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Abstract 29 

Trans-disciplinary solutions are needed to achieve the sustainability of ecosystem services for 30 

future generations. We propose a framework to identify the causes of ecosystem function loss 31 

and to forecast the future of ecosystem services under different climate and pollution scenarios. 32 

The framework i) applies an artificial intelligence time-series analysis to identify relationships 33 

among environmental change, biodiversity dynamics and ecosystem functions; ii) validates 34 

relationships between loss of biodiversity and environmental change in fabricated ecosystems; 35 

and iii) forecasts the likely future of ecosystem services and their socio-economic impact under 36 

different pollution and climate scenarios. We illustrate the framework by applying it to 37 

watersheds, and provide system-level approaches that enable natural capital restoration by 38 

associating centennial biodiversity changes to chemical pollution. 39 

  40 
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The challenge of sustained ecosystem services  41 

Biodiversity is directly linked to healthy ecosystems which provide provisioning (e.g. 42 

food), regulating (e.g. climate), supporting (e.g. nutrient cycling, primary production), and 43 

cultural (e.g. aesthetic and recreational) services [1-4]. At the global level, rapid and severe 44 

biodiversity loss has been identified as the main cause of deterioration of more than 60% of 45 

ecosystem services [1, 3]), affected by various factors [5]. Chemical pollution, habitat loss, 46 

unsustainable use of resources, invasive species and climate change are among the main 47 

acknowledged threats to biodiversity [6, 7].  48 

The sustained delivery of ecosystem services in the face of these threats is challenging 49 

because natural capital is finite and the impact of human interventions on ecosystems is 50 

uncertain and/ or unknown across different spatial, temporal, and economic scales [8]. 51 

Ecosystem management that ensures the delivery of services while preserving natural capital 52 

is a complex, open-ended problem because of limited resources, competing objectives and the 53 

need for economic profitability [9]. This is because:  54 

i) biodiversity loss happens on different spatial and temporal scales, and dynamics are 55 

context-dependent outcomes stemming from processes operating over many years [10, 11]. 56 

The cumulative effect of processes over time can cause delayed dynamics also known to cause 57 

so-called extinction debts [12]. Even state-of-the-art environmental monitoring fails to capture 58 

effects that may arise from cumulative effects over time of multiple threats [5]). Only by 59 

quantifying trajectories of abiotic, biotic and functional systemic change before, during and 60 

after pollution events, can we identify the causes of biodiversity and ecosystem function loss;  61 

ii) research on biodiversity and ecosystem services is often constrained by disciplinary 62 

boundaries, whereas biodiversity loss has ecological, social and economic implications [13]. 63 

Discipline-constrained approaches may neglect process interactions, result in research 64 

undertaken at inappropriate or disconnected scales, or use discipline-specific tools that are 65 

inadequate to address cross-disciplinary questions [14].  66 

iii) decision-making frameworks that enable the prioritization of interventions for the 67 

sustainable use of ecosystems typically require multiple lines of evidence from different 68 

disciplines, making decisions by stakeholders challenging, especially when relationships 69 

between socio-economic and ecological priorities are not linear (e.g. [15, 16]). While such 70 

decision-making frameworks are being developed, they still often fail to cover all types of 71 

ecosystem services, particularly the cultural ones [15].  72 

We propose a ‘Time Machine’ framework that: 1) establishes spatiotemporal 73 

correlations among biotic, abiotic and ecosystem functional changes using multidecadal to 74 

millennial continuous data; 2) provides evidence for cause-effect relations through 75 

experimental validation in fabricated ecosystems from correlations identified in point 1; and 3) 76 

generates likely predictions of future ecosystem services under different pollution and climate 77 

scenarios, driven by localised and regional environmental change and mediated by changes in 78 

overall biotic interactions (Fig. 1).  79 

 80 

The Time Machine framework  81 

We illustrate the framework in five main Steps for applications in freshwater 82 

ecosystems, because they are diverse, geographically distributed and of high conservation 83 

value (Fig 1); they deliver important ecosystem services such as clean water, food and 84 

recreation, and are under increasing threat of destruction and degradation [2, 17].  85 

Step 1 - Sampling through time and space, using Lake sedimentary archives (Fig. 1; 86 

Sampling). Sedimentary archives preserve biological and environmental signals, providing a 87 
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continuous record of changes from a reference baseline predating major human impact on 88 

climate and biodiversity (Anthropocene) to impacted environments [18]; these characteristics 89 

allow better understanding of temporal dynamics of biotic, abiotic and ecosystem functional 90 

data leading to current patterns [10]. To disentangle patterns driven by stochasticity from 91 

patterns driven by environmental change, semi-pristine sites (e.g. alpine lakes) can be used as 92 

reference. Whereas all natural communities experience changes over time, dynamics in semi-93 

pristine sites will likely be driven by demographic and environmental stochasticity, which 94 

results in predictable community dynamics [19, 20]. Conversely, dynamics at impacted sites 95 

will likely be driven by exogenous environmental factors, which leave signatures that depart 96 

from stochasticity (e.g. [21]).  97 

Step 2 - Biochemical and ecosystem functions fingerprinting. Spatiotemporal biotic 98 

assemblages are established by applying metabarcoding to environmental DNA or eDNA 99 

(see Glossary) [22] extracted from dated sediment layers of the biological archives (Fig. 1; 100 

Fingerprinting). DNA extracted from environmental matrices provides the means to collect 101 

continuous temporal data over time and space [23]. These data inform conservation biology by 102 

estimating human impact on biodiversity [24], invasion biology by identifying timing and 103 

severity of alien species invasion [25] and biodiversity science by enabling the census of 104 

species/taxa on a global scale in real time [26]. Through DNA sequence similarity, molecular 105 

operational taxonomic units (MOTUs) are identified by matching sequence similarity to 106 

records in public databases (e.g. NCBI, SILVA), allowing the analysis of compositional shifts 107 

and relative abundance of known and unknown taxonomic units. MOTUs enable the 108 

retrospective characterization of past community-level dynamics (e.g. microbes, plants and 109 

animals) without requiring specialist skills (e.g. light microscopy and taxonomy) and without 110 

being limited to taxonomic groups with well-preserved remains in environmental matrices (e.g. 111 

pollen, exoskeletons, bones) [27]. On the same sediment samples, abiotic changes (e.g. 112 

presence and concentrations of chemical mixtures) are quantified using high resolution mass 113 

spectrometry (MS), combining suspect and non-target screening of chemical pollutants in 114 

sediment samples [28] (Fig. 1; Fingerprinting). The spatiotemporal biochemical fingerprinting 115 

is complemented by the analysis of ecosystem functions [e.g. biogeochemical functions 116 

measured as the accumulation rate of total organic carbon (C), nitrogen (N) and phosphorus 117 

(P)] via bulk stoichiometry of sediments to help elucidate long-term dynamics in productivity 118 

as influenced by nutrient availability, and the relationships of stoichiometric ratios, 119 

productivity, decomposition and biological attributes. A potential caveat of reconstructing 120 

temporal community records from sediment matrices is the preservation state of DNA that may 121 

be affected by climatic conditions (e.g. warmer/humid climates influence mineralization; 122 

Outstanding Questions). However, metabarcoding has been successfully applied to fossil or 123 

remnant DNA as far back as the Holocene (e.g. [29]). In addition, only relative abundance of 124 

MOTUs can be quantified from community assemblages. This enables the reconstruction only 125 

of relative changes in MOTU abundance between sites and time points.  126 

Step 3 - Establishing associations between past biodiversity, abiotic and functional 127 

changes with the use of Artificial Intelligence (AI) (Fig. 1; Association). Combining 128 

explainable network models with multi-view learning [30], co-varying elements (nodes) 129 

within and between networks are identified, where networks can represent MOTUs, 130 

environmental variables and pollutants (Box 1). This leads to the identification of interacting 131 

environmental factors putatively driving changes in MOTUs and ecosystem functions. These 132 

correlations are then validated experimentally in fabricated ecosystems as explained in Step 4. 133 

In a pilot study conducted on a natural lake, we applied the AI approach and determined that 134 

the decline in a specific taxonomic group of primary producers (e.g. green algae) was inversely 135 
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correlated with ten herbicides among the hundreds that were quantified in the sediment (Box 136 

1).  137 

Step 4 - Establishing causality. Fabricated ecosystems are used to establish causal links 138 

between the associations identified in Step 3 (Fig. 1; Causality). Focusing on short-term 139 

dynamics (weeks to months), fabricated ecosystems, such as artificial ponds, are used to isolate 140 

effects, explore controlled interactions among multiple factors, and determine causality among 141 

MOTUs’ relative abundance (quantified via eDNA metabarcoding), ecosystem functions (P, 142 

N, C content measured through nutrient stoichiometry), climate variables and chemical 143 

pollutants (quantified with MS). Natural communities are used to inoculate fabricated 144 

ecosystems, which are then exposed to the environmental factors identified in Step 3 to co-vary 145 

with MOTUs. For example, the effect of global warming on biodiversity and ecosystem 146 

functions can be quantified by measuring MOTUs dynamics in fabricated ecosystems exposed 147 

to current temperature and in ecosystems exposed to temperature plus 2.5C, representing the 148 

IPCC mid-range forecasts (RCP 6.0). While experimental results investigating short-term 149 

dynamics may not be directly comparable to natural dynamics, they provide a validation of 150 

observed trends in natural ecosystems for extrapolations to long-term dynamics using e.g. 151 

machine learning algorithms. The fabricated ecosystems serve a dual role of providing an 152 

experimental validation of a) observed past correlative patterns, and b) predictions of 153 

biodiversity and ecosystem functional changes in different climate and pollution scenarios (see 154 

Step 5).  155 

Step 5 - Forecasting biodiversity and ecosystem services. Ecological process-based 156 

models, informed by the associations identified by the AI in Step 3, are used to generate 157 

predictions about projected future states of freshwater ecosystems (Fig. 1; Forecasting). 158 

These predictive models are incorporated into simulations that project solutions for 159 

ecosystem services (Fig. 2). Although it is likely that a range of complex processes interact to 160 

determine how environmental drivers and associated biodiversity shifts influence ecosystem 161 

functions, we propose to start with a simple model that illustrates the impacts of community 162 

composition and structure, species interactions, and the covariation of these with 163 

environmental factors on freshwater ecosystem functions. Process-based models with these 164 

components include PCLake [31], a process-based model that links species composition, 165 

environmental drivers (e.g. nutrient loading, temperature), and ecosystem responses (e.g. 166 

water quality; [32]). Alternatively, ELCOM–CAEDYM, a coupled hydrodynamic and 167 

biological model of phytoplankton dynamics and their impacts on water quality can be used 168 

[33]. For reviews on process-based models see (e.g. [34]). Inputs for these models can be 169 

provided from correlative approaches [35, 36], such as correlative ecological models (e.g. 170 

[37]), or AI-based inferences such as described in Step 3. 171 

The Time Machine framework is widely applicable because it finds signatures that 172 

recapitulate community dynamics (e.g. loss of MOTUs) driven by environmental change (e.g. 173 

warming, pollution) that alter ecosystem function (e.g. nutrients ratio). For example, it is 174 

applicable to physical, chemical and biological long-term observations of oceanic and coastal 175 

areas available from Continuous Plankton Recorders Survey, collecting records from the North 176 

Atlantic and the North Sea since 1931 [38]. However, the ecological models that best describe 177 

these ecosystems may differ from the ones described here.   178 

 179 

 180 

 181 
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The Time Machine Emulator 182 

Continuous temporal data are paramount to explain present-day patterns and to model 183 

relationships between biodiversity and environmental change [18]. In particular, 184 

palaeoecological data are a valuable source of temporal data and can inform the conservation 185 

management of future biodiversity (e.g. [39]). However, past dynamics may differ from that 186 

caused by future environmental changes or threats, introducing uncertainties in model 187 

estimates. To reduce uncertainty in forecasts, realistic dynamic interactions among several 188 

biotic and abiotic variables should be used (e.g. [40]). Generating predictions that account for 189 

all these variables in different scenarios (e.g. projected IPCC climate scenarios) is 190 

computationally intensive and time consuming. Emulators can provide robust predictions with 191 

calculated uncertainties across multiple scenarios while reducing computational cost and time. 192 

An ‘emulator’ is a low-order, computationally efficient model which emulates the specified 193 

output of a more complex model in function of its inputs and parameters. Emulators work with 194 

both structure-based methods, where the mathematical structure of the original model is 195 

manipulated to a simpler, more computationally efficient form; and data-based approaches, 196 

where the emulator is identified and estimated from empirical/experimental data [41]. 197 

Emulators are widely applied in big data science, such as i) climate science to generate 198 

predictions under different socio-economic scenarios in long-range simulations (e.g. [42] and 199 

references therein); ii) ecology to predict the status of ecological processes in changing 200 

environments using e.g. long-term remote sensing data [40]; and iii) environmental science to 201 

predict e.g. the hydrological status of water reservoirs [43]. 202 

 203 

We propose a Time Machine Emulator (TME) to generate forecasts of biodiversity and 204 

ecosystem functions. The TME ‘learns’ from past correlations, it is tested iteratively against 205 

long-term empirical data (e.g. collected in Step 3) and refined to predict the future biotic, 206 

abiotic and functional associations (Fig. 2). In our applications, it emulates ecological process-207 

based models (e.g. [32, 44]) to generate predictions across a range of historical and future 208 

climates and ecosystem states, albeit in a more computationally scalable and efficient manner. 209 

Empirical data collected from sedimentary archives, including biodiversity changes over time 210 

and pollution, as well as climate data, are used to establish past correlations that inform 211 

ecological process-based models (Fig. 2A). These models integrate historical contamination 212 

trends that disrupt ecosystem functions mediated by changes in MOTUs, to identify risk 213 

trajectories, with measured uncertainties (Fig. 2B). The TME is applied to produce the same 214 

output as the process-based models without the time consuming and computationally expensive 215 

running of the vast number of possible model setups for every possible climate and pollution 216 

scenario (Fig. 2C). One of the biggest challenges for AI on medium to long-range timescales 217 

is the lack of high-quality data for training model predictions. The TME uses empirical past 218 

biodiversity-ecosystem dynamics (collected in Step 3), as well as temperature projections from 219 

regional climate simulations, as ‘training sets’ to reduce uncertainty in forecasting the future 220 

of ecosystem states under different climate scenarios (Fig. 2C). Predictions are also made over 221 

non-simulated regions and climates with higher uncertainty, informing strategies for additional 222 

sampling, in this way mitigating uncertainties when new data are introduced in the model (Fig. 223 

2D). This directs sampling efforts improve the accuracy of forecasts. The output of the TME 224 

are predictions for changes in ecosystem functions driven by localised and regional climate 225 

change and mediated by changes in overall biotic/abiotic interactions, including on partial 226 

training sets. The robustness of the TME predictions is assessed by removing data (i.e. locations 227 

and conditions) from complete training sets and comparing predictions on whole and partial 228 

datasets. The future associations predicted by the TME are validated using fabricated 229 

ecosystems as described in Step 4. By identifying the MOTUs and ecosystem functions altered 230 
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by abiotic factors and/or climate variables, the TME provides probabilistic decision-support 231 

information for ecosystem services management (Fig. 2E).   232 

 233 

Concluding remarks  234 

Lack of understanding of the processes that underpin ecosystem services has often led 235 

to mismanagement with clear dis-benefits for the environment, the economy and human well-236 

being. Systemic approaches, like the framework presented here, enable the prioritization of 237 

interventions that accelerate ecological restoration, and mitigate environmental factors that 238 

cause harm to MOTUs associated with key ecosystem functions and services. However, it 239 

requires critical changes in current environmental practice and a shift to whole-system 240 

evidence-based approaches. To overcome socio-technical barriers to adoption, stakeholder-241 

enabled platforms are needed that include: 1) experimental protocols for the routine systemic 242 

biomonitoring of biodiversity; 2) a TME dashboard relying on Data Visualization Technology 243 

tested for ‘usability’ and ‘utility’; and 3) changes in legislation and regulatory practices to 244 

facilitate the adoption of novel tools and frameworks.  245 

The use of the Time Machine framework comes with caveats. Process-based models 246 

cannot be easily validated in future climate regimes that have not been observed. To mitigate 247 

this, ecosystems over diverse climatic regions (e.g., warmer and drier environments) can be 248 

included as analogues of future climate states (see Outstanding Questions). In addition, known 249 

biotic interactions can be included in the model with information metrics, such as Granger 250 

causality [45]. This approach infers biotic interactions using the time series empirical data 251 

collected from sedimentary archives and/or other known associations (e.g. predator/prey 252 

interactions), with estimated uncertainties. Uncertainties in the TME can be reduced by 253 

constraining the models with available past and projected climate data collected from local 254 

weather stations, globally gridded ERA5-Land datasets [46], and Earth Observation data 255 

(https://earthdata.nasa.gov/earth-observation-data). Downscaling methods that use either 256 

physically-based regional climate models or statistical models to project future large-scale 257 

climate [47, 48], can be used to increase spatial granularity down to <10km and even to single 258 

point locations (e.g. [48, 49]). Although it is expected that uncertainty increases with increasing 259 

granularity, it may be reduced by using spatial scales for which the temporal variability is well 260 

simulated. 261 

The TME applications can be, in principle, extended beyond predictions based on the 262 

ecological and functional status of ecosystems. By coupling ecological and economic 263 

modelling, the TME can also enable the alignment of socio-economic and ecological outcomes 264 

under different climate and pollution scenarios (see Outstanding Questions). To overcome 265 

adoption barriers by stakeholders, an AI-based Emulator dashboard can be developed, 266 

accessible to regulators and policy makers through data visualizations techniques. These tools 267 

can be adapted for probabilistic predictions of ecosystem services to aid decision-making and 268 

socio-economic trade-offs.  269 
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Box 1 388 

Artificial Intelligence (AI) and eDNA metabarcoding on lake sediment: a case study  389 

AI approaches that use explainable network models combined with multi-view learning 390 

[50] allow the simultaneous interrogation of different data matrices, to learn what 391 

components co-vary within a matrix (e.g. environmental variables), and among matrices (e.g. 392 

environmental variables and Molecular Operational Taxonomic Units or MOTUs) (Fig. I). 393 

These approaches are often used in a systems biology context in which e.g. protein-protein 394 

(within matrix) or protein-gene (between matrices) interaction are investigated. We use the 395 

AI approach on a pilot study to establish correlations between environmental factors and 396 

biodiversity, measured with eDNA metabarcoding. For this pilot study, eDNA data were 397 

obtained from the sedimentary archive of a watershed with a well-known history of human-398 

driven environmental change (Lake Ring, Denmark; 55°57′51.83″N, 9°35′46.87″E) [51]. The 399 

history of Lake Ring can be separated into four main phases: semi-pristine (PR; <1950); 400 

eutrophication (E; 1960-1970); pesticides (P; 1980-1990); and partial recovery (R; >1999). 401 

The beta diversity (community diversity between each pair of sediment layers) from the dated 402 

sedimentary archive showed that whereas the prokaryotic community was shaped by the 403 

redox state of the sediment (Fig. IIA), the eukaryotic freshwater community composition 404 

changed with the major lake phases (Fig. IIB). Applying the explainable multi-view learning 405 

algorithm combined with matrix-on-matrix regression (Fig. I) we identified the top 10 406 

herbicides with significant adverse effects on primary producers, specifically identifying 407 

green algae as target MOTUs (Fig. IIB). A top-down Pearson correlation analysis (vector-on-408 

vector regression) validated this approach.  409 

Figure I. Illustration of multi-view 410 

learning combined with network analysis. 411 

Combining multi-view learning and network 412 

analysis, symmetric matrix-on-matrix 413 

regressions are obtained. The matrices 414 

represented in Figure I are Molecular 415 

Operational Taxonomic Units (MOTUs); 416 

Environmental Variables (e.g., temperature); 417 

and chemical pollutants (chemicals). Co-418 

varying elements within a matrix as well as 419 

co-varying elements between matrices are 420 

identified. For example each node in the 421 

MOTUs network is a molecular taxonomic unit. Both co-variation in relative abundance of 422 

different MOTUs and their co-variation with environmental factors and chemical pollutants is 423 

identified using AI.  424 

 425 

Figure II. Biodiversity changes through time and correlations with chemical pollution.  426 

A) Eukaryote and prokaryote beta diversity through time (between each pair of layers) 427 

quantified with metabarcoding applied to eDNA extracted from lake sediment. Similarity in 428 

the composition of each sample (sediment layer) is measured through heat maps. Similarity 429 

decreases from blue to red. PR: pristine phase; E: eutrophication phase; P: pesticides phase; 430 

R: recovery phase; B) Inverse correlation between herbicides and primary producers (green 431 
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algae) established using the explainable multi-view learning algorithm combined with matrix-432 

on-matrix regression shown in Fig. I. 433 

  434 

  435 
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Glossary  436 

eDNA or environmental DNA is DNA extracted from environmental matrices, such as soil, 437 

sediment, water, ice and aerosol without any obvious signs of biological source material.  438 

Metabarcoding is high throughput sequencing of PCR-amplified taxonomic marker genes. 439 

MOTU or Molecular Operational Taxonomic Units. Units of taxonomic diversity that, 440 

differently from Operational Taxonomic Units, do not necessarily correspond to species, but 441 

they are treated as such when measuring diversity. Clustering within MOTU is based on 442 

similarity of DNA sequences.  443 

Suspect and non-target screening of chemical compounds are techniques to screen for 444 

chemical pollutants using mass spectrometry (MS). The suspect screening uses a library of 445 

catalogued data such as chromatographic retention times in lieu of reference standards. Non-446 

target screening uses no pre-existing knowledge for comparison before analysis. 447 

Mass Spectrometry (MS) is an analytical technique used to quantify concentrations of 448 

chemical compounds in different matrices by measuring the mass-to-charge ratio of the 449 

chemicals.  450 

AI or Artificial Intelligence refers to the simulation of human intelligence in machines.  451 

Machine learning or ML is a subset of artificial intelligence and focuses on the development 452 

of algorithms that can access data and use it to learn for themselves 453 

Explainable network model (ENM) is a recent advancement in Machine Learning algorithms 454 

designed to identify which features in the data are responsible for driving a certain output, 455 

providing more trustable predictions. A typical application of ENM is for diagnosing breast 456 

cancer based on observed patterns on pathology slides.  457 

Multi-view learning is an emerging direction in machine learning, also called deep learning, 458 

which learns from multiple networks (or views). Typical applications of multi-view learning 459 

include systems biology where functional links between e.g. gene networks and metabolite 460 

networks are established.  461 

An Emulator is a hardware or software that permits programs written for one computer to be 462 

run on another computer. This enables to increase the efficiency of time-consuming 463 

simulations by parallelising resources. In climate science, emulators are used to evaluate the 464 

realism of the warming signal in different models on both global and regional scales, by 465 

comparing global trends and regional response parameters to observations. 466 

Granger causality is a statistical test for determining whether one time series is useful in 467 

forecasting another.   468 

Process-based models are models that characterize changes in a system’s state as explicit 469 

functions of the events that drive those state changes (sensu [34]) 470 

Correlative ecological models are models based on environmental associations derived from 471 

analyses of geographic occurrences of species.  472 
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Figure 1. The Time Machine framework 473 

The Time Machine Framework is shown to establish past correlations between biodiversity, 474 

ecosystem functions and environmental change, and generate the likely forecasts of 475 

ecosystem services under different pollution and climate scenarios. Sedimentary archives 476 

from watersheds are sampled at continental scale and across climatic regimes. Sampled and 477 

dated sedimentary archives are used to fingerprint biodiversity, chemical pollution and 478 

ecosystem functions. Other environmental factors (e.g. temperature) are collected from 479 

weather stations or retrieved from public databases. Associations between biodiversity, 480 

ecosystem functions and environmental factors are established with the use of AI combined 481 

with explainable network models. Associations are then validated in fabricated ecosystems 482 

that are perturbed to identify cause-effect relations between biotic and abiotic changes. Model 483 

forecasts that ‘learn’ from past dynamics and feedback are tested iteratively against real data 484 

and refined to predict the future of biodiversity, ecosystems services and their economic 485 

value. 486 

487 

 488 
 489 

Figure 2. The Time Machine Emulator 490 

Mapping out the various components of the data pipeline required for the Time Machine 491 

Emulator and the interoperability with data collection, process-based research, and the 492 

decision-making user interface. Arrows indicate the flow of data and information between the 493 

components. Empirical data (e.g. from watersheds) are analysed with an AI time series 494 

approach to establish non-linear relationships among multi-dimensional features (past) (A). 495 

The associations identified by the AI (A) and the process-based simulators (B) inform each 496 

other and are supported by empirical data. The Emulator (C) provides predictions and 497 

intelligence on regions that require further sampling to reduce prediction uncertainties (D) 498 
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and intelligence on more process-based modelling (B). A consensus model is obtained using 499 

a generalized additive framework that generates predictions through an AI-based emulator 500 

dashboard with a graphical user interface (GUI) (E).  501 

502 

 503 
  504 
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Highlights  505 

Chemical pollution and climate change are recognized as the two main causes of Earth’s 506 

ecosystem services deterioration and overuse, linked to the loss of biodiversity. Yet, 507 

preventive interventions that mitigate this loss and preserve natural resources are inadequate 508 

because the dynamics leading to biodiversity loss are context-dependent outcomes from 509 

processes operating over many years.  510 

We propose a framework that uses sedimentary archives from watersheds to establish causal 511 

links between abiotic change and systemic loss of biodiversity, ecosystem functions and 512 

services.  513 

Just like a time machine, we go back in time and reconstruct a library of biological, chemical, 514 

environmental and functional changes at a yearly resolution, enabling the understanding of 515 

the spatiotemporal impacts of abiotic change on ecosystems and their services.  516 

Outstanding questions  517 

Is there a bias in the recovery of eDNA from fossil or remnant DNA in aged sediment and in 518 

warm climates?  519 

While we found stable composition of primary producers across 100 years, a bias might still 520 

exist in sedimentary archives from warmer climates where mineralization of fossil remains is 521 

influenced by higher temperature and humidity. For these archives shorter time series may be 522 

used.  523 

How to deal with high levels of uncertainty in the Emulator projections?  524 

While the Emulator makes predictions over non-simulated regions and climates, guiding data 525 

collection efforts, it carries a level of uncertainty. This has to be accounted for in decision- 526 

making.  527 

How does the Time Machine Emulator forecast the potential economic value of ecosystems?  528 

Monetary and non-monetary estimates of values associated with ecosystem services can be 529 

generated with the current monetary valuation strategies and the predicted changes in 530 

ecosystem functions, uncertainty and risk provided by the Emulator. However, an outstanding 531 

challenge for decision-making is incorporating how values held by society for different 532 

services (e.g. carbon sequestration, food production, biodiversity, disease regulation) might 533 

change through time.  534 

 535 


