, the focus in
recent years has thus shifted towards (i) analysing to what extent pre-trained
LMs already capture such knowledge and (ii) fine-tuning LMs to inject additional
knowledge. LMs thus provide a neural encoding of factual world knowledge,
although the mechanism by which such knowledge is encoded is unclear. Recent
work [28] has suggested that the feedforward layers of these LMs contain neurons
that encode specific facts. This insight was used in [29] to devise a strategy
to update the knowledge encoded by an LM, for instance when a given fact
has become outdated. Some approaches have been suggested for incorporating
KGs when training LMs [30], which provides more control about the kind of
knowledge that is captured by the LM. Other methods focus on using KGs to
reason about the output of LMs [31]. LMs have also been used to aid in the
task of KG completion. For instance, [32] designs a scoring function for KG
triples, which uses BERT for encoding entity descriptions. Most notably, LMs
have been used for link prediction in commonsense KGs such as ConceptNet
and ATOMIC. The challenge with such KGs is that entities often correspond to
phrases, which may only appear in a single triple. The graph structure is thus
too sparse for traditional KG completion methods to be successful. Instead, [33]
proposes a model in which a contextualised language model is fine-tuned on



KG triples. They show that, after this fine-tuning step, the LM can be used to
generate meaningful new triples. Building on this work, [34] shows that focused
commonsense knowledge graphs can be generated on the fly, to provide context
for a particular task.

3 Encoding Rules

While knowledge graphs are the de facto standard for encoding factual knowl-
edge, more expressive frameworks are needed for encoding generic knowledge. In
particular, rules continue to play an important role within AI, and an increas-
ingly important role within NLP. For instance, several competitive strategies
for knowledge graph completion based on learned rules have been proposed in
recent years [35, 36], having the advantage of being more transparent than KGE
methods, and the potential for capturing more expressive types of inference pat-
terns. Our focus in this overview is on the interaction between rules and neural
representations. First, we discuss the use of neural networks for simulating rule
based reasoning in Section 3.1. Such methods are particularly appealing, be-
cause they are able to learn meaningful rules using standard backpropagation,
and can be naturally combined with other types of neural models (e.g. to reason
about input presented in the form of images). In Section 3.2, we then discuss
the view that rules can be modelled in terms of qualitative spatial relationships
between region-based representations of concepts and relations. Finally, Section
3.3 discusses the rule reasoning abilities of contextualised language models.

Before moving to the next sections, we start by briefly introducing rules; for
more details, see e.g. [37]. An atom α is an expression of the form R(t1, . . . , tn),
where R is a predicate symbol with arity n and terms ti, i.e. variables or con-
stants. An rule σ is an expression of the form

B1 ∧ . . . ∧Bn → ∃X1, . . . , Xj .H, (1)

where B1, . . . Bnand H are atoms and Xm for 1 ≤ m ≤ j are variables. We call
X1, . . . , Xj the existential variables of σ. All other variables occurring in σ are
universally quantified. We call a rule with no free variables a ground rule and
a ground rule with an empty body a fact. For example, fathertOf(john,peter),
fathertOf(peter,louise) are facts expressing that John is the father of Peter and
Peter is the father of Louise. As another example, the following rule with a non-
empty body and with variables, defines the grandfather relation in terms of the
father relation fatherOf(X,Y ) ∧ fatherOf(Y, Z)→ grandfatherOf(X,Z)

3.1 Neural Networks for Reasoning with Differentiable Rules

While the discrete nature of classical logic makes it difficult to integrate with
neural networks, several authors have explored techniques for encoding differen-
tiable approximations of logical rules. For instance, [38] develops a differentiable
approach to rule based reasoning, called Neural Theorem Proving, by replacing



Fig. 1. The binary relation eats is defined as a region over the Cartesian product of
two conceptual spaces. The spatial configurations capture relational knowledge such as
“carnivores only eat animals”.

the traditional unification mechanism with a form of soft unification, which is
computed based on the dot product between vector representations of the con-
stants and predicates involved. Taking a different approach, Lifted Relational
Neural Networks [39] rely on ideas from fuzzy logic to make rules differentiable.
In this case, the unification mechanism is the classical one, but truth values of
literals and rule bodies are evaluated on a continuous scale. Fuzzy logic connec-
tives are also sometimes used to regularise neural network models based on prior
knowledge in the form of rules [40, 41]. DeepProbLog [42] is based on yet another
strategy. In this case, reasoning is done using a probabilistic logic program, where
a deep neural network is used to estimate the probability of particular literals.
Whereas the focus of the aforementioned works was to use neural network learn-
ing to discover meaningful rules, in the case of DeepProbLog, the rules themselves
are given and the purpose of using neural networks is to allow for more flexible
inputs, e.g. making it possible to reason about information presented as images.
This strategy has also been instantiated using other logical formalisms, such as
answer set programming [43–45]. Some authors have also focused specifically on
the use of neural network models for rule induction (rather than for combining
rules with neural networks). For instance, [46] presents a differentiable version
of inductive logic programming, while [47, 36] propose differentiable models to
learn rules for knowledge graph completion.

3.2 Modelling Rules as Spatial relations

The theory of conceptual spaces [48] was proposed by Gärdenfors as an interme-
diate representation framework, in between neural and symbolic representations.
The main idea is that properties are represented as convex regions, while individ-
uals are represented as points. Compared to the usual vector space models, this
region-based approach has the advantage that there is a direct correspondence



between spatial relationships in the conceptual space, on the one hand, and sym-
bolic rules, on the other hand. For instance, the fact that individual X satisfies
property P , i.e. the fact P (X), corresponds to a situation where the geometric
representation of X belongs to the region representing P . Similarly, a rule such
as P (x) ∧ Q(x) → R(x) corresponds to the situation where the intersection of
the regions representing P and Q is included in the region representing R. While
conceptual spaces can only capture propositional knowledge, in [49] we showed
how relational knowledge can be similarly modelled by representing relations as
convex regions over a Cartesian product of conceptual spaces. Figure 1 illus-
trates this for the binary relation eats, which is defined as a convex region over
the Cartesian product of two conceptual spaces. The points in this Cartesian
product space correspond to pairs of individuals. Relational knowledge is then
modelled in terms of inclusions, intersections and projections. For the example
illustrated in the figure, among others, the following rules are captured:

carnivore(x) ∧ eats(x, y)→ animal(y)

carnivore(x)→ ∃y . animal(y) ∧ eats(x, y)

The framework of conceptual spaces, and their relational extension, seems like
a natural choice for settings where neural representations need to be combined
with symbolic knowledge. In practice, however, their usage is complicated by
the fact that learning regions in high-dimensional spaces is difficult, unless dras-
tically simplifying assumptions are made about the nature of the regions. For
example, box embeddings, where entities are represented by hyper-boxes, have
been successfully used in a number of contexts [50]. Cones [51, 52] and linear
subspaces [53] are also common choices. A typical assumption in conceptual
spaces is that regions are defined in terms of the prototypes of the correspond-
ing concepts. Region boundaries may then arise as the cells of a (generalised)
Voronoi tessellation of these prototypes [54]. This view is appropriate whenever
a contrast set [55], i.e. a set of jointly exhaustive and pairwise disjoint concepts
is given. In [56], an approach was developed for learning concept representations
based on this idea.

3.3 Contextualised Language Models as Rule-Based Reasoners

In Section 2.2, we discussed how large pre-trained language models encode a sub-
stantial amount of factual knowledge. The extent to which such language models
capture rules is less clear. In [57], some evidence is provided to suggest that LMs
are indeed capable of learning some kinds of symbolic knowledge, and can be
trained to apply this knowledge, e.g. generalising an observation about a given
concept to hyponyms of that concept. In [58], the ability of transformer based
LMs to generalise observed facts is analysed in a systematic way, by training an
LM from scratch on a synthetic corpus in which various regularities are present.
They find that LMs are indeed capable of discovering symbolic rules, and capa-
ble of applying such rules for inferring facts not present in the training corpus,
although they also identified important limitations. The aforementioned works



mostly focus on one-off rule applications, although some authors have found that
LMs can be trained to perform more sophisticated forms of rule based reasoning
[59]. Finally, the ability of transformer based LMs to discover and apply rule-like
knowledge has also been exploited in the context of knowledge graph completion.
Most notably, [60] shows how a fine-tuned BERT model can essentially be used
as a rule base for inductive KG completion.

4 Combining Symbolic Knowledge with Embeddings

In the previous section, we discussed how neural networks are able to capture
rule-like knowledge to some extent. In many settings, however, symbolic repre-
sentations also play a central role. For this reason, we now focus on frameworks
for combining symbolic and neural representations. For instance, symbolic rules
can be used to encode knowledge elicited from a domain expert, hence it is of
interest to study mechanisms for incorporating symbolic knowledge when train-
ing or using neural models, which we discuss in Section 4.1. Symbolic repre-
sentations are also needed for specifying complex information needs. Recently,
approaches have been proposed for evaluating such complex (symbolic) queries
against knowledge graph embeddings, and other neural representations (Sec-
tion 4.2). Finally, in applications where interpretability is a primary concern,
symbolic knowledge is clearly preferable over neural representations. However,
the brittleness of symbolic reasoning means that purely symbolic methods often
break down. Symbolic representations are particularly limiting when it comes
to inductive reasoning, which in turn makes it difficult to provide plausible or
approximate answers in cases where exact reasoning yields no results. To address
such concerns, Section 4.3 discusses methods in which neural representations are
used to add inductive capabilities to symbolic frameworks.

4.1 Injecting Knowledge into Neural Models

Rules are commonly used for injecting prior knowledge when training a neural
model [61, 62, 41, 63]. The most typical strategy is to approximate the rules using
differentiable functions, and to add a term to the loss function which encour-
ages the learned representations to adhere to the rules. Another strategy is to
use (heuristic) rules to automatically generate (noisy) labelled training exam-
ples [64, 65]. To train a neural model from these noisy labels, the true label is
typically modelled as a latent variable, which is inferred by modelling the relia-
bility of the rules, as well as their correlations in some cases. Rather than using
symbolic knowledge during training, some approaches also use symbolic knowl-
edge to reason with the output of a neural model. For instance, [66] proposes a
model for question answering, which uses a fine-tuned BERT model to generate
a vector representation of the question context (i.e. the question and candidate
answer), and then uses a reasoning process which combines that vector with
a knowledge graph. The resulting reasoning process uses a Graph Neural Net-
work to dynamically update the question context vector based on the symbolic



knowledge captured by the KG. DeepProbLog [42] is also aimed at reasoning
about the outputs of a neural network model, in this case based on symbolic
probabilistic rules. The general idea of adding a differentiable reasoner on top of
a deep neural network model has been explored from a number of other angles.
For instance, [67] relies on a differentiable SAT solver to enable reasoning with
neural network outputs, while [68] proposes a strategy for using combinatorial
optimisation algorithms within an end-to-end differentiable model.

4.2 Complex Query Answering

Learning knowledge graph embeddings has proven a successful approach to pre-
dict missing or unobserved edges in knowledge graphs. However, while dealing
with knowledge graphs, one is usually interested in handling complex queries
describing complex information in the form of graph patterns rather than sim-
ple atomic edge-like queries. Indeed, one of the main benefits of symbolically
encoded knowledge graphs is that they support SPARQL or conjunctive queries
(CQs) [12, 13]. However, symbolically encoded KGs can only be queried for exist-
ing facts in the knowledge graph, that is, missing entities or edges cannot be in-
ferred. To address this shortcoming, recently various investigations on the use of
knowledge graph embeddings to make predictions about conjunctive queries and
extensions thereof on incomplete knowledge graphs have been carried out [69–75].
In this setting, for instance, given an incomplete university knowledge graph, we
might want to predict which students are (likely) attending Math and CS mod-
ules that use linear algebra? Unlike for edge (link) prediction, the query might
involve several unobserved edges and entities, effectively making this a more
complex problem as there exist a combinatorial number of possible interesting
queries, and each of them could be matched to many (unobserved) subgraphs
of the input KG. In fact, it is not hard to see that a naive approach to query
prediction might be unfeasible in practice [69]. One could first use an edge pre-
diction model on all possible pairs of nodes, and then using the obtained edge
likelihood, and then enumerate and score all candidate subgraphs that might
satisfy a query. However, this enumeration approach is in the worst-case expo-
nential in the number of existentially quantified variables in the query. As a
solution, these works represent KG entities and queries in a joint embedding
space. For example, the seminal graph query embedding model (GQE) [69] rep-
resents KG entities x and a query q as vectors and then cosine similarity is
used to score the plausibility of x being a possible answer to q. Most existing
query embedding approaches work compositionally by building the embedding
of a query q based on its sub-queries. For example, if the input query q is of
the form q1 ∧ q2, the embedding of q is computed based on the embeddings
of q1 and q2. A number of these works have concentrated on developing query
embeddings that support extensions of conjunctive queries, such as positive exis-
tential queries (extending CQs with disjunction) [70] or even existential queries
with negation [71]. Recently, [75] proposed a framework for answering positive
existential queries using pre-trained link predictors to score the atomic queries
composing the input query, which is then evaluated using continuous versions of



logical operators and combinatorial search or gradient descent. Importantly, this
work shows that state-of-the-art results can be obtained using a simple frame-
work requiring only neural link predictors trained for atomic queries, rather than
millions of queries as in previous works. In all the works mentioned so far it is
assumed that queries have a unique missing entity (answer variable). To over-
come this shortcoming, [73] proposed an approach based on transformers to deal
with conjunctive queries with multiple missing entities. Finally, [72] investigates
whether some of the existing query embedding models are logically faithful in
the sense that they behave like symbolic logical inference systems with respect
to entailed answers. They show that existing models behave poorly in finding
logically entailed answers, and propose a model improving faithfulness without
losing generalization capacity.

4.3 Using Embeddings for Flexible Symbolic Reasoning

In applications where interpretability is important, using symbolic representa-
tions is often preferable. For this reason, developing rule based classifiers remains
an important topic of research [76, 77, 35]. One important disadvantage, how-
ever, is that rule bases are usually incomplete. Indeed, learned rules typically
only cover situations that are witnessed (sufficiently frequently) in the training
data. Neural network models, on the other hand, have the ability to interpolate
between such situations, which intuitively allows them to make meaningful pre-
dictions across a wider range of situations. When rules are manually provided by
a domain expert, beyond toy domains we can usually not expect the resulting
rule base to be exhaustive either. To address this concern, a number of methods
have been proposed which combine the inductive generalisation abilities of neural
models, to allow some form of flexible rule-based reasoning. A standard solution
is to use vector representations to implement a form of similarity based reason-
ing [78, 79]. Consider, for instance, the following rule: strawberry→ healthy, and
suppose that our knowledge base says nothing about raspberries. Given a stan-
dard word embedding [80], we can find out that strawberry and raspberry are
highly similar. Based on this knowledge, we can infer that raspberry → healthy
is plausible. However, it is difficult to relate degrees of similarity to the plausi-
bility of the inferred rules in a principled way. For this reason, interpolation has
been put forward as an alternative to similarity based reasoning [81–83]. The
intuition is to start from a minimum of two rules e.g. raspberry → healthy and
orange→ healthy. Plausible inferences are then supported by the notion of con-
ceptual betweenness: we say that a concept B is between the concepts A1, ...An

if properties that hold for all of A1, ..., An are also expected to hold for B. If we
know that raspberry is between strawberry and orange, then we can plausibly
infer the rule raspberry → healthy from the two given ones. This interpolation
principle is closely related to the notion of category based induction from cog-
nitive science [84]. While this is a general principle, which can be instantiated
in different ways, good results have been obtained using strategies which infer
betweenness relations from word embeddings and related vector representations
[82, 85].



5 Concluding Remarks

While it seems clear that future AI systems will somehow need to combine the
advantages of symbolic and neural representations, the lack of sufficiently com-
prehensive symbolic knowledge bases, especially those which capture generic and
commonsense knowledge, remains an important obstacle. In the last few years,
the focus has somewhat shifted from embedding symbolic knowledge bases to
learning knowledge about the world by training deep neural language models.
The amount of world knowledge captured by the largest models, such as GPT-3
[86], has been particularly surprising. While by no means perfect, even the com-
monsense reasoning abilities of these models surpasses expectations1. To deal
with aspects of commonsense knowledge that are rarely stated in text, a typical
strategy in recent years has been to crowdsource targeted natural language as-
sertions and explanations [11, 87], and to use such crowdsourced knowledge for
fine-tuning language models. However, despite their impressive abilities, neural
language models still have two fundamental limitations, which suggest that sym-
bolic representations and systematic reasoning will still play an important role
in future AI systems. First, while current NLP models achieve strong results
in tasks such as question answering, it is difficult to differentiate between cases
where they “know” the answer and cases where they are essentially guessing.
Indeed, recent analysis has suggested that language models are still relying on
rather shallow heuristics for answering questions [88], which tend to perform
well on most benchmarks but offer little in terms of guarantees. Along similar
lines, neural machine translation systems are prone to “hallucinating” [89], i.e.
generating fluent sentences in the target language which are disconnected from
the source text. To use of neural models to make critical decisions thus remains
problematic. A second limitation of neural models concerns situations where
some form of systematic reasoning is needed. While neural language models can
be trained to simulate forward chaining in synthetic settings [59], in practice
considerable care is needed to extract the most relevant premises and presenting
these in a suitable way, a problem which is studied under the umbrella of multi-
hop question answering [90]. Moreover, further progress will need NLP systems
to carry out forms of reasoning that go beyond forward or backward chaining,
including reasoning about disjunctive knowledge (e.g. arising from the ambigu-
ity of language) and reasoning about the beliefs and intentions of the different
participants of a story. It seems unlikely that neural models will be able to carry
out such forms for reasoning without relying on some kind of systematic process
and structured representation. In fact, for answering questions which require
commonsense reasoning, some authors have already found that language models
can be improved by repeatedly querying them in a systematic way to extract
relevant background knowledge, before trying to answer the question [91, 34].

1 https://cs.nyu.edu/ davise/papers/GPT3CompleteTests.html
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Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., eds.: Proceedings of the
Annual Conference on Neural Information Processing Systems. (2019) 15321–15331

37. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (4th Edition).
Pearson (2020)

38. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Proceedings of
the Annual Conference on Neural Information Processing Systems. (2017) 3788–
3800

39. Sourek, G., Aschenbrenner, V., Zelezný, F., Schockaert, S., Kuzelka, O.: Lifted
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