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Abstract–Texture analysis for quantification of intratumor 

uptake heterogeneity in PET/CT images has received increasing 

attention. This allows the extraction of a large number of 

‘radiomic’ features to be correlated with end point information 

such as tumor type, therapy response, prognosis. The 

conventional complex workflow for calculation of texture 

features introduces numerous confounding variables. This non 

exhaustively includes, imaging time post administration of 

radiopharmaceutical and the method and extent of functional 

volume segmentation. A lack of understanding on the 

dependency of texture features with these variables serves as a 

detriment to the urgent need to standardize texture 

measurements to pool results from different imaging centers. The 

utilization of machine learning techniques for feature (and their 

combinations) selection serves as a promising method to alleviate 

redundancy in radiomics. To this avail, we introduce for the first 

time the application of a Kohonen self-organizing feature map to 

identify the emergent properties present when performing 

texture analysis. The application of the self-organizing map to 

radiomic analysis serves as a powerful general-purpose 

exploratory instrument to reveal the statistical indicators of 

texture distributions. For this purpose, texture features from 

PET-CT images of 8 pre-clinical mice with mammary carcinoma 

xenografts were analyzed with varying post injection imaging 

time and tumor segmentation contour size. This varying 

distribution of texture parameters were interpreted by the self-

organizing map to reveal two distinct clusters of texture features 

which are dependent on contour size, providing additional 

evidence that contour size and hence segmentation method is a 

confounding variable when performing texture analysis. 

Furthermore, the self-organizing map can be utilized as a method 

to incorporate this revealed dependency in a prediction model in 

the presence of end point information, which will be an area of 

future work. 
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I. INTRODUCTION 

EDICAL imaging forms an essential component in all 

phases of cancer management. Traditionally medical 

images are interpreted visually by radiologists and clinicians. 

The rapid development of artificial intelligence (AI) has 

revolutionized the ability to recognize complex patterns in 

imaging data and provide a depth of quantitative analysis 

previously unachievable. Positron Emission Tomography 

(PET) imaging contributes significantly in the staging, 

diagnosis and treatment for several types of cancer [1]. The 

extraction of texture features from PET defined metabolic 

tumors has received increasing research interest. In the field 

now described as “radiomics” texture features and their 

combinations have demonstrated correlation with dependent 

variables, such as classification of tumor type, therapy 

response, disease characteristics and prognosis. This 

demonstrated powerful ability of PET radiomics may serve as 

a linchpin to personalized cancer treatment with the associated 

promised improvements in survival [2] [3].  

Before large scale clinical implementation of PET 

radiomics standardization of the entire workflow for feature 

extraction is required. Efforts towards the standardization of 

the texture metric calculation have proved promising [4]. 

Multiple confounding variables however may cause a 

variation on radiomic features. Several investigations have 

assessed the impact of image reconstruction type [5], 

respiratory motion [6] segmentation [7][8] and in our previous 

work contour size and post injection imaging time [9] on 

texture features.  

To date only a limited number of studies have utilized 

advanced machine learning techniques to investigate the value 

of texture analysis in PET imaging [10][11]. A self-organizing 

map SOM is a type of artificial neural network (ANN) that is 

trained using unsupervised learning to produce a lower 

dimensional representation of the input data on an underlying 

manifold. Manifold learning has shown successful in other 

areas of image processing, such as respiratory motion 

correction [12] and image segmentation [13][14]. To the 

authors knowledge, no published research has implemented a 

self-organizing map (SOM) to explore, capture and cluster the 

statistical variability of PET texture parameters.  

Kohonen’s Self-Organizing map (SOM) takes a set of input 

data (with L texture parameters) and maps it onto a two 

dimensional grid of neurons (figure 1) [15][16]. Each neuron 

M 



 

  
 

in the grid is assigned a weight vector 𝑊 = (𝑤𝑗1, 𝑤𝑗2, … , 𝑤𝑗𝐷) 

with the same dimensionality as that of the input data 𝑗 =
(1,2, . . . 𝐿) .  The training utilizes competitive learning. 

Training examples are fed into the network at random, the 

Euclidean distance to all weight vectors is computed. The 

neuron weights are updated (eq 1); the neuron whose vector is 

most similar to the input is called the best matching unit. 

 

         𝑤𝑡+1
𝑗𝑑

= 𝑤𝑡
𝑗𝑑

+ 𝜂ℎ(𝑗, 𝑘)(𝑥𝑑 − 𝑤𝑗𝑑
𝑡 ),      𝑓𝑜𝑟    1 ≤ 𝑑 ≤ 𝐷        (𝟏) 

 

Where 𝜂  is the learning rate parameter and ℎ(𝑗, 𝑘)  is the 

neighborhood function which has the value 1 at the winning 

neuron k and decreases as the distance between  j and k 

increases.  Each high dimensional data point is thus embedded 

onto a single neuron which most accurately reproduces its 

structure. 

 

 
 

Fig. 1. Illustrative example of a self-Organizing Map [16]. 

II. METHODS 

Radiomic features were extracted from PET images of eight 

mice with 4T1 tumors (mammography carcinoma xenografts) 

utilizing SPAARC (an in-house developed tool built on 

Matlab [17]). Mice were injected with 10.0 ± 2.0 MBq of 18F-

FDG and imaged 50 minutes post injection, dynamically for 

20 minutes, 50 minutes with a Mediso Nanoscan PET/CT. 

Images were re-binned into 4 x 5 minutes PET scans (50-55, 

55-60, 60-65 and 65-70 minutes post injection). Four different 

systematic 3D-Contour sizes (4, 4.5, 5, 5.5 mm) were 

segmented on the first time point (55 minutes) using Velocity 

3.2.1 software (Varian Medical Systems, Palo Alto, CA). 

Contours obtained on the first time point were overlaid on all 

other images which were re-binned into subsequent time 

points. Figure 2 shows coronal and sagittal slices of lower 

right flank with four different contours for the first mouse. 

Texture features were extracted for each volume at each time 

points using SPAARC (Spaarc Pipeline for Automated 

Analysis and Radiomic Computing an in-house developed tool 

built on Matlab). Thus, each feature has 128 observable values 

that resulted from 8 mice, 4 different time points and 4 

different contour sizes. For inter-comparison of different 

textures, the Zscore for each texture measurement was 

calculated (Z-omic). The mean Z-omic for 8 pre-defined 

groups of texture was calculated (morphology, statistical, 

intensity histogram, GLCM, GL3D, GLZ, GLD and NGT). 

The R software was used to learn the self-organizing map of 

the averaged Z-omic using 16 organizing neural networks, a 

learning rate of 0.05 and a Gaussian neighborhood function 

with standard deviation 1. 

 
Fig. 2. Coronal (left) and sagittal (Right) slices of lower right flank (left of 

image) with four different contours for the first mouse. 

III. RESULTS 

From the input dataset each instance of measured texture 

(Zomic) is assigned to a single node that best represents its 

distribution of variability. The classification of each node and 

the relative contribution of the grouped features is 

demonstrated in the codes plot (figure 3). 

 

 
Fig. 3. Codes plots for the texture features. 

 

  



 

  
 

To investigate the effect of confounding variables (Contour 

Size, Imaging Time) on the variability of texture parameters 

cluster analysis on the distribution of the contour sizes and 

imaging time points over the nodes of the SOM may be 

performed. In view that the SOM is blind to the confounding 

variables (i.e contour size and imaging time) it is evidenced 

that an emergent property of the statistical variability of the 

grouped textures is the extremes of contour size. Figure 4 and 

5 present the distribution of the first and fourth contour size 

with respect to the self-organized features. No such 

relationship was observed with respect to the distribution of 

image time points over the nodes of the SOM. Taken together, 

these results suggest that the statistical distribution of the input 

texture has clear modes which are dependent on contour size. 

 

 

Fig. 4. The distribution of the first contour size with respect to the self-

organized features. 

 
Fig. 5. The distribution of the fourth contour size with respect to the self-

organized features. 

 

IV. CONCLUSIONS 

We introduce the novel application of a self-organizing map 

to texture feature analysis and demonstrate its ability for the 

first time in identifying emergent properties that effect 

Radiomics variability, in this case contour size. The SOM may 

also be utilized with outcome data to serve as a predictive tool 

for dependent variables (e.g prognosis, therapy response). In 

so doing the learnt representations of self-organized features 

serve as the attributes for prediction which will take into 

consideration the statistical variability in the underlying 

dataset. This serves as an area for future work. 
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