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Abstract—The prevalence of induced triads play an important
role in characterising complex networks, supporting approaches
for assessment of dynamic and partially obfuscated scenarios. In
this paper we introduce a new local edge-centrality measure that
is designed to be deployed in this context for complex networks
and is highly scalable. It signifies the importance an edge plays
within induced triads for a directed network. We observe that
an edge can play one of two roles in providing connectivity
within any particular triad, based on whether the edge supports
connectivity to the third node or not. We call these alternative
states overt and covert. As an edge may play alternative roles
in different induced triads, this allows us to assess the local
importance of an edge across multiple induced substructures. We
introduce theory to count the number of induced triads in which
an edge is overt and covert. Using 34 data sets derived from
public sources, we show how the presence of overt and covert
edges can be used to profile diverse real-world networks. The
relationship with global network analysis metrics is examined.
We observe that overt and covert edge centrality is useful in
further differentiating classes of network, when considered in
combination with conventional global network analysis metrics.

Index Terms—centrality, triads, edge-centrality, complex net-
works, connectivity

I. INTRODUCTION

Triads are important substructures in networks because they
are the smallest non-trivial induced substructure after the
definition of nodes and edges. Through the concept of the
network motif [1], triads have become popular in characterising
complex networks (e.g., [2]), with the presence of triads giving
insight into the commonality within different classes of network.
This has opened up analysis of networks to dynamic and
large scenarios where for example, obfuscation may be present.
However, less well considered are local approaches to further
network characterisation that are solely based on induced triads.
These are important because they can be used in tandem with
network motif analysis and by definition, they can scale and
don’t require global network knowledge.
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In this paper we focus on only using connected triads to
assess the local importance of edges, based on an edges role in
providing connectivity within a particular triad. We introduce
a new form of edge centrality that is designed to work with a
view of a network through the presence of induced triads. It
captures the role that an edge plays in providing connectivity
relative to a particular triad induced in a directed network. In
particular, we note that relative to facilitating a path to the
third node, an edge can be characterised in one of two states,
which we call overt and covert.

The presence of an overt edge supports local dissemination
(i.e., across a triad), while the reverse is true for a covert edge,
thereby allowing us to characterise the local importance of
edges to connectivity in the wider network. At the network
level, overt edges therefore facilitate contagion while content
can be conveyed on a covert edge without making it locally
available (i.e., to the third party in a triad). As an edge in a
network will typically participate in multiple induced triads,
edges may play different roles in different induced triads. This
gives a new means to profile the connectivity underlying a
network, based on the local role of edges - it allows comparison
of networks based on the edge connectivity that their underlying
triads provide.

We introduce these concepts and define new forms of
centrality to capture the number of induced triads within
which each edge of a network is overt or covert. We examine
34 publicly available networks representing a wide range of
different scenarios. Overt and covert edge centrality is used
to profile them, and to observe the inherent similarities and
differences between networks derived from different scenarios.
We also consider the relationship between overt and covert
centrality, and well known network analysis metrics. The
results show that overt and covert centrality play a role in
further distinguishing classes of network when considered in
combination with global network analysis metrics.

II. RELATED WORK

There are wide-ranging contributions and metrics concerning
centrality, and here we highlight a number of those that have
relevance to the analysis of networks through induced sub-
structures. The literature is broad and the treatment here is non-
exhaustive. Our focus concerns induced triads, which have been



the foundation for assessment of complex networks [1]. The
classical definition of the clustering coefficient for a network [3]
indicates the number of closed triplets of nodes as a proportion
of the total number of triplets, open or closed. This represents
a starting point for many generalisations.

For example, Luce and Perry [3] address global clustering in
networks by assessing the fraction of closed triples that occur
out of all possible triples in an entire network. A triplet is
defined as three nodes that satisfy the property of having at least
two edges between them. A triplet is defined closed if there are
three edges between the nodes, or open otherwise. Alternatively,
the authors [4] introduce a local version of clustering coefficient
by determining the extent to which a node’s neighbours form
a clique (i.e., a complete sub-graph). Suppose that a vertex
v has kv neighbours; then at most kv(kv − 1)/2 edges can
exist between them (this occurs when every neighbour of v is
connected to every other neighbour of v). Watts and Strogatz
calculate the fraction of fraction of these allowable edges that
actually exist, thereby measuring the local density of clustering
through neighbourhoods.

The starting point for clustering coefficients in directed
networks is arguably the concept of triad transitivity. A triad
(u, v, w) is transitive if whenever there is a directed edge from
u to v and from v to w, then there is a directed edge from u
to w [5]. If no edge (u, v) and/or (v, w) exists then a triad is
vacuously transitive. Otherwise, it is intransitive. Transitivity
is a particularly important in the context of social structures,
with clustering metrics defined to this effect such as in [6].

Opsahl et al [7] address clustering in weighted and directed
networks by assessing the likelihood of transitive closure of
both directed and undirected triads in a network, while taking
into account weighted edges. To calculate a generalised global
clustering coefficient, Cw, the authors propose

Cw =
total weight of closed triplets

total weight of triplets

Similarly to calculate a generalised transitivity measure, Tw,
the authors also propose:

Tw =
total weight of transitive triplets

total weight of triplets

We note that through this measure, the clustering coefficient
assesses the overall triadic structure across the network,
rather than the role of the individual edges, which may vary
considerably. For example, suppose a triad T = {u, v, w} is
transitive. Then it is possible to construct a path from u to w.
It is not possible to construct a path from v to u, w to u or w
to v. Therefore, edge (u, v) plays a significantly different role
to (v, w) and (u,w).

Other centrality related metrics focus on defining alternative
path-based approaches to measure the importance of edges
in different ways. Betweenness centrality [8] is one popular
example that considers the number of the shortest paths
running through a particular edge. Other alternative approaches
considering the role of edges include various forms of network
flow (e.g., [9]–[11]). However, global path-based centrality

measures do not scale well, and local approaches to resolve
this have received attention such as in [12]. Its also notable
that some approaches concerning edges pivot on the inherent
relationships held with nodes [13], rather than considering the
connectivity that edges fulfil, either locally or globally.

An alternative approach to considering centrality involves
taking a complex networks perspective [1], [2], [14], where
motif analysis has been effective in characterising networks
based on the over representation of particular induced substruc-
tures [15]. This approach involves normalising the frequency of
induced triads (or other structures) against those which might
occur in a sample of random networks, in contrast to computing
global metrics for network characterisation and comparison.

Aligned to this network-sampling based perspective, Benson
[16] focuses on understanding the higher-order organisation
of complex networks through nodes involved in clusters of
network motifs based on triads. This brings together motif
analysis and network partitioning to reveal organisational
patterns at large scale complexity. By focusing on node
interactions with induced substructures, Przulj [17] constructs a
generalisation of degree distribution from the number of edges
being incident with a node to the number of graphlets incident
with a node. This is non-trivial due to the number of alternative
positions of a particular node within alternative graphlets.
Related approaches involve characterising the participation of
each node in all subgraphs in a network [18]. More generally,
the interplay between non-trivial induced substructures (i.e.,
beyond edges) has gained further traction as an area of interest
in its own right and a comprehensive overview is given in [19].

From the literature, we note that concepts such as subgraph
centrality and graphlet degree distribution, as defined for
complex networks, are often node-centric. These consider the
role of nodes in substructures, rather than the function of
the edges themselves within those structures. In contrast we
consider all edges in a triad and assess them based on the roles
their edges play in connecting to others. Others have defined
the characteristics of edges relative to their function in triads,
particularly with reference to social interactions [5]. These
contributions mainly focus on the importance of particular sub-
structures, rather than the role that an edge may play in any
given sub-structure, which further motivates the contribution
that we make.

III. DEFINING THE ROLE OF EDGES

We assume a graph G = (V (G), E(G)) is represented by
the set of nodes V (G) and the set of directed edges E(G). For
an induced triad T , we refer to its vertices as V (T ) ⊆ V (G)
and its edges as E(T ) ⊆ E(G).

Definition 1: Let T be an induced triad in G with vertex set
V (T ) = {u, v, w} which contains a directed edge from u to v
(i.e., (u, v) ∈ E(T )). Edge (u, v) is overt with respect to T if
and only if (v, w) ∈ E(T ), otherwise edge (u, v) is covert.

Note that in a triad involving nodes u, v and w, if (u, v) is an
overt edge, dissemination of content from u to v may reach w
indirectly from u, via v, i.e., u cannot control whether content
reaches w. Conversely, when (u, v) is covert, u is assured that



v can not disseminate content directly to w. Therefore local
awareness of the status of edges gives nodes some agency in
either the containment of information along a path involving
that edge (i.e., the edge (u, v) is covert), or the potential for
content to be more widely disseminated across a network due
to the use of that edge (i.e., the edge (u, v) is overt).

Figure 1 shows all possible connected triads with overt
and covert edges indicated. Note that there is high variability
on the presence of overt and covert edges, between triads.
As shown by example in Figure 2, an edge may be present
in multiple triads and may take different roles in each (i.e.,
overt and covert). The following propositions present counting
arguments to characterise this in general. We use d−v and d+v
to respectively denote the in-degree and out-degree of a node
v. We define three neighbourhoods of each vertex v:

N−(v) = {u ∈ V (G) : (u, v) ∈ E(G)}
N+(v) = {u ∈ V (G) : (v, u) ∈ E(G)}
N(v) = N−(v) ∪N+(v)
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Fig. 1: All connected triad types with overt and covert edges
indicated by O and C respectively.
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Fig. 2: A simple network G involving two induced triads:
T1 = {x, u, v} and T2 = {u, v, w}. Edge (u, v) is involved
in both triads T1 and T2. (u, v) is covert in T1 and (u, v) is
overt in T2.

Proposition 1: Let (u, v)p denote the number of connected
triads in which (u, v) ∈ E(G) is present. Then

(u, v)p = |N(u) ∪N(v)− {u, v}|.

Proof: Let A = N(u)∪N(v)−{u, v}. Suppose (u, v)p > |A|.
Then there exists some q ∈ V (G) such that {u, v, w} is a
connected triad but w /∈ A. Then w is not in the neighbourhood
of u or v. So either w /∈ {u, v} or w ∈ {u, v}. In both
cases {u, v, w} is not a connected triad which contradicts the
assumptions for w. Hence (u, v)p ≤ |A|.

Alternatively suppose (u, v)p < |A|. Then there exists some
w ∈ A such that {u, v, w} is not a connected triad. Since
w ∈ A then w 6= u and w 6= v and w ∈ N(u) ∪N(v). Then
this forces {u, v, w} to be a connected triad, contradicting the
assumptions for w. Hence (u, v)p ≥ |A|.

Since (u, v)p ≤ |A| and (u, v)p ≥ |A| then (u, v)p = |A|.

�

Proposition 2: Let (u, v)o denote the number of triads in
which (u, v) ∈ E(G) is an overt edge. Then:

(u, v)o = |N+(v)− {u}|

Proof: Let A = {w|(v, q) ∈ E(G) and w 6= u,w 6= v}.
Suppose (u, v) ∈ E(G) where (v, u) /∈ E(G) . Then |A| = d+v .

Suppose (u, v)o > d+v . Then ∃ w ∈
V (G) such that (v, w) ∈ E(G) but w /∈ A. Then w = v or
w = u. If w = v then {u, v, w} is not a triad hence (u, v) is
not overt. Hence w = u, but then (v, u) ∈ E(G), contradicting
the assumption that (v, u) /∈ E(G). Therefore, (u, v)o 6 d+v .

Alternatively, suppose (u, v)o < d+v . Then ∃ w ∈
A such that (v, w) /∈ E(G). This is impossible by definition
of A. Hence (u, v)o > d+v .

Since (u, v)o 6 d+v and (u, v)o > d+v then (u, v)o = d+v .
The proof for (u, v)o = d+v − 1 if (v, u) ∈ E(G) follows
similarly.

�



Proposition 3: Let (u, v)c denote the number of connected
triads in which (u, v) ∈ E(G) is a covert edge. Then:

(u, v)c = |N(u)+ ∪N(u)− ∪N(v)− −N(v)+ − {u, v}|

Proof: Let A = N(u)+ ∪N(u)− ∪N(v)−−N(v)+−{u, v}.
Suppose that (u, v)c 6= |A|.

Firstly we assume that (u, v)c > |A|. Then there exists some
w ∈ V (G) such that {u, v, w} is a connected triad and (u, v)
is a covert edge, but w /∈ A. Hence w ∈ N(v)+ or w ∈ {u, v}.
If w ∈ {u, v} then w = u or w = v. Then {u, v, w} is not
a connected triad, contradicting our definition of w. Hence
w ∈ N(v)+. This implies (v, w) ∈ E(G) so (u, v) is an overt
edge in {u, v, w}, contradicting our definition of w again. Then
no such w exists, hence (u, v)c ≤ |A|.

Alternatively suppose (u, v)c < |A|. Then there exists some
w ∈ A such that (u, v) is an overt edge in the connected triad
{u, v, w} or {u, v, w} not a connected triad. Since w ∈ A then
w ∈ N(u) or N(v)− and w 6= u and w 6= v so {u, v, w} must
be a connected triad. Then (u, v) must be overt in the connected
triad {u, v, w}. Then (v, w) ∈ E(G) but since w ∈ A then
w /∈ N(v)+ so this contradicts our definition of w. Hence
no such w exists so (u, v)c ≥ |A|. Since (u, v)c ≤ |A| and
(u, v)c ≥ |A| then (u, v)c = |A|.

�

Note that (u, v)p = (u, v)o +(u, v)c. We refer to (u, v)o as the
overt centrality of edge (u, v), and (u, v)c refers to the covert
centrality of edge (u, v).

An edge (u, v) having high overt centrality indicates that
in a large number of triads, edge (u, v) contributes to a path
from u to the third node w. Conversely, an edge (u, v) having
high covert centrality indicates that in a large number of triads,
edge (u, v) is not involved in a path from u to the third node
w.

Propositions 1, 2 and 3 mean that an edge’s overt and covert
counts can be quickly computed using the neighbourhood of
nodes belonging to the edge of interest. This highly local
approach means that in contrast to some alternative edge
centrality metrics, computing overt and covert centrality is
highly scalable.

IV. EXPERIMENTATION

To understand the prevalence of overt and covert edges and
their role in different classes of network, we take a range
networks used in other studies (IV-A), listing their attributes
in Table I, and assess the presence of overt and covert edges
in Table II (Section IV-B). We conclude by exploring the
relationship between the mean overt and covert centrality
of edges with existing social network analysis metrics from
Section IV-A in Figure 3 and 4 (Section IV-C).

A. Data sets

The networks are collated from a variety of sources,
including the Cosin Project [20], Stanford’s Snap Datasets
[21], NeuroData’s Graph Database Connectomes [22], Toreop-
sahal.com dataset collection [23], amongst others [24], [25],

[26], [27], [28]. All networks are directed. They have been
organised into nine classes in Table I according to data type
alongside various metrics to represent the size, connectivity
and directionality and of the network.

We have chosen these data sets as they represent different
natural phenomena well established in the literature. There
is diversity within the networks, in particular the number of
vertices, from very small organisational networks (between
34 and 77 nodes, excluding the Eva network [28]), and much
larger internet networks (up to 10,876 nodes). Further, different
structural properties are exhibited by different classes of
network. For example, organisational networks (except for Eva
[28]) present higher levels of density, clustering and a higher
mean degree centrality than other networks, indicating high
levels of connectivity. They also have high levels of reciprocity
and small diameters. We can interpret that organisational
networks are formed of collections of tightly knit groups. In
contrast, electrical circuit, internet and neurological networks
present low levels of density, clustering, reciprocity and a lower
mean degree centrality. These networks display hub-and-spoke
structures, where a minority of nodes have a very high degree
(the ‘hubs’) and the majority of nodes a very low degree
(the ‘spokes’). Other networks, such as food web networks or
airport networks, sit somewhere in between: for example, food
web networks present a mid level of clustering (higher than
in internet networks, lower than in organisational networks)
and degree centrality but have lower density (as compared to
organisational networks).

B. Profiling Real World Data Sets using Overt and Covert
Edge Centrality

Because the computation of overt/covert centricity of an edge
(u, v) is dependent on the degree of v, this centrality metric
is highly scalable and easily applied to real world data sets.
To exemplify this we determine the frequency distribution for
overt/covert centrality across 34 test networks from different
real world scenarios (Table II).

Interestingly we see that in many cases, the resulting
frequency distributions are effective in associating networks
originating from same context or domain. For example, the
airport flights data sets [29], [30] have long tail distributions
with a relatively slow drop off as compared to the peer-to-
peer Internet data sets [21]. Some classes of network also
exhibit greater weighting for one particular type of centrality,
such as the electrical circuit scenarios [26] where covert edges
show greater prevalence. Other classes of network, such as
the organisational networks [23] exhibit distinctive increasing
profiles in frequency of overt centrality. The results also reaffirm
that overt and covert centrality are not mutually exclusive.
For example, similar distributions are obtained for both overt
and covert centrality in numerous categories, such as the
Trust/Social Networks class and the Airport flight Networks
class.

These results demonstrate that overt centrality and covert
centrality offer the potential to characterise complex networks
based on the common behaviour of edges with respect to their



TABLE I: Networks and metrics used to describe them. |V | denotes the number of nodes in the network, |E| the number of
edges. Clustering represents the mean global clustering coefficient. Reciprocity is a measure of global reciprocity. RC, DC
and BC denote the global reaching centrality, mean degree centrality and mean betweenness centrality respectively. Diameter
is taken using the undirected version of the network. Self loops have been removed from the original dataset, so we are testing
on the largest connected component of the original dataset. Decimal places are rounded to two significant figures.

Name |V | |E| Density Clustering Reciprocity BC DC RC Diameter

Airport Flights Networks
US Airports [29] 1572 28235 0.011 0.50 0.78 0.0013 0.023 0.059 8
Open Flights [30] 2905 30442 0.0036 0.44 0.97 0.0010 0.0072 0.0072 14

Electrical Circuit Networks
s420 [26] 252 399 0.0063 0.028 0.00 0.0062 0.013 0.66 13
s838 [26] 512 819 0.0031 0.027 0.00 0.0037 0.0063 0.67 15

Ecological Food Web Networks
Mangwet [24] 97 1492 0.16 0.26 0.062 0.011 0.32 0.11 3
Baywet [24] 128 2106 0.13 0.18 0.029 0.0091 0.26 0.19 3
Little Rock Lake [29] 183 2476 0.074 0.17 0.034 0.00094 0.15 0.82 4
Ythan [25] 92 414 0.049 0.11 0.00 0.0011 0.099 0.79 4
St. Marks Seagrass [20] 49 223 0.095 0.13 0.00 0.0048 0.19 0.74 4
Grassland [20] 88 137 0.018 0.17 0.00 0.00033 0.036 0.97 6

Peer-to-peer Internet Networks
p2p-gnutella04 [21] 10876 39994 0.00034 0.0031 0.00 0.00021 0.00068 0.6 10
p2p-gnutella05 [21] 8842 31837 0.00040 0.0036 0.00 0.00024 0.00081 0.6 9
p2p-gnutella06 [21] 8717 31525 0.00041 0.0033 0.00 0.00024 0.00083 0.61 10
p2p-gnutella08 [21] 6299 20776 0.00052 0.0054 0.00 0.00030 0.0010 0.63 9
p2p-gnutella09 [21] 8104 26008 0.00040 0.0048 0.00 0.00024 0.00079 0.65 10

Neurological Networks
C. Elegans [31] 297 2345 0.027 0.17 0.17 0.01 0.053 0.13 5
Drosophila Medilla 1 [22] 1770 9624 0.0030 0.15 0.15 0.00083 0.0061 0.14 6
Mouse Visual Cortex 2 [22] 193 214 0.0058 0.010 0.00 0.00 0.012 0.24 8
Mouse Retina 1 [22] 1076 90811 0.079 0.30 0.00 0.00046 0.16 0.56 4
Rattus Norvegicus [22] 503 27667 0.11 0.78 0.34 0.0018 0.22 0.0020 3

Organisational Networks
Cross Parker Consulting [23] 44 521 0.28 0.62 0.77 0.021 0.55 0.047 4
Freemans EIES n48 1 [23] 34 540 0.48 0.69 0.85 0.016 0.96 0.00 2
Freemans EIES n48 2 [23] 34 708 0.63 0.77 0.85 0.012 1.26 0.00 2
Cross Parker Manufacturing [23] 77 1452 0.25 0.67 0.80 0.012 0.50 0.013 3
Eva [28] 4475 4662 0.00023 0.0060 0.0043 0.00 0.00047 0.28 18

Regulatory Networks
E. coli transcription [26] 328 456 0.0043 0.055 0.00 0.00 0.0085 0.020 13
Yeast transcription [26] 662 1063 0.0024 0.025 0.0019 0.00 0.0049 0.12 15

Trust/Social Networks
Bitcoin Alpha [21] 3670 22639 0.0017 0.15 0.85 0.00065 0.0034 0.12 10
Bitcoin OTC [21] 5551 32007 0.0010 0.14 0.84 0.00042 0.0020 0.16 14
Email EU Core [21] 986 24929 0.026 0.37 0.71 0.0014 0.051 0.16 7
Prison Inmate [26] 67 182 0.040 0.23 0.44 0.034 0.082 0.34 7
UCIrvine [23] 1893 20292 0.0057 0.088 0.64 0.00080 0.011 0.29 8
WikiVote [21] 7066 103663 0.00208 0.082 0.056 0.00 0.0042 0.089 7

World Wide Web Networks
Political Blogs[27] 1222 19021 0.013 0.22 0.24 0.0013 0.025 0.13 8

role in induced triads. We note that this is one of the reasons
that motif analysis has become a popular tool. However in our
case, comparison is based on the role edges play within induced
triads, rather than the types of induced triads that are over or
under represented. Profiling edges in this way gives insights
into the relative prevalence of edges within the network, and
determines the status of networks particularly concerning local
leakage and containment of content over edges.

C. Comparing with Existing Metrics
To assess whether overt and covert centrality provide

additional information about data sets, as compared to standard

global metrics for social network analysis, we further consider
metrics from Table I. Over each of the 34 assessed real
networks, we find the mean overt and covert centrality of
edges, by averaging over the total centrality (i.e., overt plus
covert centrality) of edges. We normalise this mean count
by dividing through by the maximum possible overt/covert
centrality of an edge (the number of edges in the network
minus 2). We calculate the Spearman rank correlation between
metrics using all 34 data sets in order to compare them,
as seen in Figure 3. We tested the distribution of each
statistic for non-normality using a Shapiro-Wilk Test and in



TABLE II: The frequency distribution of overt and covert centrality across edges in 34 real-world data sets. |V | indicates
the number of nodes, |E| indicates the number of edges, OC indicates the overt centrality frequency distribution, and CC
indicates the covert centrality distribution.

Network |V | |E| OC CC

Airport Flights Networks

US Airports [29] 1572 28235

Open Flights [30] 2905 30442

Electrical Circuit Networks

s420 [26] 252 399

s838 [26] 512 819

Ecological Food Web Networks

Baywet [24] 128 2106

Grassland [20] 88 137

Little Rock Lake [29] 183 2476

Mangwet [24] 97 1492

St. Marks Seagrass [20] 49 223

Ythan [25] 92 414

Peer-to-peer Internet Networks

p2p-gnutella04 [21] 10876 39994

p2p-gnutella05 [21] 8846 31837

p2p-gnutella06 [21] 8717 31525

p2p-gnutella08 [21] 6299 20776

p2p-gnutella09 [21] 8104 26008

Neurological Networks

C. Elegans [31] 297 2345

Drosophila Medilla 1 [22] 1706 9624

Network |V | |E| OC CC

Neurological Networks

Mouse Visual Cortex 2 [22] 193 214

Mouse Retina 1 [22] 1076 90811

Rattus Norvegicus [22] 503 27667

Organisational Networks

Cross Parker Consulting [23] 44 521

Freemans EIES n48 1 [23] 34 540

Freemans EIES n48 2 [23] 34 708

Cross Parker Manufacturing [23] 77 1452

Eva [28] 4475 4662

Regulatory Networks

E. coli transcription [26] 328 456

Yeast transcription [26] 662 1063

Trust/Social Networks

Bitcoin Alpha [21] 3670 22639

Bitcoin OTC [21] 5551 32007

Email EU Core [21] 986 24929

Prison Inmate [26] 67 182

UCIrvine [23] 1893 20292

WikiVote [21] 7066 103663

World Wide Web Networks

Political Blogs[27] 1222 19021

all cases found the data does not follow a normal distribution.
Therefore, we use the Spearman rank correlation coefficient to
compare statistics. A positive correlation indicates a monotonic
increasing relationship, whilst a negative correlation indicates a
monotonic decreasing relationship. The closer to 1 (or -1) the
value, the stronger the relationship. In particular, a correlation
between 0.4 and 0.6 we have classed as moderate, whilst
between 0.6 and 0.8 strong and above 0.8 as very strong. We
display this in a correlation matrix as shown in Figure 3.

Figure 3 indicates that all significant relationships between
overt/covert centrality with existing metrics from Table I are
at least moderate, though many are strong or very strong. In
particular, we observe very strong correlation between mean
covert weight of a network and the network density (0.87),
degree centrality (0.87). Mean overt weight of the network
follows similarly, with the addition of very strong relationships
with betweeness centrality (0.82) and global clustering (0.91).
Mean overt and covert weight of networks correlate very



Fig. 3: Correlation matrix comparing the Spearman correlation
of each metric across all 34 data sets, with insignificant
correlation results indicated by green cells (p > 0.05)

strongly with each other (0.8). Interestingly, there was no
significant correlation between normalised average covert
weight and reciprocity, and global reaching centrality. For overt
centrality, there was no significant correlation with number of
edges. This indicates that while measure of overt and covert are
picking up some similarities of network structure in common
with existing metrics, they are some clear differences (i.e.,
additional network properties) that the concepts are identifying.

The existence of significant, directed correlations motivates
further investigation through direct comparison of the mean
overt/covert centrality with each metric for each data set, the
results for which are found in Figure 4. We observe in Figure
4 that results are different depending on comparison with
mean overt or covert centrality. For example, when comparing
reaching centrality with mean covert weight the social networks
category of data points cluster together. When comparing
reaching centrality with mean overt weight, the data points
are more dispersed along the x axis, pulling apart this cluster
of nodes. The same effect can also be seen when comparing
diameter with the average overt and covert weight in social
networks.

These results show that overt and covert centrality measures
have a role to play in differentiating the alternative network
classes. Without overt and covert centrality, the data points
in Figure 4 would project onto the y-axis, with little or no
differentiation between some classes of network in many cases.
One such example is the Clustering measure, where average
overt centrality is able to distinguish alternative classes of
network with similar clustering values (i.e., separate in the
x-axis). This is particularly the case for low clustering levels
(e.g., 0.3 or lower). Fig. 4: Scatterplots showing the relationship between standard

network metrics and mean covert and overt edge centrality.



V. DISCUSSION AND CONCLUSIONS

We have introduced a novel and fundamental approach to
characterising the centrality of edges in networks based on
their role in supporting connectivity within induced triads. This
constitutes a binary classification of edges with respect to a
particular induced triad within which they participate. In other
words, we classify an edge as either overt or covert. This
concept is important because triads are the smallest possible
(non-trivial) induced substructure in a network. Therefore
our definition of overt and covert centrality with respect to
edges captures the lowest level at which non-trivial network
connectivity can be considered, beyond the concept of an edge
itself. Using counting arguments based on in and out degrees
within a triad, we have derived formula to determine the both
overt and covert edge centrality. This means that overt and
covert centrality can be determined without recourse to lengthy
search - the concept is locally defined and therefore scalable.

To demonstrate these concepts on ‘real-world’ scenarios, we
have applied it to data derived from 34 public data sets. From
profiling the overt and covert centrality distributions across
these networks, we have shown that the frequency of overt and
covert edges is useful in presenting further insights both within
and between different classes of network. These concern the
relative dependency that networks have on the prevalence of
edges with key roles concerning connectivity. On the one hand,
overt edges play a role in potential containment of content
transferred through an edge, since the edge cannot support
dissemination to the third node in the triad. Alternatively, overt
edges align with the potential for onward local dissemination,
since by definition an overt edge supports a path to the third
node in the triad. This provides an alternative lens through
which global network connectivity can be considered at a local
level.

We have additionally compared overt and covert centrality
with a number of conventional network analysis metrics,
including global reach centrality, mean degree centrality,
between-ness centrality, density, clustering, reciprocity and
diameter. Potential significant correlations have been considered
with a view to understanding relationships with these metrics.
By examining the relationship between these metrics and
overt/covert centrality across 34 networks, we have found that
overt/covert centrality can provide additional insights. These
relate to distinguishing between classes of network, which the
global network metrics would fail to achieve in isolation, for
numerous cases.

In summary, we observe that overt and covert centrality are
important concepts for characterising a network’s structural
potential for dissemination and contagion, based on considera-
tion of a network’s underlying building blocks. These issues
are further being pursued through ongoing research.
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[17] N. Pržulj, “Biological network comparison using graphlet degree
distribution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, 2007.

[18] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in
complex networks,” Physical Review E, vol. 71, no. 5, p. 056103, 2005.

[19] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G.
Young, and G. Petri, “Networks beyond pairwise interactions: structure
and dynamics,” Physics Reports, vol. 874, pp. 1–92, 2020.

[20] COSIN, “The cosin network data and analysis.” [Online]. Available:
http://www.cosinproject.eu/extra/data/foodwebs/WEB.html

[21] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection,” 2014. [Online]. Available: http://snap.stanford.edu/data

[22] NeuroData, “Animal connectomes.” [Online]. Available:
https://neurodata.io/project/connectomes/

[23] T. Opsahl, “Network datasets.” [Online]. Available:
https://toreopsahl.com/datasets/

[24] V. Batagelj and A. Mrvar, “Pajek datasets.” [Online]. Available:
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

[25] A. R. Cirtwill and A. Eklöf, “Data from: Feeding environment and
other traits shape species’ roles in marine food webs,” 2018. [Online].
Available: https://doi.org/10.5061/dryad.1mv20r6

[26] U. A. Lab, “Collection of complex networks.” [Online].
Available: https://www.weizmann.ac.il/mcb/UriAlon/download/collection-
complex-networks

[27] L. A. Adamic and N. Glance, “The political blogosphere and the 2004
us election: divided they blog,” in Proceedings of the 3rd international
workshop on Link discovery, 2005, pp. 36–43.

[28] G. L. Kim Norlen, M. Gebbie, and J. Chuang, “Eva: Extraction,
visualization and analysis of the telecommunications and media ownership
network,” in Proceedings of International Telecommunications Society
14th Biennial Conference. Citeseer, 2002.

[29] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web, 2013, pp.
1343–1350.

[30] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[31] J. D. Johnson, “Ucinet: A software tool for network analysis,” 1987.


