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Abstract

We investigate alternating sign matrices that are not permutation matrices, but have finite
order in a general linear group. We classify all such examples of the form P + T , where P is
a permutation matrix and T has four non-zero entries, forming a square with entries 1 and
−1 in each row and column. We show that the multiplicative orders of these matrices do not
always coincide with those of permutation matrices of the same size. We pose the problem
of identifying finite subgroups of general linear groups that are generated by alternating sign
matrices.
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1 Introduction

An alternating sign matrix (ASM) is a (0, 1,−1)-matrix with the property that the non-zero entries in
each row and column alternate in sign, beginning and ending with +1. Alternating sign matrices
were first investigated by Mills, Robbins, and Rumsey [1], in a context arising from the classical
theory of determinants. Connections to fields such as statistical mechanics [2] and enumerative
combinatorics [3] were subsequently discovered, and ASMs continue to attract sustained interest
from diverse viewpoints. We refer to Bressoud’s book [4], for a comprehensive account of the
emergence of attention to ASMs and the mathematical developments that ensued.

A recurrent theme in the study of ASMs is their occurrence, in independent contexts, as natural
generalizations of permutation matrices. This invites the question of whether and how familiar
themes in the study of permutations can be applied or adapted to ASMs. For example, ASMs
first emerged in the definition of the λ-determinant of a square matrix, which involves adapting
the technique of Dodgson condensation by replacing the usual 2 × 2 determinant with a version
involving a parameter λ. Alternating sign matrices play the role for the λ-determinant that per-
mutations do for the special case of the classical determinant, which arises of the value of λ is set
to 1. Lascoux and Schützenberger showed in [5] that the set of n×n ASMs is the unique minimal

Cian O’Brien, School of Mathematics, Cardiff University, obrien.cian@outlook.com
Rachel Quinlan, School of Mathematical and Statistical Sciences, National University of Ireland, Galway,
rachel.quinlan@nuigalway.ie

1



lattice extension of the set of n×n permutation matrices under the Bruhat partial order. An exten-
sion of the concept of Latin squares, which arise by replacing permutation matrices with ASMs,
is investigated in [6] and [7].

Our focus in this article is on non-singular ASMs with the special property of having finite order
as elements of the general linear group. This topic connects to the position of permutations among
all ASMs, and also to some recent attention in the literature to the behaviour on ASMs of algebraic
invariants such as the spectral radius, characteristic polynomial and Smith normal form [8, 9, 10].

In [9], Brualdi and Cooper study the maximum possible spectral radius of an ASM. They note that
the minimum spectral radius of an ASM is more easily identified, since every ASM has common
row sum 1 and hence has 1 as an eigenvalue; moreover the permutation matrices are examples of
ASMs whose eigenvalues all have modulus 1. The following example is presented in [9], to show
that the minimum possible spectral radius of 1 may also occur in the case of an ASM that includes
negative entries.

Example 1.1. The matrix

A =


0 0 1 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0
0 1 0 0 0


is an ASM satisfying A6 = I5, the 5 × 5 identity matrix. Its characteristic polynomial is (x − 1)2(x +
1)(x2 − x+ 1) and its minimum polynomial is (x− 1)(x+ 1)(x2 − x+ 1).

Within the set An of all n× n ASMs, the set Sn of permutation matrices is a multiplicative group
of n! elements. In the following lemma, we observe that a set of ASMs that is a group under
matrix multiplication must consist of permutation matrices.

Lemma 1.2. Suppose thatA and B are n×n ASMs that satisfyAB = In. ThenA and B are permutation
matrices.

Proof. The first row of A has a 1 as its only nonzero entry; suppose that this occurs in position
j. Then a 1 in the (j, 1) position is the only nonzero entry of Column 1 of B. Every subsequent
column of B is orthogonal to Row 1 ofA, so Row j of B has only zeros after its first entry. Similarly,
Rows 2, . . . ,n of A are all orthogonal to Column 1 of B, so the only nonzero entry of Column j of
A is the first. Deleting Row 1 and Column j from A, and deleting Column 1 and Row j from B,
leaves a pair of matrices A ′ and B ′ in An−1 that satisfy A ′B ′ = In−1. The conclusion follows by
induction on n.

While Lemma 1.2 eliminates the possibility that An could contain multiplicative groups other
than subgroups of Sn, Example 1.1 demonstrates the existence of finite multiplicative groups that
are generated by (non-permutation) ASMs. We remark that the group generated by the matrix A
of Example 1.1 is isomorphic to a subgroup of the symmetric group S5. However, since every
element of order 6 in S5 consists of a 2-cycle and a 3-cycle, disjoint from each other, every 5 × 5
permutation matrix of order 6 has characteristic polynomial (x2 −1)(x3 −1) = (x−1)2(x+1)(x2 +
x+ 1). Thus the matrix A of Example 1.1 is not similar to a permutation matrix.

One may pose the question of which finite subgroups of GL(n,R) are generated by invertible al-
ternating sign matrices, and which such groups do not have isomorphic copies within Sn. In this
article, we consider the case of finite cyclic subgroups and investigate elements of finite multi-
plicative order in a particular subset of An.
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In order to describe the class of ASMs of interest, we introduce the notion of a T -block, adapted
from [11, 12]. A T-block is a n×nmatrix whose non-zero entries form a (not necessarily contigu-
ous) copy of

±
(

1 −1
−1 1

)
.

We denote by T(i1, j1, i2, j2) the T -block with 1 in positions (i1, j1) and (i2, j2), and −1 in positions
(i1, j2) and (i2, j1), where i1 6= i2 and j1 6= j2. We remark that this notational designation implies
that T(i1, j1, i2, j2) = T(i2, j2, i1, j1). Whenever the situation is sufficiently specified, we will choose
the version with i1 < i2. The following assertion is essentially Theorem 6.2 of [11].

Theorem 1.3. Every n × n ASM can be obtained from the identity matrix In through a sequence of
additions of T -blocks, in such a way that an ASM is obtained at every step.

An extension of Theorem 1.3 to n× n× n alternating sign hypermatrices appears in [7].

In this article, we consider ASMs that differ from a permutation matrix by the addition of a single
T -block, having the form P + T for a permutation matrix P and T -block T . We refer to any matrix
of this form as a PT -matrix. While the class of PT -matrices includes all permutation matrices, our
attention will be focussed on non-permutation PT -matrices. The goal of this article is to identify all
ASMs of multiplicative order that are PT -matrices, up to permutation similarity and transposition
(where the matrices A and B are permutation similar if B = PTAP for a permutation matrix P). We
note that the properties of being a permutation matrix, a T -block, or a PT -matrix, are all preserved
under conjugation by a permutation matrix. This is not generally true of an ASM however.

In Section 2, we recall some properties of rational matrices of finite multiplicative order. In Section
3, we introduce the directed graph of a PT -matrix and use graph-theoretic considerations to iden-
tify candidates for finite multiplicative order. In Section 4, analysis of the minimum polynomials
of matrices determined by these candidate graphs leads to a complete description of PT -matrices
of finite order. In Section 5, we show that all but a few exceptions are permutation similar to
alternating sign matrices.

2 Rational matrices of finite multiplicative order

In this section we recall some relevant properties of the characteristic and minimum polynomials
of matrices of finite order in GL(n,Q). For information on the minimum polynomial of a matrix,
the companion matrix of a polynomial, and related algebraic background, we refer to Chapter 3
of [13].

For a positive integer d, we writeΦd(x) for the dth cyclotomic polynomial, the monic polynomial
in Z[x] whose roots are the primitive roots of unity of order d in C. Then Φd(x) is irreducible in
Q[x] and its degree is φ(d), where φ denotes the Euler totient function.

Suppose that A ∈ GL(n,Q) has multiplicative order t. Then At − In = 0, and so the minimum
polynomial mA(x) of A divides xt − 1 in Q[x]. It follows that mA(x) is a product of distinct
cyclotomic polynomials Φd(x), where d runs through a set of divisors of t whose least common
multiple is t. On the other hand, any matrix whose minimum polynomial has this form does have
finite order, equal to the least common multiple of the orders of its roots in C×.

The possible finite orders of elements of GL(n,Q) are integers of the form lcm(d1, . . . ,dk), where
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the di are positive integers with
k∑
i=1

φ(di) = n.

For example, the possible finite orders of elements of GL(5,Q) are 1, 2, 3, 4, 5, 6, 8, 10, 12. The pos-
sible orders of n × n permutation matrices are those integers that occur as the least common
multiple of the parts in a partition of n. In the case n = 5, these are 1, 2, 3, 4, 5 and 6.

For the PT -matrices of interest in this article, the characteristic polynomial is generally more eas-
ily computed than the minimum polynomial. Both have the same irreducible factors, but they
may occur with higher multiplicity in the characteristic polynomial. We will identify PT -matrices
with the property that their characteristic polynomial is a product of cyclotomic factors. For ev-
ery d > 2, the polynomial Φd(x) is palindromic, meaning that the sequence of its coefficients
remains unchanged when reversed, or equivalently that Φd(x) = xφ(d)Φd(

1
x
). The polynomial

Φ1(x) = x − 1 is skew-palindromic; reversing the sequence of its coefficients negates each term.
Every product of palindromic and skew-palindromic polynomials is itself palindromic or skew-
palindromic, according as the number of skew-palindromic factors is even or odd. Thus we may
restrict our attention to PT -matrices with palindromic or skew-palindromic characteristic polyno-
mials.

We recall that a square matrix in GL(n,C) is diagonalizable in GL(n,C) if and only if its minimum
polynomial has distinct roots. It follows that every rational square matrix of finite order is diago-
nalizable over C, since its minimum polynomial divides xt− 1 for some t. Indeed a matrix whose
characteristic polynomial is a product of cyclotomic polynomials has finite multiplicative order if
and only if it is diagonalizable. This observation will be useful at times in Sections 3 and 4. In a
case where the characteristic polynomial has no repeated irreducible factor, the characteristic and
minimum polynomials coincide and the matrix is diagonalizable.

Given a monic polynomial p(x) = xn+an−1x
n−1 + · · ·+a1x+a0, we define the companion matrix

of p(x) to be the n × n matrix C that has 1 in the (i + 1, i)-position for 1 6 i 6 n − 1, has the
entries −a0,−a1, . . . ,−an−1 in Column n and has zeros in all other positions. Then p(C) = 0n×n
and p(x) is the minimum polynomial (and the characteristic polynomial) of C. For a positive
integer k, we write Ck for the companion matrix of the polynomial xk − 1. We note that Ck is a
permutation matrix, representing a cycle of length k.

3 Graphs and (0, 1,−1)-matrices

We associate a 2-arc-coloured directed graph ΓA to a n × n (0, 1,−1)-matrix A as follows. The
vertex set of ΓA is {v1, . . . , vn} and the coloured arcs are as follows:

• (vi, vj) is a blue arc if Aij = 1;

• (vi, vj) is a red arc if Aij = −1;

• (vi, vj) is not an arc if Aij = 0.

The same interpretation of arcs and entries yields an association of a square (0, 1,−1)-matrix to a
given 2-arc-coloured digraph, upon the choice of an ordering of the vertices. Each graph corre-
sponds to a permutation equivalence class of matrices.
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We refer to a 2-arc-coloured digraph that is associated to a PT -matrix by the above correspon-
dence, as a PT -graph. Every PT -graph has at most two red arcs, since a PT -matrix has at most two
negative entries. A PT -matrix with no negative entry is a permutation matrix, whose graph con-
sists of disjoint directed cycles, with all arcs coloured blue. A PT -matrix with exactly one negative
entry has the form P + T , where exactly one of the negative entries of the T -block T occurs in the
same position as a 1 in the permutation matrix P. If this occurs in Row i, then Row i of P + T is a
duplicate of another row, and hence P+T has zero determinant and cannot have finite multiplica-
tive order. Since our interest is in PT -matrices that have finite order and are not permutations, we
may confine our attention to PT -graphs that have exactly two red arcs. While is it possible for a
PT -graph to have a double blue arc, such a graph corresponds to a PT -matrix with an entry equal
to 2, which cannot be permutation similar to an ASM. Our concern is thus with PT -graphs having
exactly two red arcs and no multiple arcs, corresponding to matrices of the form P+ T , where the
positions of non-zero entries in the permutation matrix P and the T -block T do not coincide. If Γ
is such a graph, with n vertices, then its arcset is the disjoint union of a set of four arcs (two of
each colour) corresponding to the entries of a T -block, and a set of n blue arcs corresponding to
the entries of a permutation matrix. These two sets are uniquely determined by the two red arcs.
We write ΓT for the subgraph of Γ consisting of the four arcs determined by entries of T and their
incident vertices, and ΓP for the subgraph similarly determined by the arcs arising from P. The
vertex set of ΓP is the same as that of Γ , and its n arcs comprise disjoint directed cycles. The arc
set of ΓT is disjoint from that of ΓP, and ΓT has one of the following forms.

The graph ΓT is weakly connected, meaning that its underlying undirected graph is connected. The
weakly connected component of Γ that includes ΓT involves arcs from at most four cycles of ΓP,
since each vertex of ΓT occurs in one cycle of ΓP. Since any additional weakly connected compo-
nents of Γ are directed cycles, a (0, 1,−1)-matrix corresponding to Γ has finite multiplicative order
if and only if the submatrix corresponding to the weakly connected component that includes ΓT
does. For this reason, for the remainder of this section we only consider weakly connected PT -
graphs. We consider separately the cases where the vertices of ΓT are incident with one, two, three
or four cycles of ΓP.

The reverse of a digraph Γ is the graph obtained from Γ by reversing the directions of all arcs,
while maintaining any arc colouring . The operation of reversing the arc directions in a two-arc-
coloured digraph has the effect of transposing the corresponding (0, 1−1)-matrix. Since the matrix
property of having finite multiplicative order is preserved under transposition, this observation
is useful in limiting the number of graph types requiring analysis.

Given any digraph Γ with arcs coloured red and blue, we say that a walk in Γ is negative if it
includes an odd number of red arcs (counted with repetition), and positive if it includes an even
number of red arcs. For a positive integer k, we write w+

k (u, v) and w−
k (u, v) respectively for the

numbers of positive and negative walks of length k (abbreviated to k-walks) from the vertex u
to the vertex v in Γ . Let A be the (0, 1,−1)-matrix determined by the ordering v1, . . . , vn of the
vertices of Γ . It is routine to show that for a positive integer k, the entry in the (i, j)-position of Ak
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is
w+
k (vi, vj) −w

−
k (vi, vj). (1)

Suppose thatAk = In, for a positive integer k. Then the numbers of positive and negative k-walks
from u to v in Γ coincide, for any pair u and v of distinct vertices. For any vertex u, the number
of positive k-walks from u to u exceeds the number of negative k-walks by 1. By applying these
observations to directed graphs corresponding to PT -matrices, we will be able to reduce to four
general classes of weakly connected PT -graphs, whose corresponding PT -matrices include all
examples of finite multiplicative order that are not permutations, up to permutation equivalence
and transposition.

3.1 Type 1: a single cycle

We refer to PT -graphs and matrices involving a permutation with a single cycle as being of type 1.

Necessary and sufficient conditions for a PT -matrix of type 1 to have finite multiplicative order
are established in Section 4.1.

3.2 Type 2: a pair of cycles

The distinct PT -graph structures (up to arc reversal, or equivalently, matrix transposition), where
the vertices of ΓT belong to exactly two cycles of ΓP, are depicted below. We refer to these graphs
and their corresponding matrices as type 2(a), type 2(b), type 2(c), and type 2(d), respectively. In the
case of type 2(d), the relative positions of the three vertices of ΓT along the directed cycle C2 is not
considered to be prescribed.
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Type 2(a): Let M be a matrix corresponding to a graph of type 2(a). Every walk from a vertex of
C1 to a vertex of C2 involves an odd number of red arcs, and is therefore a negative walk. Because
there is a walk of length k from a vertex in C1 to a vertex in C2 for every k > 1, this means that
there are negative entries in off-diagonal positions of Mk for every k > 1. Thus matrices of type
2(a) cannot have finite multiplicative order.

Type 2(b): Let Γ be a PT -graph of type 2(b), wherem1 andm2 are the lengths of the cycles C1 and
C2 respectively. We may order the vertices of Γ so that the corresponding matrix is

A = Cm1 ⊕ Cm2 + T1,m1+k2;m1+1,k1 ,

where ⊕ denotes the matrix direct sum. A routine calculation using row operations shows that
the characteristic polynomial of the A given by

p(x) = xm1+m2 + xm1+m2−k1 + xm1+m2−k2 − xm1 − xm2 − xm1−k1 − xm2−k2 + 1

If A has finite order, then p(x) must be either palindromic or skew-palindromic.

• If p(x) is skew-palindromic, then the leading coefficient has opposite sign to the constant
term. It follows that xm1−k1 = xm2−k2 = x0. So k1 = m1 and k2 = m2.

• If p(x) is palindromic, then (m1+m2−k1)+(m1+m2−k2) = m1+m2, so k1+k2 = m1+m2.
Because k1 6 m1 and k2 6 m2, it follows that k1 = m1 and k2 = m2 as above.

The conditions k1 = m1 and k2 = m2 hold only if the negative entries of the T -block in A cancel
positive entries of Cm1⊕Cm2 , which means thatA = Cm1+m2 and in particularA is a permutation
matrix. Thus every PT -matrix of type 2(b) that has finite order is a permutation matrix.

Type 2(c) and Type 2(d) are considered in Sections 4.2 and 4.3; non-permutation examples of finite
order occur in these cases.

3.3 Type 3: three cycles

The distinct PT -graph structures (up to arc reversal) where the vertices of ΓT belong to three cycles
in ΓP are depicted below. We refer to these cases as type 3(a), type 3(b), and type 3(c), respectively.
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Type 3(a): In a PT -graph of type 3(a), every walk from a vertex in C1 to a vertex in C2 involves
exactly one red arc, and is therefore a negative walk. Since there is a walk of length k from a
vertex of C1 to a vertex of C2 for every k > 1, it follows that negative entires occur in all positive
powers of PT -matrices of type 3(a). Hence no PT -matrix of this type has finite order.

Type 3(b): If the vertices of a PT -graph of type 3(b) are listed with those of the cycle C3 first,
followed by those of C1 and then C2, the corresponding PT -matrix is block upper-triangular with
three square blocks on the diagonal. Subject to a suitable ordering of the vertices of C1, the second
diagonal block is the companion matrix of a polynomial of the form xm + xk − 1, where k < m.
Such a polynomial cannot be palindromic or skew-palindromic and hence cannot be a product of
cyclotomic polynomials. Hence a PT -matrix of type 3(b) cannot have finite multiplicative order.

Matrices of type 3(c) are considered in Section 4.4.

3.4 Type 4: four cycles

The case where the vertices of ΓT belong to four different cycles of ΓP is depicted below.

Every walk from a vertex of C1 in the above graph to a vertex of C3 involves only blue arcs and
is therefore positive. Such walks occur of all positive lengths, and so every power of a PT -matrix
of type 4 has positive off-diagonal entries. Hence no PT -matrix of type 4 has finite multiplicative
order.

We summarize the conclusions of Section 3 below.

Theorem 3.1. Let Γ be a weakly connected PT -graph with two red arcs (u1, v1) and (u2, v2), and with
no multiple blue arcs. Let ΓT be the subgraph of Γ with vertex set {u1, v1,u2, v2}, whose arc set includes
the two red arcs and the blue arcs (u1, v2) and (u2, v1). Let ΓP be the subgraph of Γ on the full vertex set,
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whose arcs are exactly those that do not belong to ΓT . Then ΓP is composed of disjoint directed cycles. If the
(0, 1,−1)-matrices corresponding to Γ have finite multiplicative order, then either Γ or its reverse is of one
of the following four types.

• Type 1: ΓP is a single directed cycle.

• Type 2(c): The graph ΓP consists of two disjoint directed cycles, with u1 and u2 belonging to one of
these cycles and v1 and v2 to the other. The vertices u1,u2, v1, v2 are distinct.

• Type 2(d): The graph ΓP consists of two disjoint directed cycles, with u1 belonging to one of these
cycles u2, v1 and v2 to the other. The vertices v1 and u2 are distinct, but v2 may coincide with one of
these.

• Type 3(c): The graph ΓP consists of three disjoint directed cycles. The vertices u1 and u2 belong to the
same cycle of ΓP, and the other two cycles each includes one of v1 and v2. The vertices u1,u2, v1, v2
are distinct in this case.

4 Elementary PT -matrices of finite multiplicative order

We refer to a PT -matrix as elementary if its graph is weakly connected. Every PT -matrix is permu-
tation similar to the matrix direct sum of an elementary PT -matrix and a permutation matrix, so
we focus on the elementary case.

In this section we analyse elementary PT -matrices of finite order, which correspond to graphs of
one of the four types identified in Theorem 3.1. We establish a classification, up to permutation
similarity and transposition, of elementary PT -matrices of finite multiplicative order. Examples
of finite order exist in all four cases, but their orders can differ from those of permutation matrices
of the same size only for Types 1 and 2(d). No generality is lost by restricting to PT -matrices with
weakly connected graphs, since the addition of a new connected component to a graph is equiva-
lent to extending the corresponding matrix via a direct sum. Central to our analysis is the fact that
the characteristic polynomials of PT -matrices have a particularly amenable form in the cases of
interest. This enables us to identify all PT -matrices whose characteristic polynomial is a product
of cyclotomic polynomials. As we noted in Section 2, such a matrix has finite multiplicative order
if and only if it is diagonalizable. Lemma 4.1 below is the main technical tool that we employ
to determine necessary and sufficient conditions for diagonalizability of PT -matrices of the four
types.

Lemma 4.1. Let A be a block upper triangular matrix in Mn(Q), with diagonalizable square p × p and
q × q blocks P and Q in the upper left and lower right respectively, where p + q = n. Let g(x) be the
greatest common divisor of the minimum polynomials of P andQ respectively, and letN be the upper right
p × q block of g(A). Then A is diagonalizable if and only if Nv belongs to the columnspace of g(P), for
every vector v in the right nullspace of g(Q).

Proof. We write mP(x), mQ(x) and mA(x) respectively for the minimum polynomials of P, Q
and A. Since P and Q are diagonalizable, neither mP(x) nor mQ(x) has any repeated irreducible
factors. We define the polynomials p(x) and q(x) bymP(x) = p(x)g(x) andmQ(x) = q(x)g(x). We
note that gcd(p(x),q(x)) = 1. SinceA is diagonalizable if and only if its minimum polynomial has
distinct roots, and since the irreducible factors ofmA(x) are exactly those ofmP(x) andmQ(x), it
follows that A is diagonalizable if and only ifmA(x) = p(x)q(x)g(x).
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We now consider under what conditions the matrix product A ′ = p(A)q(A)g(A) is equal to zero.
Since P and Q are diagonalizable, Cp and Cq have bases consisting of eigenvectors of P and Q
respectively. Thus Cn has a basis {u1, . . . ,up, v1, . . . , vq} where each ui is an eigenvector of P with
q zeros appended, and each vi is an eigenvector of Qwith p zeros prepended. Then A ′ui = 0 for
1 6 i 6 p, since p(A)ui = 0.

The last q entries of each the vectors v1, . . . , vq comprise an eigenvector ofQwhose corresponding
eigenvalue is a root either of q(x) or g(x). If vi corresponds to a root of q(x), then q(A)vi has zeros
in its last q positions and A ′vi = mP(A)q(A)vi = 0.

Now let v be a vector in {v1, . . . , vq} that corresponds to an eigenvalue of Q that is a root of g(x).
Then

A ′v = q(A)p(A)g(A) = q(A)p(A)

(
Nv

0q×1

)
=

(
q(P)p(P)Nv

0q×1

)
.

Since no root of q(x) is an eigenvalue of P, the matrix q(P) is nonsingular, andA ′v = 0 if and only
if p(P)Nv = 0; that is if and only if the vector Nv belongs to the right nullspace of p(P). Since the
minimum polynomial of P is p(x)g(x) and P is diagonalizable, the right nullspace of p(P) is equal
to the columnspace of g(P). We conclude that A is diagonalizable if and only ifNv belongs to the
columnspace of g(P) for every vector v in the right nullspace of g(Q).

The condition of Lemma 4.1 is equivalent to the assertion that the zero eigenvalue of g(A) has full
geometric multiplicity, but our analysis will employ the formulation in the lemma. This depends
on the feasibility of calculating the entries of g(A) and the right nullspace of g(Q). In most cases
of interest, Q is the matrix Cq, representing a single q-cycle, and P is the companion matrix of a
polynomial with few non-zero coefficients. The upper-right p×q blockM of A is a sparse matrix
of rank 1, with at most four non-zero entries spread over at most two columns. The polynomial
g(x) has the form xg ± 1 for some integer g, so N is the upper right block of Ag. This is given by

Pg−1M+ Pg−2MQ+ Pg−3MQ2 + · · ·+MQg−1.

The effect of right multplication by Cq on an entry ofM is to shift it one step left, or into Column
q if it is in Column 1. The effect of left multiplication by a companion matrix P is to shift the entry
one step downward, unless it is in Row q, in which case the final column of P enters. In most
cases of interest, an entry a in position (i, j) ofM leads to g appearances of a in Ag, in a diagonal
pattern of positions starting at (i, j− g+ 1) and proceeding downwards and to the right.

We proceed to consider each of the four possible graph types listed in Theorem 3.1, where the
above remarks will apply. For a positive integer t, we write [t]2 for the highest power of 2 that
divides t. We note the following properties of common divisors of polynomials of the form xt±1.

Lemma 4.2. Let s and t be positive integers. Then

• gcd(xs − 1, xt − 1) = xgcd(s,t) − 1.

• gcd(xs + 1, xt + 1) =
{
xgcd(s,t) + 1 if [s]2 = [t]2

1 if [s]2 6= [t]2

• gcd(xs − 1, xt + 1) =
{
xgcd(s,t) + 1 if [s]2 > [t]2

1 if [s]2 6 [t]2
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4.1 PT -matrices of Type 1: a single n-cycle

We may order the vertices of a PT -graph of Type 1 so that its corresponding PT -matrix has the
form Cn+T(1, j1,d+1, j2), where d 6 n

2 . We writeA for Cn+T(1, j1,d+1, j2) and observe (using
cofactor expansion on the first row), that the characteristic polynomial p(x) ofA has the following
simple form, with at most six non-zero terms. For an integer t, we write [t] for the remainder on
dividing t by n.

Theorem 4.3. For d 6 n
2 , the characteristic polynomial of A = Cn + T(1, j1,d+ 1, j2) is

p(x) = xn − xn−j1 + x[n−j1+d] + xn−j2 − x[n−j2+d] − 1.

We wish to determine when p(x) is a product of cyclotomic polynomials. We begin by considering
its constant term, which may differ from −1 only if either j1 or j2 is equal to either n or d. The
only such case in which the constant term is 1 or −1 is when j1 = d and j2 = n. In this case A is a
permutation matrix, corresponding to a pair of cycles of lengths d and n− d.

We assume now that neither j1 nor j2 is equal to n or d. Since its constant term is −1, the
polynomial p(x) of Theorem 4.3 can be a product of cyclotomic polynomials only if it is skew-
palindromic. This occurs in the following two cases.

Case 1 n− j1 + n− j2 = n and [n− j1 + d] + [n− j2 + d] = n.
From the first equation, j1 + j2 = n, so the second equation reduces to [j2 +d] = [j1 +d] = n,
which means that j1 + j2 + 2d is a multiple of n. Since j1 + j2 = n and d 6 n

2 , this can be
satisfied only if 2d = n. We note that |j1 − j2|, which is the distance between the columns
occupied by entries of T , is even in this situation.
In this case, Γ(A) consists of a directed cycle of length n = 2d, which we write as

v1 → vn → vn−1 → · · · → v2 → v1,

with additional blue and red arcs from v1 and vn
2 +1 to vj1 and vj2 , corresponding to the

entries of T , where j1 6= j2 and j1 − j2 is even. It remains to identify the values of j1 and j2 for
which A has finite order.

Case 2 n− j1 + [n− j1 + d] = n and n− j2 + [n− j2 + d] = n.
This occurs only if {n+ d− 2j1,n+ d− 2j2} = {0,n}. This means that d and n are both even
and {j1, j2} = {d2 , n+d2 }. In particular, |j1 − j2| = n

2 .
In this situation we may label the vertices so that the graph Γ(A) consists of a directed n-
cycle on blue arcs as in Case 1 above, with four additional arcs corresponding to the entries
of T , directed from v1 and vd+1 to some vj and vj+n

2
, where d is even.

Reversing all arcs in a graph arising in Case 2 results in a graph of the type described in Case 1.
It follows that every PT -matrix arising in Case 2 above is permutation similar to the transpose of
one that arises in Case 1. For this reason, we consider Case 1 only.

We now write j for the minimum of j1 and j2, and write n = 2d.

• If j1 < j2, then j = j1, A = Cn + T(1, j,d+ 1,n− j), and

p(x) = xn − xn−j − xd+j + xd−j + xj − 1 = (xj − 1)(xd−j − 1)(xd − 1).

• If j1 > j2, then j = j2, A = C+ T(1,n− j,d+ 1, j), and

p(x) = xn + xn−j + xd+j − xd−j − xj − 1 = (xj + 1)(xd−j + 1)(xd − 1).
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In any case where p(x) is a product of distinct cyclotomic factors, we can conclude that the matrix
has finite multplicative order. In the case where p(x) is a product of cyclotomic factors with
repetition, we need to consider the relationship between p(x) and the minimum polynomialm(x)
of A. To this end we consider the minimal A-invariant subspace of Cn that contains the vector
v1, which has 1 in position 1, −1 in position d + 1, and zeros elsewhere. This vector spans the
1-dimensional column space of T .

For i = 1, . . . ,d, we write vi for the vector in Cn that has 1 in position i, −1 in position d + i and
zeros elsewhere. We write V for the span of the vi which clearly has dimension d and consists of

all vectors in Cn of the form
(

v
−v

)
, where v ∈ Cd. It is evident that V is A-invariant, since it is

Cn-invariant, and Tx ∈ 〈v1〉 ⊆ V for all x ∈ Cn. Moreover, Cinv1 = vi+1, for i = 1, . . . ,d − 1, and
Cdnv1 = −v1. We note that Av1 = v2 + αv1, where α ∈ {−1, 0, 1}. Applying A repeatedly, it follows
for i 6 d − 1 that Aiv1 = vi+1 + w, where w is a linear combination of v1, . . . , vi. In particular,
B1 = {v1,Av1,A2v1, . . . ,Ad−1v1} is a linearly independent set and a basis of V . It follows that the
restriction to V of the linear transformation determined by A is non-derogatory; its minimum
polynomial has degree d. We extend B1 to a basis B of Cn by appending the standard basis
vectors ed+1, . . . , en. Rewriting with respect to the basis B, we find that A is similar to the matrix
A ′ with the following block upper triangular form.

• The lower right d×d block ofA ′ is Cd, the companion matrix of xd−1. ThatAei ∈ ei+1 +V
is clear for i = d + 1, . . . ,n − 1, and Aen = e1 = v1 + ed+1, since the last column of A is just
e1.

• The upper right d × d block of A ′ has only zero entries outside its first row. In the first
row, the entry in the (1,n − j) position of A ′ is 1 or −1 (according as A1,n−j is positive or
negative), and the entry in the (1,n)-position is 1. All other entries in this region are zeros.

• The lower left d× d block of A ′ is 0d×d.

• The upper left d × d block of A ′ is the companion matrix of the minimum polynomial of
the restriction to V of the linear transformation determined by A. This is p(x)

xd−1 , which is
(xj − 1)(xd−j − 1) if A1j = 1, or (xj + 1)(xd−j + 1) if A1j = −1.

Since (xj − 1)(xd−j − 1) has 1 as a repeated root, the upper left block of A ′ can have finite order
only if A1j = −1. In this situation, the block has finite order if and only if the polynomials xj + 1
and xd−j + 1 are relatively prime, which occurs if and only if [j]2 6= [d − j]2, as noted in Lemma
4.2. We assume that this condition holds, so that the upper left block of A ′ has finite order.

Since [j]2 6= [d− j]2, it follows that [d]2 = min([j]2, [d− j]2) and hence that xd−1 is relatively prime
to both xj + 1 and xd−j + 1. Thus A = C2d + T(1, 2d− j,d+ 1, j) has finite multiplicative order in
any case where j < d and [j]2 6= [d − j]2. Since the minimum polynomial of A in this situation is
(xj + 1)(xd−j + 1)(xd − 1), the order is lcm(2j, 2d− 2j,d).

For PT -graphs and PT -matrices of Type 1, we have the following conclusions. The PT -graph Γ is
defined here as in Theorem 3.1. For vertices u and v of Γ , dP(u, v) denotes the length of the path
from u to v along the cycle ΓP.

Theorem 4.4. Let Γ be a PT -graph of type 1 of order n, with red arcs (u1, v1) and (u2, v2). Then the
(0, 1,−1)-matrix corresponding to Γ (with respect to a vertex ordering) has finite multiplicative order if
and only if n = 2d is even, the 2-parts of the integers dP(v1,u1) + 1 and dP(u2, v1) − 1 are different,
dP(v1,u1) + dP(v2,u2) = d− 2, and either dP(u1,u2) = d or dP(v1, v2) = d.
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The two versions of the final condition in the statement of Theorem 4.4 correspond to the cases
where Γ itself, or its reverse, is described by a matrix having the form in the above discussion.

Theorem 4.5. A n× n PT -matrix A of Type 1 has finite multiplicative order if and only if n is even and
either A or its transpose is permutation similar to a matrix of the form

Cn + T(1,n− j,d+ 1, j),

where n = 2d, j < d and [j]2 6= [d− j]2. In this case the multiplicative order of A is lcm(2j, 2d− 2j,d).

It is possible for a n × n PT -matrix of Type 1 to have a multiplicative order that does not occur
as the order of a permutation matrix in Sn. For example if n = 10, choosing j = 1 or j = 2
gives PT -matrices (shown below) whose respective multiplicative orders are lcm(2, 8, 5) = 40 and
lcm(4, 6, 5) = 60. Neither 40 nor 60 occurs as the order of an element in the symmetric group S10,
since neither occurs as the least common multiple of the integers in a partition of 10.

−1 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


C10 + T(1, 9, 6, 1), order 40



0 −1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0


C10 + T(1, 8, 6, 2), order 60

It will be shown in Section 5 that the PT -matrices arising in Theorem 4.5 are all permutation
similar to alternating sign matrices.

4.2 Type 2(c): two cycles connected by four arcs of T

In a PT -graph of Type 2(c) in Theorem 3.1, the permutation component consists of a pair of cycles
of lengths p and q respectively, where p+q = n and each of p and q is at least 2. The T -component
contributes four additional arcs, a pair of red arcs directed from distinct vertices x1 and x2 of the
p-cycle to distinct vertices y1 and y2 respectively of the q-cycle, and a pair of blue arcs from x1 to
y2 and from x2 to y1. We assume that y1 and y2 are labelled so that the directed path along the
q-cycle from y2 to y1 is no longer that the one from y1 to y2.

We order the vertices of Γ as follows. We begin with the vertices of the p-cycle, starting with x1
and proceeding against the direction of the arcs in C. We continue with the vertices of the q-cycle,
proceeding against the direction of the arcs of the cycle, to end with y2.

With respect to this ordering, the n × n matrix A of Γ has the following description, where ⊕
denotes the matrix direct sum.

A = (Cp ⊕ Cq) + T(1,n,h+ 1,n− l),

where h is the length of the path from x2 to x1 in the p-cycle, and l is the length of the path from
y2 to y1 in the q-cycle. We derive conditions on h, l,p and q, for A to have finite order. Since A is
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block upper triangular with Cp and Cq as its diagonal blocks, it has finite order if and only if its
minimum polynomial is lcm(xp − 1, xq − 1), and in this case its order is lcm(p,q). If this occurs,
then neither p nor q can be a divisor of the other, since inspection of walks of length max(p,q)
from vertices of C to vertices of C ′ shows that Amax(p,q) has non-zero entries in its upper right
p×q region. For example, there is at least one positive q-walk from u to the in-neighbour of v ′ in
C ′, and no negative one. There is at least one positive p-walk from the out-neighbour of v in C to
u ′, and no negative one. Thus it is not possible that A has order p or q, and we may confine our
attention to cases where neither p nor q divides the other.

We write g for gcd(p,q) and note that q 6 q
2 , and so n− l > p+ g, since l 6 q

2 . We apply Lemma
4.1 with g(x) = gcd(xp − 1, xq − 1) = xg − 1. Then

g(A) = Ag − In = (g(Cp)⊕ g(Cq)) +
g∑
i=1

T(i, [h+ i],n− g+ i,n− l− g+ i), (2)

where [h + i] = h + i − p if h + i exceeds p, and is otherwise equal to h + i. In place of the 1
in the upper right position of A, Ag (or Ag − In) has a strip of g entries equal to 1, in a diagonal
arrangement from position (1,n − g + 1) to position (g,n). A similar pattern occurs for each of
the three other non-zero entries in the upper right p× q block of A.

We writeN for the upper right block of g(A). By Lemma 4.1, we need to consider whetherNv be-
longs to the column spaceU of g(Cp), for every vector v satisfying g(Cq)v = 0. The column space
of Cgp− Ip consists of all vectors u ∈ Cp for which the sum of the p

g
entries ui,ui+g, . . . ,ui+(p

g
−1)g

is zero, for i = 1, . . .g− 1.

A basis for the right nullspace of g(Cq) is given by {w1, . . . ,wg}, where wi has entries equal to 1
in the q

g
positions with indices congruent to imodulo g, and zeros elsewhere.

According to (2), the non-zero columns of N occur in two (possibly overlapping) contiguous
bands, from Column q − g + 1 to Column n, and from Column q − l − g + 1 to Column q − l of
N. The nonzero entries of N occur as follows, where 1 6 i 6 g.

• Column q− l− g+ i of N has −1 in position i and 1 in position [h+ i].

• Column q− g+ i has 1 in position i and −1 in position [h+ i].

It follows thatNvi is either equal to Column q− g+ i ofN (if i 6 g− l) or to the sum of Columns
q − g + i and q − l − g + l+ i of N, where l+ i is the reminder on dividing l + i by g. This sum
is zero if g|l, otherwise it is the vector with 1 in positions i and [l+ i + h], −1 in positions l+ i
and [i + h], and zeros elsewhere. This vector belongs to the columnspace of g(P) only if g|h. It
now follows from Lemma 4.1 that A has finite multiplicative order if and only if g divides either
l or h, giving the following conclusions for PT -graphs and PT -matrices of type 2(c), as described
in Theorem 3.1.

Theorem 4.6. Let Γ be a PT -graph of type 2(c), in which the two cycles have lengths p and q, the vertices
u1 and u2 belong to the p-cycle, and the vertices v1 and v2 belong to the q-cycle. Then a (0, 1,−1)-matrix
corresponding to Γ has finite multiplicative order if and only if at least one of dP(u1,u2) and dP(v1, v2) is
a multiple of gcd(p,q).

Theorem 4.7. Let A be a PT -matrix of type 2(c). Then A has finite multiplicative order if and only if A or
its transpose is permutation similar to the matrix Cp ⊕Cq + T(1,n,h+ 1,n− l), where 1 6 h < p, 1 6
l < q, and gcd(p,q) divides at least one of h and l. When this occurs, the order of A is lcm(p,q).
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Every matrix arising in Theorem 4.7 is similar to a permutation matrix. Those that are permuta-
tion similar to alternating sign matrices will be identified in Section 5.

4.3 Type 2(d): two cycles connected by two arcs of T

We now consider PT -matrices corresponding to graphs of Type 2(d), in the classification given in
Theorem 3.1. The matrix of Example 1.1 is of this type, with the underlying permutation involving
a 4-cycle and a fixed point. Let Γ be a PT -graph of order n = p+ q, consisting of disjoint directed
cycles of lengths p and q, whose arcs are coloured blue, and the following four additional arcs
involving vertices x1, x2,y1 of the p-cycle (with x1 6= x2) and a vertex y2 of the q-cycle: (x1,y1) and
(x2,y2), both coloured red, and blue arcs (x1,y2) and (x2,y1).

We order the vertices of Γ as follows. Vertices of the p-cycle are listed first, ordered against the
direction of the arcs of the cycle, and ending with y1. Vertices of the q-cycle follow, again against
the direction of the arcs, and with y2 appearing last.

With respect to this ordering, the matrix A of Γ has the form

A = (Cp ⊕ Cq) + T(i1,n, i2,p),

where i1 and i2 are the (distinct) respective positions of x1 and x2 in the vertex ordering. We write
P for the upper left p× p block of A and note that P is the companion matrix of the polynomial

p(x) = xp + xi1−1 − xi2−1 − 1.

Since A is block upper triangular with P as its upper-left block, A may have finite multiplicative
order only if P does. The polynomial p(x) cannot be palindromic, since its leading and constant
coefficients cannot coincide. It is skew-palindromic only if i1 + i2 = p + 2. We assume that this
holds and rewrite i2 as i. Then

p(x) = (xp−i+1 − 1)(xi−1 + 1),

and, by Lemma 4.2, P has finite order if and only if [i − 1]2 > [p − i + 1]2. We assume that this
condition holds, and hence that the order of P is the least common multiple of p−i+1 and 2(i−1).
We proceed to consider when A has finite order.

First we consider the case where [q]2 > [i − 1]2. We write d and g respectively for gcd(q2 , i − 1)
and gcd(q,p − i + 1). Then the greatest common divisor of the minimum polynomials of P and
Cq ism(x) = (xd + 1)(xg − 1).

By Lemma 4.1, a necessary and sufficient condition for A to be diagonalizable, or equivalently to
have finite multiplicative order, is that the zero eigenvalue has full geometric multiplicity in the
matrix (Ad + In)(A

g − In). Since the polynomials xd + 1 and xg − 1 are relatively prime, this
condition holds if and only if it holds separately for Ad + In and Ag − In. We consider Ad + In
first. The right nullspace of Cdq + Iq has dimension d and is spanned by the vectors u1, . . . ,ud,
where for i = 1, . . . ,d, ui has entries alternating between 1 and −1 in positions i, i + d, i + 2d
to q − d + i, starting with 1 in position i. The columnspace of Pd + Ip has dimension p − d, and
is spanned by the vectors w1, . . . ,wp−d in Cp, where wi has 1 in positions i and i + d, and zeros
elsewhere. This space consists of all vectors in Cp with the property that for i = 1, . . . ,d, the
alternating sum of the sequence of entries in positions congruent to imodulo d is zero.

The non-zero entries of the matrix Nd are confined to the last d columns. Since ui has −1 in
position q − d + i and its last d entries are otherwise zero, the vectors Ndui are respective scalar
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multiples of the last d columns of Nd. Thus Ad + In satisfies the condition of Lemma 4.1 if and
only if the columnspace of Nd is contained in that of Pd + Ip. Column q − d + 1 of Nd is equal
to column q of the upper right block of the original A. It has two non zero entries; −1 and 1 in
positions i and p+2− i. This vector v belongs to the columnspace of Pd+I if and only if d divides
p + 2 − 2i and (p + 2 − 2i)/d is even. This condition is equivalent to the statement that d|p and
p/d is even, since d divides i− 1. Every column ofNd is a linear combination of vectors with two
non-zero entries of opposite sign, whose positions are separated either by |p+ 2− 2i| or by 2i− 2.
Thus the condition that p/d is an even integer, which is necessary to ensure that v belongs to the
columnspace of Pd + Ip, is also sufficient to ensure that Ndu belongs to this space, for every u in
the right nullspace of Qd + I.

We now consider the corresponding question for the matrixAg− In. The analysis and conclusion
here closely mirror those of Section 4.2. The column space of Pg−Ip has dimension p and consists
of all vectors in Cp with the property that for each i ∈ {1, . . . ,g} the sum of all entries in positions
congruent to i modulo g is zero. If Ng is the upper right p × q block of Ag − In, then every
column of Ng occurs as the product Ngu for some u with (Qg − Iq)u = 0. As above, Column
q−g+1 ofNg has only two non-zero entries, of opposite sign and separated by a vertical distance
of |p+ 2 − 2i|. This vector belongs to the column space of Pg − Ip only if g divides p+ 2 − 2i, and
as above this condition is sufficient to ensure that the column space of Ng is contained in that of
Pg− Ip. Since g is a divisor of p− i+1, the condition g|p−2i+2 is equivalent to g|i−1 and hence
to g|p.

Theorem 4.8. The PT -matrix A = (Cp ⊕Cq) + T(i1,n, i2,p), where i1, i2 6 p, has finite multiplicative
order if and only if the following conditions are satisfied.

• i1 + i2 = p+ 2, and [i2 − 1]2 > [p− i2 + 1]2;

• g|p, where g = gcd(q,p− i2 + 1);

• [q]2 6 [i2 − 1]2, or [q]2 > [i2 − 1]2 and p/d is an even integer, where d = gcd(q2 , i2 − 1).

If the conditions in Theorem 4.8 hold, then the order of A is

lcm(p− i2 + 1, 2i2 − 2,q).

If [q]2 > [i2 − 1]2, this is equal to lcm(p − i2 + 1, i2 − 1,q), which is the order of a permutation of
degree p + q. In general however, the order of A need not coincide with that of a permutation.
For example, we may set p = i2 = 2k + 1, and q = 1, for any positive integer k. We obtain a
(2k + 2)× (2k + 2) matrix of order lcm(1, 2k+1, 1) = 2k+1. An n× n permutation matrix of order
2k+1 exists only if n > 2k+1.

The 10 × 10 example with k = 3 and order 16 is below, along with an ASM to which it is permu-
tation similar.



0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 −1 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 0 1





0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 −1 1 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
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4.4 Type 3(c): three cycles

The remaining case concerns PT -matrices corresponding to graphs of type 3(c) in Corollary 3.1.
The analysis for this resembles that of type 2(c), although it is simpler. A graph of Type 3(c) has
three cycles of lengths p,q and m. Additionally, it has a pair of blue arcs directed from distinct
vertices x1 and x2 of the first cycle, respectively to vertices y and z of the second and third cycles,
and a pair of red arcs from x1 to z and x2 to y. With respect to a suitable ordering of the vertices,
the corresponding matrix is

A = (Cp ⊕ Cq ⊕ Cm) + T(1,p+ q, i,p+ q+m),

where 1 < i 6 p. Applying Lemma 4.1 as in previous cases, we find that the upper left (p +
q)× (p + q) block Ap+q of A has finite multiplicative order if and only if gcd(p,q) divides i − 1.
We assume that this holds, and note that Ap+q is then similar to Cp ⊕ Cq, via a change of basis
that does not affect the first p basis elements. It follows that A itself is similar to the matrix A ′ =
(Cp⊕Cq⊕Cm)−E1,p+q+m+Ei,p+q+m, where Ei,j has 1 in the (i, j)-position and zeros elsewhere.
Now A ′ has finite order if and only if the (p+m)× (p+m) matrix (Cp ⊕Cm) − E1,p+m + Ei,p+m
does, and applying Lemma 4.1 confirms that this occurs if and only if gcd(p,m) divides i− 1.

Theorem 4.9. Let p,q,m be positive integers, with p > 2, and let i be an integer with 1 < i 6 p. The
matrix

A = (Cp ⊕ Cq ⊕ Cm) + T(1,p+ q, i,p+ q+m),

which represents a PT -graph of Type 3(c), has finite multiplicative order if and only if gcd(p,q) and
gcd(p,m) both divide i−1. In this case the order ofA is lcm(p,q,m) andA is similar to the permutation
matrix Cp ⊕ Cq ⊕ Cm.

5 ASM-permutability

It remains to determine which of the PT -matrices of finite multiplicative order are permutation
similar to alternating sign matrices, or ASM-permutable. We consider this question separately for
the four types, using the following strategy in all cases. In Section 4, we identified a standard
form for a PT -matrix of each of the four types, selected with ease of calculation of characteristic
and minimum polynomials in mind. This amounts to a choice of ordering of the vertices of the
corresponding digraph, which we now label as 1, 2, . . .n. We need to determine whether the same
n vertices can be rearranged to an ASM-ordering, which means that the corresponding (0, 1,−1)-
matrix is an ASM. An ASM-ordering must satisfy four constraints, one arising from each of the
four rows and columns in which the matrix has three non-zero entries, which are the rows and
columns occupied by entries of the T -block. Each of the four constraints stipulates that a particular
vertex, labelling the position of the −1 in the relevant row or column, must occur between two
other vertices, which label the positive entries in the same row or column. The consistency of the
four constraints needs to be checked.

5.1 Type 1

By Theorem 4.5, every PT -matrix of finite order of Type 1 (or its transpose) is permutation similar
to a matrix of the form

A = Cn + T(1,n− j,d+ 1, j),
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where n = 2d is even, 1 6 j < d and [j]2 6= [d − j]2, which implies that d > 3. We write Γ for the
graph determined by the above matrix A, and write 1, 2, . . . ,n, for the vertices of Γ , in the order
determined by A. An ordering of the vertices of Γ is an ASM-ordering if and only if it satisfies the
following conditions, determined respectively by Rows 1 and d + 1 of A, and by Columns j and
n− j.

1. j occurs between n− j and n;

2. n− j occurs between j and d;

3. 1 occurs between d+ 1 and j+ 1;

4. d+ 1 occurs between 1 and n− j+ 1.

The vertices j,d,n − j and n that appear in the first two conditions are distinct. The first two
conditions imply that in any ASM-ordering, these four occur either in the order d,n − j, j,n or
n, j,n − j,d. Since the reverse of an ASM-ordering is an ASM-ordering, we may concentrate on
the former case, and consider whether the remaining n − 4 vertices can be inserted so that the
conditions arising from Columns j and n− j also hold.

The vertices 1, j+ 1,d+ 1 and n− j+ 1 are distinct, and can be ordered so that conditions 3 and 4
are satisfied. If all eight vertices that appear in the above conditions are distinct, then the two sets
of four can be ordered independently, and the arrangement can be completed to an ASM-ordering
of the full vertex set.

We note the only possible coincidences between the four-vertex sets {d,n− j, j,n} and {1, j+1,d+
1,n− j+ 1}, as follows.

1 = j, n− j+ 1 = n, d+ 1 = n− j, j+ 1 = d.

The first two possibilities above are equivalent, and so are the second two. All four cannot be
satisfied simultaneously, since j cannot be simultaneously equal to 1 and d − 1, as d > 3. The
positions of 1 and n − j + 1, or of d + 1 and j + 1, may be constrained by the appearance of
d,n − j, j,n in that order in a candidate ASM-ordering. In the first case, d + 1 and j + 1 may be
inserted freely and independently, in order to satisfy conditions 3 and 4. In the second case, the
same applies to 1 and n− j+ 1, hence the following statement.

Theorem 5.1. Every PT -matrix of finite multiplicative order of Type 1 is permutation similar to an alter-
nating sign matrix.

5.2 Type 2(c)

By Theorem 4.7, a PT -matrix of Type 2(c) of finite order (or its transpose) is permutation similar
to

A = Cp ⊕ Cq + T(1,n,h+ 1,n− l), (3)

where 1 6 h < p, 1 6 l < q, and gcd(p,q) divides at least one of h and l. We write 1, . . . ,n for
the vertices of the graph Γ determined by A, ordered according to the rows and columns of A.
From Rows 1 and h+1 and Columns n− l and n ofA, we observe that an ordering of the vertices
1, . . . ,n is an ASM-ordering if and only if it satisfies the following four conditions.

1. n− l occurs between p and n;
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2. n occurs between n− l and h;

3. 1 occurs between h+ 1 and n− l+ 1;

4. h+ 1 occurs between 1 and p+ 1.

The four vertices that appear in the first two conditions are distinct, and so are the four that appear
in conditions 3 and 4. If an ASM-ordering exists, then one exists in which the vertices p, n−l,n,h
occur in that order. We consider when conditions 3 and 4 are compatible with this constraint.

Potential intersections of the four-vertex sets {n− l,p,n,h} and {1,h+1,n− l+1,h+1} are limited
to the following possibilities:

1 = h, h+ 1 = p, n− l+ 1 = n, p+ 1 = n− l.

If at most two of the above equalities hold, it is possible to insert the remaining vertices from
{1,h,n− l+1,p+1} to ensure that conditions 3 and 4 are satisfied. If any 3 of them hold however,
conditions 3 and 4 are incompatible and cannot be simultaneously satisfied. This occurs in the
following two cases.

Case 1 h = 1 and h + 1 = p, and l is either equal to 1 or q − 1. In this case p = 2, and the two
vertices in the q-cycle that have indegree 3 are consecutive in the q-cycle.

Case 2 Alternatively, l = 1 and l = q − 1, and h is either equal to 1 or p − 1. In this case q = 2 and
the two vertices of the p-cycle that have outdegree 3 are consecutive in the p-cycle.

We conclude as follows.

Theorem 5.2. Let Γ be a PT -graph of type 2(c) as defined in Theorem 3.1. Then there is an ordering of the
vertices of Γ whose corresponding (0, 1,−1)-matrix is an ASM, unless one of the cycles in ΓP has length 2,
and the two vertices of ΓT in the other cycle are consecutive in that cycle.

Theorem 5.3. If the matrix A of (3) has finite order, then it is permutation similar to an ASM, except in
the following two cases

• p = 2, q is odd, q > 3 and l ∈ {1,q− 1};

• q = 2, p is odd, p > 3 and h ∈ {1,p− 1}.

The stipulation that q or p is odd in the two cases of Theorem 5.3 arise from the finite order
conditions in Theorem 4.7, and not from considerations of ASM-permutability.

5.3 Type 2(d)

By Theorem 4.8, a PT -matrix of finite order of Type 2(d) (or its transpose) is permutation similar
to

A = Cp ⊕ Cq + T(i1,n, i2,p), (4)

where n = p+q, i1 6= i2, i1 6 p, i2 6 p and i1+i2 = p+2, with some additional conditions that do
not enter our analysis here. The condition i1 + i2 = p+ 2 ensures that i1 > 2 and i2 > 2. A vertex
ordering of the corresponding graph is an ASM-ordering if and only if it satisfies the following
conditions, arising respectively from Rows i1 and i2 and from Columns p and n.
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1. p occurs between i1 − 1 and n;

2. n occurs between i2 − 1 and p;

3. i1 occurs between 1 and i2;

4. i2 occurs between 1 and p+ 1.

The four indices occurring in the first two conditions are distinct, and if an ASM-ordering exists,
then one exists in which the entries i1 − 1, p, n, i2 − 1 occur in that order. Possible repetitions
among the eight vertices that appear in the four conditions above are as follows.

i1 = p or i1 = i2 − 1, 1 = i1 − 1 or 1 = i2 − 1, i2 = p or i2 = i1 − 1, p+ 1 = n. (5)

In each of the first three points above, the two possibilities are mutually exclusive. As in previous
cases, if up to two elements of {i1, 1, i2,p + 1} belong to {i1 − 1, p, n, i2 − 1}, an ASM-ordering of
all n vertices may be completed.

First we suppose that i1 and i2 are not consecutive, so that i1 6= i2 − 1 and i2 6= i1 − 1. In this case
{i1, 1, i2,p + 1} and {i1 − 1, p, n, i2 − 1} can intersect in at most three elements, and this occurs if
and only if {i1, i2} = {2,p} and p + 1 = n, so q = 1. If (i1, i2) = (2,p), then 1, i2,p + 1 appear in
that order and i1 can be inserted between 1 and i2, so that all four requirements are satisfied. If
(i1, i2) = (p, 2), then i2,p+ 1, 1 occur in that order, and i1 cannot be inserted so that the third and
fourth conditions are simultaneously satisfied.

Suppose now that i1 and i2 are consecutive, and suppose first that i1 = i2 − 1. Then if at least
three of the four equalities of (5) are satisfied, either 1 = i1 − 1 or i2 = p. Since i1 + i2 = p + 2,
each of these conditions implies that p = 3. If either of them is satisfied then both are, and in this
situation condition 3 is not satisfied; i1 does not occur between 1 and i2.

On the other hand if i2 = i1 − 1 and three or more of the conditions of (5) hold, then i1 = p = 3
and i2, i1, 1 occur in that order, so that the third ordering condition is satisfied. The fourth can be
satisfied by a suitable choice of position for p+1, provided that p+1 6= n in which case the fourth
condition cannot be satisfied. No ASM-ordering exists in the case (i1, i2,q) = (3, 2, 1).

Our conclusion for PT -matrices of type 2(d) is as follows.

Theorem 5.4. The PT -matrix A of (4) is permutation similar to an ASM, except where q = 1, i2 = 2 and
i1 = p.

5.4 Type 3(c)

A n× n PT -matrix of Type 3(c) is permutation similar to

A = (Cp ⊕ Cq ⊕ Cm) + T(1,p+ q, i,p+ q+m), (6)

where p,q andm are positive integers with p > 2 and p+q+m = n, and 1 < i 6 p. An ordering
of the vertices 1, . . . ,n of the graph Γ determined byA is an ASM-ordering if and only if it satisfies
the following conditions.

1. n occurs between p and p+ q;

2. p+ q occurs between i− 1 and n;
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3. i occurs between 1 and p+ 1;

4. 1 occurs between i and p+ q+ 1.

From the first two conditions we deduce that if an ASM-ordering exists, then one exists in which
the vertices p, n, p + q and i − 1 occur in that order. The possible repetitions among the eight
vertices that appear above are

i = p, 1 = i− 1, p+ 1 = p+ q, p+ q+ 1 = n.

If any three of the above equalities hold, then conditions 3. and 4. cannot be simultaneously
satisfied by the insertion of the remaining element, hence the following conclusion on ASM-
permutability for PT -matrices and graphs of type 3(c).

Theorem 5.5. The matrix A of (6) is permutation similar to an ASM, except in the following three cases:

• p = i = 2, and 1 ∈ {q,m};

• i = p and q = m = 1;

• i = 2 and q = m = 1.

6 Conclusion

The results of this article identify all PT -matrices of finite order, whose associated graphs are
weakly connected, or equivalently the property that every cycle of the permutation component
includes a vertex that is incident with an arc corresponding to an entry of the T -block. Such
examples can be augmented by the addition of permutation matrices as new diagonal blocks. We
have observed thatn×n elementary PT -matrices of types 1 and 2(c) may have finite multiplicative
orders that do not occur in the symmetric group of degree n.

It is not true that every alternating sign matrix of finite multiplicative order is permutation equiva-
lent to a matrix direct sum of permutations and elementary PT -matrices, as the following example
shows.

A =


0 0 1 0 0 0
0 1 0 0 0 0
1 −1 0 1 0 0
0 1 −1 0 0 1
0 0 1 −1 1 0
0 0 0 1 0 0


This matrix A has multiplicative order 12 and its minimum polynomial is

Φ2(x)Φ12(x) = (x− 1)(x4 − x2 + 1).

It is clear that A is not a PT -matrix since it has three negative entries; however it may be obtained
from a permutation matrix by the addition of two T -blocks.

While there exist 6 × 6 elementary PT -matrices of order 12, the analysis in Section 2 confirms
that none of their characteristic polynomials has Φ12(x) as a factor. Thus A is not similar to a
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PT -matrix. Since the symmetric group of degree 6 has no element of order 12, A is not similar to
a permutation matrix either.

It would be of interest to know the maximum possible number of negative entries in a n×nASM
of finite multiplicative order. The maximum possible number of negative entries in an ASM of
specified size occurs in the diamond ASMs, which never have finite order, since their spectral radii
exceed 1, as shown in [9].
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