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Abstract

In this work, I integrate three research projects focused on exploring the

neurocognitive basis of voluntary decision making in humans. The thesis

consists of two main parts.

First part (Chapters 1 to 3) focuses on reviewing the theoretical context

of my later work. Chapter 1 introduces the main concepts of interest and

scientific questions that motivate my work. Chapter 2 reviews the scientific

contributions, such as previous findings, theoretical conceptualizations, and

experimental frameworks on which my empirical work is built upon. Chapter

3 discusses the methodological philosophy my work follows. Each theoretical

chapter starts with a brief introduction, giving the reader a glimpse of the

topics to come, followed by sections discussing these points in more depth.

Second part (Chapters 4 to 7) describes the empirical research. Chapter

4 reports the findings of an fMRI experiment on the brain correlates of

voluntary choices between equal options in a perceptual discrimination task

(later referred to as Project 1 ). Chapter 5 describes an EEG study on

the mechanisms of breaking decisional deadlocks, when faced with equally

valuable options in a probabilistic choice task (later referred to as Project
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2 ). Chapter 6 reviews a set of 5 behavioural studies on how a confirmatory

bias induced by voluntary decisions affects future choices and evaluations

(later referred to as Project 3 ). Chapter 7 summarizes the three projects and

discusses their contributions and limitations.



Chapter 1

Introduction

In this work, I explore the behavioural, cognitive, and neural mechanisms

of voluntary decision making in humans. This compact description hides

beneath a very concrete set of study designs, problems, and methodologi-

cal assumptions with a scope that barely scratches the vastness of human

cognition and decision making. For this reason, in the initial chapter I take

upon itself a rather laborious task of building the rationale of my work from

bottom-up. This includes deriving meaningful definitions of voluntary choice,

clarifying the scope of my investigation, and providing a bird-eye overview of

the methodology. While defining terms such as voluntary choice might seem

like a futile exercise in rhetoric, I believe that it is essential for developing a

proper understanding, and therefore, rigorous scientific investigation.

1.1 Basic Terminology and Concepts

6



Introduction 7

Decision Making

Decision making refers to the voluntary processes of choosing among a set

of alternatives, leading to the act of commitment (Payne, Bettman, and

Johnson 1993). While different models for the stages of the decisional process

have been proposed (Busemeyer and Johnson 2004; Rangel, Camerer, and

Montague 2008; Sutton and Barto 1998), most of them agree that common

cognitive steps can be extracted, such as forming a representation of the

options available for choice, evaluating those options, and setting a rule

that defines when enough information is gathered to form commitment (i.e.,

choice termination). My thesis focuses on difficult voluntary choices and

their influence on future choices and judgments. Before delving into the

specific research questions, I will first sketch the basic ideas and concepts

behind these terms. A more in-depth literature review will then be provided

in Chapter 2.

Voluntary Choices

Voluntary decision making, seemingly a pleonasm, is nonetheless often used in

the literature to distinguish choices that are driven internally (by our internal

values or preferences) from externally driven ones. In contrast, involuntary

choices (also referred to as forced, specified, or instructed; Fleming et al.

2009; Phillips et al. 2018; Richardson, Pfister, and Fournier 2020) refer to

the situation when one is forced to make a predefined choice. The conceptual

waters in this case are a little murky – one might argue that an involuntary

choice is not a decision at all. In practice, forced choices almost always
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do require a choice to be made. One might be coerced or forced to do

something he disagrees, or dislikes yet still have the freedom to refuse and

face the consequences. Conversely, in a laboratory task, when asked to make

a forced choice, a participant has the will to refuse, risking being excluded

from the experiment. In between these two extremes, there also exists a

finer spectrum, where the degree of freedom is defined by the degree towards

which the choice is driven by internal (subjective representations, memories,

goals or motivations) or external factors (properties of the stimulus or the

circumstances; Fleming et al. 2009).

For example, perceptual choices, by their more objective nature (i.e., the

existence of a factually correct answer), are more externally driven compared

to preferential decisions. Nuance also exists within the domains: a choice

between two very distinct and well defined options is arguably more externally

driven (i.e., driven by those well-defined external characteristics), compared

to when the definitions are blurred and options are more arbitrary. Let us

imagine choosing between an apple and an orange. In the first scenario,

one is presented with concrete instances of the two fruits, which they can

touch and examine, before picking their favourite. In the second case, one

is presented only with abstract semantic information in the form of words

‘apple’ and ‘orange’. In the first case, one’s choice will likely be driven by

external characteristics of the fruit instances, such as colour, texture, smell,

or ripeness. In the second case, one’s choice will be more dependent on

her internal, abstract representations of those fruits. This concept becomes

more subtle when considering the perceptual domain, as here choices should

ideally be made exclusively based on external sensory signals. This idealized
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case is however far from reality, where perpetual decisions can be influenced

by a wide range of biases and internal expectations (Berlemont and Nadal

2019; Glickman, Moran, and Usher 2020; Linares, Aguilar-Lleyda, and Lopez-

Moliner 2019; Summerfield and de Lange 2014; Talluri et al. 2018). A

common way of manipulating a perceptual choice so that it is driven by

internal processes is assigning identical values to different perceptual stimuli

(Lau et al. 2004; Rowe et al. 2008; Thimm et al. 2012), or increasing the

discrimination difficulty or option value to a point where the options are

almost or exactly identical (Bode, Bogler, and Haynes 2013).

Voluntary Action

While the thesis focuses predominantly on voluntary choices, due to the

intertwined nature of choices and actions, it is impossible to completely

separate the two.

Voluntary action is closely associated with voluntary choice, as the former

requires the latter. In this sense, an action is a potential output of a

choice process. Since choice does not require an physical action one can

make a voluntary choice not to act (Rae et al. 2014), or commit to choice

not associated with any immediate action, and voluntary action cannot be

performed without a choice to do so, choice can be seen as encompassing a

broader category of circumstances.

Another crucial line of distinction lies between the implementation of choices

and actions. Choices involve processes described in the above sections, such

as information sampling, evidence weighting or setting a choice threshold

(Forstmann, Ratcliff, and Wagenmakers 2016) actions are a motor act of



Introduction 10

choice execution (Haggard 2008). Consequently, studies of voluntary choices

and actions focus on different aspects of neural processing. However, often

such delineation is difficult to make, as some areas and processes can be

involved in both. An excellent example of this idea is the intermediary role

of the pre-supplementary motor area (preSMA) contributing to both choice

formation and motor execution (Haggard 2008; Nachev, Kennard, and Husain

2008, for a detailed discussion see Chapters 2 and 4).

Compared to choices, voluntary actions are much often discussed in the

cognitive literature (Haggard, Clark, and Kalogeras 2002; Haggard 2008,

2019), perhaps due to their more tangible nature (one can directly observe an

action, while choice often needs to be inferred from said action). As such, in

the voluntary action literature, actions can be often understood as a broader

process, which includes the decision leading to the action (Haggard 2008).

Difficulty

Throughout the thesis, difficulty will be understood as the closeness in

value between choice options. This closeness can refer either to perceptual

discriminability, or the subjective value of choosing one option over the other.

An extreme of this is a choice between 2 or more options with the same value

or outcome – a paradigm adapted in many studies of voluntary choice (Barlas,

Hockley, and Obhi 2017; Beck, Di Costa, and Haggard 2017; Krieghoff et al.

2009; Zhang, Hughes, and Rowe 2012). Two of the three projects described

here use precisely this paradigm, asking the question: what happens, both

in terms of behaviour and neural activity, when one is faced with seemingly

impossible choice between multiple equivalent options?
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This definition is constrained to a specific type of 2-alternative forced choice

(2AFC) problems, where choice options are assumed to be compared on a

single dimension, such as a perpetual attribute e.g. size (Rafael Polania et

al. 2014), motion direction (Mulder et al. 2012), phase coherence (Ratcliff,

Philiastides, and Sajda 2009) brightness (Teodorescu, Moran, and Usher

2016); or subjective value (Rafael Polania et al. 2014; Fontanesi et al. 2019).

In multi-attribute problems, difficulty might reflect aspects like emotional

valence (Luce, Payne, and Bettman 1999), number (Dhar 1994) and similarity

of choice-relevant attributes (Cheng and González-Vallejo 2018). Difficulty

in multi-alternative problems, where participants choose between 3 or more

options, becomes even harder to define, as apart from factors such as closeness

in value and comparison across different attributes, one also has to consider

also the number of alternatives (more options require more processing time,

Proctor and Schneider 2018) and choice heuristics (Gigerenzer and Gaissmaier

2011). Hence, while the current definition of difficulty is appropriate when

considering a limited 2AFC case using experimentally-controlled stimuli, it

is important to remember that in more complex real life situations it is only

one of many factors that can influence how hard or easy a choice is.

1.2 Research Questions

The research projects contained in this thesis follow a flow of starting from the

most broad questions relating to describing basic correlates of free choice and

their neural signatures (Project 1), to delving deeper into finding the mecha-

nisms of solving decisional deadlocks (Project 2), and finally understanding
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how choices can influence value, leading to a self-reinforcing mechanism of

valuing more the things that we choose (Project 3).

In the broadest terms, my thesis focuses on 3 main research questions:

1. Describe correlates of equal options made (an fMRI study; Chapter 4)

2. Understand how decisional deadlocks are broken (an EEG study; Chap-

ter 5)

3. Describe how choices influence subsequent evaluations (a set of 5 be-

havioural studies; Chapter 6)

Project 1

The first project focuses on perceptual choices between equally salient stimuli,

manipulating the number of options available to choose, from 1 to 3. Op-

tion availability manipulation is usually associated with prolonged response

times, a phenomenon widely recognized in psychological science (Proctor and

Schneider 2018). Prolonged responses are associated with the abundance

of options to choose from, even when all of them lead to a similar outcome.

This phenomenon is tangentially related to the paradox of choice effect found

in value-based literature, where more choice alternatives can lead to more

indecision and less choice satisfaction among consumers (Dar-Nimrod et

al. 2009). Previous studies using this variation of a perceptual free-choice

paradigm have shown that contrasting free choices with forced ones slows

down reaction times and activates a set of brain regions associated with

internally-driven action selection, most notably the pre-supplementary motor

cortex (preSMA) and dorsolateral prefrontal cortex (dlPFC; Rae et al. 2014;

Si, Rowe, and Zhang 2020). Apart from replicating these known effects, this
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study aims at answering 3 novel questions:

• How does stimulus saliency influence choices between equal options

• Whether introducing an intermediate level of choice freedom would

produce a graded BOLD response

• Are more ‘objectively free’ choices also subjectively perceived as more

‘free’

Saliency here refers to the strength, or ease of discriminability of the stim-

ulus (Teodorescu, Moran, and Usher 2016). Objective choice freedom was

manipulated by controlling the number of available response options. Sub-

jective freedom refers to explicit feeling of freedom ratings, spread across

the experimental trials following a choice (Filevich et al. 2013). Despite a

broad literature on the topic (for reviews see: Haggard 2008, 2019; Si, Rowe,

and Zhang 2020), these questions still remain not fully explored. Describ-

ing these basic features of voluntary choice is a necessary building block in

understanding and modelling voluntary choice as a coherent and integrated

process.

Project 2

The second project takes this initial idea a bit further and poses the question

of how such decisional deadlocks are broken. Here, we aim to describe

the effects of equal choices when manipulating the probability of obtaining

a reward, and finding the cognitive mechanisms used for breaking such

decisional deadlocks, together with their neural underpinnings. The study

focuses on a probabilistic reward task, where participants make 2AFC choices

between abstract symbols representing reward probabilities, while their EEG
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signal is recorded. The main focus of the study lies in choices made between

symbols representing identical probabilities (equal choice condition).

This project is the first to provide evidence of magnitude effects in probability-

based reward task, as well as provides a candidate neuro-cognitive mechanism

for resolving a famous choice paradox, referred to as the Buridan’s ass

problem (Inwagen 1989). In this hypothetical paradox, a donkey faced with

two identical haystacks starves to death, as a result of inability to choose the

better option. In practice, humans need to be equipped with mechanisms

able to break out of such decisional deadlocks (Pais et al. 2013). The

project establishes a potential mechanism, but also uncovers an interesting

phenomenon, that people exhibit spontaneous preference for certain options,

even when the option outcomes are identical (preference effect; Lebovich et

al. 2019). The study has been published (Zajkowski et al. 2020).

Project 3

Project 3 deals with the question of how one’s choices can shape the emerging

phenomenon of solving difficult dilemmas by spreading alternative values.

The third project expands on this finding by asking how people develop such

spontaneous preferences. The premise for this study is that internal values

are not stationary, but rather object to fluctuations, that can be biased

by one’s choices. The study drifts away from the equal-option setup and

compares how choices in preference and perceptual domains shape internal

estimations. In contrast to previous research on this topic focused mostly on

preferential choice (Hornsby and Love 2020; Sharot et al. 2012; Vinckier et al.

2019), this project compares and contrasts both preference and perception,

asking whether a preferential choice can induce a change in perception, and
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vice versa.

To my knowledge, this is the first study to directly look at across-domain

effects (i.e. how choices in one domain can influence an unrelated domain)

and find such effects. The results build upon a vast literature of literature

on choice-induces bias (Izuma et al. 2010; Sharot, Velasquez, and Dolan

2010; Talluri et al. 2018; Voigt, Murawski, and Bode 2017; Voigt et al.

2019). The modelling approach used provides a link between cognitive

dissonance (Festinger 1957) and active inference based on one’s choices (Bem

1967; Friston et al. 2016), showing that both mechanisms - a conflict-driven

adjustment (Brehm 1956) as well as a choice-driven permanent value-update

(e.g. Chammat et al. 2017) contribute to the spread of alternative values

following a choice.

The three projects together can be seen as a progression, from describing free

choice (Project 1), to understanding how free-choice conflicts can be resolved

(Project 2), to delving deeper into the consequences of voluntary choices and

describing how they can affect future decisions and evaluations (Project 3).

While being similar in the respect of the main topic of study (voluntary

choices and the neuro-cognitive mechanisms supporting them) as well as the

methodological approach used (see next section), the projects vary in terms

of experimental methodology, types of tasks and some of the definitions.

The main differences in paradigms are introduced in the next chapter and

summarized in the concluding Chapter 7 (Table 7.1), together with the

discussion about the limitations related to comparing different task modalities

(perceptual, value-based, and preference-based).
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1.3 Methodological Approach

Experimental design and data analysis methods are often underappreciated

in psychological science. While flashy results and speculative implications

are exposed at the forefront, their methodological foundations are often

hidden from view (Francis 2012), even though they are the cornerstone of

any inferential process. In reality, methodological oversights were one of

the main reasons for a replicability crisis taking place across domains of

psychological science over the last decade (Lilienfeld 2017; Romero 2019;

Tackett et al. 2019). Strong arguments have been made for moving away

from traditional cookie-cutter linear methods of analysis and towards custom

models prioritizing the data-generating process (Haynes 2019; Rooij and

Baggio 2021; Yarkoni 2019).

This line of thinking follows from the assumption that any behaviour is a

manifestation of an underlying cognitive process, which is constrained by

one’s biology. Therefore, a meaningful understanding of a psychological

phenomenon requires an integrative approach of traversing between observed

behavior, latent cognitive processes generating it, and the neural mechanisms

via which the cognitive processes are implemented. In accordance with this

philosophy, where possible, my work follows three methodological tenets:

1) Integrative Approach

• between levels of analysis

• between modalities (combining behavioural and neural data)

2) Generative Modelling
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3) Hierarchical Bayesian Estimation

Levels of analysis refer to the seminal work by Marr (1982), and consist of

computational (what is computed; highest-level, qualitative description of a

process), algorithmic (how is the process computed; describes the intermedi-

ate, abstract algorithm employed to realise the high-level goal), and imple-

mentational (how is the algorithm implemented, given neural constraints)

levels.

Generative modelling, at it’s heart, is a way of improving understanding

of the data-generating process, and therefore scientific inference (not to be

confused with statistical inference; see: Szollosi et al. 2020).

Hierarchical Bayesian estimation aids in statistical inference by solving com-

mon estimation problems, such as providing full parameter distributions and

partial pooling (Gelman 2006; for details see Chapter 3).

These tenets are further elaborated upon in Chapter 3, which discusses the

methodological approach in depth.



Chapter 2

Literature Review of

Voluntary Choices

A prominent model specifies voluntary action in terms of three crucial com-

ponents: whether, what and when (the WWW model; Brass and Haggard

2008), which can be also extended to voluntary choices. Whether asks the

most general question: a decision whether an action should be performed or

withheld. This concept is related to impulse control (Aron, Robbins, and

Poldrack 2004) i.e., the ability to inhibit prepotent responses when faced

with a situation that requires it (e.g. yawning at an important meeting or

showing visible disgust when tasting an exotic dish in a fancy restaurant).

Above impulse control, the whether component also encompasses more de-

liberate decisions related more broadly to self-control (Brass and Haggard

2007), such as whether to go the gym, or write a thesis on a weekend. A

18
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popular framework for studying the whether component includes the variants

of the stop and go task, as well as deliberate stopping paradigms (Brass and

Haggard 2007, 2008).

The what component asks which action should be chosen among a set of

alternatives. It aims to explain the core elements of the voluntary decision-

making process, such as information selection, decision rule and commitment.

It is often studied using force-choice designs, where a varying number of

alternatives is presented to the participant. Due to its straightforward

conceptualization, this type of choice has been studied extensively both

under the guise of the study of volition (Brass and Haggard 2008), as well as

perceptual (Heekeren, Marrett, and Ungerleider 2008), or preference-based

(Philiastides and Ratcliff 2013) decision making.

The when component asks the question when exactly the chosen action

should be executed. Such choice requires a temporal specification of action

performance, when the whether and what choices have already been made.

Most famously studied by Benjamin Libet (Libet et al. 1983), who described

a brain potential (so called readiness potential) which reliably preceded

conscious action. By linking the readiness potential to free will, Libet

triggered a great debate about moral responsibility in light of this new facet

of determinism (Harris 2012; Lavazza 2016; Roskies 2006; Wegner 2004).

The argument being “How can one be responsible for his actions, if he does

not consciously decide to act?”. Libet’s controversial claim has been since

mostly rejected, both on its philosophical (Nachev and Hacker 2014) as well

as methodological merits (Schurger, Mylopoulos, and Rosenthal 2016), yet

the study of the when component is still a thriving area of volitional research
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(Haggard 2019).

Together, the model provides a concise way to partition the science of

voluntary choice and action into three qualitatively different problems which

can be studied within their respective domains. As a tribute to this theoretical

conceptualization, current chapter is organized analogously to WWW model,

with sections representing a variation on the WWW theme:

• What is volition? section will aim at explaining the theoretical consid-

erations, nuances and pitfalls of what is and what is not considered

voluntary.

• Why to study voluntary choices? section will aim to convince the reader

as to why studying voluntary action is important, and what can it bring

to the table in terms of scientific advancement. An attentive reader

will notice that why is not included in the original WWW model. The

change from whether to why illustrates my optimism and conviction in

the necessity in continuing this avenue of scientific pursuit.

• When to utilize the free choice paradigm? section will discuss the

subtleties in using two popular experimental designs used to study

voluntary choices.

An additional follow-up section, not accommodated by the WWW metaphor

due it’s alliterative deficiency, How to model voluntary choice? will discuss

and examine popular theoretical frameworks used for explaining the cognitive

machinery involved in producing voluntary choices.
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2.1 What is volition?

In order to provide an appropriate context for further discussion, I will

embed the topic of voluntary choices in a general discussion of human

volition: how is it understood and studied through the multidisciplinary lens

of cognitive neuroscience, drawing its influences from the fields of philosophy,

psychology and biology. Throughout this section I will focus on a critical

axis of distinction between voluntary action and the subjective experience of

intentionality. Along the way, I will contextualize this general framework by

providing specific examples of studies from the realm of decision-making.

Volition is difficult to define. This is due to the fact that, similarly to

other concepts studied by both psychologists and philosophers, such as

consciousness or free will, a subjective phenomenological experience is at the

core of its meaning. In the terms of folk psychology (Lewis 1972), to act

voluntarily means to feel responsible for one’s actions, or to feel control over

their consequences (Haggard 2008; Nahmias et al. 2005).

In their critique of contemporary research on free will, Nachev and Hacker

(2014) stress the difference between acting, that is, responding voluntarily to

the circumstances, and doing, which includes involuntary reactions. They

categorize the first as a motivated property exclusive to sentient beings, while

the second as a more general term referring to both voluntary acts as well as

non-autonomous processes such as photosynthesis or falling asleep. Acting

however is just part of the story, since voluntary behaviour can be expressed

not only through action, but also through inaction: an autonomous agent

can also voluntarily inhibit an inappropriate response (Aron, Robbins, and
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Poldrack 2004; Chikazoe et al. 2009).

This understanding of volition is tightly coupled with the notion of intention-

ality (Marken 2016), as well as the sense of agency (Haggard 2017). While

similar in scope, intentionality refers to the more objective process of acting

upon the environment (C. K. Turner 2017), whereas sense of agency refers

to the subjective experience associated with action (Hayden and Haggard

2017). Crucially, an intended action is not always perceived as such, while

an unintended action can be associated with a strong sense of agency (Sato

and Yasuda 2005). The latter has been shown in famous perceptual illusion

where people perceive movements of a rubber hand as their own (Kalckert

and Ehrsson 2014), as well as in cognitive dissonance literature, where people

falsely attribute choices they never made as their own (Henkel and Mather

2007). Finally, volition is also strongly linked to the concept of free will and

personal responsibility related to it (Haggard 2008), a topic more thoroughly

discussed in the Why study voluntary behavior section.

Given this wide range of phenomena and competing constructs bundled

together under the guise of volition, one might wonder how to study such a

complex concept. Taking all of these considerations into account makes it

particularly challenging to come up with a concise definition and operational-

ization that would satisfy the constraints of an experimental investigation.

Psychological research has developed two main ways to operationalize and

study volition: one related to the more objectively defined intention, and the

other related to the phenomenological experience of acting freely.
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2.1.1 Volition as exogenously driven stimulus-

independent action

This conceptualization aims at providing an objective and scientifically mea-

surable definition. It proposes that voluntariness of action can be defined on

a continuum, ranging from completely involuntary, such as simple reflexes

that can be driven by a neurological reflexes (e.g. the knee-jerk reaction),

to stimulus-independent, free from immediacy action (Fried et al. 2017;

Gold and Shadlen 2001). Main strength of this approach is that it allows

to experimentally manipulate the degree of voluntariness by manipulating

the number of available alternatives, hence making actions more or less

stimulus-dependent.

Early work showed that self-generated choices were associated with the

activity of the pre-supplementary motor association cortex (preSMA; Lau

et al. 2004; Krieghoff et al. 2011), pointing to it being a critical region

responsible for transitioning from intention to action (Haggard 2008). The

studies consistently indicated preSMA being more active in the voluntary,

compared to instructed movement condition. Later work suggested that

preSMA might be specifically involved in accumulating evidence in favour

of a given option (Rowe, Hughes, and Nimmo-Smith 2010; Tomassini et

al. 2019; Zhang, Hughes, and Rowe 2012). Some studies also suggested

that the organization of the dorsomedial frontal region consisting of the

preSMA, SMA and the dorso-anterior part of the cingulate cortex follows a

functional, rosto-caudal gradient, where more anterior regions process more

abstract information (whether and what) while the more posterior ones are

engaged in solving more concrete problems (when; Krieghoff et al. 2009). In
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contrast, lateral parts of the frontal cortex, involving dorsolateral cortices

and the inferior frontal gyrus, are associated with switching and inhibiting

the previous response, respectively (Rowe, Hughes, and Nimmo-Smith 2010;

Zhang, Hughes, and Rowe 2012). Meta-analytic studies further indicated

a set of regions associated with voluntary choice, including the preSMA,

dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (IPL) and

left anterior insular cortex (AIC; Si, Rowe, and Zhang 2020).

While this approach proved fruitful in discovering a functional network un-

derlying intentional choice, it also comes with a set of weaknesses related

to its ecological validity. Firstly, it is not certain whether more stimulus-

independent actions are always experienced as more voluntary, therefore

severing the link between this operationalization, and an intuitive under-

standing of volition. Secondly, as pointed out by Haggard (2008), instructing

participants to perform a free choice can be perceived as paradoxical.

2.1.2 Volition as the feeling of freedom

The subjective feeling of voluntariness is related to the feeling of freedom

(Filevich et al. 2013) and a sense of agency (Gallagher 2000). While similar

in scope and often used interchangeably, it is important to note that sense

of agency implies both a feeling of intentionality, and control over action

consequences (Chambon, Sidarus, and Haggard 2014). Cognitive science has

developed explicit and implicit measures to study this phenomenon. Explicit

measures constitute self-reports about the feeling of control or freedom

(Linser and Goschke 2007; Metcalfe and Greene 2007; Sato and Yasuda

2005). Implicit measures aim at quantifying this feeling without overtly
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querying the participants about it. Intentional binding (Haggard, Clark, and

Kalogeras 2002) is arguably the most popular of such methods. The technique

measures the time difference between action generation and outcome, where

the estimated closeness in time of the two events approximates the sense of

agency (Moore and Obhi 2012).

While referring to the same underlying concept, some suggest that explicit

measures are related to high-level metacognitive processes, i.e., inferred

agency, while implicit ones to a low-level, non-conceptual and mostly experi-

ential feeling, related to simple behaviour, such as switching a light switch or

grabbing a fork (Synofzik, Vosgerau, and Newen 2008). Studies show that

explicit and implicit measures covary as a function of number of available

alternatives (Barlas, Hockley, and Obhi 2017; Barlas and Kopp 2018; Filevich

et al. 2013; but see also Dewey and Knoblich 2014 for the opposite claim),

but also deviate in certain conditions: self-reports being more sensitive to

action-outcome congruency (Ebert and Wegner 2010) and outcome pleasant-

ness (Barlas, Hockley, and Obhi 2017), while intentional binding to choice

repetition (Moore et al. 2012). The discrepancies between the two are often

attributed to two different components driving both measures: a prospective

component (experienced choice fluency) influencing intentional binding, and

a retrospective component (rationalized; metacognitive inference) associated

with explicit assessments (Haggard 2017).

The neural correlates of sense of freedom are currently a contested issue.

Recent meta-analysis study including 20 fMRI experiments revealed no sig-

nificant clusters positively associated with agency (Zito, Wiest, and Aybek

2020). A meta-analysis of 6 transcranial Direct Current Stimulation (tDCS)
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experiments indicated stronger intentional binding is associated with activity

in DLPFC (Khalighinejad, Di Costa, and Haggard 2016). Results on negative

predictors of agency (i.e., lack of agency) have been more fruitful, showing

consistent activity of temporo-parietal junction (TPJ) across different exper-

iments and paradigms (Sperduti et al. 2011; Zito, Wiest, and Aybek 2020).

One meta-analysis study of 15 experiments also reported increased activity

within preSMA, precunuous and dorsomedial prefrontal cortex (Sperduti et al.

2011), suggesting potential overlap with the representation of intentionality.

The subjective definition of volition also has its fair share of limitations. An

important question relates to construct validity: how accurate do implicit and

explicit measures really measure the subjective experience? While this issue

might be impossible to tackle empirically due to the subjective nature of the

definition, the heterogeneity of operationalizations and measures makes the

studies very difficult to compare. The fact that a branch of the literature is

devoted to comparing the different measures (Barlas, Hockley, and Obhi 2017;

Barlas and Kopp 2018; Dewey and Knoblich 2014; Moore and Obhi 2012;

Sidarus, Vuorre, and Haggard 2017) illustrates this problem. Additionally,

study designs vary in whether choice autonomy is a dichotomous or a graded

variable, making the across-study comparisons problematic even for studies

utilizing the same measure of experienced freedom.

2.1.3 Combining the two meanings

Both perspectives on volition: the study of exogenously-driven intention,

and the study of subjective experience bring complementary insights into

our understanding of voluntary action. Frith (2013) offers an interesting
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perspective by describing these two approaches as a third-person vs first-

person view of voluntary behavior. Hence, an outstanding question arises:

how are these two perspectives related?

While there has been a considerable theoretical interest in the relation

between the two definitions (Frith 2013; Nahmias et al. 2004), only a handful

of studies have attempted to address it experimentally. Haggard et al.

(2004) used hypnotic suggestion to make a voluntary choice seem involuntary.

This masked voluntariness condition had no effect on subjective experience,

but significantly affected the perceived time between action initiation and

outcome – an implicit marker of sense of agency (Haggard, Clark, and

Kalogeras 2002). A planned contrast also revealed that voluntary movements

were also perceived as more voluntary, as compared to hypnotically induced

ones. The authors claimed this as evidence for a qualitative difference in

how voluntary and involuntary (when the intention is not experienced as

endogenous) actions are experienced. Further investigations indicated that

choice fluency (or smoothness; i.e., involving less conflict) predicts agency

judgments (Chambon and Haggard 2012; Wenke, Fleming, and Haggard

2010). In a similar vein, in a set of experiments, Barlas and colleagues (Barlas,

Hockley, and Obhi 2017; Barlas and Kopp 2018; Barlas and Obhi 2013)

showed that increasing the number of available alternatives also influences

both implicit and explicit (feeling of control) measures of subjective freedom.

On the level of the brain, transcranial stimulation studies indicated that

stimulating preSMA results in an urge to move, suggesting the area is

involved not only in intention generation, but also subjective experience

(Desmurget et al. 2009; Fried et al. 1991). This consistent picture was put in
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doubt by Filevich et al. (2013), who showed that while number of available

alternatives significantly predicts subjective feeling of freedom, it’s neural

signature was in stark opposition - brain regions involved in coding intention

(SMA, DLPFC, inferior parietal lobule (IPL) and left premotor cortex (PMC)

were inversely related to the subjective experience of freedom. Only activity

of the precunuous was consistent across both measures.

2.1.4 Other Considerations

While studies on voluntary choice have been focused on tasks requiring

participants to choose between equivalent options (equal choice paradigm;

see When to utilize the free choice paradigm? section), one might argue

that this approach is rather limited. Studying only the extreme end of the

spectrum (choices being equal) might not necessarily generalize to more

nuanced scenarios, where actions are driven by a mixture of exogenous and

endogenous drives. This experimental design also brings about a philosophical

conundrum: how free is choosing between alternatives that lead to an identical

outcome? Using a coarse analogy, one might argue that choosing between a

left and right door, where both of the doors lead you off a cliff, is not really

a free choice. Control over choice consequences is an important component

of agency (Haggard 2017).

Another restricting factor in many studies on voluntary choice is the assump-

tion of action independence, i.e., that subsequent choices do not influence

one other in any temporally meaningful way. Research in perceptual (Kayser

and Kayser 2018) and value-based (Senftleben et al. 2019) decision making

however strongly suggests that our decisions have causal effects on future
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choices, as well as on underlying values. Hence, a more comprehensive

understanding of voluntary actions requires understanding how values and

preferences fluctuate in time - a topic explored to a greater depth in the third

project of this thesis.

2.2 Why to study voluntary choices?

Understanding voluntary behavior can bring progress in a range of fields,

from theoretical insight into one of the most profound philosophical issues,

to concrete advancements in treating psychological and medical disorders.

Below I list motivating factors for studying volition and it’s consequences in

the domains of philosophy, law and psychiatry.

2.2.1 Philosophy

The question of whether people have free will has been a subject of human

curiosity for centuries, absorbing the minds of ancient philosophers and

theologists alike (Frede 2011). Overall, people have a strong sense of being

able to act freely (Hallett 2007) and that the world is non-deterministic

(Sarkissian et al. 2010). Many have argued that free will is compatible

with our current scientific knowledge (Dennett 1984; Frankfurt 1988; Klemm

2010). This view is challenged by other thinkers, who claim this feeling

to be nothing more than an illusion (Harris 2012; Wegner 2004) or an

unnecessary epiphenomenon, devoid of causal influence (Hallett 2016). While

psychology and neuroscience are unlikely to provide a definite answer to this

philosophical dispute, they can enrich our understanding of the cognitive
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and neural processes giving rise to intention and a sense of freedom, as well

as explain causal structures driving actions (Nachev and Hacker 2014). For

example, the famous Libet’s clock experiment (Libet et al. 1983) was able to

shift the tone of the discussion on free will in both scientific literature and

popular media for years to come (Schlegel et al. 2015).

2.2.2 Law

The problem of free will is strongly tied to how people perceive and interpret

moral responsibility. Our jurisdictional system is based on the assumption

that people are responsible for their voluntary actions, and the verdicts are

based on judgments of agency (Haggard 2017). The perpetrator can be only

held accountable for a crime if he consciously decides to perform it, while

being aware of the probable outcome (Summers 1969). Law acknowledges

diminished responsibility in cases where agency could be considered incom-

plete, such as neurological or psychiatric impairments, or obeying orders.

Assessing agency in such cases can extremely difficult. A newly emergent

field of neurolaw aims at aiding this process (Meynen 2016). The literature

is focused on three main topics: whether (and if so, to what extent) advances

in neuroscience should influence the word of law (Greene and Cohen 2004);

how brain data can aid in the assessment of people (e.g. does a psychiatric

or neurological disorder diminish personal responsibility; Greely 2011); and

interventions focused on developing potential treatments that reduce the risk

of reoffending. Assessment issue is the most relevant from the point of view

of cognitive neuroscience of voluntary choice. Current research suggests that

limiting the number of available action alternatives (Barlas, Hockley, and
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Obhi 2017; Barlas and Obhi 2013; Filevich et al. 2013) as well as coercion

(Caspar et al. 2016) can significantly constrain experienced agency. A deeper

understanding of neurocognitive mechanisms of intention and agency can

lead to the development of diagnostic tools sensitive in assessing the degree

of freedom.

2.2.3 Neurology and psychiatry

Several psychiatric and neurological disorders are connected to dysfunctions

related to voluntary behaviour. Deficits in intentionality have been linked

to a variety of neuropsychiatric symptoms, such as phantom limbs, anarchic

hands or utilization behaviour (i.e., inappropriate use of objects; Blakemore,

Wolpert, and Frith 2002). Depression has been hypothesized to be related to

a reduced sense of control over own actions, suggesting a diminished (but

more realistic) sense of agency (Alloy and Abramson 1979). Symptoms of

schizophrenia such as delusions of control or misattributions of thoughts are

related to impaired ability to distinguish self and other-generated actions

(Daprati et al. 1997), indicating a lack of awareness of aspects of motor

control (Frith, Blakemore, and Wolpert 2000). A reduced sense of agency due

to misattribution of own movements has also been observed in patients with

Parkinson’s disease (Saito et al. 2017). The patients exhibited diminished

agency based on both explicit and implicit measures. Other studies have also

indicated that Parkinson’s patients’ experience of intention is significantly

delayed, the effect being mediated by dopamine and reduced preSMA activity

(Di Costa et al. 2020; Jacobs et al. 2009; Tabu et al. 2015). Similar deficits

have been observed with patients with Tourette syndrome, a movement
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disorder characterized by involuntary ticks (Moretto et al. 2011).

Further work on the cognitive and neural mechanisms of voluntary behaviour

can lead to the discovery of more effective treatments for symptoms of many

disorders. While not many direct attempts have yet been made, recent

advances in computational neuropsychiatry (Adams, Huys, and Roiser 2016)

bring promise of developing effective interventions in the near future.

2.3 When to utilize the free choice paradigm?

The name free choice paradigm, quite confusingly, has been assigned to

two entirely different experimental designs. One originates from voluntary

choice literature and refers to a design where participants choose one action

among a number of equally valuable alternatives (Si, Rowe, and Zhang 2020).

The second originates from the study of preferences and confirmation bias.

Introduced in 1956 by Brehm, the task utilizes a rating-choice-rating design

to measure how choices can influence evaluations. To avoid further confusion,

I will henceforth refer to the former as equal-choice paradigm (ECP) and the

latter as free choice paradigm (FCP; see Figure 2.1). Since my thesis utilizes

both: 2 variants of the ECP (projects 1 and 2) and a new variation of FCP

(project 3), I will next provide a brief introduction into both experimental

traditions.
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Figure 2.1: Equal (left) vs Free Choice (right) paradigm. In the ECP column,
left screens exemplify free choices (more than 1 possible response), while
right - instructed responses (only 1 viable alternative). In the perceptual
variant example, high-contrast Gabor patches represent alternatives available
for choice.



Literature Review 34

2.3.1 Equal Choice Paradigm

The equal choice paradigm (ECP) was initially developed in the early nineties

(Deiber et al. 1991; Frith et al. 1991; Jahanshahi et al. 1995) as a means

of studying the neural mechanisms of voluntary choice. In these studies,

researchers compared self-generated finger tapping responses to pre-specified

sequences of taps, in an attempt to extract the difference in brain activity

between free, internally generated action and instructed sequence repetition.

These studies identified a rather broad volitional functional network involving

the pre-motor, supplementary motor, dorsomedial and dorsolateral frontal

cortices. These early attempts however were later shown to be confounded

(Lau et al. 2004). The unconstrained nature of choice in the free condition

made it also more demanding of attentional resources. Future iterations of

the design aimed at controlling the attentional confound by either introducing

more demanding specified action condition (Lau et al. 2004), reducing the

complexity of the free choice condition by constraining the free movement

space to only few alternatives (Rowe, Hughes, and Nimmo-Smith 2010; Rowe

et al. 2005; Zhang, Hughes, and Rowe 2012) or both (Rowe et al. 2008).

More variants of the task have been developed, including perceptual discrim-

ination (e.g. Thimm et al. 2012), voluntary go/no go (Karch et al. 2009)

and choices including higher cognitive functions, like choosing meaningful

mathematical operators (Wisniewski, Goschke, and Haynes 2016) or atten-

tion redirection without movement (Taylor, Rushworth, and Nobre 2008).

The studies began to show a growing consensus on a key involvement of

preSMA cortex in generating free actions (Haggard 2008, see also Volition as

exogenously driven stimulus-independent action section). Recent metanalysis



Literature Review 35

involving 39 studies across all variants of the task revealed an intention

network consisting of preSMA, bilateral DLPFC, bilateral IPL and right AIC

(Si, Rowe, and Zhang 2020).

One often underutilized feature of ECP is manipulating the extent of choice

freedom. The task design allows for having many options available to choose

on screen (usually limited to 4 in fMRI studies, so that responses can be

mapped to 4 fingers (e.g. van Eimeren et al. 2006; Zhang, Hughes, and Rowe

2012), yet most studies use an ‘all-or-nothing’ design, where only one level of

decisional freedom is contrasted against a specified action (for exceptions see:

Forstmann et al. 2006; Lau et al. 2004; van Eimeren et al. 2006). Project 1

aims at tackling this issue, combining it with testing the effect of perceptual

discriminability and the relation between these systematically manipulated

factors and subjective experience of freedom. Study 2 further modifies the

ECP, adapting it to the realm of probabilistic value-based choices in order to

differentiate the effect of value on breaking decisional deadlocks.

2.3.2 Free Choice Paradigm

The free choice paradigm (FCP) was first introduced by Jack Brehm (1956)

in one of the first recorded experiments testing Festinger’s cognitive disso-

nance theory (1957). The theory proposed that holding opposing cognitions

produces a negatively valenced feeling of dissonance, which motivates one

to reduce it by either changing behavior or the underlying cognitions (Mc-

Grath 2017). For example, during a pandemic, a person may feel an internal

dissonance from not wearing a mask while knowing it minimizes the risk of

spreading the virus. In order to minimize the experienced dissonance, he may
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then change his behavior (start wearing a mask), or one of the underlying

cognitions (e.g. ‘masks don’t work’, ‘the mask can suffocate me’, or even ‘the

virus is a hoax’).

One of the theoretical predictions of the theory was that choices between

options of similar value should induce a cognitive conflict, which would

then lead to a dissonance reduction via changing one’s cognitions about

the choice options. In particular, the chosen item should be viewed more

positively, while the rejected one more negatively, as compared to before

the choice was made - a phenomenon referred to as spreading of alternatives

(E. Harmon-Jones and Mills 2019). Brehm’s task consisted of 3 parts: first

participants rated a set of kitchen appliances one by one on a 8-point scale.

They were then presented with a single choice between two of the items. The

choice was consequential, i.e., the participant could take the chosen item

home. Afterwards, participants rated all items again. In line with theoretical

predictions, results revealed the chosen item was rated significantly higher in

the second rating, while the rejected one significantly lower.

Similarly to the ECP, early findings using FCP have also been subjected to a

serious confound. Chen and Risen (2010) used simulations to show that the

spreading effect can arise even without an underlying change in preference.

To understand this, we must realise that choices made in the task are not

independent and cannot be experimentally manipulated. Since initial ratings

are inherently noisy, by observing one’s choice, we gain more information

about his underlying values. This means choices can also reveal preexisting

preferences, something that early research did not take into account. Let us

look at a concrete example: in phase 1 participant rates an apple as more
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preferred than an orange; in phase 2, when faced with a choice between the

two, he chooses the orange; in phase 3 he rates orange as more preferred. A

classic explanation of this effect would be than the choice influenced item

values. However, it could also mean that the participant preferred the orange

from the start and the estimation noise in phase 1 was why he rated it lower.

What happened in phase 3 was a regression to the mean effect, where both

items were rated closer their true underlying values (Chen and Risen 2010;

Izuma and Murayama 2013).

These results shook the field of choice-induce preference change, with focus put

on confirming whether the effect exists and designing improved experimental

paradigms able to control for the confound, including blind choice (e.g. Egan,

Bloom, and Santos 2010; Sharot, Velasquez, and Dolan 2010) and a control

condition where second rating comes before the choice (e.g. Koster, Duzel,

and Dolan 2015; Voigt, Murawski, and Bode 2017).

Today, a large body of literature have confirmed the existence of the effect

in both preference-based (Vinckier et al. 2019) and perceptual (Luu and

Stocker 2018) task, and scientific efforts have shifted back to explaining the

effect. Since the introduction of FCP, a plethora of explanations for the effect

have been proposed, most of which can be grouped within 2 broad categories.

First stems from the cognitive dissonance theory (Festinger 1957), suggesting

a motivated, conflict and consistency-driven adjustment (Gawronski and

Brannon 2019; E. Harmon-Jones and Harmon-Jones 2019; Kenworthy et

al. 2011). The second originates from autoperception theory (Bem 1967),

suggesting the effect is driven by learning about ones preferences by sampling

previous choices (“since I remember choosing A, I must like it”; Ariely and
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Norton 2007; Kaaronen and Dale 2018; Kruglanski et al. 2018). Evidence for

one or the other mechanism driving the effect have been mixed (Chammat

et al. 2017; Izuma et al. 2010; Lieberman et al. 2001; Luettgau et al. 2020;

Sharot, De Martino, and Dolan 2009; van Veen et al. 2009; Voigt et al. 2019).

An outstanding issue that still awaits investigation is whether the effects

observed in preference-based studies are comparable with the ones from

perceptual research, both in terms of qualitative (cognitive processes driving

the effect) and quantitative (effect size) features. Additionally, such com-

parison allows for testing across domains, i.e., whether a perceptual choice

can influence preference, and vice versa. This question is vital from both

theoretical and empirical perspectives. From a theoretical point of view,

the existence of an across-domain bias would cast a serious doubt on many

models proposing its adaptiveness (Lee and Daunizeau 2020; Harmon-Jones,

Harmon-Jones, and Levy 2015; Kaaronen and Dale 2018; Kruglanski et al.

2018; Peters 2020). One would be hard-pressed to imagine a scenario where

a context-irrelevant choice bias would be beneficial. From an applied perspec-

tive, existence of across-domain bias could be a powerful explanatory tool in

studying many real-life phenomena that can be perceived as irrational, such

as voting preferences inconsistent with self-interest (Fishbein and Coombs

1974), or irrational economic behaviors (Becker 1962).

In Project 3, I aim at directly comparing perceptual and preference-induced

choice bias as well as their interactions, in order to address questions above.

Additionally, I propose a cognitive model based on Reinforcement Learning

theory (Sutton and Barto 1998) to account for how the bias arises. The model

can account for 2 types of processes: a domain independent, consistency-
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driven bias, and a domain-specific value update mechanism, representing

dissonance and autoperception learning theories respectively.

2.4 How to model voluntary choices?

One of the core themes of this thesis is linking overt behaviour with measures

of neural activity and generative models of cognition. In this work, I utilize

two computational frameworks, often used in modelling decisions in free-choice

and equal-choice tasks: evidence accumulation (Evans and Wagenmakers

2019) and reinforcement learning (Sutton and Barto 1998).

2.4.1 Evidence Accumulation

Evidence accumulation is utilized by the family off sequential sampling models

to describe how choices are made. Such models assume that decision-relevant

evidence is sampled sequentially in time and accumulated until it crosses a

predefined decision threshold. The state of evidence in any given moment

in time is represented by evidence accumulators. This dynamic feature

sets sequential sampling models apart from other frequently encountered

models in psychology such as process dissociation (Jacoby 1991) or signal

detection (Green and Swets 1966), as it allows to incorporate both accuracy

and decision time into a single model. Particular sequential sampling models

differ in terms of accumulator dependency, shape of the accumulation (linear

and non-linear variants) function or the dynamics of decision bound (is

the threshold constant or does it shrink in time, representing an urgency
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signal; for reviews see Forstmann, Ratcliff, and Wagenmakers 2016; Gold

and Shadlen 2007; Ratcliff and Smith 2004; Usher et al. 2013).

In Projects 1 and 2 I use the Linear Ballistic Model (Brown and Heathcote

2008), which assumes that each choice option is represented by one linear and

independent accumulator. Ballistic (i.e., deterministic) accumulation is a

simplifying assumption allowing for an analytic solution of the likelihood equa-

tion (Brown and Heathcote 2008). Psychologically meaningful parameters of

the model include the speed and variability of evidence accumulation for each

option, decision threshold (metric of decision caution) and non-decision time

(combined time of decision unrelated processes such as sensory processing and

motor execution). Similar models have been previously applied to voluntary

choices in ECP paradigm (Rowe, Hughes, and Nimmo-Smith 2010; Tomassini

et al. 2019; Zhang, Hughes, and Rowe 2012).

2.4.2 Reinforcement Learning

Reinforcement Learning provides a mathematical description of how internal

values are updated in the face of environmental feedback. The model typically

assumes learning can be explained by a Markov Decision Process in which

an agent interacts with the environment in order to obtain rewards. Each

action results in feedback (positive or negative reward), which provides a

learning signal for the agent (Sutton and Barto 1998).

This feedback can be utilized to different degrees, dependent on how sensitive

to it the agent is. Imagine a child touching a hot stove. If a child is a perfect

learner, it will never touch a hot stove again, as it will associate the experience
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with a negative outcome and stay away from all hot stoves for the rest of its

life. On the other extreme, if the child is completely insensitive to feedback,

then no amount of negative experiences will make a difference, as no learning

will occur and the child will keep touching hot stoves never expecting the

negative outcome. This intuition is captured by the Rescorla-Wagner model

(Rescorla 1972), which estimates the agent’s learning rate as a fraction of

the feedback signal (between 0 and 1), such that

vt+1 = vt + αR (2.1)

where v represents an action value, R represents reward, α represents the

learning rate and t represents the time point.

While Reinforcement Learning has been most often applied to test how

external feedback influences the internal value (L. Zhang et al. 2020), I

use a modified approach, where one’s choices serve as an internal feedback

mechanism that can alter subsequent choices and evaluations. This process

can account of choice-induced value updating in FCP tasks, proposed by

many theoretical models (Bem 1967; Ariely and Norton 2007; Kaaronen and

Dale 2018; Kruglanski et al. 2018).



Chapter 3

Methodological Review

This chapter provides a review of the integrative modelling approach applied in

analysing the projects contained in this thesis. I first provide a brief summary

of the methodological philosophy: integrative approach to modelling, the

role of generative cognitive modelling, hierarchical and Bayesian analyses.

I then provide a hypothetical toy example, where a synthetic dataset is

simulated and analysed utilizing the Bayesian workflow guidelines (Schad,

Betancourt, and Vasishth 2020). This example, similarly to the bulk of

the work in chapters 4-6, is performed using Stan programming language

(Carpenter et al. 2017) in conjunction with R (R Core Team 2018). The

code for reproducing all the steps is available at https://osf.io/a3vxw.

42
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3.1 Integrative approach

In 1982, David Marr proposed that complex systems can be grouped into three

hierarchical levels of organization (Marr, 1982). The most abstract computa-

tional level describes the goal of the computation, i.e., what is the problem

that the system is trying to solve - the concept. For many cognitive scientists

this is the most crucial insight one might obtain. Brass’s and Haggard’s

framework for volitional choice (2008) is an example of computational-level

theory which describes, in the broadest terms, the goals of voluntary action,

and how they can be realized. Computational-level hypotheses might also

relate to more specific problems, such as how people perform categorization

(Rouder and Ratcliff 2004) or how they reach a decision threshold (Evans et

al. 2017).

A computational-level theory is only verifiable if its operationalisation can

generate clear predictions. These can be specified at the algorhitmic level.

The algorhitmic level represents the processes used to solve the computational

problem - the mechanism. These can be described in a precise mathematical

form using set of equations that represent how the computation is carried out.

The algorithmic level is the most potent battlefield for hypotheses to clash. A

centuries-long, yet still not concluded debate between exemplar and prototype

categorization is one of the most prominent examples, where researchers

specify progressively more precise models to pit the hypotheses against each

other (for review see: Murphy 2016). In the realm of decision making, one of

recent debates revolves around the mechanism leading to decision formation

- whether it is driven by accumulating a conclusive amount of incoming

evidence (Smith and Ratcliff 2004), a time-dependent urgency signal (Cisek,
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Puskas, and El-Murr 2009), or a combination of the two (Miletic 2016). One

might also test specific algorithms under a single computational concept.

An example of this can be found in evidence accumulation literature, where

assumption of accumulation is uncontested, but specific implementations of

the model are compared (Donkin et al. 2011; Kloosterman et al. 2019; Urai

et al. 2019; Verdonck and Tuerlinckx 2013).

Finally, the implementation level describes how the algorithm can be realized

in a physical system. In cognitive science, the brain is the system of interest

and much research is devoted to finding the neural implementation of both

high level concepts (e.g. Gold and Shadlen 2007) and specific algorithms

(e.g. B. Forstmann et al. 2010). Together, the levels provide a concise and

informative representation of a complex system - from conceptual high-level

understanding, through mechanistic latent processes, to mapping of thereof

to a physical space.

Research focusing on a single isolated level, while can be successful, is also

associated with a range of limitations. The most glaring example of this is the

implementation level - it’s nearly impossible to study the brain mechanism

of a process that is not defined on a higher conceptual level. Although some

attempt to derive new concepts solely from brain data (Buzsaki 2019), these

ambitious attempts are few and in between (Love 2015).

Similarly, omitting the algorithmic level and mapping concepts from com-

putational level directly to brain activity can be problematic. A historical

example of this practice is mapping a high-level psychological concept (emo-

tions), to the limbic system; an idea dating to the 1930’s (Rajmohan and

Mohandas 2007). Today, approaches such as this have fallen out of favour,
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Figure 3.1: Marr’s levels of analysis in relation to cognitive science. The
nomenclature is a byproduct of Marr’s area of expertise - computer science,
and hence might be somewhat misleading from the perspective of a cognitive
scientist. Firstly, in cognitive parlance, computation is often synonymous
with low-level calculation or algorithm, so understanding it as a high-level
concept is not obvious. Secondly, both algorithmic and implementation levels
are, in fact, implementations of the computational level in abstract and
physical space, respectively.



Methodological Review 46

and it is easy to see why when looking from Marr’s levels perspective. First

and foremost, this approach provides no information about the causal mech-

anism driving the association. This means it has also little value in terms

of practical prediction or intervention. Misconstruing purely correctional

findings as causal (“limbic system is associated with emotional experience,

therefore it is their cause”) might lead to disastrous consequences, such as

performing lobotomy as a universal cure for mental illness (Kelly 1973). For

these reasons, it has been referred to by some as modern phrenology (Love

and Gureckis 2007). Additionally, similar brain-behaviour investigations run

the risk of being misinterpreted in terms of the directionality of the inference.

For example, amygdala activity is associated with fear (Davis 1992). Direct

inference dictates conditioning amygdala response on fear induction: if fear

then amygdala. However, a common fallacy is to perform a reverse inference

(Poldrack 2006) and condition fear on the amygdala activation: if amygdala,

then fear. This fallacious line of reasoning leads to false claims both in the

scientific literature as well as the public eye (for review see Poldrack 2011).

In reality, amygdala activation can be associated with many different mental

states and emotions (Janak and Tye 2015).

Working only on computational or algorithmic levels is associated with

its own hurdles. Different theories and models can make similar, or even

identical predictions (Myung and Pitt 2018). In such cases, constraining

the conceptual models using neural data can enable valid model comparison

and favour one hypothesis over other alternatives. Recent example of this

in the decision-making literature is how the previously mentioned urgency

gating hypothesis (Cisek, Puskas, and El-Murr 2009), having a relatively
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weak support relative to its direct competitor - evidence accumulation (Evans

et al. 2017), received substantial empirical support when neural data was

taken into account (Miletic 2016; Yau, Hinault, et al. 2020; Yau, Dadar, et

al. 2020). These issues can be successfully sidestepped by filling the missing

link: a generative cognitive model, representing the algorithmic level.

Figure 3.2: Central role of the generative model in integrative analysis frame-
work. Here, the generative model is a formalization of the algorithmic level
and can inform all levels of analysis. Conversely, all levels can constrain the
model. Below are three examples of successful theories (evidence accumu-
lation, reinforcement learning and Bayesian updating), their algorithmical
specifications, and neural correlates of specific parameters.

3.2 Role of generative cognitive modelling

Generative modelling is defined as a statistical approach where modelling

is intentionally aligned with theory (Haynes 2019). In other words, it puts

emphasis on finding and fitting a model which can explain how the observed
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data was generated. This is contrasted with more traditional modelling

approach which is focused on finding the best possible fit, without claims

about how true the model is with regards to the data generating process.

This means that the main difference lies in the intention of the modeler and

his belief whether his model can capture the data generating process. A

simple linear regression is usually used as a descriptive or predictive tool,

to show which factors are meaningfully associated with the outcome, or to

attain the best possible future prediction. It could however be also considered

a generative model, in the specific case when the modeler believes that the

cognitive process he is describing is aking to a linear square-error minimization

(McElreath 2016). A generative way of thinking about a simple regression

process in described in the Toy Example in section 3.4.1. Similarly, many

sophisticated models that fit behavior well, such as signal detection theory

in describing metacognitive confidence (Fleming and Dolan 2014), neuronal

cosine tuning functions (Todorov 2002) or representational similarity matrices

(Kriegeskorte, Mur, and Bandettini 2008) make no claims about the data

generating process, but simply do very well in succinctly describing the data.

Cognitive processes are latent, i.e., they cannot be directly observed. Gen-

erative models of cognition require a set of assumptions about the data

generating processes, and use behavioural and neural measures as proxies

to infer these latent mechanisms. Throughout the years, the insufficiency of

using purely data-driven approaches has been more widely recognized and

theoretically-driven generative models become more prevalent in psychology

(Farmer, Brown, and Tanenhaus 2013; Haynes 2019; Navarro 2020; Strube

2000) and neuroscience (Ahn, Haines, and Zhang 2017; Betzel and Bassett



Methodological Review 49

2017; Frässle et al. 2018; Friston and Price 2001).

From the perspective of an integrative approach, generative modelling plays a

crucial role in the analysis framework as it provides a formal causal structure

that can be tested directly (Love 2015).Generative modelling spans across

and influences all levels of Marr’s framework (Figure 3.2). Model theory

and general assumptions are specified on the computational level. Based

on the conceptualization, specific algorithms can be derived, simulated, and

tested against real data. A well designed model should generate accurate

predictions about behaviour and neural activity. For example, the Drift

Diffusion Model (Ratcliff 1978) predicts that higher decision threshold should

be associated with increased accuracy and reaction times. Neural extentions

of the model further show that increased threshold is determined by the

functional coupling between the subthalamic nucleus oscillations and the

medial prefrontal cortex activity (Herz et al. 2016). Data can also constrain

the model. An obvious example is constraining the parameter values by

fitting. Sometimes however, the model might not be able to reproduce

important data patterns, in which case the model needs to be adjusted, or

refuted altogether. For example, independent evidence accumulation cannot

account for Hick’s Law principle, stating that increasing the number of

alternatives leads to slower, not faster responses (Proctor and Schneider

2018). To accommodate this, independent accumulation can be discarded in

favour of approaches suggesting dependent accumulation or cross-inhibition

(Ratcliff, Voskuilen, and Teodorescu 2018; Usher and McClelland 2001),

modified to accommodate the effect (van Ravenzwaaij et al. 2020), or limited

to inference within specific situations where the number of alternatives is
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fixed. Alternatively, a better fitting or simpler model can be build, rendering

the previously favoured alternative obsolete. Recent work on joint modelling

(de Hollander, Forstmann, and Brown 2016; Brandon M. Turner et al. 2016;

B. Turner et al. 2016; Brandon M. Turner, Wang, and Merkle 2017) provides

a rich framework on how to combine neural and behavioural data in ways

that are appropriate for the experimental goal, by either constraining the

models with neural data, inferring brain function by conditioning on the

model, or modelling both jointly.

3.3 Hierarchical Modelling

Hierarchical models (in frequentist literature also often referred to as mixed

models; Bates et al. 2014) aim to accurately model the variance structure in

the data by clustering together correlated observations, where measurement

units can be organized into groups (Hofmann 1997; Stryhn and Christensen

2014). For example, observations such as individuals from a certain country

or grades from a certain school are drawn from the same pool, hence belong

to a single cluster. This assumption makes sense, since we can expect that

people from different countries might behave differently, and different schools

might have different grading criteria. In a typical cognitive experiment,

a hierarchical structure involves group-level measures and individual-level

measures, enabling to distinguish between and within-person effects. Thanks

to this, in a repeated measures design where participants engage in multiple

trials of a single condition, the model can account for every single observation.

The grouping (or lack of thereof) of particular observations is referred to
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as pooling. A model with complete pooling assumes all observations belong

to a single group, while a model with no pooling assumes all data-points

are independent. Hierarchical models utilize partial pooling, which improves

predictive validity of the models (Anders, Oravecz, and Alario 2018; Barr et

al. 2013; Baayen, Davidson, and Bates 2008). This can be contrasted with a

traditional ANOVA approach, where due to the assumption of independence,

each individual can only be represented by a single value (usually the mean).

Conversely, a fixed-effects (non-hierarchical) linear regression would use all

datapoints but assume they all belong to a single group. This approach

should be avoided when dealing with hierarchical data, as it breaks the

assumption of independence.

3.3.1 Bayesian approaches

It is important to distinguish between Bayesian analysis and Bayesian theory

of cognition. The former is a set of mathematical tools constructed to analyse

data in accordance with Bayes Theorem. As such, it can be applied to any

statistical test or model, irrespective of the modelling approach or the level of

analysis. The latter represent the belief that human cognition approximately

follows the tenets of Bayesian probabilistic inference (Colombo and Hartmann

2017). My work utilizes Bayesian approach to data analyses, however remains

agnostic with regards to Bayesian Cognition.

Bayesian analysis utilizes Bayes Theorem, an axiom probability theory which

indicates how to update one’s beliefs in the face of new evidence. The

theorem derives posterior belief from the factorization of one’s prior belief

and the likelihood of the observations, divided by the normalizing constant
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(accounting for all possible events). In data analysis, it is most often used in

estimating the posterior probability of a hypothesis (operationalised as a set

of parameters or a model), given the likelihood of the data (probability of the

data given the hypothesis) and the priors. The priors represent an inherently

subjective belief about the state of the world. In contrast, frequentist analysis

rejects subjectivity, focusing entirely on analysing frequencies of events (for

review see Dienes 2011).

Bayesian approach to data analysis presents several advantages compared to

its frequentist counterpart. First of all, Bayesian analysis gives a straight-

forward answer for the question researchers are interested in: what is the

probability of a hypothesis being true, given the observed data. Frequentist

approaches can only provide a reverse inference about the probability of the

data given a hypothesis, i.e., the likelihood. This likelihood is conditioned on

the null effect being true. Consequently, a p-value represents the probability

of an outcome being this extreme, given that the null hypothesis is true.

Many argue this approach is both counterintuitive and impractical, since

it gives an answer to a question we are not interested in (Kruschke and

Liddell 2018; Wagenmakers et al. 2018). This is why the interpretation

of frequentist p-values is often misconstrued, even among researchers and

educators (Gigerenzer 2004).

Secondly, Bayesian analysis naturally incorporates uncertainty into parameter

estimation, resulting in posterior parameter distributions, which variance

accounts for estimation uncertainty. Frequentist methods can only provide

parameter point estimates, and require additional assumptions to derive

indirect measures such as confidence intervals: similar to p-values, they
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need to be conditioned on the assumptions of repeated sampling from a null

distribution.

Other, practical advantages of Bayesian analysis include: the ability to

directly compare evidence in favour of the null (and not only against it;

Wagenmakers et al. 2018; Dienes and Mclatchie 2018); not being tied to a

fixed sampling plan (Bayesian researcher can stop the sampling process at any

arbitrary moment, which will not affect the inference process; Hackenberger

2019; Wagenmakers et al. 2018) and a wide range of applications where

Bayesian estimation provides better parameter estimation, especially when

using hierarchical models (Ferreira et al. 2020; Hong et al. 2013; Piray et al.

2019; Rouder and Lu 2005).

While the benefits of Bayesian approach are getting more widely recognised

and its applications have risen exponentially in recent years (Hackenberger

2019), it is important to recognize that Bayesian model estimation can be very

computationally expensive and time consuming, hence difficult to implement

in some data-rich areas (Green et al. 2015).

3.4 Practical example

Throughout this thesis, I use Stan programming language (Carpenter et al.

2017) for model building and estimation, together with R language (R Core

Team 2018) for all other analyses, such as data preprocessing, model-free

analyses, plotting and simulating model predictions. This section focuses

on Stan, providing a high-level overview of modelling using a toy example,

which is a simplified problem thematically relevant to Project 3. All code to
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this section can be found at https://osf.io/a3vxw.

Stan is a probabilistic programming language designed for specifying and esti-

mating statistical models. Although not exclusively, it is most commonly used

for Bayesian inference (Steyvers, Lee, and Wagenmakers 2009). The choice

of Stan in my work is guided by a few considerations which in conjunction

make it, in my belief, one of the best currently available alternatives.

Inherently Bayesian

In section 3.3.1 I have described why Bayesian estimation is often considered

more desirable for generative cognitive modelling, compared to traditional

maximum likelihood approach. Stan is designed and optimized around

the idea of Bayesian Estimation. The language is expressed in terms of

probabilistic sampling statements and has wide range of built-in functions

for estimating priors, likelihoods, and posterior predictions (Carpenter et al.

2017).

Efficient Sampling

Sampling is what in my view sets Stan apart from some of its Bayesian

counterparts. Stan utilizes Hamiltonian Monte Carlo (HMC) Sampling with

No-U-Turn sampler (Betancourt 2017). In terms of sampling efficiency, HMC

performs better than Metropolis-Hastings Mote Carlo or Gibbs Sampling

used in other software predating Stan, such as WinBUGS (Lunn et al. 2000)

or JAGS (Plummer, 2003; for a comparison see: Annis, Miller, and Palmeri,

2017). Specifically, it is efficient in sampling from models with a larger

https://osf.io/a3vxw
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number of intercorrelated parameters – a common case in many cognitive

models (Annis, Miller, and Palmeri, 2017). Other popular alternatives

include Dynamic Models of Choice (DMC) R package (Heathcote et al.

2019) specializing in Bayesian Estimation of cognitive models which utilizes

a population MCMC algorithm called differential evolution Monte Carlo

(Turner et al. 2013; although from personal experience, not as nearly as

efficient as HMC), and PyMC (Salvatier, Wiecki, and Fonnesbeck 2016), a

general purpose Python library designed for Bayesian Modelling.

Accessibility

Stan has an extensive manual, and provides interactive interface packages

for R, Python or the command line. In addition, it has been widely adopted

in recent cognitive literature, providing many excellent empirical papers

(Romeu et al. 2020; L. Zhang and Gläscher 2020) as well as tutorials (Ahn,

Haines, and Zhang 2017; Annis, Miller, and Palmeri 2017), which mitigates

the initial hurdle of learning a new programming language.

In the demonstration, I will 1) present a toy problem, 2) propose a data

generative process and simulate a synthetic dataset 3) build a generative

model capable of recovering the underlying process 4) run prior predictive

simulations 5) fit the model to the simulated data 6) generate posterior

predictions and compare them with the synthetic data.
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3.4.1 Toy Problem

Choices are known to influence item evaluation. In a famous study, Brehm

(1956) asked participants to rate a list of household appliances in terms

of subjective value. Following the evaluation, participants were presented

with a choice between 2 of the items. Finally, participants rated all the

items again. Brehm found that on the second rating the chosen item was

rated higher, while the rejected one lower, as compared to the initial rating.

Although there has been a debate about the legitimacy of this effect in recent

literature (Chen and Risen 2010), the current consensus seems to support it

(see Chapters 2 and 6).

Following this line of reasoning, we want to test whether there is a linear effect

between the amount of times a given item was chosen and the difference in its

estimated value before and after the choices were made. The hypothesis to

test is that the more times a given item was chosen, the greater the increase

in it’s subjective value. For that, we use a design where participants first rate

a set of 50 items on a continuous scale (0-100; referred to as rating 1 ) in terms

of their desirability, then make repeated 2-alternative forced choices between

the items (all possible item pairs give a total of 50 * 49 / 2 = 1225 trials), and

finally rate each item again (rating 2 ). Our hypothesis states that there is a

linear relationship between how often an item was chosen and the increase in

its value measured by the difference between the second and first rating. For

this hypothetical example, we are using a rather unrealistically large number

of trials. This is done for the purpose of having enough datapoints (50) to

reliably simulate the assumed correlation structure between the variables.

For the sake of brevity, we will perform the simulation and analysis only on
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a single hypothetical participant and then discuss the extensions necessary

for performing a hierarchical group-level analysis.

3.4.1.1 Data generative process

Ratings. We can now translate our hypothesis about a linear relationship

to a statement about how the data is generated. Our variable of interest is

the difference between rating 2 and rating 1. Let us assume that the true

difference in ratings is centered at 0 (i.e., there is no systematic effect of

value mean between ratings) with a standard deviation of 15:
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Figure 3.3: Density of the simulated difference in ratings
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∆Rk ∼ N(0, 15) (3.1)

where ∆Rk is the difference in rating for the k-th item. Positive values

indicate higher rating values in rating 2. Since our rating scale is finite

(0-100), we need to make sure that values do not exceed the possible bounds.

To do this the distribution needs to be truncated so that no values are larger

than 100 or smaller than -100. The simulated distribution is plotted in Figure

3.3. The heavy left tail observed in the data, even though it was sampled

from a symmetrical Gaussian distribution, reflects the variability associated

with a limited number of samples.

Choices. The 2AFC task consists of 1225 choices, where each item is presented

49 times, so that 49 is the maximum number an item can be chosen. We

can simulate a random distribution of binary choices by modelling them as

drawn from a binomial distribution:

∆Chosenk ∼ Binom(N = 50, prob = 0.5) (3.2)

where Chosenk is the number of times k-th item was chosen, N is the total

number of items and prob is the probability of choice. Additionally, we

assume that the choices are correlated with the ∆Rk variable (for detailed

implementation see attached code). This synthetic dataset represents our

beliefs in the data-generating process, i.e., that choosing an item linearly

increases it’s subjective value.

Notice some simplifying assumptions we have made when specifying the
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ρ = 0.47
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Figure 3.4: Correlation between the difference in ratings and choices (total
number of times an item was chosen).



Methodological Review 60

model:

• we do not model individual ratings, but both of them together (i.e.,

only the difference)

• we aggregate over all choices made in favour of a given item, simulating

only the sum of how many times it was chosen, and not individual

choices

• we assume choices are independent of item value

While the first two simplifications should not affect our inference process

too strongly, the third one is more problematic, as we are running the

risk of simulating unrealistic data. While this is not a major issue when

performing an illustrative example, an applied simulation study performed

for the purpose of designing an experiment would require a more involved

approach modelling each individual choice and accounting for the value-

choice correlation structure (an example of such approach was implemented

in Project 3).

3.4.1.2 Building a Generative Model

The next step is to build a model and check whether the model fit can recover

true data-generating parameters. In Stan, we should explicitly specify a

reasonable set of priors, and a likelihood function.

The likelihood expresses our belief about the data-generating process. We

believe that the difference in value between two ratings (outcome variable y)
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is a linear function of choice frequencies (predictor variable x). This can be

expressed by a sampling statement:

y ∼ N(α+ β ∗ x, σ) (3.3)

where α , β and σ represent the intercept, slope and error scaling, respectively

(for exact derivation see McElreath 2016, chap. 4).

In addition, Bayesian models must have a prior. Priors are not influenced by

the data and therefore are inherently subjective. Priors should reflect our

initial beliefs while providing reasonable constraints. They should not be too

narrow, as we do not want them to influence the outcome too strongly. They

should also not be too broad, as this will lead to inefficient sampling and,

especially in more complex cases, may lead to model unidentifiability (Smid

et al. 2020). We will use generic informative priors (Gelman, Lee, and Guo

2015) which are both realistic and sceptical (centered at null effect), but also

broad enough for the data to have a decisive influence:

α ∼ N(0, 1) (3.4)

β ∼ N(0, 2.5) (3.5)

σ ∼ cauchy(0, 2) (3.6)

The intercept is centered at 0, since we will be using a scaled predictor -

we will subtract the mean from the number of choices and divide it by its

standard deviation (sd), making sure it is centered at 0 and has a sd of 1.
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This has three main advantages when using linear models. Firstly, it reduces

the collinearity between predictors in multiple regression models. Secondly,

it makes the model intercept interpretable, as it becomes the mean of the

outcome variable. Thirdly, it allows for using “safe” standard priors for any

predictors, independent of their true mean and variability.

Error is drawn from a cauchy distribution, which has a half-gaussian shape

with parameters describing its mode and scale. This is a popular choice for

an error prior, since variability cannot be negative.

3.4.1.3 Prior Predictive Simulations

Before fitting the model to data, it is important to first examine whether the

priors are reasonable. Prior predictive checks allow to generate predictions

from the model even before supplying the outcome variable. This technique is

very useful especially in more complex models, as it can identify misspecified

priors. If the generated data are unrealistic or inconsistent with the domain

of expertise, it is likely the priors need to be adjusted (Schad, Betancourt,

and Vasishth 2020).

Our priors are skeptical (centered at 0), so we should expect to simulate a

null effect. The observations should also be realistic. This means that, ideally,

they should be indistinguishable from real data. Practically, one needs to

define a set of metrics assessing the similarity. In our case, we would want

our simulated ∆Rk values to have a decently large spread around 0, so that

the prior can accommodate a moderately large effect, if one is found in the

data.
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Figure 3.5: Prior predictive density for the regression model.
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By plotting the model prediction, we can see that the prior is skeptical of

effects larger than a 5 point difference between the two ratings, assigning

them only ~2% probability. While this might be a perfectly reasonable prior,

not knowing the actual effect sizes, we should err on the size of caution, and

allow the prior account for more extreme effect sizes with more probability.

To achieve this, we can modify the prior on σ, increasing the estimation

error:

σ ∼ cauchy(0, 6) (3.7)
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Figure 3.6: Prior predictive density for the second model with increased error
term distribution.
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Table 3.1: Posterior estimates of fitted parameters.

mean se 2.5% 50% 97.5% Rhat
alpha 0.421 0.014 -1.239 0.423 2.130 1
beta 4.135 0.025 1.297 4.170 6.785 1
sigma 11.285 0.021 9.250 11.193 13.856 1

Our new predictive prior is much more agnostic, allowing for both large effects

with high probability (~2% of probability for values larger or smaller than

20; Figure 3.6). It seems more appropriate for a novel paradigm, when we

and do not know what effect size to expect. This illustrated the importance

of running a prior predictive checks, especially when using default priors to a

new problem.

3.4.1.4 Fitting the Model and Parameter Inference

We can now fit the our model to the recorded responses using 4 Markov

Chain Monte Carlo (MCMC) chains, 4000 samples with a 2000 burn-in each.

The fit provides posterior distributions for parameters of interest: α, β and

σ (Table 3.1).

The Gelman-Rubin R̂ statistic indicates how well the independent chains

have mixed (Gelman and Rubin 1992). Intuitively, they can be interpreted as

a ratio of between to within-chain variance. Values below 1.1 are considered

as indicative of good convergence (Annis, Miller, and Palmeri 2017). To

infer whether the model predicts a significant linear relation between the

number of choices and difference in ratings, we examine the β parameter.

Median β = 1.297, with a 95% Bayesian Credible Interval of [0.025, 4.170]
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and probability of directionality (pd) = 0.996. Pd is the fraction of posterior

distribution > 0 and can be interpreted equivalently to a frequentist p-value

(Makowski et al. 2019).

3.4.1.5 Generating posterior predictions

Figure 3.7: Model posterior predictions. Left panel shows the density distri-
bution of data (darker color) compared to 50 randomly sampled posterior
samples. Right panel indicates the correlation between the data (y axis) and
posterior model predictions, averaged across 2000 samples.

Finally, we should look whether the estimated parameters can accurately

predict the data. In our simple case, we can look how well sampled predictions

approximate actual data in terms of the distribution overlap and correlation

(Figure 3.7; see also: L. Zhang et al. 2020) Left panel shows that the

model can reproduce the shape of the real data very well. Averaged model

predictions ideally should reduce to the line of best fit, which we can see on

the right panel.
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3.4.2 Advantages of a Bayesian Approach

In such simple example, one could question the practicality of a Bayesian

approach is dubious. Is it really worth the effort to go through all these

steps, when a similar frequentist analysis would provide similar results and

conclusions?

Indeed, more apparent differences could be observed if the problem was

hierarchical (e.g. by adding group-level parameters) - in such cases Bayesian

methods tend to shine the most, often outperforming frequentist methods

with regards to the accuracy of parameter estimation (Ferreira et al. 2020;

Hong et al. 2013; Piray et al. 2019; Rouder and Lu 2005). Even in this simple

case however, two arguments can be made in favor of using the Bayesian

approach. A theoretical argument relates to the philosophy of statistical

analysis. The Bayesian approach offers a straightforward answer to the

question we are interested, i.e. does the number of choices influence the

difference in value. In contrast, in order to perform a frequentist analysis

one has to a priori assume that the null hypothesis is in fact true, and test

the probability of the data under that assumption. While the answer is

similar, it is also clear that the question we can ask using the frequentist

method is not the one we are really interested in (Kruschke and Liddell

2018; Wagenmakers et al. 2018). A practical argument is that by estimating

parameter distributions instead of single points, Bayesian estimation naturally

naturally provides uncertainties around parameter estimates, which can only

be indirectly inferred when using the frequentist approach.
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3.4.3 Next Steps

This toy example showcases the basic procedure of building a cognitive

model. Such simulations can often inform future experimental design. Model

simulations can reveal if, for example, the number of trials, participants or

conditions is not sufficient for distinguishing between different mechanisms,

of having enough power for finding the effect of interest. In real applications,

next step would involve making the model hierarchical, i.e., adding group-

level parameters and running the model for a whole experimental cohort.

While building a model, one should also be very mindful of its realism. The

toy example has a crucial inaccuracy - the simplification that choices are

independent of value, which is not true for real data. People’s choices tend to

be rational, which in this case means that higher rated options should have

a greater probability of being chosen. Modelling every choice would require

using a more involved approach, where we would track all values of individual

items. The choices then could be generated by a softmax function, taking as

input items’ values on a trial-by-trial level (Ahn, Haines, and Zhang 2017).

Such approach was implemented in Project 3.

Finally, for many applications it is often advantageous to consider more than

one generative process, and use model comparison techniques (e.g. Vehtari,

Gelman, and Gabry 2017) to estimate which can account better for the

observed data. For example, a good test in this case would be an artifact

effect model, assuming that the change in rating is simply driven by a

regression to the mean (Chen and Risen 2010; Izuma and Murayama 2013).
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3.5 Summary

This chapter provided an overview of the methodological approach used

throughout my thesis. All projects use a hierarchical approach to data fitting.

All also utilize generative modelling, albeit to a different extent, since the

modelling goals are different. In Projects 1 and 2, a well-established cognitive

model (LBA) is used to describe how choices arise, and linking the latent

process with neural data on a subject (Project 1) or trial (Project 2) level.

In Project 1, the model is estimated on behavioural data, which parameters

are then correlated with neural activity, with the goal of inferring a neural

implementation of the latent process. In Project 2, the model is constrained

by incorporating the neural data (trial-level EEG signal) as a predictor of

model parameters. Different model variants are compared to obtain the

most accurate description of the underlying computation. Modelling in

Project 3 focuses on building an entirely new model, capable of explaining

the experimental effects of interest.
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4.1 Introduction

Human volition is often described as the feeling of freedom over own actions,

as well as the control over their implementation. Acting out of your own

volition requires us to make a series of decisions regarding whether, when,

and how to act (Brass and Haggard 2008). For example, consciously choosing

to move a leg requires an explicit intention which specifies the direction and

strength of the motion in accordance with our goal. Such intention needs to

be followed by correct execution, mediated by activating appropriate motor

action program.

Volition refers to both the act itself (Haggard 2019), as well as the subjective

experience of the act (Haggard 2017), which is a metacognitive judgment of

agency and freedom. Voluntary choice is usually studied using paradigms that

present participant with freedom in one of free domains: whether to perform

an action, when to perform an action and what to choose (Brass and Haggard

2008). Here, we focus on the third paradigm - that is the study of volition

under the constraints of a decision-making paradigm. In this domain of study,

the focus lies in eliminating the confound of external stimuli properties on

choice. In order to do so, a typical task involves choosing between a number

of identical options, compared to a control condition, when only one option

is available to choose (e.g. Rowe, Hughes, and Nimmo-Smith 2010; Zhang,

Hughes, and Rowe 2012).

Early attempts at describing the neural underpinnings of free choice trace

back to famous experiment done by Libet and colleagues (1983), indicating

that the EEG readiness potential over central electrodes associated with
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an upcoming movement precedes the conscious experience of action. More

recently, attempts have been made at describing the neural network under-

lying internally driven choices. Pre-supplementary motor area (preSMA) is

believed to be a key hub of this network - it integrates inputs from basal

ganglia and prefrontal cortex and relays them to motor cortex, which executes

the action (Nachev, Kennard, and Husain 2008). PreSMA has been shown

to play a critical role in controlling motor action in situations of response

conflict (Nachev, Kennard, and Husain 2008), switching between actions

(Nachev et al. 2005) and inhibiting automatic responses (Sumner et al. 2007).

Due to its strategic neuroanatomy and task-related activity, preSMA has

been proposed to serve the role of binding intention and action, which is

achieved by controlling motor output via motor cortex inhibition (Haggard

2008). Modelling approach suggests that its activity in equal-choice tasks can

be well approximated by an accumulation-to-bound process (Rowe, Hughes,

and Nimmo-Smith 2010; Tomassini et al. 2019; Zhang, Hughes, and Rowe

2012). In this model, evidence in favour of each choice is accumulated to

the point when one of accumulators reaches a decisional threshold, after

which the choice is executed (Forstmann, Ratcliff, and Wagenmakers 2016).

We aim to build upon these results by testing the effects varying levels of

freedom (1, 2 or 3 available alternatives), perceptual discriminability (high vs

low), and the link between these experimental manipulations and subjectively

experienced freedom.
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4.2 Aims and Hypotheses

The study aims at describing the three factors associated with voluntary

choice together with their neural correlates. These include:

1) Testing 3 levels of choice freedom

2) Examining the influence of stimulus discriminability on the voluntary

choice process

3) Testing how objectively defined freedom of choice translates to subjec-

tively experienced feeling of freedom

Since our goals include describining both the behavioural effects, as well as

their neural correlates, we utilize the functional MRI technology, which allows

us to test the neural underpinning of these effects, reflected in the blood-

oxygen-level-dependent (BOLD) signal. FMRI technology is a noninvasive

brain imaging technique, known for it’s high spatial resolution, compared to

other noninvasive techniques, such as EEG or MEG (Aine 1995). This makes

fMRI well suited for studies such as this, which focus on finding specific

functional areas involved in the process of interest.

1) Experiments that aim at explaining the brain mechanisms of free choice

using a multiple-option decision paradigm usually dichotomize the freedom

by presenting participants with either an instructed or a free choice (notable

exceptions being Forstmann et al. 2006; Lau et al. 2004; van Eimeren

et al. 2006). By using only one level of free choice however we cannot

differentiate between a set of possible mechanisms driving the brain activity.

Possible explanations for increase in preSMA activity with free choice include:
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threshold mechanism (higher activity when choice is free, regardless of the

degree of freedom), a linear increase (more freedom leads to more activity),

or a different nonlinear function. In line with studies suggesting preSMA

involved in evidence accumulation (Rowe, Hughes, and Nimmo-Smith 2010;

Tomassini et al. 2019; Zhang, Hughes, and Rowe 2012) we predict that

preSMA will be sensitive to the number of available alternatives. We also

expect to observe longer reaction times (RTs) with increasing number of

options, an effect consistent with Hick’s Law (Proctor and Schneider 2018).

2) Stimulus discriminability affects behavior – more salient stimuli are asso-

ciated with faster response times (Teodorescu, Moran & Usher, 2016). Our

design allows to test whether discriminability also affects brain processing

of voluntary choice. We expect lower discriminability (LD) condition to be

associated with longer RTs and activity in the network related to increased

difficulty and conflict, including dorsolateral prefrontal cortex (DLPFC), the

anterior cingulate cortex, insula and the inferior parietal lobule (Cole and

Schneider 2007; Ho, Brown, and Serences 2009; Keuken et al. 2014).

3) We strive to see how freedom of choice, defined as the number of options

available to choose, relates to the subjective experience of freedom. Rating

subjective feeling of freedom and agency is a metacognitive process of assessing

one’s own control over the action (Sidarus and Haggard 2016).

Previous studies have identified a negative predictor of agency in the temporo-

parietal junction (TPJ; Sperduti et al. 2011; Zito, Wiest, and Aybek 2020),

but no consensus was established regarding brain areas positively associated

with agency (Zito, Wiest, and Aybek 2020). By asking participants to assess

their freedom after making a choice we aim to establish a) how does objectively
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defined freedom influence one’s subjective perception b) what are the neural

correlates supporting this judgment. Behaviourally, we expect to observe

effects of number of available alternatives (from 1 to 3) and discriminability

on freedom rating. In particular, we predict HD condition will be associated

with higher perceived freedom, due to lower difficulty (Sidarus and Haggard

2016).

4.3 Methods

4.3.1 Participants

Participants were recruited from Cardiff University participant panel. Our

sampling plan included obtaining data from 30 participants. In total, we

recruited 38 participants, since 4 did not show up for the fMRI sessions and

another 4 were excluded due to poor quality of the fMRI data due to excessive

movement or falling asleep in the scanner. The final sample consisted of 30

participants (24 females, 24 right-handed, Mage = 20.89, SDage = 2.51). All

participants had normal or corrected-to-normal vision, and none reported a

history of neurological or psychiatric illness. Written consent was obtained

from all participants. The study was approved by the Cardiff University

School of Psychology Research Ethics Committee.

4.3.2 Behavioural Task

Motivation
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Figure 4.1: Possible configurations of available Gabor patches per condition.
High contrast patches were available to select. The contrast in the figure
represents contrast used in the HD condition (100% vs 20%). The configu-
rations were balanced so that overall, each patch was equally likely to be
available.



Project 1: Choices between equal options (fMRI) 77

The behavioural task was designed to test how two main factors of choice

freedom (3 levels) and discriminability (2 levels) affect reaction times and

accuracies in an equal choice paradigm. Our goal was to set the discrim-

inability bar relatively low in order to obtain high levels of accuracy. The

idea behind this approach was to avoid the task being perceived by the

participants as a perceptual discrimination task, where getting the correct

answer is the main goal, but rather a free choice task, where a brief glance

can make it obvious how many alternatives are available, and one can fo-

cus on the processes of choosing between equal options. This assumption

made manipulating discriminability challenging, as we aimed at both high

accuracies and a measurable difference in difficulty, as observed by longer

reaction times in the lower disciminability condition. In order to achieve this

balance, we first performed a series of behavioural pilots, manipulating the

disciminability levels. Apart from Gabor patch contrast levels, which is how

the disciminability was manipulated in the final version of the task, we also

tested patch orientation (i.e. choice-available patches being signified by the

degree to which the patch was tilted). Manipulating contrast provided better

results (desired high accuracies in all conditions similar to the ones observed

in the main study; see Results section), hence this design was used.

Final Task In the final version of the experimental task participants chose

between 4 Gabor patches displayed on a gray background. After every

few trials participants rated their subjective feeling of freedom of the last

choice on a discrete 4-point scale. A rating trial occurred after 3 to 5

choices, drawn pseudo-randomly from a uniform distribution so that the

ratio of choice-to-rating ratio was exactly 4:1. Option availability (whether
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a given patch is available to choose) was signaled by the patch contrast.

Participants were instructed to choose any high-contrast patch and avoid

choosing low-contrast patches. Unavailable patches had 20% contrast, while

available patches had either 100% (high discriminability condition; HD) or

60% contrast (low discriminability condition; LD). Available patches in any

given trial had always the same contrast. Additionally, we controlled for

available configurations, so that only 2 unique configurations were possible

for each cell design (see Figure 4.1).

4.3.3 Design

We have set a 3 (Alternative Availability) by 2 (Discriminability) factorial

design. Alternative Availability factor controls the number of options that

are available for the participant to choose in a given trial, from 1 to 3

(further denoted as F1, F2 and F3). Discriminability controls for the ease of

differentiating between available and non-available options. Each condition

consisted of 60 trials in a given experimental session (240 choice trials per

session plus 60 rating trials) Each session was divided into 6 40-trial blocks,

in between which participants could take a short break.

4.3.4 Procedure

A white fixation cross appeared at the start of each choice trial for 400 ms,

followed by the 4 patches appearing on the screen for 1000 ms. Participants

had 2000 ms (including the initial 1000 ms during which the stimuli were

present on the screen) to make their choice, which was signaled by the cross
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turning green once the choice has been recorded. A 800-1200 ms period

(randomly drawn from a uniform distribution) with a white fixation cross in

the centre followed each choice, followed by a rating trial (every 3 to 5 trials

for 2000 ms) and a jitter period drawn from a uniform distribution between

2000 and 5000 ms.

4.3.5 Stimuli

The batches were 2.25 visual degree in size, placed 5 visual degrees from

the centre of the screen. Visual angles of the batches (starting from left to

right) were set to -63 degrees, -136.5 degrees, 136.5 degrees and 63 degrees

(see Figure 4.1). The horizontally asymmetric patch placement was utilized

so that the patch location would easily correspond to 4 fingers (from left to

right: left middle finger, left index finger, right index finger and right middle

finger) which participants used to respond. The responses were provided

using a NATA button box.

The freedom scale was displayed as a white line with 4 points, going from 1 to

4, where 1 represented the lowest and 4 the highest level of perceived freedom.

Similarly to the choice task, participants used the 4 fingers as corresponding

the 4 scale values, mapped from left to right.

The rating trials did not have any text prompt. Participants were only

instructed prior to the task, that the scale relates to ‘How free they feel their

previous choice was’ with 1 being the least, and 4 being the most free. The

instructions emphasized that the rating relates to a subjective feeling one

might experience.
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4.3.6 Experimental paradigm

The experiment consisted of 3 sessions held on different days for each partici-

pant. On the first session participants were trained in the task and performed

240 trials of the main task. Second session consisted of performing 240 trials

of the main task (27 minutes), a structural T1 image acquisition (15 minutes)

and two visual field mapping tasks (20 minutes), all done inside the MRI

scanner. Third session consisted of 240 trials of the main task (27 minutes), a

resting state scan (10 minutes), an DWI scan (18 minutes) inside the scanner

and two short post-experimental tasks in the behavioural lab, to control

for choice bias (20 minutes). All sessions were performed at The Cardiff

University’s Brain Imaging Centre (CUBRIC ). Sessions 2 and 3 were carried

out in the 7T Siemens Magnetom MRI scanner. Visual stimuli were presented

using PsychoPy (Peirce 2007).

4.3.7 fMRI data acquisition

Measurements were performed on a whole-body 7 Tesla research MR-system

(Magnetom, Siemens Healthcare GmbH, Erlangen, Germany) with 32-channel

head receive/volume transmit (Nova Medical, Wilmington MA). BOLD

sensitive T2* weighted EPI images in sequential descending order in a rapid

event-related design (TR=1800 ms, TE=26 ms, FA=70◦, 256 × 256 × 192

isotropic 1 mm voxels, 60×2 mm slices with slice separation 2 mm). 900

volumes were acquired each session and the first six of which were discarded

to allow for steady-state magnetization.
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4.3.8 fMRI data preprocessing

MRI data was processed using SPM12 (www.fil.ion.ucl.ac.uk/spm). fMRI

data were converted from DICOM to NIFTII format, unwarped, spatially

realigned to the first image, and corrected for acquisition delay by sinc in-

terpolation with references to the middle slice. The mean fMRI volume and

T1-weighted structural image were coregistered using mutual information,

and the T1-weighted image was segmented and normalized to the Montreal

Neurological Institute (MNI) T1 template by linear and non-linear deforma-

tions. The normalization parameters were applied to all spatio-temporally

realigned functional images obtaining normalized volumes with a voxel size

of 1×1×1 mm. Normalized fMRI data were smoothed with an isotropic

Gaussian kernel with full-width half-maximum of 4 mm.

4.3.9 fMRI data analysis

4.3.9.1 Whole Brain Analysis.

First-level and second-level whole brain general linear models (GLM) were

build using SPM12. We labeled choice trials according to alternative avail-

ability (3 levels) and discriminability (2 levels). A single parametrically

modulated regressor was added for freedom rating trials. Additionally, we

included motion parameters as nuisance regressors. Each session was mod-

elled separately. A high-pass filter (128-s cutoff) was applied to remove

low-frequency drifts. Contrasts were applied to test effects of interest: free

– forced (choices with more than one alternative vs instructed), F3–F2 (3

available alternatives – 2) and HD–LD (comparing whole brain effects of
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Table 4.1: Peak MNI coordinates of ROI associated with free choice in
perceptual tasks from Si, Rowe and Zhang, 2020.

ROI x y z
preSMA 0 18 48
Left DLPFC -44 32 30
Right DLPFC 44 34 30
Left IPL -44 -50 50
Right IPL 54 -38 48
Left AIC -34 14 2

discriminability).

To accommodate for random effects across participants, first level contrasts

were entered into a second level analysis and compared using one-sample

t-tests, allowing for population-level inference. We assessed group-level

significance by applying one-sample t-tests against 0 to the first-level contrast

images. We report clusters significant at p<0.05, FWE-corrected for multiple

comparisons, with a cluster-defining threshold of p<0.001, uncorrected.

4.3.9.2 Regions of Interest.

Region of Interest (ROI) masks for preSMA, DLPFC, inferior parietal lobule

(IPL) and left insula (AIC) were created by defining 10 mm spheres centered

at peak coordinate activations based on a recent meta-analysis study of

equal-choice paradigm (Si, Rowe, and Zhang 2020; Table 4.1).
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4.3.10 Behavioural Modelling

We report the results from Bayesian Mixed-Effects models using standard

priors from the brms R package (Burkner 2017). Random effects structure

includes intercepts and slopes for all regressors of interest (see exact model

specification below). We report posterior distribution medians (med), 95%

posterior credible intervals (CI), probability of directionality (pd; % of

posterior density larger or smaller than 0). Analogous to frequentist analysis,

we define significance as pd > 0.95. Reaction times and ratings were modelled

using linear regression, while accuracies using logistic regression with Gaussian

linking function.

4.3.10.1 Model specification.

All syntax represented using lme syntax format (Bates et al. 2014), where

stars denote interaction terms and random effect terms are contain within

the parentheses.

1. Reaction times model: RT ~ option availability * discriminability +

(1+configuration|participant) + (1|session)

2. Accuracy model: accuracy ~ alternative availability * discrim-

inability + (1+configuration|participant) + (1|session), family =

Bernoulli(link=‘logit’).

3. Freedom Rating model ratings ~ alternative availability * discriminabil-

ity + (1+configuration|participant) + (1|session),

Note on random effects. Two sourced of random effects were modelled:



Project 1: Choices between equal options (fMRI) 84

experimental session number and participant. In order to account for dif-

ferent preferences regarding either spatial or finger-responding biases across

participants we added configuration slopes to the participant random effects.

4.3.11 Cognitive Modelling

Similarly to precious work (Rowe, Hughes, and Nimmo-Smith 2010; Tomassini

et al. 2019; Zhang, Hughes, and Rowe 2012) we assume the volitional choice

process can be accounted by a linear integration to threshold. In particular,

we use the Linear Ballistic Accumulator (LBA) model (Brown and Heathcote

2008). LBA assumes evidence for each choice option is sampled independently

in time and the choice is made when the integrated evidence for one of the

accumulators reaches a predefined decision threshold. We assume each

available choice option is associated with an accumulator, which can vary per

condition and per participant. Our model excludes the instructed (F1) trials

and artificially fixes the inactive accumulators (i.e., representing unavailable

options) to 0, due to very low error rate, making the model parameters

exceptionally difficult to estimate in such cases (Wiecki, Sofer, and Frank

2013).

We allow the accumulation rate and non-decision time parameters to vary

between conditions, keeping other parameters fixed. We assume that the

threshold cannot vary between conditions, following the assumption that

it has to be set before observing the stimuli, disallowing for strategical

adjustments during the duration of the trial (Ratcliff and Smith 2004). Due

to the reviewer comments asking to test this possibility, additional analysis

comparing a model with varying thresholds per conditions is added in the
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Appendix.

We use hierarchical Bayesian fitting procedure with Markov Chain Monte

Carlo (MCMC) parameter estimation routine to estimate the posterior dis-

tributions of the model parameters. Our main aim in fitting the model was

to extract subject-level estimates of accumulation rate and correlate them

with brain activity within the preSMA. Due to its partial pooling property,

Hierarchical estimation aids in attaining more generalizable subject-level

predictions (McElreath 2016).

We use the Stan language (Carpenter et al. 2017) for hierarchical imple-

mentation of the LBA model. We generate four independent chains of 4,000

samples from the joint posterior distribution of the model parameters using

Hamiltonian Monte Carlo (HMC), an efficient method suitable for exploring

high-dimensional joint probability distributions (Betancourt 2017). The

initial 2,000 samples were discarded as burn-in. To assess the convergence

of the Markov chains, we calculate Gelman-Rubin convergence diagnostic

R̂ of each model (Gelman and Rubin 1992) and use R̂ < 1.1 as a stringent

criterion of convergence (Annis, Miller, and Palmeri 2017). In order to extract

a single accumulation rate per subject in a given condition type, we average

individual accumulation rates across active accumulators.

4.4 Results
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4.4.1 Behavioural Results Analysis

behavioural analysis includes all 3 sessions (initial behavioural and two

MRI-based). Session effects are modelled as random effects (see Model

Specification).

4.4.1.1 Reaction Times.

Effect of alternative availability on RT indicated responses in the F3 condition

medF3 RT = 740 ms, 95% CI = [692 ms, 790 ms] to be significantly longer

than in F2 medF2 RT = 701 ms, 95% CI = [652 ms, 750 ms], pd > 0.999,

which in turn were significantly longer than F1 medF1 RT = 659 ms, 95% CI

= [623 ms, 712 ms], pd > 0.999. RTs in HD condition medHD RT = 659 ms,

95% CI = [617 ms, 705 ms] were significantly longer than in LD medLD RT =

617 ms, 95% CI = [563 ms, 661 ms], pd > 0.999. No interactions reached

significance.

4.4.1.2 Accuracies.

Effect of alternative availability on accuracy indicated accuracy in the F3

condition medF3 ACC = 96.8%, 95% CI = [94.1%, 98.1%] to be significantly

higher than in F2 medF2 ACC = 95.8%, 95% CI = [92.6%, 97.4%], pd = 0.980

and F1 medF1 ACC = 94.8%, 95% CI = [91.3%, 96.9%], pd > 0.999. Difference

between F2 and F1 did not reach significance pdF2>F1 = 0.942. Accuracy in

HD condition medHD ACC = 96.6%, 95% CI = [94.1%, 97.9%] was significantly

higher than in LD medLD ACC = 94.8%, 95% CI = [91.4%, 96.9%], pd > 0.999.

No interactions reached significance.
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4.4.1.3 Freedom Ratings.

Effect of alternative availability on freedom ratings indicated perceived

freedom in the F3 condition medF3 RATING = 2.81, 95% CI = [2.58, 3.03] to be

significantly higher than in F2 medF2 RATING = 2.60, 95% CI = [2.38, 2.82] pd

> 0.999, which in turn was higher than in F1 medF1 RATING = 2.45, 95% CI =

[2.22, 2.69] pd > 0.999. Freedom ratings did not differ significantly between

levels of discriminability pd = 0.76. No interactions reached significance.

Figure 4.2: Behavioural Results. Plots show group-level parameter esti-
mations centered at the median. Panels represent main effects of choice
availability (upper row) and discriminability (lower row) on reaction times
(left column), accuracies (middle column) and freedom ratings (right column).
Error bars represent 95% credible intervals.
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Figure 4.3: Modelling Results. Accumulation rate across conditions. Accu-
mulator labels correspond to fingers used for response: L2 = left index, L3
= left middle, R2 = right index, R3 = right middle. Accumulators set to 0
represent unavailable alternatives (not included in the model).
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4.4.2 LBA Generative Modelling

We fitted a hierarchical LBA model to the responses and reaction times with

accumulation rates varying by condition type. Each accumulator represented

an available alternative in a given condition type. Since the goal of the

modelling exercise is to correlate model parameters with BOLD response

(specifically, individual accumulation rates with activity in the preSMA region

of interest), initial behavioural-only session was excluded from the fitting

procedure.

The model provided a good fit to the data (R̂ < 1.05 for all parameter values).

Figure 4.3 presents group-level accumulation rate values across conditions.

Comparison of group-level posterior distributions of accumulation rates across

discriminability levels revealed faster accumulation in the HD condition (pd

> 0.999). Non-decision times did not differ significantly pd = 0.685 for LD >

HD.

4.4.3 Whole-brain analysis

4.4.3.1 Free vs Instructed.

The contrast free > instructed revealed increased BOLD signal in the

SMA/preSMA t(1,29) = 6.46, left pre-central/post-central gyrus t(1,29)

= 7.80, right pre-central gyrus t(1,29) = 6.16 and left superior/inferior

parietal lobule t(1,29) = 5.88 (Table 4.2). Opposite contrast (instructed >

free) revealed no significant clusters. An interaction contrast revealed no

significant clusters, suggesting that the difference between free and instructed
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Table 4.2: Clusters of increased activity for planned contrasts (MNI coor-
dinates). Cluster sizes in voxels. Significant at p < 0.05, FWE-corrected
for multiple comparisons, with a cluster-defining threshold of p < 0.001,
uncorrected.

Area x y z Cluster size
Free-Instructed
SMA/preSMA -4 -8 58 110
Left pre-central/post-central gyrus -44 -32 54 1717
Right pre-central gyrus 24 -8 48 248
Left Superior/Inferior Parietal Lobule -18 -66 62 279

HD-LD
Left pre-central gyrus -28 -10 62 236
Left post-central gyrus -38 -30 38 416
Right inferior occipital cortex 42 -66 0 118
Right Fusiform Gyrus 32 -70 -12 384
Right cerebellar cortex 26 -48 -22 112

F3-F2
Dorsal Posterior Cingulate Cortex 0 30 38 168
Right/Central Cerebellar Cortex 18 -40 -16 74
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Figure 4.4: Whole-brain analysis results for contrast of interest. Each contrast
represented in 3 slices (sagittal, coronal and horizontal), centered at peak
coordinates of one of the significant clusters: SMA/preSMA for Free >
Instructed; left pre-central gyrus for HD > LD, and posterior cingulate cortex
for F3 > F2.
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was not modulated by discriminability.

4.4.3.2 HD vs LD.

The contrast HD > LD revealed increased BOLD signal in the left pre-

central t(1,29) = 5.34, and post-central t(1,29) = 5.10, gyri, right inferior

occipital cortex t(1,29) = 4.57, right fusiform gyrus t(1,29) = 6.03, and right

cerebellar cortex t(1,29) = 4.84 (Table 4.2). The opposite contrast, which

was hypothesized to associated with areas involved with processing difficulty

or conflict, did not show any significant activations. An interaction contrast

revealed no significant clusters, suggesting that the difference between HD

and LD was not modulated by alternative availability.

4.4.3.3 F3 vs F2.

The contrast F3 > F2 revealed increased BOLD signal in the dorsal posterior

cingulate cortex t(1,29) = 4.94, and the right/central cerebellar cortex t(1,29)

= 5.67 (Table 4.2). Opposite contrast (F2 > F3 ) revealed no significant

clusters. An interaction contrast revealed no significant clusters, suggesting

that the difference between F3 and F2 was not modulated by discriminability.

4.4.3.4 Rating Freedom.

Due to a methodological error (see Discussion) this contrast has been excluded

from the analysis.
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Figure 4.5: ROI ANOVA results from preSMA and left AIC. Only the main
effect of discriminability was found to be significant. Solid black shapes
represent group means per condition; transparent ones represent individual
means. Vertical bars represent standard errors.
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4.4.4 ROI Analysis

We run a within-person ANOVA (Availability x Discriminability) for each of 6

predefined clusters of interest. We found a significant effect of discriminability

(HD>LD) in preSMA F(1,29) = 6.16, p = 0.02, ges = 0.012, and left insula

(AIC) F(1,29) = 4.72, p = 0.04, ges = 0.08 (Figure 4.5). Discriminability

also approached significance in the left Inferior Parietal Lobule (IPL), F(1,29)

= 3.68, p = 0.06, ges = 0.007. No other effects or interactions reached

significance. We also tested whether activity within the preSMA ROI can be

predicted by individual accumulation rates, estimated using the LBA model.

In order to obtain a single accumulation rate per condition which could be

then regressed onto preSMA activity, we averaged the accumulation rates

per participant. The regression analysis using availability, discriminability

and individual accumulation rate estimates on preSMA ROI actvity revealed

no effect of accumulation speed β = -0.65, p = 0.72.

4.5 Discussion

This study aimed to describe the effects of voluntary choice between equally

salient perceptual stimuli, controlling for the number of alternatives available

to choose, and assessing the subjective feeling of freedom. We replicate

some of the findings from the literature, while our novel predictions were not

supported by the data. This section discusses our findings in detail.

Our behavioural findings replicate well known effects. Both accuracies and

reaction times were modulated by the number of available alternatives (Bar-
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las, Hockley, and Obhi 2017) and discriminability (Teodorescu, Moran, and

Usher 2016). Very high accuracies across conditions indicate the perpet-

ual task was easy in both discriminability conditions. Subjective freedom

ratings were predicted by the number of available alternatives, indicating

that manipulating the number of options, even though they were represented

by identical stimuli and led to identical outcomes, did significantly affect

the experienced freedom of choice. This finding supports the link between

objective and subjective definitions of choice freedom (Filevich et al. 2013;

Frith 2013; Nahmias et al. 2004).

Subjective freedom was not modulated by discriminability, which is in oppo-

sition to studies showing that lower difficulty (Sidarus and Haggard 2016)

or higher fluency (Chambon, Sidarus, and Haggard 2014) leads to a greater

feeling of agency. The absence of this effect might be associated with the

ceiling effect due to low overall task difficulty. Alternatively, it could relate to

differences between how people perceive freedom and agency. While related,

these concepts might convey slightly different meanings to participants. A

potential explanation might be that agency puts an emphasis the experiential,

low-level feeling of making the choice, while freedom assessment relates more

into the retrospective, metacognitive inference about previous choice (Syn-

ofzik, Vosgerau, and Newen 2008). Further work is necessary to distinguish

how humans differentiate between the two terms.

The free vs instructed contrast reveals some of typical activations known from

the literature, including the SMA/preSMA and parietal lobule (Si, Rowe, and

Zhang 2020). We however found no support for hypothesized involvement of

preSMA in evidence accumulation, as evidenced by the ROI analyses, nor
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sensitivity to the difference between 2 and 3 available alternatives.

The F3 vs F2 contrast revealed a significant cluster in the medial posterior

cingulate cortex (PCC). This finding is inconsistent with previous studies

comparing more than 2 levels of choice freedom (Forstmann et al. 2006; Lau

et al. 2004; van Eimeren et al. 2006). We believe this effect is associated with

the fact that in contrast to the mentioned experiments our design introduced

an element of perceptual difficulty.

Activation in the PCC can be explained by its sensitivity to the load of

response selection (Badgaiyan and Posner 1998). This interpretation is con-

gruent with another study comparing the effect the number of available

alternatives (Woo and Lee 2007). In their paradigm, a cue informed par-

ticipants whether the trial will contain 1, 2, or 4 possible responses. In

contrast to the equal-choice paradigm, Woo and Lee’s task had a one-to-one

stimulus-response mapping, meaning each trial was associated with only one

correct response. Congruently, neurons in PCC have been associated with

selectivity for spatial choice in rhesus monkeys (Li et al. 2019).

An alternative account stems from theories hypothesizing PCC role in in-

ternal, goal-directed cognition (Leech and Sharp 2014; Pearson et al. 2011;

Spreng et al. 2010). Based on this account, the PCC could be related to

intentional action planning when more alternatives are available to choose.

This interpretation however seems less likely due to lack of experimental

support from previously mentioned studies. Our result suggests PCC might

be an important, previously overlooked component of action selection be-

tween multiple alternatives. To distinguish its function, future work could

additionally control for the type of task being performed (perceptual vs
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reactional intention).

Contrary to our hypotheses, we did not find any clusters related to the more

difficult LD condition. We expected areas involved in cognitive control and

perceptual difficulty such as anterior cingulate cortex, DLPFC, preSMA,

insula or the SPL (Cole and Schneider 2007; Ho, Brown, and Serences 2009;

Keuken et al. 2014) to be more active during the LD condition. In contrast,

we found clusters in the precentral and postcentral gyri, as well occipital

and cerebellar cortices being more responsive to the HD condition. One

explanation of this effect is that the difference in difficulty was too small for

an increase in cognitive control to occur. This is partially supported by the

behavioural results, showing only slightly reduced accuracy, from 97% to 95%,

across discriminability levels. This ceiling effect could contribute to the LD

condition not being perceived as challenging, but rather the HD condition as

being more salient, linking this the difference in contrast to a magnitude effect

(Pais et al. 2013), a ecologically motivated phenomenon where sensitivity to

absolute stimulus values leads to faster responses. According to this view,

the activations reflect a network involved in processing perceptual magnitude

(Skagerlund, Karlsson, and Traaff 2016). Interestingly, the ROI analysis

indicated a significant effect of discriminability (HD>LD) in 2 out of 6 areas

related to the free choice network (preSMA and AIC), with IPL also trending

towards significance. This finding supports the link between choice fluency

and the low-level experience of freedom (Chambon, Sidarus, and Haggard

2014; Sidarus and Haggard 2016), suggesting that the encoding of free choice

and fluency shares overlapping representations, from which agency is derived.

Importantly however, as noted in the behavioural section, this difference was
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not observed in the freedom ratings. A regression analysis using availability,

discriminability and individual accumulation rate estimates averaged across

trials for all accumulators revealed no effect of accumulation speed on preSMA

activity, showing no evidence for the region being involved in the evidence

accumulation process.

Our study design was associated with a series of limitations. Limiting the

number of possible configurations (Figure 4.1) might reduce the level of

conflict and cause participants to respond more habitually, as opposed to

freely. Secondly, the first full behavioural session could lead to overtraining,

and, as a result, an attenuated cortical response, an effect found in perceptual

learning literature (Yotsumoto, Watanabe, and Sasaki 2008). Additionally,

the optimization of the EPI scanning sequence might also be of crucial im-

portance. The current study was the first functional experiment on the 7T

Siemiens Cubric machine, hence no prior efficient solutions were established.

One specific issue might relate to the lack of z-shimming, a procedure de-

signed to prevent signal dropout due to variations in magnetic susceptibility

(Weiskopf et al. 2006). This issue is amplified in high magnetic fields, and is

especially prevalent in the anterior parts of the cortex, which was in fact the

case in the current dataset. These limitations might have contributed to why

we did not find some of the expected activations patterns, especially relating

to the more anterior parts of the brain such as DLPFC, ACC and anterior

part of the preSMA.

While the differences observed in subjective freedom between conditions

were significant, one might argue that the effect sizes were rather small.

This might be due to the difficulty in both individual definitions of freedom,
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as well as the method of prompting it in the experiment. While the first

factor is a welcomed component of between-subject variability, the second is

problematic, as different phrasing of the same or very similar concept can

potentially result in different responses (e.g. Henley et al. 2016). Similar to

Filevich et al (2013), we adopted a rather high-level question, asking directly

about the level of perceived subjective freedom. Most common alternate

phrasing used in the literature refers to the feeling of control (Barlas, Hockley,

and Obhi 2017; Chambon, Sidarus, and Haggard 2014; Barlas and Kopp 2018;

Linser and Goschke 2007). Since the range of the scale (1 to 4) was the same

as the number of targets in each trial, we cannot exclude the possibility that

some of the participants misconstrued it as a test question and responded by

reporting the perceived number of available targets in the previous trial. This

interpretation is however unlikely, since the initial instructions were clear on

the scale being related to a subjective feeling, and this fact was additionally

stressed to the participants verbally during the task tutorial before session 1.

Overall, the small effect sizes observed suggest that more research is needed to

discern the influence of option availability and discriminability on subjective

feeling of freedom, possibly testing different phrasings and prompts.

While, consistently with the definition stated at the start of the thesis,

we associate discriminability with difficulty, it is important to note that

both high and low discriminability conditions in this study were in fact

very easy by design (see Methods section). This is because in most of such

studies, the more difficult conditions are associated with a much greater gap

in accuracy. For instance, the difficult condition in previously mentioned

studies oscillated around 86% (Cole and Schneider 2007) and 66% (Ho,



Project 1: Choices between equal options (fMRI) 100

Brown, and Serences 2009), compared to 95% in the low discriminability

condition here. This makes comparing our discriminability effects with studies

manipulating difficulty potentially problematic. From this point of view,

our discriminability manipulation is more similar to controlling for stimulus

saliency (Teodorescu, Moran & Usher, 2016) than difficulty.

A design flaw disabled us to dissociate the modulatory effect of subjective

freedom from motor activity. Since the freedom ratings were mapped on

the response pad to go from 1 to 4 from the left-most to the right-most

button, the activations correspond to both freedom as well as to motor

output, confounding the resulting contrasts. Due to this confound we do not

report the findings resulting from this comparison. A solution of this design

flow would involve counterbalancing the ratings between subjects, such that

for half the ratings would be mapped from left to right, while for the others

from right to left.

Based on these experiences, we recommend future researchers to increase

choice conflict by including a larger set of possible response configurations,

as well as including more task-naïve subjects, to counteract the potential

cortical habituation effects associated with overtraining. In case of using a

new experimental scanning sequences, we strongly recommend gathering a

larger sample of pilot data before committing to the final design. While no

set in stone rule can be applied here, an reasonable approach would include

a sample size large enough to be used for power calculation in the main

experiment (Soares et al. 2016). In cases of a novel design or sequence, a

pilot sample size of minimum 12 participants is recommended (Desmond and

Glover 2002).
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Chapter 5

Breaking Deadlocks:

Reward Probability and

Spontaneous Preference

Shape Voluntary Decisions

and Electrophysiological

Signals in Humans

Choosing between equally valued options is a common conundrum, for which

classical decision theories predicted a prolonged response time (RT). This
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contrasts with the notion that an optimal decision maker in a stable environ-

ment should make fast and random choices, as the outcomes are indifferent.

Here, we characterize the neurocognitive processes underlying such volun-

tary decisions by integrating cognitive modelling of behavioural responses

and EEG recordings in a probabilistic reward task. Human participants

performed binary choices between pairs of unambiguous cues associated with

identical reward probabilities at different levels. Higher reward probability

accelerated RT, and participants chose one cue faster and more frequent over

the other at each probability level. The behavioural effects on RT persisted

in simple reactions to single cues. By using hierarchical Bayesian parameter

estimation for an accumulator model, we showed that the probability and

preference effects were independently associated with changes in the speed of

evidence accumulation, but not with visual encoding or motor execution la-

tencies. Time-resolved MVPA of EEG evoked responses identified significant

representations of reward certainty and preference as early as 120 ms after

stimulus onset, with spatial relevance patterns maximal in middle central and

parietal electrodes. Furthermore, EEG-informed computational modelling

showed that the rate of change between N100 and P300 event-related poten-

tials modulated accumulation rates on a trial-by-trial basis. Our findings

suggest that reward probability and spontaneous preference collectively shape

voluntary decisions between equal options, providing a mechanism to prevent

indecision or random behaviour.
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5.1 Note on Contributions

The study described in this chapter is a collaborative effort of different

members of our lab. Initial study design and data collection was performed

by Jacopo Barone and Jiaxiang Zhang, before the start of my PhD. Due to

this, part of the methods section involving experimental design are archival

in nature. The sections describing these archival elements have been written

by me. behavioural and modelling sections analyzing the results are a

product of my own work and ideas, and therefore can be considered as my

unique contributions. Additionally, parts of the analysis involving EEG

preprocessing, ERP analysis and MVPA analysis have been performed and

written by Dominik Krzeminski.

Both the archival elements and analyses performed not by me are included

for completeness, and clearly marked at the start of a given section. It is

important to stress that due to an integrative nature of many of the analyses

(combining EEG, MVPA and modelling results) including all those sections

is necessary for understanding the the full extend of the novel insights.

5.2 Introduction

Cognitive flexibility enables decision strategies to adapt to environmental

and motivational needs (Schiebener and Brand 2015). One characteristic

of this ability is that harder decisions often take longer. Evidence from

neurophysiology (Gold and Shadlen 2001), neuroimaging (Heekeren, Marrett,

and Ungerleider 2008) and modelling (Ratcliff and Smith 2004) suggest an
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evidence accumulation process for decision-making: information is accumu-

lated over time, and a decision is made when the accumulated evidence

reached a threshold (Gold and Shadlen 2007). This process can accommo-

date paradigms consisting of noisy stimuli (perceptual choices), as well as

a rich variety of tasks with unambiguous stimuli (value-based: Pisauro et

al. 2017; or memory-based choices: Ratcliff 1978). For perceptual choices,

evidence is derived from the sensory properties of the stimuli; for value or

preference-based choices, it originates from internal value evaluation and

comparison (Krajbich et al. 2012); while for memory-dependent choices,

from sampling memory traces (Ratcliff 1978; Shadlen and Shohamy 2016).

According to this framework, decision difficulty, and in turn response time

(RT), is proportional to the relative difference in the evidence supporting

each option, consistent with results from perceptual (Ditterich, Mazurek,

and Shadlen 2003), value-based (R Polania et al. 2014; Oud et al. 2016) and

memory based decisions (Ratcliff and McKoon 2008).

Making difficult choices requires more evidence, and hence longer deliberation

can be an advantageous decision strategy. Yet, scaling deliberation with

difficulty is beneficial only to a certain point. What happens if decision

difficulty reaches a tipping point with values of options being indistinguish-

able? In the hypothetical paradox of Buridan’s ass (Inwagen 1989), a donkey

which cannot choose between two identical haystacks would, as a result of

its indecision, starve to death. This view is consistent with the classical

drift-diffusion model (DDM; Ratcliff and McKoon 2008), which encodes the

relative difference of evidence in favour of two options as a single accumula-

tion process between two absorbing boundaries. Such a model would predict
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a deadlock or indecision between two equal alternatives, because there is zero

difference in the mean evidence supporting each choice (e.g. two identical

haystacks), and the decision process is dominated by noise accumulated over

time, resulting in prolonged RT (Teodorescu, Moran, and Usher 2016; but

see Ratcliff, Voskuilen, and Teodorescu 2018 for a recent model modification

that addresses this theoretical limitation).

On the other hand, economic analysis suggests that choices between equal

alternatives should be made as fast as possible. The benefit of rushing to

decisions comes from being able to relocate our cognitive resources elsewhere

(Rustichini 2009). If evidence cannot bring us closer to a better choice, delib-

erative thinking becomes an expensive and unnecessary luxury. This effect

can be modelled using stochastic decision models with multiple accumulators,

each encoding the accumulated evidence in favour of one choice, such as the

Linear Ballistic Accumulator model (Brown and Heathcote 2008) and the

Leaky Competing Accumulator model (Usher and McClelland 2001; Bogacz

et al. 2007). For those models, multiple accumulators compete against each

other on the basis of multiple sources of evidence inputs, which by default

eliminates the scenario of indecision between equal alternatives.

In reality, individuals can make timely choices between equally valued options.

For example, in preference-based decisions, it took under 2 seconds for one to

choose between two snack food stimuli that had similar valuations (Voigt et al.

2019). In both humans and non-human primates, higher reward magnitude

facilitates RT in perceptual and value-based decisions between equal choices

(Pirrone, Azab, Hayden, Stafford, and Marshall 2018a). Intuitively, Buridan’s

donkey would be motivated to make faster decisions if the haystacks are
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fresh, compared to when they are stale. This magnitude effect is in line with

ecological incentives: high rewards may imply a resource-rich environment,

for which one needs to exploit as early as possible; low rewards may imply a

resource-poor environment in which it is worth waiting for a better option

(Pirrone, Azab, Hayden, Stafford, and Marshall 2018a). Furthermore, if

choices are based purely on expected rewards, one may choose any of the

equal-valued options with the same frequency, leading to random behavior.

Nevertheless, previous studies (Zhang and Rowe 2015; Phillips et al. 2018)

showed that in a sequence of voluntary action decisions, humans deviated

from a random pattern of choice and exhibited low choice entropy across

trials. A similar conclusion has been reached in consumer decisions, where

brand loyalties are driven by seemingly irrational preferences (Wheeler 1974).

These findings suggest a possible preference bias between equal options, which

renders some options more likely to be chosen than others.

We focus on three issues that have been unresolved in previous research on

choices between equal alternatives. First, we aim to explore the effect of

reward probability on RT. We expect that, similar to magnitude (Teodorescu,

Moran, and Usher 2016; Pirrone, Azab, Hayden, Stafford, and Marshall

2018a), higher reward probability accelerates RTs. This prediction is not

trivial, since probability and magnitude can have different effects on behavior.

For example, (Young et al. 2014) showed that magnitude discounting follows

a power law, while probability is discounted hyperbolically. Unlike magnitude,

probability has a upper bound at 100%, which acts in a qualitatively distinct

way on behavior (Tversky and Kahneman 1989). We expect this increase in

speed to be non-linear, with choices between two certain (100% probability)
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options being disproportionately faster compared to choices between two

uncertain ones.

Second, in the evidence accumulation framework, both the rate of the accumu-

lation and the non-decision time can influence a model’s prediction of reaction

time, the former encoding the strength of evidence and the latter reflecting the

latencies of visual encoding and motor execution. During perceptual learning,

the accumulation rate increases along with behavioural improvements (Jia et

al. 2018), while the non-decision time remains unchanged in the late stage

of training (Zhang and Rowe 2014). Furthermore, the accumulation rate is

associated with the individual differences in working memory (Schmiedek

et al. 2007) and attention (Nunez, Vandekerckhove, and Srinivasan 2017),

while the non-decision time is faster in individuals with higher diffusion

MRI derived neurite density in the corticospinal tract, the primary motor

output pathway (Karahan et al. 2019). Recent research showed that both

parameters can be influenced by reward magnitude (Wagner et al. 2020),

and the current study will examine further whether reward probability and

preference influence the two model parameters.

Third, we aim to describe the macroscopic pattern of brain activities asso-

ciated with differences in behaviour: it is temporal evolution and relation

to model-derived parameters. Functional imaging studies have localized

the mesocorticolimbic dopaminergic network to be involved in both reward

certainty and preference processing (Tobler et al. 2007; Abler et al. 2009),

but little is known about how these relate to global activations across the

scalp. Pinpointing when EEG activity diverges between different levels of

reward probability and assessing whether these differences are transient or
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sustained can further inform our computational model, giving deeper insight

into the cognitive underpinnings of the decision process.

Here, we address these questions by combining advanced computational

modelling and EEG in a probabilistic reward task. Participants memorized six

unambiguous cues associated with three levels of reward probability, a certain

reward level (i.e., 100%) and two levels of uncertain reward probabilities

(80% and 20%). Participants made two-alternative forced choices between

cues with equal reward probability (Figure 5.1). The inclusion of the 100%

reward probability condition allowed us to investigate whether cues with

definitive rewards are processed in a different manner than the uncertain

cues (Esber and Haselgrove 2011). Additional task conditions involved binary

decisions between cues with different reward probability (unequal trials) and

unitary responses to single cues (single-option trials). This design enabled us

to focus on the neurocognitive processes underlying choices between equal

options, while participants maintained a clear understanding of cue values

for rational decisions between unequal options.

We first examine how reward probability influences behavior and whether a

preference bias between equal options is present. We then fit an accumulator

model of decision-making (Brown and Heathcote 2008) to the behavioural

performance across reward probability levels. Posterior group parameters

from hierarchical Bayesian model fitting procedure were used to infer whether

the behavioural effects were driven by evidence accumulation or non-decisional

components of the process. EEG data were analyzed with time-resolved

multivariate pattern classification for decoding spatiotemporal representations

of reward probability and preference. To establish a link between the decision
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Figure 5.1: Experimental paradigm of the probabilistic reward task. A.
Participants were instructed to decide between two reward cues (equal and
unequal trials) or respond to a single cue (single-option trials). B. A total of
six reward cues were randomly assigned to three levels of reward probability.
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process and its EEG signatures, we integrated behavioural and EEG data

into a joint hierarchical Bayesian model and tested the hypothesis that

electrophysiological activity reflects trial-by-trial changes in the speed of

evidence accumulation for decisions (D. M. Twomey et al. 2015).

We demonstrate that reward probability and spontaneous preference inde-

pendently shape RTs and choices when deciding between equal alternatives.

These behavioural effects affect the decision process and evoke a distinct

electrophysiological pattern. Together, our findings contribute to the under-

standing of how decision deadlocks between two equally probable rewards

can be overcome.

5.3 Materials and Methods

5.3.1 Participants

Twenty-three healthy participants were recruited from Cardiff University

School of Psychology participant panel (20 females; age range 19-32, mean

age 22.7 years; 22 right-handed). All participants had normal or corrected-

to-normal vision, and none reported a history of neurological or psychiatric

illness. Written consent was obtained from all participants. The study was

approved by the Cardiff University School of Psychology Research Ethics

Committee.
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5.3.2 Apparatus

The experiment was conducted in a dedicated EEG testing room. A com-

puter was used to control visual stimulus delivery and record behavioural

responses. Visual stimuli were presented on a 24-inch LED monitor (ASUS

VG248) with a resolution of 1920 by 1080 pixels and a refresh rate of 60

Hz, located approximately 100 cm in front of participants. Participants’

responses were collected from a response box (NATA technologies). The

experiment was written in Matlab (Mathworks; RRID: SCR_001622) and

used the Psychophysics Toolbox Version 3 extensions (Kleiner, Brainard, and

Pelli 2007).

5.3.3 Experimental design

All participants performed a decision-making task with probabilistic rewards

during EEG recording (Fig. 5.1A). Before the task, participants memorized

6 unambiguous cues represented by different symbols and their associated

probabilities of receiving a reward (Figure 5.1B; see Procedure). All the cues

had the same color (RGB = 246, 242, 92) on a black background (100%

contrast). Each cue was mapped onto one of the three reward probability

levels: high (a reward probability of 100%, i.e., always rewarded), medium

(a reward probability of 80%) and low (a reward probability of 20%), and

hence there were two different cues associated with each reward probability.

Participants were instructed to maximize the total accumulated reward in

the decision-making task. The task contained three types of trials: equal,

unequal and single-option. On an equal trial, two different cues with the
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same reward probability appeared on the left and right sides of a central

fixation point (e.g. 100% vs. 100%, 80% vs. 80% or 20% vs. 20%). On an

unequal trial, two cues with different reward probability levels appeared on

both sides of the central fixation point (e.g. 100% vs. 20%, 100% vs. 80%

or 80% vs. 20%). On a single-option trial, one of the six cues appeared on

either the left or right side of the fixation point. In equal and unequal trials,

participants chose the left or right cue via button presses with the right-hand

index and middle fingers. In single-option trials, participants responded to

which side the single cue was presented (i.e., left or right). In all trials, the

reward was operationalized as 10 virtual “game points” that did not have

any tangible value. The probability of receiving the reward in a trial was

either 100%, 80% or 20%, which was determined by the chosen cue. It is

worth noting that, in equal trials, participants’ decisions did not actually

affect the probability of receiving the reward because both options had equal

reward probability. In single-option trials, if participants chose the wrong

side with no cue presented (0.1% across all single-option trials), no reward

was given. Feedback for rewarded (a “10 points” text message on the screen)

or not rewarded (blank screen) choices was given after each trial. The total

game points awarded were presented at the bottom of the screen throughout

the experiment.

5.3.4 Procedure

Each experimental session comprised 640 trials, which were divided into 4

blocks of 160 trials. Participants took short breaks between blocks and after

every 40 trials within a block. The mapping between the six reward cues
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and three levels of reward probability was randomized across participants.

During breaks, the cues-reward mappings were explicitly presented on the

screen (Figure 5.1B), and the participants could take as much time as they

needed to memorize them. After the first two blocks, all the cues were

re-mapped to different reward probabilities. For example, for the pair of

two cues that were associated with 100% reward probability in the first and

second blocks, one of the two cues would be associated with 80% reward

probability in the third and fourth blocks, and the other associated with

20% reward probability. Participants were encouraged to memorize the

altered cue-probability associations prior to the third block. This remapping

procedure reduced the potential bias associated with specific cues. No explicit

memory tests were performed.

Each block contained 64 equal trials (32 for 100% vs. 100%, 16 for 80% vs. 80%

and 16 for 20% vs. 20%); 64 unequal trials (32 for 80% vs. 20%, 16 for 100%

vs. 80% and 16 for 100% vs. 20%) and 32 single-option trials (16 for 100%, 8

for 80% and 8 for 20%) at a randomized order. This design ensured the same

number of trials with and without cues with the highest reward probability

(100%). Note however that individual cues did not differ much in terms of

frequency of occurrence: each 100% cue appeared 56 times, compared to 48

for each non-certain cue. This makes it unlikely that observed differences can

be explained by occurrence frequency alone. Because two cues were bound

to every probability level, different cue positions and combinations can result

in the same reward probability pair (e.g. there are 4 possible combinations

for 80% vs. 20% unequal trials). These combinations were counterbalanced

across trials.
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Each trial began with the presentation of a fixation point at the center of

the screen for 500 ms. After the fixation period, in the equal and unequal

trials, two reward cues appeared on the left and right sides of the screen

with a horizontal distance of 4.34◦ from the fixation point. Both cues were

vertically centered. In single-option trials, only one reward cue appeared

on one side of the screen, and the side of cue appearance was randomized

and counterbalanced across trials. Cues were presented for a maximum of

2000 ms, during which participants were instructed to make a left or right

button press. The cues disappeared as soon as a response was made, or the

maximum duration was reached. The reaction time (RT) on each trial was

measured from the cue onset to button press. Reward feedback was given

200 ms. after the reward cue offset and lasted 800 ms, followed by a random

intertrial interval uniformly distributed between 1050 and 1150 ms. As in our

previous study (Zhang and Rowe 2014), if the participant failed to respond

within 2000 ms or responded within 100 ms, no reward was given and a

warning message “Too slow” or “Too fast” was presented for 1500 ms.

5.3.5 Behavioural Analysis

We excluded trials with RT faster than 200 ms (fast guesses). For each

participant, trials with RTs longer than 2.5 standard deviations from the

mean RT were also excluded from subsequent analysis. The discarded trials

accounted for 1.5% of all trials.

We first analyzed the proportion of choices in equal trials to establish the

existence of a preference bias. In the equal condition, by definition, there

was no “correct” or “incorrect” response, since the cues had the same reward
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probability. For each pair of cues with the same reward probability, we

defined the preferred cue as the one chosen more frequently than the other

(non-preferred) in equal trials. The categorization of preferred and non-

preferred cues was estimated separately between the first two and the last

two blocks, because of the cue-probability remapping after the first two blocks.

At each level of reward probability, a preference bias was then quantified as

the proportion of trials where the preferred cue was chosen. The preference

bias had a lower bound of 50%, at which both cues were chosen with equal

frequency.

In the unequal condition, we defined decision accuracy as the proportion

of choosing the cue with higher reward probability, separately for each

combination of reward probabilities (100% vs. 80%, 100% vs. 20% and 80%

vs. 20%). Two-tailed one-sample t-tests compared the decision accuracy in

the unequal condition against a chance level of 50%, which would indicate

irrational decisions (i.e., both high and low reward cues were chosen in 50%

of trials).

To determine how reward probability, preferences and other experimental

factors influence RT, we analyzed single-trial RT data with linear mixed-

effects models (LMMs) using the lme4 package (Bates et al. 2015) in R

(RRID: SCR_001905). The LMM is a hierarchical regression method that

distinguishes between fixed and random effects (Gueorguieva and Krystal

2004). LMMs take into account all single-trial data without averaging across

trials and offer better control of type 1 and type 2 errors than ANOVA

(Baayen, Davidson, and Bates 2008). Therefore, statistical inferences from

LMMs are robust to experimental designs with unbalanced trials across



Project 2: Breaking decisional deadlocks (EEG) 117

conditions (Bagiella, Sloan, and Heitjan 2000), which is an important feature

suitable for the current study.

We designed two LMMs with different dependent variables and factors (Table

5.1). Model 1 analyzed the RTs from equal and single-option trials, including

choice type (equal or single-option), reward probability (high, medium or

low), cue remapping (before and after), preference (whether the chosen cue

was preferred) and right-side bias (whether the chosen cue was on the right

side of the screen) as factors. Right-side bias was included to control for

spatial bias relating to preference for stimuli presented on the right or left

side of the screen. For the unequal condition, because each trial had two cues

with different levels of reward probability that cannot be directly compared

with equal or single-option trials, the RTs were analyzed separately in Model

2. Here we used similar predictors with exception of probability, which was

captured by two additional factors: the sum and the absolute difference of

the two reward probabilities, as they both have been shown to affect choice

behavior (Thaler 1991; Ballard et al. 2017; Teodorescu, Moran, and Usher

2016).

In all the LMMs, fixed effects structures included hypothesis-driven, design-

relevant factors and their interactions, and individual participants were

included as the source of random variance (random effect). We used a stan-

dard data-driven approach to identify the random effects structure justified by

the experimental design, which resulted in good generalization performance

(Barr et al. 2013). This approach starts with the maximal random effects

structure (i.e. including all random slopes, intercepts and interactions) and

systematically simplified it until the LMM reaches convergence. Table 5.1
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Table 5.1: The linear mixed-effects models of RT. Model 1 analyzed single-
trial RT in equal and single-option trials. Model 2 analyzed single-trial RT in
unequal trials. In both models, preference was a predictor indicating whether
the preferred cue was selected in each trial. Cue-remapping was a predictor
indicating whether each trial was before or after cure-probability remapping
in the second half of each session. Right-bias indicated whether the cue on
the right size of the screen was chosen in each trial, modeling a possible
response bias.

Model 1 Model 2

Dependent Variables RT RT

Main Effects reward probability sum of reward probability
preference difference of reward probability
cue-remapping preference
choice (equal of single-option) cue-remapping
right-bias right-bias

Interaction Terms probability * choice sum of reward probability *
preference

probability * preference difference of reward probability *
preference

probability * cue-remapping sum of reward probability *
cue-remapping

choice * preference difference of reward probability
* cue-remapping

choice * cue-remapping preference * cue-remapping
preference * cue-remapping
probability * choice * preference
probability * choice *
cue-remapping
probability * cue-remapping *
preference

Random Effects reward probability preference sum of reward probability
(correlated slopes) cue-remapping difference of reward probability
and intercepts) choice preference

right-bias cue-remapping
right-bias
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lists the simplified random effects structures. The correlation structures of

each fitted LMM was assessed to avoid overfitting (Matuschek et al. 2017).

5.3.6 A Cognitive Model of Voluntary Decision-Making

We further analyzed the behavioural data using the Linear Ballistic Ac-

cumulator (LBA) model (Brown and Heathcote 2008). LBA model is a

simplified implementation of a large family of sequential sampling models

of decision-making (Ratcliff and Smith 2004; Bogacz et al. 2006; Gold and

Shadlen 2007; Zhang 2012) which assumes an independent accumulation

process for each choice option. Our model-based analysis has three stages.

First, we fit a family of LBA models with various model complexity to the

behavioural data of individual participants in equal trials. By identifying the

best-fitting model, we infer how reward probability and preference modulated

subcomponents of the evidence accumulation process during decision-making.

Next, we simulate the best fitted LBA model and examine whether model

simulations are consistent with the experimental data in single-option and

unequal conditions. This is a stringent test of model generalizability because

the experimental data in single-option and unequal trials are unseen by the

model fitting procedure. Finally, we link the cognitive processes identified by

the LBA model to brain activity by incorporating a trial-by-trial measure

of EEG activity regressors into the best-fitted model (Cavanagh et al. 2011;

Nunez, Vandekerckhove, and Srinivasan 2017; Nunez et al. 2019).

The LBA model assumes that the decision of when and which option to

choose is governed by a “horse race” competition between two accumulators

i ∈ {1, 2} that accumulate evidence over time supporting the two choice
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options. One accumulator is in favor of the preferred cue and the other of

the non-preferred cue. The activations of the accumulators represent the

accumulated evidence. At the beginning of each trial, the initial activations

of the two accumulators are independently drawn from a uniform distribution

between 0 and A. The activation of each accumulator then increases linearly

over time, and the speed of accumulation (i.e. accumulation rate) varies

as a Gaussian random variable with mean vi and standard deviation Si

across trials. The accumulation process terminates when the activation of

any accumulator reaches a response threshold B (B > A) and the choice

corresponding to the winning accumulator is selected. The model prediction

of RT (measured in seconds) is the sum of the duration of the accumulation

process and a constant non-decision time Ter, with the latter accounts for

the latency associated with other processes including stimulus encoding and

action execution (Brown and Heathcote 2008; Nunez et al. 2019; Karahan et

al. 2019).

5.3.7 Model Parameter Estimation and Model Selection

LBA model has five key parameters: mean v and standard deviation S

of the accumulation rate across trials, decision threshold B, starting point

variability A and non-decision time Ter. To accommodate the empirical

data, one or more model parameters need to vary between conditions. We

evaluated a total of 21 variants of the LBA model with different parameter

constraints (Figure 5.3). First, the accumulation process may differ between

the preferred and non-preferred options, leading v or S to vary between

accumulators (preferred, non-preferred). Second, reward probability could
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modulate the accumulation process or visuomotor latencies unrelated to

decisions, leading to v, S or Ter to vary between three levels of reward

probability. Third, the decision threshold B and starting point A were fixed

between conditions, because the trial order was randomized, and we do

not expect the participants to systematically vary their decision threshold

before knowing the cues to be presented (Ratcliff and Smith 2004). Fourth,

decision threshold B and starting point A were fixed across preference levels,

since participants could not predict which cue would appear on which side

of the screen. During model-fitting, the decision threshold was fixed at 3

as the scaling parameter (Brown and Heathcote 2008), and all the other

parameters allowed to vary between participants. Theoretically, the scaling

parameter can be set to an arbitrary value, which does not influence the

parameter inference, as long as the priors of other parameters remain realistic.

Finally, because the participants showed behavioural differences between

reward probability levels and between preferred/non-preferred choices, we

only estimated models that could bapture these data features, where least

one parameter varied between reward probability levels (v, S or Ter) and at

least one parameter varied between accumulators (v or S).

We use a hierarchical Bayesian model estimation procedure to fit each LBA

model variant to individual participant’s choices (the proportion of preferred

and non-preferred choices) and RT distributions in equal trials. The hierarchi-

cal model assumes that model parameters at the individual-participant level

are random samples drawn from group-level parameter distributions. Given

the observed data, Bayesian model estimation uses Markov chain Monte

Carlo (MCMC) methods to simultaneously estimate posterior parameter
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distributions at both the group level and the individual-participant level.

The hierarchical Bayesian approach has been shown to be more robust in re-

covering model parameters than conventional maximum likelihood estimation

(Jahfari, Ridderinkhof, and Scholte 2013; Zhang et al. 2016).

For group-level parameters (v, S, A and Ter), similar to previous studies

(Annis, Miller, and Palmeri 2017), we used weakly informed priors for their

means E(.) and standard deviations std(.):

E(v) ∼ N(2.5, 1), std(v) ∼ γ(1, 1),

E(S) ∼ N(1, 0.75), std(S) ∼ γ(1, 1),

E(A) ∼ N(2.5, 1), std(A) ∼ γ(1, 1),

E(Ter) ∼ N(0.5, 0.2), std(A) ∼ γ(1, 1),

(5.1)

where N represents a positive normal distribution (truncated at 0) with

parameterized mean and standard deviation, and γ represents a gamma

distribution with parameterized mean and standard deviation.

We used the hBayesDM package (Ahn, Haines, and Zhang 2017) in R for

the hierarchical implementation of the LBA model. For each of the 21 model

variants, we generated four independent chains of 7,500 samples from the

joint posterior distribution of the model parameters using Hamiltonian Monte

Carlo (HMC) sampling in Stan (Carpenter et al. 2017). HMC is an efficient

method suitable for exploring high-dimensional joint probability distributions

(Betancourt 2017). The initial 2,500 samples were discarded as burn-in. To

assess the convergence of the Markov chains, we calculated Gelman-Rubin

convergence diagnostic R̂ of each model (Gelman and Rubin 1992) and used
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R̂ < 1.1 as a stringent criterion of convergence (Annis, Miller, and Palmeri

2017). We compared the fitted LBA model variants using Bayesian leave-

one-out information criterion (LOOIC). LOOIC evaluates the model fit while

considering model complexity, with lower values of LOOIC indicating better

out-of-sample model prediction performance (Vehtari, Gelman, and Gabry

2017).

5.3.8 EEG Data Acquisition and Processing1

EEG data were collected using a 32-channel Biosemi ActiveTwo device

(BioSemi, Amsterdam). Due to technical issues, EEG data collection was

not successful in two participants, and therefore all EEG data analyses were

performed on the remaining 21 participants. EEG electrodes were positioned

at standard scalp locations from the International 10-20 system. Vertical

and horizontal eye movements were recorded using bipolar electrooculogram

(EOG) electrodes above and below the left eye as well as from the outer

canthi. Additional electrodes were placed on the mastoid processes. EEG

recordings (range DC-419 Hz; sampling rate 2048 Hz) were referenced to

linked electrodes located midway between POz and PO3/PO4 respectively

and re-referenced off-line to linked mastoids. Additional electrodes were

placed on the mastoid processes. EEG (range DC-419 Hz; sampling rate 2048

Hz) was collected with respect to an active electrode (CMS; common mode

sense) and a passive electrode (DRL; driven right leg), which were located

midway between POz and PO3/PO4 respectively, to form a ground-like

feedback loop.
1data collected by Jacopo Barone & Jiaxiang Zhang, processing done by Dominik

Krzeminski, included here for completeness
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EEG data were pre-processed using EEGLab toolbox 13.4.4b (Delorme and

Makeig, 2004; RRID: SCR_007292) in Matlab. The raw EEG data were

high-pass filtered at 0.1 Hz, low-pass filtered at 100 Hz using Butterworth

filters and downsampled to 250 Hz. An additional 50 Hz notch filter was used

to remove mains interference. We applied Independent Component Analy-

sis (ICA) to decompose continuous EEG data into 32 spatial components,

using runica function from the EEGLab toolbox. Independent components

reflecting eye movement artifacts were identified by the linear correlation

coefficients between the time courses of independent components and vertical

and horizontal EOG recordings. Additional noise components were identified

by visual inspection of the components’ activities and scalp topographies.

Artefactual components were discarded, and the remaining components were

projected back to the data space.

After artifact rejection using ICA, the EEG data were low-pass filtered at 40

Hz and epoched from -400 ms to 1000 ms, time-locked to the onset of the

stimulus (i.e. reward cues) in each trial. Every epoch was baseline corrected

by subtracting the mean signal from -100 ms to 0 ms relative to the onset of

reward cues.

5.3.9 Multivariate Pattern Analysis2

We use time-resolved Multi-Voxel Pattern Analysis (MVPA) on pre-processed,

stimulus-locked EEG data to assess reward-specific and preference-specific

information throughout the time course of a trial. In contrast to univariate

ERP analysis, MVPA combines information represented across multiple
2analysis performed by Dominik Krzeminski, included for completeness
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electrodes, which has been shown to be sensitive in decoding information

representation from multi-channel human electrophysiological data (Cichy,

Pantazis, and Oliva 2014; Dima et al. 2018).

We conduct three MVPA analysis to identify the latency and spatial dis-

tribution of the EEG multivariate information. The first to decode reward

probability levels in equal choices (e.g. equal trials with two 100% reward

cues versus equal trials with two 80% cues). The second to decode preferred

versus non-preferred choices in equal trials. The third to decode between

equal and single-option choices with the same reward probability (e.g. equal

trials with two 100% cues versus single-option trials with a 100% cue).

Each analysis is formed as one or multiple binary classification problems,

and the data feature for classification included EEG recordings from all

32 electrodes. In each analysis, at each sampled time point (-400 ms to

1000 ms) and for each participant, we train linear support vector machines

(SVM) (Garrett et al. 2003) using the 32-channel EEG data and calculate the

mean classification accuracy following a stratified ten-fold cross-validation

procedure. In all MVPA, we include the EEG data from 400 ms before cue

onset as a sanity check, because one would not expect significant classification

before the onset of reward cues.

In each cross-validation, 90% of the data issued as a training set, and the

remaining 10% as a test set. In some analysis (e.g. equal trials with 100%

cues versus equal trials with 80% cues), the number of samples belonging

to the two classes is unbalanced in the training set. We use a data-driven

over-sampling approach to generate synthetic instances for the minor class

until the two classes had balanced samples (Zhang and Wang 2011). The
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synthetic instances are generated from Gaussian distributions with the same

mean and variance as in the original minority class data. Training set data

were standardized with z-score normalization to have a standard normal

distribution for each feature. The normalization parameters estimated from

the training set was then applied separately to the test set to avoid overfitting.

To reduce data dimensionality, we perform principal component analysis to

the training set data and selected the number of components that explained

over 99% of the variance in the training set. The test set data are projected

to the same space with reduced dimensions by applying the eigenvectors of

the chosen principal components. We then train SVM to distinguish between

the two classes (i.e. conditions) and evaluate the classification accuracy using

the test set data. The procedure is repeated ten times with different training

and test sets, and the classification accuracies are averaged from the ten-fold

cross-validation. We use the SVM implementation in MATLAB Machine

Learning and Statistics Toolbox. The trade-off between errors of the SVM

on training data and margin maximization is set to 1.

To estimate the significance of the classification performance, we use two-tailed

one-sample t-test to compare classification accuracies across participants

against the 50% chance level. To account for the number of statistical

tests at multiple time points, we use cluster-based permutation (Maris and

Oostenveld 2007) to control the family-wise error rate at the cluster level

from 2000 permutations.
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5.3.10 Estimation of Single-Trial ERP Components3

We estimate two ERP components from single-trial EEG data in equal trials:

N100 and P300, which are subsequently used to inform cognitive modelling.

The visual N100 is related to visual processing (Mangun and Hillyard 1991)

and the P300 is related to evidence accumulation during decision making

(Kelly and O’Connell 2013; D. M. Twomey et al. 2015).

To improve the signal-to-noise ratio of single-trial ERP estimates, we use a

procedure similar to previous studies (Kayser and Tenke 2003; Parra et al.

2005; Nunez et al. 2019). For each participant, we first performed singular

value decomposition (SVD) to the grand averaged ERP data across all trials

from the same experimental condition. SVD decomposes the trial-averaged

ERP data Ak×p (where k is a number of channels and p is a number of time

points) into independent principal components. Each component consists

of a time series of that component and a weighing function of all channels,

defining the spatial distribution (or spatial filter) of that component. Because

the ERP waveform is the most dominant feature of the trial-averaged ERP

data, the time course of the first principal component (i.e. the one that

explains the most variance) represents a cleaned trial-average ERP waveform

(Nunez et al. 2019), and its weight vector provides an optimal spatial filter to

detect the ERP waveforms across EEG channels. We then applied the spatial

filter from the first principal component as a channel weighting function to

single-trial EEG data to improve the signal-to-noise ratio.

The single-trial EEG data filtered with the SVD-based weighting function is

then used to identify the peak-latency and peak-amplitude of the N100 and
3analysed together with Dominik Krzeminski, who performed the component extraction
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P300 components. For N100, we search for the peak negative amplitude in a

window centered at the group-level N100 latency (112 ms) and started at 60

ms. The lower bound of the search window was determined by the evidence

that the visual onset latency is ~60 ms in V1 (Schmolesky et al. 1998). For

P300, we search for a peak positive amplitude in a window centered at the

group-level P300 latency (324 ms). For both N100 and P300, the search

window has a length of 104 ms, similar to a previous study (Nunez et al.

2019).

5.3.11 EEG-Informed Cognitive Modelling

Recent studies showed that the variability of the P300 component closely

relates to the rate of evidence accumulation during decision making (D. M.

Twomey et al. 2015). We therefore extend the best fitting LBA model with

EEG-informed, single-trial regressors, which estimates the effect of trial-by-

trial variability in EEG activity on the mean accumulation rate (Hawkins et

al. 2015; Nunez, Vandekerckhove, and Srinivasan 2017).

The main regressor of interest is the slope of change between the N100 and

P300 components, which is defined as the ratio of the P300-N100 peak-

amplitude difference and the P300-N100 peak-latency difference in each equal

trial. We also test four additional regressors from individual ERP components:

P300 amplitude, P300 latency, N100 amplitude and N100 latency. All

the EEG regressors are obtained from the estimations of single-trial ERP

components in equal choice trials. To obtain a meaningful intercept, the

regressors are mean-centered and rescaled to have a unit standard deviation.
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Each EEG regressor is tested in a linear regression model, using the same

Bayesian hierarchical model estimation procedure as in the behavioural

modelling analyses. For each regression model, we assume that the mean

accumulation rates of both accumulators v1(t) and v2(t) (i.e. the one in favor

of the preferred option and the other one in favor of the non-preferred option)

are influenced by the EEG regressor of interest on a trial-by-trial basis:

v1(t) = ṽ1 + β × EEG(t), v2(t) = ṽ2 + β × EEG(t), (5.2)

where t = 1, 2, 3, . . . represents the equal choice trials, and ṽ1 and ṽ2 are the

intercepts. The regression coefficient β represents the effect of EEG regressor

on the mean accumulation rates.

The rationale of estimating an EEG regressor to the mean drift rate is

twofold. First, this approach allows quantifying the trial-by-trial change

over the intercept (i.e. the mean drift rate), independent of its trial-by-trial

variability (parameter S). Second, one would not expect the sensor level

EEG signal has sufficient spatial resolution to distinguish between the two

accumulators encoding two options. Therefore, we estimated a single EEG

regressor across both accumulators.

5.4 Results

We examined the effects of reward probability and spontaneous preference

on behavior and EEG activity during voluntary decisions. In a probabilistic

reward task (Figure 5.1B), participants chose between two options with
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Figure 5.2: behavioural results. A. Preference bias across reward probability
levels in equal trials (left) and decision accuracy across reward probability
levels in unequal trials (right). B. Linear mixed-effects model results for Model
1 in Table 5.1. Dark red bars represent significant effects with p < 0.001.
Light red bars represent significant effects with p < 0.05. Grey bars represent
non-significant factors and interactions. Error bars represent standard errors
across participants. C. Linear mixed-effects model results for Model 2 in
Table 5.1.
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Figure 5.3: Main effects and interactions. Significant effects and interac-
tions in RT from Model 1 (Table 5.1) were presented separately for reward
probability and preference in equal and single-option trials (A); before and
after cue-remapping at different reward probability levels (C); before and
after cue-remapping in equal and single-option trials (D). Significant main
effects in Model 2 were presented in panel B. Error bars represent standard
errors across participants.
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the same reward probability (equal trials) at high (100%), medium (80%)

or low (20%) levels. In two control conditions, participants made binary

choices between options with different levels of reward probability (unequal

trials) or responded to the location of a single reward cue (single-option

trials). Below, we first report behavioural results. We then fit linear ballistic

accumulator (LBA) models to the choices and RT distributions of equal

trials and infer about the underlying cognitive processes based on best-fitting

model parameters. Next, we perform univariate and multivariate analyses of

EEG data to identify spatio-temporal representations of reward probability

and preference information as well as their time courses. We then extend

the best-fitted LBA model with single-trial measures of EEG activity to test

whether trial-to-trial variations in EEG data relates to the rate of evidence

accumulation across trials.

5.4.1 Behavioural Results

Choices

For each pair of cues with the same reward probability, we defined the

preferred cue as the one chosen more frequently than the other (non-preferred)

in the equal choice trials (see Behavioural Analysis in Methods section). We

found a strong preference bias (>50%) for choosing one reward cue over

the other at each level of reward probability (Figure 5.2A; high: 95% CI

[0.682, 0.765]; medium: 95% CI [0.679, 0.759]; low: 95% CI [0.669, 0.745]).

A repeated-measures ANOVA showed no significant difference in preference

between reward probability levels (F (2, 44) = 0.2, p = 0.81). Therefore,
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although the two options were associated with the same level of reward

probability, participants did not make their choices randomly. We further

used a linear mixed-effects model (LMM) to evaluate the preference bias as

a function of cue remapping (before vs after) and trial order in each testing

block. The preference bias was smaller after cue remapping (Supplementary

Figure 5.11, β = −0.181, 95% CI [-0.01, -0.348], p = 0.03), but was not

influenced by trial order (β = 0.037, 95% CI [-0.170, 0.243], p = 0.73).

These results imply that, for a given set of cue-probability associations, the

extent of preference bias did not significantly vary over time. Because the

cue-probability mapping was randomized across participants and re-mapped

within each session, the observed preference bias is unlikely to be explained

by a group-level preference towards any specific cue, but rather a spontaneous

preference at the individual level. Additionally, to check if preference from

first half of the experiment affected preference after remapping, we calculated

the proportion of any cue being preferred in both sessions on a subject level.

We found that preference was consistent only in 51.5% of cases, rendering

no support for preference transfer after remapping (one-sided binomial-test

p = 0.5, 95% CI = [0.361, 1]).

In unequal choice trials, as expected, the cues with higher reward probability

were chosen more often, as evidenced by the above-chance decision accuracies

in all conditions (Figure 5.2B; high vs. medium: t(22) = 16.08, 95% CI [0.774,

1], p < 0.001; high vs. low: t(22) = 23.31, 95% CI [0.862, 1], p < 0.001;

medium vs. low: t(22) = 20.97, 95% CI [0.834, 1], p < 0.001; one-sample

t-test against the 0.5 chance level). A repeated-measures ANOVA showed

significant differences in decision accuracy between reward probability levels
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(F (2, 44) = 28.17, p < 0.001). Post-hoc pairwise comparison with Tukey’s

correction indicated that accuracy in the high vs. low probability condition

(93.8%) was significantly higher than in the high vs. medium (84.3%) (t(44) =

5.267, p < 0.001) and the medium vs. low (80.7%) (t(44) = 7.265, p < 0.001).

Similar to the analysis of preference, we used a LMM to evaluate decision

accuracy in unequal trials as a function of cue remapping and trial order and

found no significant associations (Supplementary Figure 5.11, cue remapping:

β = 0.022, 95% CI [-0.235, 0.1901], p = 0.84; trial order: β = 0.078, 95% CI

[0.013, 0.169], p = 0.1). These results suggested that participants memorized

the cue-probability associations for rational choice behavior and maintained

the decision accuracy throughout the experiment.

Response Times

We used a LMM to quantify the influence of experimental factors on RTs

in equal and single-option choices (Figure 5.2B, Model 1 in Table 5.1).

The fixed effects included reward probability, choice type (equal vs. single-

option), preference (choosing the preferred vs. the non-preferred option), cue

remapping and their meaningful interactions (Figure 5.3). Participants were

faster when choosing the preferred than the non-preferred option (β = −0.063,

95% CI [-0.027, -0.991], p < 0.05) and RTs decreased as the reward probability

increased (β = −0.101, 95% CI [-0.067, -0.135], p < 0.001). The RT in equal

choice trials were longer than that in single-option trials (β = −0.292, 95%

CI [-0.201, -0.384], p < 0.001). The effect of reward probability on RT was

stronger in equal compared to single-option choices, supported by a significant

interaction between the two main effects (β = 0.045, 95% CI [0.025, 0.066],
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p < 0.001).

Participants had slower responses after memorizing a new set of cue-

probability associations, indicated by a significant main effect in RT before

and after cue remapping (β = 0.149, 95% CI [0.096, 0.201], p < 0.001).

The significant interaction between cue remapping and reward probability

suggested that the increase in RT was more pronounced in trials with lower

reward probability (β = −0.039, 95% CI [-0.051, -0.026], p < 0.001). The

interaction between cue remapping and choice type (β = −0.247, 95% CI

[-0.192, -0.302], p < 0.001) indicated that this pattern was mainly associated

with equal trials. Because evaluating reward probability of a cue was likely

associated with additional cognitive load after cue remapping, the observed

RT difference before and after cue remapping implies that participants

evaluated both cues throughout the experimental session.

In a second LMM, we analyzed RTs in unequal trials (Model 2 in Table 5.1),

including the sum and difference of the reward probability of two cues in each

trial as fixed effects. The sum of two reward probabilities in unequal trials

was negatively associated with RT (β = −0.071, 95% CI [-0.032, -0.110],

p < 0.001), consistent with previous studies that the total reward magnitude

influences decision-making (Pirrone, Azab, Hayden, Stafford, and Marshall

2018a; Teodorescu, Moran, and Usher 2016). Additionally, the difference of

two reward probabilities was also a significant predictor at a more lenient

threshold (β = −0.028, 95% CI [-0.001, -0.055], p < 0.05). No other effects or

interactions reached significance, further solidifying that the cue-probability

associations were well remembered in both halves of the experiment.
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Figure 5.4: Model comparison. LOOIC scores of 21 LBA model variants. The
LOOIC score differences between all models and the best model are plotted
against corresponding model structures, which were illustrated on the left of
the figure. The model structure specified how the mean accumulation rate v,
the standard deviation S of the accumulation rate and the non-decision time
Ter could vary between conditions. A black filled square indicated that the
corresponding parameter could vary between reward probability levels and
preferred/non-preferred options. An orange or purple filled square indicated
that the corresponding parameter could only vary between reward probabil-
ity levels or preferred/non-preferred options, respectively. Unfilled (white)
squares indicated that the parameter remained fixed between conditions.
Bar color indicates whether the difference in LOOIC scores is considered
substantial (over 10): white part of the bar corresponds to score up to 10,
orange to the amount exceeding 10. The best model was shown with a
LOOIC score difference of zero (indicated by the red arrow).
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Figure 5.5: Model fit and simulations. A. Simulations of RTs in equal
choices, generated from the posterior distribution of the best fitted model
for high (left), medium (middle) and low (right) reward probability levels.
Histograms represent experimental data and density distributions represent
model simulation from 100 iterations. Negative values represent RTs for non-
preferred choices. B. Simulation of RTs in single-option (left) and unequal
(right) choices from 100 iterations. Error bars represent standard errors
across participants.
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Figure 5.6: Posterior model parameters and inferences. Group-level LBA
model parameters of the best fitting model: means of accumulation rates
(v, green), standard deviations of accumulation rates (S, blue), non-decision
time (Ter; orange) and starting point (A, purple). Error bars represent
standard deviations of posterior distributions of parameter values. The
means and standard deviations of accumulation rates were shown separately
for each reward probability level (high, medium and low) and accumulator
(p1, preferred option; p0, non-preferred option).
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Figure 5.7: Parameter comparison. Differences of posterior parameter es-
timates across probability levels (left and middle columns) and preference
levels (right column). The proportion of posterior difference distributions
above zero suggested higher parameter values for higher probability level or
more preferred options.
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5.4.2 Cognitive Modelling of Behavioural Data

To identify the cognitive processes that led to the observed behavioural

differences, we compared 21 variants of the LBA model. The model variants

differed systematically in their constraints on whether the rate of evidence

accumulation and non-decision time could change between reward probability

levels or preferred/non-preferred options. For each model variant, we used

hierarchical Bayesian modelling with Markov chain Monte Carlo (MCMC)

parameter estimation routine to estimate the posterior distributions of the

model parameters, given the observed choice and RT distribution from

individual participants (see Model parameter estimation and model selection).

To identify the model with the best fit, we calculated the Bayesian leave-one-

out information criterion (LOOIC) score for each model (Vehtari, Gelman,

and Gabry 2017).

MCMC chains representing posterior parameter estimates in all the 21 model

variants reached high levels of convergence (Gelman-Rubin convergence

diagnostic R̂ ≤ 1.02 for all parameters in all models). The LOOIC scores

suggested that the models with the mean accumulation rate varying between

reward probability levels and between preference levels fitted the data better

than others model variants. The best-fitting model (i.e. the one with the

lowest LOOIC score; Figure 5.4) had fixed group-level non-decision time

with the standard deviation of the accumulation rate varying between reward

probability levels and preferred/non-preferred options. To evaluate the model

fit to the empirical data in equal trials, we calculate the posterior prediction

of the best fitting model by averaging 100 iterations of model simulation

using posterior parameter estimates. Averaging across multiple iterations
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reduces potential biases when sampling from posterior parameter estimates.

Each of the 100 iterations generates simulated behavioural responses (RTs

and choices) of individual participants, with the same number of trials per

condition as in the actual experiment. There was a good agreement between

the observed data and the model simulations across reward probability levels

and choice preferences (Figure 5.5A).

We use Bayesian inference to analyze the posterior distributions of group-level

model parameters (Bayarri and Berger 2004). To evaluate if a parameter

varies substantially between any two conditions, we calculate the proportion

of posterior samples in which the parameter value for one condition was

greater than the other. To test if a parameter differs from a threshold value,

we calculate the proportion of the posteriors greater or smaller than the

threshold. To avoid confusion, we use p to refer to classical frequentist p-

values, and Pp|D to refer to Bayesian inference results based on the proportion

of posteriors supporting the testing hypothesis, given the observed data.

For the best fitting model (Figure 5.4), we compared the posterior estimates

of the group-level parameters between conditions (Figures 5.6 and 5.7). We

found strong evidence for choices with high reward probability to have

higher mean (v) and standard deviation (S) of the accumulation rate than

choices with medium (vhigh > vmedium : Pp|D = 0.999; Shigh > Smedium :

Pp|D = 0.954) or low medium (vhigh > vlow : Pp|D = 1; Shigh > Slow :

Pp|D > 0.999) reward probability. The mean and standard deviation of

accumulation rates between choices with medium and low reward probabilities

were inconclusive (vmedium > vlow : Pp|D = 0.839; Smedium > Slow : Pp|D =

0.877). Furthermore, there was also strong evidence for a higher mean
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accumulation rate for the preferred than the non-preferred options (Pp|D =

0.999), and no evidence for a difference in the standard deviation of the

accumulation rate (Pp|D = 0.532). These results supported the claim that

preferred and certain (100%) cues were recalled and processed faster than

non-preferred cues. Certain cues were also associated with more variable

accumulation rate. Model comparisons further suggested that the latencies

of early visual encoding and motor execution were not influenced by reward

probability nor preference as the models with varying non-decision time

parameter did not fit the data as well.

Next, we evaluated whether the best fitting model could reproduce qualitative

RT patterns in the single-option and unequal choices, which were unseen by

the parameter estimation procedure. This allows us to evaluate whether the

model that fits to the equal choice data can also characterize behavioural

patterns in other conditions. For unequal choices, two accumulators repre-

senting two cues with different reward probability levels compete to reach the

decision threshold, with their parameters set to the posterior estimates from

the fitted LBA model. For single-option choices, a single accumulator is set

to reach to the decision threshold. Similar to the simulation of equal choices,

we average the predicted behavioural responses of unequal and single-option

choices for each participant from 100 iterations of simulation. Each iteration

contains the same number of trials as in the experiment.

For unequal trials, the simulated RT showed similar patterns to the observed

data, in which choosing between medium and low probability cues led to the

longest RT (Figure 5.5B). For single-option choices, similar to the observed

data, higher reward probability and preferred cues were associated with faster
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RT in simulation. However, simulated RT in single-option choices was longer

than the experimental data, suggesting that simple reactions to a single cue

may engage distinct cognitive processes beyond the current model.

5.4.3 EEG Results

We focused our EEG analysis on equal trials (with additional control analysis

on EEG data from single-option trials), because both reward probability and

preference bias played major roles in shaping the behavioural performance of

that condition.

Event-Related Potentials

We examine univariate differences in evoked responses between conditions

in single EEG electrodes. For each participant, trial-averaged ERPs are

calculated from epochs of equal or single-option choices, with epochs time-

locked to reward cue onset. For both equal and single-option conditions, we

test for differences in ERPs between three levels of reward probability using

a one-way repeated-measures ANOVA. Furthermore, we test for differences

in ERPs between preferred and non-preferred choices in equal trials using

a paired t-test. We perform statistical tests on all electrodes and all time

points. Cluster-based permutation tests (2000 iterations with maximum

statistics) are used to correct for multiple comparisons across electrodes and

time points (Maris and Oostenveld 2007).

Different reward probability levels produced similar grand-average ERP

waveforms during equal (Figure 5.8A) and single-option (Figure 5.8B) choices,
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Figure 5.8: Grand-average stimulus-locked ERPs across all EEG electrodes.
A. ERPs from high, medium and low reward probability in equal trials.
B. ERPs from high, medium and low reward probability in single-option
trials. C. ERPs from equal trials in which the preferred or non-preferred cue
was chosen. In all panels, the dashed lines represent standard errors across
participants.
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with a negative peak in the 100 – 150 ms time window (the N100 component)

and a positive peak in the 300 – 400 ms time window (the P300 component).

When assessing the effect of reward probability on ERPs, we found no

univariate differences survived the correction for multiple comparisons in

equal (p = 0.552 at all time points, cluster-level permutation test across

electrodes and time points) or single-option trials (p = 0.175, cluster-level

permutation test). For equal trials, we found no significant difference in

ERPs between preferred and non-preferred choices (Figure 5.8C, p = 0.208,

cluster-level permutation test). Therefore, in the current study, univariate

ERPs were not sensitive to reward probability or preferred/non-preferred

choices.

Multivariate Patterns in Equal Choices

To decode multivariate information representing reward probability in equal

choice trials, we applied the linear SVM on multivariate EEG patterns

across all electrodes (see Multivariate pattern analysis). Binary classification

between high and medium reward probability was significantly above chance

(p = 0.01, cluster permutation correction, non-parametric Wilcoxon test)

from 144 ms after cue onset (Figure 5.9A). Similarly, the information between

high and low reward probability was decodable above chance from 192 ms

after cue onset (p < 0.05, cluster permutation correction). We found no

significant classification accuracy between medium and low reward probability

(p > 0.16 in all time points, uncorrected). Therefore, choices associated with

certain (100%) rewards were distinguishable from those with uncertain reward

probabilities.
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Figure 5.9: MVPA results. A. Classification accuracies across time-points
between equal choices with different levels of reward probability. B. Clas-
sification accuracies across time-points between equal trials with preferred
and non-preferred choices. C. Classification accuracies across time-points
between equal and single-option choices with the same level of reward proba-
bility. In all panels, the black lines denote classification accuracies from a
stratified 10-fold cross-validation and the gray areas denote standard errors.
Significant decoding time windows (green horizontal bars) were determined
from cluster-level permutation tests (p < 0.05, corrected). Topographic maps
represent activation patterns from classification weights, which indicate the
contribution of different EEG channels to overall classification accuracies.
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We applied a similar classification procedure to decode the information

between equal trials in which the participants chose their preferred or non-

preferred choices across reward probability levels. The information about

preferred versus non-preferred choices was decodable from 316 ms to 472 ms

after cue onset (p = 0.009, cluster permutation correction).

To evaluate the relative importance of each feature (i.e. EEG electrode) to the

classification performance, we calculated the weight vector of SVMs. For each

classification problem, we retrained the SVM at each time point with all the

data included in the training set and obtained the SVM weight vector. The

weight vectors were then transformed into interpretable spatial patterns by

multiplying the data covariance matrix (Haufe et al. 2014). The group spatial

patterns were calculated by averaging across participants and from all time

points which had significant classification accuracy. Relevance spatial patterns

based on SVM’s weight vector showed that mid-line central and posterior

electrodes contained the most information for significant classification (Figure

5.9).

5.4.4 EEG-informed Cognitive Modelling

P300 component is a strong candidate for a marker of evidence accumula-

tion. It’s amplitude has been associated with attention (Datta et al. 2007),

working memory (Kok 2001) and it’s amplitude with task difficulty (Kok

2001). Prominent models propose it reflects build-to-threshold of the decision

variable (D. M. Twomey et al. 2015; Kelly and O’Connell 2013) or marks the

conclusion of internal decision-making process (Nieuwenhuis, Aston-Jones,

and Cohen 2005). Considering that the latency of early visual processing
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Figure 5.10: EEG-informed modelling. A. The schematic diagram of extract-
ing single-trial ERP components. 32-channel EEG signals from a single trial
were multiplied by the weights of the first SVD component, calculated from
the grand-averaged ERP. Next, the N100 and P300 components in that trial
were identified by searching for the peak amplitude in a time of 60-164 ms for
the N100 component, and 272-376 ms for the P300 component, respectively.
ERP marks in three representative trials were illustrated in the right column
of the panel. The ratio between N100-P300 peak amplitude difference and
N100-P300 peak latency difference was calculated as a single-trial regressor
for modelling. B. Posterior estimates of the coefficient between the EEG-
informed single-trial regressor (the rising slope of N100-P300 components)
and changes in the accumulation rate.
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is a part of non-decision time (Nunez et al. 2019), we further hypothe-

sized that the evidence accumulation process initiates at N100 peak latency.

This assumption is based on combined inferences from the MVPA analysis,

showing very early components differentiating between conditions, and LBA

modelling, indicating no differences in non-decision time, which suggests that

the differences are related to evidence accumulation. Such early start of

accumulation could be a product of the simple and unambiguous stimulus set

consisting of basic shapes with no perceptual noise. This led to a theoretical

prediction that the slope of the rise in EEG activity between N100 and P300

peak amplitudes reflected the accumulation rate on a trial-by-trial basis. To

validate this prediction, we estimated the N100 and P300 components from

single trials of equal choices (Figure 5.10A), using an SVD-based spatial

filter to improve the signal-to-noise ratio of single-trial ERPs (see Estimation

of single-trial ERP components). This single-trial EEG estimate was then

added as a linear regressor (Equation 1) of the mean accumulation rate to

the LBA model variant with the best fit to behavioural data (i.e. model 15

in Figure 5.4).

We used the same MCMC procedure to fit the extended LBA model with

the EEG-informed regressor to the equal trial data. The extended LBA

model showed good convergence (R̂ ≤ 1.02 for all parameters) and provided

a better fit, with a lower LOOIC score 2687 than the model without the

EEG-informed regressor (LOOIC score 2796), suggesting that the rising slope

of N100-P300 indeed affected the decision process. The posterior estimate of

the regression coefficient β provided strong evidence for a positive single-trial

effect (Figure 5.10B, Pp|D = 0.983), indicating that a bigger N100-300 slope
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is associated with faster accumulation rate.

5.4.5 Additional Analyses: Alternative EEG Regressors

and Representations of Choice Types

Is it possible that a simpler EEG-based regressor based on a single ERP

component could provide a better model fit than the N100-P300 slope? To

test this possibility, we fitted four additional extended LBA models with

different single-trial EEG regressors applied to the mean accumulation rate:

N100 peak latency, N100 peak amplitude, P300 peak latency and P300 peak

latency. All the alternative regression models showed inferior fits (LOOIC

scores larger than 2700) than the N100-P300 slope model. We therefore

conclude the effects of single-trial EEG activity on the accumulation rate

were related to both ERP components.

We did not observe above-chance classification between equal trials with the

two levels of uncertain reward probability (Figure 5.9A). One may concern

whether the lack of significant classification was due to the small number of

trials in those conditions. To rule out this possibility, we conducted binary

classifications to discriminate equal and single-option trials. The information

about trial types (equal vs. single-option) was decodable at every level of

reward probability (Figure 5.9C, p < 0.05, cluster corrected), including the

one with the least number of trials (i.e. the low reward probability). This

result was expected, given the large difference in stimulus presentation and

behavioural performance between the two types of choices. SVM-based

relevance patterns highlighted the middle central and frontal electrodes to
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contain most of the information of trial types. These results suggested

that the difference in classification accuracies between certain and uncertain

reward conditions could not be readily caused by differences in the number

of trials.

5.5 Discussion

We provide novel evidence that reward probability and spontaneous preference

influence choices between equally probable alternatives and their electrophys-

iological signatures. We observed two patterns that were consistently distinct

at behavioural, cognitive and neural levels: a certainty effect, distinguishing

choices between cues with 100% reward probability and cues with uncertain

reward probabilities (80% or 20%), and a preference effect, differentiating

between equally valued options. At the behavioural level, reward certainty

(i.e. 100% reward vs. non 100% rewards) resulted in disproportionately

faster reaction times, while preference biased both choice frequency and RT,

resulting in more frequent and faster responses for preferred cues. Using

hierarchical Bayesian implementation of a cognitive model, we showed that

reward certainty and preference bias were associated with changes in the

accumulation rate, a model-derived parameter to account for the speed of

evidence accumulation during decision-making. At the electrophysiological

level, the information of certainty and preference could be reliably decoded

from multivariate ERP patterns early during decisions, but not from univari-

ate EEG activities. The accumulation rate was further affected by the slope

of the rise in ERPs between the N100 and P300 components on a trial by
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trial basis. Together, the current study provides insight into neurocognitive

mechanisms driving choices in a deadlock situation, where there is no clear

advantage in choosing one option over the other.

The certainty effect implies a monotonic but nonlinear relationship between

reward probability and RT in equal choices: the difference between certain

(100%) and uncertain (80% and 20%) reward was greater than that between

the two uncertain conditions. This points to a special status of the 100%

reward certainty distinct from lower reward probabilities, as the latter always

carries a non-zero risk of no reward. The salient representation of the 100%

reward certainty is further highlighted by the lack of significant EEG pattern

classification between the two uncertain reward probabilities (80% vs. 20%,

Figure 5.9A). Here, the certainty effect in rapid voluntary decisions resembles

risk-averse behavior in economic decisions (Tversky and Kahneman 1989),

which overweights outcomes with 100% certainty relative to probable ones.

One has to be cautious while interpreting the differences in MVPA pattern

between conditions. While it is tempting to assume that 100% reward

certainty is driving the observed EEG differences, it is also possible that

uncertain cues drove the observed choice biases. This is due to the fact that

MVPA cannot indicate in which condition signal was stronger, but rather

whether differences in response pattern exist (Stelzer, Chen, and Turner

2013). Given no differences in grand-averaged ERP signal, it is impossible

to tell which condition drove the differences in brain activation. While

our current paradigm does not provide a clear answer to this question, a

dedicated experimental design systematically manipulating different levels

of uncertainty, and a analysis using spatially integrated MVPA output with
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EEG signals passed through the weights could resolve this ambiguity.

Interestingly, reward probability affected RTs across all trial types. It per-

sisted from equal choices to simple reactions to cue locations in single-option

trials (Figure 5.3A). In unequal choices, there was also a negative association

between RT and the sum of reward probability of the two choices (Figure

5.3B). Therefore, even though the reward was not contingent upon RT in

the current study, we observed a general tendency of accelerating ones’ re-

sponses in the presence of more certain reward. These results are akin to

the effect of reward magnitude, which also demonstrates a facilitating effect

on RT (Schurman and Belcher 1974; Chen and Kwak 2017). In non-human

primates, the phasic activation of dopamine neurons in the ventral midbrain

has similar response profiles to changes in reward probability and magni-

tude (Fiorillo, Tobler, and Schultz 2003), suggesting a common mesolimbic

dopaminergic pathway underlying different facets of reward processing that

affect decision-making.

Bayesian model comparison identified specific effects of reward probability

on accumulation rates, highlighting two possible cognitive origins of the

certainty effect. First, in equal choices, cues with 100% certain reward

resulted in larger mean accumulation rates than those with uncertain reward

probabilities (Figure 5.7). Accumulation rate has been linked to the allocation

of attention on the task (Schmiedek et al. 2007). Because reward plays a

key role in setting both voluntary (top-down) and stimulus-driven (bottom-

up) attentional priority (Libera and Chelazzi 2006; Raymond and O’Brien

2009; Krebs, Boehler, and Woldorff 2010; Won and Leber 2016), high reward

probability may boost the attentional resources allocated to sensory processing



Project 2: Breaking decisional deadlocks (EEG) 154

for more rapid decisions. Second, reward probability affected the variability

of accumulation rates across trials. Higher accumulation rate variability

has been associated with better-memorized items (Starns and Ratcliff 2014;

Osth, Dennis, and Heathcote 2017; Tillman et al. 2017). It is possible that

stimuli associated with 100% certain reward were memorized more strongly

(Miendlarzewska, Bavelier, and Schwartz 2016), a hypothesis to be confirmed

in future studies.

Furthermore, MVPA of stimulus-locked ERPs showed multivariate EEG

patterns distinguishing between cues with 100% certain reward and other

uncertain reward probabilities as early as ~150 ms after stimulus onset

(Fig 5.9A; see also Thomas, Vanni-Mercier, and Dreher (2013)), and model

comparisons found no evidence to support for non-decision time to vary

between reward probability levels (Figure 5.4). Considering the average RT

of 600 ∼ 900 ms in equal choices, our results did not support the latency of

post-decision motor preparation, which constitutes a part of the non-decision

time (Karahan et al. 2019), to be the source of the certainty effect. This result

is consistent with the view that motor action implementation is independent

of the stimulus value (Marshall, Bogacz, and Gilchrist 2012). Instead, the

certainty effect possibly originates from evidence accumulation during the

decision process, as supported by the changes in the accumulation rate.

When choosing between equally valued options, classical evidence accumula-

tion theories predict a deadlock scenario with a prolonged decision process

(Bogacz et al. 2006). This was not supported by recent experimental findings

in value-based decisions (Pirrone, Azab, Hayden, Stafford, and Marshall

2018a; Teodorescu, Moran, and Usher 2016), including the current study, in
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which equal choices took no longer than unequal ones. Our behavioural, mod-

elling and EEG analyses indicated a preference bias which could effectively

serve as a cognitive mechanism to break the decision deadlock. Compared

with non-preferred options, preferred decisions facilitated RTs, were associ-

ated with larger accumulation rates and evoked distinct EEG multivariate

patterns. Here, we did not aim to provide a mechanistic interpretation of

preference (i.e. why or how the preference bias originated). Instead, our

results demonstrated a consistent presence of preference bias before and

after cue-probability re-mapping, independently across reward probabilities

(Figure 5.2A) and maintained in single-option trials (Figure 5.3A), which we

considered as a novel finding in the literature of voluntary choice.

What can induce a preference bias? Because the cue-probability association

was initially randomized and later changed within each session, and no

differences in shape preference were found, this bias was not due to stimulus

salience but established spontaneously (Voigt et al. 2019). Multiple factors

may contribute to the establishment of preferred options. Preference might

arise as a function of early choices and outcome frequencies (Izuma et al.

2010; Bakkour et al. 2018), which shape future beliefs or alter the memory

trace of certain cue-probability bindings. This interpretation is consistent

with an irrational bias, which favors previously rewarded stimuli, even when

controlling for their value (Scholl et al. 2015). Alternatively, some cue-value

associations might be remembered more reliably due to a deliberate cognitive

strategy of memory resource allocation.

Our results provide little evidence to either support or refute these hypotheses.

However, memory strength alone cannot explain the full set of results in the
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current study. First, it is worth noting that the stimulus-reward mapping

was presented a total of 16 times throughout each session (at the beginning

of each block and after every 40 trials), and participants took as much time

as they needed before the next set of trials.

Secondly, purely memory-based interpretation cannot support both equal

and unequal condition results taken together (Figure 5.2). Response times in

equal trials would suggest that memorization is a function of value, since the

100% probability condition was associated with fastest RTs, while the 20%

probability with the slowest. Looking at the pattern of accuracies in the the

unequal condition paints a different picture however: here the accuracy is a

function of value difference. A purely memory-based interpretation of this

pattern would suggest that medium value symbols are remembered the least,

leading to a higher error rate in trials involving them.

Similarly, the linear mixed-effect models found significant effects of preference

on RT only in equal and single-option trials, but not in unequal trials

(Figure 5.2). If we were to believe memorization of items to be different

between two cues of the same reward probability, we would expect this to

be reflected also in the unequal condition, which was not the case. This

pattern of results might suggest differences related to the strategy of choice.

An potential interpretation for lower accuracy rate in the high vs medium

condition could be a satisficing strategy, where 80% (medium) rewards are

considered good enough and sometimes chosen over the 100%. Such strategy

would make sense from resource allocation perspective, given that items are

examined sequentially - then simply observing only a single cue, choosing

the 80% symbol without paying attention to the alternative can be rational.
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Such strategy adjustments could have effects on the interpretation of our

modelling and EEG findings, such as testing more sophisticated models which

can account for dynamical threshold adjustment during the accumulation

process.

Future studies could validate these hypotheses by employing more frequent

cue-probability remapping throughout experiments and controlling for mem-

ory effects. Furthermore, all trials in the current studies were randomized

and participants did not have prior knowledge of upcoming stimuli. One

future extension would be to evaluate whether presenting prior information

of reward probability in an upcoming trial would modulate boundary separa-

tion in voluntary decisions, similar to the effect of prior bias on perceptual

decisions (Mulder et al. 2012).

The current study considered a simplified form of decision, in which the

amount of reward was fixed (10 game points). In traditional value-based

decisions assumed by the prospect theory, a decision-maker needs to integrate

the value and probability of gain or loss to obtain an expected utility for

each option (Tversky and Kahneman 1992). Together, our results here and

previous studies (Wagner et al. 2020) provide converging evidence that both

reward value and probability can influence RT in equal choices. This raises

the intriguing possibility of our results to be generalized to choices with the

same expected utility but the different combinatory of value and probability.

Interestingly, the multiattribute extension of the LBA model (Trueblood,

Brown, and Heathcote 2014) has been fitted to RTs from such tasks (Cohen,

Kang, and Leise 2017), suggesting that our modelling and EEG approaches

could also be extended to explore more complex decision problems.
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Our study highlights the advantages of EEG-informed cognitive modelling

to inform behavioural data. Hierarchical Bayesian parameter estimation of

the LBA model provides a robust fit to an individual’s behavioural perfor-

mance with less experimental data needed than other model-fitting methods

(Vandekerckhove, Tuerlinckx, and Lee 2011; Wiecki, Sofer, and Frank 2013;

Zhang et al. 2016). By integrating single-trial EEG regressors with the

cognitive model, we identified the accumulation rate to be affected by the

rate of EEG activity changes between visual N100 and P300 components.

This result contributes to a growing literature of EEG markers of evidence

accumulation processes, including ERP components (D. M. Twomey et al.

2015; Loughnane et al. 2016; Nunez, Vandekerckhove, and Srinivasan 2017),

readiness potential (Lui et al. 2018) and oscillatory power (Vugt et al. 2012).

It further consolidates the validity of evidence accumulation as a common

computational mechanism leading to voluntary choices of rewarding stimuli

(Summerfield and Tsetsos 2012; Afacan-Seref et al. 2018; Maoz et al. 2019),

beyond its common applications to perceptually difficult and temporally

extended paradigms.

The EEG-informed modelling builds upon the known functional link between

the P300 component and evidence accumulation for decisions (Polich, Ellerson,

and Cohen 1996; Verleger, Jaśkowski, and Wascher 2005; D. M. Twomey et al.

2015). A new extension in the current study was to consider the accumulation

process begins at the peak latency of the visual N100 component. The slope

regressor provided superior fit in comparison to other alternatives, such as

latencies and peaks of the individual components, providing an argument

for the accumulation slope being affected, instead of the starting point,
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termination, or total evidence. Theoretically, the delayed initiation of the

decision process accounts for information transmission time of 60 ∼ 80 ms

from the retina (Schmolesky et al. 1998). Single-unit recording concur

with this pre-decision delay, as neurons in putative evidence accumulation

regions exhibit a transient dip and recovery activity independent of decisions

approximately 90 ms after stimulus onset (Roitman and Shadlen 2002).

Practically, our EEG data has a clear N100 component, and time-resolved

MVPA identified significant pattern differentiating between task conditions at

a similar latency. The relatively early start of the accumulation process in our

experiment might be explained by the easily discriminable nature of the cues,

consisting of basic shapes with no perceptual noise. Longer visual processing

stage has been reported in an experiment involving more complex processing

of visual information (Nunez et al. 2019). An alternative possibility is that

the differences caught very early reflect non-decision time, consistent with

literature suggesting later accumulation start (Nunez, Vandekerckhove, and

Srinivasan 2017; D. M. Twomey et al. 2015). While this interpretation

stands against our modelling results, it is not impossible for our model not be

sensitive enough to catch small differences in early visual processing (Goldfarb

et al. 2014).. Further research could dissect the non-decision time (White et

al. 2014; Tomassini et al. 2019) and compare latencies of visual encoding

across decision tasks with stimuli at different levels of complexity. Decoupling

early visual processing from motor execution (Lui et al. 2018) could bring

new insights into this issue.

Several issues require further consideration. First, our cognitive modeling

was not meant to reproduce all the rich behavioural features in the data. To
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include sufficient observations for model-fitting, we combined the data before

and after cue-probability remapping. As a result, our model did not account

for behavioural changes related to cue remapping. Future studies could

employ a multi-session design to investigate how learning new cue-probability

associations influence model parameters (Zhang and Rowe 2014).

Second, we focused on the certainty and preference effects by fitting the LBA

model only to the data from equal choices. Although simulations indicated

that the fitted model provided similar behavioural patterns as in the empirical

data in unequal and single-option choices, it was not fitted directly to the

experiment data in those two choice conditions. A more parsimonious model

for all three types of choices would require additional assumptions, which is

beyond the scope of the current study. For example, to incorporate the large

RT discrepancy between equal and single-option choices, one could assume

that the urgency signal (Boehm et al. 2016; Thura and Cisek 2017) plays a

more dominant role in accelerating RT when no apparent comparisons are

needed in single-option choices.

Third, our model selection procedure does not encompass all conceivable

model types that might account for this data. Independent accumulation is

consistent with findings on brain mechanisms of probability-based choices in

humans (Kolling, Wittmann, and Rushworth 2014; Scholl et al. 2015), as well

as choice behavior in rats (Ojeda, Murphy, and Kacelnik 2018). Alternative

explanations of certainty and preference effects can be provided by urgency

gating (Thura et al. 2012), collapsing threshold (Ratcliff and Frank 2012) or

cross-inhibition (Pais et al. 2013; Usher and McClelland 2001). Depending

on the parametrization, interpretations based on these models could slightly
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vary. It is also important to note that there may be no straightforward way

to disentangle the interpretations provided by these different models (Miletić

and Maanen 2019). These potential differences however, although important,

would not challenge the main conclusions of this paper.

Finally, our model-based analysis is unavoidably constrained by the choice

of model, and one needs to be cautious when extending findings to different

models. There is an ongoing debate on how accurately different models can

mimic each other when estimating the non-decision time (Goldfarb et al.

2014; Lerche and Voss 2018). The DDM, for example, tends to predict longer

non-decision times than LBA (Dutilh et al. 2019), as well as might be more

susceptible to urgency manipulations (Evans 2020). Although an extended

DDM has been shown to account for magnitude effects (Ratcliff, Voskuilen,

and Teodorescu 2018), the drift rate of a DDM represents the relative signal

difference between the two options. As a result, without fitting a new DDM to

each condition, the DDM cannot directly describe all conditions in our current

study (i.e. the unequal and single-option trials). LBA, on the other hand,

assumes an independent accumulator for each option, offering a parsimonious

account to our task and the capacity to produce the qualitative features of

responses in all conditions, as demonstrated in our model simulations.

5.6 Conclusion

When choosing between equally probable reward outcomes, probability and

preference selectively modulate the decision processes and their electrophysi-

ological signatures, providing a mechanism for breaking a decision deadlock.
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These findings extend and substantiate the computational framework of

evidence accumulation for voluntary decisions. Our results further highlight

the intricate nature of human behavior, as susceptible to external factors as

well as endogenous heuristics.
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Figure 5.11: Effects of trial order and cue remapping on (A) preference in
equal trials and (B) accuracy in unequal trials. Preference and accuracy were
coded as binary dependent variables (whether the choice trial was preferred
/ associated with a higher reward probability). Rows represent tested fixed
effects in each linear mixed-effects model. Remapping was coded as a binary
variable (whether the trial occurred pre or post remapping). Trial order
was defined with respect to each block (from 1 to 64). Both models contain
varying individual intercepts as random effects. Dark red bars represent
significant effects with p < 0.001. Light red bars represent significant effects
with p < 0.05. Grey bars represent non-significant predictors. Error bars
represent 95% confidence intervals.



Chapter 6

Within and Across-Domain

Effects of Choice Induced

Bias (Behavioural

Experiments)

6.1 Introduction

According to economic theory, choices are a passive reflection of underlying

preferences (Rangel, Camerer, and Montague 2008). This view has been

challenged by psychological research, indicating that choices can also have

causal power over preferences (Vinckier et al. 2019; Koster, Duzel, and Dolan

164
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2015; Sharot, Velasquez, and Dolan 2010; Voigt, Murawski, and Bode 2017)

leading to a positive feedback loop: the more an option is chosen, the greater

its value, the more likely it is to be chosen in the future.

The effects of choice-induced bias (CIB) have been demonstrated in different

domains (subjective preference: Vinckier et al. 2019; Harmon-Jones et al.

2008; Koster, Duzel, and Dolan 2015; Voigt et al. 2019; perception: Akaishi

et al. 2014; Bode et al. 2012; Bronfman et al. 2015), and across timeframes,

from immediate, trial-level effects (Glickman, Moran, and Usher 2020; Talluri

et al. 2018), to long-lasting changes in preference (Sharot et al. 2012). CIB

can affect both cognitive representations (Mather, Shafir, and Johnson 2000,

2003; Salti et al. 2014) and neural activity (Chammat et al. 2017; Izuma

et al. 2010; Luettgau et al. 2020; Sharot, De Martino, and Dolan 2009).

Combined, these findings suggest that the phenomenon is robust. It remains

unclear however whether the effect found in perceptual studies is driven by

similar mechanisms to that described in the preference literature.

The comparison of the CIB between different domains leads to another

untested issue: is it possible for the bias to transfer from one domain to

another? For example, a hypothetical voter is motivated to vote for candidate

A over candidate B due to his charisma. Firstly, the act of choice (vote)

can further widen the gap in perceived charisma in favour of the chosen

candidate. This is a classic case of CIB, where the affected beliefs are causally

associated with the domain of choice (“I find candidate A more charismatic,

therefore I vote for him, which leads me to find him even more charismatic”).

Additionally, the vote could potentially affect how one views the candidates

in unrelated domains, such as proposed policies (“I find candidate A more
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charismatic, therefore I vote for him, which leads me to view his policies

more favourably”). We refer to these as a within-domain, and across-domain

effects, respectively.

CIB has been commonly associated with two alternative mechanisms: a

motivated conflict resolution via dissonance reduction (Aronson, Blanton,

and Cooper 1995; Brehm 1956; E. Harmon-Jones and Mills 2019; Kenworthy

et al. 2011), or inferring value based on one’s own choices (Akaishi et al. 2014;

Cockburn, Collins, and Frank 2014; Chammat et al. 2017; Miyagi, Miyatani,

and Nakao 2017). The first mechanism stems from cognitive dissonance

theory (Festinger 1957), arguing that people are intrinsically motivated to

keep an internal consistency between their choices and judgments, even when

facing contradictory evidence. The second proposal originates from Bem’s

autoperception theory (Bem 1967) and argues for an epistemic interpreta-

tion (Kruglanski et al. 2018) where conflict or an affective experience are

unnecessary, and the bias reflects choice-driven expectancy update (Friston

et al. 2016) or inference based on the explicit memory of previous choices

(“I remember choosing it, so I must like it”).

Here, we compare the behavioural effects and cognitive mechanisms of CIB

between and across preference and perceptual domains in a set of 5 experi-

ments. We use a task where choices between 2 items in either domain are

immediately followed by a comparative judgment of the same two items on

a continuous scale, reflecting the difference in their value estimations. The

design allows us to test both within-domain (when choice and judgment

domains are consistent across the trial) and across-domain effects (when

choice and judgment are inconsistent across the trial; e.g. size choice followed
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by preference judgment).

Firstly, we compare the qualitative (driving factors) and quantitative (effect

sizes) differences between within-domain effects in preference and perception.

An important qualitative distinction is that preference is more prone to

time-dependent fluctuations than perception (one’s appetite for pizza might

be different in the morning compared to the afternoon, but the judgment of

it’s size will likely remain similar), hence one could expect internal preference

values to exhibit more malleability towards choice. Preference CIB has also

been shown to have a long-term effect (e.g. Sharot et al. 2012), while

perceptual CIB has been studied mostly in terms of immediate trial-level

effects (Akaishi et al. 2014; Bronfman et al. 2015; Glickman, Moran,

and Usher 2020). Hence it remains an open question whether CIB can be

influenced by a longer history of choices.

Other important predictors of CIB involve choice difficulty and magnitude

(Voigt, Murawski, and Bode 2017). In accordance with earlier chapters and

similarly to how the concept is used in related literature (Liberman and

Förster 2006), difficulty here will be conceptualized as the difference in value

between options, while magnitude as the sum of option values (see: Chapter

1 ). In relation to studies of CIB in the cognitive dissonance framework,

difficulty is often equivalent to conflict, which drives and scales with bias

(Coppin et al. 2014; Izuma et al. 2010; Koster, Duzel, and Dolan 2015).

Magnitude on the other hand is similar to the concept of choice importance,

as higher-valued options are often perceived as more important (Pais et

al. 2013; Pirrone, Stafford, and Marshall 2014a), which can change the

subsequent choice strategy (Pirrone, Azab, Hayden, Stafford, and Marshall
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2018a; Teodorescu, Moran, and Usher 2016). Similarly, my previous research

has indicated that probability magnitude can drastically reduce decision

times (see: Chapter 5 ). These findings suggest that choice magnitude might

also influence choice-induced bias.

Secondly, we test whether a significant effect of an across-domain bias can

be determined, and if so, describe its characteristics. Sequential choice

effects in the perceptual literature indicate a limited capacity of the human

mind in the assessment of subsequent independent events in a single domain.

Whether such effects can transfer across independent domains remains to

be tested. Existence of an across-domain effect would be challenging for

hypotheses postulating an adaptive role of the bias (Lee and Daunizeau 2020;

Harmon-Jones, Harmon-Jones, and Levy 2015; Kaaronen and Dale 2018;

Kruglanski et al. 2018; Peters 2020). It could also provide a framework

for understanding a range of real life phenomena where certain choices or

actions can lead to developing seemingly irrational attitudes, such as voting

preferences inconsistent with self-interest (Fishbein and Coombs 1974), or

irrational economic behaviors (Becker 1962).

Thirdly, we model the generative process, distinguishing between two mech-

anisms responsible for the bias: a consistency-driven domain-general effect

which affects immediate evaluation but has no effect on the underlying val-

ues, and a domain-sensitive value-update mechanism. First of the proposed

mechanisms, the consistency-driven effect, is similar to the time-dependency

effects found in many perceptual studies, where a choice modulates the gain

of upcoming sensory information (Bronfman et al. 2015; Talluri et al. 2018;

Urai et al. 2019), and can be related to the cognitive dissonance theory. In
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this view, the choice conflict and importance elevate experienced discomfort

(Harmon-Jones 1985; E. Harmon-Jones and Harmon-Jones 2019), which can

be reduced by adjusting one’s expectations in favour of the chosen option or

against the rejected one. The value-update mechanism, on the other hand, is

a rational update of one’s beliefs based on remembered choices, similar to a

reinforcement learning mechanism (Chambon et al. 2020; Cockburn, Collins,

and Frank 2014) with implicit rewards. The rationale being that one can

learn their own preferences in a similar way they can learn the structure of

the surrounding environment.

Two crucial factors that differentiate the two explanations are context-

sensitivity and effect longevity. If the bias is driven by a need for choice

consistency irrespective of the context, one might expect it to be domain-

general, i.e. independent of the type of choice, as well as short-lived, as

consistency exhibited in the past no longer holds relevance when future

choices are made. In contrast, value-sensitive updates should be sensitive

to the domain of choice (person’s preference-based choices should ideally

affect only his preference values, but not perceptual estimations, and vice

versa) while its temporal effects are constrained by one’s memory capacity

for previous choices.

Finally, we use different variations of the task design to test some of the

limits and alternative explanations of the CIB effect. Specifically, we test

whether voluntary choice is necessary or can it be evoked by an instructed

choice (Egan, Bloom, and Santos 2010; Sharot, Velasquez, and Dolan 2010)

(Experiment 3), compare the strength of the effect independently for the

chosen (overestimation) and rejected (underestimation) items (Experiment
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Table 6.1: Demographic information across experiments. N column contains
the total number of participants, followed by the number of males within
that sample (m). Exc column sums up all participants that were excluded,
based on preregistered exclusion criteria. Columns 3 and 4 represent the
mean and standard deviation of participants per experiment, respectively.

Exp N Exc Mage SDage

1 23 (5m) 0 21.65 2.21
2 250 (155m) 14 26.35 8.20
3 50 (36m) 1 24.96 5.94
4 50 (34m) 1 24.67 7.04
5 50 (30m) 8 25.75 9.30

4), and testing to what extent these effects can be accounted by a positive

reference (Hunt et al. 2016), i.e., interpreting the chosen item as the default

option (Experiment 5).

6.2 General Methods

This section contains methods shared across all of the experiments, including

the stimuli, general task structure, operationalization of variables of interest

and behavioural modeling methodology. Exact specifications regarding each

experiment can be found in the experiment-specific method sections.

6.2.1 Stimuli

We used food items from Food-Pics database (Blechert et al. 2019).



Project 3: Choice Induced Bias 171

Figure 6.1: Task design and predicted effects. Panel a) represents the task
structure, consisting of item ratings (repeated twice before the main task and
once after) and the main task. Each trial of the task consisted of a choice
followed by a judgment. Panel b) illustrates expected effects on of choice
on the judgment phase. Columns represent judgment types; rows: choice
types. Panel c) represents design adjustments in Experiments 3-5. Preference
(heart) and perception (blue circle with arrow) symbols represent the types of
choice and judgments. Red crossed circle represents the no-choice condition
present in experiments 1 and 2. Red arrow within a circle (panel c) represents
the forced choice condition.
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Table 6.2: Design differences across experiments. Choice types refer to 2-
alternative force choice. Judgments refer to estimation of difference between
item values on a continuous scale from -100 to 100. Pref, Size and No refer to
preference-based, size-based or no-choice conditions, respectively. Dom refers
to the domain of the judgment. Stay judgment factor refers to which item out
of a unique pair was replaced (and which stayed) during the judgment. Ref
refers to which item was considered the referenced item out of each unique
pair. Unique pair column specifies how often (and in which conditions) was
a unique pair of two items repeated.

Exp Choice Types Judgment Types Trials Unique Pair Reps
1 Pref Size No Dom. (Pref, Size) 906 6 times (1 x cond)
2 Pref Size No Dom. (Pref, Size) 198 3 times (1 x

choice type)
3 Pref Size Forced Dom. (Pref, Size) 264 4 times (1 x

choice type)
4 Pref Size No Dom. (Pref, Size) x

Stay (Item1, Item2)
264 4 times (1 x judg.

type)
5 Pref Size No Dom. (Pref, Size) x

Ref. (Item1, Item2)
264 4 times (1 x judg.

type)
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6.2.2 Procedure

The experiment consisted of three main stages (Figure 6.1). In the first and

third stages, participants rated their preference and the size of each stimulus.

The second stage was the main task, where on each trial participants made

a choice between two items, followed by a comparative judgment of the

items on a continuous scale. Choice and judgment conditions varied across

experiments (see Table 6.2).

Stage 1: Initial rating. Participants performed initial preference and size-

based ratings of food items on a continuous scale from 1 to 100. For preference-

based ratings, participants rated item desirability from strong dislike (1) to

strong liking (100). In the perceptual-based rating, participants rated the

size of each food picture with respect to the white background (i.e. the

percentage of non-white pixels). Each participant completed two iterations

of both types of ratings. Rating type order was counterbalanced across

participants and item order was randomized within each rating.

On each rating trial, a food stimulus was presented in the center of the screen.

A task cue (red heart for preference or a blue circle with outward arrows for

size; see Figure 6.1) was presented on top of the stimulus to indicate the type

of rating. A white rating scale was presented below the food stimulus with

markers placed on both ends.

Stage 2: Main Task. Each trial of the main task consisted of a choice

between 2 items followed by a judgment of difference between item values on

a continuous scale from -100 to 100 (Figure 6.1).

Experiments consisted of different types of choices (preference, size, no-choice
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or forced choice) and two types of judgments (preference or size). No-choice

condition required participants to withhold a response while observing the

items on screen. Trials in which choice and judgment are from the size

domain (both referring to size or both refrering to preference) are referred to

as congruent, while trials in which choice and judgment are from different

domains (size-based choice followed by preference-based judgment or vice

versa) are referred to as incongruent. No-choice trials are referred to as

neutral.

Stage 3: Final rating. After completing Stage 2, participants performed the

preference and perceptual-based ratings for the third time for all items.

6.2.3 Operarationalization of Variables of Interest

Right-side judgment bias (RB) was defined as a difference between the

judgment J and the difference between right and left item values in choice

domain d on trial t of the main phase of each experiment:

RBt = Jt − (Īd,right − Īd,left) (6.1)

where Īd,right and Īd,left are the means of initial ratings for the right and

left item respectively. Similarly, choice-induced bias (CB) was calculated by

conditioning the sign on the choice:

CBt =


Jt − (Īd,right − Īd,left) if choicet = right

−(Jt − (Īd,right − Īd,left)) if choicet = left

(6.2)
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Choice-induced bias was calculated in respect to the initial ratings to the

initial scale and also refers to the judgment domain (perceptual bias can

occur during size judgments, while preference bias can occur during prefer-

ence judgments. Within-domain bias can occur in trials when both choice

and judgment belong to the same domain, while across-domain bias, when

preference choice was followed by a size judgment, or vice versa.

Choice or judgment difficulty was defined as the inverse of the absolute value

difference in values between items, such that:

Difft,d = 100− |(Īd,right − Īd,left)| (6.3)

where Difft,d represents the difficulty on trial t in domain d. The closer

the item values are, the higher the difficulty. Difficulty values are naturally

confined to values between 0 and 100, since the largest possible difference

between initial ratings is equal to 100, and the lowest to 0.

Choice or judgment magnitude is defined as the sum of item values, such

that:

Magt,d = Īd,right + Īd,left (6.4)

where Magt,d represents the magnitude on trial t in domain d. Magnitude

values are constrained to values between 0 (when both items were rated at 0)

and 200 (when both items were rated at 100).

Choice consistency was defined as the percentage of times the item, which

was rated as more valuable during the rating phase on a given scale, had
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been chosen.

Judgment consistency was assessed by binarizing the judgments (negative

values indicate judgment towards the left item; positive - towards the right

one) and then, similarly to choice consistency, calculated the percentage of

judgments consistent with the initial ratings.

6.2.4 Behavioural Modelling

For all experiments, we report the results from Bayesian Mixed-Effects models

using standard priors from the brms R package (Burkner 2017). Random

effects structure includes intercepts and slopes for all regressors of interest

(exact model specification can be found in Appendix). We report posterior

distribution medians (med), 95% posterior credible intervals (CI), probability

of directionality (pd; % of posterior density larger or smaller than 0), and,

where the result is found to be significant, % of posterior in the Region

of Practical Equivalence (ROPE) (Makowski et al. 2019). Analogous to

frequentist analysis, we define significance as pd > 0.95. ROPE can be

interpreted as an arbitrary null region where effect size is small enough not to

be meaningful (Kruschke and Liddell 2018). We set the ROPE range to [-2,

2] ( ±1% of the scale), as finer differences would be difficult for participants

to distinguish. Frequentist analyses can be found in the Appendix.
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6.3 Experiment 1

In our first experiment we tested the hypotheses regarding within-domain

and across-domain CIB and their potential predictors (difficulty, magnitude)

in a lab-based setting.

Participants performed a 2-step main task, in which they made binary choices,

followed by judgments of difference between the item values on a continuous

scale (Figure 6.1). Choices and judgments could belong to either perceptual

(size) or preference domains. Additionally, on some trials participants only

examined the items without making a choice (no-choice condition).

This design allowed us to test how choices influence subsequent judgment

within-domain (when preference choice was followed by a preference judgment,

or size-based choice was followed by a size-based judgment), as well as cross-

domain (where preference choice was followed by size-based judgment, or

vice versa).

6.3.1 Methods

6.3.1.1 Participants

Experiment 1 involved 23 participants recruited from Cardiff University

School of Psychology participant panel for lab-based tasks. Consent was

obtained from all participants. The study was approved by the Cardiff

University School of Psychology Research Ethics Committee. Participants

were compensated with course credits.
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6.3.1.2 Stimuli

We selected 18 food pictures from the Food-Pics database (Blechert et al.

2019). The food items were chosen to be diverse and equally represent

different categories. These categories contained: sweet snacks, savory dishes,

and healthy foods. Each item was presented on a squared white background

(350×350 pixels). Each food category contained two relatively small (<35%

of non-white pixels), two medium (36-45% of non-white pixels) and two

relatively large items (>46% of non-white pixels).

During the main task, two items were presented on the opposite sides of the

screen with a symbol indicating response type (choice or judgment) placed

centrally above the items; domain (size, preference, no-choice or forced choice)

centrally in the gap between the items and a scale below (judgments only).

The judgment scales were horizontal and had the width spanning the width

of the 2 items. Only the two ends and the middle of the scales had markers.

No labels were present.

6.3.1.3 Procedure

Participants completed two behavioural sessions conducted on different days,

each session taking between 75 and 90 minutes. The experiment was written

and conducted in PsychoPy v3.1.2 (Peirce 2007).

Stage 1: Initial rating. Participants performed initial preference and size-

based ratings of 18 food items on a continuous scale from 1 to 100. Each

participant completed a total of 72 rating trials, with two iterations of both

types of ratings. Rating type order was counterbalanced across participants
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and item order was randomized within each rating. Participants used z and

m keys to move the value indicator to the left or right. There was no time

limit for response.

Stage 2: Main Task. Each trial of the main task consisted of a choice

between 2 items followed by a judgment of difference between item values on

a continuous scale from -100 to 100. The scale was horizontal, and -100 was

maximally favouring the left item, and 100 was maximally in favour of the

right item.

The experiment consisted of three types of choices (preference, size, or no-

choice) and two types of judgments (preference or size). No-choice condition

required participants to withhold a response while observing the items on

screen.

The task was divided into 9 51-trial blocks per session. Participants took

short self-paced breaks between blocks. Participants had a time limit of 2250

ms to choose and 6000 ms to make a judgment. Similar to the rating phase,

participants used either z and m keys to choose and move left and right along

the scale. A choice was indicated with a green border surrounding the chosen

item for the length of the choice phase. The choice screen remained visible

for the full length (2250 ms), irrespective of reaction time speed, followed

immediately by a judgment screen. The trial was completed after confirming

the judgment by pressing the space bar. If no response was provided in time,

a prompt saying “Too slow” was presented for 500 ms, after which the next

trial was presented.

Stage 3: Final rating. After completing Stage 2, the participants performed

the preference and perceptual-based ratings for the third time for all 18 items
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once.

6.3.2 Results

6.3.2.1 Consistency and Performance Quality

We assume that the initial ratings are a consistent and unbiased measure of

individual value estimation. To verify this, we tested a) the consistency be-

tween a set of objective and task-derived measures and the initial ratings, and

b) how consistent task performance was in relation to the initial estimations.

We correlated judgments with objective item sizes using Spearman’s rank

correlation coefficient (rS) per session. Size estimations were reflective of

actual item size rank order M = 0.85, SD = 0.14, t(44) = 38.25 p < 0.001.

High accuracy in item size ranking indicates good understanding of the task

requirements.

Pre-task and post-task ratings were significantly correlated with one another

Mpref = 0.81, SDpref = 0.14 t(44) = 45.49 p < 0.001, Msize = 0.78, SDsize =

0.19 t(44) = 28.74 p < 0.001.

Choice consistency (calculated per session) was significantly higher than

chance level (50%) in both domains Mpref = 77.7%, SDpref = 6.9% t(44) =

44.52 p < 0.001, Msize = 79.7% SDsize = 6.0% t(44) = 52.91 p < 0.001,

Judgment consistency was also significantly above chance Mpref = 72.2%,

SDpref = 6.0% t(44) = 56.11 p < 0.001, Msize = 73.1%, SDsize = 6.4% t(44)

= 59.74 p < 0.001.

Overall, high consistency measures indicate that participants understood
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Figure 6.2: . Behavioural Results. a) Visualization of the main findings: right-
bias as a function of choice and trial type in Experiment 1 (left), choice induced
bias across trial types (error bars represent standard errors) in Experiments
1 (upper right) and 2 (lower right). Red and blue represent preference and
size domains respectively. b) Posterior group parameter estimations for
main predictors across Experiments 1 & 2. Gray area represents Region of
Practical Equivalence (ROPE). c) Posterior group parameter estimations for
crucial predictors in Experiments 3-5. Gray area represents ROPE, red and
blue represent preference and size domains respectively.
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the task and their initial value estimations were relatively stable across the

length of the experiment.

6.3.2.2 Across and Within-Domain CIB

We found overwhelming evidence for the existence of choice-induced bias

(CIB) med = 26.63, 95% CI [22.01, 31.72], pd > 0.999, 0% in ROPE. The main

effect was larger for within-domain compared to across-domain conditions

med = 17.63, 95% CI [12.47, 21.98], pd > 0.999, 0% in ROPE, and for

preference judgments med = 7.78, 95% CI [4.42, 10.82], pd > 0.999, 0% in

ROPE.

Bias was also significantly driven by congruent judgment difficulty (absolute

difference in estimated value between items in the domain of choice) med

= 8.94, 95% CI [6.96, 10.69] pd > 0.999, 0% in ROPE, and the congruent

judgment magnitude (sum of the item values) med = 3.59, 95% CI [2.13,

5.01], pd > 0.999, 1.57% in ROPE.

We did not find sufficient evidence for the influence of the difficulty or mag-

nitude of the incongruent domain (that is, domain inconsistent with the

current choice) medDifficulty-across = 0.10, 95% CI [ -1.37, 1.71], pd = 0.56,

medMagnitude-across = -1.30, 95% CI [-2.42, 0.22], pd = 91.9. The effect of do-

main was only present in the within-domain conditions medcongruency x domain

= 7.78, 95% CI [4.42, 10.82], pd > 0.999, 0% in ROPE.

Congruent difficulty had a stronger effect in the within-domain conditions

medconguency x difficulty = 5.69, 95% CI [4.56, 6.82], pd > 0.999 indicating

choice conflict had a significant effect on subsequent judgment. Similarly,
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congruent magnitude influenced judgment more strongly in the within-domain

trials medconguency x magnitude = 2.16, 95% CI [0.93, 3.32], pd > 0.999, 39.73%

in ROPE.

6.4 Experiment 2

The goals of Experiment 2 were to replicate our initial findings on a larger

and more diverse online sample and test individual differences related to effect

sizes. The task used was a shortened version of the one used in Experiment

1, adapted for an online setting. To make sure our initial findings are not an

artifact associated with a specific item set, we selected a new, non-overlapping

set of food items. The large sample size also allowed for reliable generative

modelling of the effects.

Additionally, we aimed to test a set of hypotheses regarding individual

differences:

Confirmation Bias

Since choice in an unrelated domain should provide no judgment information,

cross-domain CIB can be thought of as a pure measure of confirmation

bias. We hypothesized that cross-domain CIB would be associated with

individual differences in confirmation bias, measured with the Confirmation

Bias Inventory (Rassin 2008) as well as Extroversion scale (Matz, Hofstedt,

and Wood 2008), since the construct of extroversion was previously shown

to be positively related to confirmation bias.

Consistency
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We hypothesized that consistency, as measured by consistency measures in

the task, could be associated with individual differences in Preference for

Consistency (Cialdini 2014).

Extreme-Value Aversion

We hypothesized that aversion to strong commitment, one of the core features

of individual differences in Action Control (Kuhl and Beckmann 1994) could

be reflected in our task by a more conservative usage of the judgment scale

during the main task - namely preferring values close to the middle of the

scale, not favouring strongly any of the alternatives (extreme-value aversion).

The study was preregistered (https://osf.io/v5pdb).

6.4.1 Methods

6.4.1.1 Participants

Experiment involved 250 subjects (Mage=26.31 years SDage=8.29; 93 female)

from a participant recruitment portal Prolific (https://prolific.co). Consent

was obtained from all participants. The study was approved by the Cardiff

University School of Psychology Research Ethics Committee. Participants

received cash payments for their participation based on an hourly rate (7£

per hour).

Power analyses, exclusion criteria, experiment procedures and further analysis

plans were preregistered (see: Online Resources). A sample size of N=250

provides 80% power to detect a moderate effect of correlations between

behavioural performance and trait measures (Pearson’s R=0.2, α = 0.01;

https://osf.io/v5pdb
https://prolific.co
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Gignac and Szodorai 2016).

6.4.1.2 Stimuli

A new set 24 food pictures from the Food-Pics database (Blechert et al.

2019) was selected (for images see: Appendix). The food items were chosen

to be diverse and equally represent different categories. These categories

contained: sweet snacks, savory dishes, fruits and vegetables, making up a

total of 4 categories. Each item was presented on a squared white background

(350×350 pixels). The size of each stimulus was defined as the proportion

of the area taken by the actual food picture (i.e. non-white pixels). Each

food category contained two relatively small (<35% of non-white pixels), two

medium (36-45% of non-white pixels) and two relatively large items (>46%

of non-white pixels).

During the choice and judgment phase, two items were presented on the

opposite sides of the screen with a symbol indicating response type (choice

or judgment) placed centrally above the items; domain (size, preference,

no-choice or forced choice) centrally in the gap between the items and a scale

below (judgments only). The judgment scales were horizontal and had the

width spanning the width of the 2 items Only two ends and the middle of

the scales had markers. No labels were present.

6.4.1.3 Procedure

The Experiment followed a similar 3-step procedure as Experiment 1 (Figure

6.1) with addition of a final part, in which participants filled in a set of
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personality questionnaires. Experiment took the participants between 45-75

minutes to complete. The experiment was written and conducted in jspsych

v6.0.5 (Leeuw 2014).

Stage 1: Initial rating. Participants performed initial preference and size-

based ratings of 24 food items on a continuous scale from 1 to 100. For

preference-based ratings, participants rated item desirability from strong

dislike (1) to strong liking (100). In the perceptual-based rating, participants

rated the size of each food picture with respect to the white background, in

terms of the proportion of non-white pixels. Each participant completed a

total of 96 rating trials, with two iterations of both types of ratings. Rating

type order was counterbalanced across participants and item order was

randomized within each rating. Unlike Experiment 1, only the top 12 items

on the preference scale were used in the main task.

On each rating trial, a food stimulus was presented in the center of the

screen. A task cue (red heart for preference or a blue circle with outward

arrows for size; see Figure 6.1) was presented on top of the stimulus to

indicate the type of rating. A white rating scale was presented below the

food stimulus with markers placed on both ends. A small circle on the rating

scale indicates the current rating, with its default position in the middle of

the scale. Participants used a mouse to drag or click on the scale. There was

no time limit for response.

Stage 2: Main Task. The main structure of the task was identical to Ex-

periment 1, with differences related to the number of trials and interface,

described below. The Task was divided into three 66-trial blocks. Partici-

pants took short self-paced breaks between blocks. Participants had a time



Project 3: Choice Induced Bias 187

limit of 4000 ms to choose and or 5500 ms to make a judgment. Similar to the

rating phase, participants used mouse clicks to choose and move left and right

along the scale. A choice was indicated with a green border surrounding the

chosen item for the length of the choice phase. The choice screen disappeared

500 ms after making a choice. The trial was completed after confirming

the judgment with clicking the “confirm” button (Experiments 2-5). If no

response was provided in time, a prompt saying “Too slow” was presented

for 500 ms, after which the next trial was presented.

Stage 3: Final rating. After completing Stage 2, participants performed the

preference and perceptual-based ratings for the third time, involving all 24

items.

Questionnaires. After the final rating stage, participants filled five question-

naires measuring Preference for Consistency (Cialdini 2014), Extraversion

(BFI-2-S; Soto and John 2017), Susceptibility to Confirmation Bias (CI;

Rassin 2008), Positive and Negative Affect (I-PANAS-SF; Thompson 2007)

and Action Control (ACS-90; Kuhl and Beckmann 1994). Questionnaire

order was randomized across participants.

6.4.1.4 Computational Modelling

Our model aims at explaining peoples’ choices and judgments by estimating

the internal values associated with item preference and size from which the

data is generated, and how they change in time. The model assumes that

values fluctuate as a function of choice, so that choosing or rejecting an item

updates its estimation by a fraction of its value (proportional update). An

item value at any point is not allowed to exceed the boundaries of the scale
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(0-100). The starting preference and size values of each item are derived

from the mean of the two initial ratings on the appropriate scales. We model

4 distinct phases on each trial: choice, value update, judgment, and value

attenuation.

Choice. The choice between 2 items is modelled using the softmax function,

which converts item values into choice probabilities:

p(A) = eτVd,t(A)
eτVd,t(A) + eτVd,t(B) (6.5)

where Vd,t(A) and Vd,t(B) represent value estimates for items A and B in

a given domain d (preference or size) on trial t, and τ represents inverse

temperature parameter reflecting how deterministic are the choices, given

the estimations of subjective values (Ahn, Haines, and Zhang 2017). This

parameter is often interpreted as the noisiness of choice.

Update. After each choice, both chosen Ich and rejected Irej item values are

updated:

Vd,t+1(Ich) = Vd,t(Ich) + αVd,t(Ich) (6.6)

Vd,t+1(Irej) = Vd,t(Irej) + βVd,t(Irej) (6.7)

where α and β represent proportional updates for the chosen and rejected

items respectively. Both update parameters can take values between -1

and 1. α and β can vary dependent on choice domain (size, preference)

and congruency (whether choice-congruent or choice-incongruent domain is

updated). Together, this gives a maximum 8 update parameters.
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Judgment. Judgment is assumed to follow a normal distribution, centered at

the difference of the true subjective value between the right and left items:

Jt ∼ N(Vr,d,t+1 − Vl,d,t+1 + CB, σi) (6.8)

where Vr,d,t+1 and Vl,d,t+1 represent the current (updated) values of the right

and left items in domain d on trial t, CB represents a general consistency

bias term, and σi represents individual-level variability. The valence of CB is

dependent on choice, so that it takes positive values if right item was chosen,

negative values if left was chosen, and 0 when no choice was made. The

parameter represents a consistency-driven adjustment that does not affect

the underlying value estimations.

Attenuation. Finally, item values are attenuated towards their initial esti-

mates:

Vatt,d,t+1(A) = Vd,t+1(A)− k(Vd,t+1(A)− Vd,init(A)) (6.9)

Vatt,d,t+1(B) = Vd,t+1(B)− k(Vd,t+1(B)− Vd,init(B)) (6.10)

where Vatt represents the attenuated value of the item, and k is the discounting

parameter and can take values between 0 and 1. k represents the strength

of the decay effect, where the current item value V_{d,t+1} is discounted

proportionally to it’s distance to the initial value V_{d,init}. One can

imagine this mechanism akin to a rubber band - the greater the deviation of

the current updated item value from the initial one, the stronger the pull

back towards the initial value becomes.

This accounts for the possibility that choice-driven value updates might be
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temporary and decay when earlier choices get forgotten. A k of 1 indicates

perfect discounting, and the model is reduced to a fixed-value model where

values are never updated. A k of 0 indicates no discounting (permanent

update). Values of k in-between suggest a decay effect, where choices made

longer in the past have less influence on current value.

6.4.1.5 Model fitting procedure

We fitted the model using Bayesian Hierarchical Modelling, estimating group

level and subject-level parameters. Following previous work in this domain

(Ahn, Haines, and Zhang 2017; L. Zhang and Gläscher 2020) we used uniform

priors on a realistic constrained range:

α ∼ U(0, 0.5) (6.11)

β ∼ U(0, 0.5) (6.12)

τ ∼ U(0, 10) (6.13)

k ∼ U(0, 1) (6.14)

We used Stan programming language (Carpenter et al. 2017) for the hi-

erarchical implementation of our model. For each model, we generated 2

independent chains of 2000 samples from the joint posterior distributions

of the model parameters, using Hamiltonian Monte Carlo (HMC) sampling

(Carpenter et al. 2017). The initial 1000 samples were discarded as burn-in.

To assess model convergence of the chains we calculated the Gelman-Rubin

convergence diagnostic R̂ for each model parameter. Similar to previous work
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(Annis, Miller, and Palmeri 2017; Zajkowski et al. 2020) we used R̂ < 1.1 as

a criterion for good convergence.

6.4.1.6 Model comparison

We compare 4 theoretically-driven models fitted to data from Experiment

2. Null model fixes all updating parameters to 0 and k to 1, resulting in

no value updating or consistency bias. Consistency-Only model assumes

only a general consistency bias and no value-updating. Congruent Update

model assumes only choice-congruent values are updated. Update-Only model

assumes all choices induce a value update, but no consistency bias. Full

Update model allows all update parameters to vary, together with a general

consistency bias. Direct model fit was measured using Leave-One-Out (LOO)

information criterion (Vehtari, Gelman, and Gabry 2017). LOO evaluates the

model fit while controlling for model complexity, with lower value indicating

better out-of-sample prediction. We use LOO scores to determine model

stacking weights, which give the predictive probability of each model being

best (Yao et al. 2017). When comparing 2 models, a probability of .9 or

larger in favour of one of them is considered decisive (L. Zhang and Gläscher

2020); otherwise a simpler model is preferred.

6.4.1.7 Model evaluation

To evaluate the winning model in terms of prediction accuracy we 1) gen-

erate posterior predictive distribution and correlate model predictions with

participant choices across subjects, and 2) regress the updated item values
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onto final rating values and compare whether the model-derived values can

predict final ratings better than the initial ratings.

6.4.2 Results

6.4.2.1 Consistency and Performance Quality

Similarly to Experiment 1, performance and consistency were significantly

above chance (calculated per participant), indicating that participants un-

derstood the task and their initial value estimations were relatively stable

across the length of the experiment.

Size estimations were reflective of actual item size rank order M = 0.66, SD

= 0.19 t(249) = 43.31, p<0.001 (one-way against chance level of 0).

Pre-task and post-task ratings were significantly correlated with one another

Mpref = 0.85, SDpref = 0.13 t(249) = 106.58 p < 0.001, Msize = 0.73, SDsize

= 0.19 t(249) = 57.74 p < 0.001 (one-way against chance level of 0).

Choice consistencies were significantly higher than chance level Mpref =

71.3%, SDpref = 11.0% t(249) = 103.05 p < 0.001, Msize = 76.7%, SDsize =

10.0% t(249) = 121.79 p < 0.001 (one-way against chance level of 0).

Judgment consistency was also significantly above chance Mpref = 75.4%,

SDpref = 11.0% t(149) = 157.47 p < 0.001, Msize = 74.4%, SDsize = 11.0%

t(149) = 149.71 p < 0.001 (one-way against chance level of 0).
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6.4.2.2 Across and Within-Domain CIB

Experiment 2 replicated all main behavioural findings regarding choice-

induced bias from Experiment 1 (Figure 6.2). Overall, the CIB effect was

strong med = 31.90, 95% CI [30.03, 33.80], pd > 0.999, 0% in ROPE.

The main effect was larger for within-domain compared to across-domain

conditions med = 22.95, 95% CI [20.89, 25.07], pd > 0.999, 0% in ROPE, and

for preference judgments med = 8.54, 95% CI [6.77, 10.55], pd > 0.999, 0%

in ROPE. Bias was also significantly driven by congruent judgment difficulty

(absolute difference in estimated value between items) med = 5.16, 95% CI

[4.52, 5.87] pd > 0.999, 0% in ROPE. and the congruent judgment magnitude

(sum of the item values) med = 3.24, 95% CI [0.18, 1.77], pd > 0.999, 0.20%

in ROPE.

We did not find sufficient evidence for the influence of the difficulty or

magnitude of the incongruent domain medDifficulty-across = 1.58, 95% CI [

0.60, 2.46], pd = 80.0, 100% in ROPE medMagnitude-across = 0.93, 95% CI

[0.18, 1.77], pd = 98.5, 99.38% in ROPE.

The effect of domain was only present in the within-domain conditions

medcongruency x domain = 8.54, 95% CI [6.77, 10.55], pd > 0.999, 0% in ROPE.

Congruent difficulty had a stronger effect in the within-domain conditions

medconguency x difficulty = 6.94, 95% CI [4.49, 9.22], pd > 0.999, 0% in ROPE

indicating choice conflict had a significant effect on subsequent judgment.

Similarly, congruent magnitude influenced judgment more strongly in the

within-domain trials medconguency x magnitude = 2.32, 95% CI [1.38, 3.29], pd

> 0.999, 26.07% in ROPE.
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Figure 6.3: Generative model fitting. a) An instance of dynamic value
updating for a single item. The internal value fluctuates as a function of
choices. Green points show trials where item was chosen; red when it was
rejected. b) Model comparison. Upper panel shows relative LOOIC scores,
error bars represent SE. Lower panel shows the probabilities of each model
providing the best fit based on Bayesian Model Averaging of LOOIC scores
(Yao et al., 2018). c) Posterior Predictive model validation for choices (left)
and judgments (right) in terms of R2. Each dot represents a single participant.
d) Out-of-sample (OOS) model-derived prediction of final ratings (Y-axis)
plotted against prediction derived from initial ratings for preference (left) and
size (right). P-values indicate that model-based prediction was significantly
better.
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Figure 6.4: Parameters of the best fitting model. α and β represent the
positive and negative updates, respecitvely.
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6.4.2.3 Generative Modelling

To understand the generative processes giving rise to the choice-induced bias,

we built a hierarchical Bayesian model introducing two potential sources of

CIB: a domain-general consistency bias and a domain-specific value update

(see: Methods), and fitted it to the data from Experiment 2. We tested 4

models with varying assumptions: Null (stable values; no sources of CIB

present in data generating process), Consistency-Only, Update-Only and

Full (both sources of CIB present). Model comparison using Leave-One-Out

Information Criterion (Vehtari, Gelman, and Gabry 2017) indicated that

the full model fitted the data best LOO = 269.9, SE = 29.4, Pbest > 0.999

based on Bayesian model averaging (Yao et al. 2017; Figure 6.3b). Strong

correlations (per participant) between model-derived final value predictions

and post-task ratings M = 0.750, SD = 0.226 for preference and M = 0.739

SD = 0.228 for size indicated the model can predict the final ratings well.

Compared to the initial ratings, model-derived values predicted the final

ratings more accurately: MDeltaR2 = 0.11, t(243) = 7.80, p < 0.001 for

preference and MDeltaR2 = 0.03, t(243) = 2.878, p = 0.002 for size (Figure

6.3c).

Consistency Bias. The winning model displayed a consistency effect med=

0.065 95% CI [0.055, 0.076], pd > 0.999, which was modulated by decision

conflict med= 0.029 95% CI [0.023 ,0.033], pd > 0.999.

Value Update. Within-domain update parameter values were all greater than

0 with pd > 0.999: positive preference-within update med = 0.058, 95%

CI [0.049, 0.067]; negative preference-within update med = 0.138, 95% CI
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[0.126, 0.152]; positive size-within update med = 0.019, 95% CI [0.013, 0.026];

negative size-within update med = 0.093, 95% CI [0.084, 0.105];

Across-domain parameter updates were all smaller than 0.01 (1% of item

value), suggesting their nature is inconsequential for the observed bias:

positive preference-across update med = -0.004, 95% CI [-0.010, 0.002], pd =

0.09; negative preference-across update med = 0.001, 95% CI [0.001, 0.015],

pd = 0.99; positive size-across update med = -0.006, 95% CI [-0.011, -0.001],

pd = 0.99; negative size-across update med = 0.006, 95% CI [0.000, 0.011],

pd = 0.97;

Value Discounting. Parameter k values were close to 0 med = 0.009, 95% CI

[0.006, 0.012] indicating only marginal decay.

6.4.2.4 Individual Differences

In Experiment 2 we also tested a set of hypotheses correlating individual

differences with behavioural measures. Choice-induced bias in the across-

domain conditions was not significantly correlated with scores on Confirmation

Bias Inventory (Rassin 2008) r = 0.09, p = 0.14; or Extraversion (Matz,

Hofstedt, and Wood 2008) r = 0.11, p = 0.09. Decision-Judgment consistency

was not significantly correlated with Preference for Consistency (Cialdini

2014) r = -0.02, p = 0.75; and middle-scale aversion (quantified as the mean

absolute value of the judgments) was not correlated with Action Control

(Kuhl and Beckmann 1994).



Project 3: Choice Induced Bias 198

6.4.2.5 Confound analysis

An alternative interpretation of CIB is that it can arise spontaneously due

to a regression to the mean, effectively revealing true preferences and beliefs,

instead of shaping them (Chen and Risen 2010; Izuma and Murayama 2013).

To account for this effect, we performed an extensive set of simulations,

varying parameters related to the ratings, choices and judgments (Appendix),

which revealed that given a reasonable set of assumptions a large bias is

extremely unlikely to arise due to this confound. In all but the most extreme

parameter settings within-domain CIB was not larger than 1 point (0.5% of

the judgment scale), while the across-domain effect was centered at 0 (see:

Simulation section in the Appendix).

6.5 Experiment 3

The main goal of Experiment 3 was testing whether the CIB effects found in

previous iterations of the study can be induced by a exogenously dictated

(forced) choice. Our prediction is that if the effect exists, it would be weaker

and would not be as strongly influenced by previous choice history, compared

to when the choice is driven endogenously. In order to test this, the no-

choice condition from Experiments 1 and 2 was replaced by a forced choice

condition, where the choice item was dictated randomly by the computer.

Voluntariness of choice have been postulated to be necessary for a CIB

to occur in preference-based tasks (Egan, Bloom, and Santos 2010; Sharot,

Velasquez, and Dolan 2010), it has however not been systematically compared

across domains. The experiment was preregistered (https://osf.io/tkxg5).

https://osf.io/tkxg5
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6.5.1 Methods

6.5.1.1 Participants

Experiment involved 50 subjects (Mage=25.95 years SDage=5.95; 14 female)

from a participant recruitment portal Prolific (https://prolific.co). Consent

was obtained from all participants. The study was approved by the Cardiff

University School of Psychology Research Ethics Committee Participants

received cash payments for their participation based on an hourly rate (7£

per hour).

6.5.1.2 Stimuli

The same set of 24 stimuli from the Food-Pics database (Blechert et al. 2019)

as in Experiment 2 were used (for images see: Appendix).

6.5.1.3 Procedure

The Experiment followed a similar 3-step procedure as previous experiments

(Figure 6.1) with modified Main Task, where the no-choice condition was

replaced with forced choice. Experiment took the participants between 45-75

minutes to complete. The experiment was written and conducted in jspsych

v6.0.5 (Leeuw 2014).

Stage 1: Initial rating. Initial stage was identical to Experiment 2.

Stage 2: Main Task. The main structure of the task was similar to Experiment

2, with differences related condition specifications and trial number, described

below (see Table 6.2). The Task was divided into four 66-trial blocks.

https://prolific.co


Project 3: Choice Induced Bias 200

The forced-choice condition required participants to choose one randomly

predetermined item in the choice phase. A red arrow enclosed within a circle

replaced the domain symbol, and the direction of the arrow indicated the

item to be chosen (Figure 6.1). The judgment part of the trial remained

identical to previous experiments. The number of forced and free choice

conditions was balanced, each containing 132 trials. Similarily, the number

od force-left and force-right choices was balanced equally (66 trials each).

Stage 3: Final rating. Stage was identical to Experiment 2.

6.5.2 Results

6.5.2.1 Consistency and Performance Quality

Similarly to previous experiments, performance and consistency (calculated

per participant) were significantly above chance, indicating that participants

understood the task and their initial value estimations were relatively stable

across the length of the experiment.

Size estimations were reflective of actual item size rank order M = 0.69, SD

= 0.16 t(49) = 25.14, p < 0.001.

Pre-task and post-task ratings were significantly correlated with one another

Mpref = 0.89, SDpref = 0.10 t(49) = 62.19 p < 0.001, Msize = 0.67, SDsize =

0.16 t(49) = 21.87 p < 0.001.

Choice consistencies were significantly higher than chance level

Mpref = 73.0%, SDpref = 8.7% t(49) = 59.25 p < 0.001 Msize = 76.4%, SDsize

= 9.3% t(49) = 57.78 p < 0.001.
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Judgment consistency was also significantly above chance Mpref = 76.1%,

SDpref = 9.7% t(49) = 99.65 p < 0.001 Msize = 78.4%, SDsize = 9.7% t(49)

= 104.09 p < 0.001.

6.5.2.2 The Need for Voluntary Choices

To test the effect of voluntary choice on CIB, Experiment 3 introduced forced-

choice control condition (Figure 6.1c) in which participants were instructed

to choose a specified item. In contrast to voluntary decision conditions which

replicated findings from our previous experiments (Figure 6.2c), the bias

following forced choices was not significantly different from 0: med = 1.08

95% CI [-1.29, 3.43], pd = 0.77 suggesting that a voluntary choice is necessary

for the bias to occur.

6.6 Experiment 4

The goal of Experiment 4 was to test to what extent is the CIB effect driven by

increasing the value of the chosen alternative in comparison to decreasing the

value of the rejected one. In order to test this, we modified the experimental

procedure so that one of the items (chosen or rejected) was randomly replaced

within trial, after the choice, but before the judgment. This allowed us to

compare to what extent is the CIB effect driven by overvaluing the chosen

item compared to undervaluing the rejected one. Previous research in this

area was done only in preference literature, and provided inconsistent results,

from undervaluation effects being stronger (Brehm 1956; Izuma et al. 2010),

both being roughly equal (Harmon-Jones et al. 2008; Jarcho, Berkman,
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and Lieberman 2011; Luo and Yu 2016) to overvaluation being stronger

(Sharot, Velasquez, and Dolan 2010). The experiment was preregistered

(https://osf.io/qhmg2).

6.6.1 Methods

6.6.1.1 Participants

Experiment involved 50 subjects (Mage=25.95 years SDage=7.05; 15 female)

from a participant recruitment portal Prolific (https://prolific.co). Consent

was obtained from all the participants. The study was approved by the Cardiff

University School of Psychology Research Ethics Committee Participants

received cash payments for their participation based on an hourly rate (7£

per hour).

6.6.1.2 Stimuli

The same set of 24 stimuli from the Food-Pics database (Blechert et al. 2019)

as in Experiments 2, 3 and 4 were used (for images see: Appendix).

6.6.1.3 Procedure

The Experiment followed a similar 3-step procedure as previous experiments

(Figure 6.1) modified Main Task, where the one of the items was randomly

replaced during the judgment phase of the trial. Experiment took the

participants between 45-75 minutes to complete. The experiment was written

and conducted in jspsych v6.0.5 (Leeuw 2014).

https://osf.io/qhmg2
https://prolific.co
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Stage 1: Initial rating. Initial stage was identical to Experiments 2 and 3.

Stage 2: Main Task. The main structure of the task was similar to Experiment

2, with differences related the judgment phase and trial number, described

below (see Table 6.2). The Task was divided into four 66-trial blocks. One of

the items was replaced by a random item right after choice. The number of

chosen and rejected items that were replaced was counterbalanced (66 trials

each).

Stage 3: Final rating. Stage was identical to Experiments 2 and 3.

6.6.2 Results

6.6.2.1 Consistency and Performance Quality

Similarly to previous experiments, performance and consistency (calculated

per participant) were significantly above chance,indicating that participants

understood the task and their initial value estimations were relatively stable

across the length of the experiment.

Size estimations were reflective of actual item size rank order M = 0.64, SD

= 0.22 t(49) = 19.49, p < 0.001.

Pre-task and post-task ratings were significantly correlated with one another

Mpref = 0.85, SDpref = 0.20 t(49) = 34.11, p < 0.001, Msize = 0.73, SDsize =

0.16 t(49) = 40.07, p < 0.001.

Choice consistencies were significantly higher than chance level Mpref =

71.5%, SDpref = 9.3% t(49) = 54.30, p < 0.001, Msize = 75.1%, SDsize =

12.4% t(49) = 42.71, p < 0.001.
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Judgment consistency was also significantly above chance Mpref = 72.7%,

SDpref = 9.5% t(49) = 70.94, p < 0.001, Msize = 76.7%, SDsize = 12.2% t(49)

= 78.94, p < 0.001.

6.6.2.2 Overestimation vs Underestimation

In Experiment 4, we tested to what extent is the bias driven by overvaluation

the chosen option, as compared to undervaluating the rejected one. For

this purpose, one of items (either the chosen or rejected) was replaced after

each choice (Figure 6.1c). We found a modest yet significant effect of item

replacement, medrejected-chosen = 1.89, CI = [0.09, 3.75], pd = 0.98, 53.85%

in ROPE (Figure 6.2c), indicating that the undervaluation of the rejected

item being stronger than overvaluation of the chosen one.

6.7 Experiment 5

In Experiment 5 we manipulate which item should be considered the ‘default’

(so called reference item) to which the other is compared during the judgment

phase. This manipulation accounts for one possible source of the bias - a bias

towards the status quo (Kahneman, Knetsch, and Thaler 1991). If the chosen

item is considered the reference, CIB could be explained by information

sampling biased towards positive evidence (Hunt et al. 2016). In this view,

participants use their choice as an implicit reference, which drives the bias.

By explicitly manipulating the reference item during the judgment phase we

can dissociate between the effects of choice and reference.
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6.7.1 Methods

6.7.1.1 Participants

Experiment involved 50 subjects (Mage=27.96 years SDage=9.29; 18 female)

from a participant recruitment portal Prolific (https://prolific.co). Consent

was obtained from all participants. The study was approved by the Cardiff

University School of Psychology Research Ethics Committee Participants

received cash payments for their participation based on an hourly rate (7£

per hour).

6.7.1.2 Stimuli

The same set of 24 stimuli from the Food-Pics database (Blechert et al. 2019)

as in Experiments 2, 3 and 4 were used (for images see: Appendix).

In contrast to previous Experiments, the judgment scale was vertical and

placed in the middle of the screen between the two items (Figure 6.1). This

was done in order to decouple the items (displayed on the right and left)

and the scale (going up and down) and enabling manipulating which item is

associated with which end of the scale.

6.7.1.3 Procedure

The Experiment followed a similar 3-step procedure as previous experiments

(Figure 6.1) with modified judgment phase of Main Task, where one of

the items was designated as a reference item, to which the other item was

compared. Experiment took the participants between 45-75 minutes to

https://prolific.co
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complete. The experiment was written and conducted in jspsych v6.0.5

(Leeuw 2014).

Stage 1: Initial rating. Initial stage was identical to Experiments 2, 3 and 4.

Stage 2: Main Task. The main structure of the task was similar to Exper-

iments 2 ,3 and 4, with differences related the judgment phase and trial

number, described below (see Table 6.2). The Task was divided into four

66-trial blocks. The reference manipulation was done such that after each

choice one of the items was randomly assigned as the reference item. This

was signified by an orange framing around the item. The judgment task was

reframed to evaluate whether the reference item is larger (perceptual domain)

/more valuable (preference domain), compared to the non-reference item,

so that positive evidence always favored the reference item. The number of

times the left and right items were assigned as reference was balanced (66

trials each).

Stage 3: Final rating. Stage was identical to Experiments 2, 3 and 4.

6.7.1.4 Consistency and Performance Quality

Similarly to previous experiments, performance and consistency (calculated

per participant) were significantly above chance,indicating that participants

understood the task and their initial value estimations were relatively stable

across the length of the experiment.

Size estimations were reflective of actual item size rank order M = 0.63, SD

= 0.19 t(49) = 22.86, p < 0.001.

Pre-task and post-task ratings were significantly correlated with one another
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Mpref = 0.85, SDpref = 0.14 t(49) = 34.11, p < 0.001 Msize = 0.73, SDsize =

0.14 t(49) = 40.71, p < 0.001.

Choice consistencies were significantly higher than chance level Mpref =

73.0%, SDpref = 11.6% t(49) = 44.52, p < 0.001. Msize = 73.0%, SDsize =

9.8% t(49) = 52.91, p < 0.001.

Judgment consistency was also significantly above chance Mpref = 72.6%,

SDpref = 12.2% t(49) = 56.11, p < 0.001, Msize = 72.8%, SDsize = 11.3%

t(49) = 59.74, p < 0.001.

6.7.1.5 Positive reference effects

To isolate the positive reference effect, we looked at reference bias in no-choice

trials, finding a strong effect of positive reference on judgment med = 11.81,

95% CI [6.88, 17.02], pd > 0.999, 0.02% in ROPE.

Then, we analyzed whether the choice-induced effect prevailed in choice trials.

No-choice condition served as a baseline for reference bias, to which all other

trials types were compared to. This enabled to estimate the effect of choice

independent of the frame of reference med = 36.00, 95% CI [30.34, 41.29],

pd > 0.999, 0% in ROPE. The differences in choice-induced bias between

reference-chosen and reference-rejected conditions after removing reference

baseline were non-significant med= 4.51, 95% CI [-1.70, 11.12], pd = 0.91.
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6.8 Discussion

People’s judgments are biased by their choices. In a suite of 5 experiments,

we show that this phenomenon is not only ubiquitous within perceptual and

preference domains, but also that choices of one type can affect evaluation in

an unrelated domain. Our findings bridge the literature on CIB in perception

and preference, which up to this point has been studied separately.

The similarities include both being driven by choice difficulty (how close

in value the items are) and magnitude (the sum of item values). Conflict-

driven bias has been proposed by Festinger (1957) and shown to influence

dissonance resolution after preference-based choice (Brehm 2007; Izuma et al.

2010; van Veen et al. 2009). Magnitude effects (or value sensitivity; Pirrone,

Stafford, and Marshall 2014b) are known to influence choices (Pirrone, Azab,

Hayden, Stafford, and Marshall 2018b; Teodorescu, Moran, and Usher 2016;

Zajkowski et al. 2020) as well as confidence (Lebreton et al. 2018), suggesting

that absolute value of choice options inflates decision noise, but reduces

uncertainty. In the context of CIB, effects of magnitude have been postulated

as potentially influencing the post-choice alternative spread (Festinger 1957).

This claim has previously met with mixed evidence (Greenwald 1969). One

explanation of the effect, as implemented in our model, is that magnitude can

be incorporated naturally into the value-update mechanism but assuming

proportional updates.

Our main findings demonstrate the existence of an across-domain CIB, whose

strength was consistent across all experiments. The effect was similar across

judgment domains, suggesting that the across-domain effect is qualitatively
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distinct from domain-dependent within-domain effects. Across-domain effects

are especially interesting, as they illustrate a a clear deviation from optimality:

there is no apparent reason as for how such bias could be beneficial for the

agent. While within-domain effects can be explained by value inference

conditioned on ones choices (Bem 1967; Kruglanski et al. 2018), similar

interpretation is irrelevant in the context of across-domain effects, suggesting

a prioritization of consistency, even at the cost of being biased. One potential

mechanism for a similar effect have been also recently proposed by Horsby and

Love (2020), who suggest that all relevant dimensions of a choice option are

represented in a shared, continuous space, where values are updated though

coherency optimization. The model however does not tackle representations of

inherently objective dimensions, such as assessment of perceptual attributes.

For our knowledge, this study is the first to directly experimentally demon-

strate across domain choice-induced effects. Previous literature has demon-

strated malleability of preference for choice attributes in the face of a deci-

sion, promoting choice-consistent values (Holyoak and Simon 1999; Simon,

Krawczyk, and Holyoak 2004; Simon et al. 2008). Those studies found

choice-coherent preference shifts in a variety of domains, such inductive

reasoning, social reasoning, and resolving ambiguous situations (Simon et al.

2008).

The authors explain the effect by constraint satisfaction mechanism, which al-

lows the system to impose a coherent interpretation on an initially ambiguous

set of inputs (Holyoak and Simon 1999). Such adjustments would be consid-

ered as within-domain, as the attributes used in those studies were relevant

to the subsequent choice. Crucially, the constrain-satisfaction hypothesis
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could be expanded to cross-domain effects found here.

Our generative modelling supports the conclusion that CIB is driven by at

least two separate mechanisms: a conflict-driven, domain-general Consistency

Bias (CB) and a domain-specific Value Update (VU).

CB is quite common in perceptual literature, being associated with a range of

mechanisms, such as history effects (Palminteri et al. 2017; Urai et al. 2019) or

decisional inertia (Akaishi et al. 2014). In relation to preference-based choice,

it can be compared to a conflict-driven dissonance reduction mechanism

postulated by the dissonance reduction theory (Festinger 1957; Brehm 2007;

Harmon-Jones, Harmon-Jones, and Levy 2015). In our specification, this

mechanism is dependent only on the difficulty of the choice and does not

affect underlying item evalution.

VU mechanism is based on the proposal that our value inference process is

conditioned on the memory of previous choices (Bem 1967). The idea is that

our previous choices serve as an indication of our preferences or the objective

state of the world. Such choice driven inference has been implicated in many

theoretical models (Friston et al. 2016; Kruglanski et al. 2018). We assume

this mechanism can be described as a proportional update. Additionally, we

model a memory decay process accounting for forgetting, so that choices made

earlier in time can have a weaker effect on the current choice and judgment.

In contrast to CB, this mechanism serves to improve one’s estimation, hence

it should be both domain-specific and long-lasting. In addition, unless there is

an inherent correlation between dimensions, an across-domain update would

by definition be irrational.

In line with this theoretical distinction, we find that within-domain effects
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can be best explained as a conjunction of these two mechanisms, while

across-domain effects as driven only by CB. Analysis of model parameters

suggests that negative updates are larger than positive ones (consistent with

Experiment 4, as well as some findings from preference-based literature:

Brehm 1956; Izuma et al. 2010), and that the value-updates exhibit only a

very marginal decay throughout the length of the task.

While VU has a clear adaptive interpretation, it is less clear why one should

exhibit CB, or any type of across-domain bias. The constrain satisfaction

hypothesis (Simon, Krawczyk, and Holyoak 2004) could provide a common

mechanistic explanation for both types of adjustments, however it does

not clearly explain why such mechanism would be beneficial. One promi-

nent theory suggests that it might serve to facilitate action implementation

(Harmon-Jones, Harmon-Jones, and Levy 2015). Strikingly, a recent paper

suggests that CB-driven evidence accumulation can sometimes enhance per-

formance from purely computational perspective in both perceptual and

higher-order inference tasks (Glickman, Moran, and Usher 2020). On a

broader level, CIB is often considered as an instance of confirmation bias

(Nickerson 1998; Talluri et al. 2018), which has been proposed to to facilitate

group cooperation and stability (Peters 2020).

A different line of argumentation is that human brains are not well suited for

solving task consisting of independent samples, which provide a constraint

on our rational processing capacities (Griffiths, Lieder, and Goodman 2015;

Yoo, Hayden, and Pearson 2021). Such an inductive bias might be a product

of evolutionary adaptation to temporally-dependent environments, such as

foraging patches (Stephens and Anderson 2001).
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Further research is needed to distinguish between these competing hypotheses

and shed light on the mystery of this seemingly irrational bias.

In a set of additional experiments, we test a set of alternative explanations,

as well as constraints of the CIB effect. In Experiment 3 we find no effect of

involuntary choices on CIB, finding which is consistent with the preference

literature (Sharot, Velasquez, and Dolan 2010). This shows that a simple

motor action is not enough for the bias to occur, but rather, a free (voluntary)

choice is necessary, a finding consistent with an action-driven theory of CIB

(Harmon-Jones, Harmon-Jones, and Levy 2015). Additionally, this proves

that CIB is not a result of a simple motor bias towards the just performed

action due to motor costs associated with switching (Orban de Xivry and

Lefèvre 2016).

In Experiment 4, after each binary choice, we replace one of the two items to

test the effects of chosen and rejected item separately. Previous literature on

post-choice dissonance produced a set of inconsistent results with regards to

this issue, from undervaluation effects being stronger, (Brehm 1956, Izuma

et al. 2010), both being roughly equal (Harmon-Jones et al. 2008; Jarcho,

Berkman, and Lieberman 2011; Luo and Yu 2016) to overvaluation being

stronger (Sharot, Velasquez, and Dolan 2010). Our results indicate that both

processes may contribute to a similar extent, with a small but significant

difference in favour of rejected item devaluation being stronger than chosen

item overvaluation. Additionally, the design allowed us to test a potential

attentional confound. In particular, visual attention biases evidence accu-

mulation in favor of the fixated item (Tavares, Perona, and Rangel 2017). If

attention is biased towards the chosen item which then drives the bias, then
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we should see a significant reduction of CIB when the chosen item is replaced

with an alternative, compared to when it remains on the screen, which was

not the case.

In Experiment 5, we test another potential interpretation of CIB that is

unrelated to conflict-driven processing or value updating - the positivity

effect (Hunt et al. 2016). Assuming participants treat the chosen option

as the default, a bias could arise due to uneven weighting of positive (pro-

choice) vs negative evidence. By controlling for which item is the positive

reference, we entangle these effects, showing that positivity bias and CB

act independently, both contributing strongly to the observed bias. Since

the reference-independent CB was similar in size to the one observed in all

previous experiments, we conclude that the positivity effect cannot account

for the effect of choice.

Current task was designed to be a robust frame for comparing CIB between

domains and choice-judgment congruencies. This comes at a cost, limiting

the ability to test more specific mechanisms. One weakness of the current

design is that it does not allow to directly compare the two types of inferred

mechanisms. Inference based on generative modelling provides a very powerful

way of compensating for this deficit. Since however the generative model

space in theory can be infinite, it can provide only indirect, relative evidence

(since there can always exist a model with different parametrization that fits

the data better). A more stringent test of this would involve a modified,

dedicated design, which is a potential future direction we believe should be

pursued.

Another direction for future studies involves a deeper exploration of how
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choices influence value uncertainties. Current model assumes that the value-

update mechanism affects the central tendencies of value estimation, but

it is also possible that choices reduce the uncertainty around the estimates.

Comparing the current model with a Bayesian value update model (e.g.

Meyniel, Sigman, and Mainen 2015), where both means and uncertainties

fluctuate as a function of choices made can lead to a more accurate preditions

and a better understanding of the cognitive process. One testable prediction

is that VU mechanism should influence the uncertainty parameter, while

CIB should not.

Yet another unexplored direction revolves around a deeper understanding on

the temporal dynamics of CIB. A promising approach of studying this would

be to substitute the simple softmax choice rule (Ahn, Haines, and Zhang 2017)

with a more cognitively feasible process, such as sequential sampling (Ratcliff

and Smith 2004). Such approach would allow for testing a prediction that

updated values should be reflected in accumulation rates. Recent modelling

advancements (Kvam and Turner 2021; Ratcliff and McKoon 2020; Smith

et al. 2020) bring promise for modelling continuous judgments in a similar

fashion, and allowing to test whether the hypothesis that VU should affect

the accumulation rate, while CB should only influence the accumulation

starting point.

Future research should also focus on identifying a neural signature of both

CB and VU mechanisms. Previous research shows preference value-updating

involves dorsal striatal (Izuma et al. 2010) and hippocampal activity during

reevaluation (Chammat et al. 2017), suggesting choices affect both immediate

value as well as modify memory represtantions; while choice conflict is tracked
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by anterior cingulate cortex and dorsolateral prefrontal cortex (Izuma et

al. 2010). This distinction corresponds well with the idea of two separate

mechanisms driving CIB. A careful study design and methodology could

provide evidence of these two mechanisms driving CIB also on a neural

level. One promising way of approaching this problem is using multivariate

voxel-pattern analysis (MVPA) for distinguishing shared and non-overlapping

representations (e.g. Vermeylen et al. 2020) of within-domain and across-

domain adjustments.

6.8.1 Conclusion

We show that people can be influenced by their choices not only when the

choices are relevant to the evaluation (within-domain), but also when they

are not (across-domains). CIB is specific to voluntary choices, asymmetric,

such that rejected items are undervalued more strongly than chosen items

are overvalued, and independent of reference. The existence of across-domain

CIB and the mechanisms driving it can help us understand seemingly irra-

tional, yet socially relevant behaviours such as changing political opinions

based on voting or the emergence of polarized in-group worldviews, driven by

one’s choices and actions. While previous studies attempted to explain CIB

with a single process, our generative modelling suggests that CIB is driven

by two separate mechanisms: a conflict driven consistency bias contribut-

ing to any evaluation immediately following a choice, and a value-update,

affecting only choice-congruent judgments. Both mechanisms have different

temporal dynamics and functional interpretations. While value-updating

is only beneficial when choice information is relevant to the evaluation, a
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general consistency bias can serve to reduce uncertainty, and facilitate action

implementation.



Chapter 7

Summary

My work reveals some of the influencing factors (Project 1) and mechanisms

(Project 2) of voluntary choices, as well as their consequences (Project 3).

While focusing on the same broad concept and using a common analytical

framework (for details see Chapter 3 ), the Projects differ in how they approach

the issue, exploring different facets of voluntary choices.

All three Projects focus on the study of the what component of volitional

choices, i.e., describing the cognitive processes (Projects 1, 2 and 3), be-

havioural signatures (1, 2 and 3), neural correlates (1 and 2), goals (2),

and consequences (1 and 3). In addition, Projects 1 and 2 also include the

when component by analysing reaction times. Most Projects utilize only the

1st person definition of voluntariness (i.e., objectively defined; as opposed

to subjectively experienced; Frith 2013) with the exception of Project 1,

which also examines the link between them. Tasks consist of perceptual

217
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(1) and preference (2) variants of the equal-choice paradigm, as well as a

modified version the free-choice paradigm (3). Projects 1 and 2 put focus on

how responses are generated, assuming a linear accumulation to threshold

mechanism. Project 3 puts emphasis on how choices influence future choices

and evaluations, which is modelled using a reinforcement learning mechanism

with a modified version of Rescorla-Wagner update rule, assuming internal

feedback.

7.1 General Implications and Limitations

The Projects described in the thesis provide new insights into the study

of voluntary choice, linking some of the behavioural, cognitive and neural

processes during and after choice. The current section will summarise the

implications and limitations of the three Projects. In contrast to Chapters

focusing on individual Projects, here I will discuss the implications that link

the Projects and discuss the common themes of the thesis, dividing them by

inference type, distinguishing between behavioural findings, inferred cognitive

mechanisms, and neural underpinnings.

7.1.1 Behavioural Findings

Projects 1 & 2 show how voluntary choice behavior is modulated by a

variety of factors, such as option availability and discriminability (Project

1), or reward probability (Project 2), as well as how these factors affect the

subjective feeling of freedom (Project 1). Advanced behavioural modelling

in Project 2 also revealed a spontaneous preference among equally valuable
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options, which biased the choice frequency and facilitated response times.

Additionally, Project 1 also assessed the subjective experience of freedom,

which was weakly modulated by both number of alternatives and stimuli

discriminability. These findings provide elements of a behavioural fingerprint

of voluntary decision making in a forced-choice setting.

Across all Projects, manipulations of difficulty (defined as the difference

in value between the options) and magnitude (defined as the total value

of options available to choose) played an important role during the choice

process, affecting reaction times (Projects 1 & 2) as well as influencing post-

choice evaluation by driving the choice-induced bias (Project 3). Magnitude,

operationalized as the absolute value of the two reward probabilities available

for choice, was of central importance in Project 2, showing a strong facilitating

effect on reaction times. A similar operationalization was used in Project

3, where magnitude and difficulty related to either estimations of size or

subjective value. The results show that both difficulty (or conflict) and

magnitude positively modulated the choice-induced bias effect, consistent

with ideas suggested in the cognitive dissonance literature (E. Harmon-

Jones and Harmon-Jones 2019). The situation with Project 1 is a bit more

complicated, as the effects of discriminability can be interpreted either in

terms of difficulty (difference in contrast value between the available and

unavailable alternatives) or magnitude (the absolute value of contrast of

the available alternatives). Assuming the first case, the manipulation is

related to the difficulty in detection between available and unavailable options,

making it similar to classical paradigms, manipulating difficulty by controlling

perceptual noise levels (e.g. Mulder, Van Maanen, and Forstmann 2014;
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Liberman and Förster 2006). Assuming the second, the facilitatory effects of

high discriminability are akin to the magnitude effect found in Project 2, or

in similar perceptual studies (Teodorescu, Moran, and Usher 2016; Ratcliff,

Voskuilen, and Teodorescu 2018). While the only way to disentangle the two

would be to manipulate them independenty (e.g. Teodorescu, Moran, and

Usher 2016; Ratcliff, Voskuilen, and Teodorescu 2018), it is reasonable to

assume that the observed effect is a product of both phenomena. Project

3 provides further evidence of the post-choice processing being influenced

by both, with choice-induced bias going up when the conflict is greater and

the magnitude is larger. This was true for both domains (perception and

preference), as well as for both within and across-domain effects.

While the effects of difficulty and magnitude across all three Projects are

consistent and provide a coherent narrative of both factors significantly

influencing both choice and underlying subjective value, it is important to

remember that this understanding is constrained by the nature of the tasks

and the definitions used. Especially in the case of difficulty, it is rather

unclear how well these operationalizations generalize to real world problems,

where difficulty might be influenced by factors other than the difference on

a unified subjective value scale. The assumption of such conceptualisation

of difficulty is that value can be understood as a unified dimension (Rafael

Polania et al. 2014; Fontanesi et al. 2019).

This highlights a significant difference between the perceptual and preference-

based paradigms. While such conceptualisation is rather natural for per-

ceptual tasks, where items are usually assessed only on a single dimension,

such as size (Rafael Polania et al. 2014), motion direction (Mulder et al.
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2012) or phase coherence (Ratcliff, Philiastides, and Sajda 2009), it is not

necessarily true for preference, where value might be a reflection of different

item attributes (Luce, Payne, and Bettman 1999; Dhar 1994; Cheng and

González-Vallejo 2018), and it is not obvious how these attributes can be

integrated into a single value. For instance, in case of choosing a meal, the

attributes might consist of taste, price, and the aesthetics of the food item.

These attributes might be assigned different levels of importance, and a

choice might be reached by the means of heuristics, instead of subjective

value calculation (Gigerenzer and Gaissmaier 2011). Similarly, heuristics

such as context, similarity of compromise effects might play a significant

role when choosing between multiple alternatives, irrespective of choice do-

main (Spektor, Bhatia, and Gluth 2021). In fact, real-life decisions, such as

buying groceries or choosing a career, are usually quite more complex than

highly specific experimental paradigms which put rigid constrains on both

the number, and contents of available options, as well as the time to respond.

This arguably makes such choices a subject to a larger number of influences,

affecting the difficulty and choice strategies.

Overall, while the closeness in subjective value is a clear indicator of choice

difficulty in a highly constrained experimental paradigms used in this thesis,

one has to be careful not to neglect the impact of individual attributes and

other factors influencing real-life decisions, when generalising the findings to

more ecologically valid contexts.
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7.1.2 Inferred Cognitive Mechanisms

Projects 1 and 2 indicate that the decision process between equal options can

be reliably modelled using the evidence accumulation framework. In both

Projects, a linear accumulator model provided good fits for the observed re-

sponse behavior. Additionally, in Project 2, the estimated trial-level evidence

accumulation rate was predictive of middle prefrontal EEG signal. This

is consistent with an emerging consensus that evidence accumulation is a

reliable method used by the brain to make choices not only in the perceptual

(Gold and Shadlen 2007), but also value-based (Pisauro et al. 2017; Rafael

Polania et al. 2014) and memory-based (Supekar et al. 2021) domains.

While the linear ballistic model provided a good fit to both paradigms, it is

important to note that it was not formally compared against other potential

mechanisms (e.g. urgency gating: Yau, Hinault, et al. 2020) which could

provide a better fit, so one has to be careful in inferring about the true

mechanism driving choice. The specifications of the accumulation process

also remain debatable. For example, both Projects assumed that the bound-

ary parameter cannot vary between conditions, unless the condition type

is known a priori (Ratcliff and Smith 2004; Forstmann et al. 2010). This

assumption however can be challenged (Simen 2012). It is possible to imagine

that thresholds could be set in an early decoding stage of the pre-decisional

processing. To accommodate for this possibility, I perform an additional

analysis involving modelling Project 1 data using LBA with threshold pa-

rameter varying per condition (see Appendix). Other realistic possibilities

involve combining evidence accumulation with a time-dependent urgency

signal (Miletic 2016) which can interact with early visual processing. For
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example, an alternative interpretation of the disciminability effect in Project

1, or magnitude effect observed in Project 2 could relate to the urgency (and

not evidence or threshold) being amplified by stimulus saliency.

In Project 3, I propose that voluntary choices influence our future value

estimations in both the short term, driven by a need for consistency (Festinger

1957; Brehm 2007; Harmon-Jones, Harmon-Jones, and Levy 2015), as well

as in the long term, by updating value estimations by one’s choices. Such a

value-updating mechanism is similar to the active inference hypothesis (Bem

1967; Kruglanski et al. 2018) driven by choices, using a simple Rescorla-

Wagner updating rule (Rescorla 1972), found in a range of other paradigms

studying human learning with explicit rewards (Ahn, Haines, and Zhang

2017; Zajkowski, Kossut, and Wilson 2017; L. Zhang et al. 2020).

From a generative perspective, it is interesting to see whether, consistently

with Projects 1 and 2, modelling choices using accumulation evidence frame-

work could provide a better fit than a softmax choice rule (Ahn, Haines, and

Zhang 2017). Similar models which combine the two frameworks have started

to gain attention in recent research (Fontanesi et al. 2019; Miletić, Boag,

and Forstmann 2020). Such an approach would allow for richer inferences

regarding the specific elements of the choice process (accumulation rates,

thresholds, starting points) being affected by consistency-driven bias and

value-update mechanisms, found to drive choice-induced bias. Similarly,

modelling judgments using evidence accumulation models adjusted for a con-

tinuous response space (Kvam and Turner 2021; Ratcliff and McKoon 2020;

Smith et al. 2020) could differentiate between different processes guiding the

judgment estimation. A particularly interesting hypothesis derived from the
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two mechanisms driving choice-induced bias is that short-term conflict-driven

effects would only bias the judgment accumulation starting point, while long-

term value updates would be reflected in accumulation rates, consistent with

studies showing trial-level perturbations of accumulation speed by subjective

value (Krajbich et al. 2012).

7.1.3 Neural Underpinnings

Projects 1 & 2 deal with neural underpinnings of voluntary choice. In Project

1, I show that voluntary choices (as opposed to instructed ones, where only one

alternative is available) are associated with the activity of the SMA/preSMA

cortex and the parietal lobule, as measured by the BOLD signal in an fMRI

experiment. This finding is consistent with a recent meta-analysis of studies

using the ECP (Si, Rowe, and Zhang 2020). Similarly located medial central

cortical region differentiated between reward probability conditions in Project

2. Both of these findings suggest a crucial role of the medial prefrontal cortex

(mPFC) playing a important role in executive control of voluntary decisions

(Shenhav, Botvinick, and Cohen 2013). The exact mechanism however is

uncertain.

In Project 2 we find evidence for the slope of single-trial EEG signal between

the N100 and P300 components being associated with the speed of evidence

accumulation, as modelled by a linear accumulator model, consistent with

literature suggesting the medial P300 EEG component being a marker of

accumulation (S. Kelly and O’Connell 2013; D. Twomey et al. 2015). We

however did not find support for a similar accumulation mechanism to be

associated with preSMA activation on a subject-level in Project 1. This
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might have been caused by several reasons. Firstly, preSMA might in fact be

guided by a different principle, such as processing conflict (Iannaccone et al.

2015) or adjusting decisional threshold (Forstmann et al. 2010). According

to the first view, preSMA is involved in resolving conflict between competing

action plans by triggering response switching (Nachev et al. 2005). This

is evidenced by a negative N200 amplitude EEG component, which is a

marker of conflict monitoring, being associated with preSMA activation

(Iannaccone et al. 2015). According to the second view, preSMA activity

regulates decision threshold by modulating striatal excitability via a direct

white matter pathway (Forstmann et al. 2010). Assuming that the 2 and

3-alternative conditions require a similar level of cognitive control (which

would be consistent with very similar levels of accuracy and reaction times

across the 2 and 3 available option conditions), such explanations would be

compatible with no differences in BOLD activations observed between these

two conditions. Alternatively, the preSMA/SMA region might in fact be

driven by evidence accumulation (arguments for this view in the literature

are currently mixed, see: Tomassini et al. 2019; Tosun et al. 2017; Berkay et

al. 2018), but the methods used in Project 1 were not sensitive enough to

detect the effect.

Reconciling the seemingly inconsistent results of the preSMA cluster not

being related to evidence accumulation in Project 1, but medial PFC region

being associated with accumulation speed in Project 2 is possible, given an

anatomical distinction between the two regions, with the more frontal and

lateral preSMA cluster being involved in conflict-driven boundary setting,

while the slightly more posterior and central mPFC being involved in accumu-
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lation (Pisauro et al. 2017), supported by the region’s functional connection

with the ventral prefrontal cortex, associated with a global subjective value

signal (Hare et al. 2010).

7.2 Future Directions

The diversity of the Projects described in this thesis lends itself to a long vector

of possible future research directions, many of which have been proposed in

the Chapters describing individual Projects. From a broader perspective, I

believe that a long-run goal of this line of research should be to provide a

cohesive model explaining the behavioural, cognitive and neural mechanisms

of voluntary decision making.

To achieve this, it is necessary to fill in the gaps between whether, what and

when components of the choice process (Brass and Haggard 2008), as well

as between the computational, algorithmic and implementational levels of

explanation (Marr 1982). The following sections are organized with regards

to these distinctions, describing the possible follow-up research directions

with regards to the whether and when component of voluntary choice, and

the computational, algorithmic and implementational levels of analysis.1

7.2.1 Whether Component of Voluntary Choice

Studies described here focus mostly on the what and when elements of choice

(Table 7.1), omitting the decision whether an action should be performed.
1The what component has been purposefully omitted here, since describing future

directions would be reiterating discussion contents from Chapters 4-6.
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This underexplored component could be studied using modified version of

the paradigms studied here. For example, Project 1 design could include

a no-go condition, where none of the options were available to choose. In

Project 3, a no-go condition could include making a choice but withholding

the response (for a similar design see: Chambon et al. 2020). Theoretical

accounts predict that refraining from choice should reduce choice-induced

bias (Harmon-Jones, Harmon-Jones & Levy, 2015) as well as decrease the

choice calibration (Kvam, Pleskac & Busemeyer, 2015).

7.2.2 When Component of Voluntary Choice

The when component remains unexplored in Project 3. This is due to

two fundamental limitations of the design. Firstly, judgment scales in all

Experiments were made on a straight horizontal (or vertical: Experiment

5) scale, and since the mouse position was centered, it takes longer to move

the mouse in the direction of more extreme values, located further from the

center, necessarily making the reaction time estimation biased. Secondly, in

order to provide a more familiar and consistent user experience (participants

are more comfortable to respond by dragging the mouse for both choices and

judgments, than switching between key-value mappings and mouse dragging

interchangeably in every trial) the online Experiments used mouse-guided

responses in both choices and judgments, rendering reaction times more prone

to noise (Plant, Hammond, and Whitehouse 2003). Potential resolution to the

first issue is designing a semicircular judgment scale with the cursor placed

in the origin, so that at the start of the judgment all points on the scale are

equidistant and reaction times are not biased by the distance needed for the
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mouse to traverse to any point on the scale. The resolution of the second

issue would require using a different means for providing responses, which

would be comfortable for both binary choices and continuous judgments. One

possibility would be training participants in using a joystick.

7.2.3 Computational Level of Analysis

In this work, I used two computational (as in referring to the computational

level of analysis) frameworks. In Projects 1 and 2, I model the choice

process using an evidence accumulation framework, assuming that perceptual,

preferential and memory-based evidence is sampled and integrated until a

predefined threshold is reached. In Project 3, I model the temporal evolution

of choice-induced bias similar to a reinforcement learning process with one’s

choices playing the role of implicit rewards. While these approaches proved

to fit the data well, it is possible that testing alternative frameworks could

provide a more accurate description of the data. Future studies could focus

on comparing different possible mechanisms driving choice (such as urgency

gating, Thura et al. 2012). The design of Project 3 makes it also a good

candidate for linking both mechanisms by modelling choice using evidence

accumulation, and value-update using a learning model (Miletić, Boag, and

Forstmann 2020).

7.2.4 Algoritmic Level of Analysis

Future research regarding all of the Projects contained here would benefit from

more in-depth work on modelling the algorithmic level of cognitive processing.
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In Projects 1 and 2 I utilize linear ballistic accumulation, a model assuming

that each option is represented by a independent accumulator in a race

towards a common threshold (Brown and Heathcote 2008). Many alternative

representations of the accumulation process are also used in the literature,

such as the drift-diffusion model, which assumes that the noisy difference

in value is accumulated (Ratcliff 1978), Leaky Accumulator Model, which

assumes that the accumulators decay can mutually inhibit each other (Usher

and McClelland 2001), as well as other variants of thereof (e.g. non-static

threshold model, Evans 2020). While some tests have been performed using

classical perceptual designs (Hawkins et al. 2015), a systematic comparison

among these models in an ECP task could result in providing a more accurate

description of the observed data.

In Project 3, using the Rescorla-Wagner rule to update choice value is only

one of the possibilities. An interesting alternative involves modelling value

representations as distributions, instead of single points. Such approach would

allow for modelling the choice-induced update process similar to Bayesian

Learning, where value uncertainties play a critical role (e.g. Daw et al. 2006;

Zajkowski, Kossut, and Wilson 2017).

7.2.5 Implementational Level of Analysis

Project 3 is the only one devoid from any implementational elements, as the

set of experiments was behavioural in nature. Future work should explore

how the proposed mechanisms are realised in the brain. Candidate brain

regions involved in biasing judgments towards choice via a consistency bias

include anterior cingulate cortex and dorsolateral prefrontal cortex (Izuma
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et al. 2010). Areas potentially involved in long-term value-updating include

dorsal striatal (Izuma et al. 2010) and the hippocampus (Chammat et al.

2017).

7.2.6 Further Linking the Levels of Analysis

All of the Projects provide a link between at least two levels of analysis.

Additional links could be acquired by using more diverse imaging methodology.

Combining EEG with fMRI could help in attaining high temporal (EEG) and

spatial (fMRI) resolution (B. Turner et al. 2016). Such approach could help

in reconciling the dilemma regarding the roles of preSMA vs mPFC cortices

in accumulation discussed in the previous section. Adding eye-tracking to

either fMRI or EEG could allow for precise modelling of attention and a

better estimate of accumulation rates (Krajbich et al. 2012), which would

allow mapping it in the brain with higher precision. As described in Chapter

3, neural data can serve not only as a means of describing how a process

is implemented in the brain, but also to actively constrain the algorithmic

model, aiding in model selection (Brandon M. Turner et al. 2016). Future

work should consider these possibilities as means of obtaining better models

on both the algorithmic and implementational levels.

7.3 Conclusion

In this thesis I explore the behavioural, cognitive, and neural mechanisms

of voluntary decision making. The diverse set of results from the three

Projects, including voluntary choices between: abstract perceptual stimuli
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(Project 1), symbols associated with reward probabilities (Project 2), and

concrete food items, based on their perceptual and preferential qualities

(Project 3), provide an insight into the decision making process and how it

affects future choices and evaluations. My results indicate that voluntary

choices are influenced by such factors as the number of available alternatives,

choice difficulty, magnitude of the value alternatives, as well as an evolving

subjective preference, driven by previous choices.

Cognitive modelling using a linear ballistic accumulation to threshold (LBA,

Brown and Heathcote 2008) indicates that the activity in the medial prefrontal

cortex, area in general associated with voluntary choices (Project 1), is

predictive of evidence accumulation speed on a trial-to-trial level (Project

2). Finally, in Project 3 I show how voluntary choices influence future

choices and value estimations, not only within the domains of perception

and preference, but also across domains, i.e. such that preference choice can

influence perceptual evaluation, and vice versa. This effect is driven by both,

a short-term conflict driven consistency bias, and a long-term value update,

similar to learning from one’s previous choices. The results described above

provide further insights into the complex nature of voluntary choice.
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Chapter 4

LBA model including threshold varying per condition

To account for the suggested possibility of strategic threshold adjustment

during the trials, I fitted two additional models which included the possibility

of threshold parameter varying dependent on condition type. First one

included varying accumulation rates v and thresholds B per condition (VB

model) and second one additionally included varying non-decision time Ter

per condition (VBTer model). I then compared these models with the original

model, which varied v and Ter per conditon (VTer model) using the LOO

information Criterion score (Vehtari, Gelman, and Gabry 2017), where lower

scores indicate better fit. The comparison revealed that the original VTer

model provided a better fit of LOO = 12421, compared to both VB (LOO =

15113) and VBTer (LOO = 12678) models. This indicates that varying the

threshold parameter per condition resulted in worse fits, so the models were

discarded from further analysis.
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Chapter 6

Exact Behavioural Model Specifications

All syntax represented using lme syntax format (Bates et al. 2014), where

stars denote interaction terms and random effect terms are contain within

the parentheses.

Experiments 1-3. Choice-Induced Bias ~ congruence * domain + congru-

ence * congruent difficulty + congruence * incongruent difficulty + congru-

ence * congruent magnitude + congruence * incongruent magnitude + (1

+ congruence + domain + congruent difficulty + incongruent difficulty +

congruent_magnitude + incongruent difficulty | participant)

Experiment 4. Choice-Induced Bias ~ congruence * domain + congruence *

congruent difficulty + congruence * incongruent difficulty + congruence *

congruent magnitude + congruence * incongruent magnitude + replaced item

(1 + congruence + domain + congruent difficulty + incongruent difficulty +

congruent_magnitude + incongruent difficulty | participant)

Experiment 5. a) Reference Bias ~ domain (1+domain | participant) (using

only no-choice trials) b) Choice-Induced Bias ~ domain * congruence * refer-

ence type + (1|participant) (data aggregated per participant; non-hierarchical

structure was used, since our design does not allow us to estimate single-trial

positivity scores without confounding the choice-bias estimate)
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Figure 7.1: Stimuli used across experiments. Below each item the true
percentage of non-white pixels (item size). All items were taken from Food-
Pics online database (Blechert et al., 2019).
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Preference vs Size Ratings

Preference ratings displayed a moderate significant correlation across sessions

in all but Experiment 1: M = 0.062, SD = 0.265 t(22) = 1.120, p = 0.27

(Experiment 1); M = 0.120, SD = 0.228 t(243) = 8.178, p < 0.001 (Experiment

2); M = 0.130, SD = 0.193 t(49) = 4.765, p < 0.001 (Experiment 3); M =

0.180, SD = 0.230 t(48) = 5.544, p < 0.001 (Experiment 4); M = 0.204, SD

= 0.266 t(49) = 5.367, p < 0.001 (Experiment 5);

This correlation increased in the post-task rating, compared to pre ,with the

increase being significant in 2 of the Experiments: M = 0.015, SD = 0.165

t(22) = -0.434, p = 0.67 (Experiment 1); M = 0.038, SD = 0.215 t(243) =

-2.788, p = 0.005 (Experiment 2); M = 0.086, SD = 0.193 t(49) = -3.163, p

= 0.002 (Experiment 3); M = 0.038, SD = 0.217 t(48) = -1.251, p = 0.22

(Experiment 4); M = 0.018, SD = 0.233 t(49) = -0.553, p = 0.58 (Experiment

5);

Frequentist effect sizes of choice-induced bias across ex-

periments and conditions

To measure the bias effects independently across domain and congruence, we

aggregate the data per participant and test the bias against 0. In experiment

1, we found strong evidence for both within and across-domain bias in both

domains: Mpref-within = 27.3, CI = [21.55, 33.09], t(22)=9.82, p < 0.001, d

= 2.05; Msize-within = 17.4, CI = [14.11, 20.72], t(22)=10.92, p < 0.001, d =

2.28; Mpref-between = 10.8, CI = [7.45, 14.09], t(22)=6.73 , p < 0.001, d =

1.40; Msize-between = 6.33, CI = [3.14, 9.52], t(22)=4.12, p < 0.001, d = 0.86.
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We replicated this effect in online experiment 2, performed on a much larger

sample (250), using a different set of stimuli and a shorter paradigm (12

items; 198 trials; see Methods): Mpref-within = 35.8, CI = [34.02, 37.63],

t(250)=39.11, p < 0.001, d = 2.49; Msize-within = 19.6, CI = [17.92, 21.36],

t(250)=22.52, p < 0.001, d = 1.41; Mpref-between = 10.3, CI = [8.52, 12.17],

t(250)=11.16 p < 0.001, d = 0.69; Msize-between = 6.1, CI = [4.73, 7.57],

t(250)=8.55, p < 0.001, d = 0.53.

In Experiment 3, the effects of forced-choice bias was not significant:

Mpref-forced = 0.9, CI = [-1.93, 3.88], t(49)=0.67, p = 0.5, Msize-forced = 0.6,

CI = [-1.31, 2.64], t(49)=0.68, p = 0.5.

In Experiment 4, the effect rejected-item undervaluation was greater than

chosen-item overvaluation: F(1,49) = 4.95, p = 0.03, d = 0.320.

In Experiment 5, referencing increased the judgments of the referenced item

in the no-choice condition: Mreference-pref = 11.9, CI = [6.7, 17.02], t(49)=4.62,

p < 0.001, d = 0.649; Mreference-size= 7.3, CI = [2.96, 11.7], t(49)=3.37, p <

0.001, d = 0.470. The baselined choice-bias was significantly greater than

0 for all conditions: Mpref-within = 38.3, CI = [34.17, 42.45], t(49)=13.73, p

< 0.001, d = 1.84; Msize-within = 27.6, CI = [21.96, 33.26], t(49)=9.82, p <

0.001, d = 1.36; Mpref-between = 6.64, CI = [1.35, 11.93], t(49)=2.52, p <

0.01, d = 0.432; Msize-between = 8.18, CI = [3.01, 13.36], t(49)=3.18, p =

0.001, d = 0.393. After removing positivity baseline, the differences in choice-

induced bias between reference-chosen and reference-rejected conditions were

non-significant F(1,49) = 0.64, p =0.43.
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Spontaneous Bias confound simulation

An alternative interpretation of choice-induced bias effects assumes that

choices simply reveal preexisting stable preferences (Chen and Risen 2010).

This is due to the fact that initial item ratings are a noisy measurement

and give imperfect information about the underlying values. Future choices

might therefore not as much induce a change of underlying values, but rather

reveal them. A simple example would be when item A’s ‘true’ value is 50,

while item B’s true value is 45, but due to rating variability, A is rated at 45

and B at 50. Based on ratings, a choice of A followed by a higher preference

for A would indicate choice-induced value change, while in reality it might

be an artifact reflecting regression to the mean effect. To test to what extent

this spontaneous bias artifact can affect our design, we performed a series

of simulations with a conservative assumption that true values are indeed

stationary and choices can only reveal, but not influence them. We then

measured the spontaneous bias generated from this model, manipulating key

data generating parameters: the within-item rating variability, choice inverse

temperature, and judgment standard deviation. All of these relate to the

precision with which items are assessed, and hence should be crucial when

estimating the confound.

True Value Estimation/Rating generation/Simulation

We take a data-driven approach, where true values and ratings are derived

from ratings in experiment 2. We first aggregate the rating data per partici-

pant and empirically derive the group-level distributions for 3 key parameters:
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true value mean VM, true value variability between items VVB, and rating

variability within items RVW, within each domain. We assume that these

parameters can be considered a reliable approximation of the underlying true

values. We further assume that individual level parameters are distributed

normally, centered at the group-level mean and scaled with group group-level

variability, truncated at the ends of the ratings scale:

VMs,d ∼ N(µVMd, σV Md) (7.1)

V V Bs,d ∼ N(µV V Bd, σV Bd) (7.2)

RVWs,d ∼ N(µRVWd, σRVWd) (7.3)

where µ and σ represent group-level mean and variability respectively esti-

mated per domain d, while individual parameters are estimated per partici-

pant s.

We additionally derive group-level parameter controlling for the correlation

between the two rating types. This is because spontaneous bias in across-

domain trials can only occur if the true preference and size values are positively

correlated (otherwise, a preference choice could not provide any information

about size, or vice versa). Similarly to above, we assume that individual-level

correlation is drawn from the group-level distribution:

V cors ∼ N(µV cor, σV cord) (7.4)
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We therefore assume that the true values for preference and size are drawn

from a bivariate normal distribution centered at the respective means, with

variance-covariance matrix given by the VVB and Vcor parameters:

Vpref,s
Vsize,s

 = N


V VMpref,s

V VMsize,s


V V Bpref,s V cors

V cors V V Bsize,s


 (7.5)

Given the true values, we assume that the ratings for each item i are

distributed normally, centered at the true mean Vi,d and scaled by the

within-item variability V VWi,d:

Ri, s, d, n ∼ N(µVMi, d, σRVWi, d) (7.6)

where Ri,s,d,n represents the rating for item i and participant s in domain d

and rating number n (as in the experiment, we simulate two ratings, which

are then averaged).

Choices and Judgments Generation

Similar to our model, we assume choices can be approximated by a softmax

decision rule with parameter τ controlling choice variability, while judgments

are distributed normally, centered at their true value with a scaling parameter

ξ (see Methods for equations).

We estimate the two variability parameters by fitting a version of the Null

model with hierarchical estimation of τ and ξ, and extracting their group-level
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Table 7.1: Data-driven group-level parameters used for generating synthetic
data.

Value-related Size-related Value and Size-related
µVMpref = 79.48 µVMsize = 63.50 µV cor = 0.07
σVMpref = 7.94 σVMsize = 10.34 σV cor = 0.28
µV V Bpref = 10.48 µV V Bsize = 16.19 µτ = 8.75
σV V Bpref = 3.93 σV V Bsize = 5.74 στ = 3.16
µRVWpref = 6.90 µRVWsize = 9.04 µξ = 39.08
σRVWpref = 3.54 σRVWsize = 3.34 σξ = 11.22

means and standard deviations parameter fit:

τi ∼ N(µτ, στ) (7.7)

ξi ∼ N(µξ, σξ) (7.8)

All group-level parameter values are summarized in table 7.1. Data-driven

group-level parameters used for generating synthetic data.
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Figure 7.2: Spontaneous bias simulation. Each plot presents one simula-
tion condition (100 simulations), each data-point is the mean bias across a
single simulation per condition (250 synthetic participants per simulation).
Parameters RVB, τ , and ξ represent empirically estimated rating variabil-
ity between-items, decision inverse temperature, and judgment standard
deviation. RD and RJ are rating-decision and rating-judgment consistency
measures averaged across simulation condition (left column: size condition;
right column: preference). Green indicates that the 95% confidence interval
estimated from the simulation intersected with the 95% interval calculated
for the real data (simulation produced plausible values of a given metric).



Summary 306

Simulation

We test 24 conditions based on varying levels of within-item rating variability

(4 levels), decision inverse temperate (3 levels) and decision variability (2

levels).

The RVW parameter is crucial, as it controls the precision with which the

ratings reflect true values. Intuitively, the less precise the ratings, the less we

can infer about the underlying distributions and the larger the confounding

bias should be (for a more thorough argument see: Chen and Risen 2010;

Izuma and Murayama 2013). Since estimating scale parameters from only 2

observations is rather noisy, we err on the side of caution and additionally

test it at 3 more conservative levels: twice (RVBx2), thrice (RVBx3), and

five times (RVBx5) as large as their empirical estimations. This conservative

approach allows us to account for the worst case scenario: how large can the

spontaneous bias be given extremely unreliable ratings.

We also test more conservative levels of τ and ξ. Unlike in the case of real

data, here we have direct access to the true item values and therefore do

not need to make the simplifying assumption that ratings are their perfect

representation. It is therefore likely that knowing the true values would lead

to smaller error and variability terms. To account for this, we test three

levels of τ : empirically estimated (τx1), twice and thrice as large (τx3), as

well as 2 levels of ξ: empirically estimated (ξx1), and twice as small (ξx1).

The parameters are scaled in opposite directions, since greater τ represents

higher accuracy, while the opposite is true for ξ.

We perform 100 simulations per tested condition. For each simulation, we
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generate ratings and data for 250 synthetic participants. To test whether

simulation condition produces a realistic output, we calculate the rating-choice

and rating-judgment consistency measures (see Results section for definitions)

and test whether the 95% confidence intervals estimated from simulation in

each conditions overlap with the 95% confidence interval estimated from the

real data.

Our analysis shows that the design is robust against the confounding effect of

spontaneous bias. Given realistic assumptions that can reproduce key data

patterns, the bias is negligible at most (< 1 point; Figure 7.2). Consistency

analysis indicates that high levels of RVB lead to unrealistically low consis-

tency levels, even when choice and judgment precision is very high. Even in

highly unrealistic scenarios, the bias for within-trials did not exceed 5 points.
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