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Abstract

- Viet Bui Xuan? - Stéphane P. A. Bordas> - Philippe Young* - Pierre Kerfriden'

Multiscale computational modelling is challenging due to the high computational cost of direct numerical simulation by
finite elements. To address this issue, concurrent multiscale methods use the solution of cheaper macroscale surrogates as
boundary conditions to microscale sliding windows. The microscale problems remain a numerically challenging operation
both in terms of implementation and cost. In this work we propose to replace the local microscale solution by an Encoder-
Decoder Convolutional Neural Network that will generate fine-scale stress corrections to coarse predictions around unresolved
microscale features, without prior parametrisation of local microscale problems. We deploy a Bayesian approach providing
credible intervals to evaluate the uncertainty of the predictions, which is then used to investigate the merits of a selective
learning framework. We will demonstrate the capability of the approach to predict equivalent stress fields in porous structures

using linearised and finite strain elasticity theories.

Keywords Multiscale stress analysis - Convolutional neural network - Surrogate modelling - Bayesian machine learning

1 Introduction

Multi-scale structural analyses are prominent in mechanical
and bio-mechanical engineering (e.g. composite materials
such as carbon-reinforced polymers or concrete, porous
materials such as bones). Full finite element analysis (FEA)
for stress prediction is usually prohibitively expensive for
those structures, as the finite element mesh needs to be
very dense to capture the effect of the fine scale features.
Therefore, a common approach is to split the problem into a
macroscale mechanical problem, and local microscale com-
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putations. The macroscale problem diffuses the overall stress
field in the entire structure without fully resolving the mate-
rial, while the local microscale computations are needed to
correct the macroscale fields and characterise the constitutive
law to be used at the macroscale.

Multiscale computational modelling can be approached
in two ways. Homogenisation, be it through the princi-
ples of micromechanics [59] or asymptotic expansions [48],
performs all microscale computations over a representa-
tive volume element (RVE), assuming that the macroscale
displacement gradients do not vary over the material sam-
ple. When the scales cannot be separated, scientists resort
to domain decomposition-based approach. The results of
homogenisation are applied to the boundary of regions of
interest for concurrent microscale corrections to be per-
formed [15,24,39,40,42]. These approaches are computa-
tionally more expensive and practically more intrusive than
methods based on RVEs. However, their deployment is
necessary when predicting the microscale response to fast
macroscale gradients, for instance due to sharp macroscale
geometrical features. The proposed method belongs to this
latter class of methods.

Multiscale computational modelling may be coupled to
offline/online acceleration methods such as model order
reduction (MOR) techniques [1,11,45] and meta-models
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[10,56]. The idea is to realise many expensive computations
in advance, subject to parameter variations, approximate the
family of generated solutions using statistical regression, and
use the statistical model online to produce solutions inexpen-
sively. Meta-models directly produce an analytical mapping
between parameters and solutions, whilst the more advanced
MOR techniques require online conditioning of the a genera-
tive statistical model (PCA for instance) to partial satisfaction
of the PDE system, making the latter approach intrusive. Both
approaches share the fundamental requirement for an appro-
priate adhoc parametrisation of the PDE system. In addition
to being cumbersome, such parametrisation are, in the case of
meta-models based on polynomial chaos expansion or Krig-
ing, further restricted to be of low-dimension to circumvent
the curse of dimensionality [6].

In this paper, we propose to develop a meta-modelling
approach to inexpensively generate microscale mechanical
corrections given the result of coarse scale simulations. The
meta-model will not require any knowledge of the PDE sys-
tem to produce the fine-scale corrections. Moreover, we wish
the meta-model to produce results for a variety of microstruc-
tures, characterised by parameters of random fields and
exemplified by realisations of these fields. Our developments
and examples are dedicated to 2D porous media with random
distributions of circular and elliptical voids. Parametrising
such distributions with small number of parameters is noto-
riously difficult. To circumvent this fundamental difficulty,
we propose to convert the field of material properties into
an image and use a convolutional neural network (CNN) as
surrogate model, guided by the fact that the CNNs used in
computer vision perform statistical tasks extremely well in
parameter space of very large dimensions (i.e. the number of
pixels in an image). Our approach is not a priori limited to any
particular statistics of the geometric features but in practice
we will show that we have to stay close to the ones repre-
sented in the training set. Of course, the price that needs to
be paid for these properties will be the necessity to generate
thousands of examples of fine-scale simulations in order to
achieve reasonable performance. Other works like the ones
of [2,30] opt for a dataset created by reduced order models to
reduce the computational cost of performing the necessary
FE simulations.

The input of the CNN can be the full macro scale stress
fields, not only hand-crafted averages such as the ones used in
homogenisation theory [47]. Consequently, we can assume
scale separability and apply arbitrary boundary conditions
at infinity. Additionally, real medical or industrial data are
hard to find and often expensive, so we aim to train our CNN
on simpler, artificial, datasets and find a way to transfer our
knowledge to real cases. To achieve that we are going to
train our CNN using only patches of the geometry, so the
CNN will be completely agnostic to the overall structure and
will learn to identify the effect of microscale features on the
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macro stress field. An overview of the method can be seen in
Fig. 1.

Although neural networks (NNs) are used in a wide variety
of applications, they usually do not incorporate uncertainty
information in their predictions. As a consequence, the effect
of deviating from the snapshot is not measured properly,
as opposed to methodologies based on Gaussian Processes,
which are more confidently used by mechanical engineers
(e.g. Kriging), geostatisticians and practictioners of uncer-
tainty quantification in general. Moreover, the availability of
uncertainty measures in the predictions is useful to develop
methods of active learning based on greedy selection of data
[22,35]. For these two reasons, our CNN meta-model will
be Bayesian, thereby incorporating uncertainty estimates by
construction, in a similar fashion to Gaussian processes.

Bayesian Neural Networks are not very popular, owing
to the unavailability of tractable posterior distributions, the
multimodality of posterior distributions, and the difficulty
of interpreting and calibrating the prior hyperparameters.
Recently, significant developments have allowed researchers
to partially tackle the tractability issue. Modern Bayesian
Neural Networks are based on variational inference, whereby
the parameters of families of possible posterior distribu-
tions are optimised using (stochastic) gradient descent in
order to minimise the KL divergence between the surrogate
distribution and the true, untractable posterior distribution
[3]. Successful variants of these ideas include variational
Bernoulli dropout [7], variational Gaussian dropout [25] and
Bayes by Backpropagation [4], these different variants being
closely related to one another. We will make use of the latter
method, which assumes independence and gaussianity of the
posterior distribution of the weights of the network, making
use of the reparametrisation trick to perform backpropaga-
tion over weight means and variances.

Based on the efficient BNN architecture described above,
we will investigate the use of uncertainty-driven selective
learning. To this end, we will only add to the training set
microscale examples for which the error estimate is large.
We will show that such approaches are beneficial in terms
of training time. Eventually, microscale examples could be
designed, i.e. optimised to maximise the network uncertainty,
but this more advanced conceptual idea is not investigated in
the present contribution.

Deep learning is being actively investigated worldwide for
solving challenging issues in computational mechanics and
bio mechanics. One of the earliest works of using deep learn-
ing models as surrogates for FEA is from [31] who developed
animage-image deep learning framework to predict the aortic
wall stress distribution where the mechanical behaviour in the
FEA model was described by a fibre-reinforced hyperelastic
material model. Other NNs with fully connected layers have
then been used for stress predictions for non-linear materi-
als but simple beam structures as shown by [36,44]. Later,
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Fig. 1 The multifidelity deep learning approach that is pursued in this
article to predict microscale stress fields given macroscale stress fields.
The inputs of the CNN are the macro scale stress tensor components,
computed by macroscale FEA and converted into images, and a binary
representation of the micro scale geometry within the sliding window
(called “patch” in the article). The CNN predicts the microscale stress

[37] used a CNN for the prediction of nonlinear soft tissue
deformation on more complicated structures such as a liver
but without any kind of microscale features. Moreover, [38]
deployed a CNN model for stress prediction on simple struc-
tures with geometric features but not on multi-scale problems
as the size of these features was comparable to the size of the
structure.

Also, [21] used a GAN to analyze mechanical stress dis-
tributions on a set of structures encoded as high and low
resolution images. A variety of loading and boundary condi-
tions has been used and some of them resembled the effect
of isolated microstructural features. Recently, [50] based on
the architecture of [38] created an Encoder-Decoder CNN for
the prediction of stress field on Fiber-reinforced Polymers but
their samples come from a single specimen and with a sin-
gle FE simulation implying low generalisation ability both
in terms of different structures and loading/boundary condi-
tions. Additionally, they predict only the z component of the
stress tensor and they report a value of about 70% in their
evaluation metric. Lastly, [55] used a Convolutional Aided
Bidirectional Long Short-term Memory Network to predict
the sequence of maximum internal stress until material fail-
ure.

field in the window, i.e. it corrects the macro stress field based on
the knowledge of the local microstructure. Entire microscale solution
may be reconstructed by assembling such patch-level predictions. The
methodology does not require any scale separation, but it relies on the
Saint-Venant’s principle

Our paper is organised as follows. In Sect. 2 we present the
reference multiscale mechanical model that we aim to solve
online and we introduce useful definitions for our methodol-
ogy. In Sect. 3 we discuss the architecture and the input and
output of the CNN. Finally, in Sect. 4 we apply our method
to different problems and show the results.

2 Methods and governing equations

In this section we will discuss the reference multiscale
mechanical model that we aim to solve online using the
trained CNN and we will also introduce definitions and nota-
tions that will be necessary for us to explain our methodology.

2.1 Problem statement: hyperelasticity

We consider a 2D body occupying domain €y € R? with a
boundary 929 = Sp. The body is subjected to prescribed
displacements Up on its boundary 9€2, 0 and prescribed
tractions 7p on the complementary boundary 0Q279 =
02\0£2,,0. We consider displacement u : ¢ — R? and the
associated deformed configuration Q2 = {)A( /3 X € Qo, X =
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X + u(X)}. The boundary value problem of hyperelasticty
consists in finding u(X) = arg minyg: E,(u*) where the
potential energy is defined as

Ep(u)=/ W(E)on—/ fouon—l—/ Toud Sy
Qo Q0 Q7,0

ey

‘We consider a linear Saint-Venant—Kirchhoff material model
defined by its strain energy density

1
W(E) = Ek[tr(E)]z + jutr(E?) )
where the Green-Lagrange strain tensor E is defined by
1o
E = E(F F-1 3)

with the definition of the deformation tensor

F=— “

In the equations above, A and u are the Lamé elasticity param-
eters and / denotes the identity tensor.
The Cauchy stress tensor o may be calculated as follows:

1_ow

o= JFEFT (5)

where the jacobian of the deformation tensor reads as
J = det(F) (6)

The prescribed volume force fop and prescribed surface
tractions Tp expressed in the reference configuration may be
expressed as a function of their physical counterparts f and
T as

fo=Jf @)
To=J ”F’Tno H T ®)

where ng is the unit normal vector in the reference configu-
ration.

for the special case of linear elasticity the Green-Lagrange
strain tensor is replaced by the linearised strain tensor €:

E~e= %(Vu + V) 9)
L) (10)
o€
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2.2 Equivalent stress

We are interested in predicting the stress field and more
specifically an equivalent stress field indicating potential
crack initiation sites. A possible choice is the Tresca stress
which be calculated from the stress tensor as follows. The
stress tensor can be rotated

o'=0-0-0" (11)

using rotation matrix

__ | cos(8) —sin(0)
Q= |:sin(9) cos(6) i| (12)

The components of the stress tensor obtained after rotation
are as follows

0ex = Oy OS> +oyy sin® 6 + 214y sinf cos b (13a)
a’yy = 0y, sin? 0 + Oyy cos’6 —2 Tyy sinf cos 6 (13b)
Thy = (Oyy — 0yy) sin 6 cos 6 + Ty (cos® 6 — sin® 0)

(13¢c)

From Eq. (13c) we can find that there must be an angle 6,
such that the shear stress after rotation is zero:

27Tyy

tan(20p) = (14)

Oxx = Oyy

After inserting 6, into Egs. (13a), (13b), the 2 principal stress
components can be obtained:

2
Oxx + Oyy Oxx — Oyy
Omaxs Omin = Zx ) 5 ) i\/(_xx ) y}) +T)%y (15)

The Tresca stress o is equal to o7 = % (0max—Omin)-
2.3 Finite element solver

We use a standard P1 finite element method to discretise the
hyperelasticity problem in space. We use unstructured trian-
gular meshes that conform to the boundary of the domain. To
help the Newton algorithm reach regions of quadratic con-
vergence, the load is applied in steps of increasing amplitude.

The finite element fields are converted into image by stan-
dard interpolation from meshes to cartesian grids.

2.4 Global-local framework

We assume that macroscale mechanical quantities can be
computed by solving an homogenised model over the compu-
tational domain, using a relatively coarse finite element mesh
whose typical length-scale is unrelated to the microscale
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structure. We restrict ourselves to homogenised models
obtained by solely modifying the constitutive relation of the
material.

All the examples presented in this paper are dedicated
to hyperelasticity in a porous medium made of an homoge-
neous matrix with a random distribution of spherical voids.
At the coarse-scale level, the voids are ignored and the fine-
scale constitutive law is used as an homogeneous material
model for the entire structure, without further adjustment
of the elasticity coefficients. We could have used various
homogenisation schemes to obtain macroscopically accu-
rate homogenised coefficients, but the approach followed in
this paper does not require the use of such a finely tuned
homogenisation model.

The macroscale mechanical fields being solved for using
an inexpensive finite element solver, we now assume that it is
possible to relocalise the solution field over an arbitrary win-
dow B C 0, which may intersect arbitrarily with boundary
9€20. More precisely, we surmise that there exists a function

F: L2(B)? x M(B) — L2(B)

oM

XX 16
a}jg, X g o7 (16)

Tey

In the previous expression, B is the window over which
relocalisation is performed and B C Bisthe region of inter-
est (ROI), which is strictly contained in B (see Fig. 2). Field
g : B — R™ is an indicator of the material phase present
at point X € B. In our case of porous medium, g(X) is
binary, O indicating void, 1 indicating the elastic material.
Finally, superscript M indicates that the field have been com-
puted using the homogenised surrogate. With these notations
at hand, the previous expression indicates that knowing the
macroscopic stress field over the window, and the geometry
of the structure and the precise position and nature of the
material at the microscale, F will produce a map microscale
Tresca stress field in the ROI that is accurate, i.e. close to that
produced by the direct numerical simulation over the entire
computational domain.

Essentially, the role of the CNN developed further below
is to learn function F. The fact that such a function exists is
backed up by the following qualitative observations, but will
ultimately be proved numerically.

e Knowing the exact stress field over the boundary of the
window, an elasticity problem with Neumann boundary
conditions may be solved over the window to provide the
exact microscale stress field in B. Hence, the stress field
provided as input of F may carry all the information that
is needed to relocalise the stress field exactly over B. Of
course, in practice, this information will be degraded by

the fact that it is approximated by an homogenised model
solved using a coarse finite element solver.

e An approximate stress field being available on the bound-
ary of B, and providing that standard self-equilibrium
conditions are met, the Neumann boundary value prob-
lem may produce poor relocalised stresses in a band B\é
located in the vincinity of the boundary of the window
(in virtue of Saint-Venant’s principle). This is the reason
why our predictions will be made in B and not in B,
the boundary stresses of which cannot be expected to be
produced with sufficient accuracy.

Finally, we note that F is a function to be learned by
examples, which is why we do not expect the choice of the
homogenised model to have a significant impact on the qual-
ity of the result. The Neural Network will be given sufficient
amount of macro/micro stress pairs to compensate for sys-
tematic macroscale inaccuracies.

3 CNN
3.1 Input-Output

As already discussed the input of the CNN are patches
extracted from the structure (Fig. 3). The input of the CNN
is a 3D array of size [Ny x Ny x N¢] where: Ny and N,
are the size of the input image along the x and y direction
respectively and N¢ is the number of channels of every data
point. Each data point has 4 channels namely oy, oyy, Txy
and Geometry corresponding to the xx, yy, xy component of
the macro stress tensor and a binary image of the geometry
respectively. The output of the model is an [N, x N,]image
corresponding to the micro Tresca stress. Note that we are
only interested in the ROI of the patch so all the statistics
during training and inference are calculated there. Because
we want to identify the effect of micro scale features on the
macro scale stress we will scale the output with a number
that reflects the intensity of the macro stress field. This num-
ber is the sum of the absolute principal stresses of the macro
stress tensor |0max| + |Omin| from Eq. (15). The micro stress
in areas away from micro scale features should be the same
as the macro scale stress because these features only have a
local effect. This suggests that the output should be constant
away from the micro scale features and change rapidly very
close to them. That is clearly visible in Fig. 4.

3.2 Layers
Although Deep Neural Networks have been successfully

used to model very complex tasks, their training is challeng-
ing for a number of reasons. In this work we will use two

@ Springer
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Fig. 2 Porous material. Three elliptical macroscale features are rep-
resented in the specimen. Black areas correspond to microscale pores.
In brown, we see a subregion B (patch) where the macro stress field

and the microscale geometrical information are available and in green
the Region of interest (Rol) where the micro Tresca is to be predicted.
(Color figure online)
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Fig.3 On the left the original structure and 4 patches that correspond to the red squares. On the right the extracted patches that will be fed to the

Neural Network. (Color figure online)

Fig.4 On the left the input of
the CNN (the three components
of the macroscopic stress fields,
converted into images, plus the
binary image corresponding to
the indicator function of the
microstructure) and on the right
the output, which is the
microscale Tresca stress
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layers that will allow us to efficiently train our DNN namely
Batch Normalization (BN) and Residual Blocks.

3.2.1 Batch normalization

In DNNSs the distribution of each layer’s inputs changes dur-
ing training, as the parameters of the previous layers change,
this phenomenon is known as internal covariate shift. This
slows down the training by requiring lower learning rates and
careful parameter initialization [19]. BN aims at reaching a
stable distribution of activation values throughout training.
To achieve that, BN normalizes the output of a previous acti-
vation layer by subtracting the batch mean and dividing by the
batch standard deviation. After the normalization, BN tries to
scale and shift the normalized output by adding two trainable
parameters to each layer. [19,49]. Additionally, BN makes the
optimization landscape significantly smoother. This smooth-
ness induces a more predictive and stable behaviour of the
gradients, allowing for faster training [49]. Lastly, there is a
large consensus that the BN should be used before dropout
and the activation function [9,19,28]

3.2.2 Residual blocks

Another problem with DNNs is the vanishing gradients
causing the NN to not be able to learn simple functions
like the identity function between input and output [17,51].
The current way to train DNNs is through residual blocks
[13,26,32,58]. With residual blocks the NN itself can choose
its depth by skipping the training of a few layers using skip
connections. As we can see from Fig. 5 even if the NN
chooses to ignore some layers (F(X) = 0) it will learn to
map the input of the block to the output of the block. In
this case the expression of the output would be simplified to:
F(X)+ X =0+ X = X. This way we can use a large num-
ber of residual blocks and the network will simply ignore the
ones it does not need. The name residual comes from the fact
that the network tries to learn the residual, F'(X), or in other
words the difference between the true output, F (X)+ X, and
the input, X.

3.2.3 Squeeze and excitation block

In the residual blocks of our CNN we are using another
kind of block: the Squeeze and Excitation block, SE. The
SE can adaptively recalibrate channel-wise feature responses
by explicitly modelling interdependencies between chan-
nels resulting in improved generalization across datasets and
improvement in the performance [5,18,29]. The input of the
SE has C channels, height H and width W, [H x W x C].
The input decreases in size using a global-averaging pooling
layer resulting in a linear array of size [1 x C]. After that,
two fully connected layers downsample and then upsample

the linear array. Firstly the linear array is downsampled by
a factor of 16, [1 x C/16], as this is indicated to result in
optimum performance [18], then a ReLU activation func-
tion is applied before upsampling again using a factor of 16
[C/16 - 16 = 1 x C] and in the end a Sigmoid activation
function is applied. Lastly, the linear array is reshaped to
size [1 x 1 x C] and multiplied with the input of the SE
block (Fig. 6).

3.3 Architecture

The residual blocks we will use in this work consist of two
convolution layers, followed by a BN layer and a ReLLU acti-
vation function each, and a SE block in the end (Fig. 7). The
input and output of this block has exactly the same size as we
choose the number of filters for the convolution layers to be
the same as the number of filters at the input of the residual
block.

The architecture of the network is inspired by the “Stress-
Net”, proposed by [38]. Three convolution layers with
increasing number of filters will downsample the input, after
that five residual blocks are applied to the resulting array
before using 3 deconvolution layers with a decreasing num-
ber of filters to upsample to the original dimension but with
1 channel instead of 4 (Fig. 8).

3.4 Bayes by backprop

In our effort to include uncertainty information into our pre-
diction we will deploy a Bayesian framework, as described by
[4], to introduce uncertainty in the weights of the network. To
achieve that we will replace the constant weights of a deter-
ministic neural network with a distribution over each weight
as seen in Fig. 9. The output of this probabilistic model, for
an input x € R” and a set of possible outputs y € R, will be
a probability distribution over all possible outputs. The dis-
tribution of the weights before observing the data is called
prior distribution, P (w), and it incorporates our prior beliefs
for the weights. The goal is to calculate the posterior, the dis-
tribution of weights after observing the data, because during
training and of course inference the weights of the network
are sampled from the posterior. The goal of Bayesian infer-
ence is to calculate the posterior distribution of the weights
given the training data, P(w|D). Unfortunately, the poste-
rior is intractable for NNs but can be approximated by a
variational distribution g (w|0) [12,16], parameterised by 6.
Variational learning finds the parameters 6°P! that minimise
the Kullback-Leibler (KL) divergence between the approx-
imate posterior and the true Bayesian posterior. This KL
divergence between the approximate posterior and the true
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Fig.8 Structure of the CNN. oy, 0yy and 7y, are the stress components on the x, y and xy direction respectively

Bayesian posterior is the loss function and is defined as fol-
lows [Eq. (17)]:

0" = arg min KL[g (w|0)[| P (w]D)]
q(w|0)
P(w)P(D|w)
= arg min[KL{g w|0)[| P ()] — Eqqpp) [log P (D]w)]]

= arg mginflog (17)

The first term of the loss is the KL divergence between
the approximate posterior and the prior. It is obvious that the
prior is introducing a regularization effect because the KL
divergence penalizes complexity by forcing the approximate
posterior to be close to the prior. The second part is the nega-
tive log likelihood. This is a data dependent term and it forces
the network to fit the data.

Here we consider the approximate posterior to be a fully
factorised Gaussian [12]. During one forward pass we sample
the weights from the posterior but during back propaga-
tion we would have to define the gradient of the loss with
respect to this sampling procedure, which is of course not
possible. Instead we use the reparameterization trick [27].
This procedure is well described in [4]. Instead of having
a parameter-free operation (sampling) we can obtain the
weights of the posterior by sampling a unit Gaussian shifting
it by a mean p and scaling it by a standard deviation o . This
standard deviation is parameterised as o = log(1 + exp(p))
and thus it is always positive. So the weights are sampled
according to the following scheme: w = u+log(1+exp(p)),
and the variational parameters to be optimised are 6 =

(1, p).

3.5 Adapting the Bayes by backprop method to our
case

The architecture of the BNN remains the same as the deter-
ministic case but we replace all the convolutional and dense
layers with the respective Bayesian layers. We use a Gaus-
sian as predictive distribution, P (y|x, w), corresponding to
a squared loss [4]. We choose to have Gaussian distributions
as priors which corresponds to L2 regularization [4]. There is
a single prior distribution for each layer, so all the weights in
a layer share exactly the same u and p. During backpropaga-
tion we optimise the prior by considering the gradients of loss
not only with respect to the posterior but also the prior param-
eters. This allows us to change the prior hyperparameters of
our model by using the available data, this process is known
as empirical Bayes. In the results section we will demonstrate
the advantages that empirical Bayes offers to our model. The
mean prediction and the variance for the Bayesian CNN are
calculated by passing the same input through the network
multiple times.

3.6 Selective learning

A selective learning process, in a supervised learning frame-
work, assumes that a large pool of unlabelled data is available
while there is a very expensive function that labels this data.
The aim of selective learning is to identify which of the unla-
belled data contain useful information so that only these are
labelled. To achieve that, an acquisition function needs to be
formulated to identify the useful data. Tsymbalov et al. [54]
suggest that the uncertainty extracted from a Bayesian Neu-
ral Network is a sensible acquisition function for this task.
This is also intuitively a sensible conclusion because high
uncertainty in the prediction of the network means that the
input is far away from the training data distribution.
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Fig.9 On the left we have a
sketch of a plain Neural
Network with constant weights
and on the right a Bayesian
Neural Network where the
weights are replaced by
distributions. In both sketches
the biases have been omitted for
simplicity

M
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In our case the pool of unlabelled data is a large number
of coarse scale FE simulations. The expensive function that
labels these data is the fine scale FE simulations that take
into account the micro features of the geometry. The aim of
selective learning in our case is to identify the stress cases
and/or microstructural patterns that are sufficiently different
from the ones that are already in the labeled set and perform
the fine scale FE simulations only to these cases. This is very
important for our application because the cases that will be
identified by the SL framework are exactly the cases that
contain unknown interactions that our network would have
predicted with a large error. For the acquisition function we
need an uncertainty metric. Here we chose the max variance
present in each prediction.

4 Numerical examples

In this section we will present results for linear and nonlinear
models both for deterministic and probabilistic CNNs. We
will compare the CNN prediction with the FE prediction in
the ROI level where we will be able to compare the 2 stress
distributions but also we will compare the max values in all
the ROIs in the test set. Additionally, we will demonstrate
the use of selective learning and we will show that it can lead
to a 50% reduction in the labelled data requirement.
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4.1.1 Training dataset

For the purpose of training our model we have assumed a
distribution of elliptical pores as macroscale features. We
consider all the microscale features as disks with the same
radius, R. The Young’s modulus and the Poisson ratio of the
structure are 1 and 0.3 respectively. We consider the linear
elastic case and we will discuss the non-linear elasticity in
Sect. 4.2. We assume that for a distance larger than 4 radii
from the center of the microscale features the micro effect on
the global stress field is negligible, for instance in the case
of an infinite plate under uni-axial loading the max stress at
r = 4R is 1.04 times the macro stress [41]. Based on that the
micro feature length is 2R, and the interaction length is equal
to 3R. Given those 2 parameters we conclude that the patch
length should be 18R and the ROI should be a [8R x 8R]
window in the middle of the patch as shown in Fig. 10. We
chose R = 4 so the input is of size [72 x 72 x 4], the output
is of size [72 x 72] and the ROI is of size [32 x 32].

In this example we want to study the interaction between
elliptical macroscale features and spherical microscale pores
in an infinite domain. In order to achieve this, the boundary
conditions are applied to a buffer area where the mesh is
much coarser, as can be seen in Fig. 11. The buffer area
allows us to apply boundary conditions without introducing



Computational Mechanics

Patch Length: 18R

Patch

ROI Length: SR

Fig. 10 A sketch of the patch. In grey we see the patch, in green the
region of interest and in blue we can see disks of radius equal to that of
the microscopic pores. (Color figure online)

boundary effects on the fine mesh area. Additionally, because
the mesh in the buffer area is very coarse the computational
cost remains practically the same. We apply displacement as
boundary conditions [Eq. (18)].

Exx Exy] T
= X —X 18
u [ £ p | X=X (18)

(@)

where E, is the far field displacement along the x direction,
Ey is the far field displacement along the xy direction, E,
is the far field displacement along the y direction, X is the
position of a point in R? and Xy is the initial position of the
center of the body in R

4.1.2 Scaling

Differences in the scales across input variables may increase
the difficulty to model the problem, for example increased
difficulty for the optimizer to converge to a local minimum or
unstable behaviour of the network, thus a standard practice
is to pre-process the input data usually with a simple linear
rescaling [3]. In our case we will scale the data not only to
improve the model but also to restrict the space we have to
explore. The space that we have to cover is infinite because
the input can take any real value. Fortunately, Tresca stress
scales linearly with the components of the stress tensor. From
Eq. (15) itis trivial to show that if we replace oyy, Txy, Oyy
tok-oyx, k-Tyy, k-oyy where k is some scaling factor, then
Ohax = k- Omax and 0/ . = k - opin Where o}, and o/ .
are the new principal stresses after scaling the input and thus
Tresca’ = %(Gélax -0 = %(komax — komin) = k - Tresca
where Tresca’ is the Tresca stress after scaling. Additionally,
because we model linear elastic problems scaling the load
terms with a scaling factor k will result in a local and global
stress field multiplied by k as well. Here k! is the maximum
stress value present in all the 3 stress components over the
patch. This scaling of the input values to the range [0, 1]
allows us to make predictions on input data of any possible
scale. We just have to calculate k, multiply the input by it to

(b)

Fig. 11 On the left a a sketch of the buffer zone in grey and on the right b an example where the mesh and buffer area are visible
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Fig. 12 Nine examples from the “1 ellipse” dataset

transfer it to the desired scale and then multiply the output
with k~! to get the true output.

4.1.3 Numerical example with 1 ellipse

Firstly we created an initial dataset with very simple exam-
ples (Fig. 12). A single ellipse in the middle playing the role
of the macroscale feature, creating a diverse macroscopic
stress field. Also, a few micro features are randomly posi-
tioned around the ellipse, accounting for the micro scale
features that will affect the macro stress field. All the micro
features have a circular shape and the same radius, R = 4
units. From 500 examples, generated in 43h on an Intel®
Core™ i7-6820HQ CPU, we extracted 33,000 patches, 5000
of which where used as a validation set. No rotations were
applied to this dataset as data augmentation technique. The
patches were extracted such that the union of all the ROIs is
equal to the entire domain 2. Specifically, the ROI of the first
patch is aligned with the top right corner of the domain and
the rest of the patches are created using a sliding window and
a stride equal to half the length of the ROI in each dimen-
sion. The patches that do not contain any micro or macro
scale features are discarded.

Experiments on this dataset showed very positive results.
Training with 28,000 patches and validating on 5000 unseen
patches resulted in a validation accuracy of 96% when train-
ing with the Adam optimizer for 600 epochs, which required
about 6h on a NVIDIA T4 GPU. The loss function that we
used is the mean squared error applied only in the ROI as
already discussed. The concept of accuracy in a regression
task with images needs to be discussed. The process fol-
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lowed to define accuracy is summarised in Algorithm 1 and
it is described with more detail as follows.

1. We take the max of each prediction in the ROI, this is
because we are primarily interested in the max values as
these values will indicate if the material will fail or not

2. We define an error metric between the real max value,
VEE, and the max value in our prediction, ynn. Here we
use the relative error defined as: relative_error = |ynN —
YFE|/ YFE

3. We set a threshold for the acceptable error. In this case
we will use 10%. To sum up, 96% validation accuracy
means that in the validation set 96% of the max values
in the ROI were predicted with a relative error less than
10%

Algorithm 1 Calculate accuracy

: N = length(datapoints)

. accepted = zeros(N)

. for point in datapoints do

ynn = max(prediction[point])

yre = max(ground_truth[point])

error = lynn — yrel/yre

if error < threshold then
accepted[point] = 1

© 0N T

accuracy = sum(accepted)/N
return accuracy

—
=

This 10% threshold is arbitrarily chosen and it should
be more application specific because different applications
have different error requirements. We have constructed a dia-
gram that shows the accuracy as a function of the threshold
(Fig. 13).

Accuracy
100 -
5% error
< 80 acc=80.99%
i)
9
°
2
Q.
> 601
k51
£
]
= 40 A
©
©
Pt
(<]
R 20+
O -
0 20 40 60 80 100

% acceptable error

Fig.13 Accuracy as function of the threshold. Here, accuracy is defined
as the percentage of patches in the dataset for which the relative error
between the max NN prediction and the max FE result in the ROI is
less than a predefined threshold
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3.234 3.004
3.003 2.790
2.772 2.575
2.541 2.361
2.310 2.146
2.079 1931
1.848 1717
1.617 1.502
1.386 1.288
1155 1073
0.924 0.858
0.693 0.644
0.462 0.429
0.231 0.215
0.000 0.000
2.851 2.932
2.648 2.723
2.444 2.513
2.240 2.304
2.037 2.094
1.833 1.885
1.629 1675
1.426 1.466
1.222 1.257
1.018 1.047
0.815 0.838
0.611 0.628
0.407 0.419
0.204 0.209
0.000 0.000
(b)

Fig. 14 Evaluation of the Neural Network performance on 2 patches. On the top left of each example we see the scaled Tresca stress field computed
by FEA and converted into an image for the whole patch and on the top right the NN prediction for the whole patch. On the second row we see the

same but for the ROI

FE prediction
max value = 17.25

NN prediction
max value = 17.85
17.85

16.57
15.30
14.02
12.75
11.47
10.20
8.92
7.65
6.37
5.10
3.82
2.55
1.27
0.00

Fig. 15 Comparison between the Tresca stress field computed by FEA and converted into an image, on the left, and an image reconstructed using

the NN predictions on the patch level, on the right

We present results from 2 random patches (Fig. 14) and
then a result on the whole structure (Fig. 15). For the whole
image the true Tresca is displayed and not the scaled version
of it. The prediction is made again on the patch level but then
the original image is reconstructed. This is possible if we
align one corner of the ROI with a corner of the image and
use a sliding window equal to the size of the ROI as can be
seen in Fig. 16. We can see that in all cases the CNN was

able to accurately reconstruct the full micro stress field but
it was also able to predict the max values with a very small
error. More specifically it is clear that away from the micro
scale features the micro scale field is constant. We can also
see that very close to the micro scale features we have a very
steep rise of the micro Tresca stress. The micro stress field is
accurately predicted even in complicated cases where more

@ Springer



Computational Mechanics

Patch

ROI

Fig. 16 Patch generation for full image prediction. The corner of the ROI is aligned to the corner of the image and then a sliding window of size

equal to the size of the ROI is used

FE 2.762 2.609
2.564 2.423
2.367 2.237
2.170 2.050
1.973 1.864
1775 1.677
1.578 1.491
1.381 1.305
1184 1118
0.986 0.932
0.789 0.746
0.592 0.559
0.395 0.373
0.197 0.186
0.000 0.000
2.684 2.609
2.492 2.423
2.300 2.237
2.109 2.050
1.917 1.864
1725 1.677
1.533 1.491
1.342 1.305
1150 1118
0.958 0.932
0.767 0.746
0.575 0.559
0.383 0.373
0.192 0.186
0.000 0.000

Fig.17 A prediction for the same input for 2 identical NNs trained with
10,000 patches (a) and 28,000 (b). The two ROI predictions look very
similar but we can observe that the maximum predicted value from the

than one micro features are interacting or micro features and
macro scale features are interacting.

Lastly, we will investigate the effect of training with
less data on the CNN accuracy. We randomly chose 10,000
patches, almost 30% of the available data, and train the NN
with exactly the same settings, an example can be found in
Fig. 17. We noticed that for the 10% threshold the accuracy is
6% higher for the large dataset even though we used almost
3 times as much data. This may look like a small increase
but it means that the mispredicted cases climbed from 4 to
10%. In reality most of the data that we rejected when we
created the smaller training dataset (10,000 patches) were
very similar to the ones accepted in the smaller dataset. A
small portion of them contained new interactions that our
network would have learned from. These cases are exactly
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FE 2.762 2.689
2.564 2.497
2.367 2.305
2.170 2.113
1973 1921
1775 1729
1578 1.537
1.381 1.345
1184 1153
0.986 0.960
0.789 0.768
0.592 0.576
0.395 0.384
0.197 0.192
0.000 0.000
2.684 2.689
2.492 2.497
2.300 2.305
2.109 2.113
1.917 1921
1725 1729
1.533 1.537
1.342 1.345
1150 1153
0.958 0.960
0.767 0.768
0.575 0.576
0.383 0.384
0.192 0.192
0.000 0.000

(b)

NN that was trained with the larger dataset is closer to the real value
compared to the maximum predicted value from the NN that was trained
with the smaller dataset

the cases we are interested in because they contain complex
examples that create strong interactions and sharp increase
in the micro stress field. In Sect. 4.3 we will demonstrate
a Selective Learning framework that will allow us to iden-
tify these cases and train our network only on them. This
way we keep the computational cost to the minimum while
preserving the same level of accuracy.

4.1.4 Numerical example with 3 ellipses

Even though the CNN we trained seems to work well for the
data it was trained on we do not expect the same level of accu-
racy as we depart from this dataset, although the method is
fully non-parametric and the trained NN can make prediction
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Fig. 18 Nine random examples from the “3 ellipses” dataset

for any unseen micro and macro geometries. Specifically, we
would expect a decrease in accuracy in the following cases.

1. Spatially fast varying macro stress field, generated by
macroscale features not present in the training dataset

2. Microscale features not present in the training dataset,
for instance non circular holes

3. Patterns of microscale features not present in the train-
ing dataset, for instance different distribution of circular
holes.

To tackle this problem we created a new, more interesting,
family of data with the expectation that this would add more
complexity (Fig. 18). At first, we used the old CNN to make
predictions on the new dataset. We observed that the accuracy
dropped from 96 to 72%. This implies two things. Firstly,
the drop in accuracy means that the new dataset contains
information that the network had never seen before or was
unable to learn from (due to the sparsity of the examples), thus
training in this dataset will help the CNN to generalise better.
Lastly, the concept of making the knowledge transferable
seems to be working as we were able to make reasonable, but
not perfect, predictions on a new family of data. This suggests
that we managed to learn interactions between micro scale
features and the macro stress field and not just the structures
themselves.

Training a CNN with the new dataset proved to be more
challenging. By using 23,000 patches as training set (almost
as many as with the original case) and 5000 patches as a
validation set we obtained, with the same settings, a valida-
tion accuracy of 74% in contrast to the 96% in the first case.

Comparison
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Fig.19 Comparison between 3 CNNs trained with the same settings but
different datasets. Blue line corresponds to the original dataset with no
rotation, orange line to a dataset with 6 rotations and finally the green
line to a dataset with 12 rotations. We can observe that the accuracy
increases as the number of rotations increases. (Color figure online)

We believe that this happens not only because more micro
scale features are present in each case but also because the 3
ellipses are creating a much more complicated macro stress
field. From experiments we found out that, as more and more
new patches are added, the accuracy tends to increase slower
and slower. This happens because the new patches added tend
to contain less and less new information.

When we tried to use this CNN to make predictions on the
1 Ellipse dataset the accuracy slightly improved, compared to
the CNN trained with the 1 Ellipse dataset, from 96 to 96.7%.
This small increase was expected since this CNN is trained
with a dataset that contains all the necessary information
to make predictions on the 1 Ellipse dataset and even more
information that may or may not be useful. The very small
increase in accuracy implies that the miss predicted cases are
underrepresented in both datasets.

A common technique used to improve the performance
of CNNss is data augmentation. Common data augmentation
techniques for image data are shifting, flipping, rotating and
zooming. Here we use rotation as data augmentation tech-
nique. We rotate mechanically the stress tensor [Eq. (11)]
and “physically” the images.

We started from an initial training set of 5000 patches (&
1/4 of the full set) and we rotated the dataset 6 and 12 times.
After training with the same settings for all the cases, a vali-
dation accuracy of 62%, 80% and 82% was achieved for the
0, 6, 12 rotations dataset respectively for the 10% threshold
(Fig. 19). Firstly, this means that we managed to outperform
by 8% the full dataset and secondly, we realized that rotating
from 6 to 12 times didn’t add a significant amount of new
information even though the data are doubled. Once more,
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Geometry

3317
3.080
2.843
2.606
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2132
1.895
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1.421
1.185
0.948
0.711
0.474
0.237
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Fig. 20 Top left corner the structure, the patch (with light brown) and
the ROI (with green) for the prediction. Top right corner the scaled
Tresca stress field in the ROI computed by FEA and converted into
an image. Bottom from left to right, prediction in the ROI from a NN

that was the motivation to start working with Selective Learn-
ing. We can see an example of a prediction with all 3 CNNs
on the same input (Fig. 20), where the prediction improves
with the number of rotations. We can also see a prediction
of the CNN trained with 6 rotations on 4 random patches
(Fig. 21).

Moreover, we compare 2 CNNs with and without SE
blocks. The 2 CNNs were trained with 27,000 training exam-
ples and validated on 3000 validation examples. The CNN
with the SE block reported accuracy of 78.98% while the
CNN without the SE Block 68.39%. This clearly shows that
adding the SE block in the Residual Blocks of the CNN sub-
stantially improves the performance.

Additionally, we investigate the smoothness of the solu-
tion. We compare the CNN prediction in 2 ROIs that share
a common area. In Fig. 22 we have highlighted with orange
discontinues boxes the CNN prediction in the common area
of the 2 ROIs and it is very clear that the prediction is the
same in both of them.

Lastly, we perform a cross-validation study to confirm that
the accuracy is not dependent on our choice of test dataset.
Specifically, we used a dataset of 30,000 patches and we
divided it in 5 subsamples of size 6000 patches. We run 5
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trained with a dataset with 0, 6 and 12 rotations respectively. We observe
that even though those 3 images look quantitatively very similar the
predicted maximum value approaches the one calculated by the FE
simulation as the number of rotations increases. (Color figure online)

tests. Each time we used 1 of these 5 subsamples as a valida-
tion set and the rest as training test. The mean accuracy for
the validation set is 0.7813 (78.13%) and the standard devi-
ation is 0.0174. The small value of the standard deviation
implies that the CNN is stable and gives consistent results
independent of the choice of test set, as long as the test set is
big enough.

4.1.5 Numerical example using a Bayesian neural network

Until now we have used a deterministic neural network for
the predictions. In this section we will present results cor-
responding to the use of the Bayesian NN. We trained the
BNN with the same 5000 patches as in Sect. 4.1.4 for 600
epochs and validated on 10,000 patches. That requires 2.1
times more computational time compared to the determinis-
tic case. The accuracy of the prediction is 72% for the 10%
threshold compared to 62% for the deterministic case. In the
Bayesian CNN case the accuracy is calculated using the MAP
solution.

The mean and the variance of the BNN prediction are
calculated by drawing the weights of the network from the
posterior distribution 100 times and performing inference
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Fig. 21 Evaluation of the performance of the CNN trained on the 6
rotation dataset on 4 patches. In each of the 4 images, on the first row
we can see the scaled Tresca stress field for the entire patch computed
by FEA and converted into an image on the left and the NN prediction
for the entire patch on the right. On the second row we can see the scaled
Tresca stress field for the ROI computed by FEA and converted into an
image on the left and the NN prediction for the ROI on the right. In

for every input. The results for a BNN where the prior was
optimised during training can be found in Fig. 23. We can see
from the first image, Fig. 23a, that the mean prediction is very
close to the real value. We can also observe that for higher
values we get higher absolute error. This is expected because
those cases are represented to a lesser extent in the dataset. In
the second image, Fig. 23b, we can observe that the diagonal
is almost always, and specifically for 92% of the patches,

FE prediction
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NN prediction
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(d)

all four cases we have strong interactions between micro scale features
and in images a, ¢, d we have strong interactions between micro and
macro scale features. We can see that in all the cases the prediction
in the ROI is qualitatively very similar to the FE simulation but also
that the prediction for the maximum value in the ROI is very close to
maximum value in the ROI calculated by FE simulations

between the upper and lower 95% Credible Intervals (Cls)
implying that the true solution is bounded by the 95% CIs for
92% of the patches. Lastly, we can observe a BNN where the
prior parameters were not optimised during training. From
Fig. 24a we can see that the mean prediction is very good, a
slight decrease of 2% is observed in the accuracy compared
to the optimised prior BNN. Nevertheless, from Fig. 24b, ¢
we can see that the uncertainty fails to explain the error as
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Fig.22 Prediction of the CNN in two patches with overlapping ROIs.
On the left we see the geometry where we solve the FE problem on and
we can also see the patch and the ROL. For clarity we only show 1 of
the 2 patches. The second patch will be created by sliding to the right a
sliding window with size half the size of the ROI On the right we see

there are many cases where the diagonal is either above the
upper 95% CI or below the lower 95% CI. Specifically, the
true value is bounded by the 95% Cls in 82% of the cases, a
decrease of 10% compared to the optimised prior BNN.

Results from the uncertainty estimation on image level
can be found in Fig. 25. On the top 2 cases (Fig. 25a, b)
we can see some examples of good mean predictions where
there are clear interactions between multiple micro scale
features. The middle images (Fig. 25c, d) are examples of
good mean predictions where interactions between multiple
microscale features and a macro scale feature can be seen.
We can observe that the uncertainty, expressed as 1.96 x
standard deviation, is higher in the vicinity of the higher
error pixels indicating that the BNN has successfully iden-
tified the unseen interactions (interactions that where not in
the training dataset or were underrepresented). Figure 25e
is an example of a case where the maximum value is miss-
predicted with a large error of about 1 unit. Fortunately, we
can observe that the uncertainty is also very large, specifi-
cally 1.96 x standard deviation has a value of about 1.5 unit
meaning that the true maximum value is between the mean
prediction and the 95% CI. Image (Fig. 25f) is an example
of a case with low uncertainty and low error. This means that
the CIs are very tight and the BNN is very confident about
the prediction. That was an expectable result in the sense
that this is a very simple case, 2 circular micro scale features
are weakly interacting, and we would expect from the BNN
to handle it without a problem because the training dataset
contains a huge number of these examples.
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4 plots, the 2 top plots are the CNN prediction on the entire patch and
the 2 bottom plots the CNN prediction in the ROI. The orange discon-
tinues boxes correspond to the common area of the 2 ROIs. The CNN
prediction in both boxes is the same. (Color figure online)

4.2 Nonlinear elasticity

In this section we demonstrate the applicability of our method
for multiscale problems in finite strain elasticity. Compared
to previous section, the macroscale geometry of the dataset
is constrained is order to showcase the ability of the frame-
work to tackle microscale-informed stress analysis during
the macroscale design of an engineering component.

4.2.1 Training dataset

The structure that we study in this section is rectangular
with one macroscale geometrical feature and a distribution of
disks as microscale features. The macroscale feature whose
parameters can be optimised is composed by 2 disks with
random radii and centers connected by their common exter-
nal tangents (Fig. 26). Multiple instances of this structure
are created by randomly choosing values for the macroscale
parameters and changing the distribution of the microscale
features. After training our NN will be able to evaluate
the micro Cauchy stress distribution in different macroscale
geometries (of the same family) under any realisation of the
microscale random texture.

To create the training dataset we choose length 5 and
height 1 as overall dimensions for the structure. For the
boundary conditions, the structure is clamped at x = 0 and
arandom displacement along the —y direction ranging from
0 to 2 is applied to the other end, at x = 5, while the dis-
placement along the x direction is zero. An example of the
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Fig. 23 In these 2 figures we see point densities where darker colors
correspond to higher point density. On the left a a diagram showing
the relationship between BNNs’ mean prediction and FE results for the
maximum value in the ROI. We can clearly see that most of the points
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are on the diagonal. On the right b a diagram showing the upper and
lower 95% CIs for the prediction. We can observe that for most of the
points the diagonal is between the upper and lower 95% Cls

upper bound

mean prediction
95% CI

95% ClI

lower bound

1 2 3
FE result

(a) Mean prediction

Fig. 24 Three diagrams, depicting point densities where darker col-
ors correspond to higher point density, corresponding to a BNN where
the prior was not optimised during training. The prior distributions are
Gaussian initialised as: N (0, 1). First diagram a is the BNNs’ mean pre-
diction against the FE results for the maximun value in the ROI. Most
of the points are on the diagonal so the NN was able to provide good

deformed structure for a displacement of size —1.93 can be
found in Fig. 27. The radius of the disks is 0.02 units or 4
pixels as in the linear elasticity case.

The FE solution is mapped into an image of size [80 x
400]. The patch and the ROI have the same size as the linear
elasticity case [72 x 72] and [32 x 23] respectively.

3
FE result

(b) Upper 95% CI

5 1 2 3
FE result

(¢) Lower 95% CI

mean estimations. The next two diagrams correspond to the upper 95%
CI (b) and the lower 95% CI c. Ideally the point densities shouldn’t
intersect with the diagonal. The high percentage of points below the
diagonal for b and above the diagonal for ¢ indicates that the network
wasn’t able to successfully quantify the uncertainty

4.2.2 Numerical results in finite strain elasticity

We performed 200 FE simulations, which took 16h on an
Intel® Core™ i7-6820HQ CPU, and we extracted 12,000
patches. Of those, 1200 were used as a test set and 10,800
as a training set. We trained the same CNN as in the linear
elastic case, Sect. 4.1.4, without scaling the data as a pre-
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Fig. 25 Examples of BNN predictions. All images correspond to the
ROI of the patches. For each of the 6 images the first row corresponds
to the NN mean prediction on the left and to the scaled Tresca stress
field computed by FEA and converted into an image on the right. The
second row corresponds to the NN uncertainty, expressed as 1.96 x
standard deviation, on the left and to the absolute error between the NN
mean prediction and the FE results on the right. In images a, b we can
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see strong interactions between micro scale features and in images ¢, d
we can see strong interactions between macro and micro scale features.
In all these cases we can observe that the uncertainty is higher in areas
where the error is higher. In image e we observe that the error is very
high but the NN was able to identify it and provided high uncertainty
for the prediction. Lastly, in image f we observe an image with low error
and low uncertainty
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Fig. 27 Structure in the deformed configuration (Finite Strain elasticity theory)

processing step. Training with the Adam optimizer for 300
epochs required 3h on an NVIDIA T4 GPU. The results can
be found in Fig. 28. The accuracy for the 10% threshold is
73%.

Additionally, in Fig. 29 we see the prediction of the CNN
in 4 patches. The two top rows include interactions between
macro and micro scale features. In both cases the max values
are computed with arelative error less than 10% and the stress
distribution is also correctly predicted. The two bottom rows
include interactions between micro scale features. In both
cases the max values are computed with an error of less than
10% and the stress distribution is also correctly predicted.

Lastly, we show a comparison between the CNN predic-
tion and the FE prediction in the entire structure. We remind
the reader that the CNN prediction happens at patch level and
then the patches are rearranged to create the entire solution
field as has already been described in Fig. 16. In Fig. 30 we
show the difference between a structure modeled with linear
elasticity and the same structure modeled with non-linear
elasticity as has been calculated with FE simulations for the

structure described in Fig. 27. We observe that in general
the 2 predictions are different and specifically that the linear
elastic model underestimates the stress magnitude in regions
of very large deformations. In Fig. 31 we show the com-
parison between the CNN prediction and the FE prediction
for the non-linear elasticity case. We observe that the max
values are very close with a relative error between the maxi-
mum values less than 4% and also that the stress distribution
is correctly predicted. We also see the same comparison for
another structure in Fig. 32 where we can observe a similar
behaviour.

4.3 Selective learning

In this section we investigate the idea of Selective Learning to
reduce the labelled data requirements for training the BNN.
We need an initial dataset with labeled data so we can initially
train the BNN, a bigger dataset with only unlabeled data and
finally a validation set with labelled data. The principles of
this framework are described below.
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Fig.28 Accuracy as function of the threshold. Here, accuracy is defined
as the percentage of patches in the dataset for which the relative error
between the max NN prediction and the max FE result in the ROI is
less than a predefined threshold. The accuracy for threshold values 5%,
10% and 15% is 40%, 73% and 88% respectively. For threshold values
higher than 20% the accuracy is more than 95%

1. We use an acquisition function to select small batches
from the unlabeled dataset

2. We label the selected data points and “move” them to the
training set

3. We train the BNN with the new training dataset

4. We measure the accuracy of the BNN using the validation
set

5. We repeat the same process until the accuracy converges
or we label the entire unlabeled set.

The data that will be used in this section come from the
linear elasticity problem (Sect.4.1.4). We designed a small
experiment to validate our approach, inspired by [8]. Here
we make a comparison between a network trained using
the max uncertainty acquisition function, choosing first the
patches with higher uncertainty, and a second one trained
using the random acquisition function, that chooses patches
randomly. For the random selection approach we repeated
the experiments 5 times and presented the mean and the
95% confidence interval. We used the following setup: 2500
patches for the initial set, 2500 patches as the unlabeled set
and 11,000 patches as validation set. We trained each net-
work for 50 epochs, we performed 50 forward passes for
the uncertainty estimation and we added 500 patches in the
labeled set at each iteration, query rate = 500. The accuracy
is calculated from the mean prediction of the network. The
results can be found in Fig. 33. We observe that the results
produced by the max uncertainty acquisition function con-
sistently present higher accuracy. More specifically, with this
unlabeled data set we can reach an accuracy of about 75%.
This can be achieved using 1500 patches with the max uncer-
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tainty acquisition function but requires all the 2500 patches
if we choose them randomly. This means that we reduced the
labeled data requirement by 40%.

Now we will use a larger unlabelled dataset consisting
of 10,000 patches. We compare again the max uncertainty
acquisition function and a random acquisition function. The
initial training set has 5000 patches. We train for 150 epochs
every network. We perform 100 forward passes for the uncer-
tainty quantification and we label 2000 unlabeled patches
at each iteration (we calculate the micro scale stress field
for them), query rate = 2000. The results can be found in
Fig. 34. The accuracy increases faster for the max uncertainty
acquisition function and also the loss function is decreasing
faster until it reaches 6000 new patches. At this point the
accuracy practically stops increasing and the loss gradually
approaches the same value as with the random acquisition
function. Using the max uncertainty acquisition function we
can reach the max accuracy using 6000 patches while we
need all the 10,000 patches when randomly choosing new
data. Again we have a decrease of 40% in the labelled data
requirement.

This time we want to perform a similar experiment but
we are interested in examining the effect of query rate on
the results. Specifically, we will use an initial set of 5000
patches and we will perform Selective Learning on an unla-
beled dataset of 4000 patches. We will repeat the experiment
3 times, with query rates 500, 1000 and 2000. A similar exper-
iment was conducted by [20], where he concluded that using
very small query rates results in sub-optimal performance,
higher simulation times and noisy behaviour. There are two
reasons why the results are worse in this case. Firstly, adding
only a few patches compared to the size of the initial dataset
might result in overfitting and secondly, these patches might
get smoothed out in the loss function. The simulation time
increases because the network needs to be retrained a con-
siderable number of times. On the other hand using too large
query rates also results in worse results because the weights
of the network are not updated frequently enough so new
information is rarely incorporated in the network and we end
up again labeling and training on patches that do not contain
new information. The results of our experiment can be found
at Fig. 35. We have reached the same conclusions. When
query rate is 1000 we have the optimal behaviour, when we
double it we observe slower convergence and when we use a
small query rate we observe noisy sub-optimal behaviour.

After validating the Selective Learning framework we will
now use it without the random acquisition function as base-
line. We will use all the 30,000 available data to train the
network. As initial set we will use again 5000 patches. We
will query 5000 unlabeled patches at each iteration chosen
by the max uncertainty acquisition function. We will train for
300 epochs and perform 100 forward passes for the uncer-
tainty quantification. The results can be found in Fig. 36. Itis
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Fig.29 Comparison between CNN and FE prediction in 4 patches. In
each of the 4 images the first row from left to right corresponds to the
scaled Tresca stress field in the patch computed by FEA and converted
into an image and the CNN prediction in the patch. The second row
from left to right is the scaled Tresca stress field in the ROI computed
by FEA and converted into an image and the CNN prediction in the

clear that the accuracy is not improving after the third itera-
tion, 15,000 patches, but we continued labelling points only
for demonstration reasons. The mean squared error decreases
for the first 3 iterations and then stops decreasing as well. In
this example we could reach the maximum accuracy using
15,000 out of the 30,000 patches, so we managed to reduce
the labelled data requirements by 50%.
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(d)

ROL. Images a, b correspond to patches where there are interactions
between macro and micro scale features. Images ¢, d correspond to
patches where there are interactions between multiple micro scale fea-
tures. In all the cases the error in max values in the ROl is less than 10%
and the stress distribution is accurately predicted

4.4 Out of distribution study

Lastly, we want to test the BNN in data outside of the train-
ing set. One way to realise this study is to keep the same
micro scale features and create new micro distributions. That
could be done using the “1 Ellipse Dataset” from Sect. 4.1.3
and drawing patches from the “3 Ellipses Dataset” from
Sect. 4.1.4, to obtain out-of-distribution samples. Instead,
we choose to completely change the micro scale features as
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Fig. 30 Comparison between the Tresca stress field computed by FEA and converted into an image for the non linear elasticity case, on top, and
the Tresca stress field computed by FEA and converted into an image for the linear elasticity case, on the bottom, for the structure described in

Fig. 27
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Fig.31 Comparison between the Tresca stress field computed by FEA and converted into an image, on the top, and an image reconstructed using

the CNN predictions, on the bottom, for the structure described in Fig. 27

we believe that this will be more challenging for the network
to predict.

In this study we will use ellipses as micro features to get
out of distribution samples.

Neural Networks extrapolate when they make predic-
tions outside of the data set and they are notoriously bad
at extrapolating. What we are hoping for is that the BNN
will understand that the ellipses are not in the dataset and
will assign high variance to most of the patches.

We solve the same linear elastic problem we solved in the
linear elasticity Sect. 4.1 with the same BCs. We created 500
patches and made a prediction with the BNN from Sect. 4.3.
The results can be found in Fig. 37. From the first plot Fig. 37a
we can see that the mean prediction from the BNN for the
max values in the patch is not close to the real max value
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for a big percentage of the data, accuracy ~ 50%, but is not
unreasonable. Nevertheless, in a lot of cases the network suc-
cessfully identified the interactions produced by the ellipses
even if it was never trained on these. On the other hand,
the second plot Fig. 37b shows that in most cases, & 80%,
the true max value is indeed inside the 95% CI. Even more
encouraging is the fact that higher uncertainty corresponds
to higher error as can be seen from Fig. 38. This also implies
that selective learning is very promising in this case.

We can also see examples of predictions in 6 patches of
this new dataset. In Fig. 39a, b we can see 2 examples of
cases where the error in max values is relatively high and even
though the 95% Cls are very broad they fail to contain the real
value. In Fig. 39¢, d we can see 2 examples of cases where the
error is high but inside the 95% CI. Lastly in Fig. 39, f we
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Fig.32 Comparison between the Tresca stress field computed by FEA and converted into an image, on the top, and an image reconstructed using

the CNN predictions, on the bottom
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Fig.33 Results of Selective Learning for an initial set of 2500 patches.
50 epochs per training, 50 forward passes for the uncertainty quantifica-
tion and 500 added data in each iteration. The orange line corresponds
to the max uncertainty acquisition function and the blue to the random
acquisition function. For the random acquisition function we repeated
the experiment five times and reported the mean values and the 95% con-
fidence interval. We can observe that the orange curve is consistently
above the blue one. This means that with the maximum uncertainty
acquisition function we can achieve high accuracy with less data. Specif-
ically in this case by using only 1500 labelled data we achieve accuracy
of about 75% with the maximum uncertainty acquisition function while
we need to use all the 2500 patches to achieve the same accuracy with
the random acquisition function. (Color figure online)

can see 2 examples where the mean prediction of the BNN
is very close to the real value. Some error is present in other
areas of the patch but this error is captured by the uncertainty
of the BNN.

5 Discussion

The aim of this section is to provide clarifications regard-
ing the applicability of the methodology developed in this
paper. In terms of multiscale modelling, the approach is
concurrent—which differs from homogenisation—thereby
circumventing the need for scale separability but with draw-
backs that are discussed below. Building upon these remarks,
we identify classes of applications for which our methods
may be of practical interest.

5.1 Homogenisation

In methodologies based on homogenisation, scale sepa-
ration is postulated, and RVE is defined to describe the
heterogeneous material. Spatial and material coordinates
are independent, and the material only interacts with the
boundary of the macro domain through the local values of
the macroscale mechanical fields. Subsequently, macroscale
properties are computed numerically by testing the RVE, and
relocalisation may be performed to compute statistics of the
microscale fields.

Recent work in this field is described in [23] where a
Lippmann—Schwinger formulation for the unit cell problem
of periodic homogenization of elasticity at finite strains is
introduced and more recently the work published in [46],
where a multilevel Neural Network approach to solve a mul-
tiscale mechanics problem is developed. The macroscale is
solved online, using a Physics Informed Neural Network
(PINN) while at the micro scale a separate Neural Network
is used, trained offline, to recover the average micro stress
in the RVE given the macro strain and material parameters.
To reduce the offline computational cost, a reduced order
modelling approach is used [33]. The same reduced order
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Fig.34 Demonstration of the selective learning framework for an unla-
belled set of size 10,000 patches. On the left a diagram depicting the
accuracy and on the right a diagram depicting the loss. The orange line
corresponds to the max uncertainty acquisition function and the blue to
the random acquisition function. For the random acquisition function
we repeated the experiment five times and reported the mean values
and the 95% confidence interval. For the accuracy we can see that the
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Fig.35 Selective learning with query rates of different sizes. The green
line corresponds to a large query rate (of size 2000 patches), the orange
line to a medium query rate (of size 1000 patches) and the blue line to a
small query rate (of size 500 patches). The small and larger query rates
result in sub-optimal behaviour and specifically small query rates result
in noisy results. (Color figure online)

modeling approach is also used in [34] for multiscale elasto-
plasticity problems.

In elasticity, homogenisation works well if the size of
the micro scale features is much smaller than the size of
macroscale stress concentrators. This is clearly not the case in
the examples proposed in this paper. Conversely, our method
is only useful in cases where scales are not well separated,
as it will be bettered by homogenisation-based approaches
when they are applicable. Indeed, homogenisation-based
approaches “only” need to learn material responses in spaces
of coarse strain trajectories [11,43]
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orange line is consistently above the blue line. Specifically, we can see
that we can achieve a decrease of 40% in the labelled data requirement
because the orange line reaches 80% accuracy with only 6000 patches
while the blue one with 10,000. For the loss we can see similar results
where the loss for the maximum uncertainty case is consistently below
the loss for the random case. (Color figure online)
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Fig. 36 Accuracy and mean squared error plots with respect to train
data chosen by a maximum uncertainty acquisition function. The blue
line corresponds to the accuracy and the orange one to the mse. The
accuracy initially sharply increases until reaching 15,000 patches and
after that no further increase is observed. The same can be seen for the
loss that sharply decreases until reaching 15,000 patches and then no
further decrease is observed. In this case we can reduce the labelled
data requirements by 50% if we only choose the first 15,000 patches
indicated by the maximum uncertainty acquisition function and not the
entire dataset of size 30,000 patches. (Color figure online)

We propose to illustrate the qualitative point made above.
To this end, we train a CNN that takes as input the aver-
age stress field over the patch and not the entire stress field,
hence mimicking the effect of spatial averaging due to first-
order homogenisation schemes. We call this network an
homogenisation CNN. We compare this CNN with the CNN
we proposed earlier in this paper. Our goal is to show that
our CNN outperforms the homogenisation CNN and specifi-
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Fig. 37 In these 2 figures we see point densities where darker colors
correspond to higher point density. On the left a diagram a showing
the relationship between NNs’ mean prediction and FE results for the
maximum value in the ROI. We can observe that the maximum value
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Fig. 38 A diagram where the x axis is the absolute error between the
real maximum value in the ROI and the predicted one and the y axis is
1.96 x the standard deviation. We can observe a correlation between
high uncertainty and high error

cally that this happens in patches where there are interactions
between micro and macro scale features. We trained the 2
CNNs with the same architecture and training dataset, 27,000
training data and 3000 validation data. In Fig. 40 we see that
the first CNN achieves higher accuracy, specifically for the

upper bound S~

95% ClI

lower bound

3 4 5 6
FE result

(b)

is underestimated in a lot of patches from the BNN. On the right b a
diagram showing the upper and lower 95% Cls. We can observe that
in most cases the real maximum value is inside the 95% ClIs of the
prediction. (Color figure online)

10% threshold our CNN achieves 79% accuracy while the
homogenization CNN 42%. Additionally, in Fig. 41 we com-
pare the prediction of the 2 CNNs in a patch where the macro
stress field is not constant. We see that in contrast to our CNN
the homogenization CNN fails to predict the correct stress
field. We can also see that the higher absolute error between
the homogenisation CNN and both our CNN and the FE solu-
tion is close to the ellipse where the macro stress field varies
faster. Lastly, in Fig. 42 we compare the prediction of the 2
CNNs in a patch where the macro stress field is constant. We
see that both our CNN and the homogenization CNN manage
to predict the correct stress field.

5.2 Use cases

Although our deep learning strategy works incredibly well
when generating new realisations of the random material
model used to generate training examples, generalisability
to other classes of random material distributions is rather
poor. Similarly, predictions cannot be expected to be accu-
rate for macroscale geometries that are not included in the
training set. Both are limiting points, which points towards
specialised applications of the investigated framework.

For example, our method may be applied in a context
where engineering components are produced in large series,
potentially subject to small parameter changes. In this setting,
a macroscale parametrised CAD model should be appropri-
ately devised. Subsequently, realisations of the CAD model,
complemented by random realisations of the microscale
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Fig. 39 BNN predictions on out of distribution examples. All images
correspond to the ROI of the patches. In all of the 6 images the first
row corresponds to the NN mean prediction on the left and to the scaled
Tresca stress field computed by FEA and converted into an image on the
right. The second row corresponds to the NN uncertainty, expressed as
1.96 x standard deviation, on the left and to the absolute error between
the NN mean prediction and the FE results on the right. In figures a, b
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we can see cases with high error in the maximum values that is outside
the 95% Cls while in figures ¢, d there is high error in the maximum
values but this error is contained inside the 95% Cls. Lastly in figures e,
f we can see that the maximum values are predicted with high accuracy
by the BNN and the error that exists in other areas is captured by the
uncertainty of the BNN
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Fig. 40 Comparison between 2 CNNss trained with the same architec-
ture and dataset but one takes as input the average stress in the patch
and the other the entire stress field. Blue line corresponds to the CNN
with the average stress as input and the orange line to the CNN trained
with the full stress as input. The x-axis of the diagram corresponds to
the threshold level used to define the accuracy and the y-axis to the
accuracy. (Color figure online)

parameter field, may be used to train the NN. After training,
the NN-based micro/macro simulator could help compute
ensemble statistics of fatigue life.

Alternatively, if the macroscale geometrical variations
correspond to manufacturing defects that can be measured in
manufacturing chains, one could further condition the prob-
abilistic micro/macro stress predictions to conform to partial
observations of the macroscale geometrical inaccuracies to
provide component-specific life predictions.

As another example, the proposed approach method may
be used to help optimise a CAD model under uncertainty
stemming from the existence of a distribution of microscale
defects. Similar to the previous use case, the CAD model
needs to be appropriately parametrised, the parameter space
being explored in advance during training.

Both applications are made possible by the small cost of
the NN predictions. This has been demonstrated in ([14])
where a parameterized structure is optimized using a PINN
trained offline. The authors report a 45,000 x speedup com-
pared to a commercial solver and 135,000x compared to
OpenFOAM (an open source FE solver). That work differs
from ours as the authors use a PINN and they don’t solve
multiscale problems but the basic principal of using a trained
NN for geometry optimisation is exaclty the same.

5.3 History dependent problems

Many problems arising in computational mechanics are his-
tory dependent, for instance elastoplasticity or viscoelastic-
ity. Unfortunately, our current multiscale CNN architecture

is not able to tackle all history dependent problems in gen-
eral, but it could be used for a limited set of problems where
one-to-one mapping between the macro stress and the micro
scale correction exists. For instance, in [43], we replaced
constitutive relations in multiscale plasticity by instanta-
neous Gaussian Processes, the strain history being discarded;
an approach that proved successful for monotonic macro-
scopic loading. It may also be the case when looking for
stabilised plasticity solutions in fatigue but further inves-
tigations would be needed to prove this point. If we want
to address a broader set of history dependent problems, we
could add extra channels to the input that would correspond
to snapshots of the stress distribution from the past [57].
Another common approach for time series prediction are the
Long Short-term Memory Networks. Recently [55] devel-
oped a convolutional-aided bidirectional Long Short-Term
Memory network to predict the sequence of maximum stress
until material failure. This architecture combines CNNs
and LSTMs and leverages the advantages of both. Other
approaches to tackle history dependent problems in mechan-
ical engineering are not purely data-driven but try to also
exploit the physical insights obtained from well established
plasticity theory and experiments. This approach is illustrated
by the work of [52] for elastoplastic materials and [53] for
elastoplastic materials undergoing finite strain.

6 Conclusions

The goal of this work was to develop a multiscale meta-
modelling technique that can be used to perform fast stress
predictions in structures exhibiting spatially random micro-
scopic features, without prior assumption of scale separa-
bility, and without prior parametrisation of the multiscale
problem.

The meta-modelling approach that we have designed is
based on a CNN technology. We have shown that it is able to
predict how macroscale solution fields should be corrected
by taking into account the existence of microscale pores,
interacting arbitrarily with one another and with the boundary
of the computational domain. The framework is designed in
such a way that it does not require any knowledge of the
PDE system to generate microscale corrections, and therefore
is not intrusive. Moreover, the methodology is not a priori
limited to adhoc parametrisations of the multiscale boundary
value problem, as it treats both geometry and morphology of
microscopic patterns as arbitrarily large images. Incidentally,
the method is Bayesian and provides credible intervals for the
microscale field predictions.

Experiments with data from linear elastic simulations with
a variety of macroscale structures, of the same family, with
randomly distributed circular pores under different boundary
conditions showed good performance in terms of mean val-

@ Springer



Computational Mechanics

homogenization CNN prediction
max value = 2.855

abs(homogenization CNN - FE)
max value = 2.334

Fig. 41 A figure where we compare the homogenisation CNN to our
CNN for a patch where the macro stress field is not constant. In the first
row we see from left to right, the homogenisation CNN prediction, our
CNN prediction and the scaled Tresca stress field computed by FEA
and converted into an image. We observe that the homogenisation CNN

ues and uncertainty intervals. This suggests that the method
generalises well in new realisations of known macroscale
structures and microscale distributions. We also proved that
the method readily extends to multiscale predictions with
geometrical nonlinearities.

Additionally, we investigated two other features of our
framework. We addressed the problem of limited labeled data
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fails to predict the correct stress distribution in contrast to our CNN. In
the second row from left to right we see the absolute error between the
homogenisation CNN and the FE results, our CNN and the FE results,
and the homogenisation CNN and our CNN. In the last row from left to
right we see the xx, Xy and yy components of the macro stress tensor

using mechanically-consistent rotations as data augmenta-
tion technique. Furthermore, to reduce the large computa-
tional cost associated with the creation of labeled data (i.e.
multiscale FEA simulations) we used selective learning to
choose and label only the data that contains new information
for the network.
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homogenization CNN prediction
max value = 3.595

abs(homogenization CNN - FE)
max value = 1.661

Fig. 42 A figure where we compare the homogenisation CNN to our
CNN for a patch where the macro stress field is constant. In the first
row we see from left to right, the homogenisation CNN prediction, our
CNN prediction and the scaled Tresca stress field computed by FEA
and converted into an image. We observe that both the homogenisation

Even though our framework works well in the aforemen-
tioned cases, some limitations need to be highlighted.

Firstly, we assumed that the local macro scale fields that
we use as input to our CNN are sufficient to predict all
the micro scale features, everywhere in space and for all
the structural problems that belong to the particular class

our CNN prediction
max value = 3.548

abs(our CNN - FE)
max value = 1.256

FE prediction
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CNN and our CNN manage to predict the correct stress distribution. In
the second row from left to right we see the absolute error between the
homogenisation CNN and the FE results, our CNN and the FE results,
and the homogenisation CNN and our CNN. In the last row from left to
right we see the xx, Xy and yy components of the macro stress tensor

of parametrised problems over which training is performed.
This is an assumption of locality that cannot in general be
used in the context of non-diffusive problems (e.g. wave
propagation, crack propagation, scattering, plastic localisa-
tion).
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A second limitation of the methodology is its rather poor
extrapolation ability. Indeed, when the CNN that was trained
with disks as microscale features was used to make predic-
tions on data with elliptically-shaped pores as microscale
features, the accuracy decreased substantially. However, the
uncertainty interval remained reasonably accurate and could
be used to indicate that the requested predictions are too far
from the training set, for instance in a selective or active learn-
ing framework. Additionally, when the CNN that was trained
on the one-ellipse dataset was used to make predictions on the
three-ellipses dataset, the accuracy also decreased, albeit not
as sharply as in the former case. To summarise, the method
does not generalise well outside the set of examples (micro or
macro scale) of the parametrised problem over which train-
ing was performed, which is unsurprising. A corollary to the
previous statement is that it is necessary to restrict training to
relatively narrow families of boundary value problems, as the
space of heterogeneous structures with randomly distributed
microscopic components is arbitrarily vast.

Lastly, the proposed method is not able to tackle all his-
tory dependent problems in general, but it could be used for a
limited set of problems where one-to-one mapping between
the macro stress and the micro scale correction exists. Possi-
ble modifications of the architecture have been discussed in
Sect. 5 that would extend the applicability of the proposed
method to a wider set of history dependent problems.
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