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The Poisson equation in density fitting for the Kohn-Sham
Coulomb problem
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A new density fitting approach to the Coulomb problem in Kohn—Sham and Hartree—Fock theory
is introduced. Almost all of the 2- and 3-index repulsion integrals become simple overlap-like
integrals, without approximation. The method is tested on numerous benchmark problems, which
reveal that accuracy equal to or better than standard density fitting can be achieved with the
evaluation of around a tenth of the number of Coulomb integrals. The scaling properties of the
method are illustrated for polyalanine helices up to,Ala © 2001 American Institute of Physics.
[DOI: 10.1063/1.1414370

I. INTRODUCTION =L () En(r
JAB:fdrlj dr, A(r1)Eg( 2), ®)

A bottleneck in traditional implementations of Kohn— M2

Sham(KS) theory"? is the evaluation of the electron repul- and whered is the coefficient vector that minimizes the error
sion integrals(ERIs), necessary for the evaluation of the in the auxiliary density.

Coulomb contribution to the Fock matrix. The electronic There are several ways to measure this error, generally
density in KS and Hartree—FocKF) theory is expanded in having the form

a product basis,

1 . R .
. A=§f drlfdrz[p—p]ul)wm—p](rz), ©)
P(D=2 7, Xu(DX5 (1), (D
g and differing through the choice of the weight operafgr
so the Coulomb energy, Least squares fitting—performed by  choosing
1 p(r)p(ry) W= §(r ,,)—at first appears attractive, since the only 3-index
E= Ef drlf dr, , (2) integrals it involves are overlaps, not Coulomb integrals.
F12 However, the performance of least squares fitting has been

where r,=|r;—r,|, has to be constructed from 4-index found to be very unsatisfactory, both by otheamd in our
ERIs. Formally, this is a®(N%) computational process, but own investigations. The weight operator that shows good
since the density matrix is sparse, withN) nonzero ele- convergence of energies and other properties with respect to
ments for large molecules, the number of integrals to beuxiliary basis set isW=r;,} leading to the error
evaluated actually scales &N?). Despite huge advances expressiof*

in integral evaluation technology, these integrals are still . .

time-consuming to compute, and the Coulomb energy evalu- , _ Ef dr f dr [p—pl(r)lp—pl(ra) @

ation is the main bottleneck for large calculations. It is pos- 2 ! 2 rio '

sible, however, to avoid the evaluation of 4-index ERIs alto-

o . . : . The error is minimized with r h ffici
gether. This is achieved by the introduction of an auxiliary; © ertor 1s ed with respect to the coefficiedts

P ) : - 7in the auxiliary basis by setting 4A =0, and this leads to the
basis{E A} in which one constructs an approximate denslty,Iinear equatio);ls y Y

b(r):EA dAZA(r). 3) ; JABdB:% LA v Yprs ®)

Then the Coulomb energy arising from the interactiorpof \yherel is a 3-index matrix of ERIs of the form
with itself only requires 2-index ERIs, and has the form

. EA(rl)X#(rz)X:(rz)
E=1d"Jd, (4) IA,,uv:f drlf dra ™ : ©
where This fitting of the density considerably reduces the pref-
actor in the evaluation of the Coulomb contribution to the
¥Electronic mail: Fred.Manby@bristol.ac.uk Fock matrix, but the scaling remair§(N?) owing to the
YElectronic mail: P.J.Knowles@bham.ac.uk long-ranged nature of the Coulomb interaction. To achieve a
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linear-scaling methodeither in Coulomb fitting or tradi- satisfies the requirement of vanishing at long range faster
tional 4-index integral methogisthe asymptotic multipolar thanr ~1),
form of the Coulomb interaction between pairs of charge

distributions can be exploited® The separation o.f long- and o p(n= > daPEA). (14)
short-range Coulomb effects can be further refined by parti- A
tioning the Coulomb potential using an error functidn, Writing down the Coulomb energy in exactly the stan-
1 B erf(wr) . erfc(wr) (lo) dard Way[Eq (2)] we have
ror r ' .1 PLlEAL)[P,Eg(2
- o IS dAdBJ drlJ’ drz[ 15A(1)][P2Eg( )], 15
These methods are all based on analytical six-dimensional 2 AB 2

integrals, but an alternative set of methods exist in which the A _ . . .
Coulomb potential is built on a quadrature grid, prior to nu—Where P; acts on functions in the cE)ordmateis Inserting
merical integration with the density to obtain the CoulombEd- (13) and using the Hermiticity oP, the energy reduces
energy, or with orbital pairs to obtain the Coulomb contribu-t0

tion to the Fock matrix!~*3The Coulomb potential is given

.1 R
by the three-dimensional integral E= > % dAdBj dr,EA(1)P,Eg(1). (16)
U(rl):f drzp(fz) , (11)  This equation is interesting because it gives an exact expres-
M2 sion for the Coulomb energy of the densipyusing only
which has to be performed at each grid paint The Cou-  short-range three-dimensional integrals, which differ from
lomb potential also satisfies the Poisson equation, kinetic energy integrals only by a factor of £27*.
R There is a catch in all this. Consider a multipole of the
Pv=p, (120  densityPE (1),
where P=—(47) V2, and one can solve this differential " e
equation forv, avoiding the evaluation of any ERIs at alll. da :j drYm(F)r'PEA(r). 17)

However, a comparison of methods for computing the Cou-

lomb potential on a grid revealed that it was more efficient toThe function=x(r) vanishes asymptotically so we can use

evaluate the integral of Eq11) than to solve the Poisson integration by parts to apply® to the left, and then since

2 fypel — Im_
equation! Nonetheless in this work we reinvestigate theV Yém(trgr f'_ttOdV\(Ije se_te _thaéq:Am—O for: all I,mt. tlnl or:her
possibility of using the Poisson equation in Coulomb fitting.Wor s the fitted density in Eq14) can have no total charge,

It is worth pointing out that although the exact exchangerlo total dipoles, and so on. In our earlier pdfeve allevi-

energy in HF and hybrid KS theories is, like the Coulomb@ted the first problem—that of the vanishing charge—by

energy, constructed from 4-index ERIs, the sparsity of theconsidering the electrons and puclei of a neutral syst_em .si—
density matrix can be exploited to construct an eﬁcicierumultaneously. Here we generalize the method by considering

linear-scaling method. Thus the Coulomb problem is e addition of esmall numbeof ordinary basis functions to

bottleneck even in HF theory, and we expect the curren{Ee exp;emrsllon n Eé(ﬁ.d')h-rhesel funlcthnfs sgrve t_o describe
work to be of use in that context as well. the total charge and higher multipolesgfand to give some

gross approximation to the density. The Poisson functions
serve to move charge around and produce an accurate model
density.

Il. THEORY We will now set up density fitting in a basis of; stan-

dard andmp Poisson functions, following Eq$4)—(9). The

. In a previous papef two O].c us wrote QOwn a densny. Coulomb matrixJ now blocks into three types of integrals
fitting method based on the Poisson equation. Here we reﬁn(eSee Fig. 1 having in the integrand zero, one and two in-

the mV?/t ho? atndﬁe}ppro?rc]: h t hte prcipi;em ti!]lr%/a slightly diﬂeremstances of the Poisson operator. These integrals are respec-
way. We start off from the integral iden tively standard Coulomb integrals, standard overlaps, and the
f g Pf(r,) scaled kinetic energy-like integrals of E@.6). The 3-index
Iz

=f(ry), (13 integrals block intomcm(m+1)/2 Coulomb integrals and
mpm(m+ 1)/2 overlaps, wheren is the size of the atomic

which holds exactly for any(r) that vanishes more quickly orbital basis. Sincenc is small, by far the greater proportion

thanr ~* asr—o. Equation(13) can be obtained by insert- of the 2- and 3-index integrals are short-ranged, andShe

ing the Poisson equatidiEq. (12)] into the Coulomb poten- andP blocks in Fig. 1 are sparse.

tial expression in Eq(11). However, we merely note here Once the Coulomb matrices in the mixed basis have

that Eq.(13) is an exact relation that implies a means ofbeen set up, density fitting can be performed in exactly the

avoiding the troublesome six-dimensional, long-range Counormal way.

lomb integrals. To apply the identity we will set up a density

fitting method by expanding the auxiliary electronic density!ll. BASIS SETS AND TEST CASES

p in a set of functions of the forr®= ,, which we will call To test the method, it is necessary to optimize mixed
Poisson functions, wherg 5 is a Gaussiar{and therefore basis sets. For the preliminary calculations presented here,

12
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) me me +me 1 m(m +1)/2 FIG. 1. Blocking of 2- and 3-index in-

tegrals in mixed Poisson density fit-
ting. The AO basis is of sizen and
there aremg and mp standard and
Poisson fitting functions, respectively.
The blocks are labeled (standard
Coulomb integrals S (standard over-
lap integral$, and P (scaled kinetic
energy integrals

me + mp m¢ + mp

we optimize basis sets for the elements of the first row of thdases are somewhat larger than those used in standard den-
periodic table. Our procedure for doing so closely followssity fitting, but the integral evaluation is easier, and, as we
that of Eichkornetal,'® and we choose to use their shall show, the number of integrals to compute is much
3-parameter extension of even-tempered series of exponergmaller.

[Eq. (27) of Ref. 16. The optimizations are performed using To test the accuracy of the method, we have computed
a Powell minimizer from several starting guesses. The reguthe bond lengths, dipole moments and harmonic frequencies
lar way in which the optimal parameters vary across the peef the ground states of 19 first-row diatomics. This and all
riodic table makes the optimizations increasingly easy. tests are based on comparisons between LDA calculdfions

Our procedure for optimizing a basis for a given atomusing the cc-pVDZ atomic orbital basis sets of Dunnifig.
was as follows: The results and average errors are given in Table |. The er-
rors in bond lengths and dipole moments are consistently
extremely small, and the frequencies are generally repro-
duced to within 1 cm?.

Our second test examines the accuracy of the method in
computing energy differences of different magnitudes. We
therefore compute the dissociation enefgsing fixed geom-
etrieg of benzene into three acetylene molecules, the
singlet—triplet splitting of methylene and the rotational bar-
The size of bases was chosen to obtain errors in the Coulonfif" Of €thane. The values and errors are given in Table II.
energy below 5810°® hartree for atoms and 0.2 Although the relative errors do increase as the quantity being

X103 hartree per atom for molecules. The basis sets for C(;_omputed decreases, the smallest energy—the rotational bar-

N, O, and F have 21p functions contracted tosi1p for the ~ N€r of ethane—is in error by only 0.8% in the current

standard basis ands@p 6d 1f for the Poisson basis. These Method. _ _
A further energy difference that provides a test of the

method is that between the zwitterionic and neutral forms of
?chine. Table Il shows results using an exact Coulomb
r

eatment, standard density fitting with the basis sets of Eich-
|.16

(1) Optimize a minimal basis of standasgtype functions
for the isolated atom;

(2) Optimize Poisson functions and in some casebtype
functiong for the isolated atom;

(3) Simultaneously optimize a single, standgrdfunction
and a set of Poissgm f, and possiblyd functions for the
hydride.

TABLE I. LDA bond lengths, dipole moments, and harmonic frequencies of
ground states of first-row diatomics using an exact Coulomb treatment an

the approximation introduced in this work. Average errors are provided in

the final row. korn et al™® and the current method. The performance is

r/bohr |, /D viem™t

TABLE II. Energy differences of three different magnitudes computed using
Diatom  Exact This work Exact Thiswork Exact This work an exact Coulomb treatment and this work. The three cases are the disso-
ciation of benzene into three acetylene molecules, the singlet/triplet splitting
of methylene, and the rotational barrier of ethane. The errors range between

0.07% and 0.8% of as the size of the computed quantity decreases.

H, 1.4774 1.4773 0.0000 0.0000 4153.30 4153.13
LiH 3.0756 3.0762 55546 55531 1343.19 1342.34
BeH 2.5998 25993 0.0827 0.0785 1943.49 1941.37
BH 24240 24243 1.3888 1.3888 2184.34 2183.39

E/hartree

CH 21369 21369 1.0614 1.0616 2867.46 2867.91

NH 2.0138 2.0136 1.5449 15428 3127.87 3126.78 Exact This work  Error/10°% hartree

OH 19160 19156 1.9316 1.9289 3293.75 3294.91

HF 17671 17671 1.8449 1.8443 394576 3943.16 CeHe—3CH,

LF 29778 29781 55384 55378 977.19 977.07 CeHg  —230.096 551 —230.097 085 0.53

BeF 26545 26542 1.0549 10551 1237.80 1236.15 - GH; —76.588225 -76.588328 0.10

BN 25213 25207 14384 14384 153469 1533.50 Dissociation 0.331876 0.332103 0.23

BO 22021 22916 1.8272 1.8292 1872.72 1871.08 _

CN 22310 22308 0.9027 0.8989 213056 2130.75 Singlettriplet CH

CO 21523 21520 0.3089 0.3109 2160.47 2160.99 Singlet  —38.704 500 —38.704 640 0.14

N, 2.0981 2.0975 0.0000 0.0000 2397.18 2399.60 Triplet  —38.743226 —38.743307 0.081

NO 21860 2.1856 0.1850 0.1842 1964.61 1964.81 Splitting 0.038 726 0.038 667 0.059

NF 24493 24485 0.6983 07010 1239.12 1240.76 _

o 22855 22850 0.0000 0.0000 1628.67 1629.32 Barrier of GHe

2 .
F, 2.6368 2.6366 0.0000 0.0000 1033.21 1032.03 Eclipsed —79.024833 —79.025269 0.44
Staggered —79.030755 —79.031 147 0.39

Avg. error 0.0004 0.0012 1.1 Barrier 0.005 922 0.005 877 0.045
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TABLE IIl. Energies and dipole moments of zwitterionic and neutral forms non-zeroSintegrals grows only linearly with system size, for

of glycine using an exact Coulomb treatment, standard density and thf’ne Iarges(AIalG) system the integral evaluation problem is
method of this work, along with the errors in computed values. Clearly the ’

energy difference between the two forms is treated more accurately in thgon&degably reduced’. and we _are still in the regime where
current work than in standard density fitting, and the dipoles in the twoth€ O(N<) number ofJ integrals is less than th@(N) num-

approaches are roughly equal in accuracy. ber of Sintegrals.
Exact Standard This work
IV. DISCUSSION
Zwitterion . o
E/hartree _282.149160 —282.149708 —282.149712 We have introduced a new density fitting method for the
4 /bohr —3.6497 —3.6468 —3.6484 Coulomb problem in KS and HF theory. Most of the func-
ey /bohY —1.2700 —1.2689 —1.2697 tions in the auxiliary basis having the forRE A(r), and the
w/bohr 1.3851 1.3848 1.3839 . . . .
Coulomb integrals involving one or two of these functions
Neutral become exactly equivalent to simple overlap-like integrals.
E/hartree —282.144421 —282.145094 —282.144971  This allows us to reduce the number of Coulomb integrals in
Hx/bohr 14777 1.4771 1.4794 density fitting by a factor of around 10. A small number of
ey [bohr ~1.0268 —1.0257 ~1.0258 ndard functions is required in the auxiliary basis since th
. Iboh 01293 01292 01297 sta o_Iad Pfto s is requ ed in the au aybasss_ce_t e
functions PE 5(r) contain no charge and have vanishing
AE/kImol? 12.442 12.115 12.448

multipoles. They do, however serve to move density around
the molecule to provide an accurate auxiliary density. Further
savings can be made. Since the standard basis in this method
very good (less than 0.05% error in the isomerization en-is only present to give a very rough approximation to the
ergy), and, perhaps fortuitously, significantly better than thatdensity, we will reoptimize the basis sets using the same
obtained with the standard fitting basis of Ref. 16. The re-exponent for the more diffusefunction and thep function.
sults also show that molecular properties such as the dipol8ince none of the functions in the standard basis needs to be
moment, which provide a more stringent test of the faithful-diffuse, the multipole approximation will rapidly take over,
ness of the density fitting in regions of space not stronglyand a very small number of true Coulomb integrals will have
weighted in the fitting error functional, can be reproducedto be evaluated.
with similar accuracy in the current and standard methods. For very large systems, the bottleneck in standard den-
Our final set of tests regard the number of integrals comsity fitting is the dense linear algebra need to fairin the
puted in the current method compared to standard densitgurrent method only thé-block of the Coulomb matrixsee
fitting methods. We consider polyalanine helices with up toFig. 1) is dense, and this amounts only to around 1% of the
16 amino acids, and count the number of primitive 3-indexwhole matrix. Therefore even for large systems, the linear
integrals that have to be computed in the standard and cuglgebra to be performed is effectively sparse. Naturally there
rent density fitting approaches. Integrals are screened with @mes a point where the dense part of the matrix becomes
threshold of 108 hartree. The results are shown in Fig. 2.too large, but the current method delays that threshold until
The number of Coulomb integrals evaluated in the currenthe system is roughly ten times larger.
method remains consistently around 10% of the number in  Despite the great savings in terms of the number of in-
standard Coulomb fitting, and the number of 3-index overtegrals to be computed, and the fact that most of them are
laps rises only linearly. Even for the smallg4t peptide  overlap integrals, the method is accurate. Extensive tests on
molecule, the total number of integrals is less than with theenergies, energy differences, bond lengths, dipoles, and har-
standard basis, and the vast majority of these are ofSthe monic frequencies reveals that the current method is equal or
type, rather than the more expensiieSince the number of superior in accuracy to standard density fitting methods. Also
accuracy can be increased by the addition of further Poisson
functions at relatively little cost, as these only incur the
evaluation of overlap integrals, almost all of which vanish.
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