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Abstract

Cooperation is the process of working together for mutual benefit. Indirect reciprocity is
an important form of cooperation because it assumes that a donation to an agent does not
guarantee reciprocation. Therefore, understanding how cooperation is incentivised and
sustained is of widespread interest. Reputation is known as a key mechanism to support
indirect reciprocity because it is a currency through which future donations can be secured
based on past behaviour. Conventional models of indirect reciprocity assume that agents
have a simple identity that is uniquely defined and not shared with others. This results
in a unique reputation for each agent. We generalise this assumption by allowing agents
to share elements of their identity with others. This involves composing identity through
traits, which can be used to represent group membership. Traits can be shared between
agents and we assume that traits carry reputation in their own right, that an agent can

inherit.

Our investigation of this new framework provides an insight into the effects of sharing
identity on cooperation in a number of different ways. Through a breadth of simulation,
we identify the extent to which agents can have an element of common identity before
cooperation becomes impeded. We also discover a relationship between reputation-based
cooperation and cooperation through the evolution of set-based membership, which are
previously unrelated alternative perspectives on indirect reciprocity. Finally, we explore
the effects of blending personal and group reputations as seen in psychological theo-
ries of identity fusion. This allows us to determine the effects of identity-driven agent

motivation compared to traditional economic motivation and rational economic decision-



v

making. These findings give new perspectives into previous studies related to identity,
such as stereotyping, group identity, whitewashing, identity fusion and intrinsic motiva-

tion.



Contents

Abstract iii
Contents v
List of Figures xi
List of Tables XXV
List of Algorithms XXvii
Dedication XXix
Acknowledgements XXXi
1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . e 1

1.2 Contributions and Thesis Structure . . . . . . ... ... ... ... ... 3

1.3 Listof Publications . . . . . . . . . . . . .. 4



vi

2 Background

2.1 Introduction . . . . . . . . . ...
22 Groups. . . . v o e e e e e
2.3 Individual and Group Identities . . . . . . . .. .. ... ... ......
24 Cooperation . . . . . . . vt e e e e e e
2.5 Indirect Reciprocity . . . . . . . . . . ...
2.5.1 Reputation Systems . . . . . . . . .. ...
2.5.2 Action and AssessmentRules . . . ... ... ...
2.6 Evolutionary Processes . . . . . . . . . . ... ... ...
2.6.1 Group Selection . . ... ... .. ... o

2.6.2 Individual and Group Identity Within Indirect Reciprocity

2.6.3 Cooperation Within Groups . . . . . . .. .. ... ... ....
264 Traits . . . ..o
2.7 Summary of the Chapter . . . . ... ... ... ... ... ...,

3 Extending Indirect Reciprocity Models to Share Reputation

3.1 Introduction . . . . . . . . . ...
3.2 Agent-BasedModels . . . .. ... ... ... .. .
3.3 Existing Models of Indirect Reciprocity . . . . .. ... .. ... ....

3.3.1 Game Theory and Cooperation . . . . . . ... ... .......

10

11

13

14

16

17

19

20

22

25



vii

3.4 Indirect Reciprocity Model Based on Social Comparison . . . . . . . .. 33
3.4.1 Trait Representation of Identity . . . . . ... ... ....... 34
342 AgentAttributes . . . .. ... 37
343 Agent’sActionRules . . . .. ... ... oL 38
3.5 Performingthe Game . . . .. .. ... ... ... ... ... .. ..., 39
3.5.1 PlayerSelection . .. .. ... .. .. .............. 40
3.5.2 Updating Reputation and Assessment . . . . . . ... ...... 41
353 Reproduction . . . ... ... ... 42
3.6 Experimental Assumptions . . . . . . .. ... e 44
377 Conclusions . . . . . . ... e e 46
Sharing Identity Through Traits and Reputation 49
4.1 Introduction . . . . . . . . ... L 49
4.2 Characterising the Sharing of Identity . . . . . ... ... ... ..... 50
4.3 Stereotyping . . . . . . .. i e e e e e e e 53
4.4 Agents Sharing a Single Trait . . . . . . ... ... ... ......... 54
4.4.1 Multiple Sharing Groups . . . . . . . . . .. ... 58
4.5 Agents With Multiple Shared Traits . . . . ... ... ... ....... 64
4.5.1 Multiple Agents With Multiple Traits . . . . ... ... ... .. 68
4.6 DISCUSSION . . . . . . .o e e e e e 70



viil

477 Conclusions . . . . . . . ... 71
Evolution of Identity through Traits and the Impact on Cooperation 73
5.1 Introduction . . . . . . . . . ... 73
5.2 TheEvolutionof Identity . . . . . . .. ... ... ... .. ....... 74
5.3 The Evolution of Traits . . . . . . .. ... ... ... ... ... .... 77
5.3.1 Limiting Interactions to Within Traits . . . . . . ... ... ... 78
5.3.2 Allowing Agents to Interact With Out of Trait Agents . . . . . . . 82
5.3.3 Sensitivity of Mutation . . . . . .. ... oL 84
5.4 Evolving Identity Rather Than ActionRules . . . . . . . ... ... ... 85
5.5 DISCUSSION . . . v v v e e e e 88
5.5.1 Links to Evolutionary Set Theory . . . . ... ... ... .... 90
5.6 Conclusions . . . . . ... Lo 93
Blended Identity and its Impact on Cooperation 95
6.1 Introduction . . . . . . . . ... .. 95
6.2 Blended Identities in Psychology . . . . . . ... ... ... ....... 96
6.3 Extending the Trait Based Model for Blending Identity . . . . ... ... 98
6.3.1 Updating Reputation for Blending Identities . . . . . . .. .. .. 99
6.3.2  Algorithm for Evolution With Blended Identity . . . . . . . . .. 101

6.4 Exogenous Blended Agents . . . . . ... .. ... ... ... ...... 104



iX

6.4.1 Cooperation From Agents With Blended Identities . . . . . . .. 105

6.4.2 Controlling the Probability of Blended Agents Interacting With

Other Blended Agents . . . . . . .. ... ... ......... 108

6.4.3 Influencing Reproduction for Blended Agents . . . . . . ... .. 109

6.5 Allowing Agents to Evolve Their Blended Identity . . .. ... ... .. 112
6.6 DISCUSSION . . . . . . . .. e e 120
6.7 Conclusions . . . . . . ... 121
Modelling Intrinsic Incentives - Fusion Motivation 123
7.1 Introduction . . . . . . . ... 123
7.2 Identity-Driven Motivation in Psychology . . . . . ... ... ... ... 125
7.3 Implementing Fusion Motivation . . . . . . . ... .. ... .. ..... 126
7.3.1 Fusion Motivation Scenarios . . . . . . . . . . .. .. ... ... 127

7.4 Evolving All Agents With Fusion Motivation . . .. ... ... .. ... 128
7.5 Using the Blending Level to Determine an Agent’s Motivation . . . . . . 133
7.6 Evolving Motivations in a Heterogeneous Population . . . . . . . . . .. 140
7T DISCUSSION . . . . v v v vt e e e e e e e e e e e 148
7.8 Conclusions . . . . . . . ... 149
Conclusions & Future Work 151

8.1 Introduction . . . . . . . . . . . .. 151



8.2 Limitations and Future Work . . . . . . . . . . ... ... ... ... .. 154

Bibliography 155



X1

List of Figures

3.1

3.2

3.3

A simple visualisation of 15 agents showing alternative agent-trait rela-
tionships showing both single-trait and multi-trait agents. The figures
show the relationship between agents and their reputation through traits.
The purple colour indicates that the agent does not share a trait, while
green indicates that an agent shares their traits with one or more agents.
All agents derive their reputations from the traits that they are associated
with using the formula in Subsection 3.4.1. For example, agents 1 and 15

do not share any traits and have the same reputation in both figures.

Different ways that agents may share traits. Agent B fully shares their
identity by sharing trait 2 with agent A. While Agent C is an independent
agent as they do not share any trait with other agents. Agent A shares

some element of their identity with AgentB. . . . . . . . ... ... ...

Two instances of the donation game based on Figure 3.1. In the first
instance, agent 3 compares its reputation with the reputation of agent 4,
then makes a decision to defect, as agent 3 has a higher reputation than
agent 4, based on its action rule as outlined in Section 3.4.3. In the second
instance, agent 4 has a higher reputation than agent 3. Agent 3 makes a

decision to donate based on its actionrule. . . . . . . . . ... ... ...

36



Xii

4.1

4.2

4.3

4.4

4.5

4.6

A simple visualisation of 15 agents showing the different ways that we can
structure the sharing of traits among agents. Agent 1 is an independent
single-trait agent. Agents 2 and 5 are single-trait dependent agents that
have one trait which they share. Agent 3, which has multiple traits, shares
two traits with agent 4 and and a single trait with agent 6, making agent 3

dependent. The remaining agents are independent. . . . . . . . ... ...

A simple visualisation of 15 agents showing single-trait agents sharing a
single trait. In this example, five dependent agents share a single trait, i.e.
|G¢| = 5 and t = 1. The green cells refer to dependent agents, and red

cells refer to independent agents. . . . . . . . . .. ... ... ......

The average cooperation recorded as a result of agents sharing a single
trait with different sizes of (G; and with different implementation of pa-

rameter S. . . . .. e e e e e e

An example of the distribution of action rules by subsequent but not con-
secutive generations for the set of single-trait dependent agents (G; with
|G1| = 10 and parameter S = 0 shows dominance by discriminators

(1,1, 0) after the first 1000 generations. . . . . .. ... ... ......

A snapshot of the distribution of action rules in subsequent but not con-
secutive generations for the sets of single-trait dependent agents (G; with
|G1| = 10 and parameter S = 0.5 shows that discriminators (1, 1, 0) dom-

inate the population but only after 6000 generations. . . . . . . . ... ..

A snapshot of the distribution of action rules in specific subsequent but
not consecutive generations for the sets of single-trait dependent agents
G1 with |G| = 10 and parameter S = 1.0 shows that defectors quickly
dominate the population within the first 10 generations only as they are

able to exploit sharing a reputation with other agents. . . . . . . . .. ..

58



Xiii

4.7 A simple visualisation of 15 single-trait agents in which traits are shared
by groups of two. In this example, ten dependent single-trait agents,
|N'| = 10, are divided into groups of two |G| = 2, where t € {1,2,3,4,5}.
The green cells refer to dependent agents, and red cells refer to indepen-

dentagents. . . . . . . . . .. e e 60

4.8 A simple visualisation of 15 single-trait agents in which traits are shared
by groups of five. In this example, ten dependent single-trait agents,
|N’| = 10, are divided into groups of five |G| = 5, where t € {1,2}.
The green cells refer to dependent agents, and red cells refer to indepen-

dentagents. . . . . . . . . ... 60

4.9 The average cooperation recorded as a result of 10 single-trait agents shar-
ing a trait in different sharing groups using different values for parameter
S. Cooperation decreases as parameter S gets closer to 1. The decrease
in cooperation is reduced as the number of agents sharing the same trait

decreases. . . . . . ... e e e 61

4.10 The average cooperation recorded as a result of 15 single-trait agents shar-
ing a trait in different sharing groups using different values for parameter
S. Cooperation decreases as parameter S gets closer to 1. The decrease
in cooperation is reduced as the number of agents sharing the same trait

deCreases. . . . . . .. . e, 61

4.11 The average cooperation recorded as a result of 20 single-trait agents shar-
ing a trait in different sharing groups using different values for parameter
S. Cooperation decreases as parameter S gets closer to 1. The decrease
in cooperation is reduced as the number of agents sharing the same trait

decreases. . . . . .. .. 62



X1V

4.12

4.13

4.14

4.15

4.16

4.17

4.18

The average cooperation recorded as a result of 30 single-trait agents shar-
ing a trait in different sharing groups using different values for parameter
S. Cooperation decreases as parameter S gets closer to 1. The decrease
in cooperation is reduced as the number of agents sharing the same trait
decreases. Note that both the groups of 5 and the single group report un-
der 1% cooperation, additionally when parameter S > 0.3, groups of 2

also record cooperation below 1%. . . . . ... ... ... ... ... ..

A simple visualisation of 15 agents, in which a multi-trait dependent agent
shares traits with single-trait agents where |N|" = 6. The green cells refer

to dependent agents, and the red cells refer to independent agents.

The average cooperation recorded as a result of a multi-trait agent, agent
1, sharing traits with single-trait agents using three different values for pa-
rameter S. The number of traits being shared by agent 1 is varied between

2and 100 traits. . . . . . . . .

A snapshot of the distribution of action rules in subsequent but not con-
secutive generations when multi-trait agent 1 has 40 traits shared with

single-trait agents and parameter S =0.5. . . . . .. ... ... ... ..

A snapshot of the distribution of action rules in subsequent but not con-
secutive generations when multi-trait agent 1 has 70 traits shared with

single-trait agents and parameter S =0.5. . . . . ... ... .. ... ..

A simple visualisation of 15 agents, in which two multi-trait dependent
agent share traits with single-trait agents. The green cells refer to depen-

dent agents, and the red cells refer to independent agents. . . . . . . . ..

The average cooperation produced as a function of the size of the inter-
section between the sets belonging to multi-trait agents one and two for

different values of |77 where S =0. . . . . .. ... .. ... .. ....

62

66



XV

5.1

5.2

53

54

55

The average cooperation recorded as a result of the evolution of traits
and a trait mutation of ur = 10% with different values of parameter S.
The result represents an average of five different seeded runs of the same

experiment where all agents 7 are single-trait agents. . . . . . . . ... ..

An example of the distribution of traits by subsequent but not consec-
utive generations as agents evolve their traits where parameter S = 1.
In the first generation, all agents ¢ are assigned as independent single-trait
agents, and at the completion of each generation, agents evolve their traits
and action rules and apply a mutation of 10%. Each colour represents a
single trait with a minimum of eight agents. The yellow bar in each gen-
eration designates traits with a smaller number of agents, indicating that

agents consolidate around a small number of traits per generation.

A snapshot of the distribution of action rules in subsequent but not con-
secutive generations, where S = 1 and agents evolve their traits, shows
that cooperators (s; = 1) are a more dominant strategy than defectors.
However, defectors (s; = 0) continue to infiltrate the population and can

topple cooperators in some generations. . . . . . . . . . ... ... ..

A snapshot of the distribution of action rules within the most shared traits,
at fixed generations (10 to 100, 000), when agents evolve their traits and
parameter S = 1. Traits with a higher number of agents tend to favour

being cooperators (s; = 1) rather than being defectors (s; = 0). . . . . . .

The cooperation recorded as a result of a single run where agents evolve
their action rules and traits with a trait mutation of ur = 10% and pa-
rameter S = 1. The single run shows that cooperation has a fluctuating
trend throughout the 100,000 generations when evolving both identity
and action rules. The fluctuating trend is attributed to the struggle be-

tween cooperators and defectors and this can be seen in Figure 5.3. . . . .

80

81



Xvi

5.6

5.7

5.8

59

5.10

A snapshot of the distribution of action rules in subsequent but not con-
secutive generations when agents evolve their traits and S = 0 shows
the most frequent strategy within the population is the defector strategy
(0,0,0). Early generations were dominated by the discriminator strategy,
(1,1,0). The remaining action rules, see Subsection 3.4.3, also appear in
the population. This explains the lack of cooperation within the popula-

tion that is displayed in Figure 5.7. . . . . . . . ... ... ...

The cooperation recorded as a result of a single run of agents evolving
their action rules and traits with a trait mutation of ur = 10% and pa-
rameter S = 0. The run shows that cooperation fluctuates throughout
the 100,000 generations when S = 0 producing a cooperation with an

average below 10% when evolving both identity and action rules. . . . . .

The application of different rates of mutation on traits as agents evolve
their traits, Section 5.3.3, affects cooperation when S = 1 depending on
the mutation rate applied. However, when S = 0 mutation has a lower

effect. . . . . .

The average cooperation, of five runs, recorded as a result of agents only
evolving their identity (traits) without evolving their action rules with a

trait mutation of 7 = 10% while varying parameter S. . . . . . . . . ..

A snapshot of the distribution of action rules within the most shared traits,
at fixed generations (10 to 100, 000), when agents evolve their traits with-
out evolving their action rules and parameter S = 1. Cooperators repre-
sent agents with action rule s; = 1 and defectors represent agents with
action rule s; = 0, as agents do not evolve their action rules no dominant

strate@y €merges. . . . . . . . ..o h e e e e e e e

83



Xvii

5.11 The cooperation recorded as a result of a single run of agents evolving

6.1

6.2

6.3

their traits with a trait mutation of i = 10% without evolving their action

rules where parameter S = 1 producing an average of 50%, when S = 1. .

A simple visualisation of 10 agents where all agents ¢+ have an identity
composed of a personal trait and a shared trait. Each agent ¢ has a personal
trait ¢; and a shared trait g as can be seen in the diagram. However, each
agent 7 has a different blending level, w;, which determines how their
blended identity is composed of the two traits. For example, agent 1 has
trait 2 as a personal trait and shares trait 1 with all other agents 7. Agent
1 also has w; = 60% while agent 2 has wo = 100%, therefore agent 2
is blended to the group at a higher level than agent 1. Note that w; is

bounded between 0% and 100% where 1 == 100%. . . . . . . .. .. ..

The average cooperation recorded over generations when agents have a
blended identity with different starting configurations. The results indi-
cate that cooperation can be achieved at high levels when agents have
blended levels lower than 80%. Once agents become more devoted to
their group, cooperation declines as agents become more reliable on their
shared reputation allowing defectors to exploit it. Similarly, an increase
in the number of agents sharing a trait causes cooperation to decline as the
large number of agents allows defectors to take advantage of the group’s

FEPULAtION. . . . . . . o e e e e e e e e e

An example of the distribution of action rules by subsequent, but not con-
secutive, generations for the set of 50 agents having a blending level of
w; = 80% shows that defectors, (0,0, 0), quickly dominate the popula-
tion within the first 20 generations, resulting in an average cooperation of

10.6%. This is a result of defectors exploiting the shared reputation.

88

. 107



Xviil

6.4 The average cooperation recorded over generations recorded as a result of
parameter S = w; with different starting configurations. In this scenario,
S is based on the current blending level of the blended agents. Parameter

S causes a decrease in cooperation overall when compared to Section 6.4.1.109

6.5 The average cooperation recorded over generations as a result of agents
reproducing based on their blending levels while varying both the start-
ing configuration and the number of agents with a blended identity as
described in Section 6.4. The results indicate that cooperation decreases
as a result of restricting blended agents interactions and inheritance. Note

that in this figure parameter S = P = w;. . . . . . . . . . .. ... ... 111

6.6 An example of the distribution of action rules by subsequent, but not con-
secutive, generations for the set of 20 agents having a blending level of
w; = 80% shows that defectors (0, 0, 0) quickly dominate the population
within a few generations, causing cooperation to collapse. The result is
an effect of S = 0.8 and the probability of blending agents copying from
other blending agents being P = 80% as well. This leads to defectors

quickly exploiting the shared reputation. . . . . . . .. ... ... .... 111

6.7 The average cooperation recorded over generations as agents evolve their
blending levels. Cooperation is impacted by agents evolving their blend-
ing levels while enforcing parameter S, particularly when parameter S' is
low, such as when S = 0 and 0.2. Note that the initial number of blended

agents is randomly assigned a blending level w;. . . . . . . .. ... ... 116



Xix

6.8

6.9

6.10

6.11

6.12

An example of the distribution of action rules by subsequent, but not con-
secutive, generations where agents are allowed to evolve their blending
levels and S = 0. The scenario starts with 10 blended agents and 90 inde-
pendent agents and shows a struggle between discriminators (1, 1,0) and
defectors (0, 0, 0) resulting in 20.8% cooperation as can be seen in Figure

6.7, e

A snapshot of the distribution of blending levels by subsequent, but not
consecutive, generations where agents are allowed to evolve their blend-
ing levels and S = 0. The scenario starts with 10 blended agents and 90
independent agents and shows a cycling behaviour between low and high

blending levels. . . . . . . . . .. . ... ...

The average blending levels recorded over generations as agents evolve
their blending levels. Blending levels are impacted by parameter S as

lower levels of S allow for higher levels of blending. . . . . . ... ...

The correlation of blending levels and cooperation when agents evolve
their blending levels as described in Section 6.5. The correlation rep-
resents the cooperation recorded in Figure 6.7 with the blending levels
recorded in Figure 6.10. Each point represents a pair of (blending level,

cooperation) from the two Figures. . . . . . . .. ... ... .. .....

A snapshot of the distribution of action rules by subsequent, but not con-
secutive, generations where agents are allowed to evolve their blending
levels and S = 1. The scenario starts with 10 blended agents and 90
independent agents and shows a a dominance for discriminators (1, 1, 0)

resulting in 91.4% cooperation when S = 1 as can be seen in Figure 6.7. .

117

119



XX

6.13 A snapshot of the distribution of blending levels by subsequent, but not

7.1

7.2

7.3

7.4

consecutive, generations where agents are allowed to evolve their blend-
ing levels and S = 1. The scenario starts with 10 blended agents and 90

independent agents and shows that agents evolve towards w; = 0.

Average cooperation is sustained in the range of 48% — 51% when agents
use fusion motivation, and blending levels evolve and mutate. The effect
of fusion motivation on the population renders Parameter S ineffective
because all agents evolve their blending levels and become devoted to the
group, leaving no agent outside the group. This trend occurs regardless
of the starting number of blending agents, even with different implemen-

tations of S. . . . . . .. e

Average blending levels are above 98% as a result of all agents having
fusion motivation while their blending levels evolve and mutate. Parame-
ter S does not affect blending levels in this case, regardless of the initial
number of blended agents. High blending levels are an expected result of

agents having a fusion motivation. . . . . . .. ... ... ... L.

A snapshot of the distribution of the action rules produced, in subsequent
but not consecutive generations, due to fusion motivation shows that fu-
sion motivation does not allow a dominant action rule to emerge. This
pattern results from agents seeking to gain high blending levels to show
their devotion to their trait without regard for payoff or self-gain. In this

figure the initial configuration was 50 blending agents with S = 0.5. . . .

A snapshot of the distribution of the blending levels produced as a re-
sult of all agents having fusion motivation shows that agents adopt high
blending levels within a couple of generations regardless of the starting
configuration. In this figures, 90 agents were assigned as independent, i.e

szO ...................................

. 119

132



XX

1.5

7.6

7.7

7.8

The average cooperation produced over generations when blending levels
determine an agent’s motivation. Parameter S imposes that when S = 1,
blended agents cannot receive donations from independents agents, and
when S = 0, blended agents can only receive donations from independent
agents. Overall the cooperation recorded is low as agents evolve their
action rules and blending levels with the exception of 10 and 20 when

S 2>00. 0 e

The average blending levels produced as a result of agents using their
blending levels to determine their motivation and applying parameter S.
Overall the average blending level recorded is high (> 78%) as agents
evolve their action rules and blending levels except for 10 and 20 when

S 2>00. 0 e

The correlation of blending levels and cooperation when agents use their
blending levels to determine their motivation as described in Section 7.5.

Each point represents a pair of (blending level, cooperation) from Figures

TS5and 7.6. . . . ..,

After a million generations, we note that average cooperation records a
lower average than that of 100,000 generations when the initial number
of blended agents is low (0, 10,20) and S > 0.5. This is attributed to the
higher blending average recorded as seen in Figure 7.9. The table shows
the average cooperation recorded over generations when agents use their
blending levels to determine their motivation. Parameter S imposes that
when S = 1 blended agents cannot receive donations from independents
agents, and when S' = 0 blended agents can only receive donations from

independentagents. . . . . . . . . ... ..o

137

137



XXii

7.9

7.10

7.11

7.12

7.13

After a million generations, we note that blending levels record a higher

average than that of 100, 000 generations when the initial number of blended

agents is low (0, 10, 20) and s > 0.5. This is attributed to mutation intro-
ducing higher blending levels to the population. The table shows the av-
erage blending levels when agents use their blending levels to determine
their motivation. Parameter S imposes that when S = 1 blended agents
cannot receive donations from independents agents, and when S = 0

blended agents can only receive donations from independent agents.

The distribution of action rules, in subsequent but not consecutive gener-
ations, produced as a result of agents using their blending levels to deter-
mine their motivation where all agents initially have a blending level of

w; = 0 (i.e. independent) and use economic motivation with .S = 0.6.

The distribution of blending levels, in subsequent but not consecutive gen-
erations, produced as a result of agents using their blending levels to de-

termine their motivation where all agents initially have a blending level

139

139

of w; = 0 (i.e. independent) and use an economic motivation with S = 0.6. 140

A simple visualisation of 10 agents, where agents may share a trait while
maintaining different motivations, where blue represents agents with blend-
ing levels w; > 0 and fusion motivation. Red represents independent

agents w; = 0, with economic motivation. . . . . . ... ... .. ....

Low cooperation recorded as a result of agents evolving their motivation
along with their blending level and action rules while enforcing parameter
S. Cooperation is impacted heavily as agents evolve their motivations. A

mutation of 1% is applied on motivation, blending levels and action rules.

145



xxiii

7.14

7.15

7.16

7.17

High blending levels are recorded as a result of agents evolving their mo-
tivation along with their blending level and action rules while enforcing
parameter S. Cooperation is impacted heavily as agents evolve their mo-
tivations. A mutation of 1% is applied on motivation, blending levels and

actionrules. . . . . . ..

The distribution of the motivations produced, over subsequent but not
consecutive generations, as a result of agents evolving their motivations
where we initially assigned 90 agents economic motivation shows that no

dominant motivation probability can dominate the population. . . . . . .

The distribution of the blending levels produced, over subsequent but not
consecutive generations, where we initially assigned ninety agents as in-
dependent (w; = 0) while allowing agents to evolve their motivations.
Agents quickly evolve towards higher blending levels within a few gen-
erations. The figure shows the blending levels of agents of the same run

and scenario as Figure 7.15. . . . . . . . ... .. oL

The distribution of action rules over subsequent but not consecutive gen-
erations as agents evolve their motivations shows that the defector action
rule (s;,u;,d; = (0,0,0)) dominates the population at the early gener-
ations. This trend of dominance is interrupted through mutation in later
generations by introducing other action rules. The figure shows the action

rules of agents of the same run and scenario as Figure 7.15. . . . . . . ..



XXiv




XXV

List of Tables

3.1 Summarises the Key Papers That Have Contributed Towards the Indirect

Reciprocity Model. . . . . . . .. . . ... .. .. ... 32
3.2 Summarises the Key Parameters Used Throughout the Thesis. . . . . . . 39
3.3 An Experiment Scenario Table That Summarises Parameter Values Used

inChapters4to 7. . . . . . . . .. 46

4.1 The Sharing Parameters Used in Chapters4to7. . . . .. ... .. ... 52

5.1 Comparison of Cooperation Models Based On: Indirect Reciprocity With-
out the Sharing of Reputation, Evolutionary Set Theory, and Indirect

Reciprocity Based on Traits. . . . . . . . ... ... ... ........ 92



XXVi




XX Vil

List of Algorithms

1 Algorithm for the Basic Model of Indirect Reciprocity Based on the Rep-

utationof Traits . . . . . . . . . . .. e 48

2 Algorithm for Indirect Reciprocity Based on the Reputation of Traits

Where Agent Traits Evolve Using Payoff, as Fitness, and Mutation . . . . 76

3 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and
Blended Identities . . . . . . .. .. ... L 103
4 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and

Evolving Blended Identities . . . . . .. .. ... ... ... ...... 114

5 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and
Fusion Motivation . . . . . . .. . ... ... L o 131
6  Algorithm for Indirect Reciprocity Based on the Reputation of Traits
Where Blending Levels Determine Motivation . . . . . . . .. ... ... 136
7 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and

Evolving Motivations . . . . . . . . . .. ... e 144



XXViil




XXiX

Dedication

To my parents, for their support and patience.



XXX




XXX1

Acknowledgements

Alhamdulillah. Abu Huraira reported: The Prophet, peace and blessings be upon him,
said, “Whoever does not thank people has not thanked God.” On this page, I would like

to acknowledge and thank everyone who has helped me along my PhD journey.

I want to express my sincere gratitude and thanks to my supervisor, Professor Roger
Whitaker, for going out of his way to support me. I would also like to thank my second
supervisor, Professor Stuart Allen, for his encouragement and support from the beginning
of my PhD. I am specially grateful to Dr Walter Colombo, who has also gone out of
his way to support me from day one until the day I submitted. I do not believe I have
enough words to express my appreciation for all the support that I have received from my

supervisors throughout my PhD.

I would also like to thank my parents, Amjed and Ebtisam, who have provided ev-
erything for me to complete my PhD journey. There aren’t enough words that I can say
that would express my thanks and gratitude to you. I would also like to thank my siblings
Shaima, Sarah and Hussein and my nieces Nora, Salma and Lamees. Special thanks to

my wider family, who have always checked in on me and encouraged me.

I would like to express my gratitude and thanks to my Cardiff-Bristol-France family
and friends that I made here, who were always encouraging and welcoming. Thank you
for forcing me to take breaks and for all the adventures that we have shared throughout
these years. 1 would also like to thank all my other friends who have supported me,

checked in on me from time to time, invited me to their weddings and shared part of their



XXXi1

life journey with me. Thank you for all the texts, postcards and letters of encouragement.
Thank you for all the invisible soldiers I may have missed here but have been a part of my

PhD journey.

Finally, I like to express my appreciation to my colleagues at King Abdulaziz Uni-
versity, who have supported me throughout this journey and helped me achieve this mile-
stone. With special thanks to the Supercomputing Wales project for supporting my re-

search.

To everyone: Thank you for being patient. Thank you for your support. Thank you
for your guidance. Thank you for showing me the way. Thank you for encouraging me.
Thank you for pushing me. Thank you for not letting me give up. Thank you for believing

in me.



Chapter 1

Introduction

1.1 Introduction

This thesis focuses on the problem of cooperation, specifically the act of supporting a
third party while incurring a cost to oneself. Cooperation is a universal phenomenon
that has widespread relevance to decentralised systems, not least the human population.
When cooperation flourishes, a community-wide benefit accrues, where all participants
gain an “insurance” provided by the possibility of aid from others. This is a form of
collective intelligence, where individuals come together to act for a social good that is
shared across the population. However cooperation also leaves participants potentially
exposed to risk and exploitation, where a third party can gain advantage by taking help
while not donating anything to others. For this reason, understanding how cooperation
is incentivised and sustained is of widespread interest. It has received attention from
multiple disciplines including theoretical biology, mathematics (game theory), computer

science, and morality.

In the literature, researchers have identified two types of reciprocity. The term “direct
reciprocity” refers to an exchange that takes place between two individuals. Indirect reci-
procity, which involves a third person, is more complicated (see Section 2.5). We focus
on the problem of downstream indirect reciprocity, where individuals may incur a small
cost in order to provide a benefit that is of greater value to the recipient, and this occurs

without the guarantee of future reciprocation from a recipient. This form of cooperation




is frequently seen in the human population, being influenced by potentially diverse and
complex mechanisms that have received considerable attention in the literature. Most
notably, the importance of reputation has been established, acting as a currency and sig-
nalling system through which future donations can be secured based on past behaviour.
Three-way junctions, where the right of way may not be clear, are an example scenario
that helps illustrate how downstream indirect reciprocity works. If a driver allows an-
other to turn, they are providing a benefit at a cost to themself, and an indirect reciprocal

behaviour may be provided through an observer driver who may later reward this cost.

Through multi-agent simulation, this thesis concerns generalising how individuals ex-
press themselves proposing models explored through identity. In studies of downstream
indirect reciprocity, it is a widespread convention that agents identify with a single repu-
tation that is not shared with any other entity. In this work we generalise this issue and
develop a flexible framework. Using inspiration from the psychological literature, we in-
troduce a new model to represent an agent’s identity (i.e., presentation to others). This
involves the use of traits: a trait represents a feature that an agent identifies with. Each
agent may align with multiple traits, and a trait may be shared by multiple agents. This
provides a flexible representation through which agents can share their components of
identity, in particular allowing group affiliation to be modelled. We assume that traits
each hold a reputation, which represents a quality measure aligned to that trait. The repu-
tation of an agent is then taken as a function of the reputation of traits that the individual
agent possesses. As a consequence, the actions of an agent can affect the reputation of

other agents that have a subset of traits in common.

Through this framework, we develop and investigate how cooperation is affected by
agent identity, in particular the sharing of common traits. The approach also allows us
to explore some psychologically inspired issues aligned with identity, particularly the
effects of stereotyping, fused group identities and identity-driven behaviours of agents. In

particular, the main contributions of this thesis are:

* a new generalised framework for agent identity that is based on combining traits



that can be shared with others, such as group membership;

* through a breadth of simulation we identify the extent to which agents can have an
element of common identity before cooperation becomes impeded, and relate this

to the psychological concept of stereotyping;

* establishing the relationship between reputation-based cooperation and cooperation
through the evolution of set membership, where cooperation evolves through the
sets to which individuals belong as oppose to their reputation, which are previously

disconnected explanations for the evolution of cooperation;

* exploring the effects of blending personal and group reputations as seen in identity
fusion theory, and determining the effects of identity driven (as opposed to eco-

nomic) motivations.

1.2 Contributions and Thesis Structure

The remaining Chapters are organised as follows:

* Chapter 2 surveys the work related to (i) identity with a focus on social identity
theory and identity fusion; (ii) cooperation with a focus on indirect reciprocity and
reputation; (iii) identity within cooperation. The chapter concludes with a collection
of research questions that are proposed from the gaps and limitations that have been

exposed in the chapter.

» Chapter 3 proposes a flexible approach to identity based on existing models of co-
operation (indirect reciprocity). The extension focuses on shared identities through
sharing of reputations. The chapter explores the current model’s limitation by
proposing and implementing a generalisation that allows shared identities to be

examined through the use of traits.



* Chapter 4 investigates different structures for sharing reputation through traits and
their degree of impact on cooperation. Additionally, initial analysis on the general-

isation, introduced in chapter 3, is carried out in this chapter.

* Chapter 5 continues the investigations from the previous chapter by allowing agents
to evolve their identity. This shifts the focus from exploring identity sharing mech-
anisms to how agents adopt different identities, showing the impact of that on co-

operation.

* Chapter 6 introduces a model based on the concepts related to identity fusion. It
further builds on previous chapters by introducing further behavioural elements of

fused agents.

* Chapter 7 disrupts previous chapters’ use of the economic convention of valuing
success based on an individual’s resources (payoff) to valuing their social identity.
This represents an intrinsic motivation that humans often exhibit towards their so-

cial groups.

* Chapter 8 reflects on the contributions of the thesis and provides a discussion on

areas of future work.
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and Telecommunication, 4(4), pp.405-424.



Chapter 2

Background

2.1 Introduction

There exists substantial research on the subject of identity in many different fields. Iden-
tity is defined in the Oxford English Dictionary as “who or what something is” [50]. The
universal nature of this definition means that it is relevant to many different research ar-
eas, including philosophy [80, 144, 145], sociology [32, 82, 167], psychology [93, 166],

theoretical biology [24, 111] and computer science [24, 41, 87].

The concept of identity in psychology is particularly relevant to this thesis because
work in this field addresses the relationship between individual identity and identity re-
lated to collections or groups of individuals. This is relevant to complex systems and
computer science because sharing of identity has high relevance to the increasingly dig-
ital world and fraudulent behaviour where identity is misleading others. For example,
in complex systems, the use of shared group identity can give cover for shirkers or free-
riders who exploit reputations shared with others [143], and gives an opportunity for

white-washing, where agents change their identity, to take place [62].

In this chapter, we introduce groups and explain why they are important and how
they can naturally form (Section 2.2). In human systems, groups can give a basis for
an individual’s identity. In Section 2.3, we consider social identity from a psychological
perspective, particularly explaining different theories as to how identity is sustained and

derived when individual agents are involved in groups. This has important relevance to




cooperation scenarios because when agents interact they may do so while recognising the
groups to which they belong. In Section 2.4, we introduce the concept of cooperation
and the long-standing literature that supports this area. Cooperation is fundamental for
distributed systems because it focuses on mechanisms and incentives that enable poten-
tionally selfish entities to work together. Based on incentivising survival, much of this
literature has origins in theoretical biology, while the formulation of cooperative dilem-

mas can be captured through economics and simple game theory.

We explain why cooperation is a fundamental concept and pay particular attention to
indirect reciprocity (Section 2.5). This generalised form of cooperation is a characteristic
of human cooperation and represents helping others to provide a wider community benefit.
However, indirect reciprocity quickly becomes complex because it introduces the scenario
of donating precious resources to others without certainty of a future pay-back. Therefore
who an agent is plays an important role in decision making. This concept requires a
reputation system (Section 2.5.1) to give a basis to differentiate between agents when
making donations and many insights exist in this area. At this point the concept of identity
is important, because who an entity is and how their reputation is shared, not just their
status in terms of a reputation, may influence their donation behaviour. We explain this in

the context of existing literature.

In conclusion, we make the observation that there is surprisingly limited previous
work explicitly addressing identity in this context, despite identity and reputation being

strongly intertwined.

2.2 Groups

Groups are a fundamental part of many human and biological systems as they play an
important role in promoting survival prospects for individuals. From helping one another,
members of a group can access benefits that are much bigger than the costs of contribut-

ing to that system, leading to mechanisms that allow individuals to work together and



cooperate so that a large shared benefit accrues (see Section 2.4).

Consistent with this, there are numerous ways in which group formation can take
place in human and biological systems. Groups naturally form around genetically related
individuals (e.g., families) but they are often formed around traits that unrelated individu-
als have in common. This represents homophily [120], where the thing in common makes
it easier for a bond to be established and a relationship to be sustained due to mutual re-
spect. There are many examples in the literature of groups of unrelated individuals being
formed on this basis [120], and these include both mutable and immutable traits. Exam-
ples of studies include friendships formed around personality traits which have been noted
in humans and animals alike [42, 117], and friendships formed around a similar genotype

[21, 70, 72].

The important point from this thesis’s perspective is that individuals derive some of
their identity from being in a group. This has been a long-standing area of study in terms
of human behaviour (see Section 2.3) and it can be seen in terms of everyday reputations,
where for example an alumnus’s reputation is associated to their alma mater’s. This oc-
curs because humans are adept at making cognitive short cuts in judgement and decision
making through heuristics [77, 78], which is efficient but can often lead to misjudgement
in the form of stereotyping [22, 35, 100] (See Chapter 4). Conversely, the sharing of iden-
tity provides opportunities for shirkers to fraudulently exploit the reputation of a group
without making contributions. In the following section, we outline the main theories be-

hind an individual’s identity, and how an individual may derive this from a group.

2.3 Individual and Group Identities

Identity is one of the cornerstones of social psychology. However, only in the last fifty
years has the theory been developed in a substantive way. Initially, in psychology, iden-
tity focused on one’s self, being a qualitative concept representing a person’s thoughts

and feelings about themselves (self-image) [114]. However, in the 1970s, Henri Tajfel



and John Turner explored how individuals may align with a group’s identity resulting in
acceptance of extreme behaviour towards the out-group. Tajfel’s interest was attributed
to his passion for understanding the tragedies that occurred during the second world war
alongside his interests in categorisation and social perception [178]. Specifically, Tajfel
was interested in understanding why prejudice exists, as well as discrimination and stereo-
typing. Tajfel and Turner’s work resulted in Social Identity Theory (SIT) [92, 182], which

was the first explanation concerning inter-group conflict and the role that a person’s iden-

tity plays.

The theory defined social identity as “that part of an individual’s self-concept which
derives from his knowledge of his membership of a social group (or groups) together with
the value and emotional significance attached to that membership” [180]. Perceiving an
individual’s social identity is a process of three steps, namely these steps are categorisa-

tion, social identification, and social comparison.

The first step known as social categorisation is a cognitive process which divides
individuals based on social groups [165]. Individuals identify the social groups around
them and categorise themselves and others as ‘us’ meaning they would belong to the
same group as the individual (in-group) or ‘them’ meaning they belong to an outside

group (out-group) [179].

Categorisation enables individuals to understand behaviours that are associated with a
group, such as social norms. Social norms are unwritten rules that define how individuals
behave within a social environment [20]. This leads to the second step, social identifica-
tion, where individuals adopt the social norms associated with the group. One reason for
individuals to conform to the social norms of the group is their need to be identified as a

group member [104].

The final step of perceiving identity is social comparison, this is the step where indi-
viduals begin to compare their group’s situation with other groups [182]. Social compari-

son leads to inter-group relations, these relations can result in conflicts, such as prejudice



and discrimination, or cooperation among groups and between group members [91].

Perceiving social identity often leads to an assumption about the characteristics and
behaviours of an individual and attributing those characteristics to the group they are per-
ceived to belong to, this assumption is known as stereotyping. Stereotyping is a cognitive
process where third party individuals are categorised together through a perception of
common characteristics [74]. This is well known to be a divisive phenomenon in the

human world [52, 183, 193].

In combination, the previous steps together form the essence of social identity the-
ory as stated above. The theory defined a person’s social identity through their group
memberships. It facilitates understanding of different behaviours, such as cooperation
and competition, between group members and intergroup relations. Social identity theory
shows that individuals favour cooperating with others in a group because of how they

identify themselves as part of the group [154].

One criticism of SIT has been that the model does not explain the strong personal
agency that group members often exhibit on behalf of the group [94, 177]. To comprehend
how this may occur, researchers have proposed a theory known as identity fusion [176,
177]. Unlike social identity theory, individuals are assumed to retain a strong sense of
personal identity, however this becomes strongly intersected with that of the group, or

fused.

An individual is fused with a group when they have a feeling of oneness with the
group’s identity and its reason for existence. Degrees of fusion towards a group can vary
from non-existing to highly fused [88]. Highly fused individuals regard themselves as
an important part of the group, but similarly they regard their group membership as part
of who they are as an individual [175]. This arrangement has been used to help explain
the actions and behaviours behind a so-called devoted actor [8] who is willing to self-
sacrifice for a group’s existence. Additionally, identity fusion explains how individuals

align themselves within multiple groups with various degrees of fusion [200].
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While both SIT and identity fusion have strong qualitative elements such as the role
of emotion on individuals, there are also elements that can inform the presentation and
modelling of group identity for cooperation systems. In particular, identity fusion indi-
cates that the composition of identity in agent-based models needs to be flexible so that it
allows for identity to be shared with others on a partial basis. That is, the model needs to
allow for an individual to retain a degree of personal reputation as well as having an ele-
ment of group reputation. These theories have helped to inform our modelling in Chapter

6.

2.4 Cooperation

Cooperation is defined in the Oxford English Dictionary as “working together towards
the same end” [49]. Cooperation is fundamental as it defines a basic interaction between
individuals and groups. Traditionally cooperation has been observed between relatives,
human and animals [45, 53, 102, 168], and this is known as kin-selection [84]. Coop-
eration can also be observed in other contexts such as the eradication of smallpox in the
20th century when countries, led by the World Health Organization, worked together to
find and distribute a vaccine [30]. There is an increasing number of works that identify

cooperation as a fundamental component of morality [44].

Cooperation has been studied using lab experiments [158, 206], surveys [164] and
more recently researchers have applied computational simulations [11, 108] to logical
representations of a social dilemma. In all these studies, Game Theory has been central
to providing a logical formation of a cooperative decision: in other words whether an
agent, human or computational, chooses and is incentivised to cooperate or defect [169,
170]. Reciprocity, is a central concept that has been central to developing the current

understanding of cooperation.

Reciprocity is defined as “an exchange of things with others for mutual benefit” [136].

The act of reciprocity is the “return of helpful and harmful acts in kind” [127]. In early
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literature, researchers referred to this form of cooperation as reciprocal altruism. In recip-
rocal situations, an individual in an exchange is helping others while expecting a return
of help in the future. This means that a time lag may exist between the first action and
the action in return [13]. Researchers have identified two forms of reciprocity in the lit-
erature, referred to as direct reciprocity, where the exchange happens between the same
individuals of the interaction, and indirect reciprocity, where a third party is involved (see

Section 2.5).

Direct reciprocity involves repeated interactions between two agents that have the op-
tion to either cooperate with each other or defect [73, 160, 192]. Because of the repeated
nature of these interactions, the parties involved can make choices that are dependent
on previous track-records of the other party. The concept of direct reciprocity can be
summarised with the principle, “I scratch your back and you scratch mine”. Direct reci-
procity has been the subject of many studies through the repeated Prisoner’s Dilemma
game theory framework [141]. Tit-for-tat [13], and win-stay lose-shift [123] are examples
of many strategies that have been proposed by researchers to promote cooperation within
the framework. Studies of direct reciprocity have been used to explain why cooperation

may occur between unrelated individuals or different species.

Direct reciprocity is restricted to the notion that individuals will repeatedly exchange
with each other. However, direct reciprocity does not reflect real-life interactions such as
those represented in so-called “one-shot” scenarios [99], in which individuals only meet
once. Indirect reciprocity is the more general scenario where individuals help those who
have helped others in the past with no restriction placed on the time dimension or the

number of individuals involved in the interactions.

2.5 Indirect Reciprocity

According to Nowak, [127], indirect reciprocity is ‘“the return of a helpful or harmful act

that was directed not at us but at others” [4]. Undertaking indirect reciprocity represents a
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social dilemma for the individual, who has no incentive to incur the cost of helping others
unless they can use it to lever a future benefit for themselves. Despite this, high levels of
indirect reciprocity are seen in human societies, indicating that mechanisms to promote
this cooperation are in play. Understanding why this occurs has been long-standing [119].
Indirect reciprocity assumes that individuals have not met previously and are not expected

to meet in the future.

Indirect reciprocity was first proposed in 1971 by Trivers and was originally named
‘third-party altruism’ and was also known as ‘generalised reciprocity’ [192]. Later in
1987, Alexander coined the now commonly known phase ‘indirect reciprocity’. The
literature states that there two forms of indirect reciprocity, upstream and downstream
reciprocity. Upstream reciprocity, commonly known as “pay it forward”, considers the
generosity urge that the receiver of a donation has and in turn, makes a donation of their
own to a third party [126]. Downstream indirect reciprocity is a mechanism for the evo-
lution of cooperation which is allowed through reputation [28, 67, 121, 128, 131, 196].
Downstream indirect reciprocity utilises reputation systems, (see Subsection 2.5.1), that
independently verify an individual’s standing without the necessity of having previous
interactions.Downstream indirect reciprocity facilitates exploring reputation and its links
with psychology. For the rest of this thesis, we will refer to downstream indirect reci-

procity simply as indirect reciprocity.

Indirect reciprocity can be modelled through the donation game theory framework
[108, 127, 128, 153]. The donation game is a special case of the prisoner’s dilemma,
involving two actors known as the donor and the recipient. In each round of the game, an
individual has to make a decision on whether or not to provide a donation. This results in
a cost c to the donor, and a benefit b to the recipient, and necessarily ¢ < b [128]. Indirect
reciprocity is a challenge to model due to the time lag present between donating and re-
ceiving the donation. Adopting a game theory approach allows for studies to concentrate
on what makes cooperation flourish without having to focus on what rational the agents

have [127]. Additionally, indirect reciprocity can be used as a basis to investigate group



related issues such as prejudice, social norms and politeness [71, 198].

2.5.1 Reputation Systems

Reputation is defined as the beliefs that are “held about someone or something” [137].
Due to the nature of indirect reciprocity situations where individuals may not meet the
same partner twice, the concept of reputation was established to provide a currency
through which an individual can gain recognition for their good behaviour and use this to
help secure future reciprocal benefits [156, 173]. Reputation systems present an essential

solution that rewards good behaviour and deters bad behaviour [59, 121, 196].

Early researchers, such as Alexander in 1987 [4], noted that for cooperation to emerge
in a complex social system that involves indirect reciprocity, a way of judging others based
on their interactions was essential. Reputation was established as a critical mechanism
that supports indirect reciprocity [127]. Individuals may not be aware of their partner’s
behaviour, but they can rely on their partner’s reputation before making a decision. Fur-
thermore, reputation systems prevent defectors from exploiting systems for their own gain

(see Section 2.5.2).

Indirect reciprocity is frequently considered in the context of the donation game,
where an agent has to decide on whether or not to provide a donation. Reputation systems
act to signal an agent’s overall donation behaviour to the population. Because other agents
may use an agent’s reputation in deciding whether or not to donate, there is an incentive
for all potential recipients to maintain reputation at a sufficient level to yield future dona-
tions [59, 121, 196]. Reputation is updated, after every action taken by the donor, through
assessment rules (see Section 2.5.2), this is a common approach as seen in the literature

[28, 155, 199].

Models of indirect reciprocity conventionally assume that each individual is repre-
sented by a unique reputation: in other words, an individual’s behaviour is entirely identi-

fied and judged by their actions. While this has been necessary to understand the dynam-
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ics, in reality, humans are prone to taking short cuts in judging the reputation of others,
using cues such as group membership or common traits as a proxy. Although this is cog-
nitively convenient, this can fuel stereotyping [74] and results in prejudicial behaviour
and discrimination [130], with divisive societal consequences [103]. The sharing of repu-
tation introduces opportunities for freeloaders to exploit the reputation without having to

justify or contribute.

2.5.2 Action and Assessment Rules

In early works that studied indirect reciprocity through the donation game framework,
researchers proposed several strategies concerning how to make a donation decision ef-
fectively promote cooperation [128, 171]. Later studies broke down the idea of a strategy
into two components, one being action rules and the other being assessment rules [28,
132]. Action rules are a set of rules that determine if an agent should donate or defect
based on their partner’s reputations [28, 155, 199]. Assessment rules allow the system or
other observers to judge the decision taken, while considering the reputation of both par-
ties, and update the reputation associated with the agent acting as a potential cooperator

[26, 28, 127].

Four action rules have been widely used throughout the literature; these are always
cooperate, always defect, discriminate towards good reputation holders, and discriminate
towards bad reputation holders [155]. The ’always’ action rules indicated that agents
should always act in one way regardless of their partner’s reputation. In discrimination
rules, action rules prescribe to agents their actions based on their partner’s reputation.
More recently, studies have emerged that base action rules and assessment rules on the
principles of social comparison [198, 199]. In these studies, the cooperator compares
their reputation and their potential recipient’s reputation before making their decision to

donate or not.

Following an action, assessment rules are the criteria in which donors are judged.
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These are the criteria by which a donor’s reputation is adjusted in light of their actions,
and therefore govern the extent of reward over penalty. The update of reputation takes
place after every donation decision made by a donor. Assessment rules are used as a
mechanism that allows cooperation to flourish, in particular, when considering that agents
only have limited knowledge of how others have behaved in the past. In this sense, they
have been considered as a model for morality [4]. Three main methods for assessment of

cooperative action are standing, judging and image scoring.

Sugden [171] first developed standing, which was originally conceived assuming that
agents had binary reputations. This assessment rule effectively classifies each individual
in the population as either good or bad, penalising the good if they donate to the bad.
Standing allows for agents to have a good standing as long as they donate to the population
and only defect to agents who have a lower standing [128]. This assessment rule has been
adopted by several models of indirect reciprocity, as researchers feel that it is close to
what works best in human societies. The standing rule is also simple to implement but
has been considered as stable due to it preventing free-riding agents from gaining an
advantage. The judging assessment rule adopts the same rules as the standing assessment
rules; however, it additionally states that a donor is punished if they donate to an agent

with a lower reputation than their own [101, 131, 140].

Image scoring [128, 196] presented the first significant alternative to the standing
assessment rule, where reputation is simply incremented or decremented in response to
donation or defection, respectively. A limitation of image scoring is that those who choose
not to cooperate with defectors may be unfairly labelled as less cooperative [131, 132,
142]. Another criticism of image-scoring questioned whether agents would cooperate

purely based on another agent’s score rather than focusing on their own benefit [108].

Consequently, with their roots in the work of [171], standing [142] and judging [28]
have emerged as the assessment rules that capture ‘legitimate shirking’, where an agent’s
defection is justified (e.g., on the basis of their recipient’s reputation) [67, 127, 150].

Because of this property, Ohtsuki and Iwasa [132] surveyed all the possible strategies that
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can be represented in a binary reputation and found that only eight strategies are stable
further emphasising standing and judging. However, these discrimination rules have been
studied assuming that reputation has a binary representation [29, 134], although this was
generalised for standing in [199] to allow for standing to apply for the integer range [—5, 5]

(see Section 3.5.2).

2.6 Evolutionary Processes

As agents interact through cooperative games, over time they have the opportunity to up-
date their action rules. Evolutionary processes are one mechanism through which this can
be achieved. Work in this area dates back to the theory of natural selection in 1859 [46], in
which the author held the belief that selection operates at the individual level particularly
in organisms. Natural selection is a process where organisms adapt to their environment
by changing their genotype through selective reproduction [57]. Natural selection is also
known as “survival of the fittest”, which highlights the competitive nature of the changing
process. Cells compete in order to survive the changes in their environment and adapt the
best characteristics to produce well-adapted offspring. In the case of indirect reciprocity,
the most successful agents, based on fitness, are chosen and their action rules are adopted
by other agents. A renewed interest was generated after the publication of Axelrod’s
The evolution of cooperation in 1981 [13], which has attracted many researchers from
different disciplines to study cooperation. Researchers were interested in understanding
why individuals help each other even though natural selection favoured those who are in

competition [69, 146].

Researchers have identified several evolutionary mechanisms through which coopera-
tion can emerge and be sustained (e.g., [124]). These mechanisms structure how individ-
uals of a population interact when they compete for reproduction and to receive benefits.
In the 1960s, Hamilton [84, 85] identified two mechanisms for evolving cooperation. The

first, known as kin selection, promotes cooperation through agents that share a gene [68].



17

The second was known as the green-beard effect, in which agents recognise other coop-

erator agents through tags, or labels that they have [98].

These mechanisms provide ways for cooperation to evolve without individuals having
to remember any past interactions or having to know what other individuals’ behaviour
might be [152]. Additionally, the mechanisms explained why individuals cooperate with
others who are similar to them, by belonging to the same group or sharing a gene or a
label. The mechanisms, however, did not provide an explanation for observed cooperation
between non-related individuals. Instead, reciprocation was seen as a primary approach
to explain cooperation between unrelated individuals, especially in human societies [159]

(see Section 2.4).

These mechanisms, along with implementations of indirect reciprocity, relied on se-
lection through individuals [108, 128]. However, deviation from this assumption has
occurred in the biological literature, specifically concerning the plausibility of group se-

lection such as in [161, 202].

2.6.1 Group Selection

Group Selection is the mechanism that selection occurs not on the individual level but
rather on the group level [161, 202, 205]. V. C. Wynne-Edwards was one of the first
biologists to advocate for group selection [208]. The mechanism proved controversial,
and early biologists argued against it by suggesting that individuals would not ‘sacrifice
for the sake of the group’ [47, 147, 201]. Group selection was later revisited when the

idea of multi-level selection was proposed.

In 1994 David Wilson and Elliot Sober introduced the idea of multi-level selection, in
which they argued that selection occurs on both individual and group levels [203]. Sim-
ilarly, in 2006, Traulsen and Nowak published, Evolution of Cooperation by Multilevel
Selection [189], in which they acknowledge the debate about group selection and argued

that group selection and individual selection could co-exist through multi-level selection.
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However, this remains a controversial theory, as discussed by Pinker (2012) with some

researchers arguing for multi-level selection [76, 129].

This thesis neither advocates nor opposes this process but is based on asexual re-
production of agents [108, 127, 199]; reproduction is discussed further in Chapter 3.
However, groups are used, see Section 2.2, namely through identity which an individual
uses to sustain their reputation. Reputation systems can feature in this context, allowing

individuals to potentially switch between individual and group reputations [118, 172].

2.6.2 Individual and Group Identity Within Indirect Reciprocity

Most studies of reputation focus on an individual’s reputation without considering groups
that they may belong to [108, 128]. Individual reputations are restrictive, particularly
when agents consider others whom they have not come across before. Therefore agents
tend to use cognitive shortcuts, such as stereotyping, to make decisions so that our judge-

ment of the other agents can be better informed.

Limited research has been conducted on the subject of groups, specifically where per-
sonal and group identities are combined. One of the earliest adaptions of group reputation
is Baranski et al (2006) [16]. The authors introduce a reputation that is shared by members
of a group, which individuals use when interacting with members of other groups. Addi-
tionally, the model allows for individuals to have a personal reputation. The model calcu-
lates a group reputation as the average of all individual reputations in a group. Therefore
each interaction of an individual affects the reputation of the whole group. Additionally,
agents have a cognitive memory that stores how all other agents have interacted, which
is not seen in other literature. This model is limited and does not generalise to allow for

members to be in multiple groups.

Another model which considers an agent’s reputation within groups was presented
in Ingroup Favoritism and Intergroup Cooperation Under Indirect Reciprocity Based on

Group Reputation [118]. A group structure is proposed where individuals interact within
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their groups using a personal reputation. When an interaction is between groups, members
adopt a group-level reputation. Therefore the paper proposes a two reputations model,
one for the inner group and a group’s reputation for intergroup interactions. A third-party
observer updates reputations. The model is limited by not allowing members to be in

multiple groups. Reputation is also limited to its binary values (good or bad).

These models do not allow for individuals to share subsets of traits, or aspects of their
identity, and depend on individuals belonging to a single group. Our approach is to allow
individuals to have a more complex composition of their identity, based on the assessment

of multiple traits against which reputations are maintained.

2.6.3 Cooperation Within Groups

Groups have also been the focus of literature related to the free-rider problem. The
free-rider problem occurs when an individual benefits from cooperation without incur-
ring a cost, i.e. they receive benefits but do not pay any costs towards it [61]. In other
words, free-riders exploit the benefits of being part of a group without incurring any costs
[106]. Punishment has emerged in the literature as a mechanism that promotes coopera-
tion within groups while deterring free-riders. Punishment is a form of cooperation, as it

allows members of a group to work together to punish free-riders [25, 61, 135, 190].

The literature focuses on two types of punishment, costly punishment and pool pun-
ishment [89]. Costly punishment incurs a cost from all participants to punish the free-
rider. Costly punishment is also referred to as peer-punishment because group members
directly punish the free-rider. In contrast, pool punishment gathers the cost from group
members and punishes free-riders through a third party. The development of pool pun-
ishment emerged from a vulnerability in peer punishment where second-order free-riders

benefited from not paying any costs towards punishing the original free-riders [139].

A common theme among these works has been that individuals belong to a fixed

group [105]. Fixed groups are limited in that individuals are identified through a shared
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group identity and reputation. As discussed in Section 2.3, studies in psychology have
shown that individuals retain both a personal and social identity, where a personal identity
intersects with a group identity. The work in psychology has driven our work to relax the
boundaries set by the literature on groups. The relaxation allows us to expand individual
identities to include both personal and group identities and reputations. Our work goes
further in allowing individuals to adapt several identities, through traits, that compose an

individual’s identity.

2.6.4 Traits

Traits represent identities which an agent may have. Traits are defined as “a distinguishing
quality or characteristic, typically one belonging to a person” [138]. Traits were often
investigated in the field of social psychology, referring to persistent characteristics of
individuals [2]. The surveyed literature lacks a unified approach in introducing identities,
particularly identities that are shared. There exists a need to structure identities as this
area has not matured yet, and one such concept that has recently emerged is the linking of
agents to traits. Trait and set membership have also received attention as simple signalling

mechanisms to promote the evolution of cooperation.

Traits were first introduced in [12] by Axelrod. The model used traits to represent
values that a feature, that an agent’s culture, may have [107]. In cooperation scenarios
traits were introduced in [152] without the use of reputation, and these elements have been
represented as abstract tags that are sufficient to incentivise some level of cooperation,

which is known as the green-beard effect [124, 152]

The Evolutionary set theory shows that more complex set structures can promote the
emergence of cooperation even in the absence of other incentives [110, 125]. Coopera-
tion emerges through sets, groups, that individuals share with others, where cooperators
belong to several sets which allows them to be more selective in choosing with whom to

cooperate. Tarnita et al. [186] proposed a model based on the evolution of sets where
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the degree of shared membership is based on the overlapping of sets of multiple traits.
In their model, the interaction is limited to traits that they have in common with others.
This limitation results in agents adopting one of two action rules either to cooperate or to
defect. The model allows individuals to update their action rules and set membership un-
der evolutionary settings. Moderate levels of cooperation can be sustained with a limited
mutation on traits [122, 185]. Also, Li et al. [109] adopted the same model to study the

evolutionary dynamics of minimum-effort coordination games in structured populations.

Similarly, there have been studies that investigated how cooperation can evolve due to
in-group favouritism [71, 154]. In Fu et al. [71], agents can move between sets as they
are attracted to successful sets. Additionally, agents can adopt different strategies that
allow them to differentiate between in-group and out-group interactions. Their results
showed that cooperation is achieved by applying a limited mutation on sets. This finding

is discussed further in Section 5.3.

In Gao et al. [75], the authors describe a model in which individuals are in groups
and interactions may occur between in-group members and across groups. The model
does not allow for individuals to have membership in more than one group. Individuals
have two strategies that enable them to act differently toward in-group and out-group
members. Although their model does not rely on reputation, it allows for mutation during

the reproduction phase. Mutation, in this case, occurs on traits and strategies.

Previous observations have led to a need for a new structure of how reputations may
be shared, which is one of the contributions of this thesis. Traits represent identities, and
individuals may share traits which represent how groups function. Reputations can be
then measured by an agent’s identity, which is a better representation of how humans are

judged in reality based on the combination of their traits.
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2.7 Summary of the Chapter

The important point from this thesis’s perspective is that individuals can derive some of
their identity from being in a group. This has been a long-standing area of study in terms
of human behaviour, and it can be seen in terms of everyday reputations. In this thesis, the
aim is primarily to investigate cooperation in the context of identity, namely whether in-
dividuals cooperate with others without the certainty of a future pay-back, i.e. we explore
cooperation using indirect reciprocity. While investigating cooperation, we additionally
check if group membership affects cooperation. Groups represent one of the main ways
that individuals derive their identity, and this can, in turn, affect their reputation. Further-

more, groups represent a typical way for individuals to share reputations.

The knowledge gap we aim to address in this thesis spans across two different topics:
identities derived from groups and the structure of reputation. While sharing identity
drives people to cooperate, the structure of how their identities are shared within a group
has the potential to allow shirkers to stop cooperation from prospering. Equally, support
from within a group can help to improve the payoff for individuals, and reduce risk. By
looking at both the sharing of identities and the structure of identities together, we aim to
gain a better and more complete understanding of how individuals make up their personal

and group identities. The gaps we aim to address are as follows:

The role of identity in indirect reciprocity: One of the primary aims of the thesis
is to bridge the gap between identity and structures of reputations. None of the studies
carried out so far, to the best our knowledge, have examined identity in the context of
indirect reciprocity. Elements of personal and group identity derive individual reputations

in the psychology literature, but so far have been absent in indirect reciprocity models.

The sharing of identities: There is a focus on thesis on how agents may share iden-
tities through group membership, and we are especially interested in the structures of
sharing and how these might affect cooperation. Sharing of identities may allow some

agents to exploit their groups, and we investigate ways to prevent this. We further ex-
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amine the role of identity by allowing agents to learn from others and adopt different

identities.

Identity within groups: The relationship between individuals and their groups has
been studied in psychology extensively. However, within indirect reciprocity, there has
been limited research on this. Studies have not considered the possibility of agents being
in multiple groups. Nor has the possibility of a partial group membership been considered.
We investigate the role that individuals dedicated to their group have on cooperation, and
how the group rather than economic factors may affect the willingness of individuals to

cooperate.

The aim of this thesis is to fill the knowledge gap outlined above by addressing the

questions:

e What benefit will the addition of traits have for current models of indirect reci-
procity? (Chapter 3) How can we model identity within existing model of indirect

reciprocity?

* What is the relationship between group identities and stereotyping? Do agents co-
operate more with those whom they share a trait with or those outside their trait

group? (Chapter 4)
» What happens when agents can move between groups? (Chapter 5)

» Are agents who are fused to their group more cooperative than those who are non-

fused? (Chapter 6)

* How does pursuit of identity, rather than of resources, affect cooperation? (Chapter

7)
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Chapter 3

Extending Indirect Reciprocity Models

to Share Reputation

3.1 Introduction

In this chapter, we introduce a model for cooperation (indirect reciprocity). We extend
the existing model so that shared identities for individual agents can be explored. This
involves a new framework for modelling reputation based on traits. We note that the
framework is general and can be applied to other cooperation scenarios that rely on rep-
utation systems. Here our focus is on its application to indirect reciprocity because it

provides a well-understood benchmark for investigation.

Our approach is to adopt an evolutionary game theory framework for indirect reci-
procity which uses the recent and simple approach of social comparison of reputation
proposed in [199]. The approach follows the natural human disposition to make relative
judgements about the standing of others as compared to oneself [91]. However, the orig-
inal formulation of the model is limited because it assumes that all agents have a unique
identity, represented by their reputation, that is not shared with anyone. We enhance the
social comparison model [128, 199] by introducing traits as independent components on
which reputation is based. Traits may be isolated (i.e., only affiliated with one agent), re-
sulting in the social comparison model, or traits may be shared, allowing a group’s identity

to be represented. Importantly we also allow an agent’s identity to be composed of mul-
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tiple traits. This approach provides a generalisation of previous approaches by allowing
a non-trivial composition of identity for each agent. This also aligns with the psycho-
logical literature (Section 2.3) where it is widely acknowledged that group identities are

important to an individual.

Generalising the reputation system by using traits opens up many degrees of free-
dom and therefore expands the range of scenarios that can be simulated and investigated.
In particular this allows us to better understand how the sharing of identity impacts co-
operation. Underpinning the model, the approach based on [199] involves agent-based
simulation, where agents have some freedom in how they adapt their behaviour based on
probabilistically copying the strategy and possibly the traits of others, based on perceived
success. This represents a form of social learning [15], where agents have limited cog-
nitive ability in their own right, but are able to learn from others in the population. This
assumes that agents can change traits (this scenario is discussed in Chapter 5 ), although
it is also possible that some of the traits affiliations could be fixed for a particular scenario

(as discussed in Chapter 4).

The overall evolutionary approach allows us to explore conditions that either promote
or impede cooperation, taking into account the structure of identity while assuming that
agents can socially learn. This should not be confused with agent-based approaches in
knowledge engineering, where protocols are sought that allow cooperation to be enforced

based on individual behaviour (e.g., [207]).

We also note that the trait based framework is sufficiently flexible to allow a new
examination of identity based problems that are motivated by social psychology, such as
stereotyping [166, 181] (see Section 2.3). The remainder of the chapter is structured into

the following sections:

* In Section 3.2, we elaborate on the significance of agent-based models and their use

for research.

* In Section 3.3, we focus on existing models of indirect reciprocity and highlight the
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origins of these models.

* In Section 3.4, we introduce our model and highlight how the sharing of reputations

is facilitated through shared identity and traits, including:

— explaining the importance of using traits within our model and elaborate on

its usage (Subsection 3.4.1).
— how we use agents within our models (Subsection 3.4.2).

— agent’s action rules and how they are utilised to make decisions regarding

donations (Subsection 3.4.3).

* In Section 3.5, we present the setup of the experiments used in this thesis. This

section is divided into three subsections where:

— we describe the parameters of the experiments in general (Subsection 3.5.1).

— we consider how reputations are updated using the new concept of traits (Sub-

section 3.5.2).

— we present the reproduction step (Subsection 3.5.3).

3.2 Agent-Based Models

In order to study social dilemmas in a range of different scenarios, agent-based approaches
have become important. Agent-based models (ABM) are a computational tool that sim-
ulate the behaviours and interactions of agents [43]. The models that are of relevance
to this thesis represent a simplification of social situations [79] where agents can be im-
parted with a particular level of cognition and action. There are several other areas of
work in multi-agent systems where the focus is to engineer protocols or rules that seek
to ensure cooperation is followed. These approaches aim to disincentivise deviation from
behaviours that benefit the public good [207]. ABMs have been used to study and analyse

the behaviour of autonomous agents within a system, for example, the study of human
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behaviour [23]. The models involve several elements that enable systems to be studied in
detail; these elements include game theory, complex systems, multi-agent systems, and

evolutionary programming.

Each ABM is composed of a number of agents that interact within a specific environ-
ment. These agents are autonomous but have a limited cognition. Agents may represent
individuals, systems, or any number of entities that are being modelled. Agents observe
their environment and make simple decisions such as to cooperate or defect. Further-
more, agents can adopt successful strategies from the population. Agents are employed
to consider different interactions within specific environments which allows researchers

to investigate their impact.

ABMs have been used extensively to study cooperation scenarios through evolution-
ary game theory [9]. One of the earliest adoptions in cooperation was Axelrod’s famous
computer tournaments in which experts investigated strategies for the Iterated Prisoner’s
Dilemma game [14]. Similarly, many indirect reciprocity experiments have been adopted
into an agent-based model beginning with Hamilton and Axelrod’s work in [83]. These
works have led to computer simulations being central to the study of cooperation with
more research conducted using simulations than any other medium. This is because com-
puter simulations and ABM, allow for greater flexibility in the setup of experiments in the

study of cooperative and competitive behaviours [56].

Although ABMs have many benefits, they do not come without limitations [113].
One limitation is performance because agent-based simulation are only a model; in some
circumstances, they cannot cope with large populations [17]. Some researchers ques-
tion whether agents can be programmed to reflect real human behaviour, as behaviour is
complex and can vary dramatically [79]. However, ABMs are an excellent tool for exper-
iments in the field of social psychology as they can mimic real-world scenarios without
compromise on the amount of detail needed as long as it can be computable [54]. Fur-
thermore, ABMs present a simple approach for researchers to share their results, specif-

ically when using sophisticated mathematics to solve evolutionary problems, thus giving
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their work more reach [9]. This is due to the nature of ABMs as they have been able
to expand on the mathematical treatment of evolutionary game theory [1]. Agent-based
models expands this treatment by allowing agents to be cognitive and allows agents to act

independently when making decisions.

The tool we use to implement our agent-based model is Python, which is a high-level
programming language that has a growing number of tools for analysis and modelling
[116, 148]. As we built our model using Python, it allowed us to quickly extend the

model and implement additional features.

Agent-based models present a conventional tool that allows us to simulate cooperation
problems and experiment with various scenarios. Our use of ABMs allows us to imple-
ment an extended model of indirect reciprocity, where we explore different behaviours
between agents that have limited cognition, and the effect of these behaviours on cooper-

ation.

3.3 Existing Models of Indirect Reciprocity

A social dilemma is a situation in which individuals face a conflict choosing between
their self-interest and the collective interest [38]. In other words, a social dilemma is a
situation in which an individual faces one of two actions, one that benefits them, and the
other which may harm them but benefits the collective. A variety of game theory models

have been proposed by scientists to study various social dilemmas.

3.3.1 Game Theory and Cooperation

Game theory allows the study of problems of cooperation and conflict within social sit-
uations through a model [34, 163]. The study of social dilemmas through models has

attracted a lot of attention since the 1960s [85, 115]. Famous models have included the
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basic public goods [36], prisoner’s dilemma [10] and snowdrift games [51]. Similarly,
indirect reciprocity has been modelled using game theory as it is a social dilemma situa-
tion where individuals choose to donate to others, paying a cost, based on their reputation

without any guarantee of a benefit or to defect and not incur any cost.

Indirect reciprocity is a form of cooperation supported through reputation [4]. Indirect
reciprocity is the cooperative act to help others in response to their generosity to a third
party. Similarly, it can be thought of as a punishment by third party individuals in re-
sponse to someone’s cheating. Reputation supports indirect reciprocity as it informs that
population of the individual’s behaviour. Reputation systems have been studied alongside

indirect reciprocity since the introduction of indirect reciprocity by Trivers [192].

Indirect reciprocity has wide-ranging models such as [108, 128, 132, 184]. Nowak
and Sigmund’s paper [128] is considered to be one of the first to investigate indirect
reciprocity in terms of evolutionary game theory. Their approach was to implement a
computer simulation of the donation game (see Section 3.4). The paper established the
evolutionary significance of indirect reciprocity [6]. Additionally, the paper highlighted
the importance of reputation by introducing the image score assessment rule. Image scor-
ing updated reputation after every interaction conducted by agents as a way of mimicking
gossip spread in real human behaviour [127]. Since then, researchers adopted the sim-
ulation and developed it further to implement and test various game theory approaches
towards solving problems using indirect reciprocity. Table 3.1 highlights how researchers
have adopted the framework and how they contributed to the further understanding of

indirect reciprocity.

Alongside computer simulations, indirect reciprocity experiments with human sub-
jects have been conducted in labs [96]. The experiments utilise a game theory approach
by giving players a choice to cooperate or defect and matched players randomly. The
experiments’ primary objective is to demonstrate that cooperation can emerge based on
indirect reciprocity. In one such experiment, the author showed that reputation is vital for

cooperation to emerge in indirect reciprocity [29]. Furthermore, the author showed that
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defection is contagious in situations where reputation was not accessible [101]. However,
since Nowak and Sigmund’s paper, the focus of experiments has moved from showing
that cooperation can emerge from indirect reciprocity to what strategies are best used to

explain this.

A new model has been proposed by [199] which is based both on the work of Fes-
tinger’s social comparison [65] and Nowak and Sigmund’s model [128]. The social com-
parison model continued to use the donation game as the basis, however in contrast to
[128] it uses social comparison behaviour which simplifies the modelling and links to
work on behaviour in psychology. The key point in using social comparison is that it does
not require global thresholds for action to be defined and triggered [128]. Instead, each
agent takes a personal view and compares themself with others in order to make a judge-
ment on how to act. This removes complexity from modelling - for example, in making a
comparison against a function f carried by another agent, then the other agent must hold
a value that is either similar, lower or greater. Additionally, this assessment is made with
respect to the agent’s own “world view”, as defined by the value of f that it is attaining

itself.

The social comparison of reputation allows cooperation to be sustained through the
evolving heuristic of donating to those with similar or higher reputations. Similarly, the
new model proposed a generalisation of the standing assessment rule, adopted from [171,
132], this permitted reputation to have a range between —5 and +5. However, the model
does permit for other assessment rules to be used. The paper presented a simple model
with specific parameters that enable experiments to be conducted in a swift manner, the

model itself allows for an extension without restriction [198].
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Indirect Reciprocity image-scoring these compared | capped between —5 | assessment  rules
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assessment rule 0)
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direct Reciprocity
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and Arbitrary Ex- simple-standing, always defect, dis- gies and explored
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[155] good, discriminate mutation
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Table 3.1: Summarises the Key Papers That Have Contributed Towards the Indirect
Reciprocity Model.




33

3.4 Indirect Reciprocity Model Based on Social Compar-

ison

Since its introduction, the donation game has been adopted by many researchers to con-
duct experiments on indirect reciprocity and cooperation. Both lab and computerised
versions of the donation game involve pairing up participants in a random manner and
giving them various conditions to measure cooperation and reciprocity. The donation
game captures interaction in its simplest form, between two individuals who take one of

two decisions: either donation or defection.

The donation game is a subclass of the mutual aid game [171] where the donor incurs
a cost with no guarantee of reciprocation from the beneficiary, or any other individual.
While the mutual game involves one aid recipient and multiple donors, the donation game
is between a donor, a recipient, and an outside observer. The donation game is modelled
through prosocial donations which result in a cost ¢ to the donor agent and a benefit b to
the recipient, where b > ¢ > (. Our implementation of the donation game is performed
on a set of agents, A, representing a population of individual agents and generalises the
model developed in [128]. Our assumption is that agents represent individual entities that
have a simple cognition. The limited cognition allows agents to take simple actions, either
to donate or defect. Furthermore, we assume the cognitive ability of agents allows them
to make comparisons against themselves; specifically, agents compare reputations. The
cognitive limitation is intentional, as the approach is seeking to facilitate an understanding
of the components that impede or enhance cooperation. A further assumption of the model
is that the economics of pay-off drive agents’ behaviour in the model when agents seek
to update their strategy; this is a simple rational notion that is driven by agents to act
selfishly. In doing so, we are assuming that agents are able to perform simple social

learning (Section 3.5.3).
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3.4.1 Trait Representation of Identity

Traits are features that are held by agents and represent identifiable characteristics. In this
thesis, we generalise the common modelling convention that an individual agent implicitly
carries just one unique trait (i.e., through a reputation that is not shared with any other
agent). We calculate reputations based on traits, any number of which can be held by
an individual. This better represents the fluidity that is seen in the real world, where
individuals are rarely totally defined by a personal identity or group identity, but may be
represented as a combination of characteristics and affiliations. Unless otherwise specified
by the experiment, the traits are assumed to be immutable. The framework of using
traits to model reputation is unique to this work, and the introduction of traits allows for
agents to share elements of a reputation, with consequences for the agents involved. It
allows for a new range of experiments to be carried out, where agents share reputations,
either wholly or partially. In this manner, experiments can be conducted on behaviours of
individuals who are not fully part of a group, for example, new members of a team will

have a different reputation than those who are long time members.

Note that the model allows different types of reputation sharing with other agents
based on the trait(s) that are held in common. We say that an agent is dependent if it shares
at least one trait with another agent, otherwise, the agent is independent. Furthermore,
letting 7; denote the set of traits held by an agent 4, if |T;| > 1 then i is a multi-trait agent,

otherwise 1 is a single-trait agent. These key parameters are defined as follows:

Definition 1. An agent is independent if it does not share a trait with any other agent.

Note that independent agents may have one or more traits. Examples of independent
agents are all purple agents in Figure 3.1b, each of which has a single trait. The lack of
sharing means that the reputation of independent agents does not support shirking by other
agents. This is because their own actions, and only their own actions, are represented by
their own reputation. When this is not happening, the opportunities open up for shirkers

to benefit, leading to the following definition.
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Definition 2. An agent is dependent if it shares a trait with at least one other agent.

As an example, all green agents in Figure 3.1b are dependent agents. Agents 2 and 5
share a single trait, while agent 3, which has multiple traits, shares two traits with agent 4
and and a single trait with agent 6. Dependent agents present an opportunity for shirkers
to exploit reputations that they share with agents who have the same traits as them. This
allows shirkers to increase their payoff and avoid paying costs while maintaining their

reputation.

It is also useful to consider the number of traits that represent an agent, as in the

following definitions.

Definition 3. An agent is a single-trait agent if it has only one trait, i.e. an agent ¢ is a

single-trait agent when |T;| = 1.

Definition 4. An agent is a multi-trait agent if it holds more than one trait, i.e. an agent ¢

is a multi-trait agent when |7;| > 1.

Figure 3.2 shows an example of agents sharing traits. Agents A and B are dependent
agents as they share one trait between them, whereas Agent C' is independent. Agent A
1s a multi-trait agent as they have two traits, but agent B is a single-trait agent. Also, note
that agent A does not share trait 1 with another agent in this example. This figure shows
that our model can be flexible to accommodate a range of experiments whether agents
share traits or not. The sharing of traits among agents allows for the sharing of reputation.
The model can be adapted to allow agents to share traits in different ways, and it allows

individuals not to share traits if required by an experiment.

For an individual’s reputation to be represented by a single overall value, there is a
need to combine the reputation values that each trait represents. We assume that each trait
t € T, where T is the set of all traits in the model, has associated with it a reputation 7,
represented by an integer in the range [—5, 5], and an agent 7 derives its reputation r* from

the reputations of the traits associated with ¢ through a process of averaging (see Table



3.2 below). Specifically, let T; (with |T;| > 0) denote the associated set of traits for agent

1, then its reputation r® is defined as:

In other words, an agent’s reputation is the average of the reputation of its associated
traits. While not able to capture all scenarios, this assumption allows for reputations to

be modelled aligning with the literature, which assumes that all agents’ reputations are

known.
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(a) A simple visualisation of 15 agents
showing the distribution of agents and
traits in conventional models of indirect
reciprocity structure their experiments.
Each agent has a single reputation that they
do not share, i.e. all agents are indepen-
dent single-trait agents. As such, shar-
ing of traits or reputation is not permitted.
Agents 1 and 3 have reputations of 1 and 3,
respectively.

12 3 4 5 6 7 8 9 10 1M1 12 13 14 15
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(b) A simple visualisation of 15 agents
showing different ways that we can struc-
ture the sharing of traits among agents.
Agent 1 is a single-trait agent that does not
share any trait and therefore does not share
their reputation. Agents 2 and 5 are single-
trait dependent agents that have one trait
which they share. Agent 3, which has mul-
tiple traits, shares two traits with agent 4
and and a single trait with agent 6, making
agent 3 dependent.The remaining agents all
have a unique trait that they do not share.

Figure 3.1: A simple visualisation of 15 agents showing alternative agent-trait re-
lationships showing both single-trait and multi-trait agents. The figures show the
relationship between agents and their reputation through traits. The purple colour
indicates that the agent does not share a trait, while green indicates that an agent
shares their traits with one or more agents. All agents derive their reputations from
the traits that they are associated with using the formula in Subsection 3.4.1. For
example, agents 1 and 15 do not share any traits and have the same reputation in

both figures.
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Traits

X D

Agent C

Figure 3.2: Different ways that agents may share traits. Agent B fully shares their
identity by sharing trait 2 with agent A. While Agent C is an independent agent as
they do not share any trait with other agents. Agent A shares some element of their
identity with Agent B.

3.4.2 Agent Attributes

We assume that each agent ¢ has four key fundamental attributes: its set of traits T;,
its action rule (s;,u;, d;), its reputation r* and its fitness f;. Action rules and traits are
defining characteristics of an agent as they dictate how an agent behaves and how they
are perceived, and therefore affected, by the population. The action rules are used by
an agent in deciding whether or not it should make a donation decision in respect of
another agent. In our model s;, u; and d; are binary variables that control the decision
an agent makes based on comparison of its reputation with that of the potential receiving
agent. This is described in Section 3.4.3. The actions that an agent makes affect the
updating of its reputation (or more specifically the updating of the reputation held by
traits associated with the agent) - see Section 3.5.2. Fitness represents the economic pay-
off as the accumulation of costs and benefits that are paid and received by 7, based on
the total donations received in a generation (see Subsection 3.5.1), less the total cost of
making donations in a generation. This is used at the reproduction step (see Section 3.5.3)
in order for an agent to update its action rule. Thus an agent ¢ strives to maximise its pay-

off in a selfish manner, which may or may not result in cooperation emerging, based on
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the way in which traits are shared.

3.4.3 Agent’s Action Rules

Recall that action rules represent the behaviour that agents take when deciding to do-
nate or defect - see Section 2.5.2. Our model adopts the social comparison method
from [199] which compares the reputation of donors and recipients before a donor de-
cides to donate or to defect. Each agent i carries a binary vector of variables (s;, u;, d;)
which represents ¢’s current action rule with respect to ¢’s donation behaviour when it
is called upon to consider making a donation to another agent j (see Algorithm 1 line
14). The action rule indicates whether or not i donates when similarity (s;), upward (u;),
or downward self-comparison (d;) is observed by i in respect of j’s reputation (r7), as
compared to i’s own reputation value (r%). This results in a set of eight action rules:
AR = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0), (1,0,1),(1,1,0),(1,1,1)}. A simi-
larity comparison takes place when 7/ = r¢, upward self-comparison occurs when 77 > r?,
and downward self-comparison occurs when 77 < . Section 3.5.2 discusses further how
the assessment rules are applied to update reputations after each round of the donation

game.

During reproduction, each agent updates its action rule through social learning, as
a consequence of observing others in the population (see Algorithm 1 lines 23-33). It
is known [199] that evolution promotes the action rule (1, 1,0), allowing agents to dis-
criminate against those having a lower reputation than themselves, thereby representing
a relative threat. The social learning step takes place during the reproduction phase dis-

cussed in Section 3.5.3.
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Parameter(s) | Description Role in model Reference in Chapter 3
Used to represent the status of
rt The reputation of an agent ¢ | an agent and is used by agents Subsection 3.4.1
to determine donation decisions
. Defines a single feature that an
A trait ¢ belongs to & . .
teT . agent may have and determines Subsection 3.4.1
the set of all traits 7’ . .
reputations of agents that hold it
Represents a trait’s status based
Ty The reputation of a trait ¢ on the actions of agents that Subsection 3.4.1
hold the trait
. Accumulates costs and benefits .
fi The payoff for 4 . .. . Subsection 3.4.2
) from making and receiving donations
Action Rules for an agent ¢
based on self-comparison , . . .
Siy Ui, d; . p . Governs i’s donation behaviour Subsection 3.4.3
of the potential recipient
reputation
The probability that the
selected recipient agent Governs the selection of a .
S p 15 L . Subsection 3.5.1
chooses a donor with donor agent with different traits
a trait in common
The set of agents that Governs the selection of a
N; share at least one trait donor agent that shares at least one trait | Subsection 3.5.1
with agent j with the agent
When an agent makes a donation
c The cost of donating the incur this cost and it is reflected Subsections 3.4 & 3.4.2
in their payoff.
. When an agent receives a donation
The benefit received from a . . .
b . they receive a benefit that is reflected Subsections 3.4 & 3.4.2
donation . .
in their payoff.

Table 3.2: Summarises the Key Parameters Used Throughout the Thesis.

3.5 Performing the Game

This section describes the steps taken to perform experimentation in our model. Recall
that our model is based on the donation game scenario with the addition of traits to repre-
sent agents’ identities. The model has an evolutionary game theory framework based on
a combination of game theory and evolutionary dynamics. We further explain the steps
of the model by breaking it into several subsections representing different stages encoun-
tered during a simulation. In Section 3.5.1, we describe the parameters that set up each
experiment and describe the basic interaction that occurs between the agents in the dona-
tion game. In Section 3.5.2, we consider how reputations are updated based on their traits
and how agents are assessed. Finally, in Subsection 3.5.3, we present the reproduction

step that occurs at the end of each generation, in which agents probabilistically copy the

action rules of successful agents.
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3.5.1 Player Selection

Donation games are played in rounds. Each round is composed of a single interaction
between a donor ¢ and recipient j and we assume that the set of agents is denoted A. Each
generation is composed of m rounds, and there are M generations in each experiment.
We denote U(X) as a function for uniform random selection of an element from the set

X =A{z1,...,x,}. Algorithm 1 shows the simulation framework used in this thesis.

At the beginning of each round a potential recipient, j, is selected at random from the
population (see Algorithm 1 line 4). As j is selected at random from the population, j
may be selected multiple times. Similarly, a potential donor agent, 4, is selected from the
sub-population of agents having at least one common trait with 5 from the set of traits
T}, with probability .S (see Algorithm 1 lines 5-12). Here S is a global parameter (not
to be confused with s;) that governs the extent to which an agent is disposed to playing
in-group (i.e., with other agents that have the same traits). Otherwise, when S = 0, the

donor agent 7 can be selected at random from the population.

To describe this formally, we let N; = {z € A — {j} : Ty N T, # 0} be the set of
agents that share at least one trait with agent j and N; = {x € A—{j} : T;NT, =0} be
the set of agents that do not share any traits with agent j. With probability .S, the potential
recipient j attempts to select the potential donor ¢ from the set N;. With probability
1 — S, the potential recipient j attempts to select the potential donor 4 from the set N;. If

no suitable donors are found then i is randomly selected from A-{j}.

Once an agent : is selected to donate to a potential recipient 7, ¢’s donation decision
depends on i’s action rule, (s;, u;, d;) which dictates the conditions that invoke a donation
when 7 compares its reputation with that of j. Recall that an agent ¢ derives its reputation
r' from the reputations of their trait set 7;. Agent 7 will then compare their reputation r*
with that of agent j (r/) to determine the donation decision. Figure 3.3 highlights how
agent 2 compares its reputation with agent 5 when they are sharing a trait, and when they

do not share a trait. Alternatively, Algorithm 1 line 14 highlights how an agent : compares



41

their reputation with that of agent j.

r?’ =5 rA' -4
(1,1,0) -----mmoe-
——
Defection
Agent 3 compares r3 with 1
r4 using Action Rule (1,1,0) Agent3 Agent 4
- =5
(11,0)  =meremmmoee-
E——
Donation
3 -
Agent 3 compares r” with AGen3 [

r# using Action Rule (1,1,0)

Figure 3.3: Two instances of the donation game based on Figure 3.1. In the first
instance, agent 3 compares its reputation with the reputation of agent 4, then makes
a decision to defect, as agent 3 has a higher reputation than agent 4, based on its
action rule as outlined in Section 3.4.3. In the second instance, agent 4 has a higher
reputation than agent 3. Agent 3 makes a decision to donate based on its action rule.

3.5.2 Updating Reputation and Assessment

After every round of the donation game, the reputations of traits that comprise 7’s reputa-
tion (i.e., members of 7;) are updated based on ¢’s donation decision. An assessment rule
is applied to these reputations to capture the potential benefit that the population derives
from the individual’s actions. These can be interpreted as rewards or punishment that an
agent ¢ receives based on their donation behaviour. Our model applies the standing rule
as it is stable and is simple, being a fundamental assessment rule [142, 171]. This rule has
been developed to reward those who donate, while allowing justifiable defections to take
place. This could be envisaged in the case of not donating to a shirker (i.e., an agent who
never donates to others). In such a case penalising one’s reputation due to not donating

would be harsh.

Because we are are dealing with the comparison of reputation, the standing rule func-
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tions as follows: if ¢ donates, then r; is incremented, for all ¢ € 7;. If v/ > r? and i defects
then the reputation of trait ¢, r; is decremented, for all ¢ € 7;. This is shown in Algorithm

1 on lines 14-21.

Note that the standing assessment rule ensures that a reduction in reputations does
not occur when ¢ fails to donate when j is of a lesser reputation, providing a defence
against possible shirkers. Applying the assessment rule to the reputations of 7; means
that an individual’s actions equally affect the traits by which it is represented. Each trait’s
reputation is capped and allowed to vary in the integer range [—5, 5], as developed in the

original paper [199].

3.5.3 Reproduction

Once a generation has been completed (i.e., m rounds of the donation game have been
played) the reproduction phase takes place. Reproduction is the step where action rules
are updated based on individual agents, each probabilistically copying other population
members based on their relative success, as measured by fitness (denoted f; for each
agent as introduced in Subsection 3.4.3). The Wright-Fisher model is adopted where the
offspring of the previous generation replaces the current population [58, 66, 204, 205]. In
performing this, our assumption is that agents are capable of socially learning from others
around them by copying other agents, weighted by the relative success of agents in the
population. Specifically, each agent 7 in the population copies the action rule of another
agent 7 with a roulette wheel selection, upon which ¢ adopts j’s action rule for the next

generation. We define the roulette wheel function as follows:

Definition 5. R(X, f) denotes a random selection from the elements of the set X =

{x1,...,x,} weighted by f1, ..., f,. Thatis:

fi

p(R(X, f) =) = S
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Similarly, in specific experiments, each agent may update its trait set 7; to reflect
the trait set of those that are deemed successful. Fitness for agent ¢ represents the total
donations received by 7 in a generation, less the total costs ¢ incurs in making donations

throughout a generation.

Definition 6. The fitness of agent 7 is denoted as f; = b — ¢ where b represents all the
benefits received by agent 7 in a generation and c represents all the costs ¢ incurred in the

generation.

Fitness or pay-off is an essential component to keep track of the most successful action
rules. The most successful action rules become widely used after several generations
while action rules generating a lower pay-off are no longer selected. Successful action

rules become spread through the reproduction phase when this is repeatedly applied.

Once agents have updated their action rules, mutation takes place. Mutation allows
for a change in the action rules with a small probability. Recall that (s;, u;, d;) is a binary
vector, and therefore each agent can have one of eight action rules. Specifically, after an
agent has been assigned a new set of action rules, based on the most successful action
rule, mutation is applied with a probability of 4 = 1—(1)0. In this case, mutation randomly
assigns the agent one of the eight action rules. Similarly, in specific experiments, agents

may have their traits mutated so that they are assigned a random trait.

Prior to commencing a new generation, fitness f; is set to zero (f; = 0, V4) and for all
traits ¢, reputation is reset r, = 0 is set. Throughout a  ratio of 0.7 is applied (see Table
3.2). The chosen ratio is based on analysis of [198, 199] but has been reconfirmed by this
work. The ratio is considered to be reasonable but conservative because donations are
relatively costly compared to ratios applied in other work (e.g., [27, 37]). Lower ratios
would reduce the impact from defectors as donors would incur lower costs when donating
to defectors, yielding higher payoffs in return but eliminates strategies that defect. Higher
ratios would reduce the payoff received by agents and would deter agents from donating

therefore, reducing cooperation. Note that 1 is an upper bound on § ratio since when costs
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are greater than benefits, there is no collective benefits accrue across the population.

3.6 Experimental Assumptions

Once the number of generations M is reached, the evolutionary simulation ends. To
evaluate the experiment, we compare the total number of instances of cooperation (i.e.,
anytime a donation has been made where ¢ donates to j in a donation game) across all
generations. Furthermore, we run each experiment over five randomly seeded runs and
average the results. Throughout our experiments we use the default parameters of A =
100, M = 100000 and m = 5000, this results in each agent participating in an average of
50 games per generation. These numbers are adopted from [198, 199]. Algorithm 1 shows
a simple run of the experiment with lines 23-33 showing how agents evolve through the
reproduction system. The algorithm was validated against the works of [199] by running
an experiment where all agents ¢ are single-trait independent agents. This scenario used
the standing assessment rule as discussed in 3.5.2, along with a cost-benefit ratio of 7 =
0.7. The results were consistent with that of [199], producing an average cooperation of

more than 90%.

Aligned to the wider literature, we follow a number of conventions concerning the
implementation of the model. Firstly we implement a population size of A = 100. This
scale of population is widely used in the literature (e.g., [3, 5, 23, 71, 81, 128, 133, 153,
188, 198, 199]) because it allows a good balance between providing experimental insights
(e.g., non-trivial subgroups can be defined and observed) and completion of a significant

number of games with available computational resources.

A second important convention that we follow is obtaining observations from a sample
of runs, each with a different random seed. This approach is also used across the literature
(e.g., [39, 48, 55, 60, 71, 81, 86, 95, 152, 153, 184]). Due to mutation and the underlying
evolutionary forces, alternative starting points make limited difference to the long term

evolution of the simulation (as seen in Sections 5.3, 5.4, and 6.5). This is also reflected
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in the lack, to the best of our knowledge, of variance measures in the literature (e.g.,
standard deviations) on snapshots of results. We note that most papers in the field do not
typically report deviation measures between runs (e.g., [18, 71, 86, 108, 128, 151, 152,
153, 184, 198, 199]), with greater emphasis placed on ensuring that simulations have
a sufficient number of generations to achieve convergence. We follow this convention,
with M = 100, 000 generations applied and m = 5000 rounds in each generation. This
represents each agent participating in an average of 50 games per generation. Where we
observe slow convergence, we increase M. Table 3.3 presents the different parameter

values used in Chapters 4 to 7.

In terms of reporting results, our primary metric is an assessment of cooperation. We
typically report the average cooperation over five runs. Cooperation is the number of

donations made as a percentage of the total number of games played.
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Parameter Description Role in Model The range of values | Notes
used
A The number of agents It represents the size | |A| = 100 The value is constant in
of the population all experiments
m The number of itera- | Each iteration consists | m = 5000 The value is constant in
tions within a genera- | of two agents taking all experiments
tion part in the donation
game
M The number of genera- | A specific number of | M = 100, 000 The value is constant in
tions generations must be all experiments except
chosen to control the for Section 7.5 where
experimental run the number of genera-
tions is increased to a
million
T; The set of traits held by | These traits make up | Agents are classified as | The default in this the-
an agent ¢ the reputation of the | single-trait agents, i.e. | sis is to assume that all
agent |T7| = 1 or as multi-trait | agents i are single-trait
agents, i.e. |A| < |Tj| > | agents, such as in Sec-
1 tions 4.4, 4.4.1, 5.3 and
5.4. However, specific
experiments agents al-
low agents to be multi-
trait agents such as in
Section 4.5 and Chap-
ters 6 and 7
b The benefit of receiving | The benefit is received | 1
a donation by the recipient
c The cost of donation The cost is incurred by | 0.7
the donor
T The reputation of a trait | Reputation deter- | Reputation is capped and
or an agent mines the value of a | allowed to vary in the in-
trait or an agent and | teger range [—5, 5]
is used for compar-
ison when donation
decisions are made
1A Mutation rate of action | Mutation randomly | 1%
rules assigns the agent one
of the eight action
rules
r Mutation rate of traits Mutation  randomly | 10% in all sections of
changes each agent | Chapter 5 except for Sec-
i’s trait into any other | tion 5.3.3 where various
trait rates are used
1B Mutation rate of blend- | Mutation  randomly | 1%
ing levels assigns agents one
of seven blending
levels identified in
Subsection 6.3.2

Table 3.3: An Experiment Scenario Table That Summarises Parameter Values Used
in Chapters 4 to 7.

3.7 Conclusions

In this chapter, we discussed existing models of indirect reciprocity and described how

the models are limited and need to be extended in order to explore shared identities.
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The limitation transpired in agents not being able to share reputations. We generalised
the reputation system by introducing traits to the existing model, thus allowing us to
investigate reputations based on traits rather than being based on the individual. Traits
represent features or characteristics that agents have; therefore, traits can be unique to an
agent or shared with others. The addition of traits vastly expands the range of scenarios

that can be simulated using the model.

Additionally, the chapter described the experimental setup for the following chapters.
We explained how action rules are used based on trait reputations. Furthermore, we sum-
marised how reputations are updated based on the donation decisions by agents. Finally,
we presented the reproduction step and discussed how agents adopt successful action rules
for selfish gain. This model provides a new basis for identity and assesses its impact on
cooperation, using the model of indirect reciprocity. This also provides the basis to further

develop understanding of concepts related to identity, such as stereotyping.
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Algorithm 1 Algorithm for the Basic Model of Indirect Reciprocity Based on the Repu-
tation of Traits

Require: Number of iterations m; Number of generations M ; set of agents A; set of traits

1:
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

T; set of binary action rules AR = (s;, u;,d;); cost ¢; benefit b; in-group interaction
probability S; mutation rate of action rules s 4; the set of agents that share at least
one trait with agent j = N;

for M generations do > Perform evolutionary simulation
Set f;=0Vie Aandr, =0VteT > Reset fitness and reputation
for m iterations do
j < U(A) > Select recipient (see Section 3.5.1)
p < U([0,1])
ifp < Sand |N;| > 0 then
i < U(N;) > Select random in-group donor
else if p > S and |N,| > 0 then
i+ U(N;) > Select random out-group donor
else
i< UA-{j}) > Select random donor
end if
> Apply action Rules (see Sections 3.4.3 and 3.5.2)
if (r'=r’ and s; = 1) > Compare equal
or (r' <7/ and u; = 1) > Compare upwards
or (r' > 7 and d; = 1) then > Compare downwards
re < min(5,ry + 1) > ¢ donates, increase reputation
fiefi—cfi< fi+0b > Update fitness
else > ¢ defects
if 77 > r then > Detect unjustified defection.
re < max(—5,1 — 1) > Decrease reputation
end if
end if
end for
> Reproduction stage (see Section 3.5.3)
fori € Ado
Jj <« R(A,f) > Roulette wheel based on fitness (see Section 3.5.3)
(s),u;, d}) < (s5,uj,d;) > i copies j’s action rules
if U([0,1]) < 114 then
(st,ul,d}) < U(AR) > Mutate action rules
end if
end for
fori € Ado
(8, us, d;) < (8, ul, db) > Update action rules for all agents
end for

34: end for




Chapter 4

Sharing Identity Through Traits and

Reputation

4.1 Introduction

Three interconnected concepts characterise an agent. These are identity, traits and repu-
tation. Traits are used as the basis for an individual’s identity, and traits carry a reputation
in their own right. This chapter investigates different structures for sharing reputation
through traits and their degree of impact on cooperation. Sharing can be disruptive to
cooperation as it creates an environment for shirkers to flourish. Shirkers exploit shared
reputations by using the reputation to gain donations without making any donations them-
selves, which is invoked by an agent ¢ having a defective strategy (i.e., s; = u; = d; = 0).
By experimenting with different sharing structures, in terms of the extent to which traits
are shared, we can assess how much cooperation can be sustained before shirking be-
comes a dominant strategy and disrupts the evolution of cooperation. Note that when
reputation is carried by traits, and individuals carry traits, there are many different ways
in which identity can be shared. The number of possible allocations of traits to agents is
a combinatorial problem, and therefore it is prudent to use a strategy to explore different

types of sharing.

Chapter 3 introduced a framework that enables the simulation of agents sharing repu-

tations through traits within an indirect reciprocity scenario. The approach is based on the
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idea that agents can have traits that may be shared with others rather than the convention
of traits held in isolation. Sharing can be established in various ways. In this chapter,
we structure the different types of trait sharing that can take place, and we assess the ef-
fects of this on cooperation. This method enables us to assess how much traits can be
shared before cooperation becomes infiltrated by shirkers and collapses. It also allows us

to investigate the impact of different types of sharing.

The chapter is structured into subsections as follows. In Section 4.2, we introduce
characterisation of sharing using definitions that define alternative types of sharing of
traits. In Section 4.3, we highlight the relationship of our model to the concept of stereo-
typing in psychology by showing how stereotyping can be modelled through reputation.

Agents share reputation by sharing of traits.

In Section 4.4, we present experimentation in which a single trait is shared with multi-
ple other agents to address how sensitive cooperation is to the number of agents that share
a single trait. In Subsection 4.4.1, we investigate how different structures of sharing can
impact cooperation by organising agents into smaller clusters (groupings) while sharing

the same number of traits.

While the previous sections focus on agents sharing single traits, Sections 4.5 and
4.5.1 focus on agents holding multiple traits in common. In Section 4.5, we show how
introducing a single multi-trait agent can impact cooperation when sharing traits with
single-trait agents. In Subsection 4.5.1, we introduce a second multi-trait agent to under-
stand the effect of having multiple multi-trait agents. Finally, in Section 4.6, we discuss

the implication of these results and their impact on cooperation.

4.2 Characterising the Sharing of Identity

In Chapter 3, we introduced our model of cooperation that adopts an indirect reciprocity

model with the use of traits to address identity that is composed from multiple sources.
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The model provides the option to implement many different types of reputation sharing,
where reputation is carried by each of the traits. As the number of ways that agents may
share traits is a combinatorial problem, an approach is needed to characterise different
types of trait sharing. To achieve this we introduce the following definitions which capture
how dependent agents are on each other in deriving their reputation; these definitions
follow those introduced in Section 3.4.1. Additionally we introduce key parameters that

are widely used in this chapter in Table 4.1.

Definition 7. For a trait ¢, the set of all agents that include ¢ as a trait in their reputation

is referred to as group t and denoted as Gy = {i € A : t € T;}.

Definition 8. The set of dependent agents is denoted N ={i : 35 € A—{i} with T;NT; #
0}.
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Figure 4.1: A simple visualisation of 15 agents showing the different ways that we
can structure the sharing of traits among agents. Agent 1 is an independent single-
trait agent. Agents 2 and 5 are single-trait dependent agents that have one trait
which they share. Agent 3, which has multiple traits, shares two traits with agent 4
and and a single trait with agent 6, making agent 3 dependent. The remaining agents
are independent.

In Figure 4.1, agents 1, 2, 5 and 6-15 are all single-trait agents. Note that if a single-

trait agent is also dependent, then they present a risk to cooperation if they are a shirker.
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Agents 3 and 4 are multi-trait agents. Multi-trait agents may also pose a threat to cooper-
ation if they are a dependent agent that holds multiple shared traits. The green cells in the

figure refer to dependent agents, and the red cells refer to the independent agents.

We note that potential cooperation may emerge with shirkers present if the population
sustains a sufficient number of agents that maintain donation behaviour. However, the
extent to which this is possible is not known, and how it relates to the number of traits held
by a multi-trait agent is also unknown. To investigate this, for the purposes of this chapter
we assume that an agent’s traits remain fixed throughout the experiment, i.e. agents cannot
change the traits that they have been assigned. This enables us to understand the potential
for cooperation to be sustained in fixed groups, as defined in Definition 7. We run each
experiment using the default parameters mentioned in Section 3.5.3. The experimental
results are obtained from five runs, each with a random seed. Each agent participates in

an average of 50 games per generation based on A = 100, M = 100000 and m = 5000.

Our experiments can be classified into two categories: firstly the effect of dependent
single-trait agents on the evolution of cooperation (Section 4.4); secondly the effect of
a dependent multi-trait agent on the evolution of cooperation (Section 4.5). In Section
4.4 we consider the number of agents able to hold a single trait between them before
cooperation collapses. We also consider the effects of agents being divided into smaller
sharing groups (Subsection 4.4.1) which allows more traits to be shared but by a smaller
number of agents. In Section 4.5 we consider the effect of a single agent sharing multiple
traits in the presence of single-trait agents on the evolution of cooperation. Finally in

Section 4.5.1 we explore the case of multiple agents sharing multiple traits.

Parameter(s) | Description Role in model Reference in chapter
The set of agents Defines a group of agents .
G that share trait ¢ sharing the same trait(s). Section 4.4
T The set of traits Fhat Agent .reputatlon is built upon Section 4.4
belong to agent ¢ the traits that they have.
Used to determine the number
N’ The set of dependent agents | of agents that share at Subsection 4.4.1
least one trait.

Table 4.1: The Sharing Parameters Used in Chapters 4 to 7.
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4.3 Stereotyping

As our model represents agents’ reputation through shared traits, we note that it relates to
concepts surrounding identity more widely. This section presents how our model provides
a way of modelling stereotyping in a computational form and the relationship between

stereotyping and cooperation.

As seen in Section 2.5.1, reputation is required for cooperation to emerge within an
indirect reciprocity scenario. Within our model, traits are used as the basis for an indi-
vidual’s identity, and traits carry reputations in their own right. When agents share traits,
they form groups based on features that they share or characteristics that they have, which
allows agents to share reputations. Similarly, in psychology social categorisation refers
to individuals being grouped based on features, traits, that they have regardless of their
actions [183, 187]. Social categorisation naturally leads to stereotyping as it allows in-
dividuals to take short cuts when judging others, this can be useful when individuals are
unable to recognise others based on their individuality but can identify them through their
groups [74, 193, 194]. For example, teachers may not be familiar with all the students in

their school but can recognise a student through their school uniform.

In our model traits are used as a proxy for indirectly assessing an individual’s repu-
tation, allowing for stereotyping to take place, thus allowing agents to disconnect their
actions from their reputation. In the context of cooperation, this means that elements of
an individual’s reputation becomes dependent on the donation behaviour of others. In
turn, this allows agents to deploy defective strategies: that is an agent can avoid paying
the full costs of donation but receive donations based on the reputation aligning with its
associated traits. Therefore, shirkers exploit reputations through stereotyping by being

associated with other agents.

The rest of this chapter examines how both repeated sharing of the same trait, and shar-
ing across multiple traits, affects the emergence of cooperation. The mechanism provides

an assessment of the costs associated with shirking, in terms of the effect on coopera-
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tion. Specifically, we explore how shirking can exploit cooperation and consider different

sharing structures that limit the effects of shirking while allowing cooperation to emerge.

4.4 Agents Sharing a Single Trait

In this section, we consider the effects of sharing a single trait in a set of single-trait agents.
This experiment allows us to determine the number of agents that can share a single-trait
while sustaining cooperation. We begin by assigning G as the set of all agents 7 having
T; = {1}. Figure 4.2 presents an example schema for this arrangement of traits. Note
that if all agents are single-trait and independent, their reputation is based entirely on their
own past interactions and the results in [199] are replicated. At the other extreme, if all
agents are dependent and share a single trait, then agents are (almost) entirely judged on
the actions of others, and a greater incentive to defect can be expected. Additionally, in
this experiment we vary parameter S (Section 3.5.1) to determine whether limiting the
interaction of (;’s agents in playing the donation game with each other would present an

effect.

Scenario 1. Input k£, the desired size of G;. k agents share a single trait and the

|A| — k remaining agents each have a single unique trait:

T, = {1} forl <i<k
Tk:+1 = {2}
Tira = {3}

T = {|A]-k+1}

Each agent is assigned an action rule at random from the eight possible.

Figure 4.3 presents the results of increasing the size of G; and varying parameter
S. The size of G, in this case, is equal to |N’|. We use four different sizes to deter-

mine how many agents can share a trait before cooperation collapses these are |N’'| €
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{10, 15,20, 30}. Two patterns emerge: firstly cooperation declines rapidly when at least
15 dependent single-trait agents share a common trait. Secondly, the average cooperation

declines as S increases.

This occurs because as dependent single-trait agents share their reputation with each
other, they lack a distinguishable personal reputation. This disadvantages individuals
who bear donation costs alone while the reputational benefits of donation are necessarily
shared with others in the group ;. This stereotyping effect provides an opportunity for
defective strategies to take hold, where free-riders can benefit from enjoying a shared
reputation without donating. However, this cannot be sustained at scale (e.g., beyond 15
agents), leading to the global collapse of cooperation, because the increase in reputation

of a shared trait results in greater opportunity for exploitation by free-riders.

Recall from Section 3.5.3 that agents copy action rules based on their relative success
as measured by f;. In this scenario, when shirkers exploit reputations and incur no costs,
they, in turn, gain a high f;, resulting in a higher number of shirkers in the population.
Figures 4.4, 4.5 and 4.6 highlight the key action rules (defection strategy (0, 0, 0) and dis-
crimination strategy (1, 1, 0)) that occur within populations considered as subsequent, but
not consecutive, generations when |G| = 10. Figures 4.4, 4.5 and 4.6 present three dif-
ferent values of S (0, 0.5, 1). It is known [199] that the discrimination strategy dominates
when all agents carry their own unique reputation. Prioritising interaction with those who
share the same trait (i.e., high S) accelerates the collapse of cooperation further as the
discriminative strategy directs donations towards agents with a similar reputation. When
S is low, dependent single-trait agents interact mainly with those who do not share their
reputation as they are still incentivised to adopt cooperative strategies to maximise their

fitness with a reduced risk of exploitation.
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Figure 4.2: A simple visualisation of 15 agents showing single-trait agents sharing a
single trait. In this example, five dependent agents share a single trait, i.e. |G;| =5
and ¢t = 1. The green cells refer to dependent agents, and red cells refer to indepen-
dent agents.
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Figure 4.3: The average cooperation recorded as a result of agents sharing a single
trait with different sizes of G; and with different implementation of parameter S.
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Figure 4.4: An example of the distribution of action rules by subsequent but not
consecutive generations for the set of single-trait dependent agents GG, with |G| = 10
and parameter S = (0 shows dominance by discriminators (1, 1, 0) after the first 1000
generations.
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Figure 4.5: A snapshot of the distribution of action rules in subsequent but not con-
secutive generations for the sets of single-trait dependent agents GG, with |G| = 10
and parameter S = 0.5 shows that discriminators (1, 1,0) dominate the population
but only after 6000 generations.
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Figure 4.6: A snapshot of the distribution of action rules in specific subsequent but
not consecutive generations for the sets of single-trait dependent agents (; with
|G1| = 10 and parameter S = 1.0 shows that defectors quickly dominate the pop-
ulation within the first 10 generations only as they are able to exploit sharing a rep-
utation with other agents.

4.4.1 Multiple Sharing Groups

In this section, we consider the effects of dividing agents into smaller sharing groups as
opposed to a single group. The results from Section 4.4 show that cooperation could be
sustained when the number of agents in |G| is small. This section considers the effect
of sharing structures on cooperation by employing groups of equal size while maintain-
ing the number of agents that share a trait from Section 4.4. For example, using this
approach, we can consider the difference between a single group of 10 and two groups of

five members or five groups of two members.

Recall that agents are referred to as either independent or dependent (see Definitions
1 and 2). Here we assign dependant agents to one of several groups in which they share
a single trait with the other members of the group. Each group has the same size. In this

experiment, two sizes are considered: groups of size 2 and groups of size 5. Therefore if
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we have ten individuals sharing reputations, | N'| = 10, they are divided into 5 groups of
size 2 or 2 groups of size 5. Figures 4.7 and 4.8 visualises the distribution of agents into
the groups. The total number of dependent agents is kept the same as in Section 4.4, i.e.

IN’| € {10,15,20,30}".

Two key findings can be observed from the results in Figures 4.9, 4.10, 4.11, and
4.12. Firstly, when |G| = 2, as in Figure 4.7, cooperation is maintained at a higher rate
than when |G| = 5, as in Figure 4.8. Interestingly, both cases yield better cooperation
than when multiple agents share a single trait (Section 4.4). However, in Figure 4.12
both |G| = 5 and the single group of agents sharing a single trait yield a cooperation
below 1%. In other words, when traits are shared between a smaller number of agents,
cooperation is sustained at a higher level. The results further reveal that when parameter S
rises towards S = 1, cooperation decreases. The results indicate that higher cooperation
is obtained when the number of individuals sharing traits is small and when individuals

interact outside of their shared trait.

Scenario 2. Input £, the total number of dependent agents and g, the number of
dependent groups. n = L%j agents share each of the first g traits, and the |A| — gn

remaining agents each have a single unique trait:

T, = {1} forl1 <i<n
T, = {2} forn+1<i<2n
T, = {g} for (g —1)n+1<i<gn

TQNH = {9+1}

Tgn+2 = {g+2}

Tia = {9+ (Al —gn)}

Each agent is assigned an action rule at random from the eight possible.

Note in the case of |G| = 2 the range was |N’| € {10, 14, 20, 30}
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Figure 4.7: A simple visualisation of 15 single-trait agents in which traits are shared
by groups of two. In this example, ten dependent single-trait agents, |N'| = 10, are
divided into groups of two |G;| = 2, where ¢ € {1,2,3,4,5}. The green cells refer to
dependent agents, and red cells refer to independent agents.
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Figure 4.8: A simple visualisation of 15 single-trait agents in which traits are shared
by groups of five. In this example, ten dependent single-trait agents, |N'| = 10,
are divided into groups of five |G;| = 5, where ¢t € {1,2}. The green cells refer to
dependent agents, and red cells refer to independent agents.
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Figure 4.9: The average cooperation recorded as a result of 10 single-trait agents
sharing a trait in different sharing groups using different values for parameter S.
Cooperation decreases as parameter S gets closer to 1. The decrease in cooperation
is reduced as the number of agents sharing the same trait decreases.
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Figure 4.10: The average cooperation recorded as a result of 15 single-trait agents
sharing a trait in different sharing groups using different values for parameter S.
Cooperation decreases as parameter S gets closer to 1. The decrease in cooperation
is reduced as the number of agents sharing the same trait decreases.
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Figure 4.11: The average cooperation recorded as a result of 20 single-trait agents
sharing a trait in different sharing groups using different values for parameter 5.
Cooperation decreases as parameter S gets closer to 1. The decrease in cooperation
is reduced as the number of agents sharing the same trait decreases.
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Figure 4.12: The average cooperation recorded as a result of 30 single-trait agents
sharing a trait in different sharing groups using different values for parameter S.
Cooperation decreases as parameter S gets closer to 1. The decrease in cooperation
is reduced as the number of agents sharing the same trait decreases. Note that both
the groups of 5 and the single group report under 1% cooperation, additionally when
parameter S > 0.3, groups of 2 also record cooperation below 1%.
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Similar to Section 4.4, the results show that cooperation emerges when group sizes are
small (15 or less), and the number of individuals sharing traits is limited, i.e. the smaller
|N’| and |G| are, the higher the cooperation. Next, we observe that when individuals are
encouraged to interact with agents outside of their shared trait group, i.e. when S = 0,
cooperation increases for the entire population. The observation holds true for all tested
cases |N'| = 10, 15, 20, 30, as interactions get limited to only those agents who share a
common trait, i.e. the closer S is to 1, the lower the cooperation. Finally, we noticed that
as groups split, cooperation begins to evolve as can be seen in Figures 4.9, 4.10, 4.11, and

4.12.

There are several reasons why smaller groups enable the evolution of cooperation.
Small groups have a limited number of individuals; this limits the number of different
strategies (social comparison heuristics) that individuals carry. The discriminator strategy
always dominates a cooperative population due to their ability to choose which individ-
uals to donate to, which helps to eliminate defector strategies from the population. The
reputation of a group depends on its members’ actions. If all members of a group fail
to donate, their reputation rapidly declines. When the reputation of a group is low, other
individuals in the population stop donating to the group, leaving its members vulnerable
as they are unable to build a fitness level, f, to propagate in future generations. This trend
allows individuals to quickly identify defectors within groups but only in the case that the
group has a small number of individuals, in comparison to the population, resulting in a
rapid decline of the group’s reputation. The trend limits the exploitation of reputation by

defectors within a group that has cooperative members.

In contrast, larger groups are unable to sustain cooperation as defectors successfully
take advantage of the group. Once a group maintains a high reputation, defectors begin to
exploit it for their own gain. In order for defectors to exploit a reputation, a group must
have a mix of strategies within its population. If a group consisted of only one strategy,
then the strategy becomes visible, especially within smaller groups. Smaller groups are

more transparent than bigger groups, where the strategies held by group members can
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be recognised quickly. Therefore if defectors wanted to exploit a group, they could take
advantage of a bigger group far more easily than would be the case with smaller groups.
Additionally, when individuals only play the game within their in-group, defectors exploit

the fact that everyone would have the same reputation and rapidly increase their fitness

(payoff).

4.5 Agents With Multiple Shared Traits

In this section, we consider the effects of introducing a single dependent multi-trait agent
in a population of single-trait agents. By increasing the number of traits that a single
agent shares with multiple agents, we can consider a more complex structure of sharing
beyond the ones presented in Sections 4.4 and 4.4.1. Figure 4.13 presents the schema for
this arrangement. In this section, |7} |, see Table 4.1, is varied in a range between (2, 100)

allowing us to consider sharing traits between agent 1 and the whole population.

Scenario 3. Input £, the total number of dependent agents. Agent 1 holds the first &
traits, the next £ — 1 agents each have a single trait in common with agent 1 (and no

others), and the |A| — k remaining agents each have a single unique trait:

T1 - {1,,]{}}
T, = {i} for2 <i < |A|

Each agent is assigned an action rule at random from the eight possible.

The results (Figure 4.14) show that as the number of traits held by agent 1 increases
(i.e., |T1| increases), cooperation diminishes. The trend occurs regardless of limiting
interactions by parameter S, i.e., whether agent 1 interacts with those who have at least
one trait in common. The reputation of the sharing agent, agent 1, is dispersed across
dependent single-trait agents that between themselves have no trait in common. The

dispersion of reputation helps to suppress the rise of defective action rules, as compared to

the previous scenario (Section 4.4). In fact, | 71| can reach a considerable size (e.g., 30-45
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traits) before cooperation starts to diminish significantly, i.e., the number of sharing agents
is relatively higher than that of Section 4.4. Figure 4.15 shows how defective action rules
are suppressed after dominating in the first 3000 generations as agent 1 holds 40 shared
traits. Figure 4.14 shows a slight increase when |7} | = 40, as a result of genetic drift, the

fluctuation could be eliminated if the number of runs is increased from five.

In this scenario, single-trait dependent agents rely entirely on themselves and the
multi-trait agent for their reputation. Each single-trait dependent agent can also free
ride on the single multi-trait agent, and this opens the opportunity for defection to es-
tablish itself, although to a lesser extent than the case presented in Section 4.4. When
the number of traits of the multi-trait agent is relatively small, the presence of free-riding
dependent single-trait agents can be sustained without too much disruption to the reputa-
tion of the multi-trait agent. As |77| increases, and the number of dependent single-trait
agents increases, there is a greater opportunity for free-riding action rules to take hold
(e.g., (s;,u;,d;) = (0,0,0)). Figure 4.16 illustrates this trend as agent 1 holds 70 traits,

and the defector action rule dominates the population.

As the number of dependent single-trait agents increases, the number of independent
single-trait agents diminishes. This trend promotes the collapse of cooperation. As soon
as a defective strategy takes hold across the population, it presents an opportunity for
defective strategies to spread to other agents. Interestingly, S has relatively little impact
on whether dependent agents prioritise interacting with those that have a common trait.

However, they are less likely to have an equal reputation in this instance.
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Figure 4.13: A simple visualisation of 15 agents, in which a multi-trait dependent
agent shares traits with single-trait agents where |N|' = 6. The green cells refer to
dependent agents, and the red cells refer to independent agents.
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Figure 4.14: The average cooperation recorded as a result of a multi-trait agent,
agent 1, sharing traits with single-trait agents using three different values for pa-
rameter S. The number of traits being shared by agent 1 is varied between 2 and
100 traits.
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Figure 4.15: A snapshot of the distribution of action rules in subsequent but not
consecutive generations when multi-trait agent 1 has 40 traits shared with single-
trait agents and parameter S = 0.5.
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Figure 4.16: A snapshot of the distribution of action rules in subsequent but not
consecutive generations when multi-trait agent 1 has 70 traits shared with single-
trait agents and parameter S = 0.5.
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4.5.1 Multiple Agents With Multiple Traits

In this subsection, a second multi-trait dependent agent is introduced to the population.
The experiment examines what effect does the addition of a second multi-trait agent have
on cooperation and specifically what happens when it overlaps with the first agent such
as 15 C T;. Figure 4.17 shows a simple schema of this scenario. To achieve the overlap
effect, we vary 75, while fixing the number of traits in 77 to examine how flexible this
structure of sharing is before cooperation collapses. Three set of traits were investigated,
|T1] = 25,35,50. Note that in this experiment parameter S = 0, i.e., agents are not
limited in their interactions to only those sharing a trait with them. Parameter S = 0 was
chosen as the results in Section 4.5, showed that parameter S has no significance on the

outcome of cooperation.

Figure 4.18 shows the effect of varying |7, N T}|, that is the extent to which 75 has
the same traits as 7). The results in the figure show that high proportions of shared traits
through multi-trait agents undermine the reputation system. Because the second multi-
trait agent can hold a large subset of the first agent’s traits, it can heavily disrupt the
first agent’s reputation, by using defection as its action rule. The results are consistent
with Figure 4.14 (Section 4.5) because as the percentage of overlap between agents 1
and 2 increases, cooperation correspondingly decreases. However, the results show that
introducing the second agent decreases cooperation even further in all three tested cases.
Note that in the case of |77| = 25 the decrease is not as rapid as 77| = 35 and |T3| =
50. In the cases of |11| = 25and35, the decrease in cooperation is not monotonic as
a result of only having five runs. Once the number of runs is increased, the fluctuation
would lessen. This result indicates that the number of traits being shared is significant.
The increase in the overlap between agents 1 and 2 is a factor here for the decrease in
cooperation. The decline in cooperation is more pronounced than that of a dependent
single-trait agent sharing reputation with the multi-trait dependent agent, and increases as

|T5 N T} | increases.
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Scenario 4. Input £, the total number of dependent agents, and \, representing the
overlap in traits between agent 1 and 2. Agent 1 holds the first k traits, agent 2 holds
the first | Ak | traits, the next & — 2 agents have a single trait in common with agent 1
and no traits in common with agents 3,4, ..., |A|, and the |A| — k remaining agents

each have a single unique trait:

v = {1,...,k}
T, = {1,...,|\k]}
T, = {i} for 3 <i < |A]

Each agent is assigned an action rule at random from the eight possible.

Agent

151413121110 9 8 76 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trait

Figure 4.17: A simple visualisation of 15 agents, in which two multi-trait dependent
agent share traits with single-trait agents. The green cells refer to dependent agents,
and the red cells refer to independent agents.
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Figure 4.18: The average cooperation produced as a function of the size of the in-
tersection between the sets belonging to multi-trait agents one and two for different
values of |77 | where S = 0.

4.6 Discussion

The results in this chapter indicate that the sharing of reputation through common traits
significantly disrupts reputation systems for cooperation. By using traits as proxies for
indirectly assessing an individual’s reputation, an opportunity is introduced for agents to
disconnect their actions from their reputation. Agents can deploy defective strategies: that
is an agent can avoid paying the full costs of donation but receive donations based on the
reputation aligning with its associated traits. By exploiting reputations for their own gain,
these agents spread their strategy by having a higher f; than the rest of the population.

This spread eventually causes cooperation to collapse.

Single-trait and multi-trait agents differentiate how other agents can share their traits.
Single-trait agents have a reduced chance of others having a trait in common. However,
when another agent shares their trait, their reputation becomes susceptible to the actions

of a third party. As single-trait agents only have one trait, their reputation is at risk when
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shared with just one defective agent, as seen in Subsection 4.4.1. Further sharing increases
the risk on their reputation, leading cooperation to collapse eventually. Similarly, when
agents prioritise interaction with those who share the same trait (i.e., high .S) the collapse

of cooperation is accelerated.

In contrast, for multi-trait agents, increasing the number of traits can give them a
chance to retain an element of unique personal identity, through traits that are not shared
with others. However, cooperation does diminish as the number of traits held by the
multi-trait agent increases. Moreover, for multi-trait agents, sharing can occur with many
agents that have no dependency between them, in terms of common traits. On the other

hand, parameter S did not show any influence on cooperation.

The results show that reasonable levels of cooperation can be sustained while there is
a modest level of sharing of identity in the population, after which cooperation collapses.
For example, a single trait being shared by 15 agents yields cooperation at about 70% and
a single agent sharing traits with 40 other agents yields cooperation above 60%. These

results highlight the importance of individual versus group identity in reputation systems.

4.7 Conclusions

Given the enormous number of possible ways in which traits can be shared, in this chapter,
our focus has concerned assessing basic aspects of sharing, surrounding the number of
traits held by an agent. The results show that reasonable levels of cooperation can be
sustained while there is a modest level of sharing of identity in the population, after which
cooperation collapses. The collapse in cooperation is attributed to free-riders who exploit
the shared reputation for their own gain. However, their influence can be limited in several
ways. Firstly, by changing the structure of sharing either by limiting the number of shared
traits or by limiting the number of dependent agents. Secondly, by balancing the number
of single-trait agents and multi-trait agents. Thirdly, by enabling dependent agents to

interact with independent agents.
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Furthermore, our results show that dependent single-trait agents have a strong influ-
ence on other agents’ reputations as their reputation relies on a single trait. Similarly,
the inability of agents to change their traits allows defective strategies to take hold on the
population. This restriction on the trait can be deterred by allowing agents to copy other
successful traits similar to the way that they copy successful action rules. In the next
chapter, we investigate allowing agents to copy traits based on their level of success and
its influence on cooperation. This relaxes the constraint that sharing structures for identity
are externally fixed, and allows agents the freedom to pursue identity that maximises their

payoff.



Chapter 5

Evolution of Identity through Traits

and the Impact on Cooperation

5.1 Introduction

In the previous chapter, we assumed that agents held fixed traits, and these did not change
when an agent’s strategy was updated. In this chapter, we relax this assumption by intro-
ducing a new model that investigates different structures for sharing reputation through
traits and their degree of impact on cooperation. Specifically, we investigate whether
copying traits when agents update their cooperation strategy allows agents to sustain co-

operation. Furthermore, we evaluate this approach’s effect on combating shirkers.

As mentioned in Chapter 4, there are many ways in which agents can share reputa-
tions. In this thesis, agents share reputations through shared traits that represent identities.
While the previous chapter allowed agents to update their action rules after every genera-
tion, this chapter investigates the impact of allowing agents to also update their traits after
every generation. The evolution of traits offers a basis for an agent to change their identity
by allowing agents to copy traits based on the relative success of agents who subscribe
to that trait as measured by f;. It also helps us to understand how and why behavioural

strategies involving identity, such as whitewashing, function.

The chapter is structured into subsections as follows. In Section 5.2, we introduce the

concept of inherited traits and explain how allowing agents to change their identities en-
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ables the influence of shirkers to be combated. In Section 5.3, we present experimentation
where agents update both their identity and their action rules. This evolution allows agents
to change their identity and their behaviour strategy by pursuing the traits and strategies

of those deemed most successful. We track how this evolution affects cooperation.

While the previous section, 5.3, allowed agents to update their action rules, in Section
5.4, we limit evolution in an alternative way, by only allowing agents to evolve their traits
without the action rules. Finally, in Section 5.5, we discuss the implications of these

results and their impact on cooperation.

5.2 The Evolution of Identity

An agent’s ability to change traits and pursue the traits of those deemed most successful
is referred to here as the evolution of traits. This is an evolutionary form of *whitewash-
ing’, where identity becomes a strategic component that is mutable in pursuit of payoff.
Understanding how traits evolve helps us to understand how the structure of traits and the

freedom of agents in changing them affects cooperation through indirect reciprocity.

Recall that traits are used as the basis for an individual’s identity. Therefore the abil-
ity to change traits allows agents to change their identity. The option to change identity
leads to opportunities for agents to gain an advantage. Whitewashing is a term that has
been used to describe the action of agents who change their identities in order to avoid
punishment from other agents [64]. The term has been mostly used to describe this ac-
tion within peer-to-peer reputation systems where users have been able to replace their
pseudonyms to escape from any punishment due to their bad reputation. Whitewashing
or re-entry attacks enable free-riders to restore their reputation to gain some short-term
payoff [90]. Only limited research has studied the subject within an evolutionary perspec-
tive with a view to gathering an understanding of whitewashing in cooperative situations
[63]. Whitewashing reduces the opportunity for agents to accumulate a bad reputation

and opens up opportunities for defection as a consequence.
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In Chapter 4, we considered the evolution of behavioural action rules (strategies) while
agent traits did not evolve and remained fixed. In this chapter, we consider the effects of
also allowing agents to update their identity by changing their trait during the reproduction
phase. To explore this scenario, we assume that all agents 7 are single-trait agents (|7;| =
1). However, agents can share (and copy) the trait of another agent during reproduction.
Specifically, agents can be independent or dependent without limitation, but all agents are
single-trait agents. The probability of an agent ¢ changing to the identity of another agent
J is proportional to j’s payoff relative to the whole population at the end of a generation.
In Algorithm 2, we highlight how agents change their action rules and traits relative to the

success of the previous generation.

This chapter uses the default parameters of A = 100, M = 100000 and m = 5000,
which results in each agent participating in an average of 50 games per generation. At the
end of each generation, the reproduction phase takes place. Recall from Section 3.5.3 that
reproduction is when agents update their action rules. Similarly, to allow agents to update
their traits, agents will probabilistically copy other members’ traits based on their relative

success as measured by fitness (f;), i.e. the evolution of traits takes place.

An important step within the reproduction phase is mutation. Mutation changes the
action rules or traits for an agent with a small probability. Specifically, after an agent is
assigned a new set of action rules and a new trait, based on fitness, mutation is applied.
In Chapter 4, we used mutation to change agents’ action rules with a probability of 1%.
In this chapter, we introduce trait mutation, p7, which randomly assigns a trait to agents
other than the one that they inherited. Throughout the chapter, we use a trait mutation
rate of pp = %o unless otherwise stated (such as in Section 5.3.3). In this case, mutation
randomly changes each agent ¢’s trait into any other trait, ¢ € 7' — {¢;}. The mutation
rate of 10% allows agents to move between traits invariably but not too often. At this rate,
we found that cooperators have ample time to thrive without defectors taking advantage
of the trait’s reputation. This finding is consistent with findings by other researchers [71,

186] and is discussed further in Section 5.3 and in Figure 5.8
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Algorithm 2 Algorithm for Indirect Reciprocity Based on the Reputation of Traits Where
Agent Traits Evolve Using Payoff, as Fitness, and Mutation

Require: Number of iterations m; Number of generations M set of agents A; set of traits
T set of binary action rules AR = (s;, u;,d;); cost ¢; benefit b; in-group interaction
probability S; mutation rate of action rules 1 4; The set of agents that share at least
one trait with agent 7 /V;; mutation rate of traits fi7;

1: for M generations do > Perform evolutionary simulation
2 Setf,=0Vie Aandr, =0Vt €T > Reset fitness and reputation
3 for m iterations do

4: j <« U(A) > Select recipient (see Section 3.5.1)

5: p <« U([0,1])

6 if p < Sand |N;| > 0 then

7 i < U(N;) > Select random in-group donor

8 elseif p > S and |N,| > 0 then

9: i+ U(N;) > Select random out-group donor

10: else

11 i< UA-{j}) > Select random donor

12: end if

13: > Apply action Rules (see Sections 3.4.3 and 3.5.2)

14: if (r'=r’ and s; = 1) > Compare equal
or (r' <riandu; = 1) > Compare upwards
or (r' > 7 and d; = 1) then > Compare downwards

15: e <— min(5,ry + 1) > ¢ donates, increase reputation

16: fis—fi—cafi<fi+0b > Update fitness

17: else > ¢ defects

18: if 77 > r' then > Detect unjustified defection.

19: re < max(—5,1, — 1) > Decrease reputation

20: end if

21: end if

22: end for

23: > Reproduction stage (see Sections 3.5.3 and 5.2)
24: for i € Ado

25: Jj< R(A,f) > Roulette wheel based on fitness
26: (sh,us, d}) < (84, u4,d;) > 4 copies j’s action rules
27: 1!« T; > i copies j’s traits
28: if U([0,1]) < p14 then

29: (st,ul,d}) < U(AR) > Mutate action rules
30: end if

31: if U([0,1]) < pr then

32: T« U(T) > Mutate traits
33: end if

34: end for

35: for: € Ado

36: (8, us, d;) < (s, ul, db) > Update action rules for all agents
37: T, « T/ > Update traits for all agents

38: end for
39: end for
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5.3 The Evolution of Traits

In this section, we consider the effects of evolving agents’ traits for a set of single-trait
agents on cooperation and the structure of the population. This experiment allows us to
determine whether the evolution of traits can sustain cooperation and mitgate against the
effect of free-riding. We begin by assigning all agents 7 as independent single-trait agents
with |T'| = |A|. The completion of a generation initiates the reproduction phase where
agents copy the action rules and traits of other agents based on their relative success as
measured by f; (lines 23-38 in Algorithm 2). Therefore, scenarios with different starting
configurations are not considered as they have similar outcomes. Additionally, in this
experiment, we vary parameter S (Section 3.5.1) to determine the effect of limiting the

interaction of agents to their own trait group on cooperation.

The results in Figure 5.1 indicate that for the lowest values of .S only limited coopera-
tion is achieved, while it increases with higher rates of in-group interactions. Cooperation
achieves an average of 78.06% when individuals only interact with those having the same
trait (S = 1). When S = 0 cooperation never reaches a level above 10% on average
over 100,000 generations. The results are in contrast with the outcomes obtained where
identity remained fixed throughout the simulation, for which increasing the proportion of

in-group interactions produced a sharp decrease in cooperative behaviour (see Chapter 4).

In the following subsections, we analyse the results in further detail. In Subsec-
tion 5.3.1, we explore why cooperation is higher when interactions are limited to traits
(S = 1). Similarly in Subsection 5.3.2, we investigate the lower cooperation achieved by
agents when they exclusively interact with agents outside of their trait group (S = 0). Fi-
nally in Subsection 5.3.3, we examine the impact of mutation on traits and how it affects

cooperation.
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Figure 5.1: The average cooperation recorded as a result of the evolution of traits
and a trait mutation of ;i = 10% with different values of parameter S. The result
represents an average of five different seeded runs of the same experiment where all
agents ¢ are single-trait agents.

5.3.1 Limiting Interactions to Within Traits

In this subsection, we analyse a single run of an experiment where S = 1 and traits are
allowed to evolve. The analysis allows us to explore the reasons behind the cooperation
achieved. In this section, it is assumed that all agents ¢ are single-trait agents (|7;| =
1). Figure 5.1 shows that cooperation achieves an average of 78.06% when individuals
only interact with those having the same trait (S = 1). To explore why cooperation
sustains at such a high level, we need to examine the journey of agents and cooperation
throughout each generation in a single experiment. Recall that when S = 1, interactions
of dependent agents are limited to agents who share their trait. This limit leads to the
reputation system becoming redundant because dependent agents only interact with those
that have the same trait, and therefore the same reputation. This simplifies an agent’s
behaviour which becomes entirely dependent on s;, and u; and d; are no longer used

because all agents have the same reputation: simply an agent ¢ cooperates if s; = 1,
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otherwise it defects.

At the beginning of the experiment, each agent ¢ is assigned an independent single trait
not shared with others. As agents evolve, their traits may be shared, and the agents become
dependent. Figure 5.2 shows that agents consolidate around a small number of traits in
each generation. Additionally, the figure shows that a trait can be shared with up to 30
agents before cooperation collapses, which is in line with previous experimentation where
cooperation cannot be sustained when several agents share the same trait (see Figure 4.3).
The collapse in cooperation is attributed to defectors infiltrating a trait group, that is as a
trait expands in size there is a higher chance of defectors joining and exploiting the trait’s
reputation. The infiltration of traits by defectors leads to agents alternating between the
cooperative strategy and the defector strategy. The struggle for dominance between the
cooperators (s; = 1) and defectors (s; = 0) is seen in Figure 5.3. Here cooperative agents
establish themselves in common traits and are then disrupted by defectors who adopt the
same identity before they mutate to a new trait. Figure 5.4 shows that cooperative agents
dominate the most shared traits. Therefore, the evolution of traits in the case of S = 1
favours cooperators as it allows them to protect their trait from defectors by mutating once

a defector agent is identified in the shared trait.

The pattern of agents alternating between strategies in each generation leads to a fluc-
tuating cooperation. Figure 5.5 shows how that cooperation reaches high levels in some
generations followed by lower levels of cooperation, leading to an average of above 70%.
This result is directly attributed to the agents’ strategies of that generation. This is noted
specifically on the 9000th generation where defectors dominate the population in Figure

5.3.
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Figure 5.2: An example of the distribution of traits by subsequent but not consec-
utive generations as agents evolve their traits where parameter S = 1. In the first
generation, all agents i are assigned as independent single-trait agents, and at the
completion of each generation, agents evolve their traits and action rules and apply
a mutation of 10%. Each colour represents a single trait with a minimum of eight
agents. The yellow bar in each generation designates traits with a smaller number
of agents, indicating that agents consolidate around a small number of traits per
generation.
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Figure 5.3: A snapshot of the distribution of action rules in subsequent but not con-
secutive generations, where S = 1 and agents evolve their traits, shows that coop-
erators (s; = 1) are a more dominant strategy than defectors. However, defectors
(s; = 0) continue to infiltrate the population and can topple cooperators in some
generations.
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Figure 5.4: A snapshot of the distribution of action rules within the most shared
traits, at fixed generations (10 to 100, 000), when agents evolve their traits and pa-
rameter S = 1. Traits with a higher number of agents tend to favour being coopera-
tors (s; = 1) rather than being defectors (s; = 0).
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Figure 5.5: The cooperation recorded as a result of a single run where agents evolve
their action rules and traits with a trait mutation of ;7 = 10% and parameter S =
1. The single run shows that cooperation has a fluctuating trend throughout the
100, 000 generations when evolving both identity and action rules. The fluctuating
trend is attributed to the struggle between cooperators and defectors and this can be
seen in Figure 5.3.

To summarise, we found that the set of interacting cooperators sharing the same trait

maximises payoff and, as a result, attracts other agents, increasing their number. The
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increase of agents having a trait takes place as long as their trait group does not include
defectors (i.e., agents ¢ with s; = 0) that take advantage of shared reputations without
donating. This provides opportunities for defective strategies to take hold and cooperation
collapses. In this context, trait mutation allows cooperators to escape from defectors and
move to an alternative trait. Similar behaviour is observed for high proportions of in-

group interaction e.g. when S = 0.5, 0.6, 0.8.

5.3.2 Allowing Agents to Interact With Out of Trait Agents

Following on from Subsection 5.3.1, in this subsection, we analyse a single run of an
experiment where S = 0 and traits are allowed to evolve. We adopt the same assumption
in this experiment, where all agents ¢ are single-trait agents (|7;| = 1). Figure 5.1 shows
the average cooperation of five different runs achieving less than 10% when individuals

interact with any agent outside of their trait (S = 0).

To understand why cooperation achieves such a low rate, we examine a single run of
the experiment. From Figure 5.6 it can be deduced that the defective strategy (s;, u;,d; =
(0,0,0)) is the dominant strategy in most generations. As agents are only allowed to
interact with others outside their shared trait, donor agents cannot recognise individual
agents. As such, defectors are able to exploit reputations that they share with others. In
turn, defectors expand their payoff, allowing them to evolve within the population through
reproduction, and eventually, they take over the population. This pattern is similar to the
one discussed in Section 4.4, where defectors were able to exploit traits that had more

than 15 members.

Although the defector strategy (s;, u;, d; = (0,0, 0)) is noted as the dominant strategy
in most generations a fluctuating cooperation was still produced. In Figure 5.7 cooper-
ation fluctuated at lower rates between generations leading to the low average of 10%.
The fluctuation shows that cooperation was achieved at a higher rate in some generations

before defective agents were able to exploit the trait.
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Figure 5.6: A snapshot of the distribution of action rules in subsequent but not con-
secutive generations when agents evolve their traits and S = 0 shows the most fre-
quent strategy within the population is the defector strategy (0,0,0). Early genera-
tions were dominated by the discriminator strategy, (1,1,0). The remaining action
rules, see Subsection 3.4.3, also appear in the population. This explains the lack of
cooperation within the population that is displayed in Figure 5.7.
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Figure 5.7: The cooperation recorded as a result of a single run of agents evolving
their action rules and traits with a trait mutation of ;7 = 10% and parameter S = 0.
The run shows that cooperation fluctuates throughout the 100, 000 generations when
S = 0 producing a cooperation with an average below 10% when evolving both
identity and action rules.
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5.3.3 Sensitivity of Mutation

In this subsection, we explore the influence of mutation on cooperation when agents are
allowed to evolve both their traits and their action rules. In Subsections 5.3.1 and 5.3.2 a
mutation of 7 = 10% was used on traits. Therefore, agents had a probability of 10% to
mutate to a different trait at the end of a generation. This subsection, explores different
mutation rates and their effect on both ends of parameter .S, i.e. when S = 0 and S = 1.

Note that the mutation used here is applied to traits and not on action rules.

To understand the criticality of mutation, we apply a variety of rates to both S = 0 and
S = 1. The effect of mutation is seen in Figure 5.8. The Figure presents an average of 5
runs for each mutation rate applied on both parameter rates. The mutation rates applied
are pur = {0%, 0.5%, 1%, 5%, 11%, 13%, 15%, 20%}. When no mutation is applied, i.e.
pr = 0, an agent’s trait does not evolve, and therefore agents are not able to escape from
any defectors that share the trait with them. pp = 0 is used to demonstrate the effect that
mutation can have. In contrast, a mutation occurs more frequently when applied at a rate

higher than 20%, resulting in fluctuating cooperation.

When the mutation rate is modestly increased (e.g., 1%), cooperative agents can
change traits and rebuild a network of cooperative peers. The increase in mutation leads to
more cooperation in both cases of parameter S; interestingly mutation has a higher effect
on S = 1. However, when the mutation rate increases significantly, mutation impedes
cooperation because agents are rapidly mixing, increasing the chances of defectors and
cooperators to share a trait (e.g., mutation of i = 100% is pure chance). This mechanism
underlies the results in Figure 5.4, which shows how traits are shared by agents, with a
few traits achieving a large amount of sharing by cooperators. These results align with the
conclusions of [71] and [186], where a limited rate of trait mutation allows cooperators to
rebuild, albeit improving on the levels of cooperation achieved, this is discussed further
in Section 5.5.1. Similar techniques aimed to deter defectors as a mean to promote co-

operation in the absence of reputation, punishment, or other ostracising mechanisms have
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also had relevance in the literature [3].
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Figure 5.8: The application of different rates of mutation on traits as agents evolve
their traits, Section 5.3.3, affects cooperation when S = 1 depending on the mutation
rate applied. However, when S = 0 mutation has a lower effect.

5.4 Evolving Identity Rather Than Action Rules

In this section, we consider the effects of evolving agents’ traits without evolving action
rules. For all agents, action rules remain fixed throughout and are not subject to mutation.
This experiment allows us to determine whether restricting agents from evolving their
actions impacts cooperation. Additionally, we vary parameter .S to assess whether limiting
the interactions of agents within their trait group has another effect on cooperation. We
begin by assigning all agents ¢ as independent single-trait agents similar to Section 5.3.
However, at the reproduction stage agents will only be able to change their traits based on

the relative success of other agents without changing their action rules.

At the beginning of each experiment, agents are assigned randomly one of the eight

action rules identified in Section 3.4.3. The random distribution of action rules results in
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about 12 agents per action rule. By forbidding agents from evolving their action rules, we

limit the number of defectors and cooperators in the whole population.

As agents do not change their action rules at the end of each generation, parameter
S has a low impact on cooperation, as can be seen in Figure 5.9. Specifically, when
agents interact solely with those who do not share a trait with them, i.e. S = 0, limited
cooperation is achieved with an average of 45% (SD = 0.02 — 0.04) from five different
runs across all parameter S values tested. Cooperation increases modestly with higher
rates of in-group interactions, i.e. when S gets closer to 1 with an average of 50% of

cooperation when S = 1.
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Figure 5.9: The average cooperation, of five runs, recorded as a result of agents
only evolving their identity (traits) without evolving their action rules with a trait
mutation of i = 10% while varying parameter S.

As cooperation does not alter much between different parameter rates, we analyse our
results using a single run of the experiment where S = 1. The trait groups compose
a different number of agents in each generation, with a different combination of traits.
Therefore, changing identity does not offer protection against those holding defective

strategies, as success equally attracts both defectors and cooperators, see Figure 5.10.
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Accordingly, as the evolution of traits allows agents to copy others based on their

success as indicated by agents’ payoff, defectors exploit traits that have a healthier payoff.

However, as agents are unable to copy action rules, the payoff achieved cannot exceed

high levels and as such, produces a stable level of cooperation. Figure 5.11 shows a

pattern of stable cooperation. The pattern reveals that as agents move between trait groups

cooperation levels do not fluctuate much remaining constantly between 40 — 60%.
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Figure 5.10: A snapshot of the distribution of action rules within the most shared
traits, at fixed generations (10 to 100, 000), when agents evolve their traits without
evolving their action rules and parameter S = 1. Cooperators represent agents with
action rule s; = 1 and defectors represent agents with action rule s; = 0, as agents
do not evolve their action rules no dominant strategy emerges.
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Figure 5.11: The cooperation recorded as a result of a single run of agents evolving
their traits with a trait mutation of yr = 10% without evolving their action rules
where parameter S = 1 producing an average of 50%, when S = 1.

5.5 Discussion

In this section, we discuss our findings and their relations to the wider literature. Our
results have shown that allowing agents to change their identity can be damaging to the
emergence of cooperation. By allowing agents to “whitewash” their identity, an opportu-
nity is introduced for defector agents to infiltrate cooperative trait groups by effectively
resetting their reputation. The evolution of an agent’s traits allows it to adopt defective
strategies that appear advantageous because they do not incur costs, but which cause co-
operation to collapse. However, cooperation emerges when agents primarily interact with

those having the same trait in common. We review this in more detail below.

In Section 5.4, our results showed that cooperation stabilises between 45% and 50%
when agents are permitted to evolve their traits without evolving their action rules. This
occurs with very small influence from parameter S. Because agents were unable to change

their action rules, high levels of cooperation were capped by the extent of defective strate-
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gies, causing cooperation to stabilise. In other words, the inability for defective behaviour
to be replaced imposes a fundamental limit on the widespread achievement of cooperation

across the population.

When we provide agents with the freedom to evolve both their action rules and traits
(Section 5.3) very different results were observed. The results showed that cooperation
does not evolve when agents solely interact with agents having different traits, in contrast
to the results when agents’ traits do not evolve (Section 4.4). This occurs when S is low -
specifically, in Section 5.3.2, our results showed that cooperation could not emerge above
10%. However, within this scenario, varying the rate of mutation on traits had a positive
effect and cooperation increased as the rate of mutation increased, yet the increase in

cooperation was relatively small as seen in Figure 5.8.

Interestingly however, the results showed that when agents favour same-trait interac-
tions (i.e., S = 1), as seen in Section 5.3.1, and evolve both their action rules and their
traits, cooperation reaches an average above 70%. As agents interact with others who
share the same trait, and therefore the same reputation, the reputation system collapses as
it is ineffective in differentiating between individual agents. Furthermore, due to agents
effectively being in sets based on their trait, donation decisions are made on a single com-
ponent of an agent’s action rule, namely s; which in this context identifies whether or not
two agents have the same reputation. Agents are therefore either defectors (s; = 0) or co-
operators (s; = 1), based on s;, while d; and u; are redundant members of the action rule.
Finally, we observe from the results that higher rates of mutation promote cooperation in
comparison with lower levels of mutation, as can be seen in Figure 5.8. However, it ap-
pears that the presence of defectors still caps the overall cooperation level to around 70%,
which is still a respectable level. This is a surprising finding that has led us to question
how such high levels of cooperation are sustained, while also noting that in this case, the
reputation system collapses due to shared identity. This indicates that alternative dynam-
ics must come into play that enable cooperation to function independently from a shared

identity and without a reputation system. This is unexpected and represents a significant
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new observation that we examine further in the following section.

5.5.1 Links to Evolutionary Set Theory

Evolutionary set theory takes its inspiration from observation of human society [186],
where both cooperation and the presence of “sets” (e.g., groups) are abundant in the hu-
man population. The concept is based on the hypothesis that the population structure
itself is a consequence of an evolutionary process, and one which also results in coopera-
tion. The assumption here is that within a population, individuals are distributed across a
range of sets, and the sets give a boundary within which the individuals can interact in an
evolutionary game. The game then allows agents to evolve the set to which they belong,
as well as their strategy for cooperation. This results in a simple representation where the
structure of the population is a product of evolution, and where agents are not concerned
with sustaining their reputation as a means to secure future payoff. As such this represents
a distinctive alternative paradigm for cooperation that has minimal cognitive requirements

and is independent from reputation systems.

Being one of the first alternatives to a reputation system for cooperation, the concept
of evolutionary set theory (Tarnita et al. [186]) focuses on agents’ set memberships and
their movements between sets. This is consistent with human sensitivity to “in-group”
membership [31]. Their model is also in line with the social identity theory discussed in

Section 2.3 as it “suggests that preferential cooperation with group members exists”.

In more detail, the evolutionary set theory model divides agents into multiple sets
that may overlap. Agent interaction is limited to agents that have sets in common with
each other. This limitation results in agents adopting one of two action rules - simply
either to cooperate or to defect, and no complex action rules are applied. Agents update
their cooperation strategy and set membership during asexual reproduction where fitness
is weighted by payoff. Mutation is an important part of the model, allowing for random

perturbation.
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Through this approach, it has been reported that moderate levels of cooperation (e.g.,
50% — 70%) can be sustained with limited mutation on group membership [122, 185].
The evolutionary set theory model has been used to investigate in-group favouritism [71,

154], allowing the authors to further consider out-group interactions [71].

Interestingly, we note that our model induces a set structure onto the population
through traits - in other words, each agent ¢ is a member of set ¢ if and only if agent ¢
identifies with trait ¢ for its reputation. Note also that ¢ belongs to multiple sets when
its reputation involves more than one trait. Equally, as described in Section 5.3.1, the
action rules collapse to the choice between two strategies, cooperate or defect, based
on s;. Consequently, we observe that our model provides a bridge between cooperation
based on reputation (indirect reciprocity) and cooperation based on the evolution of sets
(evolutionary set theory) through traits. This is a significant observation that relates two
alternative approaches to sustaining cooperation which have previously been considered
unrelated, and indeed potentially orthogonal in the sense that these relate to different com-
munities of interest (i.e., reputation systems and set theory). We believe this is the first
work that has been able to show the relationship between these different types of models

as we have not observed it in other works.

To observe the differences and similarities between cooperation based on reputation
and cooperation based on the evolution of sets, we summarise the key points in Table 5.1.
Indirect reciprocity relies on reputation, as agents make donation decisions they utilise
other agents’ reputation before making that decision. Explicitly in this thesis, reputation
is based on the traits carried by agents, which provides the basis for groups of agents
to be identified via their common traits. Equally, in studies of evolutionary set theory,
agents are divided into sets based on commonality and agents interact with others who
share the same sets as them. High levels of trait sharing effectively leads to the collapse
of the reputation system, because the agents’ reputations cannot be distinguished from
each other when agents interact “in-group”. However, at this point the reputation system

collapses and evolutionary set theory takes hold, provided S = 1, as described above.



This is enabled because in both systems, agents reproduce proportionally to payoff and

use the Wright-Fisher model [66] as a basis for evolution, allowing inheritance of the

most successful strategies from the previous generation to propagate.

Indirect  Reciprocity
without Sharing of
Traits [199]

Evolutionary Set Theory
[186]

Indirect Reciprocity with
Sharing of Traits

Cooperation based on;

Agent’s reputations

Set membership

Reputation based on traits
which can be shared with
others

Agents evolve; Action rules (strategies) | Action rules (strategies) | Action rules (strategies)
and set membership and traits

Agents reproduce pro- | Payoff (fitness) Payoff (fitness) Payoff (fitness)

portional to;

Number of strategies; Eight One: either cooperation or | Eight

defection. [186] Two: One
for in-group and one for
out-group [71]

Type of mutations;

Strategy mutation

1.Strategy mutation 2. Set
mutation

1. Strategy mutation 2.
Trait mutation

Interaction

Mixed interaction with-
out limits

Limited to agents who
share the same set. Mixed
interaction without limits

Parameter S is the prob-
ability of interaction with
agents that have a shared
trait(s).

Table 5.1: Comparison of Cooperation Models Based On:
Without the Sharing of Reputation, Evolutionary Set Theory, and Indirect Reci-
procity Based on Traits.

Indirect Reciprocity
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5.6 Conclusions

The aim of this chapter was to study the evolution of traits and its impact on cooperation.
We experimented with a form of whitewashing where we enabled agents to adapt their
identities by changing traits through evolution. As agents adopted new identities, without
constraints on population mixing, defectors were able to gain an advantage as they could

benefit from new reputations as they benefited from sharing traits with cooperators.

However our results have also shown that cooperation can emerge depending on sev-
eral factors. Notably, we find that cooperation maintains an average of 50% when agents
evolve their traits without evolving their action rules (Section 5.4). The result is attributed
to the inability of agents to change their action rules, creating a struggle of dominance

between defectors and cooperators.

Furthermore, when agents are allowed to evolve both action rules and traits, surpris-
ingly we observe that cooperation reaches an average above 70%, but only when in-trait
interactions are favoured over out-of-trait interactions (Section 5.3.1). Note that when
interactions are in-trait that reputation system collapses. This is sensitive to the effects of
mutation on the emergence of cooperation (Section 5.3.3) optimally requiring a mutation
rate around 5-15%. However we have established that this finding is entirely rational, and
occurs as a consequence of evolutionary set theory (Subsection 5.5.1). In doing so, we
have established the point at which the collapse of the reputation system, due to shared
identity, is replaced by the structure of the population evolving to favour cooperation.
This is a new finding that relates previously disparate approaches to explain indirect reci-

procity.

Overall the results of this chapter show that cooperation emerges when agents evolve
their identities, but cooperation can also be limited due to defectors being able to exploit
shared reputations. When agents share a trait, they also share the trait’s reputation with
potentially many other agents. As such, traits provide an opportunity for defectors to

exploit other agents. In the next chapter, we allow agents to hold both a personal and a
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shared trait, investigating the consequences of allowing both a unique and shared identity
to coexist. By providing a personal trait, agents can compose their identity to reflect both
personal and group elements, which has not been previously explored, to the best of our

knowledge.



Chapter 6

Blended Identity and its Impact on

Cooperation

6.1 Introduction

In this chapter, we consider identity that is based on a combination of both a personal
trait (i.e., not shared with others) and a shared trait. We refer to this as blended identity.
This extends our representation of traits in the previous chapters and presents a general

framework where an agent’s individual and shared reputations coexist.

In this framework, a shared trait can be thought to represent an identity of the group
that an agent belongs to. In contrast, a personal trait represents a unique identity that is
only available to an individual agent. We extend our model from Chapter 3 to further
explore blended identities through this combination of traits. Specifically, we allow an
agent to express a balance where its identity is a combination of group identity and its

own personal (i.e., unique) identity.

To investigate this, we include a new parameter that enables agents to weight the
combination of a group trait and an individual trait that together represent their identity.
By providing agents access to both types of traits, agents can compose their identity to
reflect different levels of personal and group elements, which has not been previously
systematically explored. The investigation of blended identity is interesting because it

allows us to understand to what extent individual identity can coexist with group identity
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while sustaining cooperation. This represents the focus of our work.

The chapter is structured into subsections as follows. In Section 6.2, we introduce the
concept of a blended identity based on a combination of a personal trait and a shared trait
and discuss its relation to the literature on identity in the psychology, as introduced in
Section 2.3. In Section 6.3, we formally extend our model to accommodate the concept

of blended identity. We address how reputations are updated in Subsection 6.3.1.

The presented experiments in this chapter are divided into two main sections. In Sec-
tion 6.4 the experiments rely on agents that do not evolve their blended identity; these
are referred to as exogenous agents, keeping their identities constant throughout multiple
generations. This section is divided into subsections as follows: Subsection 6.4.1 applies
the extended framework and is a benchmark experiment that determines how blended
identities may impact cooperation as compared to identity without blending. Subsec-
tion 6.4.2 reintroduces parameter S to allow agents to control who they prefer to interact
with depending on the extent of their shared identity. Subsection 6.4.3 focuses on the
reproductive step, and uses the agent’s blending levels to allow agents more flexibility in
determining who they copy for reproduction of the next generation. Finally in Section 6.5,
we allow agents to evolve their identities by evolving their blending levels. This allows
agents greater flexibility during the reproduction phase, which aligns with their identity.
The chapter concludes with a discussion in Section 6.6 where we present overall findings

regarding the evolution of cooperation and blended identity.

6.2 Blended Identities in Psychology

Identity is a fundamental topic of high interest within social psychology; specifically, re-
searchers have been interested in the concept of social identity and how groups impact
individuals to form a part of their identity. In Section 2.3, we highlighted how psycholo-
gists consider groups to be vital to any individual’s identity. In this section, we continue

our investigation of shared identities based on an individual’s group membership and it is
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useful to recap the most important points. Generally, identities are a combination of per-
sonal and shared values [33], which is a basis for our investigation, which we call blended
identity. Personal identity defines unique characteristics of individuals that distinguishes
them from others. In contrast, shared (group) identity represents the relationship that an
individual has with groups to which they affiliate. Our notion of blended identity com-
bines personal and group identities for the individual, which is a fundamental element of

social psychology.

Humans are naturally social beings and belong to multiple groups which allow them
to be identified (in part) through their group affiliations [180]. For example, university
students can be identified through the university which they attend. Outside of the uni-
versity setting the students may be alternatively known through their personal identity or
affiliation with other groups. This provides a way through which individuals can express
themselves in differing contexts using alternative elements of their identity. It also re-
flects that humans are strongly pro-social, and therefore their identity is influenced by the

groups to which they belong [195].

At the same time, individuality is a key part of identity as humans seek to be distinct
and to be unique [191]. This might seem to be a slight conflict, but it can be resolved by
balancing personal identity and the identity that is shared. Humans seek to be recognised
for their individuality and want freedom in self-expression; this forms their personal iden-
tity. On the other hand, humans are group-oriented as they share a part of their values with
others and want to be in groups that help to express their beliefs and reputation; this forms
their shared identity [97]. Our approach and assumption in this chapter is an abstraction
of this scenario - agents are able to maintain both individual and group identities which is

balanced for each individual agent by blending their two identities.

We also note that this simultaneous representation of both personal and group iden-
tities aligns with the concept of identity fusion [175, 177]. Identity fusion describes per-
sonal and group identities working in tandem, with individuals retaining a strong sense of

self-identity, and with that identity “overlapping” with that of a group, creating self-driven
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individuals that act with strong group-level devotion. In the human world, this can result
in the self-less empowerment of the individual to take extreme action in response to group
opposition and threats. Here, in the absence of human cognition, we are examining the
structural implications of this combined identity, using indirect reciprocity. This allows

us to determine how cooperation becomes disrupted by blended identity.

6.3 Extending the Trait Based Model for Blending Iden-

tity

In this section, we modify the framework developed in Chapter 3. The changes are in-
troduced to incorporate agents holding both a personal and a shared trait, resulting in a
blended identity based on the two traits, as can be seen in Figure 6.1. The underlying
model, as introduced in Chapter 3, uses the evolutionary game theory framework for in-
direct reciprocity with reputations based on traits. Within this model, agents compare

reputations and use action rules to determine their donation decisions.

To accommodate blended identity, we extend the model as introduced in Chapter 3 in
several ways: In Section 6.3.1, we introduce a blending parameter which allows agents to
balance their reputation between their personal and their shared trait, a similar parameter
is used in [197] to balance an agent’s reputation between their personal identity and their
fusion level. The remaining components and parameters of the model have not been mod-
ified; these include the use of parameter S to determine the interacting agents (Section
3.5.1), the usage of action rules in the model (Section 3.4.3), and the evolutionary sim-
ulation and the application of mutation to action rules (Section 3.5.3). This allows us to
specifically observe the effects of the blending parameter on the model. In Section 6.3.2
we highlight the changes to the underlying model from Chapter 3, as presented through

Algorithm 3.



99

40%

100%

20% 80%

100%

100%
80%

100%
100%

1 2 3 4 5 6 7 8 9 10 M
Trait

1

Agent
0 9 8 7 6 5 4 3 2

Figure 6.1: A simple visualisation of 10 agents where all agents ; have an identity
composed of a personal trait and a shared trait. Each agent : has a personal trait ¢,
and a shared trait ¢ as can be seen in the diagram. However, each agent ; has a dif-
ferent blending level, w;, which determines how their blended identity is composed
of the two traits. For example, agent 1 has trait 2 as a personal trait and shares trait
1 with all other agents i. Agent 1 also has w; = 60% while agent 2 has w, = 100%,
therefore agent 2 is blended to the group at a higher level than agent 1. Note that w;
is bounded between 0% and 100% where 1 == 100%.

6.3.1 Updating Reputation for Blending Identities

Reputation is the score given to individuals in response to interacting with others. Repu-
tations are built on past interactions of individuals or through their associations. In terms
of our model, reputations are used in determining the donation decisions taken by agents.
These are based on the traits that each agent subscribes to. In this chapter, our assumption
is that each agent ¢ has a personal trait and a shared trait. To combine these, all agents ¢
are assigned a blending factor referred to as parameter w;, where 0 < w; < 1 (see Figure

6.1).

Specifically, each agent ¢ carries a shared trait g and a personal trait ¢; and a blending

level w;. The shared trait, g, is carried by all agents, while the personal trait, ¢;, is unique
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to each agent 7, i.e. we assume that personal traits are all unique. Each trait carries its
own reputation, denoted r(g) and r(¢;) respectively. Traits are used by the individual  to
represent the elements by which 7 derives its identity and its reputation 7. The blending
of the two traits, through w;, allows the individual to express the extent to which their
personal-self is composed of a group’s identity (g) as opposed to an individual identity
in isolation (¢;). This structures the individual agent’s personal reputation, expressing the
extent to which this is derived from the blend with the group’s reputation, as opposed to

its individual behaviour. Then #’s reputation is defined as:

rt = (1 —w)r(t;) + wir(g) 6.1)

where 0 < w; < 1. When wj is high, ’s identity is highly blended to the group, with
i’s reputation 7 being derived mainly from that source. Conversely, when wj is low, the
individual predominantly derives their own personal identity - the group’s identity plays

a lesser role in the agent’s reputation.

At each interaction, the reputation that ¢ holds is updated based on ¢’s donation deci-
sion in respect of a potential recipient j (lines 13-22 in Algorithm 3). We use the general
concept of standing [171], as in Chapter 3 Subsection 3.5.2, to update ¢’s reputation. Be-
cause this is composed of two traits, both the group reputation, r(g), and i’s personal
trait’s reputation r(¢;) are updated. Specifically, if ¢ donates, then r(g) is incremented if
and only if w; is non-zero, and r(t;) is incremented if and only if w; # 1. If v/ > r* and
i defects then r(g) is decremented if and only if f; is non-zero, and r(¢;) is decremented
if and only if w; # 1. Note that this updating approach ensures that a reduction in repu-
tations does not occur when ¢ fails to donate and j is of a lesser reputation, providing a
defence against shirkers, consistent with the concept of standing. We allow the value of
each trait to vary in the integer range [-5,5]. This approach to standing is based on the
original approach by [171] as modified for indirect reciprocity based on social comparison

[199].
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6.3.2 Algorithm for Evolution With Blended Identity

In this section, we present a framework through pseudocode. In Algorithm 3, we present
the parameters of the model, which is based on 1 to accommodate blended identity and,
as such, focuses on the addition of parameter w;. The parameter enables us to calculate
agents’ reputations in the model by weighting the extent that an individual’s reputation is
drawn from the shared (i.e., group) trait. As discussed in Section 6.3, the changes are a
result of agents having a blended identity made up from both a personal and a shared trait.

The remaining parameters of the model remain unchanged, as compared to Algorithm 1.

To begin, this pseudocode sets the number of agents in the population, the number
of generations and the number of rounds per generation. Once the population is created,
we assign each agent 7 a set of traits 7" (line 2). Unique to this chapter, all agents have
been additionally assigned a blending parameter w;. In some experiments (Section 6.4),
the distribution of the blending parameter is uniform, that is all agents 7 have the same
blending level. In other experiments (Section 6.5), the distribution of the blending level
1s assigned randomly to each agent. The range of blending levels is bounded between 0,

and 1 and in all cases w; belongs to the set W = {0,0.2,0.4,0.5,0.6,0.8,1.0}.

Once the initialisation of the algorithm takes place, each round begins by picking a
recipient (line 4) and a donor (lines 5 - 12). The process is informed through the use
of parameter S in some experiments (e.g., Sections 6.4.2, 6.4.3 and 6.5), which biases
interaction towards those with similar characteristics (i.e., in-group bias). The nature of
these experiments (Sections 6.4.2-6.5) allow agents to use parameter .S to control whether
agents prioritise interaction with other blended agents (lines 6 - 7) or with the independent
agents (lines 8 - 9). In the absence of parameter S, the interaction pair is chosen at random
(lines 10-11). The process of picking the interaction pair is highlighted in Algorithm 3 in
lines 4 - 12.

The next step in the pseudocode is the donation decision taking by the donor agent ¢

(lines 13 - 22), which is consistent with the basic model from Chapter 3. Each agent ¢ de-
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termines their donation decision through their action rules which dictate whether agents
donate or defect by comparing the donor agent 7’s reputation with that of the recipient
agent j (line 15). Once the decision has been taken the reputation of agent ¢ is updated
to reflect its decision using the standing assessment rule (lines 15 and 19). The blending
parameter, w;, is used to determine each agent’s reputation as a combination of the repu-
tations held by the shared trait g and their personal trait ¢;. Both traits from which agent
1’s reputation is composed are updated once the donor agent implements its donation de-

cision.

Once a generation is complete, the reproduction process begins, see Section 3.5.3
and lines 24 - 34. This stage determines how agents evolve between generations by en-
abling agents to inherit, or effectively copy, the action rules of previous generations (line
27).Agents that do not evolve their blended identity are referred to as exogenous agents,
keeping their identities constant throughout each generation. In Section 6.4.3, we use pa-
rameter w; to determine if blended agents will inherit solely from other blended agents or

the population as a whole.



103

Algorithm 3 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and

Blended Identities

Require: Number of iterations m; number of generations M set of agents A; set of traits
T'; set of traits T'; set of binary action rules AR = (s;, u;, d;); set of blending levels
W cost c; benefit b; in-group interaction probability S; mutation rate of action rules
{ta; the set of agents that share at least one trait with agent j N;;

1: for M generations do > Evolutionary simulation
2 Setfy=0Vie Aandr, =0Vt e T
3 for m iterations do
4: j < U(A) > Select recipient (see Section 3.5.1)
5: p<+ U(0,1)
6 ifp < Sand |N;| > 0 then
7 i+ U(N;) > Select random in-group donor
8 else if p > S and |N,| > 0 then
9 i < U(N;) > Select random out-group donor
10: else
11 i~ UA-{j}) > Select random donor
12: end if
13: > Apply action Rules (see Sections 3.4.3 and 3.5.2)
14: rt = (1 —w)r(t;) +w;r(g) > 4’s reputation is derived from w;
15: if (r'=r’ and s; = 1) > Compare equal
or (r' <riandu; = 1) > Compare upwards
or (r" >r’and d; = 1) then > Compare downwards
16: re <— min(b,ry + 1) > ¢ donates, increase reputation
17: fic=fi—cfi—fi+b > Update fitness
18: else > ¢ defects
19: if 77 > r then > Detect unjustified defection.
20: Ty < max(—5,r, — 1) > Decrease reputation
21: end if
22: end if
23: end for
24: > Reproduction stage (see Section 3.5.3)
25: fori c Ado
26: j+< R(A,f) > Roulette wheel based on fitness
27: (sh,us, d}) < (85, u4,d;) I> i copies j’s action rules
28: if U(]0,1]) < p4 then
29: (st,ul,d}) < U(AR) > Mutate action rules
30: end if
31 end for
32: fori c Ado
33: (83, us, d;) <= (8, s, db) > Update action rules for all agents
34: end for

35: end for
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6.4 Exogenous Blended Agents

In this section, we consider the effects of exogenous agents having a blended identity. Ex-
ogenous agents are agents that have a constant blending level throughout an experiment
and only evolve their action rules (i.e., blending levels remain fixed). Having a blended
identity allows cooperative agents the opportunity to reduce the impact of free-riders ex-
ploiting shared reputations. An essential element of blended identity is the blending pa-
rameter w;, which controls the extent that an agents’ reputation is dependent on the shared
trait g. Additionally, we consider the effects of agents using the blending level parameter

to influence their interaction partner aligned to parameter S, as in Subsection 6.4.2.

All experiments in this section share some common assumptions. We begin by assign-
ing all agents the shared trait g and a personal trait ;. A group of agents are designated
as blended agents and are each assigned a uniform blending level w; > 0: therefore all
blended agents ¢ have the same blending level w;, which does not change during the sim-
ulation. In other words, we divide the population into two sets, one that has a blended
identity w; > 0, and one that is independent and has w; = 0. The number of agents that
have a blended identity remains fixed throughout an experiment. We vary the number of
agents sharing trait ¢ in each experiment, using group sizes of 10, 20, 40, 50, 80, 90 and
100. Throughout we apply blending levels from the set IV (see Section 6.3.2). All agents
evolve their action rules and a mutation of action rules is applied with a probability of
1%, based on previous experimentation in Section 3.5.3 and also in [199], where it was
found to be sufficient to trigger a change in the structure of the population. The mutation

applied changes each element of the action rules binary vector of an agent (Section 3.4.3).

Note that throughout this Section, agents do not evolve their blending levels as these
are assumed to be exogenously (i.e., externally) controlled. Note that if an agent ¢ has
w; = 0, it is considered to be independent of the group (i.e., doesn’t share trait g), and its
reputation would be based entirely on their own past interactions. In this case the results

from [199] are replicated. Furthermore, if an agent ¢ has w; = 1, they are considered fully
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dependent, and their reputation would be entirely shared and based on all agents sharing

the trait g, replicating the results in Section 4.4.

To explore the impact of blended identities on cooperation, we divide our experi-
ments into subsections that address different blending assumptions. These are designed
to explore the extent that blending levels may promote cooperation while deterring free-
riders. In Subsection 6.4.1, we establish a benchmark experiment that allows us to test
the model’s validity with the newly updated components. In Subsection 6.4.2, we use pa-
rameter .S to allow blended agents to prioritise interacting with other blended agents (i.e.,
in-group effects). In Subsection 6.4.3, we examine a probability based approach, where
blended agents decide whether to inherit from blended agents or the whole population

based on the blending level w;.

6.4.1 Cooperation From Agents With Blended Identities

In this section, we consider the cooperative effects of blended agents. By allowing all
agents to hold both a personal trait and a shared trait, we can determine the effect of a
blended identity on reputation and subsequently cooperation. This gives us a benchmark
that enables us to compare our results with previous findings and subsequent changes.
In particular, in Section 4.4, we classified single-trait agents as either independent or
dependent. In the extended model presented in this chapter, independent agents have a
blending level of w; = 0 while dependent agents have a blending level w; from the set

{0.2,0.4,0.5,0.6,0.8, 1}.

In this experiment, we analyse how agents with different blending levels impact on
cooperation. The experiment in this Section adopts the assumptions identified in Section
6.4 - that is all blended agents are assigned the same blending level w; and these remain
fixed and are not subject to evolution. Additionally, parameter S' is not used when agents
choose a potential partner for donation, allowing agents to interact without any restriction

(i.e., uniform random pairing of interacting agents). We observe the impact of free-riders
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as blending levels are changed, alongside the number of agents with a non-zero blending

level.

Figure 6.2 shows that an increase in blending levels and group size (i.e., number of
agents with a non-zero blending level) leads to a decrease in cooperation. We note that as
cooperation declines defectors quickly dominate the population, as shown in Figure 6.3.
The dominance of defectors in the population is attributed to the high f; produced due to
their high blending levels, which results in the defector strategy being copied. However,
when cooperation yields higher results the discriminator action rule (s;, u;,d; = (1, 1,0))
is more prevalent in the population. The results show that once the weight distribution
shifts towards a sharing trait and become more dependent, i.e., w; tends towards 1, co-
operation decreases. In contrast, when agents favour their personal trait and are more
independent (i.e., w; tends towards 0) cooperation rises. The result is expected as agents
rely on their shared trait to cooperate. This result is also consistent with the results from
Section 4.4, where cooperation decreased as more agents shared traits. This also provides

confidence in the function of the extended model that is the focus of this chapter.

When the whole population (100 agents) share some elements of a trait (w; < 1),
agents sustain cooperation as long as they do not share 100% of the trait, as shown in
Figure 6.2. This result is attributed to the pair of donor and recipient agents sharing the
same proportion of the reputation which forces agents to rely on their personal trait to in-
teract with other agents regardless of their blending level. Once agents are 100% blended,
they have to rely solely on the shared trait’s reputation, which causes their cooperation
to decrease. In summary, these results show that cooperation can be sustained as long
as agents do not fully share their trait (w; = 1) and therefore avoid fully sharing their
reputation. This shows reasonable resilience overall, even in the context of considerable

trait sharing.
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Figure 6.2: The average cooperation recorded over generations when agents have
a blended identity with different starting configurations. The results indicate that
cooperation can be achieved at high levels when agents have blended levels lower
than 80%. Once agents become more devoted to their group, cooperation declines as
agents become more reliable on their shared reputation allowing defectors to exploit
it. Similarly, an increase in the number of agents sharing a trait causes cooperation
to decline as the large number of agents allows defectors to take advantage of the
group’s reputation.
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Figure 6.3: An example of the distribution of action rules by subsequent, but not
consecutive, generations for the set of 50 agents having a blending level of w;, =
80% shows that defectors, (0,0, 0), quickly dominate the population within the first
20 generations, resulting in an average cooperation of 10.6%. This is a result of
defectors exploiting the shared reputation.
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6.4.2 Controlling the Probability of Blended Agents Interacting With

Other Blended Agents

In this section, parameter S' is considered to investigate in-group interactions of blended
agents. Parameter S (originally introduced in Section 3.5.1) can be applied to govern
the probability of a blended agent interacting with another blended agent (i.e., another
agent with some identity drawn from the group). This aligns with the concept of in-
group attraction, where agents with something in common have homophilic attraction
(see Section 3.5.1). We study this while maintaining the assumptions of Section 6.4.1
- that is we continue to assign agents with the same blending levels and these blending
levels do not evolve (i.e., exogenous blended agents). The experimental results allow us
to analyse the impact of parameter S on blended identities and how biasing the scope of

interactions can impact cooperation.

In this experiment, we re-define parameter S to control the extent that in-group in-
teractions occur, using blending as the basis for the in-group. Parameter S controls the
interactions of blended agents using a probability equal to their blending level. That is,
when the recipient agent j is blended (i.e., w; > 0), agent j attempts to select the poten-
tial donor agent ¢ from the set of blended agents {k : w;, > 0} with £ # j and with a
probability S = w;. With probability 1 — S = 1 — w; , agent j attempts to select the po-
tential donor agent 7 from the set of non-blended agents {% : wy = 0}. When the recipient
agent j is non-blended (w; = 0), agent j selects the donor agent ¢ from the population at

random with disregard to their blending level.

Figure 6.4 shows that the introduction of parameter .S lowers cooperation overall and
is particularly evident when comparing the results of 90 agents sharing a trait, as con-
trasted with the analogous scenario in Figure 6.2. The lower cooperation can be attributed
to parameter S because S increases the interaction between the number of agents who
have co-dependency on the same shared trait. This opens up opportunities for shirkers

which eventually deters cooperation as observed in Section 4.4. Even when the num-
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ber of sharing agents is low but .S is high, cooperation decreases significantly, ultimately
achieving just 0.9% when the number of blended agents is 20 and S = w; = 1, i.e. when

limiting the interaction of trait sharing agents to only other trait sharing agents.
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Figure 6.4: The average cooperation recorded over generations recorded as a result
of parameter S = w; with different starting configurations. In this scenario, S is
based on the current blending level of the blended agents. Parameter S causes a
decrease in cooperation overall when compared to Section 6.4.1.

6.4.3 Influencing Reproduction for Blended Agents

In this Section, we analyse influencing reproduction through an agent’s blending level.
This experiment allows us to determine whether limiting reproduction within the group
of blended agents sustains cooperation and deters free-riders. Reproduction is the step
that allows agents to socially learn from others by copying their action rules (see Section
3.5.3). In the following experiment, at the reproduction step agents either copy their action
rules from other blended agents (with probability P = w;) or from the wider population
(with probability P = 1 —w;). Therefore parameter P controls whether agents copy other
blended agents or the wider population. In other words, we allow an agent’s blending
level, w;, to control who that agent copies from. Agents have a higher chance of copying

independent (non-blended) agents when P is low and this probability diminishes as P
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increases. Again, this assumption aligns with the possibility that agents could be more
likely to be influenced by their “in-group”, that is others who have shared identity with

the group.

In addition to controlling reproduction through blending, this experiment maintains
the assumptions of Section 6.4.1 - that is we continue to assign agents’ with the same
blending levels and these blending levels do not evolve. Additionally, parameter .S is used
in the same way introduced in Subsection 6.4.2, in which S controls the probability that
the pair chosen for an interaction are both blended agents. This arrangement allows us
to examine the progressive effects of adding different model components aligned with

in-group identity.

Figure 6.5 shows that when blended agents restrict their interactions and inheritance
to other blended agents, cooperation decreases. Particularly noteworthy is the additional
effect that reproduction has on decreasing cooperation when it is influenced by blending.

This is seen by comparing Figures 6.5 and 6.4.

It appears that when agents are influenced by their blending for selection of action
rules, the agents with high blending levels begin to reinforce defective (i.e., shirking)
strategies by being disproportionately disposed to copying such strategies. This has the
effect of propagating defective strategies which limit the overall prospects for high lev-
els of cooperation. The contrast between Figures 6.5 and 6.4 is quite stark in this regard,
particularly when blending levels are 50% or greater. Modest levels of mutation are insuf-
ficient to counter the spread of defective strategies, leaving the system effectively trapped
with a preference for in-group and defective interactions. As evidenced by Figure 6.6 the

rapid spread of defective strategies is not countered as they dominate the population.
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Figure 6.5: The average cooperation recorded over generations as a result of agents
reproducing based on their blending levels while varying both the starting config-
uration and the number of agents with a blended identity as described in Section
6.4. The results indicate that cooperation decreases as a result of restricting blended
agents interactions and inheritance. Note that in this figure parameter S = P = w;.
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Figure 6.6: An example of the distribution of action rules by subsequent, but not
consecutive, generations for the set of 20 agents having a blending level of w; = 80%
shows that defectors (0, 0, 0) quickly dominate the population within a few genera-
tions, causing cooperation to collapse. The result is an effect of S = 0.8 and the
probability of blending agents copying from other blending agents being P = 80%
as well. This leads to defectors quickly exploiting the shared reputation.
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6.5 Allowing Agents to Evolve Their Blended Identity

In this section, we consider the effects of allowing agents to evolve their blending levels.
In contrast to Section 6.4 this allows the structure of the population to change, in terms
of the extent of group involvement. By enabling agents to change their blending level,
we can determine the effect of the agents growing or diminishing their allegiance to the
group (or specifically the trait representing the group). At the end of every generation,
we assume that the agents inherit both the action rules and the blending levels of their
selected agents. Furthermore, a mutation on action rules and on blending level is applied
with a probability of 1% as discussed in Section 6.4. Algorithm 4, presents a framework

of how the model works and how blending levels evolve after every generation.

This section makes several assumptions. To begin, we divide the population into
blended agents (w; > 0) and independent agents. We assign each blended agent ¢ a
blending level, w;, at random from the levels identified in Subsection 6.3.2. A subset of
agents are designated as independent and are assigned w; = 0. Additionally each agent ¢
is assigned an action rule, (s;, u;, d;) at random, as is our convention for all experiments
in this thesis. The assigned action rules and blending levels remain constant within a
generation for each agent. During each round within a generation, the agents interact
making donation decisions using their action rules as usual (i.e., as discussed in Chapters
3), updating their reputation and payoff as outlined in Subsection 6.3. Each choice of

agent pair in any interaction is controlled by parameter S.

Additionally, we analyse the effects of allowing agents to evolve their blending level,
wy, at the reproduction step (lines 24-39 in Algorithm 4). Once a generation of interactions
is complete, agents socially learn from others at the reproduction step based on their
relative success as measured by their payoff. Once an agent updates their action rules (line
27) and their blending level (line 28), mutation takes place. Mutation changes an agent’s
action rules with probability 14 = %00 (lines 29-31) and blending level with a probability

of up = ﬁ (lines 32-34), the rate being sufficient to alter the population’s structure.
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Mutation randomly assigns agents one of seven blending levels identified in Subsection
6.3.2, including w; = 0, and one of the eight action rules specified in Subsection 3.4.3.

Note that mutation is applied to both independent and blended agents.
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Algorithm 4 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and
Evolving Blended Identities

Require: Number of iterations m; number of generations M ; set of agents A; set of traits

T set of traits T'; set of binary action rules AR = (s;,u;, d;); set of blending levels
W cost ¢; benefit b; in-group interaction probability .S; mutation rate of action rules
1445 mutation rate of blending levels 1 p; the set of agents that share at least one trait
with agent j N;;

1: for M generations do > Evolutionary simulation
2 Set f;=0Viec Aandr, =0Vte T
3 for m iterations do
4: j <+ U(A) > Select recipient (see Section 3.5.1)
5: p<« U(0,1)
6 if p < Sand |N;| >0 then
7 i+ U(N;) > Select random in-group donor
8 elseif p > S and |N,| > 0 then
9: i+ U(N;) > Select random out-group donor
10: else
11: i UA—-{j}) > Select random donor
12: end if
13: > Apply action Rules (see Sections 3.4.3 and 3.5.2)
14: rt = (1 —w;)r(t;) + wir(g) > 7’s reputation is derived from w;
15: if (r'=r/ and s; = 1) > Compare equal
or (r' <riandu; = 1) > Compare upwards
or (r' > 17 and d; = 1) then > Compare downwards
16: re <— min(b,ry + 1) > ¢ donates, increase reputation
17: Jis—fi—c fi< f;+0 > Update fitness
18: else > 7 defects
19: if 7 > 1’ then > Detect unjustified defection.
20: e <— max(—5,1; — 1) > Decrease reputation
21: end if
22: end if
23: end for
24: > Reproduction stage (see Section 3.5.3)
25: fori € Ado
26: j R(A,f) > Roulette wheel based on fitness
27: (sh,ul, dy) < (s4,uj,d;) > i copies j’s action rules
28: W, — w; > 7 copies j’s blending level
29: if U([0,1]) < 114 then
30: (sh,ul,di) < U(AR) > Mutate action rules
31: end if
32: if U([0,1]) < pp then
33: w; «— U(W) > Mutate blending level
34: end if
35: end for
36: fori € Ado
37: (8i, ui, d;) < (85, us, db) > Update action rules for all agents
38: w; — w; > Update blending levels for all agents
39: end for

40: end for
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Figure 6.7 shows that an increase in parameter .S leads to an increase in cooperation.
We note that S is the probability that a donor is a blended agent in the case that the
recipient is a blended agent, i.e. if an agent is dependent, then S is the probability that their
donor is also a dependent agent. When S is low (i.e., 0 & 0.2), cooperation averages less
than 50% regardless of the initial number of blended agents. In contrast, as S increases
or the number of interactions between blended agents increases, so does cooperation.
Both these results are attributed to the level of blending in the population. In particular,
when blending levels are low, cooperation averages high levels, and when blending levels

increases cooperation decreases as can been seen in Figure 6.11.

Low cooperation is in line with that of Figure 4.3 in Section 4.4, where cooperation
declines as the number of dependent agents increases. In Section 4.4, the number of
dependent agents is much lower than 10% for high S whereas for S = 0 it can be as high
as 20%. However, in this section, agents are not restricted to w; = 0 or w; = 1, and
the number of agents that are blended is not fixed as agents may evolve their blending
levels through copying the parent agent’s level or mutation, as such a higher number of

dependent agents may exist in the population.

The high cooperation recorded when S is high is attributed to the population’s low av-
erage blending level, as shown in Figure 6.10. Initially, the evolution of blending presents
an opportunity for shirkers to exploit reputations that they share with highly blended coop-
erators. As agents adopt defective action rules, as can be seen in Figure 6.12, cooperation
collapses and payoff reaches low levels. Consequently, agents begin to evolve towards
low blending level achieving w; = 0, as can be seen in Figure 6.13. As agents evolve
towards low levels of blending, they become independent agents, and as such, they cease
to share reputation with other agents. Interactions between independent agents quickly
expose any shirkers, virtually eliminating them within a few generations, as shown in

Figure 6.12, which in turn promotes cooperation.

With lower levels of S, a cycling behaviour occurs where initially a larger number

of agents can increase their blending level while sustaining cooperative action rules, in
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line with the findings of Figure 4.3 in Section 4.4. As the number of agents increases,
so does the number of shirkers leading cooperation to collapse, leading in sequence to
agents becoming uncooperative and later adopting a blending level of w; = 0. This cycle
is repeated as can be seen in the example illustrated by Figures 6.8 and 6.9. As a result
of this cycling behaviour where defectors are reintroduced to the population, cooperation

records between 20% — 43% on average as can be seen in Figure 6.7.

These results indicate a negative correlation between blending levels and cooperation,
which shows an increase in blending levels, even if minimal, deters cooperation, 1(49) =
—.98, p < .001. In contrast, the lack of blending leads to higher cooperation, as seen
in Figure 6.11. These results are in line with those of Subsection 6.4.1, in which higher

blending levels among blended agents caused cooperation to drop.

g RAUREN 41.0 % JEXRRC 88.8 %
VARCEN 39.4 % [N 91.0 %
PAREN 404 % R 91.5 %
PRI 42.7 % IR 91.5 %
PRSI 41.7 % IR 90.9 %

1.8

.6

0.6

Initial Number of Blended Agents
50 1

90

80

40

20

19.8 % EEXWACE 92.0 % | 91.8 % 911% | 91.3 %
o WARRIN 41.5 % RENNACERIREY 91.4 %
0.5 0.8

0.2 0.4 1

Paran’ieter S

Figure 6.7: The average cooperation recorded over generations as agents evolve their
blending levels. Cooperation is impacted by agents evolving their blending levels
while enforcing parameter S, particularly when parameter S is low, such as when
S = 0 and 0.2. Note that the initial number of blended agents is randomly assigned
a blending level w;.
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Figure 6.8: An example of the distribution of action rules by subsequent, but not
consecutive, generations where agents are allowed to evolve their blending levels
and S = 0. The scenario starts with 10 blended agents and 90 independent agents
and shows a struggle between discriminators (1, 1, 0) and defectors (0, 0, 0) resulting
in 20.8% cooperation as can be seen in Figure 6.7.
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Figure 6.9: A snapshot of the distribution of blending levels by subsequent, but not
consecutive, generations where agents are allowed to evolve their blending levels and
S = 0. The scenario starts with 10 blended agents and 90 independent agents and
shows a cycling behaviour between low and high blending levels.



118

352% 339% 15% 15% 10% 11% 34%

100

354% 343% 16% 14% 12% 10% 13%

90

3%54% 341% 15% 14% 11% 10% 09%

80

3%53% 387% 15% 13% 11% 09% 09%

50

354% 346% 16% 11% 10% 10% 14%

40

354% 3838% 14% 12% 10% 12% 11%

Initial Number of Blended Agents
20

3%56% 334% 15% 12% 11% 09% 09%

10

0.0 0.2 0.4 0.5 0.6 0.8 1.0
Parameter S
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operation recorded in Figure 6.7 with the blending levels recorded in Figure 6.10.
Each point represents a pair of (blending level, cooperation) from the two Figures.
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Figure 6.12: A snapshot of the distribution of action rules by subsequent, but not
consecutive, generations where agents are allowed to evolve their blending levels
and S = 1. The scenario starts with 10 blended agents and 90 independent agents
and shows a a dominance for discriminators (1, 1, 0) resulting in 91.4% cooperation
when S = 1 as can be seen in Figure 6.7.
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Figure 6.13: A snapshot of the distribution of blending levels by subsequent, but not
consecutive, generations where agents are allowed to evolve their blending levels and
S = 1. The scenario starts with 10 blended agents and 90 independent agents and
shows that agents evolve towards w; = 0.
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6.6 Discussion

This chapter’s focus on how identities can blend together is a shift from previous chapters
where the focus was on how individuals may share identities through traits. In this chapter,
we broke down identity further and looked at the makeup of an individual’s identity.
Alternatively, in previous chapters sharing a trait meant that an agent fully shares their
reputation with others, in this chapter agents blended their identity to only share a part of

a trait.

Our results have shown that allowing agents to blend their personal and shared identi-
ties can be disruptive to cooperation. Our results in Section 6.4 showed that while cooper-
ation is achieved when blending levels are low, once blending levels increase cooperation
plummets. The outcome can be attributed to two main reasons. Firstly, low cooperation
results from defector agents infiltrating the population and taking advantage of the shared
reputation. Secondly the current reproduction process allows for the defector strategy,
(si,ui,d;) = (0,0,0), to take hold as it encourages agents to gain a high payoff. In
Subsection 6.4.1, the increase in the number of blended agents and the increase in their
blending level allowed defectors to exploit the shared reputation, which caused cooper-
ation to plummet in return. In Subsection 6.4.2, the introduction of parameter S caused
a further collapse to cooperation as blended agents could not interact with independent
agents. This phenomenon was proven further in Subsection 6.4.3 when agents only inher-
ited from other agents who were blended as can be seen in Figure 6.5. As blended agents
bound their interactions and their inheritance to other blended agents, their cooperation
decreased dramatically. These results are limited as agents were not permitted to evolve

their blending levels.

In Section 6.5, we allowed agents to evolve their blending levels. Our results in Sec-
tion 6.5 show that cooperation recovers from the levels achieved in Section 6.4. The
outcome was credited to agents being allowed to evolve their blending level. Cooperation

was impacted by parameter S, in particular, higher values of S produced high cooperation,
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and in correlation, lower levels of blending were recorded. However, with lower values of
S high, blending levels were recorded, allowing defectors to take advantage of the shared

reputations. The presence of defectors caused cooperation to achieve an average of below

43%.

6.7 Conclusions

This chapter has introduced the blending of personal and shared identities to form an in-
dividual’s identity. A novel method to calculate reputation was assessed, as a result of the
blended identity. To accommodate these concepts, we updated the model of indirect reci-
procity. The updated model allowed individual agents to form their identity by partially
subscribing to a shared trait. This concept contrasts with previous chapters, where single

or multiple traits fully formed an individual’s identity.

The introduction of a blended identity allowed us to create agents with a single iden-
tity formed of both a personal and a shared trait. A balance between the two traits enabled
agents to hold unique elements that do not get compromised by their shared character-
istics. This chapter’s results are consistent with those of previous chapters where the
increase in the number of agents sharing a trait caused cooperation to decline. Addition-
ally, the increase in in-group interactions caused cooperation to fall. A balance between
the number of agents in a group and the number of in-group interactions was needed to
maintain decent cooperation levels (above 40%). Similarly, in this chapter, we found that
high blending levels cause cooperation to decrease, and an increase in parameter .S has
the same effect. However, when agents have freedom to evolve both their action rules and
blending levels they can maintain reasonable cooperation levels and do so by reducing the
extent of identity sharing. This chapter reaffirms that balance between identities is needed

for cooperation to emerge and be sustained.

We note that these findings on identity assume that economic factors drive the evo-

lutionary process. Specifically, reproduction at the end of each generation restructures
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the population based on weighting candidates to be copied based on their payoff. This
represents measuring success as an agent’s accrued benefits less their costs. This ap-
proach proclaims that economic wealth is the primary precursor to survival. Indeed, this
i1s common practice in evolutionary games since the works of John Maynard Smith [162]
[163]. However, one may question this assumption when identity comes in to play, be-
cause identity can provide intrinsic value to an individual (e.g., being seen to belong to
a prestigious group). This is reaffirmed by identity fusion [175, 177], where seemingly
counter-intuitive selfless individuals acts can emerge because individuals value and fuse
with the group’s identity. Therefore it is prudent to further explore the impact of identity

and how it might influence an individuals preferences for selection.

Accordingly, in the following chapter, we allow agents to reproduce taking into ac-
count their preferences for the extent of group identity that they may see in others. This
novel motivation allows us to investigate how agents cooperate when they are motivated
by an agent’s value in respect of an identity rather than economic benefits. This moti-
vation represents a shift from the conventional view that success is measured entirely by
an individual’s monetary wealth (payoff) to valuing their social success and how they are
identified in society. The concept is therefore significant and has not been previously

modelled, to the best of our knowledge.



Chapter 7

Modelling Intrinsic Incentives - Fusion

Motivation

7.1 Introduction

This chapter introduces identity as a personal motivation for decision making at the re-
production step and refers to this incentive as fusion motivation. This captures the idea
that individuals who derive some identity themselves from a group may place value or
respect in those who are doing the same. It is aligned with homophily (i.e., attraction to
those with similar characteristics) and contrasts with current conventions where purely

economically rational decisions are typically modelled.

Our modelling to this point in the thesis has allowed agents to evolve using selection
criteria based on economic success. In other words, an agent is deemed successful if they
have a high payoff, i.e. having received higher benefits and/or lower costs due to their
choice of action rules (i.e., strategy). To evolve, agents copy the action rules of those
deemed economically successful using payoff. One of the problems with this assumption
is that it presupposes that agents are perfectly rational [40] and pursue the choice that will
optimise their future resources. In reality many experiments show human behaviour de-
viates substantially from this, and that for example, human decision making has bounded
rationality [112]. This may be due to external factors (e.g., time to assess everything in

full to make a decision), or internal factors, where personal motivations or world view
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shape the decision-making criteria of the individual.

In the case of indirect reciprocity, our argument for considering identity as an alter-
native to perfectly rational behaviour stems from internal motivations. Identity becomes
a significant internal issue for an agent when it derives a personal reputation from align-
ment with a group’s identity, and where the group’s identity is shared with others. The
most significant evidence for this being a plausible assumption lies with the relatively
recent concept of identity fusion [177], that presents a framework through which an in-
dividual values a group’s identity as a component of their own personal identity. This
makes the group more important to the individual, and it effectively becomes an exten-
sion of the individual. The chapter is structured into subsections as follows. In Section
7.2, we introduce the concept of fusion motivation based on an agent’s identity and dis-
cuss its relation to the literature on identity in psychology, as mentioned in Section 2.3.
Section 7.3 compares the traditional reproduction approach of economic motivation, pre-
viously introduced in Sections 3.4 and 3.4.2, with the proposed approach that is driven
by the individual’s blended identity and is referred to as fusion motivation. Subsection
7.3.1 introduces the chapter’s experiments by presenting different scenarios where fusion

motivation can be applied and overviews the experiments’ assumptions.

The first scenario presented in Section 7.4 applies fusion motivation to all agents.
The scenario enables us to determine how agents cooperate when their motivation is not
payoff but agents’ devotion to their group as measured by blending level. The scenario
is similar to that of Section 6.5 but utilises fusion motivation for all agents in place of
economic motivation. In Section 7.5, we allow agents’ blending level to determine their
motivation based on a probability. The scenario is the first that allows agents to their
motivations. By equating an agent’s motivation to their blending level, we allow identity
to be a determinant factor for agents’ reproduction. Section 7.6 introduces evolution to
motivation by allowing agents to probabilistically copy the motivation of others in the
same manner that they copy their action rules and blending levels. We summarise the

chapter findings in a discussion in Section 7.7.
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7.2 Identity-Driven Motivation in Psychology

As mentioned in Chapters 2 and 3, traditionally indirect reciprocity models utilise payoff
(the difference between costs and benefits) as fitness to determine which agents reproduce.
This chapter challenges that view by aligning fitness to group identity, for those agents
who have a case to align with such a disposition through their dependency on the group
for their personal identity. This builds on the structure of identity introduced in Chapter 6,
where agents combine a shared group identity with an individual identity using the idea
of a blending level. When the blending level is high, the agent has more connection to
the group (and their strategies) due to greater dependency on their identity being shared
with others. Here we explore what happens when strength of the shared group identity

presents itself as an incentive to prioritise copying another agent at the reproduction step.

This incentive relates to the concept of identity driven motivations from psychology
[177]. As described in Section 2.3, psychologists have suggested that identity is an im-
portant driver for prosocial behaviour, with it providing powerful intrinsic motivations
[7]. Intrinsic motivation refers to the personal value that the individual associates with a
particular activity; this could be the feeling of contentment and fulfilment that they as-
sociate with an act, for example [157]. In our context, intrinsic motivation means that a
reward’s value may not be represented by explicit factors which are received by an indi-
vidual undertaking a task [19]. Payoff, as represented in previous chapters, is an example
of an extrinsic reward. In contrast, identity fusion [177] presents an intrinsic motivation
back to the individual. This occurs through the identity of the individual overlapping
with the identity of the group, which also incentivises the individual to act for the group.
In qualitative terms, the concept of identity fusion has also been described in terms of
feelings that influence pro-group decision-making, such as providing a “visceral sense of
oneness with a group” [176] that in-turn reaffirms supporting the group’s behaviour. For
the models of this chapter, identity fusion can be interpreted as supporting or promoting

the action rules of influential (i.e., highly blended) group members.
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While it is a challenge to model visceral feelings, it is possible to model the hypothet-
ical consequences of those feelings in the decisions that agents take at the reproduction
step. From this perspective agents will not reproduce only based on an agent’s economic
value but rather by taking into account their identity and how devoted they are to the
group identity. We extend the evolutionary game theoretic framework to incorporate pri-
oritisation of copying the action rules of other group members, alongside the economic
motivation of copying the action rules of those that are most successful in terms of payoff.

This is described in detail in the following sections.

7.3 Implementing Fusion Motivation

In this section, we highlight how fusion motivation can extend the general framework as
presented in Chapter 6. We assume that fusion motivation affects the selection process
within the reproduction phase of the framework. Reproduction is the social learning step
that occurs at the end of every generation. In this step, agents probabilistically copy the
action rules of other agents, taking into account the success of other agents, as perceived

by an agent at the end of every generation. This is the element of the model that we adjust.

We refer to the two alternative motivations at the selection stage as economic moti-
vation and fusion motivation. Economic motivation prioritises having more benefits than
costs or having the highest payoff. This represents an extrinsic motivation. Agents with
this motivation probabilistically copy others strategies based on the differences between
their benefits and costs (i.e., payoff). Alternatively we assume that fusion motivation
prioritises copying agents based on the extent of their commitment towards the shared
identity of the group, as measured by their blending level. This represents an intrinsic mo-
tivation, providing positive feedback from copying a blended when the agent is strongly
aligned to the group, in terms of identity. Agents with this motivation copy other agents’
strategies, probabilistically based on the extent of other agent’s blending level towards the

shared trait.
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7.3.1 Fusion Motivation Scenarios

In the following sections, we consider different fusion motivation scenarios. The sce-
narios allow us to understand to what extent fusion motivation disrupts population struc-
tures and its impact on identity and cooperation. We focus on three different scenarios
that implement fusion motivation. The chosen scenarios complement experiments in past

chapters to draw on their results for comparison.

The scenarios are divided into sections as follows.

* In Section 7.4, we apply fusion motivation to all agents in the population enabling
us to determine how agents cooperate when their reproduction is not determined
through payoff but through the agents’ regard for fusion to the group, as measured
by blending levels. The scenario compliments Section 6.5 of Chapter 6 as it uses

the same assumptions except for the motivation used in the reproduction step.

* In Section 7.5, we allow the agents’ blending levels to determine their motivation
based on a probability equal to their level. This scenario allows for both motiva-
tions to exist in the population structure and explores how the combination impacts

cooperation and identity.

* In Section 7.6 we introduce evolution to motivation, allowing agents to change their
motivation after every generation as they are copied from others who are deemed
successful under their current motivation. In this scenario, motivations are based
on probability rather than being a binary choice between economic and fusion mo-

tivation.

These experiments share several assumptions. Each experiment uses the default pa-
rameters mentioned in Section 3.5.3. That is all the experiment results are obtained from
five runs, each with a random seed. Each agent participates in an average of 50 games per

generation based on the following parameters A = 100, with M/ = 100000 and m = 5000
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where A is the population size, M is the number of generations, and m is the number of

rounds per generation.

To begin, we divide the population into blended agents and independent agents. We
assign each blended agent 7 a blended level, w;, at random from the levels identified
in Subsection 6.3.2. Additionally each agent 7 is assigned an action rule, (s;, u;,d;) at
random. In other words, a set of agents are designated as independent and will be assigned
0 < w; = 0, while the remaining agents are randomly assigned a blending level where
w; > 0. The assigned action rules and blending levels remain constant within a generation
for each agent. During each round within a generation, the agents will interact, taking
donation decisions using their action rules as usual and update their reputation and payoff
as outlined in Subsection 6.3. Each agent pair chosen in any interaction is controlled by
parameter S, which is the probability that the recipient j attempts to choose a blended
agent ¢ as donor (i.e. 1 > w; > 0). 1 — S represents the probability that the chosen donor
is an independent agent (i.e. w; = 0). Non-blended agents, (w; = 0), select donors at

random from the population with disregard to their blending levels.

Once a generation is completed, reproduction takes place. The following experiments
have different approaches for that phase which are detailed in their specific sections. The
different approach to reproduction is necessary to examine how identity and fusion moti-

vation affects different scenarios.

7.4 Evolving All Agents With Fusion Motivation

In this Section, we consider the effects of allowing agents to evolve their blending lev-
els while using only fusion motivation. Similar to Section 6.5, this allows the population
structure to change in terms of the extent of group involvement. The use of fusion motiva-
tion enables agents to reproduce based on the highest blending agent without considering
payoff (economic motivation). Fusion motivation is applied on all agents regardless of

their initial blending level (lines 24-34 in Algorithm 5). At the end of every generation,
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we assume that the agents inherit both the action rules (line 26 in Algorithm 5) and the
blending levels of successful agents based on that generation’s highest blended agents
(line 27 in Algorithm 5). Furthermore, a mutation on action rules and on blending level

is applied with a probability of 1% as discussed in Section 6.4.

This experiment is similar to that of Section 6.5; however, in this experiment, fusion
motivation is used instead of economic motivation. In addition to adopting the assump-
tions identified in Section 7.3.1, specific parameters are adjusted for this scenario. These
begin at the reproduction stage, in which agents socially learn based on fusion motiva-
tion. In other words, agents learn from others based on their relative success measured
by their blending level. Once an agent updates their action rules and their blending level,

mutation takes place. Mutation changes an agent’s action rules and blending level with a

1

probability of 15,

the rate being sufficient to alter the population’s structure as demon-
strated in [198] and [199] and used in previous experiments in this chapter. Blending level
mutation randomly assigns agents one of seven blending levels identified in Subsection
6.3.2, including w; = 0. Action rule mutation randomly assigns one of the eight action

rules specified in Subsection 3.4.3. Note that mutation is applied to both independent and

blended agents.

Figure 7.1 shows that fusion motivation heavily impacts cooperation regardless of
the initial configuration of agents resulting in an average cooperation of 48 — 51% (SD
=0.00 — 0.03) . In this scenario, all agents are motivated to adopt high blending levels,
resulting in a decrease in independent agents, as shown in Figure 7.2 (SD = 0.0001-0.027).
Recall that independent agents, in this scenario, are those with a blending level of w; =
0. As all agents adopt high blending levels and independent agents cease to exist in
the population, agents can no longer interact with any independent (out-group) agents;

therefore, parameter S has no influence on agents’ interactions.

Additionally, as agents with fusion motivation base success on how highly an agent is
blended to the shared trait, they do not consider payoff as an attribute for success. As such,

agents adopt the action rules and blending levels of others who have high blending levels.
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In turn, this results in a population with various action rules with no dominant strategy,
as shown in Figure 7.3, causing cooperation to achieve an average of 48 — 51%. This
represents near uniform random chance of cooperation. Note that even when the initial

number of blended agents is 10 or, in other words, the number of independent agents is

90, agents quickly adopt high blending levels as recorded in Figure 7.4.
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Figure 7.1: Average cooperation is sustained in the range of 48% — 51% when agents
use fusion motivation, and blending levels evolve and mutate. The effect of fusion
motivation on the population renders Parameter S ineffective because all agents
evolve their blending levels and become devoted to the group, leaving no agent out-
side the group. This trend occurs regardless of the starting number of blending
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Algorithm 5 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and
Fusion Motivation

Require: Number of iterations m; number of generations M ; set of agents A; set of traits

1:

—_ = e e
AN

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

R e A A T

T’ set of traits T'; set of binary action rules AR = (s;, u;, d;); set of blending levels
W cost ¢; benefit b; in-group interaction probability .S; mutation rate of action rules
445 mutation rate of blending levels y; the set of agents that share at least one trait
with agent j N;;
for M generations do > Evolutionary simulation
Setr;, =0VteT
for m iterations do

j <« U(A) > Select recipient (see Section 3.5.1)
p<«U(0,1)
ifp < Sand |N;| >0 then
i+ U(N;) > Select random in-group donor
elseif p > S and | N,| > 0 then
i < U(N;) > Select random out-group donor
else
i UA-{j}) > Select random donor
end if
> Apply action Rules (see Sections 3.4.3 and 3.5.2)
rt = (1 —w;)r(t;) + wir(g) > 1’s reputation is derived from w;
if (r'=r/ and s; = 1) > Compare equal
or (r' <77 and u; = 1) > Compare upwards
or (r' >r’and d; = 1) then > Compare downwards
Ty <— min(5,ry + 1) > ¢ donates, increase reputation
else > ¢ defects
if 77 > r’ then > Detect unjustified defection.
re < max(—=5,r, — 1) > Decrease reputation
end if
end if
end for
> Reproduction stage (see Sections 3.5.3 and 7.3)
fori € Ado > Determine new values for all agents
Jj+ R(A w) > Roulette wheel based on blending level
(s, ul, dy) < (s5,uj,d;) > i copies j’s action rules
W] — w; > ¢ copies 7’s blending level
if U([0,1]) < pa then
(st,ul,d}) < U(AR) > Mutate action rules
end if
if U(]0,1]) < pp then
w; «— U(W) > Mutate blending level
end if
end for
fori € Ado
(84, us, d;) < (85,4, db) > Update action rules for all agents
w; — W, > Update blending for all agents
end for
end for
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Figure 7.2: Average blending levels are above 98% as a result of all agents having fu-
sion motivation while their blending levels evolve and mutate. Parameter S does not
affect blending levels in this case, regardless of the initial number of blended agents.
High blending levels are an expected result of agents having a fusion motivation.
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Figure 7.3: A snapshot of the distribution of the action rules produced, in subse-
quent but not consecutive generations, due to fusion motivation shows that fusion
motivation does not allow a dominant action rule to emerge. This pattern results
from agents seeking to gain high blending levels to show their devotion to their trait
without regard for payoff or self-gain. In this figure the initial configuration was 50
blending agents with S = 0.5.
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Figure 7.4: A snapshot of the distribution of the blending levels produced as a re-
sult of all agents having fusion motivation shows that agents adopt high blending
levels within a couple of generations regardless of the starting configuration. In this
figures, 90 agents were assigned as independent, i.e w; = 0.

7.5 Using the Blending Level to Determine an Agent’s

Motivation

In this Section, we investigate the use of agents’ blending levels, w;, to determine an
agent’s motivation. The decision on whether economic motivation or fusion motivation
is used by agent 7 for selection is governed by a probability equal to that of an agent’s
blending level w; (line 25 in Algorithm 6). Specifically, fusion motivation is applied with
probability w;, and economic motivation is applied with probability 1 — w;. The motiva-
tion chosen is then actioned, and the agent’s action rules and blending level are updated
accordingly, on the basis of copying. Algorithm 6 illustrates the change in reproduction

that is relevant to this scenario.

In this experiment we continue to apply mutation on action rules and on blending lev-

els with a probability of 1% as discussed in Section 6.4. Additionally, we use different
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probabilities of S’ that enable us to determine the effects of restricting interactions between
blended (dependent) agents and non-blended (independent) agents. Note that if all agents
adopted economic motivation, then the results of Section 6.5 would be repeated. Simi-
larly, if all agents adopt fusion motivation, then the results of Section 7.4 are repeated.

The experiment in this section adopts the assumptions identified in Section 7.3.1.

Figure 7.6 shows that allowing agents to determine their motivation through blending
levels favours fusion motivation, as the average blending level of the population is higher
than 78% except where the initial number of blending agents is 0,10 and 20. These
findings result in low cooperation overall except for the mentioned cases, as shown in
Figure 7.5. The low cooperation recorded is attributed to the following. Firstly agents
with high blending levels quickly adopt fusion motivation as their probability dictates
them to through their blending level. This trend allows for agents with fusion motivation
to copy any set of action rules blindly, which causes lower cooperation, as was seen in
Section 7.4. Secondly, agents with low blending levels, and therefore with economic
motivation, will copy others based on their payoff. Defector agents, within economic
motivation scenarios, tend to be the agents with the highest payoff. As such, other agents
with economic motivation will inherit high blending levels and defector strategies. For
these reasons, fusion motivation dominates the population, which drives blending levels

to high levels.

When the initial number of blended agents is low, and parameter S is higher than
0.5, the same trend is found, albeit at a slower rate. In this case, the combination of the
smaller number of initial agents with a blending level greater than w; > 0 and parameter
S > 0.5 does not allow for blending levels to evolve to higher levels as quickly as the
other cases, as observed in Section 6.5. In turn, this allows for economic motivation to
exist in the population, albeit at a slower diminishing rate than when agents adopt high
blending levels. In light of observing slower levels of evolution here, as compared to
earlier experiments, we have extended substantially the number of generations. Figures

7.8 and 7.9 show the average cooperation and average blending levels, respectively, when
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the number of generations is permitted to increase from the default 100, 000 generations
to a million generations. These figures suggest that the trend of higher blending levels and
lower cooperation would be reached if the number of generations is allowed to increase.
This also reaffirms the slowing of evolution for this scenario, as compared to previous

experiments.

Figure 7.11 shows how blending levels increase when the number of generations is
increased. The figure illustrates that if the number of generations is increased for all sce-
narios examined, fusion motivation will dominate the population, causing a high average
rate of blending levels and cooperation to drop. Cooperation drops due to agents adopting
action rules at random by focusing only on inheriting agents with high blending levels as

can be seen in Figure 7.10.

In the first 200, 000 generations, the discriminator strategy (1, 1,0) is dominant as
blending levels are low and agents use economic motivation. However, once agents adopt
higher blending levels, triggered through mutation, agents have a higher probability of
using fusion motivation which leads to agents copying random action rules, eventually
reducing cooperation. In contrast, when agents evolve to lower blending levels and adopt
economic motivation, cooperation records a higher average. The results are expected and
are in line with those of Sections 6.5 and 7.4. Furthermore, the result reaffirms our theory
that cooperation moves negatively to the average blending level, r(49) = —.99, p < .001,

as shown in Figure 7.7.
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Algorithm 6 Algorithm for Indirect Reciprocity Based on the Reputation of Traits Where
Blending Levels Determine Motivation

Require: Number of iterations m; number of generations M ; set of agents A; set of traits

1:

—_ = =

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:

—_— =
S A 2 - R AR

T set of traits T'; set of binary action rules AR = (s;,u;, d;); set of blending levels
W cost ¢; benefit b; in-group interaction probability .S; mutation rate of action rules
1445 mutation rate of blending levels 1 p; the set of agents that share at least one trait
with agent j N;;
for M generations do > Evolutionary simulation
Setr;, =0VteT
for m iterations do

j <« U(A) > Select recipient (see Section 3.5.1)
p<«U(0,1)
if p < Sand |N;| >0 then
i+ U(N;) > Select random in-group donor
elseif p > S and |N,| > 0 then
i+ U(N;) > Select random out-group donor
else
i UA—-{j}) > Select random donor
end if
> Apply action Rules (see Sections 3.4.3 and 3.5.2)
rt = (1 —w;)r(t;) + wir(g) > 4’s reputation is derived from w;
if (r'=r/ and s; = 1) > Compare equal
or (r' <riandu; = 1) > Compare upwards
or (r' > 1 and d; = 1) then > Compare downwards
re <— min(b,ry + 1) > ¢ donates, increase reputation
else > 1 defects
if 77 > r' then > Detect unjustified defection.
re <— max(—5,1; — 1) > Decrease reputation
end if
end if
end for
> Reproduction stage (see Sections 3.5.3 and 7.3)
fori € Ado > Determine new values for all agents
if U([0,1]) < w; then
Jj < R(A w) > Roulette wheel based on blending level
else
Jj< R(A,f) > Roulette wheel based on fitness
end if
(sh,us, d}) < (85, u4,d;) > 4 copies j’s action rules
w; — w, > ¢ copies j’s blending level
if U([0,1]) < p14 then
(st,ul,d}) < U(AR) > Mutate action rules
end if
if U([0,1]) < pp then
w; <+ U(W) > Mutate blending level
end if
end for
fori € Ado
(8, us, d;) < (8, ul, db) > Update action rules for all agents
w; — W, > Update blending level for all agents
end for
end for
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Figure 7.5: The average cooperation produced over generations when blending lev-
els determine an agent’s motivation. Parameter S imposes that when S = 1, blended
agents cannot receive donations from independents agents, and when S = 0, blended
agents can only receive donations from independent agents. Overall the cooperation
recorded is low as agents evolve their action rules and blending levels with the ex-

335 %

32.4 %

33.4 %

33.1 %

33.0 %

33.2 %

32.9 %

33.4 %

0.2

33.0 %

32.8 %

32.6 %

335 %

32.9 %

34.4 %

34.5 %

37.8 %

0.4

ception of 10 and 20 when S > 0.5.

98.0 %

40 50 80 90

Initial Number of Blended Agents
20

Sl 98.0 %

0.0

Figure 7.6: The average blending levels produced as a result of agents using their
blending levels to determine their motivation and applying parameter S. Overall
the average blending level recorded is high (> 78%) as agents evolve their action
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Figure 7.7: The correlation of blending levels and cooperation when agents use their
blending levels to determine their motivation as described in Section 7.5. Each point
represents a pair of (blending level, cooperation) from Figures 7.5 and 7.6.
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Figure 7.8: After a million generations, we note that average cooperation records a
lower average than that of 100, 000 generations when the initial number of blended
agents is low (0, 10, 20) and S > 0.5. This is attributed to the higher blending average
recorded as seen in Figure 7.9. The table shows the average cooperation recorded
over generations when agents use their blending levels to determine their motivation.
Parameter S imposes that when S = 1 blended agents cannot receive donations from
independents agents, and when S = 0 blended agents can only receive donations
from independent agents.
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Figure 7.9: After a million generations, we note that blending levels record a higher
average than that of 100, 000 generations when the initial number of blended agents
is low (0,10,20) and s > 0.5. This is attributed to mutation introducing higher
blending levels to the population. The table shows the average blending levels when
agents use their blending levels to determine their motivation. Parameter S imposes
that when S = 1 blended agents cannot receive donations from independents agents,
and when S = 0 blended agents can only receive donations from independent agents.
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Figure 7.10: The distribution of action rules, in subsequent but not consecutive gen-
erations, produced as a result of agents using their blending levels to determine their
motivation where all agents initially have a blending level of w; = 0 (i.e. indepen-
dent) and use economic motivation with S = 0.6.
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Figure 7.11: The distribution of blending levels, in subsequent but not consecutive
generations, produced as a result of agents using their blending levels to determine
their motivation where all agents initially have a blending level of w; = 0 (i.e. inde-
pendent) and use an economic motivation with S = 0.6.
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7.6 Evolving Motivations in a Heterogeneous Population

In this section we investigate allowing agents to evolve their reproduction motivation
along with action rules and blending levels. In this scenario, agents socially learn by
adopting the action rules, blending levels, and the parent agent’s motivation. Motivations
are based on a probabilistic scale from the set MV = {0,0.2,0.4,0.5,0.6,0.8,0.9, 1} the
distribution of the scale was chosen to ensure that a number of probabilities are selected.
The scenario allows us to determine further the effects of reproduction based on economic
and fusion motivation without it being dictated to the agent through their blending level,
such as in Section 7.5 or through the experiment setting, such as in Sections 6.5 and 7.4.
In this scenario, we continue to apply mutation on action rules and on blending levels
with a probability of 1% as discussed in Section 6.4. In addition, we apply the same
rate of mutation on motivation, allowing for a change in motivation after assignment. We

continue to use Parameter S in the same fashion as previous experiments, in which it
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dictates the probability of the chosen donor to be a blended agent. Algorithm 7 illustrates

the reproduction phase that corresponds to this experiment.

The experiment in this section makes several assumptions in addition to those iden-
tified in Section 7.3.1. At the first generation, all independent agents, where w; = 0,
are assumed to have an economic motivation while dependent agents, where w; > 0, are
assigned a motivation probability from the set {0.2,0.4,0.5,0.6, 0.8, 1}; this corresponds
to Figure 7.12. The remaining components of the experiment follow the pattern outlined
in Subsection 7.3.1 and Algorithm 3. Once a generation of interactions is complete, at
the reproduction step, agents socially learn from others based on their relative success as
measured by their motivation, either being economic or fusion (lines 24-28 in Algorithm
7). If an agent has an economic motivation, they will base their reproduction on the payoff
of others. On the other hand, if an agent has fusion motivation, they will base reproduc-
tion on agents with high blending levels, as outlined in Section 7.3. Regardless of the
motivation used, agents inherit their parent’s action rules, blending level, and motivation
to be used at the end of the next generation. Note that the motivation probability used is

different from the blending level assigned to agents as they are separate parameters.

1
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Figure 7.12: A simple visualisation of 10 agents, where agents may share a trait
while maintaining different motivations, where blue represents agents with blending
levels w; > 0 and fusion motivation. Red represents independent agents w; = 0, with
economic motivation.
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After updating agents’ action rules, blending levels, and the motivation probability,

1

T00° the rate

mutation takes place. Mutation changes these parameters with a probability of
being sufficient to alter the population’s structure as demonstrated in [198] and [199] and
used in previous experiments in this thesis. Specifically, after an agent ¢ has been assigned
a new set of action rules, a blending level and a motivation probability mutation occurs.
Blending level mutation randomly assigns agents one of seven blending levels identified
in Subsection 6.3.2, including w; = 0. Action rule mutation randomly assigns one of the
eight action rules specified in Subsection 3.4.3. Motivation mutation randomly assigns the
agent with a motivation probability from the set MV, with 0 being economic motivation

and 1 being fusion motivation. Note that mutation is applied to both independent and

blended agents.

The results, as shown in Figures 7.13 and 7.14, indicate that when agents evolve their
motivation, cooperation records low levels and blending records high levels. The cooper-

ation achieved is lower than any previous scenarios examined.

Figure 7.14 shows that all agents evolve towards blending levels higher than 90%
regardless of their starting configuration. Agents that adopt fusion motivation quickly
become highly blended as instructed by their motivation. In contrast, agents that have
a lower proportion of fusion motivation will copy others based on their payoff. Within
economic motivation scenarios, highly blended defector agents tend to be the agents with
the highest payoff. As such, other agents with economic motivation will inherit high
blending levels and defector strategies. This trend takes place in a few generations as

shown in Figure 7.16.

Figure 7.13 shows that when agents evolve their motivation, cooperation records low
levels averaging below 7%. This is attributed to agents adopting different probabilities of
motivation as can be seen in Figure 7.15. This leads to the defector strategy being domi-
nant as agents with a percentage economic motivation will primarily inherit from highly
blended defectors, as shown in Figure 7.17. At the same time, the presence of fusion

motivation guarantees that highly blended agents are maintained in the population, which
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impedes the population from going back to low blending levels, as shown in Figure 7.16,
thus allowing shirkers to take advantage of the high blending levels in the population. As
fusion motivation does not consider any action rule favourable to agents, agents proba-
bilistically copy the agents’ action rules with the highest blending level, which allows for

the defective strategies to spread widely.
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Algorithm 7 Algorithm for Indirect Reciprocity Based on the Reputation of Traits and
Evolving Motivations

Require: Number of iterations m; number of generations M ; set of agents A; set of traits

1:

—_ = =

16:
17:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:

=

—_— =
S A 2 - R AR

T set of traits T'; set of binary action rules AR = (s;,u;, d;); set of blending levels

W cost ¢; benefit b; in-group interaction probability .S; mutation rate of action rules

1445 mutation rate of blending levels 1 p; the set of agents that share at least one trait

with agent j N;;

for M generations do
Setr;, =0VteT
for m iterations do

> Evolutionary simulation

j <« U(A) > Select recipient (see Section 3.5.1)
p<«U(0,1)
if p < Sand |N;| >0 then

i+ U(N;) > Select random in-group donor
elseif p > S and |N,| > 0 then

i+ U(N;) > Select random out-group donor
else

i« UA-{j}) > Select random donor
end if

> Apply action Rules (see Sections 3.4.3 and 3.5.2)
rt = (1 —w)r(t;) +wir(g) > i’s reputation is derived from w;

if (r'=r/and s; = 1)

or (r' <7’ and u; = 1)
or (r' > 1 and d; = 1) then

re <— min(b,ry + 1)
else
if 77 > r’ then

re <— max(—5,1; — 1)

end if
end if

end for
fori c Ado

if U([0, 1]) < mu; then
Jj R(A, w)

else
J<+< R(A, )

end if

(827 u;, d;) — (5j7 Uy, d])

w; — w,

MU, — mu,

if U([0,1]) < p14 then
(si, uj, ) < U(AR)

end if

if U([0,1]) < pp then
wi + U(W)

end if

> Compare equal

> Compare upwards

> Compare downwards

> ¢ donates, increase reputation
> 1 defects

> Detect unjustified defection.
> Decrease reputation

> Reproduction stage (see Sections 3.5.3 and 7.3)

> Roulette wheel based on blending
> Roulette wheel based on fitness

> 7 copies j’s action rules

> ¢ copies j’s blending level

> ¢ copies 7’s motivation

> Mutate action rules

> Mutate blending level
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38: if U([0,1]) < puas then

39: mv; < U(MV) > Mutate motivation
40: end if

41: end for

42: fori ¢ Ado

43: (84, us, d;) < (8, us, db) > Update action rules for all agents
44: w; — w; > Update blending level for all agents
45: muv; <— mu, > Update motivation for all agents
46: end for

47: end for
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Figure 7.13: Low cooperation recorded as a result of agents evolving their motiva-
tion along with their blending level and action rules while enforcing parameter S.
Cooperation is impacted heavily as agents evolve their motivations. A mutation of

1% is applied on motivation, blending levels and action rules.
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Figure 7.14: High blending levels are recorded as a result of agents evolving their
motivation along with their blending level and action rules while enforcing parame-
ter S. Cooperation is impacted heavily as agents evolve their motivations. A muta-
tion of 1% is applied on motivation, blending levels and action rules.
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Figure 7.15: The distribution of the motivations produced, over subsequent but not
consecutive generations, as a result of agents evolving their motivations where we
initially assigned 90 agents economic motivation shows that no dominant motivation
probability can dominate the population.
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Figure 7.16: The distribution of the blending levels produced, over subsequent but
not consecutive generations, where we initially assigned ninety agents as indepen-
dent (w; = 0) while allowing agents to evolve their motivations. Agents quickly
evolve towards higher blending levels within a few generations. The figure shows the
blending levels of agents of the same run and scenario as Figure 7.15.
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Figure 7.17: The distribution of action rules over subsequent but not consecutive
generations as agents evolve their motivations shows that the defector action rule
(s;, u;, d; = (0,0,0)) dominates the population at the early generations. This trend
of dominance is interrupted through mutation in later generations by introducing
other action rules. The figure shows the action rules of agents of the same run and
scenario as Figure 7.15.
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7.7 Discussion

The chapter’s focus on fusion motivation is a shift from previous chapters where individ-
uals used explicit (i.e., economic) motivation based on payoff. In this chapter, individuals
additionally use fusion motivation and can base success on perceptions of identity, show-

ing preferences to copy those that are strongly aligned with a group’s identity.

In Chapter 6, a new generation of agents probabilistically copied the action rules,
traits and blending levels of other agents based on payoff. In this chapter, agents prob-
abilistically copy others based on identity (blending levels). The motivation for this has
originated in psychology, where individuals’ behaviours in groups have been examined
[174] and observed to be heavily motivated by identity, and the extent of fusion with a

group’s identity.

Our results have shown that allowing agents to reproduce based on fusion motivation
drives cooperation to suffer significantly due to the randomness of the action rules in-
herited by agents. Our results in Section 7.4 show that adequate, but not high, levels of
cooperation (48 — 51%) are recorded when all agents reproduce with fusion motivation.
The outcome, as mentioned earlier, is attributed to the random allocation of action rules at
the first generation and the subsequent randomness in inheriting the action rules by agents

in the following generations.

To further compare economic and fusion motivations, we developed two scenarios
where agents evolve their motivations. Section 7.5 allowed agents to base their motivation
on the blending level they have. In other words, as agents evolved their blending levels,
their probability of using fusion motivation evolved as well. Our results in Section 7.5
showed that as agents adopt higher blending levels (higher than 90%), fusion motivation
dominates the population, causing a drop in cooperation. Initially, when all cases of this
scenario were examined, a small number of cases presented an alternative view. This
outcome is attributed to the initial high number of independent agents with w; = 0 and

the enforcement of S > 0.5. However, based on further analysis, by allowing longer
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generation runs, we have shown that fusion motivation and high blending levels continue
to dominate the population, although at a slower pace. We note that once the population
converges towards fusion motivation, it fails to restore economic motivation even with a

mutation of 1% having been applied.

Section 7.6 showed how agents evolve motivation based on their parent’s motivation
with a small mutation applied for randomness. Our results in Section 7.6 showed that high
blending levels, similar to Section 7.5, quickly dominate the population from early gener-
ations. The dominance results in low cooperation rates (below 7%). The low cooperation
outcome is attributed to agents adopting defective action rules (strategies) in early gen-
erations. Once an action rule is dominant within the population, fusion motivation does
not alter it, and the change in action rules only occurs due to mutation. This outcome was

found for all cases examined regardless of the starting motivation.

7.8 Conclusions

This chapter has introduced a novel selection method based on an agent’s identity, re-
ferred to as fusion motivation. Fusion motivation allows agents to evolve based on their
identity rather than using the convention of economic payoff. This represents agents us-
ing an intrinsic motivation rather than an extrinsic motivation, which is the game-theoretic
convention. This has been implemented at the reproduction step, and equates fitness to an
agent’s blending level, with different implementations possible. We implemented three
different fusion motivation approaches to examine how it affects identity sharing and co-

operation.

Fusion motivation shifts the selection process’s association from payoff to identity,
with value placed in copying others that have a high blending level towards the group.
This chapter’s results showed that fusion motivation heavily disrupts cooperation. How-
ever, it allows agents to value devotion to their group identity. The outcome is attributed to

the motivation’s dominance and its allowance for random action rules to exist in the pop-
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ulation. Although we continue to use the standing assessment, defective strategies escape
punishment as agents focus on adopting higher blending levels rather than maintaining

higher payoff or reputation.

Our approach to fusion motivation was to allow agents to represent the human be-
haviour towards groups where motivation shifts between extrinsic (wealth) and intrinsic
motivations (based on an internal value of the group to the individual). Furthermore, this
approach is linked with the literature on identity fusion [175, 177], which studies how in-
dividuals value groups and fuse their identity with that of the group. Our model’s agents
have simple cognitive functions, and therefore the model they operate in cannot represent
the complexity of human social life. However, interestingly, the results indicate that fu-
sion motivation is a potentially powerful force in drawing agents away from economic
incentives, with a challenge being presented in how agents may be incentivised to change
strategy once they pursue intrinsic motivation. Valuing who an individual is, rather than
what they achieve (in terms of economic payoff) allows de-prioritisation of rational eco-
nomic rewards that can underpin survival. Without other mechanisms coming into play
(e.g. different punishment mechanisms) [105, 139, 149], this can be detrimental to the

long term prosperity of a population.

Overall, this chapter reaffirms that the consequences of intrinsic motivation on a pop-
ulation are potentially significant, and are likely to work in tandem, to some degree with
economic motivation. This is worthy of future development in its own right, and identity

is a valuable point on which to focus, given the rationale presented from psychology.
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Chapter 8

Conclusions & Future Work

8.1 Introduction

Overall, the contribution of this thesis has concerned generalising a fundamental assump-
tion that is widely used in cooperation systems: namely that each agent has a unique

identity. We have developed and examined this by

* allowing each agent to compose an identity based on different “units” of identity,

referred to as traits;
* introducing sharing of identity through traits being adopted by multiple agents;

* letting traits carry reputation, which is then inherited by those carrying the traits.

Our identity framework has been developed using indirect reciprocity, where agents
are presented with the dilemma of donating to others without the guarantee of recipro-
cation. This is a fundamental and useful game to consider because it is based on repu-
tation, which effectively represents a quality measure associated to an identity. This is
also highly relevant to literature concerning human systems (psychology), theoretical bi-
ology and economics (game theory). In particular, the framework allows group identity
to be considered, through groups having an identity (trait) which can be shared by group
members, while also retaining elements of identity (i.e., other trait(s)) that are unique to
themselves. This has allowed us to consider how concepts of identity in the human world

(e.g., group identity, stereotyping) may be represented in our model and cause an impact.
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As aresult of this framework, we have been able to determine how changing the struc-
ture of identity alone, affects cooperation. This is useful because it quantifies the extent
to which cooperation systems need to have functionality (e.g., second-order mechanisms)

beyond the basic reputation system in order for cooperation to be sustained.

A number of aspects of our results are striking. Although we find that cooperation has
the potential to be heavily disrupted by shared identity, such as in Section 4.4 when the
number of agents sharing a single trait exceeded 15%, it is also apparent that considerable
cooperation can emerge if sharing is structured in a particular way. For example, when
sharing takes place in smaller groups as was the case in Section 4.4.1, or by allowing
individuals to evolve their groups such as in Section 5.3. On the other hand, it has also
been apparent that concepts that occur in the human world related to identity, such as
stereotyping, Section 4.4, have an equally considerable impact in the simulated world of

indirect reciprocity. These result in considerable reductions in the observed cooperation.

Another element of surprise from the results has been the discovery of the relation-
ship to evolutionary set theory (See Section 5.3.1). To date, this has been considered as
an alternative model to cooperation, as compared to a reputation system, with minimal
components in the model. This model focuses on agent set memberships and their move-
ment between sets, with moderate levels of cooperation observed (e.g., 50-70%, [122,
185]). However, in Section 5.3.1, we observe that as cooperation collapses due to shar-
ing of traits, our model defaults to set based cooperation, as seen in [71, 186]. This is a
significant observation that relates two alternative approaches to sustaining cooperation
which have previously been considered unrelated, and indeed potentially orthogonal in
the sense that these relate to different communities of interest (i.e., reputation systems
and set theory). We believe this is the first time that a relationship between these different

types of models has been established.

Further interesting observations have arisen from Chapters 6 and 7 where we have
explored an alternative formulation for identity that allows agents to effectively have a

trade-off in their identity between the extent they inherit the shared group trait, as op-
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posed to their unique (non-shared) personal identity. This formulation is also interesting
because it relates, at a simplified level, to the psychological concept of identity fusion
[177], which is an important contemporary psychology explanation as to how group iden-
tity and individual identity may overlap (i.e., blend) and combine to motivate an individ-
ual’s group-driven behaviour. Here we have explored a representation of this and found,
for the first time, the relationship between cooperation and the extent of blending levels.
In particular, in the absence of any additional social mechanisms, our findings (Chapter
7) re-affirms that balance between identities is needed for cooperation to emerge and be

sustained.

Finally, insights due to alternative assumptions on motivating agent behaviours have
considerable feedback. From the psychology literature (particularly social identity theory
[182] and identity fusion theory [177]) it is clear that identity can be a motivating force in
its own right for (human) agents, because of the value that group membership can bring
to the individual. Therefore group identity was introduced as an attraction at the selection
stage. Various formulations were considered, alongside the traditional economic moti-
vation of payoff. This approach disrupts the economic assumption of perfect rationality
that is commonly applied in game theory. The results showed that motivations related to
identity were in fact a very powerful force, which is due to an inherent feedback loop that
promotes identity across the population. Under these circumstances, cooperation appears
to become randomised (i.e., 50%) while high blending levels take hold under a number
of experimental conditions. These findings are consistent with general observations con-
cerning identity fusion [177] in the sense that identity driven motivations can become
deeply established and hard to reverse. These findings also reaffirm that there is consid-
erable scope to further develop game theoretical modelling with a greater emphasis on

behavioural motivations.



154

8.2 Limitations and Future Work

It is important to understand that our work represents a reductionist model of possible
actions and responses, and as such, it only informs a limited aspect of possible activ-
ity. For example, a particular limitation is the cognition available to agents, such as the
donor’s ability to view their recipient’s trait’s reputation and compare it. This limitation
of cognition means that the agents cannot represent human conditions, as humans are
more complex and may consider different traits to be of higher importance than others
and, as such, may view the reputations of others differently. However, on the other hand,
the agent-based simulation approach allows for the control of assumptions so that factors
can be considered in isolation. Furthermore, agent-based simulations are unable to cope
with massive populations without additional resources. Nonetheless, agent-based models
remain an important tool that enables us to explore cooperation problems and implement

different scenarios.

In terms of further work, there are multiple important aspects. Firstly, as highlighted
in Chapter 7, there is considerable scope to explore how bounded rationality and further
human-level motivations can impact our understanding of the fundamentals of coopera-
tion. This can further help to understand how social dynamics take hold in individual-level
decision making and have collective effects. Additionally, blended identities, Chapter 6,
could be further investigated by considering multiple groups to which an agent can sub-
scribe and how this affects both their identity and, in return, cooperation. Finally, different
sharing structures should be considered where agents may prioritise some traits when en-

gaging with others.

It is also important to note that although this work is of a fundamental nature, as ma-
chines and devices become autonomous, they will need mechanisms through which they
can understand and rationalise each other. Defining identity through traits, and making

decisions based on these, could become increasingly important.
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