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Abstract: Pulmonary arterial hypertension (PAH) results in hypertrophic remodeling of the right
ventricle (RV) to overcome increased pulmonary pressure. This increases the O2 consumption of the
myocardium, and without a concomitant increase in energy generation, a mismatch with demand
may occur. Eventually, RV function can no longer be sustained, and RV failure occurs. Beta-adrenergic
blockers (BB) are thought to improve survival in left heart failure, in part by reducing energy
expenditure and hypertrophy, however they are not currently a therapy for PAH. The monocrotaline
(MCT) rat model of PAH was used to investigate the consequence of RV failure on myocardial
oxygenation and mitochondrial function. A second group of MCT rats was treated daily with the
beta-1 blocker metoprolol (MCT + BB). Histology confirmed reduced capillary density and increased
capillary supply area without indications of capillary rarefaction in MCT rats. A computer model of
O2 flux was applied to the experimentally recorded capillary locations and predicted a reduction
in mean tissue PO2 in MCT rats. The fraction of hypoxic tissue (defined as PO2 < 0.5 mmHg) was
reduced following beta-1 blocker (BB) treatment. The functionality of the creatine kinase (CK) energy
shuttle was measured in permeabilized RV myocytes by sequential ADP titrations in the presence and
absence of creatine. Creatine significantly decreased the KmADP in cells from saline-injected control
(CON) rats, but not MCT rats. The difference in KmADP with or without creatine was not different in
MCT + BB cells compared to CON or MCT cells. Improved myocardial energetics could contribute to
improved survival of PAH with chronic BB treatment.

Keywords: myocardial hypoxia; creatine kinase; pulmonary artery hypertension; beta blocker;
monocrotaline; right ventricle failure; heart failure

1. Introduction

Pulmonary arterial hypertension (PAH) arises when the vascular resistance in the normally low
pressure, high compliance pulmonary circulation increases due to muscularization or occlusion of
pulmonary arterioles [1,2]. The increased load on the right ventricle (RV) causes adaptive remodeling,
such as hypertrophy of RV myocytes, increased heart rate, and increased reliance on inotropic
beta-adrenergic signaling pathways [3]. These changes initially preserve cardiac output at the cost of
increased heart rate and energy expenditure [4,5]. Chronic elevated beta-adrenergic signaling reduces
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beta-adrenoceptor expression, which compromises contractile reserve [6–8]. Eventually the RV is
unable to meet demands and RV failure results [9].

It is believed that problems in energy supply could lead the heart to become “energy starved”,
due to its continual high rate of ATP turnover [10]. In human heart failure, lower levels of high-energy
phosphates like ATP and phosphocreatine (PCr) are associated with worse outcomes [11]. The causes
of this are unknown; however, there is evidence of myocardial hypoxia in PAH, as well as left heart
failure shown by increased expression of hypoxia-inducible factor-1 (HIF-1) and vascular endothelial
growth factors (VEGFs) [12–16]. This may drive a shift in substrate utilization from fatty acid oxidation
to glycolysis in both animal and human PAH [17,18].

Myocardial hypoxia in PAH could be explained by reduced right coronary artery flow in proportion
to increased RV mass and increased heart rate, which decreases coronary perfusion time [5,19]. Increased
myocyte diameter is also predicted to reduce tissue oxygenation, due to increased diffusion distance
from capillaries [20]. In human PAH, capillary density was reduced in the failing RV with a reduction in
pro-angiogenic miR-126 expression, whereas injection of miR-126 in a rodent model of PAH increased
capillary density and cardiac output [21]. Depending on the stage of disease, there may also be
increased expression of VEGF inhibitors and decreased expression of angiopoetin-1 and apelin proteins
involved in capillary maintenance [22]. Hypoxia will reduce mitochondrial ATP synthesis and limit
the cell’s ability to perform work; therefore, reducing myocardial hypoxia could be a therapeutic target
for PAH.

To work efficiently, ATPases like sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and myosin
ATPase require a high free energy of ATP hydrolysis, achieved by a large ratio of ATP (~5 mM)
to ADP (<50 µM). This is maintained in the vicinity of ATPases by cytosolic creatine kinase (CK),
which reversibly catalyzes the transfer of high-energy phosphate from phosphocreatine (PCr) to ADP,
producing ATP and creatine (Cr). CK located in the mitochondrial intermembrane space (CK-mt)
generates PCr and promotes ATP synthesis by maintaining a high mitochondrial [ADP] [23,24].
This shuttling of energy from mitochondria to cellular compartments using the CK system becomes
particularly important for cell survival during hypoxia and with moderately increased O2 flux [25].
However, expression of CK isoforms is reduced in PAH and left heart failure, which is associated with
impaired myofilament function and reduced coupling to respiration [26–29]. This raises the prospect
that improving CK function may benefit a failing RV, and therapies which do so should be investigated.

Beta-adrenergic receptor blockers (BB) are not currently recommended as a treatment for PAH;
however, recent clinical [30–33] and preclinical evidence suggests they may be safe or beneficial [34–38].
We recently established a BB treatment regime in a monocrotaline (MCT) rat model of PAH, and it
slowed the progression to heart failure [37]. Notably, BB ameliorated MCT RV myocyte hypertrophy
and showed trends towards improved expression of CK isoforms. Our aim for this study was to
investigate whether RV hypoxia and CK-mediated mitochondrial respiration were improved in MCT
rats following chronic BB treatment.

2. Results

PAH was initiated by a single intraperitoneal injection of monocrotaline into male Wistar rats
(200 ± 20 g). We employed a three-group study design, consistent with previous publications [34–38].
MCT-injected rats were treated daily with either the beta-1-selective blocker metoprolol (10 mg/kg;
MCT+BB group) or with a vehicle (sucrose solution; MCT group) beginning on day 15 post-MCT
injection [37]. Saline injected control rats (CON group) were treated with the vehicle. MCT rats were
killed when showing symptoms of heart failure [37]. MCT + BB and CON rats were killed on the
median survival day of MCT rats (23 ± 1 days) as time-matched treatment groups. Frozen tissue for
histology and myocytes were isolated from the same cohort of animals used in [37], which also contains
detailed in vivo characterization of the BB treatment model.

The heart weight to body weight ratio was greater in MCT rats than CON rats, mainly due to
increased RV weight (Table 1). The heart and RV weight of MCT + BB rats was significantly less than
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MCT rats, consistent with a reduction in RV myocyte hypertrophy [37]. Lung weight was greater in
MCT and MCT + BB rats than CON, possibly indicative of pulmonary edema arising from increased
pulmonary artery systolic pressure.

Table 1. Body and organ characteristics of control (CON), monocrotaline (MCT), and beta-1-selective
blocker metoprolol (MCT + BB) groups.

CON MCT MCT+BB

Body weight (g) 330 ± 7 294 ± 13 273 ± 10 **
HW:BW (mg/g) 3.90 ± 0.13 6.22 ± 0.34 *** 5.07 ± 0.34 *,†

RV:BW (mg/g) 0.75 ± 0.05 1.42 ± 0.12 *** 0.90 ± 0.07 ††

LV + S:BW (mg/g) 2.78 ± 0.17 3.00 ± 0.19 2.96 ± 0.09
Lung:BW (mg/g) 7.53 ± 0.82 10.3 ± 0.3 * 10.2 ± 0.6 *
Liver:BW (mg/g) 39.6 ± 1.3 40.6 ± 2.8 49.2 ± 1.8 *,†

HW: heart weight; BW: body weight; RV: right ventricle, LV + S: left ventricle + septum. * p < 0.05, ** p < 0.01, *** p <
0.001 vs. CON, † p < 0.05, †† p < 0.01 vs. MCT. n = 7 CON, 5 MCT, 5 MCT + BB rats per group.

Histology was conducted on cryosections of RV myocardium from CON, MCT, and MCT+BB rats.
10 µm thick sections were stained with fluorescein-conjugated lectin to label the capillary network
and muscle fiber boundaries (Figure 1A). Capillary locations were digitized, and the capillary supply
area, in which all points were closer to a central capillary than to any other capillary, was computed
using Voronoi tessellation (Figure 1B). Capillary density was reduced by 45% in MCT and by 33% in
MCT + BB compared to CON (p < 0.001), but was increased in MCT + BB compared to MCT (p < 0.05)
(Figure 1C). This could indicate capillary rarefaction or be a consequence of angiogenesis failing to
match RV myocyte hypertrophy [37]. The ratio of capillaries to muscle fibers was not different between
groups (Figure 1D). The mean capillary supply area was increased by 81 % in MCT (p < 0.001) and by
53 % in MCT+BB (p < 0.01) compared to CON, but was reduced by 16% in MCT+BB compared to MCT
(p < 0.05) (Figure 1E). This indicates that angiogenesis did not match muscle fiber hypertrophy in MCT,
but that BB ameliorated the increase in the capillary supply area.

To investigate whether perfusion mismatch could lead to tissue hypoxia, a finite element model of
O2 diffusion and consumption in the myocardium was fitted to the experimentally determined capillary
locations [39,40]. The model was implemented in Matlab, and is available with a user-friendly graphical
user interface [41]. Figure 2A shows exemplary heatmaps of tissue PO2 surrounding the capillaries
(indicated by white circles). It is apparent that a greater proportion of MCT tissue is predicted to be at
low PO2 compared to CON tissue. The mean tissue PO2 in MCT was 73% less and in MCT + BB was 61%
less than that found in CON (p < 0.05) (Figure 2B). Mean tissue PO2 was not significantly different in
MCT compared to MCT+BB (p = 0.06). When tissue PO2 is greater than ~0.5 mmHg, the tissue O2 flux
is approximately constant, whereas below this critical level O2 utilization falls sharply [42]. Using this
criterion for hypoxia, the percentage of hypoxic tissue was significantly increased in MCT compared to
CON (p < 0.05). The hypoxic area was also greater in MCT+BB compared to CON; however, the area
was reduced compared to MCT alone (p < 0.05) (Figure 2C).

We investigated whether differences in O2 extraction could influence the model results.
Proliferation of interstitial fibrosis could act as a barrier to O2 diffusion from the capillaries to
muscle fibers [43,44], however we found no difference between groups in the extent of fibrosis assessed
by picrosirius red staining (CON: 3.2 ± 0.4%; MCT: 2.5 ± 0.3%; MCT+BB: 2.7 ± 0.4%; p = 0.44).
A reduction in mitochondrial mass could reduce tissue O2 utilization and ameliorate hypoxia [45].
Citrate synthase activity (a marker of mitochondrial mass [46]) was measured in RV homogenates
taken from the same hearts used for histology. Citrate synthase activity did not differ between groups
(CON: 5.39 ± 0.45 IU/mg; MCT: 4.37 ± 0.47 IU/mg; MCT + BB: 4.30 ± 0.42 IU/mg; p = 0.19), indicating no
change in overall mitochondrial density. These data indicate that tissue hypoxia, which is ameliorated
by chronic BB treatment, may be a limiting factor in the RV of MCT rats.
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Figure 1. Capillary density is decreased and capillary supply area in the right ventricle (RV) is 
increased by MCT treatment. (a) Exemplar images showing intense fluorescent labelling of capillaries 
(magenta arrows) and less intense labelling of sarcolemma (white arrows) with FITC-conjugated 
lectin. (b) Capillary locations were digitized (green circles), and the area of tissue supplied by each 
capillary was calculated by Voronoi tessellation (black lines). (c) Capillary density was reduced in 
MCT and less so in MCT+BB compared to CON. (d) There were no differences between groups in the 
ratio of capillaries to muscle fibers. (e) The capillary supply area was greater in MCT and MCT+BB 
than CON, but was reduced in MCT+BB compared to MCT. n = 6 hearts per group. *p < 0.05, **p < 
0.01, ***p < 0.001. 

 
Figure 2. Computer modelling predicts RV hypoxia in pulmonary arterial hypertension (PAH) is 
ameliorated by beta-1 blocker (BB) treatment. (a) Example heat maps showing areas of high PO2 
surrounding capillary locations (white circles) and hypoxic regions distal to the capillaries. (b) Mean 
tissue PO2 was reduced in MCT and MCT+BB compared to CON. (c) The hypoxic area was greater in 
MCT than CON, but was reduced in MCT+BB compared to MCT. **p < 0.01, ***p < 0.001. n = 6 rats per 
group. 

Figure 1. Capillary density is decreased and capillary supply area in the right ventricle (RV) is
increased by MCT treatment. (A) Exemplar images showing intense fluorescent labelling of capillaries
(magenta arrows) and less intense labelling of sarcolemma (white arrows) with FITC-conjugated lectin.
(B) Capillary locations were digitized (green circles), and the area of tissue supplied by each capillary
was calculated by Voronoi tessellation (black lines). (C) Capillary density was reduced in MCT and
less so in MCT+BB compared to CON. (D) There were no differences between groups in the ratio
of capillaries to muscle fibers. (E) The capillary supply area was greater in MCT and MCT+BB than
CON, but was reduced in MCT+BB compared to MCT. n = 6 hearts per group. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Figure 2. Computer modelling predicts RV hypoxia in pulmonary arterial hypertension (PAH) is
ameliorated by beta-1 blocker (BB) treatment. (A) Example heat maps showing areas of high PO2

surrounding capillary locations (white circles) and hypoxic regions distal to the capillaries. (B) Mean
tissue PO2 was reduced in MCT and MCT+BB compared to CON. (C) The hypoxic area was greater in
MCT than CON, but was reduced in MCT+BB compared to MCT. ** p < 0.01, *** p < 0.001. n = 6 rats
per group.
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The CK system is important for distributing energy generated by mitochondria to the myofilaments,
especially during hypoxia [25]. We previously reported decreased expression of CK-mt in MCT rats [29],
and wanted to investigate whether this causes a functional impairment in respiration that could affect
energy availability in hypoxic regions. Mitochondrial respiration was measured in permeabilized
isolated RV cardiomyocytes in response to increasing concentrations of ADP [27,47]. The apparent
KmADP in the absence of Cr was not different between groups (p > 0.05). When the experiment was
repeated in the presence of 25 mM Cr (to activate CK-mt), there was a shift towards a lower KmADP in
CON cells (–Cr: 0.35 ± 0.05 mM; +Cr: 0.14 ± 0.02 mM; p < 0.05), but no difference in MCT cells (–Cr:
0.25 ± 0.03 mM; +Cr: 0.18 ± 0.03 mM) or MCT+BB cells (–Cr: 0.20 ± 0.04 mM; +Cr: 0.11 ± 0.02 mM)
(Figure 3A–C). The relative difference in KmADP with Cr in CON cells (61% reduction) was greater
than in MCT cells (27% reduction) (p < 0.05) (Figure 3D). This indicates reduced functionality of the
CK system to activate respiration in MCT cells. The difference in KmADP in MCT+BB in the presence
of Cr (42%) was not different to CON or MCT (p > 0.05), suggesting CK-mt function in MCT+BB is
intermediate between groups.
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Figure 3. Coupling of mitochondrial respiration to the creatine kinase (CK) system is decreased in MCT.
(A–C) The increase in O2 consumption of permeabilized RV myocytes upon sequential titration of ADP
was measured in the absence (solid line) or presence (dashed line) of Cr. (D) The relative difference
in KmADP with Cr compared to without Cr was greater in CON than MCT, but not greater than in
MCT+BB. * p < 0.05. n = 8 CON, 5 MCT, 3 MCT + BB independent replicates.

3. Discussion

We demonstrate that a reduction in capillary density is predicted to result in severe myocardial
hypoxia in the failing RV in PAH. Chronic BB administration reduces RV hypertrophy in PAH [34,37],
and we now show that it also ameliorated the extent of hypoxia in BB-treated rats. We also show
CK-mt function is impaired in MCT RV cells. This may alter the balance of high-energy phosphates
within the cell and reduce the rate of energy turnover at ATPases. The changes seen are likely to reduce
RV contractile performance in PAH, particularly during increased demand [29]. These data suggest
that a beta-adrenoceptor blockade is a viable strategy to sustain the contractility of the RV in PAH,
by improving the metabolic state of the myocardium.
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The schema presented in Figure 4 highlights the changes we observed in PAH and some functional
implications. Increased maximum diffusion distance between capillaries and muscle fibers resulted in
a proliferation of hypoxic regions. This would impair mitochondrial ATP generation in these regions
and could be driving increased expression of hypoxia-related genes and increased glycolysis [17,18].
At the subcellular level, reduced activity of CK isoforms decreases high energy phosphate transfer
between mitochondria and myofibrils in the hypoxic regions. This reduces the rate of ATP turnover at
sites such as the myofibrils and SERCA, thus impairing contraction and preventing them contributing
to cardiac work.
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Figure 4. Cartoon representation of proposed changes in structure and function of RV myocytes in PAH.
In CON cells (left), the densely packed capillary network delivers O2 evenly throughout the myocardium,
maintaining a high PO2 (red regions). Mitochondria utilize O2 for oxidative phosphorylation, generating
ATP. Mitochondrial-bound CK (CK-mt) use ATP to generate PCr, which diffuses to cytosolic sites of
high ATP turnover, such as myofilaments, where cytosolic CK converts it back to ATP. This maintains a
high ATP:ADP ratio in the myofilaments, allowing them to work properly, and a low ATP:ADP ratio in
mitochondria, promoting ATP synthesis. In MCT cells (right), RV myocyte hypertrophy increases the
diffusion distance of O2 from the capillaries, resulting in hypoxic cores developing within muscle fibres
(blue regions). These areas are unable to meet metabolic needs entirely aerobically, so they become
reliant on glycolysis. Energy transport to hypoxic cores is further impaired by reduced expression of
CK isoforms, resulting in accumulation of ADP in myofilaments and reduced mitochondrial respiration.
Cartoon was created using Servier Medical Art by Servier, which is licensed under a Creative Commons
Attribution 3.0 Unported License (http://www.servier.com/slidekit)

3.1. Insufficient Capillary Supply Produces Extensive Myocardial Hypoxia in Monocrotaline Rats

Hypertrophy of the RV was apparent in MCT rats, but was reduced following BB treatment
(Table 1). The increase in RV myocyte hypertrophy without an increase in the capillary:fiber ratio
increased the mean area of myocardium supplied by each capillary, leading to hypoxia. Hypoxia
triggers changes in the transcription factors regulating angiogenesis, which follow a complex expression
pattern possibly related to disease severity and temporal state [12,34,48]. Decreased proangiogenic
micro-RNAs and increased expression of inhibitors of VEGF and angiopoetin-1 have also been reported
to increase in latter stage heart failure, which could explain the lack of angiogenesis [13,21,22].

http://www.servier.com/slidekit


Int. J. Mol. Sci. 2019, 20, 1805 7 of 14

A steep O2 gradient between the cell periphery and core of cardiac myocytes is expected to exist,
due to densely packed subsarcolemmal mitochondria [49]. This gradient should be more apparent in a
hypertrophic myocardium with greater O2 diffusion distances. By applying a computer model of O2

flux in the myocardium to our experimental findings in heart failure, we were able to quantify the
effect of capillary density reduction on myocardial hypoxia. The three-fold increase in the hypoxic
area in MCT rats implies an increase in tissue fraction, which is unable to contribute substantially
to ventricular work. These areas will not necessarily become necrotic, as non-contracting myocytes
with low O2 demand could be sustained through anaerobic glycolytic pathways [25]. BB reduced the
proportion of hypoxic tissue, mainly by limiting myocyte hypertrophy (Figure 1E and Table 1). BB may
have further benefits in vivo by reducing heart rate, and therefore O2 demand, and increasing diastolic
coronary perfusion [5,19].

Coronary artery disease is increasingly prevalent in PAH patients [50], and occurs around four
times more frequently among that group than in the general population [51,52]. Coronary artery
remodeling also occurs in parallel with the development of MCT-induced PAH, and is associated with
reduced coronary perfusion [53]. Modulation of transcription factor activity by scaffold proteins, e.g.,
bromodomain protein 4 (BRD4), is implicated in coronary artery disease by altering the balance of
proliferation and apoptosis of smooth muscle cells [53]. Decreased RV coronary perfusion is likely
to exacerbate the microcirculatory impairment we identify. BB may protect against the ischemic
consequences of coronary artery disease in the RV, as in the LV [54].

Our observations suggest that normalizing the capillary supply area in PAH would be beneficial.
One way to achieve this would be augmenting angiogenesis. Exercise improves cardiac function [55],
and increases angiogenesis and oxygen uptake efficiency [56]. Exercise therapy now has cautious
recommendation in PAH guidelines [9]. We have shown that exercise has a beneficial effect in the MCT
rat model [57].

3.2. Reduced Mitochondrial Synthesis of Phosphocreatine in Monocrotaline Rats

The CK system has a vital role maintaining a high [ADP] in mitochondria and a low [ADP] at
the myofibrils. The less negatively charged and smaller molecular weight phosphocreatine (PCr)
has greater cytosolic mobility than adenine nucleotides [58,59], so it acts as a shuttle of high energy
phosphates to sites of high ATP turnover, such as the myofilaments. This also allows sudden changes
in cellular energy demand to feed back to mitochondria, which sense an increase in cellular [ADP]
and increase ATP production accordingly, e.g., during periods of increased heart rate. We identified
uncoupling of the CK system with mitochondrial respiration, which was likely due to decreased
expression of CK-mt [29]. This may limit the ability of mitochondria to respond rapidly to a sudden
increase in work, as was demonstrated in MCT RV trabeculae [60]. A small decrease in Cr and PCr
levels, which could further decrease CK flux in vivo, has been reported in the MCT model as well
as other animal heart failure models and human heart failure [61–63]. The mechanical efficiency
of the failing RV is also reduced, which will further increase the magnitude of the energy demand
mismatch [64,65].

3.3. Limitations

Different classes of BB may have distinct effects in PAH. Carvedilol has mixed alpha and beta-1/2
adrenoceptor blocking ability, and nebivolol has pulmonary vasodilatory ability. Both were found to
reduce afterload and adverse remodeling in experimental PAH [34,36]. Metoprolol is a beta-1 selective
blocker, and is therefore predicted to be more specific to the myocardium rather than vasculature.
We chose metoprolol to investigate the direct actions of a beta-blockade on the myocardium without
confounding effects due to afterload reduction [35]. The response to BB may also depend on the
etiology of PAH. BB are currently not recommended in Group 1 pulmonary hypertension (PAH),
whereas BB are more likely to be prescribed in Group 2 pulmonary hypertension (secondary to LV
failure), due to co-morbidities. MCT is known to affect the lungs, liver, and kidneys [66]. Increased wet



Int. J. Mol. Sci. 2019, 20, 1805 8 of 14

lung weight is indicative of pulmonary edema; however, proliferation of lung tissue will also increase
the dry lung weight [67].

3.4. Conclusion

We demonstrate that BB treatment reduced hypertrophy in experimental PAH, resulting in a
reduction in hypoxic myocardium. This was accompanied by a partial improvement in functional
coupling between mitochondria and the CK energy system. These improvements are likely to act in
concert to favorably affect energy availability in RV myocytes, which will help maintain cardiac function
for longer. These data add to previous findings of improvements in excitation–contraction coupling,
electrical remodeling, and inflammation following BB in experimental PAH [34,35,37]. BB were well
tolerated in Group 1 PAH patients under close clinical supervision, and showed preserved cardiac
function and reduced RV glycolysis after six months of treatment [33]. Together with our preclinical
findings, this supports the notion that BBs may be beneficial in PAH by reducing adverse cardiac
remodeling, although further testing in both preclinical and carefully controlled clinical settings will
be required to confirm this.

4. Materials and Methods

All experiments were conducted in accordance with the Animals (Scientific Procedures) Act (1986),
the European Parliament Directive 2010/63/EU, and with local ethical approval (70/8399, 14 February
2015).

We used the well-characterized monocrotaline (MCT) rat model of PAH, described in detail in [37].
Briefly, a single intraperitoneal injection of MCT (60 mg/kg) into male Wistar rats (200 ± 20 g) causes a
progressive increase in pulmonary vascular resistance and RV systolic pressure, eventually leading
to RV failure. The beta-1 adrenergic receptor blocker metoprolol (10 mg/kg) was administered daily
by voluntary syringe feeding, starting on day 15 post-MCT injection, as described previously [37,38].
MCT animals were killed upon showing signs of heart failure, such as weight loss on consecutive days,
dyspnea, and piloerection. These symptoms have been validated as indicative of RV failure in this
model [68–72].

4.1. Histology

Tissue was prepared for histology, as described in [37]. Tissue sections 10 µm thick were plated
on microscope slides and fixed in acetone for 5 min on ice. Slides were incubated for 1 h with
fluorescein-conjugated lectin from Griffonia simplicifolia (Vector Laboratories, Burlingame, CA, USA),
at a final concentration of 10 µg/mL in phosphate-buffered saline. Slides were imaged on a Nikon
Eclipse E600 microscope with a Nikon Plan Fluor 20X objective, using 487 ± 10 nm excitation light and
fluorescence collected at 533 ± 20 nm. Capillaries were identified by the bright focal staining pattern
and their location digitized. Muscle fiber boundaries were identified by the less intense staining of
the glycocalyx surrounding the cell membrane. Fibrosis was assessed using picrosirius red staining,
as described previously [29]. Results from two to five sections per heart were averaged to calculate the
representative value for each animal, which was used for subsequent statistical analysis.

4.2. Computer Modelling O2 Distribution

We used a finite element model of O2 diffusion implemented in Matlab and described in detail
in [39–41]. Model parameters used were in accordance with published literature [73], and were kept
constant for all groups.

4.3. Mitochondrial Respiration in Isolated Myocytes

Single RV myocytes were isolated by enzymatic digestion of the heart on a Langendorff apparatus,
as previously described [74]. Cells were resuspended in a respiration recording solution containing the
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following (in mM): 110 sucrose, 60 K-lactobionate, 20 HEPES, 20 taurine, 10 glutamate, 10 KH2PO4,
3 MgCl2, 0.5 malate, 0.5 EGTA, 1 mg/mL bovine serum albumin (pH 7.1 with KOH). Equal volumes of
cell suspension were added to both chambers of an Oxygraph-2k (Oroboros Instruments, Inssbruck,
Austria). In one chamber, 25 mM creatine was added to the media. The sarcolemma was selectively
permeabilized with 50 µg/mL saponin injected directly into the chamber using a Hamilton syringe.
O2 flux was recorded in response to sequential titrations of ADP [27,47]. Temperature was maintained
at 37 ◦C, and O2 concentration was maintained between 200 and 400 µM throughout the experiment.
Data were normalized to O2 flux in the absence of ADP (0%) and at the maximal flux in 1 mM ADP
(100%). The apparent affinity for ADP (KmADP) was determined by fitting Michaelis–Menten kinetics
to the normalized data.

4.4. Enzyme Activity Assays

RV samples were homogenized on ice in a buffer containing, in mM, 5 HEPES, 1 EDTA, 5 MgCl2,
and 0.1% Triton-X100 [75]. Protease inhibitors (cOmplete Protease Inhibitor Cocktail, Roche, Bazel,
Switzerland) and phosphatase inhibitors (Halt Phosphatase Inhibitor Cocktail, Thermo Scientific,
Waltham, MA, USA) were added to the buffer immediately before use. CK activity in samples was
measured spectrophotometrically from the production of NADPH, according to the Rosalki assay [76],
with absorption measured at 340 nm. Next, β-mercaptoethanol (1 mM) was added prior to the
CK activity assay, to prevent the oxidation of CK. Citrate synthase activity was measured using a
spectrophotometer (Varioscan Flash, Thermo Scientific, Waltham, MA, USA) according to the enzyme
assay described by Srere [77]. Enzyme activity was expressed in international units per mg protein
(IU/mg).

4.5. Statistics

Data are presented as mean ± standard error of mean (SEM). Parametric ANOVA was performed
on normally distributed data—otherwise, non-parametric equivalents were used. Holm–Sidak post
hoc tests used were for parametric ANOVA, or Dunn’s (unequal group sizes) for non-parametric
ANOVA. The number of independent replicates (hearts or cell isolations) are given in figure legends,
and p < 0.05 was considered statistically significant.
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