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Abstract. Diffusion magnetic resonance imaging (dMRI) is a relatively
modern technique used to study tissue microstructure in a non-invasive
way. Non-Gaussian diffusion representation is related to the restricted
diffusion and can provide information about the properties of the un-
derlying tissue. In this paper, we analytically derive n-th order statistics
of the signal considering a stretched-exponential representation of the
diffusion and thus retrieve the Q-space quantitative measures such as
the Return-To-the-Origin Probability (RTOP), Q-space mean square dis-
placement (QMSD), and Q-space mean fourth-order displacement (QMFD).
The stretched-exponential representation enables to handle of the diffu-
sion contributions from a higher b-value regime under a non-Gaussian
assumption which can be useful in diagnosing or prognosis neurodegen-
erative diseases in the early stages.

Keywords: Diffusion-weighted imaging · diffusion MRI · non-Gaussian
diffusion · microstructural measures · Return-To-the-Origin Probability.

1 Introduction

Magnetic resonance imaging (MRI) is a powerful technique in clinical applica-
tions for diagnoses or prognoses of several diseases in the central nervous system
[8, 20]. Diffusion-weighted MRI (dMRI) modality is sensitive to the random mo-
tion of water molecules in the tissue and it is vastly used in both clinical and
basic science to characterize tissue water behavior. In the category of dMRI
studies, different imaging techniques can extract the microstructural features of
the tissue such as size, shape, and anisotropy. A lot of studies have shown a
relationship between the changes in the diffusion properties of the tissue and the
relevant alteration in the underlying tissue microstructure [29].

One of the most important features of dMRI is its sensitivity to the anisotropy
in the tissue. Diffusion tensor imaging (DTI) [8] is the most common technique
in clinical studies. The spins displacement in DTI is assumed to be Gaussian dis-
tributed and some scalar anisotropy indices such as fractional anisotropy (FA),
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axial, and radial diffusivity (AD, RD), and mean diffusivity (MD) were defined
directly from second-order tensor representation [7, 32]. The most common and
simplest assumption in dMRI is the Gaussian assumption [19] on the spin dis-
placement which results in a mono-exponential decay of a diffusion signal versus
the b-value parameter [11]. The Gaussian assumption in DTI is valid when the
media is a simple fluid and we have free diffusion. In more complicated struc-
tures such as tissue, there are restrictions in the diffusion of water and therefore
the decay is much slower than a mono-exponential decay [9]. The presence of
non-mono-exponential decay shows that the diffusion is restricted by the under-
lying microstructure of the tissue. If the size of the structure is similar to the
diffusion length-scale then the diffusion deviates from the Gaussian towards a
non-Gaussian displacement regime [16]. Therefore diffusion MRI can be used to
probe the microstructural properties of the underlying tissue geometry by meth-
ods such as bi-exponential [12], stretched-exponential [9], composite hindered
and restricted model of diffusion (CHARMED) [4], AxCaliber [5], ActiveAx [3]
or neurite orientation dispersion and density imaging (NODDI) [35]. All these
methods can be used to investigate tissue geometry, but they are not all equally
applicable in all situations. Other methods such as the high angular resolution
diffusion imaging (HARDI) [27, 31] and diffusion kurtosis imaging (DKI) [18]
were also proposed. To obtain the non-Gaussian property of the signal higher
b-values are required [21].

Alternative to model the underlying properties of the tissue is the ensem-
ble average propagator (EAP) which represents the probability that the water
molecule moves in a specific direction under a certain diffusion time [13, 26]. From
the EAP representation one can retrieve different Q-space quantitative measures
such as the Return-To-the-Origin Probability (RTOP), Q-space mean square dis-
placement (QMSD), or Q-space mean fourth-order displacement (QMFD). For
instance, the RTOP measure is shown to be a good index for cellularity and
diffusion restrictions [6] while QMSD and QMFD are sensitive to contributions
from slow or restricted diffusion [23].

Different methods have been proposed so far to estimate the EAP and EAP-
related features such as the multiple q-shell diffusion propagator Imaging (mq-
DPI) [13], Hybrid Diffusion Imaging (HYDI) [34], Mean Apparent Propaga-
tor (MAP-MRI) [26], Radial Basis Functions (RBFs) [23] Laplacian-regularized
MAP-MRI (MAPL) [14], and Generalized Diffusion Spectrum MRI (GDSI)
[30]. These techniques are typically computationally intensive or require a huge
amount of densely sampled Cartesian or multiple-shell data to correctly estimate
the EAP and its related features. Recently, a single-shell technique that can es-
timate micro-structure diffusion scalar measures directly from the data has been
proposed [1, 28]. This approach, although enables one to estimate the measures
rapidly and directly from the data, assumes a Gaussian profile of the signal, thus
it might be problematic to recover higher b-value contributions to the signal.

In this paper, we analytically derive the n-th order statistics of the signal
considering a stretched-exponential decay to represent the Gaussian and non-
Gaussian part of the signal. In practice, when no information about the number
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of compartments is provided, the stretched exponential is a good choice [10].
Given the general formulation in the Q-space domain, we obtain closed-form
formulas to retrieve basic indexes such as the RTOP, QMSD, or QMFD directly
from the data in a manner analogous to direct techniques [1, 28, 34]. However,
the proposal is no longer limited by a Gaussian assumption and can be used to
retrieve the diffusion contributions under the higher b-values regime.

2 Theory

In this section, we start with the definition of the EAP and diffusion MR signal
representation using a stretched-exponential function, and then we use this rep-
resentation to extract the Q-space scalar measures such as the RTOP, QMSD,
and QMFD.

2.1 Diffusion MR signal representation

The ensemble average propagator (EAP) is a three-dimensional probability den-
sity function that represents the average displacement of spins during the dif-
fusion time. The EAP, P (R), is related to the diffusion MR signal attenuation
E(q) via the Fourier transform [13, 26, 34]

P (R) =

∫
R3

E(q) exp(−j2πqTR)d3q, j2 = −1, (1)

with E(q) = S(q)/S(0) being the normalized diffusion signal, S(q) is the dif-
fusion signal acquired at wave vector q, S(0) is the baseline measured without
a diffusion sensitization.

The signal in Eq. (1) can be represented by a mono-exponential decay E(g) =
exp

(
−bgTDg

)
with g being a normalized vector g = q/‖q‖ and D is a covari-

ance matrix of a Gaussian EAP or a more general Kohlrausch–Williams–Watts
function so-called a stretched-exponential representation given by [9, 22, 33]

E(g) = exp
(
−(bD(g))α(g)

)
, α(g) ∈ (0, 1] (2)

with the so-called the b-value b = 4π2τ‖q‖2 [s/mm2] with τ = ∆ − δ/3 [s] be-
ing the effective diffusion time, D(g) and α(g) being the apparent diffusion and
stretching parameters at direction g, respectively. Notice here once the stretching
parameter tends to unitary, i.e., α(g)→ 1, the stretched-exponential represen-
tation (2) reduces to a mono-exponential signal decay.

2.2 Q-space domain quantitative measures

In what follows, we analytically derive n-th order statistics of the stretched-
exponential representation given by the Eq. (2). This enables to easily retrieve
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three quantitative Q-space measures namely the RTOP [mm−3] being the prob-
ability in the origin, P (0), QMSD [mm−5] and QMFD [mm−7] defined as the
second- and fourth-order statistics of the signal E(q) respectively [13, 23]

RTOP =

∫
R3

E(q)d3q, QMSD =

∫
R3

‖q‖2E(q)d3q, QMFD =

∫
R3

‖q‖4E(q)d3q,

(3)

where ‖ · ‖ is the vector norm of the wave vector q.
We specify now a more general equation in the Q-space domain related to the

n-th order statistics of the signal attenuation E(q). Considering the stretched-
exponential representation of the signal (2) and a spherical coordinate system
(q, θ, ϕ) with polar θ and azimutal ϕ angles, and a radial coordinate q = ‖q‖
[mm−1] we define the n-th order statistics of the signal attenuation E(q)

Mn =

∫
R3

‖q‖n exp
(
−(4π2τ‖q‖2D(g))α(g)

)
d3q

=

∫ 2π

0

∫ π

0

∫ ∞
0

exp
(
−
(
4π2τq2D(θ, ϕ)

)α(θ,ϕ))
qn+2 sin θ dq dθ dϕ,

(4)

where D(θ, ϕ) and α(θ, ϕ) are the apparent diffusion coefficient and stretching
parameter both defined in the spherical coordinate system. Next, we rewrite the
integral (4) as follows (see Gradshteyn & Ryzhik [15], p. 370, Eq. 3.478(1))

Mn = Cτn

∫ 2π

0

∫ π

0

Γ

(
n+ 3

2α(θ, ϕ)

)
α−1(θ, ϕ)D−(n+3)/2(θ, ϕ) sin θ dθ dϕ

= Cτn

∫∫
Σ

Γ

(
n+ 3

2α(θ, ϕ)

)
α−1(θ, ϕ)D−(n+3)/2(θ, ϕ) dΣ,

(5)

where Cτn = 2−n−4π−n−3τ−(n+3)/2 is a diffusion time dependent constant and
Γ(·) is the gamma function. Notice here that the last equation is a surface integral
over the surface with a unitary radius, i.e., q = 1.

2.3 Numerical implementation

To evaluate the surface integral (5), one can assume the surface area element,
∆Σ, is inversely proportional to the number of sampled data points (e.g., the
number of evenly distributed directions Ng, ∆Σ = 4π/Ng). Transforming the

Eq. (2) the diffusion becomes D(g) = 4−1π−2τ−1q−2 (− logE(q))
1/α(g)

, and
thus the Eq. (5) can be rewritten in the following form

M (1)
n =

1

2
qn+3

〈
Γ

(
n+ 3

2α(g)

)
α−1(g) (− logE(q))

− n+3
2α(g)

〉
q∈S2

(6)

with 〈·〉q∈S2 being a direction-averaged signal over a single acquisition shell.
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Notice that the Eq. (6) can be evaluated using the samples retrieved from the
resampled data to uniformly cover the surface (e.g., the spherical harmonics
basis as in [1]).

The numerical reciprocal of the negative log-diffusion function given in Eq. (6)
might be prone to instabilities, i.e., the signal attenuation E(q)→ 1 the function
(− log(E(q)))−1 → ∞. [2, 28]. Alternatively, one can refine (6) to incorporate
its second-order series expansion. To this end, we define a twice differentiable
function f : R→ R given by f(X) = Γ

(
n+3
2α

)
α−1X−(n+3)/(2α) with n ≥ 0. The

second-order series expansion of the expectation of the function f(X) around

the expectation E {X} is given then by E {f(X)} ≈ f (E {X}) + 1
2
d2f
dX2

∣∣∣
X=E{X}

·

Var {X}. After using some algebra we arrive at the following closed-form formula

E {f(X)} ≈ 1

8
Γ

(
n+ 3

2α

)
α−3 E {X}−

n+3
2α

(
(n+ 3)(n+ 3 + 2α)E

{
X2
}
E {X}−2

+ 8α2 − (n+ 3)(n+ 3 + 2α)
)
.

Given again a stretched-exponential decay (2) and a second-order series expan-
sion of the expectation we define an approximation to the measure (6)

M (2)
n =

1

2
qn+3

〈
1

8
Γ

(
n+ 3

2α(g)

)
α−3(g)

〉
q∈S2

〈
− logE(q)

〉−〈 n+3
2α(q) 〉q∈S2

q∈S2

×

 (n+ 3)
〈

(n+ 3)1 + 2α(g)
〉
q∈S2

〈
(− logE(q))

2
〉
q∈S2〈

− logE(q)
〉2
q∈S2

+
〈

8α2(g)− 2(n+ 3)α(g)− (n+ 3)21
〉
q∈S2


(7)

with 1 being the all-ones vector. We have simplified our derivations in the series
expansion procedure; thus, we direction average the stretching parameter to
obtain the final formula. From Eq. (7) we can define basic Q-space domain
measures such as the RTOP (M0), QMSD (M2) or QMFD (M4; see Eq. (3)).
The proposed stretched-exponential method requires a multiple-shell acquisition
with at least two-shells at different b-values to fit the representation given by
Eq. (2). Once the representation is fitted a single-shell data at a fixed b-value is
used to calculate the measures. In section 2.4, we define a simple optimization
cost function to retrieve the stretched representation of the diffusion signal.

2.4 Optimization of stretched-exponential representation

To retrieve a stretched-exponential representation at direction g of the diffusion
we define an optimization cost function and solve it using a non-linear least
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squares procedure

(D(g), α(g)) = argmin
D′(g),α′(g)

1

2

∑
q : q‖g

[
S(q)−S(0) exp

(
−(4π2τ‖q‖2D′(g))α

′(g)
) ]2

.

To find the optimal parameters we used a bound-constrained minimization via
the trust region reflective method with a linear loss function. Notice here the
procedure (2.4) applies for each direction g independently and might use only
a subset of q-values employed to acquire the data.

3 Materials and methods

In this study, we used ex vivo rat brain data as well as in vivo human brain data
that was publicly available by Hansen et al. [17].

3.1 Ex vivo rat brain data

The ex vivo data were collected using a Bruker Biospec 9.4T (Bruker Biospin,
Germany) with a 15 mm quadrature coil. Diffusion-weighted images were ac-
quired in 15 b-value shells ranging from 0 to 5000 s/mm2 with a step size of 200
s/mm2 and 33 directions per each shell utilizing a spin echo sequence. Fifteen
axial slices were collected at a resolution of 100 × 100 × 500 µm3, matrix size
128 × 128, echo time of TE = 23.3 ms, repetition time of TR = 4 s, and diffu-
sion timing of δ/∆ = 4/14 ms. The data set was averaged twice to improve the
signal-to-noise ratio being around 75 at the baseline.

3.2 In vivo Human brain data

One healthy participant was scanned in an in vivo study using a Siemens Trio
3T equipped with a 32 channel head coil. The protocol comprised one b = 0
and 15 non-zero shells ranging from 200 s/mm2 to 3000 s/mm2 with the step
size of 200 s/mm2 and 33 directions per shell. Nineteen axial slices with a voxel
size of 2.5 mm isotropic and a 96 × 96 matrix size, TE = 116 ms, TR = 7200
ms, TI = 2100 ms were obtained. The diffusion timings were estimated to be
δ/∆ = 29/58 ms. The SNR of the baseline signal is around 39. In our experiments
we used a five-shell acquisition with 200, 1000, 1800 2400, and 3000 s/mm2.

3.3 Comparison to the Q-space measures from different methods

In subsection 2.2 we introduced three measures that is the RTOP, QMSD and
QMFD. In this work, we evaluate the proposed stretched-exponential Q-space
measures and compare them to those obtained from the MAP-MRI technique
[26] (positivity constraint), MAPL [14] (regularization parameter λ = 0.2),
RBF [23] (l1 regularization with λ = 0.00055), 3D-SHORE [25, 36] (scale factor
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ζ = 1/(8π2τD)), and a single-shell approach [1, 28]. Except for the aforemen-
tioned frameworks, we calculate also the RTOP measure directly from diffu-
sion tensor eigenvalues (a non-linear least squares fitting via the Levenberg-

Marquardt method) as RTOP = (3πτ)
−3/2

(λ1λ2λ3)
−1/2

.

4 Results and discussion

In the first experiment, we visually evaluate the measures using ex vivo rat
brain data retrieved using different methodologies namely the DTI (at 1000
and 1400 s/mm2), RBF, 3D-SHORE, MAP-MRI, MAPL (the EAPs in all four
are fitted to a three-shells acquisition, i.e., b = 1000, 3000 and 5000 s/mm2),
single-shell technique, and proposed stretched-exponential one (see Fig. 1). For
the proposed technique we use three-shells for fitting the representation while
a single-shell to calculate the measure. Visually inspecting the RTOP measure
shows that DTI based ones (Fig. 1(a, b)) and single-shell technique (Fig. 1(d–
f)) return smaller values compared to all other methods. The RBF and 3D-
SHORE have the lowest contrast between the white matter and gray matter
tissue in the measure (Fig. 1(c, g)). In the single-shell method by increasing the b-
value from 1000 to 5000 s/mm2, the RTOP value increases (Fig. 1(d–f, RTOP)).
Comparing the EAP-based techniques and stretched-exponential representations
(Fig. 1 (c, g–l, RTOP)), 3D-SHORE and RBF provide the lowest while MAP-
MRI gives the highest intensity in white matter areas. MAPL results of RTOP

Fig. 1: Visual inspection of the RTOP, QMSD and QMFD measures on ex vivo
rat brain data: (a) DTI (b = 1000 s/mm2), (b) DTI (b = 1400 s/mm2), (c) RBF,
(d) single-shell (b = 1000 s/mm2), (e) single-shell (b = 3000 s/mm2), (f) single-
shell (b = 5000 s/mm2), (g) 3D-SHORE, (h) MAP-MRI, (i) MAPL, (j) stretched-
exponential (b = 1000 s/mm2), (k) stretched-exponential (b = 3000 s/mm2) and
(l) stretched-exponential (b = 5000 s/mm2).



8 T. Pieciak et al.

Fig. 2: The mean absolute changes of the RTOP, QMSD and QMFD measures
in ex vivo rat brain data in terms of maximal b-value (bmax) used to esti-
mate the EAP/calculate the measure under different techniques. For stretched-
exponential representation two variants are used in measure calculation process
namely b-value at bmax and b = 3000 s/mm2.

Fig. 3: Visual inspection of the measures on in vivo human brain data estimated
using various approaches: (a) DTI (b = 1000 s/mm2), (b) DTI (b = 1400 s/mm2),
(c) RBF, (d) single-shell (b = 3000 s/mm2), (e) 3D-SHORE, (f) MAP-MRI, (g)
MAPL and (h) stretched-exponential (b = 3000 s/mm2).

are similar to MAP-MRI while the RTOP values in MAPL are slightly lower than
the MAP-MRI. Our proposed method of stretched-exponential provides similar
RTOP maps for different b-values (b = 1000, 3000, and 5000 s/mm2) and it
preserves the consistency of the measures between different b-values which is not
observed in single-shell technique (Fig. 1(d–f, j–l, RTOP)). Clearly, introducing
the stretched-exponential representation enabled to improve contrast and kept
the uniformity of the RTOP measure across the b-values. In the QMSD/QMFD
measures, single-shell method at b = 1000 s/mm2 has the lowest value in the
both gray matter and white matter while the b = 5000 s/mm2 has the highest
and b = 3000 s/mm2 is the intermediate between the three alternatives of the
single-shell method (Fig. 1 (d–f, QMSD/QMFD). Notice here that again the
behaviour of the QMSD/QMFD measures across the b-values are preserved and
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Fig. 4: Correlations between the RTOP retrieved from in vivo human brain data
using the proposed stretched-exponential and state-of-the-art methods namely
MAP-MRI, MAPL, single-shell and 3D-SHORE (top), and correlations between
the proposal and single-shell approach in case of QMSD/QMFD (bottom).

the proposed stretched-exponential representation keeps the consistency of the
quantities while changing the b-value used to calculate the measure.

In the second experiment, we extrapolate the previous one and evaluate the
absolute changes in the measures due to the changes in the maximal b-value
parameter. In this experiment we used six different acquisitions from three-
shells (i.e., b = 1000, 2000 and b = 3000 s/mm2) to eight-shell one (up to
b = 5000 s/mm2 with a step of 400 s/mm2). For the proposed methodology
we fit the representation using k shells (k = 3, . . . , 8; similarly to the EAP-
based methods) while calculate the measures using only one shell namely b =
3000 s/mm2 and bmax. Fig. 2 depicts the mean absolute changes of the RTOP,
QMSD, and QMFD measures in terms of maximal b-value (bmax) under different
methodologies used to estimate the measures. For the estimation of RTOP, our
proposed stretched-exponential methodology has the minimum mean absolute
changes for both bmax and b = 3000 s/mm2 used to retrieve the measure once
fitted the Eq. (2.4). It is worth noticing here that the single-shell technique is
heavy load due to the changes in the maximal b-value and our proposal improved
the results though the measure is still calculated from a single-shell. As for the
two other measures (QMSD and QMFD), our proposed method is superior to
the single-shell method while again the one with bmax is slightly better than that
with b = 3000 s/mm2.

Fig. 3 is devoted to visual inspection of the RTOP and QMSD/QMFD mea-
sures on in vivo human brain data estimated using various state-of-the-art ap-
proaches. The observed trend in the in vivo maps of RTOP is similar to the
one observed in ex vivo data (Fig. 1; RTOP). Again, a comparable behaviour
of the QMSD/QMFD measures can be observed, i.e., the single-shell technique
exhibit generally smaller values of the measure in white matter areas compared
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DTI MAP-MRI MAPL Single (1) Single (2) 3D-SHORE SE (1) SE (2)

DTI ×
MAP-MRI 0.681 ×
MAPL 0.674 0.981 ×
Single (1) 0.827 0.901 0.895 ×
Single (2) 0.797 0.936 0.932 0.978 ×
3D-SHORE 0.642 0.928 0.961 0.863 0.895 ×
SE (1) 0.739 0.951 0.965 0.944 0.954 0.931 ×
SE (2) 0.728 0.957 0.973 0.925 0.959 0.933 0.982 ×

Table 1: Pearson’s correlation coefficient between different methodologies used to
retrieve the RTOP measure from human brain data (see Fig. 3). Legend: Single
(1), (2) – single-shell technique at b = 2400 and b = 3000 s/mm2; SE (1), (2) –
stretched-exponential at b = 2400 and b = 3000 s/mm2, respectively.

to stretched-exponential representation. Notice here that the QMFD measure
obtained from the single-shell technique is no longer able to catch heavy tails of
the signal distribution properly from the data.

Lastly, we extrapolate the previous experiment using in vivo human data
and evaluate the correlation between measures both visually and numerically.
Here, we again use a five-shells acquisition to calculate the measures. Fig. 4(top
row) illustrates correlations between the RTOP retrieved using the proposed
approach and those obtained under different state-of-the-art methods namely
MAP-MRI, MAPL, the single-shell approach, and 3D-SHORE over the image
mask (white matter, gray matter, and cerebrospinal fluid areas). Our method
shows a good correlation with all the other four methods being characterized by
Pearson’s correlation coefficient equal to ρ = 0.925 is the worst case (see Table 1).
Fig. 4 also shows the correlation between our method and single-shell approach
in the case of QMSD and QMFD measures. Notice that the correlograms for
QMSD/QMFD measures clearly show the outliers generated by the single-shell
technique which are not present in the proposed one. Finally, notice that in
situations where the signal cannot be accurately described by the stretched-
exponential [24], the scalar measures will be biased.

5 Conclusions

In this paper, we proposed a new approach based on stretched-exponentials
to quantify EAP features such as RTOP, QMSD, and QMFD measures. From
the results, it seems that the proposed method reduces the amount of data to
be acquired and therefore it can be clinically feasible. We have to mention that
much more thorough validation and comparison are required to bring convincing
evidence that comparable results can be obtained with fewer data in our method.
Besides, the proposed method can be generalized to other Q-space factors such
as return-to-the-axis or return-to-the-plane probability.
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