
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 5 5 2 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Guo, Don g  a n d  Zhou,  Pen g  2 0 2 1.  Gre e n  bo n ds  a s  h e d gin g  a s s e t s  b efo re  a n d  af t e r

COVID: a  co m p a r a tive  s t u dy b e t w e e n  t h e  US  a n d  Chin a .  E n e r gy Econo mics  1 0 4  ,

1 0 5 6 9 6.  1 0.10 1 6/j.en eco.20 2 1.10 5 6 9 6  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 1 6/j.en eco.20 2 1.10 5 6 9 6  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

Green Bonds as Hedging Assets before and after COVID:  

A Comparative Study between the US and China 

Dong Guo 1; Peng Zhou 2,* 

1 China Development Bank, Antoineguo@qq.com 
2 Cardiff Business School, Cardiff University, UK; zhoup1@cardiff.ac.uk 

* Correspondence: zhoup1@cardiff.ac.uk; Tel.: (+44)2920 688778 

Abstract: The COVID pandemic reveals the fragility of the global financial market during rare disasters. Conventional 

safe-haven assets like gold can be used to hedge against ordinary risks, but tail dependence can substantially reduce 

the hedging effectiveness. In contrast, green bonds focus on long-term, sustainable investments, so they become an 

important hedging tool against climate risks, financial risks, as well as rare disasters like COVID. The copula approach 

based on the TGARCH model is applied to estimate the joint distributions between green bonds and selected financial 

assets in both US and China. The quantile-based approach is also performed to offer a robustness check on tail 

dependence. The results show that all assets in the two countries have thick tails and tail dependence with time-varying 

features. The hedging effectiveness does decline during the COVID pandemic, but it is the hedging effectiveness against 

tail risks rather than against normal risks. It is argued that green bonds play a significant role in hedging against rare 

disasters especially in forex markets. It is also found that green bonds in the US and China converge in many aspects, 

suggesting a smaller cross-country difference than cross-asset difference. 
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1. Introduction 

The environment provides natural resources for and imposes limits on economic growth. Therefore, a 

sustainable growth must be an environment-friendly growth. In the face of intensifying environmental 

concerns, there is a thriving trend in both developed countries (Sarkodie, et al., 2021) and emerging 

economies (Song & Zhou, 2021) to achieve carbon-neutral growth by green energy-based innovations. 

Nevertheless, technological progress is not the only driver of sustainable growth. The finance-growth nexus 

(King & Levine, 1993; Beck et al., 2014; Zhang & Zhou, 2021) implies that green finance is needed to boost 

green growth (Yu et al., 2021). As a popular financing tool and investment vehicle, green bonds have gained 

an increasing attention in global financial markets (Taghizadeh-Hesary et al., 2021). According to World Bank 

and OECD, green bonds are defined as “fixed-income securities to exclusively develop eco-friendly and 

sustainable projects like renewable energy industries.” The earliest green bonds were issued by the European 

Investment Bank in 2007 (Banga, 2018). Since 2008, the World Bank has issued over USD 13 billion equivalent 

in green bonds in 20 currencies (World Bank, 2021). In recent years, emerging economies like China have 

been actively in green bond issuance and management. In 2016, China issued more than one-third of the 



global green bond issuance (USD 81 billion), ranking the first in the world (Wang et al., 2019). A burgeoning 

green bond market provides financial capital for sustainable growth as well as alternative investment 

opportunities for investors. 

In addition to its sustainability feature, green bonds also have a safe-heaven feature against tail risks (Jin et 

al., 2020; Yi et al., 2021). Specifically, during the COVID pandemic, the global financial markets underwent 

sharp downturns and volatile fluctuations (Uddin et al., 2021). Based on historical experience, financial crises 

due to epidemics are expected to be deeper but short-lived compared to the global financial crisis of 2009. 

For example, the Chinese stock market even grew by 20% during SARS in 2003. However, the crisis following 

the COVID pandemic seems to be much prolonged compared to past experience. In early stages of the 

outbreak in 2020, 30% of the worldwide stock market value evaporated within weeks, and that loss is yet to 

recover in mid-2021. Investors are forced to look for safe-heaven investment opportunities and hedging tools 

to diversify tail risks caused by rare disasters.  

The pandemic causes abnormal fluctuations in financial markets and leads to failure of conventional hedging 

techniques. Campbell et al. (2002) find that benefits of diversification across asset classes substantially drop 

if the market experiences high volatility. This is because the distributional dependence among assets varies 

substantially in different quantiles. The tail dependence in rare disasters can be significantly different from 

mean dependence in normal times. For example, both cryptocurrencies and gold fail to provide safe-haven 

hedge against pandemic crisis (Kristoufek, 2020). Luckily, green bonds seem to provide a promising solution 

to this trouble. Evidence suggests that clean energy assets, especially green bonds, are great hedging tools in 

the US (Reboredo & Ugolini, 2020; Kuang, 2021). Han and Li (2020) find no risk spillovers between green 

bonds and stocks, suggesting that green bonds have outstanding diversification benefits for stock investors 

in China.  

This paper is inspired by earlier studies in various countries but before the COVID pandemic. The existing 

literature either focus on the safe-heaven feature of green bonds in developed economies like the US and the 

EU (e.g., Abakah et al., 2021; Reboredo et al., 2020) or on non-hedging features of green bonds in China (e.g., 

Yi et al., 2021). We aim to provide updated evidence for the hedging capability of green bonds against rare 

disasters (or tail risks) using a comparative study of a representative developed economy (US) and emerging 

economy (China), before and after the pandemic. This research contributes to the empirical understanding 

of the role of green bonds in both US and China as a safe-heaven asset against tail risks. Evidence supports 

that green bonds have great potential to hedge against tail risks for traditional assets. We find that the 

financial markets in the two countries converge in many ways. The hedging effect of green bonds became 

slightly weaker for most assets after the pandemic but stronger for the forex market. The other contribution 

of this paper is its methodological discussion. The next section provides a comprehensive, systematic review 

of prevailing approaches adopted in the green literature.  



2. Literature Review 

As its name suggests, green bonds have two defining features. One is “green” and the other is “bond”. Thus, 

the literature on green bonds is rolled out along these two dimensions. The green/sustainability literature 

highlights the effects on corporate social responsibility (Zhou & Cui, 2019) and corporate performance 

(Alonso-Conde & Rojo-Suarez, 2020). A consensus in this strand of green literature is that the sustainability 

nature of green bonds reaps the so-called “environmental benefit dividends” in line with the long-run 

direction of economic development and technological progress. This is effectively a micro-finance 

perspective into the long-run, fundamental factors of financial performance of green bonds. The 

bond/finance literature, on the other hand, accentuates the green bond risk premium (Diaz & Escribano, 

2021). Many empirical studies find that green bonds enjoy higher yields, lower variance, and greater liquidity 

(Bachelet et al., 2019). Moreover, it is also found that green bonds have an asymmetric volatility feature—
more responsive to positive shocks than negative shocks (Park et al., 2020). Therefore, it is argued that green 

bonds, or clean energy assets in general, can be a safe-haven tool to hedge against various risks (Xia et al., 

2019; Kuang, 2021). This is more a macro-finance perspective into the short-run, cyclical factors of financial 

properties of green bonds.  

Empirical studies usually employ multivariate time-serious models to capture the dynamic features of green 

bond markets. For example, Naeem et al. (2021) apply rolling window wavelet techniques to examine the 

time-varying features of correlation between green bonds and other assets. Park et al. (2020) adopt DCC-

GARCH model to study the volatility spillovers between equity and green bond markets using the US data. 

Reboredo (2018) applies Copula models to study the tail dependence features and diversification benefits of 

green bonds. Reboredo and Ugolini (2020) use a structural VAR with heteroskedasticity to study 

interdependence between green bond and other financial assets. In the recent empirical literature (listed in 

Table 1), there are four trending approaches to studying co-movements between green bonds and other 

financial assets.  

The first one is quantile-based approach, such as cross-quantilogram (Han et al., 2016; Naeem et al., 2021) 

and quantile autoregressive distributed lag (He et al., 2021). The advantage of quantile-based approach is 

that it can help identify the signs of the relationship not only at the mean but also at the tails of the complete 

distribution when the markets experience extreme decreases or increases. Therefore, it can deal with the so-

called “asymmetric tail dependence”, i.e., cases where two returns exhibit greater correlation during market 

downturns than market upturns (Erb et al., 1994; Ang & Chen, 2002; Patton, 2006). However, these models 

cannot accommodate complicated dynamics among assets such as volatility clustering.  

To capture interdependence and volatility clustering at the same time, multivariate GARCH models (Engle, 

2002) is an obvious choice. Therefore, it becomes the second trending approach in green bond literature 

(Maghyereh et al., 2019; Jin et al., 2020; Gao et al., 2021). However, GARCH-type models (e.g., CCC or DCC) 

are restrictive due to the linear specification among assets and the Gaussian assumption of the joint 

distribution (Wang et al., 2011). 



To overcome these limitations, copula method (the third approach) is developed to relax the Gaussian 

restrictions while maintaining the rich interdependence feature. Copula method is influential in finance 

research for its flexibility in distributional assumptions, making it appropriate for explaining joint tail risks. 

Another advantage of copula method is its two-step procedure of estimating marginal and joint distributions. 

Therefore, it soon gains its popularity in green bond literature (Reboredo, 2018; Gong et al., 2019). Early 

copula methods assume constant parameters (e.g., Patton, 2004), but extensions like generalized 

autoregressive score solve this issue by introducing a dynamic copula (Patton, 2006).  

Like other approaches, copula methods also have limitations. It focuses on the dependence of the variance-

covariance matrix, leaving little to say on the dependence of the means. This is where a multivariate GARCH 

(MGARCH) model can be complementary. However, ordinary MGARCH model is unable to capture the 

time-varying feature of interdependence. In this regard, the time-varying parameter vector autoregressive 

(TVP-VAR) approach is appealing if the focus is on the evolution of the relationship between assets 

(Antonakakis et al., 2020). Compared with the copula method which can also capture time variation but only 

in the copula, TVP-VAR can capture time-varying features in both mean and variance-covariance matrices 

following a Bayesian interpretation (Pham & Nguyen, 2021). However, the drawback of TVP-VAR is that it 

cannot accommodate the fat-tail feature of returns documented in financial markets (Rietz, 1988; Barro, 2006). 

This is a critical limitation for our purpose because the focus of this paper is on tail risks and tail dependence. 

Table 1 List of key literature 

Literature Period Country Method Assets 

Naeem et al. (2021)  2008-2019 US cross-quantilogram GBs, oil, gold, commodities 

Park et al. (2020) 2010-2020 US DCC-GARCH GBs, stock 

Reboredo (2018) 2014-2017 US copula GBs, bond, oil 

Reboredo et al. (2020) 2014-2018 US, EU wavelet GBs, bond, stock, oil 

Reboredo & Ugolini (2020) 2014-2019 US SVAR GBs, bond, stock, oil, forex 

Maghyereh et al. (2019) 2001-2018 US wavelet GBs, oil, stock 

Jin et al. (2020) 2008-2018 US DCC-GARCH GBs, stock, oil, commodities 

Gao et al. (2021) 2015-2020 China DCC-GARCH GBs, stock, bond, forex 

Yi et al. (2021) 2019-2020 China event study method GBs 

To summarize, all four prevailing empirical approaches have their advantages and limitations. Table 2 

compares the key features of the four approaches in the recent green bond literature. It is arguable that the 

copula method is preferred to quantile-based method in terms of time variation modeling, and superior to 

TVP-VAR and multivariate GARCH in terms of tail dependence modeling. Therefore, this paper is going to 

adopt the copula approach, with the quantile-based approach to provide a complementary measure of the 

dependence among assets. 



Table 2 Comparison of trending empirical approaches in green bond literature 

Type Mean Dependence Tail Dependence Fat Tail Time-Varying 

Quantile-Based Yes Yes Yes No 

MGARCH Yes No No No 

TVP-VAR Yes No No Yes 

Copula No Yes Yes Yes 

3. The Model 

Returns of any assets, including green bonds, corporate bonds, stocks, oil index and dollar index, can be 

modeled in the following general form. The subscript 𝑔 denotes green bonds, 𝑖 denotes any other asset, 

and 𝑡 is time. To be general, we allow both mean and volatility to change over time. 

𝑟𝑔𝑡 = 𝜇𝑔𝑡 + 𝜉𝑔𝑡, where 𝜉𝑔𝑡 ≡ 𝜎𝑔𝑡𝜖𝑔𝑡 (1)A 

𝑟𝑖𝑡 = 𝜇𝑖𝑡 + 𝜉𝑖𝑡, where 𝜉𝑖𝑡 ≡ 𝜎𝑖𝑡𝜖𝑖𝑡 (1)B 

The mean component (𝜇∎𝑡) of any asset (∎ = 𝑔, 𝑖) can be modeled as an ARMA(𝑝, 𝑞) process. To write the 

model in an elegant form, econometricians usually use polynomials of lag operator 𝐿, such as 𝛟(𝐿; 𝑝) =𝜙1𝐿 +⋯+𝜙𝑝𝐿𝑝 and 𝛙(𝐿; 𝑞) = 𝜓1𝐿 +⋯+ 𝜓𝑝𝐿𝑝, to express the ARMA model: 

𝜇∎𝑡 = 𝛟(𝐿; 𝑝)𝜇∎𝑡 +𝛙(𝐿; 𝑞)𝜉∎𝑡  (2) 

Similarly, the volatility component (𝜎∎𝑡2 ) of the model is assumed to exhibit a threshold generalized 

autoregressive conditional heteroskedasticity (TGARCH). The polynomials 𝛂(𝐿;𝑚), 𝛃(𝐿; 𝑛), and 𝛄(𝐿; 𝑠) 
are defined in a similar way for the GARCH(𝑚), ARCH(𝑛), and TARCH(𝑠) terms. 

𝜎∎𝑡2 = 𝛼0 + 𝛂(𝐿;𝑚)𝜎∎𝑡2 + 𝛃(𝐿; 𝑛)𝜉∎𝑡2 + 𝛄(𝐿; 𝑠)𝜉∎𝑡2 |𝜉∎𝑡<0  (3) 

Nothing is new up to this point. Equations (1)A, (1)B, (2) and (3) are time-series models widely applied in 

finance literature since 1980s. To extend this simple model, as we summarized in the literature section above, 

there are four directions. If the focus is on the tail dependence between 𝜖s, then we arrive at the quantile-

based approach. If we are more interested in the mean dependence, then we have MGARCH. If the research 

embarks on the temporal variation of the dependence, then TVP-VAR is a good choice. If one wants to 



capture all features to a certain degree, then the copula approach is the optimal choice. Therefore, we will 

adopt the copula approach as the baseline in this paper. 

In the copula approach, joint distributions between 𝜖𝑔𝑡 and 𝜖𝑖𝑡 are obtained in two steps in the light of 

Sklar’s theorem (1959). The theorem states that every multivariate cumulative distribution function (CDF) 𝐹(∙) of a set of jointly distributed random variables (say, 𝜖𝑔𝑡  and 𝜖𝑖𝑡 ) can be expressed in terms of the 

marginal CDFs (𝐹𝑔(𝜖𝑔𝑡) and 𝐹𝑖(𝜖𝑖𝑡)) and a copula function (𝐶(∙)) to link the marginals: 

𝐹(𝜖𝑔𝑡, 𝜖𝑖𝑡) = 𝐶 (𝐹𝑔(𝜖𝑔𝑡), 𝐹𝑖(𝜖𝑖𝑡))  (4) 

Copulas provide a more complete description of dependence between two or more random variables than 

linear correlation coefficient (Patton, 2006). Thus, the copula approach deals with the interdependence 

between random variables via 𝜖 s rather than via 𝜇 s as opposed to MGARCH and TVP-VAR. The 

distributional dependence is therefore the core of the copula approach.  

In the first step of the copula approach, marginal CDFs (𝐹𝑔(𝜖𝑔𝑡) and 𝐹𝑖(𝜖𝑖𝑡)) can be separately estimated. 

This feature grants great flexibility in practice—the underlying marginals can have different distributions 

and/or different parameters, without having to conform with the restrictions if a multivariate distribution 

are directly applied to model the dependence of assets. In the green bond literature, it is well established that 

a Student’s t distribution (with a fat tail) tends to be the most appropriate marginal distribution (Reboredo, 

2018), so we are going to use t distributions for the marginals. 

Turning to the second step of specifying copula models, we largely follow the classical approach developed 

by Patton (2006). The tail dependence of the lower and upper ends of marginal CDFs can be formulated as: 

𝜏𝐿 = lim𝑥→0Pr(𝐹𝑔(𝜖𝑔𝑡) ≤ 𝑥|𝐹𝑖(𝜖𝑖𝑡) ≤ 𝑥) = lim𝑥→0 𝐶(𝑥,𝑥)𝑥   (5) 

𝜏𝑈 = lim𝑥→1Pr(𝐹𝑔(𝜖𝑔𝑡) ≥ 𝑥|𝐹𝑖(𝜖𝑖𝑡) ≥ 𝑥) = lim𝑥→1 1−2𝑥+𝐶(𝑥,𝑥)1−𝑥   (6) 

The two tail dependence measures 𝜏𝐿 and 𝜏𝑈 describe the probability that both assets are in their lower or 

upper joint tails, i.e., during extreme events like the financial crisis and the COVID pandemic. There are 

many different copulas with different features of tail dependence. We discuss the most popular and relevant 

ones here. 



• Gaussian/Normal copula. It does not allow for tail dependence of the underlying marginal 

distributions, so both tail dependence measures 𝜏𝐿 and 𝜏𝑈 are equal to zero. The dependence is 

simply measured by Pearson’s correlation coefficient −1 ≤ 𝜌 ≤ 1. 

• Student’s t copula. It has a fat tail, so tail dependence is possible. The symmetry of the t distribution 

implies an equal lower and upper tail dependence 𝜏𝐿 = 𝜏𝑈  which depends on the two copula 

parameters, the correlation coefficient 𝜌 and the degree of freedom 𝜈. 

• Clayton copula. It is an asymmetric distribution with greater lower tail dependence 𝜏𝐿 > 0 than 

upper tail dependence 𝜏𝑈 = 0. There is only one parameter of the Clayton copula 𝜗 ≥ 1, where 𝜗 =1 means independence. 

• Rotated Clayton copula. It is the reverse of the Clayton copula, so it allows for positive upper 

dependence 𝜏𝑈 > 0 but zero lower dependence 𝜏𝐿 = 0. In practice, one can simply transform the 

data to swap the tails before estimation. 

• SJC copula. It allows for asymmetric tail dependence 𝜏𝐿 ≠ 𝜏𝑈  and the two measures can be 

estimated directly. 

In addition to the copulas described above, Gumbel copula is also popular, but it is close to Clayton copula. 

They, together with their rotated counterparts, are called the Archimedean copulas (Creal et al., 2011). 

To capture time variation of copulas, an autoregressive conditional density in the spirit of Hansen (1994) is 

usually used. The advantage of this method relative to alternatives, regime switching method for example, 

is that it is more efficient and parsimonious in parameterization. Assume the time-varying parameters in 

copulas (𝜃𝑡 ≡ 𝜌𝑡|𝜏𝐿𝑡|𝜏𝑈𝑡) are summarized by an ARMA-type process (Patton, 2006). 

𝜃𝑡 = Λ(𝑎 + 𝑏𝜃𝑡−1 + 𝑐 1𝐾∑ 𝐻(𝜖𝑔,𝑡−𝑘, 𝜖𝑖,𝑡−𝑘)𝐾𝑘=1 ). (7) 

In equation (7), Λ(∙)  is a logistic transformation to keep measures of tail dependence within defined 

domains. 𝐻(∙) is product of normal quantile functions for normal copula, product of t quantile functions for 

t copula, absolute difference function for Clayton, Gumbel, and SJC copulas. According to Patton (2006), the 

length of lags 𝐾 = 10 is chosen, which corresponds to 2 working weeks for daily data. 

3. Results 

Following the convention of the green bond literature, we select bond market, stock market, energy market, 

and forex market to study the dependence of green bond market. We will compare our results of a developed 

economy (US) with an emerging economy (China) which plays a significant role in green bond issuance. 



3.1. Data Description 

For the US, we use the daily data of Barclays MSCI green bond index (USGB) from Aug/2014 to Aug/2021. 

There are, of course, many alternative indices for green bonds, such as S&P Dow Jones green bond index, 

Solactive green bond index, and Bank of America Merrill Lynch green bond index. According to Reboredo 

(2018), different green bond indices share very similar patterns, so the choice of index does not matter much 

in our empirical results. The bond market is proxied by the 10-year US government bonds (USB). For the 

stock market in the US, we use Dow Jones index (USS). The forex market fluctuations are measured by the 

US dollar index (USF). As an important commodity related to green bonds, West Texas Intermediate (USO) 

crude oil index is used to measure changes of energy price in the US. It is preferred to Oil Brent Crude because 

the latter covers markets beyond the US. 

For China, there are about ten representative green bond indices to choose from Jul/2014 to Aug/2021. We 

use the essential green bond index (CNGB) which meets the strictest criteria of green bonds in China and 

most countries in the world. The bond market in China is represented by the 10-year Chinese government 

bond index (CNB). The stock market in China is proxied by the Shanghai Security Exchange composite index 

(CNS). Fluctuations of forex market are measured by returns of USD/CNY exchange rate (CNF). China does 

not have a well-established domestic oil price index due to its net importing position as a price-taker in the 

international oil market. We use Brent oil price as a proxy of the international oil price that the Chinese 

market faces (CNO). 

Table 3 reports descriptive statistics for daily returns of the abovementioned financial assets. The means of 

daily returns of all assets are close to zero and stationary according to ADF and KPSS tests, and they all have 

abnormal fat tails (kurtosis greater than 3 and JB tests are significant). Green bonds in both countries tend to 

be negatively correlated with fixed income markets and other assets, especially in China. The descriptive 

statistics in Table 3 focuses on univariate properties of each asset. To visualize the dependence between 

assets, we plot scatter plots of selected assets against green bonds. Figure 1a shows the nonparametric joint 

distributions of assets in the US, while Figure 1b shows the counterparts in China. To facilitate comparisons 

over time, we use different colors to indicate pre-COVID and COVID samples. Plots of daily returns of these 

assets can be found in the Appendix. We can see some salient features from between-assets, cross-country, 

and over-time comparisons. First, there is a clear negative dependence between green bonds and the dollar 

index in the US, but the most salient negative dependence in China lies in the bond markets. It implies a 

different hedging role for green bonds in the two markets. Second, the distribution of green bonds in China 

tends to be more concentrated around its mean than those in the US, but green bonds in both countries enjoy 

lower uncertainty than other assets. In other words, the between-assets difference is smaller than the cross-

country difference. Third, tail risks of most assets become more significant after the COVID pandemic, since 

the distributions become thicker in tails and flatter in peaks. One outstanding example is the oil price, which 

dropped to negative for the first time in history on 20th April 2020 due to the pandemic and the oil price war 

between Russia and Saudi Arabia. In contrast, green bonds do not have obvious change in terms of tail risks. 

Therefore, green bonds have great potential to be a safe-heaven asset resilient to rare disasters. 



 

Table 3 Descriptive statistics for daily returns of financial assets in US and China 

US USGB USB USS USF USO China CNGB CNB CNS CNF CNO 

Obs. 1830 1830 1830 1830 1830 Obs. 1799 1799 1799 1799 1799 

Mean 0.0001 0.0001 0.0005 0.0001 -0.0018 Mean 0.0002 -0.0002 0.0004 0.0000 0.0002 

Max 0.0222 0.4074 0.0938 0.0235 0.3766 Max 0.0097 0.0367 0.0576 0.0186 0.2102 

Min -0.0299 -0.2703 -0.1198 -0.0207 -3.0597 Min -0.0089 -0.0568 -0.0849 -0.0099 -0.2440 

SD 0.0036 0.0322 0.0111 0.0035 0.0834 SD 0.0010 0.0082 0.0140 0.0021 0.0261 

Skew. -0.7719 1.4912 -0.6993 0.2503 -28.76 Skew. -0.0898 -0.2741 -0.9888 0.5941 -0.2613 

Kurtosis 10.63 36.82 23.80 8.89 1.0E+03 Kurtosis 19.98 6.73 9.86 10.72 16.4785 

JB 4.6E+03 8.8E+04 3.3E+04 2.7E+03 7.9E+07 JB 2.2E+04 1.1E+03 3.8E+03 4.6E+03 1.4E+04 

ADF  -39.64 -43.50 -52.52 -45.85 -31.76 ADF  -26.38 -36.68 -40.44 -38.76 -41.88 

KPSS  0.0524 0.0511 0.0192 0.0792 0.0638 KPSS  0.4125 0.1245 0.1316 0.1168 0.0726 

Corr. USGB USB USS USF USO Corr. CNGB CNB CNS CNF CNO 

USGB 1      CNGB 1    
 

USB -0.3792 1     CNB -0.5265 1  
 

 
USS -0.0078 0.3905 1    CNS -0.0368 0.1294   

 
USF -0.593 -0.0249 -0.2223 1   CNF -0.0119 0.0395 -0.0433 1  
USO 0.0178 0.1074 0.1633 -0.0876 1 CNO -0.0387 0.0299 -0.0016 0.0087 1 

Table notes: The null hypothesis of the JB test is that the data come from a normal distribution. The null hypothesis of the ADF test and the KPSS test 

is that the data have a unit root. All hypotheses are rejected at 5% significance levels. 

 



 

Figure 1a Scatter histograms of assets versus green bonds in US 

 

Figure 1b Scatter histograms of assets versus green bonds in China 

 



To descriptively measure tail risks and tail dependence, the empirical literature develops metrics like Value 

at Risk (VaR), Conditional VaR (CoVaR), and Delta CoVaR (ΔCoVaR). Intuitively, VaR measures the loss of 

holding an asset if rare disasters with a specific probability (e.g., 5%) occur. In our case, it simply ranks 

historical (daily) returns of each asset and identify the return at the specific percentile. More generally, 

CoVaR is developed to estimate the possible loss under any conditions (Girardi & Ergün, 2013). The condition 

can simply be the downward risks below VaR of the asset per se or when other assets fall below their VaRs. 

Therefore, CoVaR provides a simple measure of tail dependence and risk spillover. Furthermore, ΔCoVaR 

represents the difference between the CoVaR of one asset (e.g., green bonds) under the distressed state of the 

other asset (e.g., stocks during the pandemic) and the CoVaR of the asset under the benchmark state (within 

95% confidence intervals). The difference is usually divided by the benchmark CoVaR to show the marginal 

risk contribution of one asset vis-à-vis the overall risk of another asset (Shahzad et al., 2018). 

Table 4 VaR, CoVaR, and ΔCoVaR of financial assets in US and China  

 VaR at 5% CoVaR at 5% ΔCoVaR 

 
Pre-COVID COVID Pre-COVID COVID Pre-COVID COVID 

USGB -0.52% -0.60% -0.77% -1.11%   

USB -3.34% -6.44% 0.28% 0.18% 19.631 5.879 

USS -1.45% -2.19% 0.12% -0.28% 33.808 -9.302 

USF -0.49% -0.53% 0.47% 0.60% 109.112 26.948 

USO -3.87% -6.02% 0.04% 0.02% 5.259 0.555 

CNGB -0.13% -0.08% -0.26% -0.15%   

CNB -1.28% -1.50% 0.17% 0.13% 6.630 7.888 

CNS -2.09% -1.86% 0.03% 0.08% 0.431 5.824 

CNF -0.33% -0.35% 0.02% 0.03% 0.002 0.901 

CNO -3.67% -4.75% 0.04% 0.05% 1.046 2.121 

Table notes: The VaR columns are VaRs of different assets of the two countries at 5% percentiles. The CoVaR 

colums are the difference between the return of green bonds and the returns of other assets under stress 

conditions (defined as 5% percentiles). The USGB and CNGB rows are green bond VaRs conditional on green 

bond markets per se. Other rows are green bond VaRs conditional on other assets. The ΔCoVaR columns are 
ratios of return differences under stressed and normal states over the normal return. 

As shown in Table 4, all the assets in the US experienced significant lower VaRs during the COVID compared 

to pre-COVID periods, apart from green bonds (USGB) and forex (USF). The difference in China seems less 

significant, especially for green bonds (CNGB) and forex (CNF) as well. It suggests that in both countries, 

green bonds and forex markets share an immune feature to COVID fluctuations.  

In addition, the tail dependence between green bonds and other assets are qualitatively described by CoVaRs 

and quantitatively measured by ΔCoVaRs. It is obvious that the VaRs of green bonds in both countries have 

positive VaRs when other assets are in stressed states with only one exception (USS) during the COVID 

period. It suggests that green bonds have a great potential to hedge against tail risks for most assets. 



Magnitude-wise, the hedging effect of green bonds (as quantified by ΔCoVaRs) drops in the US over the 
pandemic but rises in China. These observations will be formally tested by the copula approach. 

3.2. Marginal Distributions 

Estimation results of the marginal distributions outlined in equations (1)a, (1)b, (2), and (3) are presented in 

Table 5. The lag lengths are chosen according to AIC and BIC information criteria from the following ranges: 𝑝, 𝑞 ∈ {0,1,2,3,4,5}, 𝑚, 𝑛, 𝑠 ∈ {0,1,2}. 
Table 5 Estimation Results of Marginal Distributions 

Mean USGB USB USS USF USO CNGB CNB CNS CNF CNO 

AR(1) 𝜙1 -0.1239 0.0792 0.1208*** 0.0448***  1.0151***  0.4015*** 0.9069*** 0.6866*** 

AR(2) 𝜙2 0.6235*** -0.0353 0.0206*** 0.0426  0.3813***  -0.3046***  -0.68** 

AR(3) 𝜙3 0.314* -0.2377** 
 

0.0414***  0.2819***  0.5373***  0.5724** 

AR(4) 𝜙4 -0.7067*** 0.7674*** 
 

0.042***  -0.9868***  -0.8682***  0.3638 

AR(5) 𝜙5   
  

0.0378***  0.3083***  -0.0438*  0.0385 

MA(1) 𝜓1 0.1585 -0.101 0.1212*** 0.0416***  -0.5975*** 0.1635*** -0.3928*** -0.8776*** -0.7225*** 

MA(2) 𝜓2 -0.6175*** 0.0651 
 

0.0427*  -0.5934*** -0.0588** 0.3308***  0.7002** 

MA(3) 𝜓3 -0.3575** 0.2063* 
 

0.0409***  -0.5511***  -0.5403***  -0.5835** 

MA(4) 𝜓4 0.6766*** -0.7853***  0.0412***  0.7368***  0.8548***  -0.3631 

MA(5) 𝜓5  
  

0.0352***  0.0052     

Variance  USGB USB USS USF USO CNGB CNB CNS CNF CNO 

Constant 𝛼0 0 0** 0*** 0 0*** 0 0* 0** 0 0*** 

GARCH(1) 𝛼1 0.9276** 0.4314* 0.0186*** 0.043 0.0279*** 0.5118*** 0.8866*** 0.9032*** 0 0.887*** 

GARCH(2) 𝛼2 0 0.4653**  0.0418***   
   

0.6611***  

ARCH(1) 𝛽1 0.0796*** 0.0491*** 0.0144 0.015*** 0.0437** 0.4287*** 0.1017*** 0 0.171*** 0.0421** 

ARCH(2) 𝛽2   
  

0.0151**   
  

0.0942** 0.121**  

Leverage(1) 𝛾1 -0.0536** 0.1044*** 0.0505*** 0.0219 0.0778*** 0.119 -0.0079 0.0457 0.0709 0.1123*** 

Leverage(2) 𝛾2   
  

0.0212*   
  

-0.0406 0.023  

DoF 𝜈 5.0915*** 7.6199*** 0.3058*** 0.3939*** 0.1904*** 2.5852*** 5.2495*** 3.8525*** 3.8343*** 4.981*** 

No. of Obs. 1830 1830 1830 1830 1830 1799 1799 1799 1799 1799 

AIC -15746.1 -8731.85 -12785 -15977.9 -8795.99 -21313.2 -12596.4 -11231.2 -17789.7 -8821.59 

BIC -15668.9 -8654.68 -12740.9 -15878.7 -8768.43 -21230.8 -12558 -11143.3 -17734.7 -8744.66 

Table notes: significance level, 1% ***, 5% **, 10% *.  

The mean equations of different assets have different lag lengths or different lengths of memory. Specifically, 

West Texas Intermediate (USO) crude oil index has no dynamic terms at all in the mean component. Turning 

to the volatility equations, all returns have significant GARCH and ARCH terms, indicating conditional 

heteroskedasticity or volatility clustering features. The leverage effects are also found for assets in both 

countries, which suggests that negative shocks tend to generate greater volatility.  



To allow for thick tails, we assume Student’s t distribution for marginal distributions. The estimated degrees 
of freedom confirm this hypothesis—a lower degree of freedom means a thicker tail. A t distribution 

converges to normal distribution if the degree of freedom is higher than 20. In our case, all estimated degrees 

of freedom are lower than 8, showing significant thick-tail features. Relatively speaking, green bonds in 

China tend to have lower degrees of freedom or greater tail risks. 

3.2. Copula Functions 

Based on the residuals of the marginal distribution models, we then estimate copulas of between green bonds 

and each asset. Table 6 presents the estimation results of constant copula models with popular specifications.  

Table 6 Estimation Results of Time-Invariant Copulas 

   USB USS USF USO CNB CNS CNF CNO 

Normal 𝜌 -0.400*** -0.054** -0.597*** -0.01 -0.478*** -0.046* -0.02 -0.004 

 𝜏𝐿 = 𝜏𝑈 0 0 0 0 0 0 0 0 

 AIC -318.07 -3.374 -805.21 1.812 -466.4 -1.82 1.248 1.965 

Student's t 𝜌 -0.427*** -0.063** -0.612*** -0.005 -0.457*** -0.050** -0.02 -0.001 

 DoF 𝜈 4.423*** 7.036*** 4.041*** 8.619*** 4.375*** 8.816*** 99.99*** 28.28*** 

 𝜏𝐿 = 𝜏𝑈 0.0144 0.0166 0.0059 0.0124 0.0126 0.0093 0 0 

  AIC -416.34 -36.7 -913.11 -19.51 -533.5 -19.864 3.539 2.103 

Clayton 𝜌 0.0001 0.0001 0.0001 0.0134 0.0001 0.0001 0.0001 0.0001 

 𝜏𝐿 0 0 0 0 0 0 0 0 

 AIC 2.099 2.001 2.166 1.639 2.132 2.014 2.01 2.007 

Rotated  𝜌 0.0001 0.0001 0.0001 0.0082 0.0001 0.0043 0.0001 0.0182 

Clayton 𝜏𝑈 0 0 0 0 0 0 0 0 

  AIC 2.096 2.007 2.16 1.875 2.128 1.962 2.005 1.438 

SJC 𝜏𝑈 0 0*** 0 0** 0 0*** 0*** 0 

 𝜏𝐿 0 0*** 0 0 0 0*** 0*** 0*** 

  AIC 49.982 8.261 74.253 4.551 59.776 8.082 8.798 5.983 

Table notes: significance level, 1% ***, 5% **, 10% *.  

For time invariant models, we estimate normal, student’s t, Clayton, rotated Clayton, and SJC copula 
distributions to show robustness and to facilitate model selection. We report both correlation coefficients 𝜌s 

as well as tail dependence measures 𝜏s, equation (5) and (6). Normal distribution has no tail dependence 

(𝜏𝐿 = 𝜏𝑈 = 0), Student’s t assumes symmetric tail dependence, which are positive for all assets (𝜏𝐿 = 𝜏𝑈 > 0). 

This result implies that when there is a negative rare shock in some asset, it is likely that green bonds also 

undergo a negative rare shock. Be aware that tail dependence is not to be confused with correlation coefficient, 

which is a measure of linear dependence. In fact, most estimated 𝜌s are negative (𝜌 < 0)—in normal times, 

if there is a negative shock to some asset, it is likely to have a positive shock to green bonds. In other words, 

the hedging effect of green bonds can differ between normal times and crisis times. Clayton copula assumes 



lower tail dependence (𝜏𝐿 ≠ 0) but no upper tail dependence (𝜏𝑈 = 0), while rotated Clayton assumes the 

reverse, but none of them are significant. The SJC copula assumes asymmetric tail dependence, but the 

estimates are very small despite being significant. Using AIC as the model selection criterion, Student's t 

copulas stand out as the most efficient assumption for most assets apart from CNF and CNO in which normal 

distribution is preferred.  

To visualize the estimated copulas, we use 3D mesh plots (Figure 2) to compare between assets and between 

countries. Starting with green bonds and “brown” bonds, the copulas of US and China are almost identical. 

Both copulas show tail dependence at lower and upper quantiles. Moving to green bonds and stocks, the two 

countries again share very similar shapes only with thicker tails (larger degrees of freedom). Next, the US 

dollar index still maintains a similar copula to bonds and stocks, while the copula for Chinese exchange rate 

is almost flat (with a degree of freedom close to 100), which means it is basically a normal copula. Turning to 

oil indices, the US and China share a similar shape but China has a flatter copula due to its weak position in 

the international oil market. 

Figure 2 Copula distributions with Green Bond in US and China 

 
Figure notes: Blue mesh surfaces are copulas in the US, and red ones are copulas in China. The copulas are 

assumed to follow Student’s t distributions. 

If time-variation of copula functions is allowed, then correlation coefficient (𝜌𝑡) and tail dependence (𝜏𝐿𝑡, 𝜏𝑈𝑡) 
can change over time 𝑡. This dynamic feature is modeled by equation (7) following Reboredo (2018). Given 

that Student’s t copula is the optimal choice, we focus on Student’s t time-varying copulas, with normal time-



varying copulas for CNF. We present the estimation results of time-varying copulas in Table 7. It is shown 

that time variation coefficients (𝑎, 𝑏, 𝑐) are mostly significant.  

To demonstrate time-varying features, correlation coefficients between green bonds and these assets are 

plotted in Figure 3. The fluctuations during the COVID pandemic become erratic. It is worth mentioning that, 

unlike the US, the correlation between green bonds and the forex market in China (i.e., USD/CNY currency 

pair, denoted as CNF) is stable throughout the sample period. Other asset markets in the US and China 

largely converge, especially in bond markets where the correlations are consistently negative for both 

countries. 

Inclusion of time variation features imposes overparameterization costs, but the improved goodness of fit 

justifies a more sophisticated model according to the AIC information criterion. Comparing the AICs 

between Table 6 and Table 7, most time-varying models are superior to time-invariant models apart from 

USB and CNS. The benefit of employing a time-varying model increases as the sample includes more 

pandemic observations. In fact, in an earlier run when only 2020 data are included, constant parameter 

models are favored. This finding suggests that the modelling choice can depend on data availability. 

Policymakers and decision-makers in the financial market should frequently update their models on new 

data arrival. 

Table 7 Estimation Results of Time-Varying Copulas 

   USB USS USF USO CNB CNS CNF CNO 

Normal 𝜌 0.835*** -0.149 0.979*** 0.684*** -0.98*** 0.6717* 0.638 0.675 

 𝑎 -0.989*** -0.011 -0.236*** 0.0017 -0.989*** -0.178* -0.076 -0.031 

 𝑏 0.0319 0.051*** -0.079*** 0.400*** -0.136*** 0.077 0.3804** -0.51*** 

 𝑐 -0.388*** 1.638*** 2.013*** -1.996*** 0.3321*** -1.93*** -1.97*** -0.675 

  AIC -313.09 -4.5049 -808.96 -6.5371 -471.92 2.148 2.398 -1.967 

Student's t 𝜌 0.357 -0.156 0.967 0.660 -0.98*** -0.599 0.018 0.654 

 𝜈 4.484*** 7.096*** 3.964*** 9.489*** 4.468*** 8.566*** 99.81*** 31.12*** 

 𝑎 -1.906*** -0.012 -3.108*** 0.004 -1.200** -0.150 -0.078 -0.02 

 𝑏 0.031 0.047*** -0.091 0.274*** -0.05 0.139 0.3533*** -0.48*** 

 𝑐 -2.411*** 1.728*** -2.570*** -1.996*** -0.285*** -1.30*** -2.007*** -0.664*** 

  AIC -412.46 -41.11 -914.79 -24.04 -535.37 -15.5094 4.2018 -1.5362 

Table notes: significance level, 1% ***, 5% **, 10% *.  



Figure 3 Time Variation of Correlations with Green Bond in US and China 

 
Figure notes: Blue lines are correlations of the US (left axes), and red ones are correlations of China (right 

axes). The shaded areas indicate the COVID pandemic (according to the WHO announcement). 

3.3. Robustness 

As shown in the previous section, estimated copulas display significant tail dependence. To provide a 

robustness check, we adopt two quantile-based measures to quantify the dependence of joint distributions 

between these assets and green bonds. The first measure is the quantile dependence, which calculates 

correlation coefficient within different quantiles (Patton, 2006). The second measure is the exceedance 

correlation developed by Ang & Chen (2001). A correlation at a given exceedance level is defined as the 

correlation between a pair of random variables when both rise or drop of more than a given number of 

standard deviations away from the means. It is a more flexible measure allowing for different degrees of 

dependence at different quantiles. The two measures provide a nonparametric alternative to copulas to 

describe the distributional dependence of chosen asset pairs. The advantage of the quantile-based approach, 

as discussed in the literature review, is that it can capture dependence in the entire joint distribution, not 

limited to the tails or means only. Also, it is nonparametric, so it is free from specification bias. 



Figure 4 Quantile Dependence with Green Bond in US and China 

 

Figure 4 illustrates the two measures for the US and China. According to the quantile dependence (the upper 

two panels), the dollar index (forex) has the weakest tail dependence with green bonds in the US, followed 

by bonds, stocks, and oil. In China, by contrast, it is the bond market that has the weakest tail dependence. 

In terms of the exceedance correlation (the lower two panels), tail dependence is asymmetric for all assets in 

both countries. For example, in the US, the lower tail dependence of forex market and green bond market is 

0.6, but the upper tail dependence is negative. This suggests that if there is a rare, bad shock, both markets 

tend to get hit, but if there is a rare, good shock, only one market is likely to receive it. This asymmetry is also 

observed in Chinese markets. 

Compared with the estimation results in Table 6, tail dependence estimated in the copula approach and the 

quantile-based approach shares qualitative consistency. For example, the nonparametric quantile 

dependence (the upper panels) is mostly symmetric at tails in line with the symmetric feature of Student’s t 
copulas. Exceedance correlations, however, are more erratic because it is based on stepwise exceedance and 

subject to small sample bias towards tails. This is an important drawback of nonparametric approaches since 

it does not leave noise processes out of the analysis. In contrast, the copula approach controls for dynamics 

in mean, so the results are more stable and reliable. 



4. Discussion 

The results show that the correlations between green bonds and other financial assets are significant, time-

varying, and quantile-dependent. How can we make use of this information in investment practice? To 

evaluate the potential role of green bonds as safe-heaven assets to hedge against rare risks, it is common to 

calculate the optimal hedging weight (HW) and evaluate the hedging effectiveness (HE) of green bonds in a 

portfolio.  

We follow Jin et al (2020) and adopt the Theory of Minimum Variance Heading Ratio (Johnson, 1960). 

Assume a portfolio is composed of an asset and a green bond index. The return of the hedged portfolio, 𝑟ℎ𝑡, 
and its variance, 𝑉(𝑟ℎ𝑡), depend on the HW of green bond index (𝑤𝑔𝑡): 

𝑟ℎ𝑡 = (1 −𝑤𝑔𝑡)𝑟𝑖𝑡 +𝑤𝑔𝑡𝑟𝑔𝑡. (8) 

𝑉(𝑟ℎ𝑡) = (1 − 𝑤𝑔𝑡)2𝑉(𝑟𝑖𝑡) + 𝑤𝑔𝑡2 𝑉(𝑟𝑔𝑡) + 2(1 − 𝑤𝑔𝑡)𝑤𝑔𝑡𝐶𝑜𝑣(𝑟𝑖𝑡 , 𝑟𝑔𝑡)  (9) 

To minimize the variance of the hedged portfolio, take partial derivative of 𝑉(𝑟ℎ𝑡) with respect to 𝑤𝑔𝑡 to 

obtain the optimal HW (𝑤𝑔𝑡∗ ): 

𝜕𝑉(𝑟ℎ𝑡)𝜕𝑤𝑔𝑡 = 0 → 𝑤𝑔𝑡∗ = 𝑉(𝑟𝑔𝑡)−𝐶𝑜𝑣(𝑟𝑖𝑡,𝑟𝑔𝑡)𝑉(𝑟𝑖𝑡)+𝑉(𝑟𝑔𝑡)−2𝐶𝑜𝑣(𝑟𝑖𝑡,𝑟𝑔𝑡). (10) 

Note that if 𝑤𝑔𝑡∗ > 0, then the hedged portfolio contains a long position of green bonds. If 𝑤𝑔𝑡∗ < 0, then the 

portfolio is hedged by holding a short position of green bonds. Covariance and variance terms are conditional 

forecasts based on the estimated marginal distribution of TGARCH models described in subsection 3.2. 

Figure 5 presents the time-varying optimal HW 𝑤𝑔𝑡∗  for the selected financial assets of the two countries. In 

the cross-country dimension, it is surprising that the correlations between green bonds and other bonds in 

the US and China are closely tracking each other, both before and after the COVID pandemic. It shows that 

the bond markets and green bond markets of the US and China are determined by similar factors such as 

monetary policy and green technological progress. In contrast, other markets such as stock and forex between 

the two markets significantly diverge (Guo & Zhou, 2021). In the over-time dimension, the COVID pandemic 

seems to reduce the correlations between financial assets and green bonds. It implies that the hedging role 

of green bonds is reduced during rare tail risks. Other influential events like the US-China trade war since 

2018 and the oil price plunge in early 2020 may disturb the correlations temporarily but the influences are 

short lived. 



Figure 5 Optimal Hedging Weights of Green Bonds in US and China 

 
Figure notes: Blue lines are correlations of the US, and red ones are correlations of China. The shaded areas 

indicate the COVID pandemic (according to the WHO announcement). 

From equation (10), it is straightforward that the diversification benefit of a hedged portfolio depends on the 

correlation between the underlying assets and the variances of them. To better quantify the diversification 

benefit of green bonds, it is useful to have a metric to summarize the hedging effect. Ku et al. (2007) propose 

a measure termed hedging effectiveness (HE) based on risk reduction: 

𝐻𝐸 ≡ 𝑉(𝑟𝑖𝑡)−𝑉(𝑟ℎ𝑡)𝑉(𝑟𝑖𝑡) . (10) 

Table 8 compares the optimal HWs and HEs of green bonds in the US and China, before and after the COVID 

pandemic. We can draw two important conclusions. On the one hand, the hedging effects of green bonds in 

China tends to be smaller than those in the US before the pandemic, but the gap becomes smaller or even 

reversed (e.g., bond market) since COVID. This indicates a fast development of green bonds in China relative 

to the US in recent years. In fact, China issued more than one-third of the global green bond issuance, ranking 

the first in the world (Wang et al., 2019). On the other hand, as a tail risk, the pandemic substantially reduced 

the hedging effects of green bonds with respect to bonds, stocks, and oil in both countries, but the hedging 

effects are still positive. It is worth pointing out that, despite smaller, this is unfair to compare HEs before 

and after the pandemic. It is because the HEs before the pandemic measure the hedging effect in normal 



times, while the HEs after the pandemic measure the hedging effect against tail risks. Specifically, the 

hedging effects in forex markets grow even stronger for both US and China since 2018, partly due to the 

exacerbating US-China trade war. Uncertainties in forex markets creates greater hedging capacity for green 

bonds in both countries.  

Table 8 Hedging Weights and Hedging Effectiveness (pre-COVID VS. COVID) 

   US China 

   Pre-COVID COVID Pre-COVID COVID 

Bond 
HW 9.13% 4.65% 6.97% 5.23% 

HE 18.65% 9.45% 14.24% 10.65% 

Stock 
HW 21.23% 14.75% 1.62% 1.03% 

HE 34.88% 25.30% 3.16% 2.05% 

Forex 
HW 50.16% 52.58% 26.88% 13.87% 

HE 71.55% 74.15% 6.02% 23.76% 

Oil 
HW 1.49% 1.35% 0.35% 0.17% 

HE 2.95% 2.69% 0.71% 0.34% 

Table notes: HW = hedging weight, HE = hedging effectiveness. 

To summarize, optimal HWs during the pandemic slightly dropped because of positive tail dependence 

between green bonds and other assets. However, it does not mean the hedging effect of green bonds in 

extreme times is weak. It is weaker compared to normal times. In fact, recent literature finds similar results 

for alternative hedging assets like Brent oil (Kang et al., 2021), gold (Salisu et al., 2021), and other precious 

metals (Mensi et al., 2021). 

5. Conclusions 

Green bonds provide financial capital for sustainable growth and a safe-heaven investment vehicle against 

financial shocks. It is well documented in the literature that, in normal times, hedging effectiveness of green 

bonds is significant in both developed countries like the US and emerging economies like China. However, 

evidence for the hedging effects during the COVID pandemic is still scanty.  

To choose the most reliable method to address this research question, we critically review and 

comprehensively compare four prevailing approaches in the green finance literature. The copula approach 

is adopted for its flexibility and reliability in capturing tail dependence between assets. It is found that the 

pandemic does reduce the hedging effectiveness of green bonds with bonds, stocks, and oil, but boost the 

hedging effectiveness in forex markets. The behavior of green bonds in the US and China resembles each 

other, especially during the pandemic. There is a converging international green bond market in terms of 

both marginal distribution and copula function.  



This paper offers new evidence for connectedness between conventional financial assets and green financial 

assets. It is important for portfolio management and risk diversification in both US and China, during both 

normal times and crisis times. Moreover, it also points some directions for policymakers. First, given the 

significant hedging effect of green bonds, governments should issue related regulations and industrial 

standards, which are recognized by international counterparts. International convergence of green bond 

standards can improve information disclosure and transparency, which can in turn strengthen the 

diversification function of green bonds for both developed and emerging economies. Second, resilience 

against rare disasters like climate risks and pandemic risks is the most important theme of the international 

community of our times, particularly after the COVID pandemic. Major economies like the US, the EU, and 

China adopt a sustainability strategy and support investment in green assets. It is an inevitable trend of an 

expanding international green bond market. However, as a safe-heaven asset, green bonds may be used by 

arbitragers and hot money in cross-border speculations. For emerging countries like China, it is advisable to 

develop off-shore institutional investors to hold long-term positions of green bonds. It can reduce the short-

term shocks to the stability of green bonds market due to speculative activities in the forex market.  

 

Supplementary Materials: None. 

Funding: The National Social Science Fund of China (2021DGJ1903). 

Acknowledgments: None. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

1. Abakah, E. J. A., Addo, E., Gil-Alana, L. A., & Tiwari, A. K. (2021). Re-examination of international 

bond market dependence: Evidence from a pair copula approach. International Review of Financial Analysis, 

74, 101678. doi:https://doi.org/10.1016/j.irfa.2021.101678 

2. Alonso-Conde, A.-B., & Rojo-Suárez, J. (2020). On the Effect of Green Bonds on the Profitability and 

Credit Quality of Project Financing. Sustainability, 12(16), 6695. Retrieved from 

https://www.mdpi.com/2071-1050/12/16/6695 

3. Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 

63(3), 443-494. doi:https://doi.org/10.1016/S0304-405X(02)00068-5 



4. Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined Measures of Dynamic 

Connectedness based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial 

Management, 13(4), 84. Retrieved from https://www.mdpi.com/1911-8074/13/4/84 

5. Bachelet, M. J., Becchetti, L., & Manfredonia, S. (2019). The Green Bonds Premium Puzzle: The Role of 

Issuer Characteristics and Third-Party Verification. Sustainability, 11(4), 1098. Retrieved from 

https://www.mdpi.com/2071-1050/11/4/1098 

6. Banga, J. (2019). The green bond market: a potential source of climate finance for developing 

countries. Journal of Sustainable Finance & Investment, 9(1), 17-32. doi:10.1080/20430795.2018.1498617 

7. Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century. Quarterly Journal of 

Economics, 121(3), 823-866. doi:10.1162/qjec.121.3.823 

8. Beck, R., Georgiadis, G., & Straub, R. (2014). The finance and growth nexus revisited. Economics 

Letters, 124(3), 382-385. doi:https://doi.org/10.1016/j.econlet.2014.06.024 

9. Campbell, R., Koedijk, K., & Kofman, P. (2002). Increased Correlation in Bear Markets. Financial 

Analysts Journal, 58(1), 87-94. doi:10.2469/faj.v58.n1.2512 

10. Creal, D., Koopman, S. J., & Lucas, A. (2011). A Dynamic Multivariate Heavy-Tailed Model for Time-

Varying Volatilities and Correlations. Journal of Business & Economic Statistics, 29(4), 552-563. 

doi:10.1198/jbes.2011.10070 

11. Díaz, A., & Escribano, A. (2021). Sustainability premium in energy bonds. Energy Economics, 95, 

105113. doi:https://doi.org/10.1016/j.eneco.2021.105113 

12. Engle, R. (2002). Dynamic Conditional Correlation. Journal of Business & Economic Statistics, 20(3), 339-

350. doi:10.1198/073500102288618487 

13. Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1994). Forecasting International Equity Correlations. 

Financial Analysts Journal, 50(6), 32-45. doi:10.2469/faj.v50.n6.32 

14. Gao, Y., Li, Y., & Wang, Y. (2021). Risk spillover and network connectedness analysis of China’s green 
bond and financial markets: Evidence from financial events of 2015–2020. The North American Journal of 

Economics and Finance, 57, 101386. doi:https://doi.org/10.1016/j.najef.2021.101386 

15. Guo, Dong & Zhou, Peng (2021). The Rise of a New Anchor Currency in RCEP? A Tale of Three 

Currencies. Economic Modelling, in press. doi:https://doi.org/10.1016/j.econmod.2021.105647 

https://doi.org/10.1016/j.eneco.2021.105113


16. Girardi, G., & Tolga Ergün, A. (2013). Systemic risk measurement: Multivariate GARCH estimation of 

CoVaR. Journal of Banking & Finance, 37(8), 3169-3180. doi:https://doi.org/10.1016/j.jbankfin.2013.02.027 

17. Gong, X.-L., Liu, X.-H., & Xiong, X. (2019). Measuring tail risk with GAS time varying copula, fat 

tailed GARCH model and hedging for crude oil futures. Pacific-Basin Finance Journal, 55, 95-109. 

doi:https://doi.org/10.1016/j.pacfin.2019.03.010 

18. Han, H., Linton, O., Oka, T., & Whang, Y.-J. (2016). The cross-quantilogram: Measuring quantile 

dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251-

270. doi:https://doi.org/10.1016/j.jeconom.2016.03.001 

19. Hansen, B. E. (1994). Autoregressive Conditional Density Estimation. International Economic Review, 

35(3), 705-730. doi:10.2307/2527081 

20. He, X., Mishra, S., Aman, A., Shahbaz, M., Razzaq, A., & Sharif, A. (2021). The linkage between clean 

energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from 

QARDL approach. Resources Policy, 72, 102021. doi:https://doi.org/10.1016/j.resourpol.2021.102021 

21. Jin, J., Han, L., Wu, L., & Zeng, H. (2020). The hedging effect of green bonds on carbon market risk. 

International Review of Financial Analysis, 71, 101509. doi:https://doi.org/10.1016/j.irfa.2020.101509 

22. Johnson, L. L. (1960). The Theory of Hedging and Speculation in Commodity Futures1. The Review of 

Economic Studies, 27(3), 139-151. doi:10.2307/2296076 

23. Kang, S., Hernandez, J. A., Sadorsky, P., & McIver, R. (2021). Frequency spillovers, connectedness, 

and the hedging effectiveness of oil and gold for US sector ETFs. Energy Economics, 99, 105278. 

doi:https://doi.org/10.1016/j.eneco.2021.105278 

24. King, R. G., & Levine, R. (1993). Finance and growth: schumpeter might be right. Quarterly Journal of 

Economics, 108(3), 717-737. doi:10.2307/2118406 

25. Kristoufek, L. (2020). Grandpa, Grandpa, Tell Me the One About Bitcoin Being a Safe Haven: New 

Evidence From the COVID-19 Pandemic. Frontiers in Physics, 8(296). doi:10.3389/fphy.2020.00296 

26. Ku, Y.-H. H., Chen, H.-C., & Chen, K.-H. (2007). On the application of the dynamic conditional 

correlation model in estimating optimal time-varying hedge ratios. Applied Economics Letters, 14(7), 503-509. 

doi:10.1080/13504850500447331 

27. Kuang, W. (2021). Are clean energy assets a safe haven for international equity markets? Journal of 

Cleaner Production, 302, 127006. doi:https://doi.org/10.1016/j.jclepro.2021.127006 

https://doi.org/10.1016/j.jbankfin.2013.02.027


28. Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy 

stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895-913. 

doi:https://doi.org/10.1016/j.energy.2018.12.039 

29. Mensi, W., Nekhili, R., Vo, X. V., & Kang, S. H. (2021). Oil and precious metals: Volatility 

transmission, hedging, and safe haven analysis from the Asian crisis to the COVID-19 crisis. Economic 

Analysis and Policy, 71, 73-96. doi:https://doi.org/10.1016/j.eap.2021.04.009 

30. Naeem, M. A., Nguyen, T. T. H., Nepal, R., Ngo, Q.-T., & Taghizadeh–Hesary, F. (2021). Asymmetric 

relationship between green bonds and commodities: Evidence from extreme quantile approach. Finance 

Research Letters, 101983. doi:https://doi.org/10.1016/j.frl.2021.101983 

31. Park, D., Park, J., & Ryu, D. (2020). Volatility Spillovers between Equity and Green Bond Markets. 

Sustainability, 12(9), 3722. Retrieved from https://www.mdpi.com/2071-1050/12/9/3722 

32. Patton, A. J. (2004). On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for 

Asset Allocation. Journal of Financial Econometrics, 2(1), 130-168. doi:10.1093/jjfinec/nbh006 

33. Patton, A. J. (2006). Modelling Asymmetric Exchange Rate Dependence. International Economic Review, 

47(2), 527-556. Retrieved from http://www.jstor.org/stable/3663514 

34. Pham, L., & Nguyen, C. P. (2021). How do stock, oil, and economic policy uncertainty influence the 

green bond market? Finance Research Letters, 102128. doi:https://doi.org/10.1016/j.frl.2021.102128 

35. Reboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price 

spillover effects. Energy Economics, 74, 38-50.  

36. Reboredo, J. C., & Ugolini, A. (2020). Price connectedness between green bond and financial markets. 

Economic Modelling, 88, 25-38.  

37. Reboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset 

classes. Energy Economics, 86, 104629. doi:https://doi.org/10.1016/j.eneco.2019.104629 

38. Rietz, T. A. (1988). The equity risk premium a solution. Journal of Monetary Economics, 22(1), 117-131. 

doi:10.1016/0304-3932(88)90172-9 

39. Salisu, A. A., Vo, X. V., & Lawal, A. (2021). Hedging oil price risk with gold during COVID-19 

pandemic. Resources Policy, 70, 101897. doi:https://doi.org/10.1016/j.resourpol.2020.101897 

https://doi.org/10.1016/j.eneco.2019.104629


40. Sarkodie, S. A., Ajmi, A. N., Adedoyin, F. F., & Owusu, P. A. (2021). Econometrics of Anthropogenic 

Emissions, Green Energy-Based Innovations, and Energy Intensity across OECD Countries. Sustainability, 

13(8), 4118. Retrieved from https://www.mdpi.com/2071-1050/13/8/4118 

41. Shahzad, S. J. H., Arreola-Hernandez, J., Bekiros, S., Shahbaz, M., & Kayani, G. M. (2018). A systemic 

risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling. Journal of International 

Financial Markets, Institutions and Money, 56, 104-127. doi:https://doi.org/10.1016/j.intfin.2018.02.013 

42. Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut 
Statistique de l’Université de Paris, 8, 229-231.  

43. Song, L., & Zhou, X. (2021). Does the Green Industry Policy Reduce Industrial Pollution Emissions?—
Evidence from China’s National Eco-Industrial Park. Sustainability, 13(11), 6343. Retrieved from 

https://www.mdpi.com/2071-1050/13/11/6343 

44. Taghizadeh-Hesary, F., Yoshino, N., & Phoumin, H. (2021). Analyzing the Characteristics of Green 

Bond Markets to Facilitate Green Finance in the Post-COVID-19 World. Sustainability, 13(10), 5719. 

Retrieved from https://www.mdpi.com/2071-1050/13/10/5719 

45. Uddin, M., Chowdhury, A., Anderson, K., & Chaudhuri, K. (2021). The effect of COVID – 19 

pandemic on global stock market volatility: Can economic strength help to manage the uncertainty? Journal 

of Business Research, 128, 31-44. doi:https://doi.org/10.1016/j.jbusres.2021.01.061 

46. Wang, K., Chen, Y.-H., & Huang, S.-W. (2011). The dynamic dependence between the Chinese market 

and other international stock markets: A time-varying copula approach. International Review of Economics & 

Finance, 20(4), 654-664. doi:https://doi.org/10.1016/j.iref.2010.12.003 

47. World Bank. (2021). Green Bonds. Retrieved from 

https://treasury.worldbank.org/en/about/unit/treasury/ibrd/ibrd-green-bonds 

48. Xia, T., Ji, Q., Zhang, D., & Han, J. (2019). Asymmetric and extreme influence of energy price changes 

on renewable energy stock performance. Journal of Cleaner Production, 241, 118338. 

doi:https://doi.org/10.1016/j.jclepro.2019.118338 

49. Yi, X., Bai, C., Lyu, S., & Dai, L. (2021). The impacts of the COVID-19 pandemic on China's green bond 

market. Finance Research Letters, 101948. doi:https://doi.org/10.1016/j.frl.2021.101948 

50. Yu, C.-H., Wu, X., Zhang, D., Chen, S., & Zhao, J. (2021). Demand for green finance: Resolving 

financing constraints on green innovation in China. Energy Policy, 153, 112255. 

doi:https://doi.org/10.1016/j.enpol.2021.112255 

https://www.mdpi.com/2071-1050/13/8/4118
https://doi.org/10.1016/j.intfin.2018.02.013


51. Zhou, X., & Cui, Y. (2019). Green Bonds, Corporate Performance, and Corporate Social Responsibility. 

Sustainability, 11(23), 6881. Retrieved from https://www.mdpi.com/2071-1050/11/23/6881 

52. Zhang, Bo & Zhou, Peng (2021). Financial development and economic growth in a microfounded 

small open economy model. North American Journal of Economics and Finance, 58, article number: 101544. 

DOI: 10.1016/j.najef.2021.101544. 

 

https://www.mdpi.com/2071-1050/11/23/6881


 

Appendix: Daily returns of green bonds and other assets 

 

 

 


