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Abstract

Entropy is one of the most basic and significant descriptors of a probability distribu-

tion. It is still a commonly used measure of uncertainty and randomness in informa-

tion theory and mathematical statistics. We study statistical inference for Shannon

and Rényi’s entropy-related functionals of multivariate Gaussian and Student-t dis-

tributions. This thesis investigates three themes. First, we provide a non-parametric

test of goodness-of-fit for a class of multivariate generalized Gaussian distributions

based on maximum entropy principle via using the k-th nearest neighbour (NN) dis-

tance estimator of the Shannon entropy. Its asymptotic unbiasedness and consistency

are demonstrated. Second, we show a class of estimators of the Rényi entropy based

on an independent identical distribution sample drawn from an unknown distribu-

tion f on Rm. We focus on the maximum Rényi entropy principle for multivariate

Student-t and Pearson type II distributions. We also consider the entropy-based test

for multivariate Student-t distribution using the k-th NN distances estimator of en-

tropy and employ the properties of entropy estimators derived from NN distances.

Third, we introduce a new classes of unimodal rotational invariant directional distri-

butions, which generalize von Mises-Fisher distribution. We propose three types of

distributions in which one of them represents the axial data. We provide all of the

formula together with a short computational study of parameter estimators for each

new type via the method of moments and method of maximum likelihood. We also

offer the goodness-of-fit test to detect that the sample entries follow one of the in-

troduced generalized von Mises-Fisher distribution based on the maximum entropy

principle using the k-th NN distances estimator of Shannon entropy and to prove its

L2-consistence.
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“Begin at the beginning,” the King said gravely, “and go
on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

“To visualise 43-dimensional space I simply visualise
n-dimensional space and let n be 43”

— Unknown
“I don’t believe it. Prove it to me and I still won’t believe
it.”

— Douglas Adams
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1

Chapter 1

Introduction

The concept of entropy plays a central role in information theory, and has found

a wide array of uses in other disciplines, including statistics, probability and com-

binatorics. The differential entropy or Shannon (or Bolzmann-Gibbs) entropy of a

random vector X ∈ Rm with probability density function (pdf) f is defined as

H = H1 = H(X ) = H( f ) = −E{log f (X )}= −
∫

Rm

f (x) log f (x)dx , (1.1)

where log is the natural logarithm. It is assumed that (1.1) is well defined and

finite. It is formally set 0/0 = 0, 0 log 0 = 0. For the probability density f it is

defined S = S( f ) = {x ∈ Rm : f (x) > 0} as its support. Clearly, the integral (1.1) is

taken over S( f ). Introduced by the highly influential Shannon [110], it represents

the average information content of an observation, and it is usually thought of as a

measure of unpredictability.

More generally, Rényi entropy for a random vector X ∈ Rm with pdf f is defined

as

Hq = Hq(X ) = Hq( f ) =
1

1− q
logE[ f q−1(X )] =

1
1− q

log

∫

Rm

f q(x)dx , (1.2)

where q ̸= 1, q > 0, see [103]. The Rényi entropy satisfies Hq(X )≤ Hq′(X ) for q > q′,

and as q→ 1, the Rényi entropy converges to the Shannon entropy, Hq(X )→ H1(X ).

Beside the Shannon and Rényi entropies, other entropy definitions (e.g. [119],

[53], etc.) are studied in the mathematical literature, but the Shannon and Rényi

entropies are the only ones possessing all the desired properties of an information

measure, including subadditivity;

H(X , Y )≤ H(X ) +H(Y ) (1.3)
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with equality if and only if X and Y are independent, where

H(X , Y ) = −
∫

Rm1+m2

f (x , y) log f (x , y)dxdy,

and f (x , y) is the joint probability density of random vectors X ∈ Rm1 , m1 ≥ 1 and

Y ∈ Rm2 , m2 ≥ 1.

The entropies are of interest in the work of non-linear Fokker-Planck equations

[41], [123], as well as non-linear Markor processes [69].

Differential entropy (1.1) can be both positive or negative and can even be minus

infinity (H( f ) = −∞, if f (x) = (r/x)(− log x)−(r+1) on 0≤ x ≤ 1
e , m= 1, 0< r ≤ 1,

see Appendix A. For an overview of the properties of entropies (1.1) and (1.2) see,

for example, [26] or [61].

Importantly, given the constraints on certain moments and the support set, one

can find the distribution that maximises the Shannon or Rényi entropies [67]. This

leads to the principle of maximum entropy, which has been applied in physics and

Bayesian statistics, etc.

In statistical contexts, it is often the estimation of entropy that is of primary inter-

est, for instance in goodness-of-fit tests of normality [122] or uniformity [27], tests

of independence [49], etc.

There is an extensive literature dealing with entropy estimates, and in their clas-

sification, it will be used the scheme offered by [10, 58] or [94].

Non-parametric methods of entropy estimation in the univariate or multivariate

cases include sample spacings, plug-in estimates based on a consistent estimate of

density, splitting data estimates, cross-validation estimates, and estimates based on

the partitioning of the observation space, (see [4, 16, 25, 32, 48, 51, 60, 65, 72, 95,

112, 117, 121], among others).

The estimation of entropy via the k-th nearest neighbour distances proposed by

[71] is particularly attractive as a starting point, both because it can be generalized

easily into multivariate cases, since it only relies on the evaluation of the k-th nearest

neighbour distances, it is straightforward to compute.

There have been previous studies of the k-th nearest neighbour distances estima-

tor of the Shannon and Rényi entropies, including [71] in the case of k = 1, as well

as [39, 43, 49, 75, 113, 115, 120] and [14, 19, 30, 73, 81, 115], among others.

Modern efficient multivariate entropy estimation theory via the k-th nearest neigh-

bour distances was developed recently by [13]. They studied the weighted averages

of the estimators proposed by [71], based on the k-th nearest neighbour distances
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of a sample of N independent and identically distributed random vectors in Rm. A

careful choice of weights enabled them to obtain an efficient estimator in arbitrary

dimensions, given sufficiently smoothness of density. They also investigated the case,

when k→∞.

Berrett, Samworth, Yuan, et al. in [13] have shown that subject to certain reg-

ularity conditions, such as k →∞, the k-NNE of Shannon entropy is efficient only

for m ≤ 3, and presents a bias-corrected estimator for dimensions m ≥ 4. In this

thesis, the conventional k-NNE is focused with fixed k ≥ 1, for which the asymptotic

variance decreases rapidly up to k = 3 only, see [12, Table 1]. It is interesting to

note that this asymptotic inflation is distribution-free, which leads to the conjecture

that k = 3 is the most interesting case for any m ≥ 1. For case q = 2, the different

method of estimation of the quadratic Rényi entropy proposed by [64] is used. The

new method of investigation of entropy estimates proposed by [9, 97] and [98] (see

also the references therein).

For a discrete random variable X which takes values {lK , K ≥ 1}, the Shannon

entropy is defined as

H(X ) = H( f ) = −
∑

K

fK log fK ,

where fK = P(X = lK), K ≥ 1, while the Rényi entropy is

Hq(X ) =
1

1− q
log

∑

K

f q
K , q > 0, q ̸= 1.

A brief overview of the statistical estimate of entropies of discrete distributions can

be found in [130] ( see also [94]).

1.1 The research aims and objectives of this thesis

• To revise the maximum Shannon entropy principle for multivariate generalized

Gaussian, Student and Pearson type II distributions.

• To prove the convergence in the mean-square of the k-th nearest neighbour

estimate of the Shannon entropy for multivariate densities with possible un-

bounded support for arbitrary fixed k ≥ 1. Penrose and Yukich [99] proved the

statement only for k = 1.



4 Chapter 1. Introduction

• To construct the non-parametric test of goodness-of-fit for a multivariate gen-

eralized Gaussian distribution based on the maximum entropy principle. To

support the test by the Monte Carlo simulation.

• To prove the convergence in the mean-square of the k-th nearest neighbour es-

timate of the Rényi entropy for multivariate densities with possible unbounded

support for arbitrary fixed k ≥ 1.

• To construct the non-parametric test of goodness-of-fit for multivariate Stu-

dent and Pearson type II (or Barenblatt ) distributions based on the maximum

entropy principle. To support the test by the Monte Carlo simulation.

• To prove the maximum entropy principle for generalized von Mises-Fisher dis-

tribution on sphere.

• To prove the convergence of the k-th nearest neighbour estimate of the Shan-

non entropy of spherical distributions.

• To develop the goodness-of-fit test for the generalized von Mises-Fisher distri-

bution. To support the test by the Monte Carlo simulation. To apply the test to

real life data.

1.2 The organization of the thesis:

The chapters in this thesis are organized as follows:

• Chapter 1 contains the review of the Shannon and Rényi entropies and statis-

tical methods of their estimation.

• Chapter 2 presents a non-parametric test of goodness-of-fit for a class of mul-

tivariate generalized Gaussian distributions based on the maximum Shannon

entropy principle and the k-th nearest neighbour distances method of Shannon

entropy. It contains the proof of L2 consistency of the k-th nearest neighbour

distance estimate for arbitrary fixed k ≥ 1. In [99], the consistency is proven

for k = 1 only. The results will be supported by a Monte Carlo simulation.

• Chapter 3 presents a non-parametric test of goodness-of-fit for a classes of mul-

tivariate Student and Pearson type II (or Barenblatt ) distributions based on the
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maximum Rényi entropy principle and consistency of the k-th nearest neigh-

bour distance estimate for arbitrary fixed k ≥ 1. The results will be supported

by a Monte Carlo simulation.

• Chapter 4 introduces three generalizations of the von Mises-Fisher distribu-

tion on a sphere and the maximum Shannon entropy principle for them. Based

on the L2-consistency of the k-th nearest neighbour estimate of Shannon en-

tropy based on the sample of directional data, the goodness-of-fit tests are con-

structed for three classes of generalized von Mises-Fisher distributions. The

results will be supported by a Monte-Carlo simulation and applied to real data

(of local fiber directions in a glassfibre reinforced composite material).

• Chapter 5 summarises the results of the previous chapters, and indicates pos-

sible directions of future work, identifying further research questions that have

arisen.

• The thesis contains several Appendices.

The work in this thesis has been submitted as three peer-reviewed papers:

• Cadirci et al. (2020) [21] which corresponds to work in Chapter 2.

• Cadirci et al. (2021) [22] which corresponds to work in Chapter 3.

• Leonenko et al. (2020) [74] which corresponds to work in Chapter 4.
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Chapter 2

Entropy-based test of goodness-of-fit

for generalized Gaussian

distributions

This chapter proposes a new entropy-based goodness-of-fit test based on the maxi-

mum Shannon entropy principle for the generalized multivariate Gaussian distribu-

tion. The chapter is structured as follows:

• Section 2.1 defines the k-th nearest neighbour estimate of the Shannon en-

tropy.

• Section 2.2 introduces the multivariate generalized Gaussian distribution.

• Section 2.3 reviews a maximum entropy principle for the generalized Gaussian

distribution.

• Section 2.4 presents the associated goodness-of-fit statistic for the generalized

Gaussian distribution.

• Section 2.5 includes the numerical results with some auxiliary material de-

ferred to Appendix A.

2.1 Entropy estimation

Let k ≥ 1 and N > k, and let XN = {X1, . . . , XN} be a set of independent and identi-

cally distributed random vectors in Rm with common density function f . Let F be a

finite subset ofXN having cardinality at least k, and letρk(x , F) denote the Euclidean

distance between a point x and its k-th nearest neighbour in the set F \{x}. The k-th
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nearest neighbour estimator (k-NNE) of the Shannon entropy H( f ) is defined to be

ÒHN ,k =
1
N

N
∑

i=1

log
�

ρm
k (X i ,XN )Vm(N − 1)e−ψ(k)

�

, (2.1)

whereψ(x) = Γ ′(x)/Γ (x) =
∑k−1

j=1
1
j−γ is the digamma function and Vm = πm/2/Γ (m/2+

1) is the volume of the unit ball in Rm. For k = 1, this reduces to

ÒHN ,1 =
m
N

N
∑

i=1

logρ1(X i ,XN ) + log Vm + γ+ log(N − 1), (2.2)

where γ= −ψ(1)≈ 0.577216 is the Euler-Mascheroni constant. The estimator (2.2)

was introduced by [71] while the general estimator (2.1) was first considered by

[49].

The main properties of (2.1) have been studied by [12, 13, 18, 19, 30, 44, 75,

76, 98].

Convergence in mean-square for the case k = 1 was proved by [99, Theorem

2.1.ii].

Theorem 2.1.1 ([99]). Suppose that E(∥X∥α) <∞ for some α > 0 and f (x) ≤ M

for some M > 0. Then

E
�

ÒHN ,1 −H( f )
�2→ 0 as N →∞.

Remark 2.1.1. The condition of boundedness for the density f is not explicitly stated

by Penrose and Yukich (2013)[99, Theorem 2.4.ii]. In Appendix A(called lower bound

on Shannon entropy) we give an example of a density f with bounded support and for

which H( f ) is unbounded.

In this chapter, the analogous result for arbitrary k ≥ 1 is proved. To this end,

(2.1) is written as
ÒHN ,k =

1
N

∑

x∈XN

l
�

N
1
m x , N

1
mXN

�

,

where

l(x ,XN ) := log
�

ρm
k (x ,X )Vme−ψ(k)

�

, x ∈ Rm.

First, the following theorem of [99, Theorem 3.1] is required.

Theorem 2.1.2. Let k ≥ 1 and q = 1 or q = 2, and suppose there exists p ≥ q such

that

sup
N≥k
E
�

�

�l
�

N
1
m X1, N

1
mXN

�

�

�

�

p
<∞. (2.3)
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Then, Lq convergence can be written,

1
N

∑

x∈XN

l
�

N
1
m x , N

1
mXN

�

→
∫

Rm

E
�

l(0,P f (x))
�

f (x) d x ,

as N →∞, where Pλ denotes a homogeneous Poisson point process of intensity λ > 0

on Rm and f (x) is the density function.

Theorem 2.1.3 (Main theorem). Suppose that E∥X∥α < ∞ for some α > 0 and

f (x)≤ M for some M > 0. Then for any fixed k ≥ 1,

E
�

ÒHN ,k −H( f )
�2→ 0 as N →∞. (2.4)

Proof. From applying the Theorem 2.1.2. Firstly, it is shown that

H( f ) =

∫

Rm

E
�

l(0,P f (x))
�

f (x) d x ,

where

l (0,Pλ) = m logρk(0,Pλ) + log Vm −ψ(k).

Denote by Bt(0) the (Euclidean) ball of radius t centred at 0 i.e, Bt(0) = {y ∈
Rm,∥y∥ ≤ t}. The random variable ρk(0,Pλ) is the distance from 0 to the k-th point

of Pλ, and thus has Erlang distribution with parameters k and λ|Bt(0)| = λVm tm,

that is

P
�

ρk(0,Pλ)≤ t
�

= P
�

|Pλ ∩ Bt(0)| ≥ k
�

= 1−
k−1
∑

j=0

1
j!

�

λ|Bt(0)|
� j

e−λ|Bt (0)|

= 1−
k−1
∑

j=0

1
j!
(λVm tm) je−λVm tm

(t ≥ 0).

Then,

mE[logρk(0,Pλ)]

=

∫ ∞

0

log tm (λVm)k(tm)(k−1)

(k− 1)!
e−λVm tm

mtm−1d t

= − log(λVm) +

∫ ∞

0

log y
yk−1

(k− 1)!
e−y d y

= − logλ− log Vm +ψ(k).
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Hence, E
�

l(0,Pλ)
�

= − logλ and thus H( f ) equals

−
∫

Rm

f (x) log f (x) d x =

∫

Rm

E
�

l(0,P f (x))
�

f (x) d x .

Second, the condition (2.3) is checked. Note that for every δ ∈ (0, 1) and p > 1 there

exists C > 0 such that [99, p.2206]

| log t|p ≤ C t−δ1[0,1](t) + C tδ1[1,∞)(t), t > 0.

Then because

|l(x ,X )|p =
�

� log Vm −ψ(k) + logρm
k (x ,X )

�

�

p

≤
�

� log Vm −ψ(k)
�

�

p
+
�

� logρm
k (x ,X )

�

�

p

we have

1
2p−1
E
�

�

�l
�

N
1
m X1, N

1
mXN

�

�

�

�

p

≤ |log Vm −ψ(k)|
p +E

�

�

�logρm
k

�

N
1
m X1, N

1
mXN

�

�

�

�

p

≤ |log Vm −ψ(k)|
p

+ CEρ−δk

�

N
1
m X1, N

1
mXN

�

1[0,1]

�

ρδk

�

N
1
m X1, N

1
mXN

��

(2.5)

+ CEρδk
�

N
1
m X1, N

1
mXN

�

1[1,∞)

�

ρδk

�

N
1
m X1, N

1
mXN

��

. (2.6)

Term (2.5) is finite because

sup
N≥k
Eρ−δk

�

N
1
m X1, N

1
mXN

�

1[0,1]

�

ρδk

�

N
1
m X1, N

1
mXN

��

≤ sup
N≥k
Eρ−δ1

�

N
1
m X1, N

1
mXN

�

<∞, (2.7)

where (2.7) is ensured by [99, Lemma 7.5] since f is bounded and δ ∈ (0, m).

Let rc( f ) := sup{r ≥ 0 : E∥X1∥r <∞}. In the proof of [98, Theorem 2.3], it is

seen that if rc( f )> 0 and 0< δ < mrc( f )(m+ rc( f ))−1, then

sup
N≥k
Eρδk

�

N
1
m X1, N

1
mXN

�

<∞.

Thus, term (2.6) is finite.

Remark 2.1.2. For k = 1, [99] used exponential distribution. For k > 1, the Erlang

distribution is used.
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2.2 The generalized Gaussian distribution

Testing for multivariate normality is a topic of ongoing interest, see [37] for a review

of new developments. We denote aT b = Σm
j=1a j b j as the scalar product of vectors

a, b ∈ Rm.

The multivariate exponential power distribution MEPm(s,µ,Σ) on Rm [114] has

the density function

f (x ; m, s,µ,Σ) =
Γ (m/2+ 1)

πm/2Γ (m/s+ 1)2m/s
p

detΣ
exp

�

−
1
2

�

(x −µ)TΣ−1(x −µ)
�s/2

�

,

(2.8)

where µ ∈ Rm is the mean vector, Σ is an m×m positive definite matrix, s > 0 is a

shape parameter [114], and variance-covariance matrix V = βΣ where

β(m, s) =
22/sΓ

�

(m+ 2)/s
�

mΓ (m/s)
. (2.9)

Note that s = 2 corresponds to the multivariate normal distribution N(µ,Σ) on Rm,

while s = 1 corresponds to the multivariate Laplace distribution. Taking µ to be the

null vector and Σ to be the identity matrix, we obtain the isotropic exponential power

distribution IEPm(s) on Rm,

f (x ; m, s) =
Γ (m/2+ 1)

Γ (m/s+ 1)πm/22m/s
exp

�

−
1
2
∥x∥s

�

, (2.10)

x ∈ Rm, where ∥ · ∥ denotes the Euclidean norm on Rm.

Applying the scaling x 7→ (2τ)−1/s x for τ > 0 yields the generalized Gaussian

distributions GGτ(m, s) on Rm, with density functions

fc(x; m, s) = c(m, s)exp (−τ∥x∥s) , x ∈ Rm, (2.11)

where

c(m, s) =
Γ (m/2+ 1)τm/s

Γ (m/s+ 1)πm/2
,

and taking τ= 1/s yields the canonical distribution

f (x; m, s) = c0(m, s)exp
�

−
∥x∥s

s

�

, x ∈ Rm, (2.12)

where

c0(m, s) =
Γ (m/2+ 1)

Γ (m/s+ 1)πm/2sm/s
.
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Moments

A random vector X ∈ Rm is called isotropic if its density f can be written as f (x) =

f̃ (∥x∥) for some function f̃ : R→ [0,∞) called the radial density, where ∥ · ∥ is the

Euclidean norm on Rm. If X is isotropic and g : R→ R is a Borel function, [99]

E [g(∥X∥)] =
∫

Rm

g(∥x∥) f (x) d x =
2πm/2

Γ (m/2)

∫ ∞

0

g(r) f̃ (r)rm−1 dr (2.13)

provided the integrals exist. In particular, the moments of order s > 0 are given in

[75] and [116] by

E(∥X∥s) =
2πm/2

Γ (m/2)

∫ ∞

0

rm+s−1 f̃ (r) dr (2.14)

provided the integrals exist.

Lemma 2.2.1. If X ∼ GGτ(m, s), then E(∥X∥s) = m/sτ.

Proof. If X ∼ GGτ(m, s) then X is isotropic and has radial density function

f̃ (r) =
Γ (m/2+ 1)τm/s

Γ (m/s+ 1)πm/2
exp(−τrs).

Hence by (2.14) it is obtained that

E(∥X∥s) =
mτm/s

Γ (m/s+ 1)

∫ ∞

0

rm+s−1 exp(−τrs) dr

and changing the variable of integration to t = τrs yields

E(∥X∥s) =
m

sτ Γ (m/s+ 1)

∫ ∞

0

tm/se−t d t =
m
sτ

.

2.3 A maximum entropy principle for GGτ(m, s)

It is well known [66] that among all distributions on Rm whose densities f are sup-

ported on the whole of Rm and whose mean and covariance matrix are fixed at zero

and Σ respectively, the differential entropy H( f ) is maximised by the multivariate

Gaussian distribution N(0,Σ) on Rm, and thus

H( f )≤ log
�

(2πe)m/2
p

detΣ
�

. (2.15)

An analogous result for the generalized Gaussian distribution is now proven.
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Theorem 2.3.1. Let X ∈ Rm be a random vector, whose density f is supported on the

whole of Rm, and for which there exists some s > 0 such that E(∥X∥s) <∞. Then

H( f ) is finite and satisfies

H( f )≤
m
s

log
�

c1(m, s)E∥X∥s
�

,

where

c1(m, s) =

�

πm/2Γ (m/s+ 1)
Γ (m/2+ 1)

�s/m
� se

m

�

with equality if and only if X ∼ GGτ(m, s) with τ= m/(sE∥X∥s).

Proof. Let X and Z be two random vectors whose density functions, f and f ∗ respec-

tively, are supported on the whole of Rm, and for which there exists some s > 0 with

E∥X∥s = E∥Z∥s <∞. First, it is observed that

H( f )≤ −
∫

Rm

f (x) log f ∗(x) d x , (2.16)

with equality if and only if f = f ∗ almost everywhere. This follows by Jensen’s

inequality,

−
∫

Rm

f (x) log f (x) d x +

∫

Rm

f (x) log f ∗(x)d x

=

∫

Rm

f (x) log
�

f ∗(x)
f (x)

�

d x

≤ log

�∫

Rm

f (x)
�

f ∗(x)
f (x)

�

d x

�

= log

�∫

Rm

f ∗(x)d x

�

= 0,

assuming that both integrals −
∫

Rm f (x) log f (x) d x and
∫

Rm f (x) log f ∗(x)d x are

finite.

If Z ∼ GGτ(m, s) with τ =
m

sE∥X∥s
(which ensures that E∥Z∥s = E∥X∥s) it is

achieved that

f ∗(x) = c(m, s)exp(−τ∥x∥s),

where

c(m, s) =
Γ (m/2+ 1)τm/s

Γ (m/s+ 1)πm/2
.
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For this case, − log f ∗(x) = τ∥x∥s − log c(m, s) and hence

−
∫

Rm

f (x) log f ∗(x)dz

= τ

∫

Rm

∥x∥s f (x) d x − (log c(m, s))

∫

Rm

f (x) d x

= τE∥X∥s − log c(m, s)

=
m
s
− log c(m, s) by Lemma 2.2.1.

Therefore
∫

Rm f (x) log f ∗(x)d x is finite under existence of E∥X∥s and the right-hand

side of (2.16) is valid as well.

Thus by (2.16) and substituting for c(m, s) it is obtained that

H( f )≤
m
s
− log

�

τm/sΓ (m/2+ 1)
πm/2Γ (m/s+ 1)

�

=
m
s

log

�

�

Γ (m/s+ 1)
Γ (m/2+ 1)

�
s
m
�

eπ
s
2

τ

��

,

and substituting for E∥X∥s = m/(sτ) completes the proof in the case H( f )< +∞.

Consider HM ( f ) :=
∫

AM
f (x) log f (x) d x , where AM = {x ∈ Rm, | log f (x)| ≤ M}.

Denote by CM :=
∫

AM
f (x) d x ≤ 1 and C∗M :=

∫

AM
f ∗(x) d x ≤ 1. Then by Jensen’s

inequality

−
∫

AM

f (x) log f (x) d x +

∫

AM

f (x) log f ∗(x)d x

= CM

∫

AM

f (x)
CM

log
�

f ∗(x)
f (x)

�

d x ≤ CM log

�

∫

AM

f ∗(x)
CM

d x

�

= CM log C∗M − CM log CM .

Therefore,

H( f )≤ lim
M→∞

sup

�

−
∫

AM

f (x) log f (x) d x

�

≤ lim
M→∞

sup

�

−
∫

AM

f (x) log f ∗(x) d x + CM log
C∗M
CM

�

< +∞.

Remark 2.3.1. Theorem 2.3.1 was proved for m = 1 in [127] and [107, p.103-104].

For m ≥ 1, some statements of Theorem 2.3.1 were also proved using other methods in

[84].
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2.4 A test statistic for GG(m, s)

Let k ≥ 1 be fixed and K be the class of density functions f on Rm such that

1. supp( f ) = Rm,

2. E(∥X∥s)<∞ for some s > 0,

3. E(ÒHN ,k)→ H( f ) as N →∞, and

4. ÒHN ,k→ H( f ) in probability as N →∞.

Proposition 2.4.1. The density functions of the GGτ(m, s) belong to K for all m ≥ 1,

s > 0, c > 0 and k ≥ 1.

Proof. The statement follows from Theorem 2.1.3, which applies because f is bounded,

and Lemma 2.2.1.

Let X ∈ Rm be a random vector with density f ∈K , and let s > 0 be fixed. Based

on a random sample X1, X2, . . . from the distribution of X , the maximum entropy

principle proved in Section 2.3 is used to test the hypothesis X ∼ GG(m, s) against a

suitable alternative. By Theorem 2.3.1, if X ∼ GG(m, s) then

H(X ) =
m
s

logE∥X∥s +
m
s

log c1(m, s),

where

c1(m, s) =

�

πm/2Γ (m/s+ 1)
Γ (m/2+ 1)

�s/m
� se

m

�

.

The entropy H(X ) is estimated by the k-th nearest neighbour estimator

ÒHN ,k =
m
N

N
∑

i=1

logρk(X i ,XN ) + log Vm + log(N − 1)−ψ(k),

and the moment E∥X∥s by the sample moment

X̄ (s)N =
1
N

N
∑

i=1

∥X i∥s.

Our test statistic TN ,k = TN ,k(m, s) is then

TN ,k = ÒHN ,k −
m
s

log X̄ (s)N −
m
s

log c1(m, s).
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By the law of large numbers, X̄ (s)N → E∥X∥
s in probability as N →∞. Hence by

Slutsky’s theorem, if X ∼ GGm(s) then for any fixed k ∈ {1, . . . , N − 1} it is obtained

that

TN ,k→ 0 in probability as N →∞.

Otherwise, by the maximum entropy principle it must be that TN ,k→ ξ in probability

as N →∞, where the constant ξ = ξ(m, s, k) is strictly negative. Thus, the hypoth-

esis X ∼ GG(m, s) is rejected whenever TN ,k ≥ tN ,k,α, where tN ,k,α = tN ,k,α(m, s) a

so-called critical value of the test statistic TN ,k(m, s) at significance level α, which is

a solution of

PH0

�

TN ,k ≥ t
�

= α.

An analytical derivation of the distribution of TN ,k when X ∼ GG(m, s) is difficult

because the covariances of TN ,k and X̄ (s)N are intractable, even though the asymptotic

behaviour of ÒHN ,k can be revealed by applying results of [30, 98] or [13] and the

asymptotic behaviour of X̄ (s)N by the delta method. Thus, the Monte Carlo simulation

is used to investigate the distribution of TN ,k = TN ,k(m, s) for different combinations

of parameter values.

Remark 2.4.1. The test statistic TN ,k is scale-invariant: if Y = aX for some a > 0, then
ÒHN ,k(Y ) = log(am) + ÒHN ,k(X ) and Ȳ (s)N = as X̄ (s)N , and hence

TN ,k(Y ) = ÒHN ,k(Y )−
m
s

log Ȳ (s)N −
m
s

log c1(m, s)

= log(am) + ÒHN ,k(X )−
m
s

log(as)

−
m
s

log X̄ (s)N −
m
s

log c1(m, s)

= ÒHN ,k(X )−
m
s

log X̄ (s)N −
m
s

log c1(m, s)

= TN ,k(X ).

2.5 Numerical results

To investigate the behaviour of TN ,k(m, s), random samples are generated not only

from the GG(m, s) distribution, but also from the multivariate Student distribution

ST(m,ν), ν > 0 on Rm which has density function

f (x : m,ν) = cS|Σ|−1/2
�

1+
1
ν
(x − a)TΣ−1(x − a)

�− ν+m
2

, x ∈ Rm,
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where

cS(m,ν) =
Γ [(ν+m)/2]
(πν)m/2Γ (ν/2)

.

This is achieved via the following stochastic representations [114].

Lemma 2.5.1. 1. For X ∼ GG(m, s) we have X
d
= UR where U is uniformly dis-

tributed on Sm−1 and R
d
= V 1/s with V ∼ Gamma(m/s, 2).

2. For X ∼ ST(m,ν)we have X
d
= Z/
p

G, where Z ∼ N(0, Im) and G ∼ Gamma(ν/2,ν/2).

For the case m = 2, the generated points are put on scatter plots for different

values of s and ν, see Figure 2.1 for GG(m, s) and Figure 2.2 for ST(m,ν). One can

observe that visually distributions GG(m, s) and ST(m,ν) are hardly distinguishable.

Therefore, our goodness-of-fit test is applied for detecting of the generalized Gaussian

distribution.

Figure 2.1: Scatter plots of 1000 random points from GG(m, s) with m= 2

2.5.1 Empirical distribution of GG(m, s)

N = 106 points are generated from the GG(m, s) distribution for different values of

s. For the purpose of comparison the scaling X 7→ X/σ is applied where

σ2 =
22/sΓ

�

(m+ 2)/s
�

mΓ (m/s)
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Figure 2.2: Scatter plots of 1000 random points from ST(m,ν) with m= 2

is the variance of the GG(m, s) distribution. The test results are shown in Figure 2.3.

(a) (b)

Figure 2.3: The figure (a) contains empirical distribution of GG(m, s) for m= 1 and different values of s. The figure
(b) depicts the log-density function.
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2.5.2 Asymptotic behaviour of TN ,k(m, s) as N →∞.

For fixed (N , k) and (m, s), a sample of size N from the GG(m, s) distribution is gener-

ated and the empirical value of TN ,k(m, s) is recorded, repeating this M = 100 times.

This yields a sample realisation {T1, T2, . . . , TM} from the distribution of TN ,k(m, s),

from which we estimate its mean and variance by

T̄N ,k =
1
M

M
∑

j=1

Ti and S2
N ,k =

1
M − 1

M
∑

j=1

(Ti − T̄N ,k)
2

Figure 2.4: Consistency of TN ,k(m, s) for different values of k (M = 100 repetitions).

Figures 2.4 demonstrates how T̄N ,k(m, s) approaches 0 as the number of sample

size, N , increases for various values of m ∈ {1, 2,3}, s ∈ {0.5,1, 1.5,2, 2.5} and k =

1,2, 3 corresponding to the standard error SN ,k. The mean statistics for k = 1,2, 3

are shown in Figures 2.4.
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Figure 2.5: Consistency of TN ,k(m, s) for different values of s (M = 100 repetitions).

Figure 2.5 shows how T̄N ,k(m, s) approaches 0 as N increases for various values

of m, s and k. This experiment is repeated for the null distribution of TN ,k(m, s). It

can also be seen that the statistic of TN ,k(m, s) increases with parameter value k, and

decreases with the dimension m.
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Figure 2.6: Consistency of TN ,k(m, s) for k = 1 (M = 100 repetitions).

Figure 2.6 shows its behaviour for m ∈ {1,2, 3}, s ∈ {0.5,1, 1.5,2, 2.5} and k = 1

with error bars corresponding to the standard error SN ,k/
p

M . From these data it is

observe that the empirical variance is decreasing when k increases. From the other

hand, the bias or mean T̄N ,k(m, s) is smaller for smaller values of k or m. These

results confirm the variance reduction of k-th nearest neighbour estimators observed

in [13].
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Asymptotic behaviour of TN ,k(m, s0) on data from GG(m, s1)

For various values of s0 and s1, samples from the GG(m, s1) distribution are generated

and the behaviour of TN ,k(m, s0) is examined as N increases. The results are shown

in Figure 2.7 and Figure 2.8. When s0 ̸= s1 we see that the statistic approaches a

strictly negative value, and that this becomes increasingly negative as the difference

between s0 and s1 increases.

Figure 2.7: The behaviour of TN ,k(m, s0) with k = 1 on data from the GG(m, s1) distribution with m= 2.
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Figure 2.8: The behaviour of TN ,k(m, s0) with k = 1 on data from the GG(m, s1) distribution for different values of
m

Asymptotic behaviour of TN ,k(m, s) on data from ST(m,ν)

For various values of s, we generate samples from the ST(m,ν) distribution are gen-

erated and the behaviour of TN ,k(m, s) is examined as N increases. The outcomes of

the test are shown in Figure 2.9.
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Figure 2.9: The behaviour of TN ,k(m, s0) with k = 1 on data from the ST(m,ν) distribution for different values of
m.

2.5.3 Empirical distribution of TN ,k(m, s)

Numerical results suggest that the distribution of TN ,k(m, s) is asymptotically normal

as the sample size N → ∞. For different values of (N , k) and (m, s), NT = 1000

samples from the GG(m, s) distribution are generated and the corresponding values

of TN ,k(m, s) is recorded, repeating this M = 100 times. To each of these 10 samples

from the distribution of TN ,k(m, s) then the Shapiro-Wilk test is applied for normality

[111] and the p-value is recorded returned by the test.
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Figure 2.10: Shapiro-Wilk p-values as N increases for different values of m, s and k (M = 100 repetitions).

Figure 2.10 shows how these p-values behave as N increases, for various values

of m, s and k. The plots suggest that the normal hypothesis cannot be rejected for

samples of size N = 200 or more. Figure 2.11 shows how the p-values behave for

k = 1, with error bars corresponding to the standard error across the M = 100

repetitions.
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Figure 2.11: Shapiro-Wilk p-values as N increases for different values of m and s with k = 1 (M = 100 repetitions).
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Chapter 3

Goodness-of-fit test for multivariate

Student and Pearson type II

distributions

Entropy and its various generalizations are important in many fields including math-

ematical statistics, communication theory, physics and computer science, for charac-

terizing the amount of information in a probability distribution. This chapter defines

that a class of estimators of the Rényi entropy based on the independent identically

distribution sample drawn from an unknown distribution f in Rm. The chapter also

develops the goodness-of-fit test to determine that sample appearance follows one of

the established multivariate Student t distribution based on the maximum entropy

principle. L2- consistency is also proved using the k-th nearest neighbours estimator

of Rényi entropy. The advantage of the estimator is indicated via theoretical and

numerical considerations. This chapter is structured as follows:

• Section 3.1 reviews the maximum Rényi entropy principles for the Rényi en-

tropy and clarifies the multivariate Student and Pearson type II distributions.

• Section 3.2 reviews the nearest-neighbour estimators for the Rényi entropy.

The L2− convergences of estimator are proven for arbitrary fixed k ≥ 2.

• Section 3.3 proposes the goodness-of-fit test for the multivariate Student and

Pearson type II distributions.

• Section 3.4 includes the numerical results with some auxiliary material.
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3.1 Maximum entropy principle

Let X ∈ Rm be a random vector that has a density function f (x) with respect to

Lebesgue measure on Rm. The Rényi entropy of order q ∈ (0, 1) ∪ (1,∞) of this

distribution is

Hq( f ) =
1

1− q
log

∫

Rm

f q(x) d x , (3.1)

which is continuous and non-increasing in q. If the support S = {x ∈ Rm : f (x)> 0}
of the distribution has finite Lebesgue measure |S|, then

lim
q→0

Hq( f ) = log |S|,

otherwise Hq( f )→∞ as q→ 0. Note also that

lim
q→1

Hq( f ) = H1( f ) = −
∫

S
f (x) log f (x) d x .

Let a ∈ Rm and let Σ be a symmetric positive definite m×m matrix.

The multivariate Gaussian distribution Nm(a,Σ)

The multivariate Gaussian distribution Nm(a,Σ) has density function

f G
a,Σ(x) = (2π)

−m/2|Σ|−1/2 exp
�

−
1
2
(x − a)T Σ−1(x − a)

�

, x ∈ Rm. (3.2)

For X ∼ Nm(a,Σ), we have a = E(X ) and Σ = Cov(X ), where Cov(X ) = E[(X −
a)(X − a)T ] is the covariance matrix of the distribution.

The multivariate Student distribution Tm(a,Σ,ν) = ST (m,ν)

For ν > 0, the multivariate Student distribution Tm(a,Σ,ν) onRm has density function

f S
a,Σ,ν(x) = f (x : m,ν) = cS|Σ|−1/2

�

1+
1
ν
(x − a)TΣ−1(x − a)

�− ν+m
2

, x ∈ Rm,

where

cS(m,ν) =
Γ [(ν+m)/2]
(πν)m/2Γ (ν/2)

. (3.3)

For X ∼ Tm(a,Σ,ν), we have a = E(X ) when ν > 1 and Σ = (1− 2/ν)Cov(X ) when

ν > 2, see [62]. It is known that from [50], f S
a,Σ,ν(x)→ f G

a,Σ(x) converges pointwise

as ν→∞.
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The multivariate Pearson type II distribution Pm(a,Σ,ξ)

For ξ > 0, the multivariate Pearson Type II distribution Pm(a,Σ,ξ) on Rm, also known

as the Barenblatt distribution, has density function

f P
a,Σ,ξ(x) = cB|Σ|−1/2

�

1− (x − a)TΣ−1(x − a)
�ξ

+ , x ∈ Rm

where t+ =max{t, 0} and

cB(m,ξ) =
Γ (m/2+ ξ+ 1)
πm/2Γ (ξ+ 1)

. (3.4)

For X ∼ Pm(a,Σ,ξ), we have a = E(X ) and Σ = (m + 2ξ + 2)Cov(X ). It is known

that f P
a,Σ,ξ(x)→ fa,Σ(x) as ξ→∞.

Remark 3.1.1. If the covariance matrix C is diagonal, the Pearson Type II distribution

belongs to the class of time-dependent distributions

u(x , t) = c(β ,γ)t−αm

�

1−
�

∥x∥
c tα

�β
�γ

+

with c > 0, supp{u(x , t)}= {x ∈ Rm : ∥x∥< c tα} and

c(β ,γ) = βΓ
�m

2

�

/

�

2cmπ
m
2 B
�

m
β

,γ+ 1
��

,

which are known as Barenblatt solutions of the source-type non-linear diffusion equa-

tions u′t = ∆(u
q) where q > 1, ∆ is the Laplacian and γ = 1/(q − 1). For details see

[41, 123] or [29].

3.1.1 Rényi entropy

The Rényi entropy of the multivariate Gaussian distribution Nm(a,Σ), see [56], is

Hq( f
G

a,Σ) = log
�

(2π)m/2|Σ|1/2
�

−
m

2(1− q)
log q

= H1( f
G

a,Σ)−
m
2

�

1+
log q
1− q

�

where H1( f G
a,Σ) = log

�

(2πe)m/2|Σ|1/2
�

is the differential entropy of Nm(a,Σ).

From [132], the Rényi entropy of the multivariate Student distribution Tm(a,Σ,ν)

is

Hq

�

f S
a,Σ,ν

�

=
1
2

log |Σ|+ c′S(m, q,ν) (3.5)
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where

c′S(m, q,ν) =
1

1− q
log

�

B
�

q
�

ν+m
2

�

− m
2 , m

2

�

B
�

ν
2 , m

2

�q

�

+
m
2

log(πν)− log Γ
�m

2

�

.

Likewise, from [132] the Rényi entropy of the multivariate Pearson Type II dis-

tribution Pm(a,Σ,ξ) is

Hq

�

f P
a,Σ,ξ

�

=
1
2

log |Σ|+ c′B(m, q,ξ), (3.6)

where

c′B(m, q,ξ) =
1

1− q
log

�

B
�

qξ+ 1, m
2

�

B
�

ξ+ 1, m
2

�q

�

+
m
2

log(π)− log Γ
�m

2

�

.

3.1.2 Maximum entropy principle

Definition 3.1.1. Let K be the class of density functions supported on Rm and subject

to the constraints
∫

Rm

x f (x) d x = a and

∫

Rm

(x − a)(x − a)T f (x) d x = C ,

where a ∈ Rm and C is a symmetric and positive definite m×m matrix.

It is well-known that the differential entropy H1 is uniquely maximized by the

multivariate normal distribution Nm(a,Σ), that is

H1( f )≤ H1( f
G

a,Σ) = log
�

(2πe)m/2|Σ|1/2
�

with equality if and only if f = f G
a,Σ almost everywhere. The following result is

discussed by [56, 70, 83] and [62] among others.

Theorem 3.1.1 (Maximum Rényi entropy).

(1) For m/(m+2)< q < 1, Hq( f ) is uniquely maximized overK by the multivariate

Student distribution Tm(a,Σ,ν) with ν= 1/(1− q)−m and Σ= (1− 2/ν)C.

(2) For q > 1, Hq( f ) is uniquely maximized over K by the multivariate Pearson

Type II distribution Pm(a,Σ,ξ) with ξ= 1/(q− 1) and Σ= (2ξ+m+ 2)C.

Applying (3.5) and (3.6) yields the following.
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Corollary 3.1.1.1.

(1) For m/(m+ 2)< q < 1, the maximum value of Hq is

H max
q =

1
2

log |Σ|+ c′S(m, q,ν)

with ν= 1/(1− q)−m and Σ= (1− 2/ν)C.

(2) For q > 1, the maximum value of Hq is

H maxx
q =

1
2

log |Σ|+ c′B(m, q,ξ)

with ξ= 1/(q− 1) and Σ= (2ξ+m+ 2)C.

3.2 Statistical estimation of the Rényi entropy

The results on the statistical estimation of the Rényi entropy are stated due to [75]

and [98]. Extensions of these results can be found in [13, 18, 30, 97] and [44].

Let X ∈ Rm be a random vector with density function f , and let Gq( f ) denote the

expected value of f q−1(X ),

Gq( f ) = E
�

f q−1(X )
�

=

∫

Rm

f q(x) d x

so that Hq( f ) =
1

1−q log Gq( f ).

Let X1, X2, . . . be independent random vectors from the distribution of X , and for

k, N ∈ N where k < N , let ρi,k,N denote the k-th nearest neighbour distance of X i in

the sample X1, X2, . . . , XN , defined to be the k-th order statistic of the N −1 distances

∥X i − X j∥ with j ̸= i,

ρi,1,N ≤ ρi,2,N ≤ · · · ≤ ρi,N−1,N .

The expectation Gq( f ) = E( f q−1(X )) is estimated by the sample mean

Ĝk,N ,q =
1
N

N
∑

i=1

�

ζi,k,N

�1−q
,

where

ζi,k,N = (N − 1)CkVmρ
m
i,k,N with Ck =

�

Γ (k)
Γ (k+ 1− q)

�
1

1−q

and Vm =
π

m
2

Γ(m
2 +1) is the volume of the unit ball in Rm.
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Convergence results

For r > 0, the r-moment of a density function f is

Mr( f ) = E(∥X∥r) =
∫

Rm

∥x∥r f (x) d x ,

and the critical moment of f is

rc( f ) = sup{r > 0 : Mr( f )<∞}

so that Mr( f )<∞ if and only if r < rc( f ).

Theorem 3.2.1 was formulated without proof in [75], the proof of it is presented

below.

Theorem 3.2.1. Let 0< q < 1 and k ≥ 1 be fixed.

1. If G = Gq( f )<∞ and

rc( f )>
m(1− q)

q
, (3.7)

then

E
�

Ĝk,N ,q

�

→ Gq as N →∞. (3.8)

2. If Gq( f )<∞, q > 1
2 and

rc( f )>
2m(1− q)

2q− 1
, (3.9)

then

E
�

Ĝk,N ,q − Gq

�2→ 0 as N →∞. (3.10)

Remark 3.2.1. If Gq <∞ for q ∈
�

1, k+1
2

�

then

E
�

Ĝk,N ,q

�

→ Gq and E
�

Ĝk,N ,q − Gq

�2→ 0 as N →∞,

see [75].

Remark 3.2.2. If Gq( f ) <∞ for q ∈ (0,1) and f (x) = O(∥x∥−β) as ∥x∥ →∞ for

some β > m, then rc( f ) = β−m and condition (3.8) is automatically satisfied, see [99]

for a discussion and counterexamples showing that conditions (3.7) and (3.9) cannot

be omitted in general.
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Proof of Theorem 3.2.1.

Let us write

Ĝk,N ,q =
1
N

N
∑

i=1

�

(N − 1)1/m(CkVk)
1/mρi,k,N−1

�(1−q)m
.

It is showed that the method proposed by [9] for k = 1, in fact works for any fixed

k ≥ 1. By Theorem 2.1 of [99], the uniform integrability condition

sup
N
E
�

¦

(N − 1)(CkVk)ρ
m
i,k,N−1

©(1−q)p
�

<∞ (3.11)

for some p > 1 (statement 1) or some p > 2 (statement 2) ensures the Lp convergence

of ĜN ,k.q to Iq as N →∞. Because a bound on left-hand side of (3.11) is needed to

obtain, the results can be used on the subadditivity of Euclidean functionals defined

on the nearest-neighbors graph [128].

The following Lemma 3.3 from [98] is used, see also [128, p.85].

Lemma 3.2.1 ([98]). Let 0< s < m.

If rc( f )>
ms

m−s , then

∞
∑

j=1

2 js
�

P(A j)
�

m−s
m <∞, where P(A j) =

∫

A j

f (x) d x and

A j = b(0, 2 j+1) \ b(0, 2 j) for j = 1,2, . . .

with b(0, R) = {x ∈ Rm : ∥x∥ ≤ R} and A0 = b(0,2).

Continuing the proof of Theorem 3.2.1, let b = (1− q)mp and 0< 1− b/m< 1,

one gets p > 1/(1− q).

By exchangeability,

E
�

(N − 1)1/m(CkVm)
1/mρi,k,N−1

�b
(3.12)

= E

�

1
N

N
∑

i=1

�

(N − 1)1/m(CkVm)
1/mρi,k,N−1

�b
�

=
(N − 1)b/m

N
(CkVm)

b/mE

� N
∑

i=1

ρb
i,k,N−1

�

≤ (CkVm)
b/m(N − 1)b/m−1E(L b

k (XN )),

where XN = {X1, X2, . . . , XN}, and for any finite point set X ⊂ Rm and b > 0:

L b
k (X ) =

∑

x∈X
D b

k (x ,X ),
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where Dk(x ,X ) denotes the Euclidean distance from x to its k-nearest neighbour in

the point set X \ {x} when card(X )≥ k; set Dk(x ,X ) = 0 if card(X )≤ k.

The function X 7→L b
k (X ) satisfies the subadditivity relation

L b
k (X ∩Y )≤L

b
k (X ) +L

b
k (Y ) + Uk t b (3.13)

for all t > 0 and finite X and Y contained in [0, t]m, where Uk = 2kmb/2, b > 0.

Indeed, if X has more than k elements, the k-nearest neighbour distances of points

in X can only become smaller when we add some other set Y . Hence, (3.13) holds

with Uk = 0 if X and Y have more than k elements. If X has k elements or less,

then L b
k (X ) is zero, but when the set Y is added, it is gained at most k new edges

from points inX in the nearest neighbours graph, and each of these is of length most

t
p

m (for more details, see [[128, pp.101-103]).

Let s(N) be the largest j ∈ N such that XN = {X1, X2, . . . , XN} ∩ A j is not empty.

Using ideas from [128, p.87]:

XN ∩

�

s(N)
⋃

j=0

A j

�

=
s(N)
⋃

j=0

(XN ∩ A j),

and by the subadditivity property,

L b
k (XN )≤L b

k {XN ∩ As(N)}+L b
k

�

XN ∩

¨

s(N)−1
⋃

j=0

A j

«�

+ Uk2(s(N)+1)b.

Applying subadditivity in the same way to the second term on the right yields

L b
k

�

XN ∩

¨

s(N)−1
⋃

j=0

A j

«�

≤ L b
k (XN ∩ As(N)−1) +L b

k

�

XN ∩

¨

s(N)−2
⋃

j=0

A j

«�

+ Uk

�

2s(N)
�b

.

Repeatedly applying subadditivity, it can be arrived at

L b
k (X1, . . . , XN )≤

s(N)
∑

j=0

L b
k (XN ∩ A j) + 2b+bs(N) Uk

1− 2−b

≤
s(N)
∑

j=0

L b
k (XN ∩ A j) + 2bs(N)Mk

≤
s(N)
∑

j=0

L b
k (XN ∩ A j) +Mk max

1≤i≤N
∥X i∥b (3.14)
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for some constant Mk depending on m, k and b.

From (3.13) and (3.14), it is obtained that

E
�

(N − 1)1/m(CkVm)
1/mρ

(i)
k,N−1

�b

≤ (CkVm)
b/m(N − 1)b/m−1E

 

s(N)
∑

j=0

L b
k (XN ∩ A j)

!

+Wk E
�

(N − 1)b/m−1 max
1≤i≤N

∥X i∥b
�

(3.15)

for some constant Wk depending on m, k and b.

Using Lemma 3.3 of [128], it is achieved:

Lb
k (X )≤ L(diamX )b( cardX )1−b/m (3.16)

for some constant L. Following [98], by Jensen’s inequality and using the fact that

diam(A j) = 2 j from (3.15) and (3.16), we obtain that

(N − 1)b/m−1E

 

s(N)
∑

j=0

Lb
k (XN ∩ A j)

!

≤ L1

s(N)
∑

j=0

2 j b
�

P(X1 ∈ A j)
�1−b/m

, (3.17)

where L1 > 0 is a constant.

Recall our assumptions that 0 < α < m
ℓ where ℓ ∈ {1, 2} and α = (1− q)m, and

also that rc( f ) >
lmα

m−lα . Setting s = b in Lemma 3.2.1, we see that the left hand side

of (3.17) is finite, so the first term on the right hand side of (3.15) is bounded by a

constant which is independent of N .

For a non-negative random variable Z > 0, it is know that

E(Z) =
∫ ∞

0

P(Z > z) dz,

so the second term in (3.15) is bounded by

Wk

∫ ∞

0

P
�

max
1≤i≤N

∥X i∥b > u · N1−b/m
�

du

≤ Wk

�

1+ N

∫ ∞

1

P
�

∥X1∥b >
�

u
mb

m−b N
�1−b/m

�

du

�

. (3.18)

By the Markov inequality P(Z > a)≤ E|Z |a for a > 0, we get for u≥ 1.

P
�

∥X1∥b >
�

u
m

m−b N
�1−b/m

�

= P
�

∥X1∥mb/(m−b) > um/(m−b)N
�

≤ E∥X1∥mb/(m−b) 1
um/(m−b)N

. (3.19)
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From (3.18) and (3.19), it is seen that the second term in (3.15) is bounded by

Wk

�

1+

∫ ∞

1

E∥X1∥mb/(m−b) 1
um/(m−b)

du

�

which is independent of N , because p can be chosen to ensure that 0< 1− b/m< 1,

and

E∥X1∥
mp(1−q)
1−p(1−q) <∞ or rc( f )>

mp(1− q)
1− p(1− q)

,

which is consistent with conditions of Theorem 2.1. Note that the function h(p, q) =
p(1−p)m
1−(1−q)p is such that h(1, q) gives the right-hand side of (3.8) and h(2, q) gives the

right-hand side of (3.10). Moreover, if rc( f )> h(1, q) for some q < 1 (resp. rc( f )>

h(2, q)) for some q satisfying 1/2 < q < 1, we also have rc( f ) > h(p, q) for some

p > 1 (resp. rc( f )> h(p, q) for p > 2).

3.3 Hypothesis tests

The class K is restricted to only those distributions which satisfy the following con-

ditions: for any fixed k ≥ 1 and q > 1/2,

E(ĤN ,k,q)→ Hq as N →∞, and

ĤN ,k,q→ Hq in probability as N →∞.

By the Theorem 3.2.1, it is known that K contains Tm(a,Σ,ν) for all ν > 2 and

Pm(a,Σ,ξ) for all ξ > 0.

Let X1, X2, . . . , XN be independent and identically distributed random vectors

with common density f ∈K , and let ĈN be the sample covariance matrix,

ĈN =
1

N − 1

N
∑

i=1

(X i − X̄ )(X i − X̄ )T .

(1) To test the hypothesis X ∼ Tm(a,Σ,ν0) where ν0 > 2, the test statistic is

defined by

W S
N ,k(m,ν) = Hmax

q − ĤN ,k(m, q), (3.20)

where

Hmax
q =

1
2

log |Σ̂N |+ c′S(m, q,ν)

with q = 1− 1/(ν+m) and Σ̂N = (1− 2/ν)ĈN .
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(2) To test the hypothesis X ∼ Pm(a,Σ,ξ0) where ξ0 > 0, the test statistic is

defined by

W P
N ,k(m,ξ) = Hmax

q − ĤN ,k(m, q), (3.21)

where

Hmax
q =

1
2

log |Σ̂N |+ c′P(m, q,ξ)

with q = 1+ 1/ξ and Σ̂N = (2ξ+m+ 2)ĈN .

By the law of large numbers, ĈN → C in probability as N →∞, so by Slutsky’s

theorem, for any fixed k ≥ 1, it is obtained that

lim
N→∞

W S
N ,k(m,ν)

P
→







0 if X ∼ Tm(a,Σ,ν),

c > 0 otherwise,

and

lim
N→∞

W P
N ,k(m,ξ)

P
→







0 if X ∼ Pm(a,Σ,ξ),

c > 0 otherwise,

where symbol ”
P
→ ” stands for convergence in probability and c is a constant that

depends on the distribution of X .

The distributions of W P
N ,k(m,ν) when X ∼ Tm(a,Σ,ν) and W P

N ,k(m,ξ) when X ∼
Pm(a,Σ,ξ) are unknown. An analytical derivation of these distributions seems dif-

ficult, because the random variables ĤN ,k and ĈN are not independent and their

covariance appears to be intractable, despite the fact that the asymptotic distribution

of ĤN ,k can be revealed by applying the results of [24, 30, 98] and [13] and that of

ĈN by the delta method. In the next section, these null distributions are investigated

using Monte Carlo methods.

3.4 Numerical experiments

3.4.1 Random samples

Random samples from Tm(a,Σ,ν) and Pm(a,Σ,ξ) can be generated according to the

stochastic representation

X = RBU + a,

where R is the distribution of the radial distance
�

(X − a)TΣ−1(X − a)
�1/2

, B is an

m×m matrix with BT B = Σ and U is uniformly distributed on the surface of a unit

m-sphere Sm−1. In particular,
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• R2 ∼ InvGamma(m/2, m/2) yields X ∼ Tm(a,Σ,ν);

• R2 ∼ Beta(m/2,ξ+ 1) yields X ∼ Pm(a,Σ,ξ).

Let Im be the m×m identity matrix. The distributions are investigated:

• Tm(ν) = Tm

�

0, Im, ν
�

for ν > 2 and

• Pm(ξ) = Pm

�

0, Im, ξ
�

for ξ > 1.

(a) Scatter plots for T2(ν) (b) Scatter plots for P2(ξ)

Figure 3.1: Scatter plots for the bivariate Student and Pearson II distributions.

For the case m= 2, points on scatter plots are generated for different values of ξ

and ν, see Figure 3.1a for Tm(α,Σ,ν) and Figure 3.1b for Pm(α,Σ,ξ). One can ob-

serve that as ν and ξ increase the Tm(α,Σ,ν) and Pm(α,Σ,ξ) distributions converge

to multivariate Gaussian and Uniform distributions respectively.
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3.4.2 Consistency

To investigate the consistency of W S
N ,k(m,ν) for various values of m and ν, M =

100 random samples of size N from the Tm(ν) distribution are generated with N

increasing from N = 500 to N = 5000 in steps of 500, and recording the value of

W S
N ,k(m,ν) for k = 1,2, 3 each time. The mean values of the statistics for k = 1

Figure 3.2: The asymptotic behaviour of W S
N ,k(m,ν) as N →∞ for k = 1. The statistic W S

N ,k(m,ν) increases with ν
and decreases with m.

are shown in Figure 3.2, where the length of the error bars is equal to the standard

deviation of the statistics around their mean values. The mean statistics for k = 1,2, 3

are shown in Figure 3.3, where it is evident that the statistic of W S
N ,k(m,ν) increases

with the parameter value ν, and decreases with the dimension m.
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Figure 3.3: The asymptotic behaviour of W S
N ,k(m,ν) as N →∞. The statistic of W S

N ,k(m,ν) increases with ν and
decreases with m.

For fixed N and (m,ν), a sample of size N from Tm(ν) distribution is generated

and the empirical value of W S
N ,k(m,ν) is recorded for a fixed k, and this is repeated

M = 103 times. This yields a sample realisation {W1, W2, . . . , WM} from the distribu-

tion of W S
N ,k(m,ν), from which its mean and variance are estimated by

W̄ S
N ,k(m,ν) =

1
M

M
∑

j=1

Wj and S2
N ,k(m,ν) =

1
M − 1

M
∑

j=1

(Wj − W̄ S
N ,k)

2.

Figure 3.2 shows how W̄ S
N ,k(m,ν) approach 0 as N increases for various value of

m ∈ (1, 2,3), ν ∈ (3,4, 5,6) and k = 1,2, 3 with error bar corresponding to the
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standard error SN ,k(m,ν). From these data, it is observed that the empirical variance

is decreasing when k increases. From the other hand, the bias or mean W̄ S
N ,k(m,ν)

is smaller for values of k or m. These result confirm the variance reduction of k-th

nearest neighbour estimators observed in [13].

Figure 3.4: Asymptotic behaviour of W P
N ,k(m,ξ) as N →∞ for k = 2.

The experiment for W P
N ,k(m,ξ) is repeated but this time with samples increasing

in size from N = 50 to N = 500 in steps of 50. The mean values of the statistics

for k = 2 are shown in Figure 3.4, where length of the error bars are equal to the

standard deviation of the statistics their mean values. The mean statistics for k =

1,2, 3 are shown in Figure 3.5: note that these are only defined for k > 1/ξ. The

convergence of W P
N ,k(m,ξ) is evidently much faster than that of W S

N ,k(m,ν), perhaps
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because the support of Pm(ξ) is bounded for any finite ξ > 0 while the support of

Tm(ν) is unbounded.

Figure 3.5: Asymptotic behaviour of W P
N ,k(m,ξ) as N →∞. Note that the statistic is defined only for k > 1/ξ.

Rates of convergence

In Figure 3.6 shows the convergence of W S
N ,k(m,ν) with m = 2, k = 1 and ν = 5 as

N →∞ together with the corresponding plot of log W S
N ,k(m,ν) against log N , which

suggests an empirical convergence rate of approximately O(N−1/2) as N →∞.

The experiment for W P
N ,k(m,ξ) is repeated with m = 2, k = 2 and ξ = 2. The

results are shown in Figure 3.7, which in this case suggests an empirical convergence
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rate of approximately O(N−2/3) as N →∞.

Figure 3.6: Asymptotic behaviour of W S
N ,k(m,ν) with m= 2, k = 1 and ν= 5.

Figure 3.7: Asymptotic behaviour of W P
N ,k(m,ξ) with m= 2, k = 1 and ξ= 2.

3.4.3 Empirical distribution of the test statistics

For different values of (N , k) and (m,ν), n = 100 random samples of size N from

the Tm(ν) distribution is generated, each time recording the value of W S
N ,k(m,ν).

The Shapiro-Wilk test is applied for normality to this random sample from the null

distribution of W S
N ,k(m,ν), and is recorded the probability value computed by the test

of Shapiro and Wilk [111]. This process is repeated M = 1000 times.

Figure 3.8 shows how the mean probability value behaves as N increases for

various values of m, k and ν. The experiment is repeated for the null distribution of

W P
N ,k(m,ξ). Figure 3.9 shows how the mean probability value behaves as N increases

for various values of m, k and ξ.
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Figure 3.8: Shapiro-Wilk probability values for W S
N ,k(m,ν) as N increases for different values of m, k and ν (100

repetitions).
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Figure 3.9: Shapiro-Wilk probability values for W P
N ,k(m,ξ) as N increases for different values of m, k and ξ (100

repetitions). Note that the statistic is only defined for k > 1/ξ.
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3.4.4 Point estimation

For fix ν0 and ξ0, we generate random points from Tm(a,Σ,ν) and Pm(α,Σ,ξ) for

k = 1 and m = 3 then compute the test statistics of W S
N ,k(m,ν) and W P

N ,k(m,ξ)

for different values of ν and ξ. The point estimator of ν̂ and ξ̂ are 4.7 and 2.8

respectively. Figures 3.10 and 3.11 illustrate the point estimator for νtrue and ξtrue

that can be computed by

• ν̂= argminν>2 W S
N ,k(m,ν) and

• ξ̂= argminξ>1 W P
N ,k(m,ξ) respectively.

Figure 3.10: W S
N ,k(m,ν) with N = 104, k = 1, m= 3 and ν0 = 4 (q0 = 0.86). The point estimate is ν̂= 4.7.

Figure 3.11: W P
N ,k(m,ξ) with N = 104, k = 1, m= 3 and ξ0 = 3 (q0 = 1.33).The point estimate is ξ̂= 2.8.
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Chapter 4

The entropy-based goodness-of-fit

tests for generalized von

Mises-Fisher distributions and

beyond

This chapter introduces the new classes of unimodal rotational invariant directional

distributions, which generalize von Mises-Fisher distribution. Three types of distri-

butions are proposed and one of them represents axial data. Each new type provides

formulas and short computational study of parameter estimators by method of mo-

ments and method of maximum likelihood. The main task of the chapter is to develop

the goodness-of-fit test to detect that sample entries follows one of the introduced

generalized von Mises-Fisher distribution based on the maximum entropy principle.

The chapter uses k-th nearest neighbor distances estimator of Shannon entropy and

proves its L2-consistence. The chapter also examines the behaviour of the test statis-

tics, finds critical values and compute power of the test on simulated samples. The

goodness-of-fit test is applied to local fiber directions in a glass fibre reinforced com-

posite material and the samples which follows axial generalized von Mises-Fisher

distribution are detected.

This chapter is organised as follows:

• Section 4.2 reviews the basic facts for von Mises-Fisher distribution.

• Section 4.3 introduces three types of generalized von Mises-Fisher distribu-

tions.

• Section 4.4 provides the Shannon entropies of generalized von Mises-Fisher

distributions and presents the maximum entropy principle for them. The sta-
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tistical estimation of an entropy is also discussed and the L2 convergence of

k-nearest neighbor estimators are proven.

• Section 4.5 devotes to the maximum likelihood estimators and estimators by

method of moments for generalized von Mises-Fisher distributions.

• Section 4.6 develops the goodness-of-fit test based on maximum entropy prin-

ciple for generalized von Mises-Fisher distributions.

• Section 4.7 shows the results of numerical experiments based on simulated

samples.

• Section 4.8 contains the application of the theory for real data set.

4.1 Introduction

Directional distributions characterize randomness to unit vectors (directions). Spher-

ical data sets appear in a wide range of problems arising from Earth sciences [102],

biology [91], and material science [33]. Directional data are important in cosmology

and astrophysics, for instance, in results of the Laser Interferometer Gravitational-

Wave Observatory [1] and the Alpha Magnetic Spectrometer on the International

Space Station [3]. Further applications and the modern state art of statistical theory

on directional data can be found in [77, 100] and references therein. The following

papers provide the most recent developments in directional statistics [52, 54, 55, 63,

77, 92, 104, 105, 106, 108, 109, 124, 125].

In this chapter, some group of random unit vectors are considered with values on

sphere Sd−1 := {x ∈ Rd : ∥x∥= 1}, which have the absolutely continuous directional

distributions with respect to the uniform distribution on Sd−1. The scalar product of

vectors a,b ∈ Rd is denoted by aT b and the Euclidean norm of a ∈ Rd is denoted by

∥a∥.
The von Mises-Fisher distribution is a fundamental isotropic distribution which is

widely used in directional statistics [86, p. 168]. It belongs to exponential family of

distributions, is rotational invariant and has a density proportional to exp(κµT x),x ∈
Sd−1, such that random vectors are concentrated with rate κ ∈ R along direction

µ ∈ Sd−1. The rotating invariant family of distributions is now being researched ex-

tensively [28, 35, 45, 93].

Among several important properties of the von Mises-Fisher distribution we focus

on maximum entropy characterization, that is, the von Mises-Fisher distribution has
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maximum entropy in the class of continuous distributions on Sd−1 with a given value

of EX [85]. The von Mises-Fisher distribution is widely used for analysis of neutrino

arrival directions recorded by the IceCube Neutrino Observatory, see e.g. [23, 31, 78]

and arrival directions of ultrahigh energy cosmic rays recorded by the Pierre Auger

Observatory, see e.g. [5, 20, 68].

There are several generalizations, including Fisher-Bingham distribution with a

density proportional to exp(κµT x+xT Ax),x ∈ Sd−1 [85], and generalized von Mises-

Fisher distribution of order k (GvMFk) introduced by [46], having the density pro-

portional to exp
�

∑k
j=1 κ j(µ jx)

r j
�

, where µ j ∈ Sd−1,κ j ∈ R, r j ∈ N, j = 1, . . . , k and

r1 ≤ . . .≤ rk.

This chapter introduces the new generalization of von Mises-Fisher distribution,

which stays in exponential family and rotational invariant with one mode. In contrast

to generalized von Mises-Fisher distribution of order k with integer powers r ∈ N,

densities with arbitrary positive power r ∈ R+ are considered. The motivation of

such choice is to provide the analogue of a generalized Gaussian distribution for

random vectors on a unit sphere. To accomplish this, the following three types of

distributions of order α ∈ R+ are introduced, whose densities f are proportional to

Type I, GvMF1,d(α,κ,µ) : f (x)∝ exp
�κ

α
(µT x)<α>

�

,x ∈ Sd−1,

Type II, GvMF2,d(α,κ,µ) : f (x)∝ exp
� κ

2αα
∥x−µ∥2α

�

,x ∈ Sd−1,

Axial Type, GvMF3,d(α,κ,µ) : f (x)∝ exp
�κ

α
|µT x|α

�

,x ∈ Sd−1,

where κ ∈ R is a concentration parameter, and µ ∈ Sd−1 is a mean direction param-

eter. The whole chapter denotes x<α> by |x |αsgn(x), x ∈ R.

Beside the study of the properties, simulations and parameter estimation for dis-

tributions GvMF j,d , ( j = 1,2, 3), the goodness-of-fit test based on the estimation of

the Shannon entropy and independent identically distributed (i.i.d.) sample are de-

veloped. These tests exploit the so-called maximum entropy principle, which is also

proven in [83] as spherical analogous of results.

In addition, the entropy estimators ĤN ,k derived from k-th nearest neighbor dis-

tances is employed. Starting from the pioneering paper of Kozachenko and Leonenko

[71], which proves by direct probability methods the consistency of ĤN ,1 for random

vectors with values in Euclidean space, a large number of authors consider to extend

the set of admissible distributions and improve the convergence of ĤN ,k, see [13, 18,

30, 38, 39, 44, 49, 75, 76], and the references therein. In the papers of [79] and
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[90] , the k-th nearest neighbor entropy estimation are generalized for hyperspheri-

cal distributions.

Unlike the above mentioned works, the limit theory for point processes with a

fixed k allows to prove the Lp-consistency of functionals of k-th nearest neighbor dis-

tances for a wider class of distributions. The nearest neigbors method of estimation

of the Shannon entropy for manifolds, including spheres, was developed by [99]. In

this chapter, the aim is to continue their work and prove the L2-consistency of ĤN ,k,

as N →∞ with arbitrary k ≥ 1 and for a random vector on a Riemannian manifold

if its density is bounded and has compact support, see Theorem 4.4.6. Therefore,

it is shown that ĤN ,k is a consistent estimator for the samples from the introduced

generalized von Mises-Fisher distributions.

From the recent papers, [13] is mentioned, where the efficient entropy estimation

is provided via the weighted k-nearest neighbour distances with k = kN depending

on sample size N . Moreover, Berrett and Samworth [12] introduced a non-parametric

entropy-based test of independence for multidimensional data. Lund and Jammala-

madaka [82] considered the entropy-based test of goodness-of-fit for the von Mises

distribution on the circle and use a different entropy estimate. The study in this chap-

ter is motivated, particularly, by the work of Chapter 1, where the entropy-based

goodness-of-fit test for generalized Gaussian distribution is given.

The theoretical results are verified by computational study on simulated samples

and the inflation of variances of ĤN ,k is shown as k growths, which confirms the con-

clusion of [13]. Moreover, the evidence of generalized von Mises-Fisher distributions

is detected in the real world data by the presented entropy-based goodness-of-fit test.

Particularly, the parts in 3D images of a glass fibre reinforced composite material are

examined, where fiber directions follow a generalized von Mises-Fisher distribution

of axial type.

4.2 Preliminaries

This section provides some known facts needed for the sequel. Letσ(dx) be spherical

measure on the sphere Sd−1. It can be written in polar coordinates x = (1,u),u ∈
Sd−1 as σ(dx) = 2−1π−d/2Γ (d/2) du. Further, Lemma 2.5.1 from [40] is used for

computation of integrals with respect to σ. Namely, let g : R→ R+ be a non-negative

Borel function and a ∈ Sd−1, then

∫

xT x=1

g(aT x)σ(dx) =
2π(d−1)/2

Γ ((d − 1)/2)

∫ 1

−1

g(y)(1− y2)
d−3

2 d y. (4.1)
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The parameters κ ∈ R, µ ∈ Sd−1, d ≥ 2 are taken and further the probability densities

is considered with respect to the measure σ.

Definition 4.2.1. A unit random vector X has the (d−1)-dimensional von Mises-Fisher

distribution vMF1,d(µ,κ) if its probability density function is

fX(x) = (κ/2)
d/2−1 (2πd/2 Id/2−1(κ))

−1 exp(κµT x), x ∈ Sd−1,

where Iν is the modified Bessel function of order ν≥ 0, see e.g., [59, (A5)].

Note that the modified Bessel function of the Iν (see 9.6.18 in [36]) is given by

Iν(z) =
(z/2)ν

p
νγ (ν+ 1/2)

∫ π

0

e±z cosν sin2ν νdν.

In the case d = 3, von Mises-Fisher distribution M1,3(µ,κ) is called Fisher distri-

bution and its density simplifies to κ/(4π sinhκ)exp(κµT x),x ∈ S2. The density

of vMF1,d can be written in the alternative form. We say that a random vector X

has the von Mises-Fisher distribution vMF2,d(µ,κ) if its density function is fX(x) =

eκ (κ/2)d/2−1 (2πd/2 Id/2−1(κ))−1 exp
�

−κ∥x−µ∥2/2
�

, x ∈ Sd−1. Indeed, κ2∥x−µ∥
2 =

κ
2∥x∥

2 + κ
2∥µ∥

2 − κµT x = κ− κµT x for x,µ ∈ Sd−1. Let us recall the standard direc-

tional statistics.

Definition 4.2.2. Let X be random vector with values in Sd−1 and EX ̸= 0. A mean

direction of X is a vector EX/∥EX∥. A mean resultant length is ∥EX∥.

The mean resultant length is invariant and the mean direction is equivalent under

rotation. Formally, let U ∈ SO(d) be a rotation matrix, SO(d) is that we will derive

the basis functions for their irreducible representations which will be used to obtain

the corresponding characters and to demonstrate their orthogonality in [86], then

∥EUX∥= ∥EX∥ and EUX/∥EUX∥= UEX/∥EX∥.
Consider the class of distributions on Sd−1 with rotational symmetry, that is their

distribution functions have a form f (x) = g(µT x), x,µ ∈ Sd−1, e.g. [15]. Such

random vectors X posses a tangent-normal decomposition

X= (µT X)µ+
Æ

1− (µT X)2Y, (4.2)

where µT X and Y are independent, µ ⊥ Y, and Y is uniformly distributed on the

tangent space Sd−1
µ := {y ∈ Sd−1|µT y = 0}. It follows from (4.2), that the mean

resultant length is ∥EX∥= E[µT X] and the mean direction equals µ.
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4.3 Generalized von Mises-Fisher distributions

This section introduces the generalizations of the von Mises-Fisher distribution. κ ∈
R is named a concentration parameter and µ ∈ Sd−1 is named a mean direction

parameter.

Definition 4.3.1. A unit random vector XXX has the (d − 1)-dimensional Type I gener-

alized von Mises-Fisher distribution GvMF1,d(α,κ,µ) of order α > 0 if its probability

density function with respect to the uniform distribution is

fXXX (x) = c1,d(κ,α)exp
�κ

α
(µT x)<α>

�

,x ∈ Sd−1, (4.3)

where

c1,d(κ,α) =

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

0

�

e
κ
α yα + e−

κ
α yα
�

(1− y2)
d−3

2 d y

�−1

. (4.4)

As an analogue of von Mises-Fisher distribution in the form vMF2,d , the following

class is introduced.

Definition 4.3.2. A unit random vector XXX has the (d − 1)-dimensional type II gener-

alized von Mises-Fisher distribution GvMF2,d(α,κ,µ) of order α > 0 if its probability

density function with respect to the uniform distribution is

fXXX (x) = c2,d(κ,α)exp
�

−
κ

2αα
∥x−µ∥2α

�

,x ∈ Sd−1, (4.5)

where

c2,d(κ,α) =

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

0

�

e−
κ
α (1−y)α + e−

κ
α (1+y)α

�

(1− y2)
d−3

2 d y

�−1

. (4.6)

In the case of α = 1, the introduced distributions GvMF1,d and GvMF2,d become

the von Mises-Fisher distributions vMF1,d and vMF2,d respectively.

If we do not distinguish opposite directions we deal with axial. Commonly used

technique in this case is to consider symmetric density functions f such that f (x) =

f (−x),x ∈ Sd−1. Since the motivation is to stay in the class of rotational invariant

densities and to generalize the von Mises-Fisher distribution, the following model is

proposed for an axial data.

Definition 4.3.3. A unit random vector XXX has the (d−1)-dimensional axial generalized

von Mises-Fisher distribution GvMF3,d(α,κ,µ) (or distribution of axial type) of order

α > 0 if its probability density function with respect to the uniform distribution is

fXXX (x) = c3,d(κ,α)exp
�κ

α
|µT x|α

�

,x ∈ Sd−1, (4.7)
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where κ ∈ R, µ ∈ Sd−1 and

c3,d(κ,α) =

�

4π
d−1

2

Γ
� d−1

2

�

∫ 1

0

e
κ
α yα(1− y2)

d−3
2 d y

�−1

. (4.8)

Remark 4.3.1. Let us check that
∫

Sd−1 fXXX (x)σ(dx) = 1. Then, the constant c1,d(κ,α)

equals
�∫

Sd−1

exp
�κ

α
(µT x)<α>

�

σ(dx)

�−1

(4.1)
=

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

−1

exp
�κ

α
y<α>

�

(1− y2)
d−3

2 d y

�−1

=

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

0

�

e
κ
α yα + e−

κ
α yα
�

(1− y2)
d−3

2 d y

�−1

.

Similarly, the constant c2,d(κ,α) equals

�∫

Sd−1

exp
�

−
κ

2αα
∥x−µ∥2α

�

σ(dx)

�−1

=

�∫

Sd−1

exp
�

−
κ

α

�

1−µT x
�α
�

σ(dx)

�−1

(4.1)
=

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

−1

exp
�

−
κ

α
(1− y)α

�

(1− y2)
d−3

2 d y

�−1

=

�

2π
d−1

2

Γ
� d−1

2

�

∫ 1

0

�

e−
κ
α (1−y)α + e−

κ
α (1+y)α

�

(1− y2)
d−3

2 d y

�−1

.

Remark 4.3.2. As usual for axial distributions, parameter µ is defined up to a sign, in

a sense that GvMF3,d(α,κ,µ) and GvMF3,d(α,κ,−µ) are equal. In the case α= 2, the

generalized von Mises-Fisher distribution of axial type reduces to the Watson distribu-

tion.

Remark 4.3.3. For d = 3 and α= 1, one can represent an expansion of the von Mises-

Fisher vMF1,3(µ,κ) density into the series of orthogonal functions Y m
l ,−l ≤ m ≤ l, l =

0,1, 2, . . . , on the sphere (real spherical harmonics, see e.g., [59, p. 437], e.g., [87, S.

13.2]). For example, [59, (5)] gives

f (x) =
∞
∑

l=0

√

√2l + 1
4π

Il+1/2(κ)

I1/2(κ)
Y 0

l (µ
T x),x ∈ S2,

which can be used potentially for computational purposes. However, it is difficult for

general α to express coefficients of expansions in terms of some known special functions

(this is true even for α= 2, see formulae (7) and (8) in [59]).
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Note that the orthogonality of spherical harmonics can be defined as
∫

Sd−1

Y m
e (γ,θ )Y m′

e′ (γ,θ )σ(dγ, dθ ) = δe′
e δ

m′
m ,

where Y m
e ,−e ≤ m≤ e, e = 0,1, 2, . . . , on the sphere.

4.3.1 Moments

This section considers the moments of GvMF j,d(α,κ,µ), j = 1,2, 3 distributions. De-

note by

A1(κ,α,β) =

∫ 1

0

e
κ
α yα yβ(1− y2)

d−3
2 d y, (4.9)

A2(κ,α,β) =

∫ 2

0

e
−κ
α yαa(2− y)

d−3
2 y

d−3
2 +βd y. (4.10)

Proposition 4.3.1. Let β ≥ 0 and X∼ GvMF1,d(α,κ,µ), then

E
�

(µT X)<β>
�

=
A1(κ,α,β)− A1(−κ,α,β)
A1(κ,α, 0) + A1(−κ,α, 0)

. (4.11)

Proof. Let f be the density of the form (4.3), then

E
�

(µT X)<β>
�

=

∫

Sd−1

(µT x)<β> f (x)σ(dx)

(4.1)
= c1,d(κ,α)

2π
d−1

2

Γ
� d−1

2

�

∫ 1

−1

y<β> exp
�κ

α
y<α>

�

(1− y2)
d−3

2 d y

= c1,d(κ,α)
2π

d−1
2

Γ
� d−1

2

�

∫ 1

0

�

e
κ
α yα − e−

κ
α yα
�

yβ(1− y2)
d−3

2 d y

=

∫ 1
0

�

e
κ
α yα − e−

κ
α yα
�

yβ(1− y2)
d−3

2 d y
∫ 1

0

�

e
κ
α yα + e−

κ
α yα
�

(1− y2)
d−3

2 d y
.

Particularly, the mean direction of X ∼ GvMF1,d(α,κ,µ) is µ and its mean resul-

tant length equals

∥E[X]∥= E[µT X] =
A1(κ,α, 1)− A1(−κ,α, 1)
A1(κ,α, 0) + A1(−κ,α, 0)

. (4.12)

Proposition 4.3.2. Let β ≥ 0 and X∼ GvMF2,d(α,κ,µ), then

E∥X−µ∥2β = 2β
A2(κ,α,β)
A2(κ,α, 0)

. (4.13)
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Proof. Let f be the density of the form (4.5), then

E∥X−µ∥2β =
∫

Sd−1

∥x−µ∥2β f (x)σ(dx) =

∫

Sd−1

(2− 2µT x)β f (x)σ(dx)

(4.1)
= c2,d(κ,α)

2π
d−1

2

Γ
� d−1

2

�

∫ 1

−1

(2− 2y)β exp
�

−
κ

α
(1− y)α

�

(1− y2)
d−3

2 d y

= 2β
∫ 1
−1(1− y)β e−

κ
α (1−y)α(1− y2)

d−3
2 d y

∫ 1
−1 e−

κ
α (1−y)α(1− y2)

d−3
2 d y

= 2β
∫ 2

0 e−
κ
α zα(2− z)

d−3
2 z

d−3
2 +βdz

∫ 2
0 e−

κ
α zα(2− z)

d−3
2 z

d−3
2 dz

.

Particularly, the mean direction of X ∼ GvMF2,d(α,κ,µ) is µ and its mean resul-

tant length equals

∥E[X]∥= E[µT X] = 1−
A2(κ,α, 1)
A2(κ,α, 0)

. (4.14)

Proposition 4.3.3. Let β ≥ 0 and X∼ GvMF3,d(α,κ,µ), then

E
�

|µT X|β
�

=
A1(κ,α, 1)
A1(κ,α, 0)

. (4.15)

Proof. Let f be the density of the form (4.7), then

E
�

|µT X|β
�

=

∫

Sd−1

|µT x|β f (x)σ(dx)

(4.1)
= c3,d(κ,α)

2π
d−1

2

Γ
� d−1

2

�

∫ 1

−1

|y|β exp
�κ

α
|y|α

�

(1− y2)
d−3

2 d y

=

∫ 1
0 e

κ
α yα yβ(1− y2)

d−3
2 d y

∫ 1
0 e

κ
α yα(1− y2)

d−3
2 d y

.

Note that the mean direction of X∼ GvMF3,d(α,κ,µ) is not defined and its mean

resultant length ∥E[X]∥= E[µT X] equals 0.

4.4 Entropy

This section finds the entropy of generalized von Mises-Fisher distributions, and

shows the maximum entropy principle for them. Then, the statistical estimation of an
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entropy is discussed and the L2 convergence of the k-th nearest neigbour estimator

is proven for random variables on compact manifolds.

4.4.1 Maximum entropy principle for generalized von-Mises Fisher

distributions

Recall that the entropy of a continuous random vector X ∈ Sd−1 with a density f is

H(X) = −
∫

Sd−1

(log f (x)) f (x)σ(dx). (4.16)

For a density version f , its support is denoted by supp f = {x ∈ Sd−1 : f (x) > 0}.
Clearly, the integral in H(X) is taken over supp f .

Theorem 4.4.1. Let X j ∼ GvMF j,d(α,κ,µ), j = 1,2, 3, then

H(X1) = − log c1,d(κ,α)−
κ

α
E
�

(µT X1)
<α>

�

, (4.17)

H(X2) = − log c2,d(κ,α) +
κ

2αα
E∥X2 −µ∥2α (4.18)

H(X3) = − log c3,d(κ,α)−
κ

α
E|µT X3|α. (4.19)

Proof. Let X1 have density f1, then the entropy of X1 equals

−
∫

Sd−1

(log f1(x)) f1(x)σ(dx) = − log c1,d(κ,α)

∫

Sd−1

f1(x)σ(dx)

−
κ

α

∫

Sd−1

(µT x)<α> f1(x)σ(dx) = − log c1,d(κ,α)−
κ

α
E
�

(µT X1)
<α>

�

.

For X2 with density f2 it follows that

H(X2) = −
∫

Sd−1

(log f2(x)) f2(x)σ(dx) = − log c2,d(κ,α)

∫

Sd−1

f2(x)σ(dx)

+
κ

2αα

∫

Sd−1

∥x−µ∥2α f (x)σ(dx) = − log c2,d(κ,α) +
κ

2αα
E∥X2 −µ∥2α.

For X3 with density f3

H(X3) = −
∫

Sd−1

(log f3(x)) f3(x)σ(dx) = − log c3,d(κ,α)

∫

Sd−1

f3(x)σ(dx)

−
κ

α

∫

Sd−1

∥(µT X3)∥α f (x)σ(dx) = − log c3,d(κ,α)−
κ

α
E|µT X3|α.
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Theorem 4.4.2. Let a unit random vector Z ∈ Sd−1 have a generalized von Mises-

Fisher distribution GvMF1,d(α,κ,µ). Then Z has the maximum entropy value over all

continuous random variables X on Sd−1 with

E
�

(µT X)<α>
�

= E
�

(µT Z)<α>
�

. (4.20)

Proof. Let X be a random unit vector on Sd−1, d ≥ 2 such that (4.20) holds true. Let

f and f ∗ be the densities of X and Z respectively. By Jensen’s inequality,
∫

Sd−1

f (x) log f ∗(x)σ(dx)−
∫

Sd−1

f (x) log f (x)σ(dx)

=

∫

Sd−1

f (x) log
f ∗(x)
f (x)

σ(dx)≤ log

�∫

Sd−1

f (x)
f ∗(x)
f (x)

σ(dx)

�

= 0

with equality if and only if f = f ∗ almost everywhere with respect to the Lebesgue

measure on Sd−1. So,

H(X) = −
∫

Sd−1

f (x) log f (x)σ(dx)≤ −
∫

Sd−1

f (x) log f ∗(x)σ(dx). (4.21)

In this case f ∗(x) = log c1,d(κ,α) + κ
α |µ

T x|<α>,x ∈ Sd−1 and hence

H(X)≤ −
∫

Sd−1

f (x) log f ∗(x)σ(dx)

= − log c1,d(κ,α)−
κ

α

∫

Sd−1

|µT x|<α> f (x)σ(dx)

= − log c1,d(κ,α)−
κ

α
E
�

(µT X)<α>
�

= − log c1,d(κ,α)−
κ

α
E
�

(µT Z)<α>
�

= − log c1,d(κ,α)−
κ

α

∫

Sd−1

(µT x)<α> f ∗(x)σ(dx)

= −
∫

Sd−1

f ∗(x) log f ∗(x)σ(dx) = H(Z).

The maximum entropy principle for generalized von Mises-Fisher distribution of

Type II has the following form.

Theorem 4.4.3. Let a unit random vector Z ∈ Sd−1 have a generalized von Mises-

Fisher distribution GvMF2,d(α,κ,µ). Then Z has the maximum entropy value over all

continuous random variables X on Sd−1 with

E∥X−µ∥2α = E∥Z−µ∥2α. (4.22)
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Proof. Let f and f ∗ be the densities of X and Z respectively. The proof is similar to

Theorem 4.4.2. Indeed, f ∗(x) = log c2,d(κ,α)− κ
2αα∥x−µ∥

2α,x ∈ Sd−1 and hence

H(X)≤ −
∫

Sd−1

f (x) log f ∗(x)σ(dx)

= − log c2,d(κ,α) +
κ

2αα

∫

Sd−1

∥x−µ∥2α f (x)σ(dx)

= − log c2,d(κ,α) +
κ

2αα
E∥X−µ∥2α = − log c2,d(κ,α) +

κ

2αα
E∥Z−µ∥2α

= − log c2,d(κ,α) +
κ

2αα

∫

Sd−1

∥x−µ∥2α f ∗(x)σ(dx)

= −
∫

Sd−1

f ∗(x) log f ∗(x)σ(dx) = H(Z).

Theorem 4.4.4. Let a unit random vector Z ∈ Sd−1 have an axial generalized von

Mises-Fisher distribution GvMF3,d(α,κ,µ). Then Z has the maximum entropy value

over all continuous random variables X on Sd−1 with

E|µT X|α = E|µT Z|α. (4.23)

Proof. The proof is similar to Theorems 4.4.2 and 4.4.3. In this case, f ∗(x) = log c3,d(κ,α)+
κ
α |µ

T x|α,x ∈ Sd−1 and

H(X)≤ − log c3,d(κ,α)−
κ

α

∫

Sd−1

|µT x|α f (x)σ(dx)

= − log c3,d(κ,α)−
κ

α
E|µT X|α = − log c3,d(κ,α)−

κ

α
E|µT Z|α = H(Z).

4.4.2 Entropy estimation

This section gives the method of an entropy estimation for unit random vectors. Ac-

tually, the phase-state is extended to the arbitrary compact Riemannian manifold.

Let m, d ∈ N, m ≤ d, andM be a m−dimensional C1 manifold embeded in Rd

with the atlas ((Ui , gi), i ∈ I0), i.e., for each y ∈M there exists an open subset Ui of

Rm and a continuously differentiable injection gi : Ui → Rd , such that y ∈ gi(U) ⊂
M , and gi is an open map from Ui toM , and the linear map g ′i(u) has full rank for

all u ∈ Ui .
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For bounded measurable h :M → R, the integral
∫

M h(y)ν(d y) is defined by
∫

M
h(y)ν(d y) =

∑

i∈I0

∫

Ui

h(gi(x))ψi(gi(x))
q

det(Jgi
(x))T (Jgi

(x))d x ,

where ν is a σ−finite measure onM , Jgi
is the Jacobian of gi and {ψi , i ∈ I0} is the

partition of unity, see [99, pp. 3-4] and [11, Chapter 2] for more detailed setting.

Let f : M → R+ be a probability density of independent random elements

X , X i , i ∈ Nwith values inM , i.e.,
∫

M f (x)ν(d x) = 1. Denote byXN = {X1, . . . , XN},
N ≥ k the samples of the first N elements. The entropy of X equals

H(X ) = −
∫

M
log( f (x)) f (x)ν(d x).

Let F be a finite subset of {X i , i ≥ k} and ρk(x , F) be the Euclidean distance between

x and its k-th nearest neighbor in F \ {x}. Let γ ≈ 0.5772 be the Euler-Mascheroni

constant.

Definition 4.4.1. The k-th nearest neighbour estimator of the entropy H(X ) is defined

by

ÒHN ,k(XN ) =
1
N

N
∑

i=1

log
�

ρm
k (X i ,XN )Vm(N − 1)e−ψ(k)

�

, (4.24)

where

ψ(k) =
k−1
∑

j=1

1
j
− γ, Vm =

πm/2

Γ (1+m/2)
.

Recall that for k = 1, ψ(1) = −γ with γ= 0.57726... is the Euler constant, while

for k ≥ 1,ψ(k) = −γ+Ak−1, with A0 = 0, and A j =
∑ j

i=1
1
i , so that exp{ψ(k)}/k→ 1

as k → ∞. For example, if k = 1, then the nearest neighbor distances estimator

(NNE) is

ÒHN ,1(XN ) =
m
N

N
∑

i=1

logρ1(X i ,XN ) + log Vm + γ+ log(N − 1). (4.25)

Let us start the L2-consistency of ÒHN ,k by writing down the particular case of

theorem of [99, Theorem 3.1] for the functional

ξ(x ,X ) := log
�

e−ψ(k)Vmρ
m
k (x ,X )

�

. (4.26)

Theorem 4.4.5. Let k ≥ 1 put q = 1 or q = 2. Suppose there exists p ≥ q such that

sup
N≥k
E
�

�

�ξ
�

N
1
m X1, N

1
mXN

�

�

�

�

p
<∞. (4.27)



60
Chapter 4. The entropy-based goodness-of-fit tests for generalized von Mises-Fisher

distributions and beyond

Then as N →∞ we have Lq convergence

1
N

∑

x∈XN

ξ
�

N
1
m x , N

1
mXN

�

→
∫

M
E[ξ

�

0,P f (x)
�

] f (x)ν(d x), (4.28)

where Pλ denotes a homogeneous Poisson point process of intensity λ > 0 in Rm (em-

bedded in Rd).

For the bounded random variables X i , i ≥ 1 and ρk(x ,XN ), we generalize Lemma

7.8 from [99], which was proved for the case k = 1.

Lemma 4.4.1. Let f is bounded and has compact support onM , then for anyδ ∈ (0, m)

sup
N≥k

ρδk

�

N
1
m X1, N

1
mXN

�

<∞.

Proof. The proof is very similar to [99, Lemma 7.8]. Recall that M has the atlas

((Ui , gi), i ∈ I0), where I0 = {1, . . . , i0}, and there exist δi , x i , i ∈ I0 such thatM ∈
∪i∈I0

Bδi
(yi).

Denote Ai = Bδi
\ ∪ j<iBδ j

(y j). Since supp( f ) is bounded then there exist i0 ∈ N
and constant C > 0 such that

E
�

N
δ
mρδk (X1,XN )

�

= N
δ
m−1E

 

∑

x∈XN

ρδk (x ,XN )

!

≤ N
δ
m−1





i0
∑

i=1

∑

x∈Ai∩XN

ρδk (x , Ai ∩XN ) + C



 . (4.29)

Now, we prove that for all finite Y ⊂ Ai

∑

x∈Y
ρδk (x ,Y )≤ Ci [card(Y )]1−

δ
m ,

where Ci > 0. Let Y ⊂ Ai and y j ∈ Y be a the j-th nearest neighbor of x ∈ Y .

Taking z j ∈ Y such that g−1
i (z j) to be j-th nearest neighbor of g−1

i (x) in g−1
i (Y ), it

is obtained from [99, Lemma 4.1] that

ρk(x ,Y ) =max{∥y1 − x∥, . . . ,∥yk − x∥} ≤max{∥z1 − x∥, . . . ,∥zk − x∥}

≤ Ci max
�



g−1
i (z1)− g−1

i (x)




 , . . . ,




g−1
i (zk)− g−1

i (x)






	

= Ciρk(g
−1
i (x), g−1

i (Y )).
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Thus, from [129, Lemma 3.3] we have for any δ ∈ (0, m)
∑

x∈Ai∩XN

ρδk (x , Ai ∩XN )

≤ Ci[diam(g−1
i (Ai ∩XN ))]

δ[card(g−1
i (Ai ∩XN ))]

1− δm ≤ C̃iN
1− δm .

Hence, the right hand side of (4.29) is bounded above uniformly.

Now we prove the L2 convergence of the k-th nearest neighbor estimator

ÒHN ,k(XN ) =
1
N

∑

x∈XN

ξ
�

N
1
m x , N

1
mXN

�

, (4.30)

which is an extension from the case k = 1 to k ≥ 1 of Theorem 2.4 from [99].

Theorem 4.4.6. Suppose f is bounded and has compact support. Then for every fixed

k ≥ 1

E
�

ÒHN ,k(XN )−H(X )
�2→ 0 as N →∞. (4.31)

Proof. Theorem 4.4.5 is applied. First, E[ξ (0,Pλ)] is computed, where

ξ
�

0,P f (x)
�

= log Vm −ψ(k) +m logρk(0,Pλ).

The random variable ρk(0,Pλ) is the distance to the kth point of Pλ from 0 and

{ρk(0,Pλ) ≤ t} = {[x ∈ Pλ, x ∈ Bt(0)(t)] ≥ k}. Random variable [x ∈ Pλ, x ∈
Bt(0)(t)] has Erland distribution. Therefore, ρk(0,Pλ) also has the Erlang distribu-

tion with parameters k and λ|Bt(0)|= λtmVm, that is

P(ρk(0,Pλ)≤ t) = P(Pλ ∩ Bt(0)≥ k)

= 1−
k−1
∑

j=0

1
j!

e−λ|Bt (0)|(λ|Bt(0)|) j = 1−
k−1
∑

j=0

1
j!

e−λtmVm(λtmVm)
j , t ≥ 0.

Then

mE[logρk(0,Pλ)] =
∫ ∞

0

log tm (λVm)k(tm)(k−1)

(k− 1)!
e−λVm tm

mtm−1d t

= − log(λVm) +

∫ ∞

0

log y
yk−1

(k− 1)!
e−y d y

= − logλ− log Vm +ψ(k).

Thus, repeating the lines of proof of Theorem 2.1.3 in Chapter 2, it is obtained that
∫

M
E[ξ

�

0,P f (x)
�

] f (x)ν(d x) = −
∫

M
(log f (x)) f (x)ν(d x) = H(X ).
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Second, condition (4.27) is checked. Note that for every δ ∈ (0,1) and p > 1 there

exists C > 0 such that | log t|p ≤ C t−δ1[0,1](t) + C tδ1[1,∞)(t), t > 0. Then

E
�

�

�ξ
�

N
1
m X1, N

1
mXN

�

�

�

�

p
≤ 2p−1 |log Vm −ψ(k)|

p

+ 2p−1E
�

�

�logρm
k

�

N
1
m X1, N

1
mXN

�

�

�

�

p
≤ 2p−1 |log Vm −ψ(k)|

p

+ 2p−1CEρ−δk

�

N
1
m X1, N

1
mXN

�

1[0,1]

�

ρδk

�

N
1
m X1, N

1
mXN

��

(4.32)

+ 2p−1CEρδk
�

N
1
m X1, N

1
mXN

�

1[1,∞)

�

ρδk

�

N
1
m X1, N

1
mXN

��

. (4.33)

Term (4.32) is finite because

sup
N≥k
Eρ−δk

�

N
1
m X1, N

1
mXN

�

1[0,1]

�

ρδk

�

N
1
m X1, N

1
mXN

��

≤ sup
N≥k
Eρ−δ1

�

N
1
m X1, N

1
mXN

�

<∞, (4.34)

where (4.34) is ensured by [99, Lemma 7.5] if f is bounded and δ ∈ (0, m). Hence,

for (4.27) to be satisfied, it remains to show that

sup
N≥k
Eρδk

�

N
1
m X1, N

1
mXN

�

<∞. (4.35)

Thus, applying Lemma 4.4.1 we get that (4.35) holds true if 0< δ < m.

The 2-dimensional sphere S2 is a compact manifold with d = 3 m = 2 and ν =

σ. Thus, Theorem 4.4.3 is valid for all bounded densities on S2, the k-th nearest

neighbour estimator has the form

ÒHN ,k(XN ) =
2
N

N
∑

i=1

logρk(X i ,XN )−ψ(k) + log(N − 1) + logπ,

and ÒHN ,k(XN )→ H(X ) in L2(Ω). This yields that ÒHN ,k(XN ) is a consistent estimator

of the Shannon entropy.

4.5 Estimation of parameters

4.5.1 Fisher’s maximum likelihood estimation

LetXN = {x1, . . . ,xN} be a random sample. The log-likelihood l(XN ) is written down

for random samples from the introduced generalized von Mises-Fisher distributions.
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Lemma 4.5.1. Let X j,N ∼ GvMF j,d(α,κ,µ), j = 1,2, 3 then

l(X1,N ) = N log c1,d(κ,α) +
κ

α

N
∑

i=1

(µT xi)
<α>, (4.36)

l(X2,N ) = N log c2,d(κ,α)−
κ

2αα

N
∑

i=1

∥xi −µ∥2α, (4.37)

l(X3,N ) = N log c3,d(κ,α) +
κ

α

N
∑

i=1

|µT xi|α. (4.38)

Proof. The statements follow from the direct calculation of l(XN ).

For each case, numerical methods are used to find the maximum likelihood esti-

mates (µ̂L , κ̂L , α̂L) of (µ,κ,α) which maximize the log-likelihoods (4.36)-(4.38).

The problem becomes easier when parameter α is known. In such a case, the

maximum likelihood estimates is derived taking derivatives of (4.36)-(4.38). The

estimator of µ and κ is defined as

• Let XN ∼ GvMF1,d(α,κ,µ), then µ̂L = arg maxµ∈Sd−1

∑N
i=1(µ

T xi)<α>,

A1(κ̂L ,α,α)− A1(−κ̂L ,α,α)
A1(κ̂L ,α, 0) + A1(−κ̂L ,α, 0)

=
1
N

N
∑

i=1

(µT
L xi)

<α>.

• Let XN ∼ GvMF2,d(α,κ,µ), then µ̂L = argminµ∈Sd−1

∑N
i=1 ∥xi −µ∥2α,

2α
A2(κ̂L ,α,α)
A2(κ̂L ,α, 0)

=
N
∑

i=1

∥xi − µ̂L∥
2α.

• Let XN ∼ GvMF3,d(α,κ,µ), then µ̂L = argmaxµ∈Sd−1

∑N
i=1 |µ

T xi|α,

A1(κ̂L ,α,α)
A1(κ̂L ,α, 0)

=
1
N

N
∑

i=1

|µ̂T
L xi|α.

4.5.2 Method of moments and generilized von Mises-Fisher

distributions of I and II types

This section considers parameter estimation of generilized von Mises-Fisher distribu-

tions based on moments estimation. In the case of non-axial random vector X ∈ Sd−1,
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it is assumed that ∥EX∥ ≠ 0. It is known from Definition 4.2.2 that µ̂ := X̄N/∥X̄N∥,
where X̄N =

1
N

∑N
i=1 xi , is the natural estimator for mean direction parameter µ. In

order to find estimates for parameters α and κ at least two more moment statis-

tics are needed. A standard approach involves the use of resultant length. For

the second relations, E(sgn{XT
1EX1}) and E(∥x2 − µ∥4) are chosen for vectors X j ∼

GvMF j,d(α,κ,µ)( j = 1, 2). Applying (4.12) and (4.14), one can get the estimators

κ̂, α̂ as a solution of the following equations

A1(κ̂, α̂, 1)− A1(−κ̂, α̂, 1)
A1(κ̂, α̂, 0) + A1(−κ̂, α̂, 0)

= ∥X̄1,N∥

A1(κ̂, α̂, 1)− A1(−κ̂, α̂, 1)
A1(κ̂, α̂, 0) + A1(−κ̂, α̂, 0)

=

∑N
i=1 sgn(x T

i )X̄1,N

N∥X̄1,N∥
;

A2(κ̂, α̂, 1)
A2(κ̂, α̂, 0)

= 1− ∥X̄2,N∥,
A2(κ̂, α̂, 1)
A2(κ̂, α̂, 0)

=
1

4N

N
∑

i=1













x i −
X̄2,N

∥X̄2,N∥













4

for the samples X1,N ∼ GvMF1,d(α,κ,µ) and X2,N ∼ GvMF2,d(α,κ,µ), respectively.

Remark 4.5.1. If the parameter α is known, the problem of moment estimation can be

reduced to the solution of one equation. Namely,

A1(κ̂,α, 1)− A1(−κ̂,α, 1)
A1(κ̂,α, 0) + A1(−κ̂,α, 0)

= ∥X̄1,N∥, and
A2(κ̂,α, 1)
A2(κ̂,α, 0)

= 1− ∥X̄2,N∥.

In the case of a symmetrically distributed random vector X ∈ Sd−1,EX = 0 and

the value of EX/∥EX∥ is not defined. Recall the tangent-normal decomposition (4.2)

of a random vector X ∈ Sd−1, that is X = µξ+
p

1− ξ2Y, where µ ∈ Sd−1 is a mean

direction parameter, ξ is a random variable on [−1, 1] independent of a uniformly

distributed random vector Y ∈ Sd−2 such that µ⊥ Y.

To find relations which determine the parameter µ and distribution ξwe consider

an orientation tensor T (X) given by

T (X) = XXT = ξ2µµT + ξ
Æ

1− ξ2
�

µYT + YµT
�

+ (1− ξ2)YYT . (4.39)

Therefore, the mean orientation tensor is

ET (X) = E[XXT ] = µµTEξ2 + (1−Eξ2)EYYT . (4.40)
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Theorem 4.5.1. Let a random vector X has a representation as above, i.e., X = µξ+
p

1− ξ2Y. Then

µµT =

√

√ d − 1
dE[X(ET (X))XT ]− 1

�

ET (X)−
1
d

Id

�

+
1
d

Id , (4.41)

Eξ2 =
1
d
+

√

√d − 1
d

√

√

E[X(ET (X))XT ]−
1
d

, (4.42)

Eξ4 = E
�

XTET (X)X−
1−Eξ2

d − 1

�2
d − 1

dE[X(ET (X))XT ]− 1
. (4.43)

where Id is d × d identity matrix.

Proof. Let Uµ ∈ SO(d), such that µ = Uµex , where ex = (1, 0, . . . , 0)T . Denote by

Ỹ = U−1
µ Y. The vector Ỹ is uniformly distributed on Sd−2 with the first coordinate

equal 0. Then X= Uµ
�

ξex +
p

1− ξ2Ỹ
�

and

EXXT = Uµ
�

exeT
xEξ

2 + (1−Eξ2)EỸỸT
�

U−1
µ .

It follows from the symmetry that EỸỸT = 1
d−1

�

0 0

0 Id−1

�

. Therefore,

EXXT = Uµ

�

exeT
xEξ

2 +
1−Eξ2

d − 1
(Id − exeT

x )

�

U T
µ

= Eξ2µµT +
1−Eξ2

d − 1
(Id −µµT ). (4.44)

Thus, µµT = d−1
dEξ2−1

�

EXXT − 1−Eξ2

d−1

�

. Then consider XTET (X)X. From (4.44), it fol-

lows that

XTET (X)X= XTµµT XEξ2 +
1−Eξ2

d − 1
(1−XTµµT X) = ξ2Eξ2 +

1−Eξ2

d − 1
(1− ξ2).

and E[XTET (X)X] = (Eξ2)2 + (1−Eξ
2)2

d−1 . This yields

Eξ2 =
1
d
+

√

√d − 1
d

√

√

E[X(EXXT )XT ]−
1
d

and

µµT =

√

√ d − 1
dE[X(EXXT )XT ]− 1

�

EXXT −
1
d

Id

�

+
1
d

Id .

Finally,

E
�

XTET (X)X−
1−Eξ2

d − 1

�2

=

�

dEξ2 − 1
d − 1

�2

Eξ4.
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Note that for an axial vector X, the random variable ξ has a symmetric distribution

on [−1,1], therefore Eξ = 0. So, if ξ has two-dimensional parametric distribution,

one get from Theorem 4.5.1 the parameter estimates for ξ.

Theorem 4.5.1 is applied for the random sampleXN = {x1, . . . ,xN} from GvMF3,d(α,κ,µ).

Denote by T̄ = 1
n

∑n
i=1 xixi

T . Then Eξ2 = E(µT x1)2 and Eξ4 = E(µT x1)4 are given

in Proposition 4.3.3.

Corollary 4.5.1.1. Let XN ∼ GvMF3,d(α,κ,µ) and denote by T̄ = 1
n

∑n
i=1 xixi

T and

V̄ = 1
N

∑N
i=1 xi T̄xi

T . Then (4.41)-(4.43) hold true and

µ̂µ̂T =

√

√ d − 1

dV̂ − 1

�

T̂ −
1
d

Id

�

+
1
d

Id ,
A1(κ̂, α̂, 2)
A1(κ,α, 0)

=
1
d
+

√

√d − 1
d

√

√

V̂ −
1
d

,

A1(κ,α, 4)
A1(κ,α, 0)

=
d − 1

(dV̂ − 1)N

N
∑

i=1

�

xi T̄xi
T −

1
d
−

p

dV̂ − 1

d
p

d − 1

�2

.

Thus, if X∼ GvMF1,d(α,κ,µ), then the estimator for κ is the solution of equation

∥x̄∥= A1,d(κ̂,α, 1).

Lemma 4.5.2. Let α > 0,β > 0. Then for any κ > 0 and R ∈ (0,1) there exists a

unique solution of equation A1,d(κ,α, 1) = R.

Proof. Obviously, A1,d(·,α, 1) is a continuous function.

If X∼ GvMF2,d(α,κ,µ), then κ̂ is the solution of

∥x̄∥= R̄= 1−
A2,d(κ̂,α, 1)

A2,d(κ̂,α, 0)
.

Remark 4.5.2. Let us write down other further characteristics of X ∼ GvMF2,d(α,κ,µ)

in terms of function A2,d . Then

c2,d(κ,α) =

�

2π
d−1

2

Γ
� d−1

2

�A2,d(κ,α, 0)

�−1

,

E∥X−µ∥2 = 2
A2,d(κ̂,α, 1)

A2,d(κ̂,α, 0)
, E∥X−µ∥α = 2α

A2,d(κ̂,α,α)

A2,d(κ̂,α, 0)
.
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4.6 Goodness-of-fit test based on the maximum entropy

principle

This section provides the statistical test for verification that a random sample follows

a generalized von Mises-Fisher distribution. The methodology for all three intro-

duced distributions is very similar. For simplicity, detailed explanation for the Type

II distribution is provided.

4.6.1 Type II

Denote by GvMF2,d the class of generalized von Mises-Fisher distributions GvMF2,d(α,κ,µ),

α > 0, κ > 0 and µ ∈ Sd−1. Let XN = {x1, . . . ,xN , } be a random sample of vectors

on a sphere Sd−1 and x j
d
= X, j = 1, . . . , N with unknown distribution.

Let Z∼ GvMF2(α,κ,µ). From (4.10), (4.13) and Theorem 4.4.3 it is known that

H(Z)≥ H(X) for all continuous random vectors X ∈ Sd−1 with

E∥X−µ∥2α = E∥Z−µ∥2α = 2α
A2(κ,α,α)
A2(κ,α, 0)

.

Using Theorem 4.4.1, we get

inf
α,κ>0,
µ∈Sd−1

�

− log c2,d(κ,α) +
κ

α

A2(κ,α,α)
A2(κ,α, 0)

�

�

�

�

E∥X−µ∥2α = 2α
A2(κ,α,α)
A2(κ,α, 0)

�

(4.45)

does not exceed H(X). Moreover, equality in (4.45) appears if and only if X belongs to

some distribution from the family GvMF2,d . The unobservable value of E∥X−µ∥2α is

substituted by its statistical counterpart 1
N

∑N
i=1 ∥x1−µ∥2α and the statistics S2(XN )

is defined by

inf
α,κ>0,
µ∈Sd−1

¨

− log c2,d(κ,α) +
κ

α

A2(κ,α,α)
A2(κ,α, 0)

�

�

�

�

∑N
i=1 ∥xi −µ∥2α

N2α
=

A2(κ,α,α)
A2(κ,α, 0)

«

.

Consider the value under inf in S2(XN ). Under the condition

1
N2α

N
∑

i=1

∥xi −µ∥2α =
A2,d(κ,α,α)

A2(κ,α, 0)
,

it follows that

− log c2,d(κ,α)+
κ

α

A2(κ,α,α)
A2(κ,α, 0)

= −

�

log c2,d(κ,α)−
κ

α2α
1
N

N
∑

i=1

∥xi −µ∥2α
�

= −
l2(XN )

N
.
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Then,

S2(XN ) = −
1
N

sup
α,κ>0,
µ∈Sd−1

¨

l(XN )

�

�

�

�

�

∑N
i=1 ∥xi −µ∥2α

N2α
=

A2(κ,α,α)
A2(κ,α, 0)

«

.

Let us consider unconditional maximization of log-likelihood l2(XN ). Partial deriva-

tive with respect to κ equals

∂ l2(XN )
∂ κ

=
∂

∂ κ

�

log
Γ
� d−1

2

�

2π
d−1

2

− log A2(κ,α, 0)−
κ

α2α
1
N

N
∑

i=1

∥xi −µ∥2α
�

=
1
α

A2(κ,α,α)
A2(κ,α, 0)

−
1

α2αN

N
∑

i=1

∥xi −µ∥2α,

where ∂
∂ κA2(κ,α, 0) = − 1

αA2(κ,α,α) is used. Thus, the supremum in S2(XN ) with

respect to κ coincides with the unconditional supremum of l2(XN ) and

S2(XN ) = −
1
N

sup
α,κ>0,
µ∈Sd−1

l2(XN ). (4.46)

LetΘ0 be a compact subset ofR2
+ large enough to contain all values of parameters

(α,κ) appearing in practice. Consider the following hypotheses

• H2,0 : XN ∼ GvMF2,d , for some (α,κ) ∈ Θ0, and µ ∈ Sd−1,

• H2,1 : XN ̸∼ GvMF2,d for all (α,κ) ∈ Θ0 and µ ∈ Sd−1.

Since Θ0 is compact, maximum likelihood estimators α̂L , κ̂L are consistent. The-

orem 4.4.6 is proven that the k-th nearest neighbor estimator ÒHN ,k of H(X) is L2−
consistent for any k ∈ N. Thus, H2,0 vs. H2,1 are tested with the statistic

T̂ L
2,k(XN ) := − log c2,d(κ̂L , α̂L) +

κ̂L

α̂L

A2(κ̂L , α̂L , α̂L)
A2(κ̂L , α̂L , 0)

− ÒHN ,k (4.47)

which tends in probability to 0, as N →∞. H0 with level of significance β is rejected

if |T̂ L
2,k(XN )| ≥ xβ , where xβ is a critical value determined by PH0

(|T̂ L
2,k(XN )| ≥ xβ)≤

β . The usage of maximum likelihood estimates will yields the higher power of the

test.

Remark 4.6.1. It is easy to see that maximum likelihood estimates of α,κ, estimator
ÒHN ,k and the statistics T̂ L

2,k are rotational invariant.
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Furthermore, by Slutsky’s theorem, the maximum likelihood estimates of α,κ in

(4.47) can be replaced by any consistent estimates α̂, κ̂. Indeed, if x1 ∼ GvMF2,d(α,κ,µ)

under hypothesis H2,0, then

2α̂
A2(κ̂, α̂, α̂)
A2(κ̂, α̂, 0)

P
−−−−→
N→∞

2α
A2(κ,α,α)

A2,d(κ,α, 0)
= E∥x1 −µ∥α

and

T̂2,k(XN ) := − log c2,d(κ̂, α̂) +
κ̂

α̂

A2(κ̂, α̂, α̂)
A2(κ̂, α̂, 0)

− ÒHN ,k
P

−−−−−→
under H0

H(x1)−H(x1) = 0

as N →∞.

The critical values xβ can be found by Monte Carlo simulations of test statistics

T̂ L
2,N or T̂2,N .

4.6.2 Type I and axial data

The goodness-of-fit test for the axial generalized von-Mises distribution and the dis-

tribution of the Type I are constructed similarly to Type II distributions. Let Θ0 be a

compact subset of R2
+ large enough to contain all values parameters (α,κ) appearing

in practice. Let j = 1, 3 and consider the following hypotheses

• H j,0 : X ∼ GvMF j,d for some (α,κ) ∈ Θ0 and µ ∈ Sd−1,

• H j,1 : X ̸∼ GvMF j,d for all (α,κ) ∈ Θ0 and µ ∈ Sd−1.

For testing H1,0 vs. H1,1 the statistic T̂1,N is used given by

T̂1,k(XN ) := − log c1,d(κ̂, α̂)−
κ̂

α̂

A1(κ̂, α̂, α̂)− A1(−κ̂, α̂, α̂)
A1(κ̂, α̂, 0) + A1(−κ̂, α̂, 0)

− ÒHN ,k, (4.48)

where α̂, κ̂ are some consistent estimates of α,κ.

For the axial distribution, H3,0 vs. H3,1 are tested by the test statistic T̂3,N given

by

T̂3,k(XN ) := − log c3,d(κ̂, α̂)−
κ̂

α̂

A1(κ̂, α̂, α̂)
A1(κ̂, α̂, 0)

− ÒHN ,k, (4.49)

where α̂, κ̂ are some consistent estimates of α,κ.

Remark 4.6.2. Note that our goodness-of-fit tests do not detect some particular gener-

alized von Mises-Fisher distribution but tell whether a sample belongs to the parametric

family GvMF j,d , j = 1,2, 3.
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4.7 Numerical experiments

This section provides the method for simulation of GvMF j,d distributed random vec-

tors and study the behaviour of the test statistic T̂ j,k on simulated samples j = 1, 2,3.

4.7.1 Simulation

Let X j ∼ GvMF j,d(α,κ,µ), j = 1,2, 3. Due to the tangent-normal decomposition

X j = (µ
T X j)µ+

q

1− (µT X j)2Yj,

where Yj, j = 1,2, 3 are orthogonal to µ and uniformly distributed on Sd−2. There-

fore, in order to simulate X j it can be easily simulated random vectors Yj and inde-

pendent random variables µT X j . Let us find the distributions of µT X j j = 1,2, 3. The

probability densities f j of µT X j are given in [77, (2.22)] or can be found by applying

(4.1).

Lemma 4.7.1. The random variables µT X1,µT X2, and µT X3 have probability densities

f1, f2, and f3 respectively, given by

f1(y) =
2π

d−1
2 c1,d(κ,α)

Γ
� d−1

2

� exp
�κ

α
y<α>

�

(1− y2)
d−3

2 , y ∈ [−1, 1], (4.50)

f2(y) =
2π

d−1
2 c2,d(κ,α)

Γ
� d−1

2

� exp
�

−
κ

α
(1− y)α

�

(1− y2)
d−3

2 , y ∈ [−1, 1], (4.51)

f3(y) =
2π

d−1
2 c3,d(κ,α)

Γ
� d−1

2

� exp
�κ

α
|y|α

�

(1− y2)
d−3

2 , y ∈ [−1,1]. (4.52)

Proof. Consider µT X1. It follows from (4.1) that

P(µT X1 ≤ u) = c1,d(κ,α)

∫

∥x∥=1

1{µT x≤ u}exp
�κ

α
|µT x|<α>

�

σ(dx)

=c1,d(κ,α)
2π

d−1
2

Γ
� d−1

2

�

∫ 1

−1

1{y ≤ u}exp
�κ

α
|y|<α>

�

d y =

∫ u

−1

f1(y)d y.

The cases of µT X2 and µT X3 are similar.

Applying described procedure of simulation several samples of generalized von

Mises-Fisher distributions are obtained with 1000 entries on 2-dimensional sphere

deferred in the Appendix C the locations of samples entries on a unit sphere and the

corresponding histograms and probability densities of random variables µT Xi , (i =
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1,2, 3). One can observe that larger values of parameter κ corresponds to more

concentrated samples along direction µ.

A short computational study of the parameter estimation methods is provided

from sections 4.5.1 and 4.5.2 in the Appendix C.

The method of moments is preferable for Types I and II, if the computing power

plays a decisive role. For axial data this method has no such advantages because we

need to operate with an orientation tensor. The experiments show that the speed of

convergence α̂ → α and κ̂ → κ depend on the values of α and κ and the speed of

convergence of κ̂→ κ is more quickly than α̂→ α. The section can also conclude that

the errors of maximum likelihood estimators are generally less than the estimators of

moment. Comparing the errors by the distribution type, it is observed that samples

of Type II very often carry the smallest error.

4.7.2 Entropy estimation

This section applies k-NNE estimator (4.24) to the simulated set of samples. The esti-

mator ÒHN ,k(XN ) is computed and let us denote the sample variances of entropy esti-

mation as sVar(ÒHN ,k(α,κ)) for k = 1,2, 3,4, 5, κ ∈ {0.1,0.5, 1,1.5, 2,2.5, 3,4, 5,6, 7},
and α ∈ {0.5,1, 1.5,2, 2.5,3}. Figure 4.1 illustrates the distribution of ÒHN ,k(XN )with

k = 3 by histograms for samples simulated from distributions GvMF j,3(1.5,2, ·), j =

1, 2,3.

(a) Type I (b) Type II (c) Axial type

Figure 4.1: Histograms of ĤN ,3(XN ), XN ∼ GvMF j,3(α,κ, ·) with α= 1.5 and κ= 2.

In order to choose the right value of k the sample variances sVar(ÒHN ,k(α,κ)) is

compared for k = 1, 2,3, 4,5. The minimum and maximum values of sVar(ÒHN ,k(α,κ))

with respect to α and κ are presented in Table 4.1. These results confirm the conclu-

sion in [13], that is, the asymptotic variance of ÒHN ,k decreases rapidly up to k = 3.
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One can observe that k-th nearest neighbor estimates depend on values α and κ.

Although, the sample variances are quite small for all examined values of α and κ

and sample size N = 1000.

Table 4.1: Sample variance sVar(ÒHN ,k(α,κ)) for distribution of Type I

Distribution k = 1 k = 2 k = 3 k = 4 k = 5
GvMF1,3(α,κ, ·) minα,κ(sVar) 0.00214 0.00092 0.00058 0.00042 0.00034

maxα,κ(sVar) 0.00388 0.00239 0.00208 0.00185 0.00152
GvMF2,3(α,κ, ·) minα,κ(sVar) 0.00212 0.00093 0.00059 0.00043 0.00034

maxα,κ(sVar) 0.00404 0.00304 0.00275 0.00152 0.00257
GvMF3,3(α,κ, ·) minα,κ(sVar) 0.00212 0.00093 0.00059 0.00043 0.00034

maxα,κ(sVar) 0.00334 0.00207 0.00170 0.00152 0.00144

Thus, we choose k = 3 for computations in the next sections.

4.7.3 Test statistic

This section presents our study of the goodness-of-fit tests from Section 4.6 and their

test statistics T̂ j,k(XN ), j = 1, 2,3 from (4.47), (4.48) and (4.49) with k = 3 and

N = 1000. We compute T̂ L
j,k(XN ) and T̂ M

j,k(XN ) separately with maximum likelihood

estimates and moment estimates of parameters α,κ, respectively.

For comparison of different types of estimates, the fact that we look on the sam-

ple variances sVar(T̂ M
j,3(α,κ)) and sVar(T̂ L

j,3(α,κ)) of T̂ M
j,3(XN ) and T̂ L

j,3(XN ), respec-

tively, for all combinations of parameters κ ∈ {0.1, 0.5,1,1.5, 2,2.5, 3,4, 5,6, 7} and

α ∈ {0.5, 1,1.5, 2,2.5, 3}. The minimum and maximum values of sVar(T̂ M
j,3(α,κ)) and

sVar(T̂ L
j,3(α,κ)) are presented in Table 4.2. Numbers in this table demonstrate signif-

icant benefits of the maximum likelihood estimator over the method of moments for

distributions of I and II types. For axial data, one can also prefer T̂ L
j,k. Additionally,

one can observe from Table 4.2 and tables with errors of estimates κ̂L , κ̂M , α̂L , α̂M

that the statistics T̂ M
j,k and T̂ L

j,k are much more accurate than estimators of param-

eters and they have small variances even for small α,κ in contrast to α̂, κ̂, whose

deviations are large.

Section 4.6 chooses the two-sided test with rejection criteria |T̂ L
j,k| > xβ . This

choice is confirmed by histograms T̂ L
j,3 with α= 1.5 and κ= 2, see Figure 4.2.

It is seen that the statistics T̂ L
j,3 have approximately symmetric distribution with

mode at 0. Therefore, the rejection region is put as (−∞,−xβ)∪ [xβ ,+∞), where

critical values xβ are obtained as a sample quantiles PH0
(|T̂i,3|> xβ , j)≤ β , j = 1, 2,3.

The corresponding values of xβ , j with significance level β = 0.05 are presented in

Table 4.3 for T̂ L
1,3, in Table 4.4 for T̂ L

2,3, and in Table 4.5 for T̂ L
3,3.
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Table 4.2: Sample variances sVar(T̂ j,3(α,κ))

The method of moments Maximum likelihood method
Distribution GvMF1,3 GvMF2,3 GvMF3,3 GvMF1,3 GvMF2,3 GvMF3,3

minα,κ(sVar) 0.000563 0.000538 0.000573 0.000558 0.000535 0.000544
maxα,κ(sVar) 0.001014 0.001558 0.000734 0.000665 0.000688 0.000667

(a) GvMF1,3 (b) GvMF2,3 (c) GvMF3,3

Figure 4.2: Histograms of T̂ L
j,3(XN ),XN ∼ GvMF j,3(α,κ, ·) with α= 1.5 and κ= 2.

Table 4.3: Critical values xβ ,1 for test statistic T̂ L
1,3 and β = 0.05 with respect to α (rows) and κ (columns), multiplied

by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.884 4.626 5.128 5.281 5.069 4.960 4.726 4.999 5.132 5.360 5.301
1 4.727 4.792 4.879 4.736 4.757 4.843 4.920 5.217 4.951 5.278 5.091

1.5 4.935 4.914 4.657 4.731 4.745 4.879 4.849 4.995 5.152 4.990 5.009
2 4.916 4.873 4.839 4.982 4.801 4.987 4.752 4.934 4.829 5.076 5.010

2.5 4.916 4.921 5.276 4.932 4.854 4.852 4.711 4.700 4.860 4.983 5.373
3 4.687 4.821 4.783 4.626 4.926 4.704 4.656 4.690 4.631 4.706 4.844

Table 4.4: Critical values xβ ,2 for test statistic T̂ L
2,3 and β = 0.05 with respect to α (rows) and κ (columns), multiplied

by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.921 4.795 4.750 4.962 4.711 5.015 4.742 5.182 5.430 5.374 5.388
1 4.718 4.688 4.858 4.937 4.996 4.829 4.870 5.065 5.234 5.287 5.449

1.5 4.698 4.916 4.943 4.714 4.824 4.988 4.964 4.613 4.975 5.267 5.263
2 4.920 4.989 4.852 4.611 4.890 4.869 5.147 5.037 4.941 5.423 5.217

2.5 5.066 4.753 5.034 4.805 4.768 4.930 4.973 5.346 5.283 5.138 5.074
3 4.713 4.417 4.731 4.907 5.001 5.007 4.870 5.023 5.015 5.083 5.116
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Table 4.5: Critical values xβ ,3 for test statistic T̂ L
3,3 and β = 0.05 with respect to α (rows) and κ (columns), multiplied

by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7
0.5 4.932 5.095 4.843 4.863 5.040 4.995 5.000 5.477 5.810 5.219 5.527
1 4.956 4.793 4.636 4.912 4.896 4.873 4.959 5.251 5.196 5.565 5.917

1.5 4.620 4.873 4.781 4.892 4.839 5.006 4.806 4.824 5.016 5.239 5.370
2 4.727 5.049 4.804 4.567 4.811 4.651 4.842 4.999 4.836 5.162 5.191

2.5 4.925 4.799 4.938 4.831 4.735 4.834 5.024 4.739 4.917 4.899 4.703
3 4.960 4.901 4.904 4.649 5.037 4.843 4.898 4.852 4.828 4.895 4.974

The study of the goodness-of-fit test’s power is also provided for the samples from

Fisher-Bingham distribution. We put µ1 = (1,0, 0)T and µ2 = (0,
p

2/2,
p

2/2)T and

consider the following series of hypotheses.

For Type I:

• H1
0 : XN ∼ GvMF1,3,

• H1
1, j : X has the Fisher-Bingham distribution with density ∝ exp(3µT

1 x +

0.35 j(µT
2 x)2), x ∈ S2, j = 1, . . . , 20.

For axial type:

• H2
0 : XN ∼ GvMF3,3,

• H2
1, j :XN has the Fisher-Bingham distribution with density∝ exp(0.05 j(µT

1 x)+

6(µT
2 x)2), x ∈ S2, j = 1, . . . , 20.

For each j = 1, . . . , 20, 500 samples X 1
j,N are simulated under H1

1, j and X 2
j,N under

H2
1, j with sample size N = 1000. The simulation procedure from the R package is used

“Directional” in [118]. In order to simplify replacements, H1
0 and H2

0 are rejected if

|T̂ L
1,3(X

1
j,N )| > x (1)

β
and |T̂ L

2,3(X
2
j,N )| > x (2)

β
respectively, where critical values x (1)

β
=

0.05373 and x (2)
β
= 0.05917 are taken as maximum of xβ from Tables 4.3 and 4.5

for significance level β = 0.05.

The ratios of rejections H1
0 and H2

0 are presented in Figure 4.3.
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(a) Type I, 0.35 j on the x−axis. (b) Axial type, 0.05 j on the x−axis.

Figure 4.3: Powers of goodness-of-fit tests H1
0 vs H1

1, j (left) and H2
0 vs H2

1, j (right),
j = 1, . . . , 20.

(a) (b)

Figure 4.4: Testing on a glass fibre reinforced composite material.(a) 3D image of a glass fibre reinforced (b)
Maximum likelihood estimates of α composite material. 970× 1469× 1217 and κ for each subsample X1 voxels,
spacing: 4µm.

4.8 Application to a real data set

This section applies the introduced goodness-of-fit test to the data set consists of fiber

directions in a glass fibre reinforced composite material. The 3D-images of a fibre

composite obtained by micro computed tomography and are provided by the Institute

for Composite Materials (IVW) in Kaiserslautern, Germany, see Figure 4.4a (left).

The detailed description of the material can be found in [126] and it was the object
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of studies in [34] and [33], where the regions of anomaly behaviour of the fibres were

found. The data set is provided by Prof. Claudia Redenbach (TU Kaiserslautern) and

consists of local direction of fibres estimated by the tools of MAVI software [42].

Each data set entry Yk, k = ([1, 97] × [1,80] × [1, 64]) ∩ N3 is the average of fibre

local directions in small observation windows W̃ with 75×75×75 voxels each. Note

that some of such windows can be empty or they might contain not enough material

for direction computation. JW is denoted the collection of indexes k such that Yk is

non-empty. In the cosidered data set |JW | = 430741 and its precise construction is

given in [34].

The estimating procedure of directions in MAVI software produces vectors on a

unit sphere which are not necessarily symmetrically distributed. However, the fibres

are not oriented, therefore an axial distribution of their directions is expected. The

symmetrization of original sample is proposed by XN = {Xk = Ykξk,k ∈ JW }, where

ξk,k ∈ JW are i.i.d random variables with P(ξk = +1) = P(ξk = −1) = 1
2 . The

whole material into blocks Wl are separated, each of size 16 × 15 × 16, such that

Jl = JW ∩ [l1, l1 + 16) × [l2, l2 + 15) × [l3, l2 + 16), l = (l1, l2, l3) and consider sub-

samples Xl = {Xk,k ∈ Jl} with simple sizes 2736≤ |Xl| ≤ 3745. For each subsample

Xl the introduced goodness-of-fit test is provided for distributions GvMF3,3, i.e., the

following is tested

• H0,l : Xl ∼ GvMF3,3

• H1,l : Xl ̸∼ GvMF3,3.

At first, the maximum likelihood estimation of parameters α and κ (for the variety

of their values α̂l and κ̂l see Figure 4.4b) is provided. Second, we need to simulate

the samples of statistics T̂3,k(Xl) under hypothesis Xl ∼ GvMF3,3(α̂l, κ̂l, ·) based on

samples sizes |Xl|. Unfortunately, our computational resources was limited and we

have to group simulations with close values of α̂l and κ̂l. One can observe that the

majority of α̂l belongs to the interval [3, 11] and the ratios κ̂l
α̂l

are mostly in [3, 7].

Therefore, we simulate 800 samples YN ∼ GvMF3,3(α,κ, ·) each of size N = 3500

for all combinations of α ∈ {4, 6,8, 10} and κ
α ∈ {4, 6} to obtain the corresponding

empirical distributions of T̂3,3(YN ).

Then, the statistics values of T̂3,3(Xl) are computed for each l and their p-values.

It is obtained that the goodness-of-fit test rejects almost all hypotheses H0,l with sig-

nificance level 0.05, and detects 3 regions with directional distributions GvMF3,3 (see

Table 4.6 for the samples Xl with p−values greater than 0.01). In order to illustrate

how tight the fitted distributions are, two blocks Wl are presented with l= (49, 61,1)
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and l = (49,61, 1), the QQ-plots for samples {µ̂T
l Xk} and distribution f3 defined in

(4.52) with parameters (α̂l, κ̂l, ·), see Figure 4.5.

Table 4.6: Results of goodness-of-fit tests H0,l vs. H1,l for fiber directions in glass fibre reinforced composite material.

l1 l2 l3 |Xl| α̂ κ̂ ĤN ,3 T̂3,3(Xl) p−value
49 46 1 3434 8.80 53.90 0.4369 0.02344 0.0775
49 61 1 3222 8.53 47.62 0.7132 0.01976 0.1234
49 16 17 3474 8.84 53.63 0.4690 0.02987 0.0263
49 61 17 3364 10.22 60.91 0.4628 0.02946 0.0263
1 46 65 3319 7.25 36.45 1.0455 0.02057 0.1275

For each type of distributions GvMF1,3,GvMF2,3, GvMF3,3 1000 samples are sim-

ulated with N = 1000 entries each for several values of α ∈ {0.5,1, 1.5,2, 2.5,3}
and κ ∈ {0.5, 1,1.5, 2,2.5, 3,4, 5,6, }. For each sample, the maximum likelihood esti-

mates µ̂L , α̂L , κ̂L and moment estimates µ̂M , α̂M , κ̂M are computed. The sample mean

square errors of α̂L and α̂M is presented in Tables C.1 (type I), C.3 (type II), and C.5

(axial type). The mean square errors of κ̂L and κ̂M can be found in Tables C.2 (Type

I), C.4 (Type II), and C.6 (axial data). We group error values of κ̂L , κ̂M and α̂L , α̂M

in order to decide which method is more appropriate for parameter estimation. If

computing power is a factor, the method of moments is appropriate for Types I and

II. This method has no advantages for axial data because it requires the usage of an

orientation tensor.

(a) l= (49, 61,1), α̂l = 8.53, κ̂l = 47.62 (b) l= (1, 46,65), α̂l = 7.25, κ̂l = 36.45

Figure 4.5: QQ plots for samples µ̂T
l Xl and distributions with density f3 (4.52).
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Chapter 5

Conclusions

The main results from each chapter of the thesis will be presented here. This chapter

also discusses some possible future works.

5.1 Research summary

Chapter 1 contains the review of the Shannon and Rényi entropies and the statistical

methods of their estimation. It includes the properties of Shannon and Rényi entropy

for discrete and continuous distributions.

The maximum Shannon entropy principle and the k-th nearest neighbour dis-

tances method of Shannon entropy are used in Chapter 2 to offer a non-parametric

goodness-of-fit test for a class of multivariate generalized Gaussian distributions.

Some basic explanations and notations which are associated with the multivariate

generalized Gaussian distribution are defined in terms of entropy-based test. For

an arbitrary fixed k ≥ 1, the proof of L2 consistency is presented for the k-th near-

est neighbour distance estimator of the Shannon entropy. Based on the maximum

entropy principle, a non-parametric goodness-of-fit test is constructed for a class of

implemented generalized multivariate Gaussian distributions. In addition to, N ran-

dom points from the generalized Gaussian distribution are generated to figure out the

function of empirical probability, cumulative and log-density of generalized Gaussian

distribution for different values of s parameter. The simulation procedure from the

Python package is used. The asymptotic behaviour of test statistic is provided for dif-

ferent values of m-dimension, s-parameter and the k-th nearest neighbour distances

as N tends to infinity. For a fixed (N , k) and (m, s), we generate a sample of size N

from the generalized Gaussian distribution is generated and the empirical value of

the test statistic is recorded, by repeating this M = 250 times. This yields a sample

realisation from the distribution of test statistic, from which we estimate its mean

and variance. Moreover, under the null hypothesis, data from the generalized Gaus-
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sian distribution are generated and the behaviour of the test statistic is examined

where the value is approaching to zero. Under the alternative hypothesis, data from

the multivariate Student-t distribution are generated and the behaviour of the test

statistic is investigated where the value is approaching a constant. It is also defined

that how p-values behave as the sample size increases. The simulation part suggests

that the null hypothesis cannot be rejected for samples of size N = 200 or more. To

each of these 200 samples from the distribution of the test statistic, then we apply

the Shapiro-Wilk test is applied for normality [111] and the p-value returned by the

test is recorded. One can visually observe that the distributions of the generalized

Gaussian and multivariate Student-t distribution are hardly distinguishable. There-

fore, the goodness-of-fit test for detecting the generalized Gaussian distribution is

applied.

Chapter 3 introduces a class of the Rényi entropy based on an independent iden-

tically distributed sample that is drawn from an unknown distribution f inRm. Then,

a non-parametric test of goodness-of-fit is presented for a classes of multivariate Stu-

dent and Pearson type II (or Barenblatt) distributions based on the maximum Rényi

entropy principle and consistency of the k-th nearest neighbour distance estimator

for arbitrary fixed k ≥ 1. The k-th nearest neighbours estimator of Rényi entropy

is also used to prove L2- accuracy. The asymptotic behaviour of the test statistics

on data obtained from the multivariate Student and Pearson type II distributions are

proposed in Chapter 3. The tests are supported by Monte-Carlo simulation.

In Chapter 4, the new classes of unimodal rotational invariant directional dis-

tributions that generalize the von Mises-Fisher distributions are introduced. This

chapter proposes three different types of distributions, one of which is for axial data.

Formulas and a brief computational analysis of parameter estimators are provided

using the method of moments and the method of maximum likelihood for each new

type, moreover some basic facts regarding the von Mises-Fisher distribution are de-

scribed. The aim of Chapter 4 is to establish a goodness-of-fit test to decide if sample

entries follow one of the introduced the generalized von Mises-Fisher distributions

based on the concept of the maximum entropy. On simulated samples, we analyse the

behaviour of the test statistics is analysed, critical values are found, and the power

of the test is computed. In a glass fibre reinforced composite material, we use the

goodness-of-fit test to identify samples that follow the axial generalized von Mises-

Fisher distribution. Moreover, Chapter 4 is dedicated to the Shannon entropy of gen-

eralized von Mises-Fisher distributions and the maximum entropy principle. Then,

the statistical estimation of entropy is discussed and the L2 convergence of the k-th
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nearest neighbor estimator is proven for random variables on compact manifolds.

5.2 Future research directions

For further investigation and relevant research directions, there are some interesting

questions which can be considered for future research study. It would be beneficial

to use the k-th nearest neighbour method for the estimator Tsallis entropy and use

the test goodness-of-fit for other exponentially family. Some of them are written in

below.

Problem 1. To investigate the nearest neighbour estimates for the Tsallis entropy

in [119]

HT = HT (X ) = HT
q ( f ) =

1
q− 1

�

1−E f q−1(X )
�

=
1

q− 1

�

1−
∫

Rm

f q(x) d x

�

and variance of entropy for a random vector X with pdf f is defined as

Var{− log f (X )}= E[log f (X )]2 −H(X )2,

where the Shannon entropy

H(X ) = E{− log f (X )}.

Problem 2. To investigate entropy based tests for generalized Gaussian, Student

and Pearson type II distribution using a weighted average of k-th nearest neighbour

estimates or efficient k-th nearest neighbour estimates proposed by Berrett, Sam-

worth and Yuan [13].

Problem 3. To construct the goodness-of-fit test for other classes of multivariate

distributions such as multivariate Gamma, Exponential and normal inverse Gaussian.

Problem 4. To investigate the nearest neighbour estimates of (non-symmetric)

statistical distances between two distributions with densities f and g, such as Kullback-

Leibler divergence

K( f , g) =

∫

Rm

f (x) log
f (x)
g(x)

d x ,

Bregman divergence

Dq( f , g) =

∫

Rm

�

gq(x) +
1

q− 1
f q(x)−

q
q− 1

f (x)gq−1(x)
�

d x , q ̸= 1,
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based on two samples.

Problem 5. To generalize the nearest neighbour method for dependent observa-

tions.
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Appendix A

Lower bound on Shannon entropy

Below, some essentials about lower bounds of Shannon entropy are presented. Firstly,

it is shown that there exist densities such that −∞ = H( f ) <∞. An example of

Gnedenko and Kolmogorov is modified [47, p.223]. For other examples, see [8].

Example 1. Let m= 1 and consider the density

f (x) =
h

x log2 e
x

i−1
1[0,1](x), x ∈ R. (A.1)

If X is random variable with density (A.1), then for s = 1

EX = E|X |=
∫ 1

0

h

log2 e
x

i−1
dx = 1− E1(1)≃ 0.40365..., (A.2)

where

Ep(z) = zp−1Γ (1− p, z) = zp−1

∫ ∞

z

e−zt

t p
dt, p > 0, z ≥ 0,

is the generalized exponential integral. Thus by Theorem 2.3.1 with m= 1 and α= 1,

H( f )≤ log [2eE|X |]≃ 0.8073.

From the other hand,

H( f ) = −
∫ 1

0

h

x log2 e
x

i−1
log

h

x log2 e
x

i−1
dx = −∞.

Example 2. For m≥ 2, the similar properties has the density

f (x) = c2(m)
�

∥x∥m log2 e
∥x∥

�−1

1B1(0)(x), x ∈ Rm,

where c2(m) = Γ (
m
2 )/(2π

m/2). Namely, f has finite moments but H( f ) = −∞.
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If a random vector X inRm has a bounded density f with ∥ f ∥∞ = supx∈Rm f (x)<

∞, then there is a lower bound for its entropy [17]

1
m

H( f )≥ log∥ f ∥−1/m
∞ . (A.3)

If, in addition, f is log-concave (that is, log f is concave), then

log∥ f ∥−1/m
∞ ≤

1
m

H( f )≤ 1+ log∥ f ∥−1/m
∞ .

Moreover, provided the existence of pth moment ∥X∥p = {E∥X∥p}
1/p <∞, p ≥ 1,

one has for a log-concave density f , see [88],

H( f )≥ log
2∥X −E[X ]∥p
[Γ (1+ p)]1/p

. (A.4)

If m= 1, then for symmetric log-concave random variable

H( f )≥ log
2∥X∥p

[Γ (p+ 1)]1/p
, p > −1. (A.5)

If a symmetric log-concave random vector on Rm has finite second moment, then

H( f )≥
m
2

log
(detΣx)1/m

c3(m)
, (A.6)

where Σx = E
�

(X −EX )(X −EX )T
�

denotes the the covariance matrix of X and

c3(m) =
e2m2

4
p

2(m+ 2)
. (A.7)

Constant c3(m) can be improved in the case of unconditional random vectors.

A function f : Rm → Rm is called unconditional if for every (x1, . . . , xm) ∈ Rm and

(ϵ1, . . . ,ϵm) ∈ {−1,1}m, one has

f (ϵ1 x1, . . . ,ϵm xm) = f (x1, . . . , xm).

For example, the density of standard isotropic Gaussian vector is unconditional. Thus,

if X is unconditional, symmetric, and log-concave, then

c3(m) = e2/2. (A.8)

The constant (A.8) is better than the constant (A.7) for m≥ 5.

The Shannon entropy, H = −
∑

K pK log pK , can be easily be infinite, see [7].

Perhaps the simplest example is to consider the sum
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Q(s) =
∞
∑

K=[e]

1
K(log K)1+s

,

which converge s for s > 0, diverges for s ≤ 0 and [e] is the integer part of e.

The corresponding probabilities are

pK =
1

Q(s)K(log K)1+s
, K ≥ [e].

Then, the Shannon entropy

H(X ) = logQ(s) +
1

Q(s)

∑

K

1
K(log K)s

+
1+ s
Q(s)

∑

K

log (log K)
K(log K)1+s

= logQ(s) +
1

Q(s)

∑

K

1
K(log K)s

−
dQ(s)/ds

Q(s)
.

The first and third terms converge for s > 0, but the second term converges only for

s > 1. As a result, this probability distribution has infinite Shannon entropy over the

entire range s ∈ (0, 1].

Apart from the entire range s ∈ (0,1] above, there are many examples along

similar line. For example, one could consider the sums,

Q1(s) =
∞
∑

K=[ee]

1
K log K(log log K)1+s

;

or

Q2(s) =
∞
∑

K=[eee ]

1
K log K(log log K)(log log log K)1+s

.

Alternative conditions for consistency of nearest neighbour

estimates of Shannon entropy

An alternative sets of conditions for consistency of the nearest neighbour estimates

of Shannon entropy are presented after Bulinski and Dimitrov [18, 19]. These con-

ditions are also proved for generalized Gaussian distribution.

For k ≥ 1, let f (x), x ∈ Rm, be a density which satisfies the following conditions:

Condition A.0.1. For some ϵ > 0 and R> 0,

∫

Rm

[ sup
r∈[0,R]

I f (x , r)]ϵ f (x)d x <∞ (A.9)
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∫

Rm

[ inf
r∈[0,R]

I f (x , r)]−ϵ f (x)d x <∞, (A.10)

where

I f (x , r) =

∫

∥x−y∥≤r f (y)d y

[rmVm]
, Vm =

πm/2

Γ
�m

2 + 1
� .

Condition A.0.2. For some p > 1

∫

Rm

∫

Rm

| log∥x − y∥|p f (x) f (y)d xd y <∞. (A.11)

From [18, 19], one can obtain the following results.

Theorem A.0.3. Assume that Condition A.0.1 hold.

1. If Condition A.0.2 holds for some p > 1, then for any fixed k ∈ {1, . . . , N − 1}

EÒHN ,k→ H, as N →∞; (A.12)

2. If Condition A.0.2 holds for some p > 2, then for any fixed k ∈ {1, . . . , N − 1}

E
�

ÒHN ,k −H
�2→ 0 as N →∞. (A.13)

Remark A.0.1. Condition (A1),
∫

Rm[supr∈[0,R] I f (x , r)]ϵ f (x)d x < ∞, in Theorem

A.0.3 can be replaced by the following condition: for some M > 0

f (x)≤ M <∞, x ∈ Rm; (A.14)

while the condition (A2),
∫

Rm[infr∈[0,R] I f (x , r)]−ϵ f (x)d x <∞, in Theorem A.0.3

can be replaced by the following condition: for a fixed R > 0, there exists a constant

c > 0, such that

inf
r∈[0,R]

I f (x , r)≥ c f (x), x ∈ Rm, (A.15)

and for some ϵ > 0

∫

Rm

f 1−ϵ(x)d x <∞. (A.16)



89

Remark A.0.2. Condition A.0.1 was introduced in [71] and [49], while condition

(A.15) is considered in [30] for k = 1 (together with other conditions), see also in [39]

and [38].

Remark A.0.3. For k = 1, it was proven by Bulinski and Dimitrov [18] that (A.12),

(A.13) hold for multidimensional Gaussian distribution while [30] show that (A.12)

and (A.13) hold for GG(m, s) and Student distributions.

Proposition A.0.1. The density function f (x) = f0 exp{− ∥x∥
s

s }, x ∈ Rm of GG(m, s)

distribution belongs to the class K for k ≥ 1, s > 0, m≥ 1.

Proof. It is easy to see that (A.14) for p > 2 (and hence (A.9)) and A.0.2 hold for

GG(m, s) distribution. To prove (A.10) we note that for x , y ∈ Rm

∥y∥2 = ∥x∥2 + ∥y − x∥2 + 2〈x , y − x〉.

Using an elementary inequality:

(a+ b)α ≤ aα + bα, a, b ≥ 0, α ∈ [0,1],

for 0< s ≤ 2 it follows that:

∥y∥s =
�

∥y∥2
�s/2 ≤

�

∥x∥2 + ∥y − x∥2 + 2|〈x , y − x〉|
�s/2

≤ ∥x∥s + ∥y − x∥s + 2s/2|〈x , y − x〉|s/2.

Therefore,

f (y) = c0 exp{−
1
s
∥x∥s} ≥ c0 exp

§

−
1
s

�

∥x∥s + ∥y − x∥s + 2s/2|〈x , y − x〉|s/2
�

ª

≥ f (x)exp
§

−
1
s
∥y − x∥2 −

1
s

2s/2|〈x , y − x〉|s/2
ª

.

(A.17)

Let us fix an arbitrary x ∈ Rm, R> 0, and for any r ∈ (0, R) by (A.17) we obtain
∫

∥x−y∥≤r
f (y)d y ≥ f (x)

∫

∥x−y∥≤r
exp

§

−
1
s
∥y − x∥s

ª

exp
§

−
1
s

2s|〈x , y − x〉|s/2
ª

d x

≥ f (x)

∫

∥z∥≤r
exp

§

−
1
s
∥z∥s

ª

exp
§

−
1
s

2s|〈x , z〉|s/2
ª

dz.

(A.18)

Simple inequality: eu ≥ 1+ u, u ∈ R, leads to the formula
∫

∥z∥≤r
e−

1
s 2s|〈x ,z〉|s/2 dz ≥

∫

∥z∥≤r

�

1−
1
s

2s|〈x , z〉|s/2
�

dz

= Vmrm −
1
s

2s

∫

∥z∥≤r
|〈x , z〉|s/2dz.
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Using Cauchy-Schwartz inequality,

|〈x , z〉|2 ≤ ∥x∥∥z∥,

it follows that

∫

∥z∥≤r
exp

§

−
1
s

2s|〈x , z〉|s/2
ª

dz ≥ Vmrm −
1
s

2s∥x∥s
∫

∥x∥≤r
∥z∥sdz

= Vmrm −
1
s

2s∥x∥s
∫

∥z∥≤r
∥z∥sdz

= Vmrm −
1
s

2s∥x∥s
2πm/2

Γ (m
2 )

rm+ s
2

�

m+ s
2

�

= Vmrm −
2sπm/2

sΓ (m
2 )
�

m+ s
2

�∥x∥srm+ s
2 .

(A.19)

From (A.18) and (A.19) we get

∫

∥x−y∥≤r
f (y)d y ≥ f (x)exp

§

−
1
s

rs
ª

�

rmVm(1− c∗r
s/2∥x∥s)

�

, (A.20)

where

c8 =
2s

s
m

2
�

m+ s
2

� =
2s

s
m

(2m+ s)

and

m f (x , R) = inf
r∈[0,R]

�

∫

∥x−y∥≤r
f (y)d y

1
rmVm

�

≥ f (x)e−
1
s Rs �

1− R2c∗∥x∥s/2
�

= F(x).

Note that there exists ϵ ∈ (0, 1) such that for a fixed R> 0

∫

Rm

1
F(x)ϵ

f (x)d x =

∫

Rm

f 1−ϵ(x)
1

�

1− R2c∗∥x∥s/2
�ϵ d x

= c1−ϵ
0 e−

1
s R2

∫

Rm

exp
�

∥x(1− ϵ)1/s∥s
	 d x
�

1− R2c∗∥x∥s/2
�ϵ <∞,

and (A.10) holds for 0< s ≤ 2. For s ≥ 2, we use an elementary inequality

(x + y)α ≤ 2α−1(xα + yα), α≥ 1, x , y ≥ 0.



91

We have

∥y∥s = (∥y∥2)s/2 ≤ 2
s
2−1

�

∥x∥s +
�

∥y − x∥2 + 2|〈x , y − x〉|
�s/2�

≤ 2
s−2

2

�

∥x∥s + 2
s−2

2

�

∥y − x∥s + 2
s
2 |〈x , y − x〉|s/2

��

= 2
s−2

2 ∥x∥s + 2s−2∥y − x∥s + 2
3s−4

2 |〈x , y − x〉|
3s−4

2 .

Therefore,

f (y)≥ c0 exp
§

−
1
s
∥x∥s2

s−2
2

ª

exp
§

−
1
s

2s−2∥y − x∥s
ª

exp
§

−
1
s

2
3s−4

2 |〈x , y − x〉|
3s−4

2

ª

and

∫

∥x−y∥≤r
f (y)d y ≥ c0 exp

§

−
1
s
∥x∥s2

s−2
2

ª

exp
§

−
1
s

2s−2rs
ª

rmVm

�

1− c∗∥x∥3s−4R2
�

,

where

c∗ =
m
s

2
2s−6

2
1

(m+ 3s− 4)
.

Thus,

m f (x , R)≥ c0e
�

− 1
s ∥x∥

s2
s−2

2
�

e(−
1
s 2s−2Rs) �1− c∗∥x∥3s−4R2

�

= F1(x).

Note that there exists ϵ ∈ (0,1) such that for a fixed R> 0 :

∫

Rm

f (x)d x
F1(x)ϵ

= c1−ϵ
0 e(−

1
s 2s−2R2)

∫

Rm

e
�

− 1
s 2

s−2
2 |∥x(1−ϵ)1/s∥|s

�

d x
(1− R2c∗∥x∥3s−4)

<∞

and (A.10) holds for s ≥ 2.
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Appendix B

Numerical result for Rényi entropy

This section contains some numerical experiments for Rényi entropy and shows em-

pirical distribution of multivariate Student, Pearson type II distribution for different

values of degrees of freedom dof, q and m dimensions.

Figure B.1: Empirical distribution of ST(m,ν) for m= 1 and different values of do f .

Figure B.2: Heatmaps for multivariate Pearson type II distribution as q increase the plots becomes uniform distribu-
tion, m= 2.
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(a) q=1.2 (b) q=1.3

(c) q=1.4 (d) q=1.9

Figure B.4: Visulation of multivariate Pearson Type II distribution for m= 3 and different values of q.

Figure B.3: Scatter plots for bivariate Student and Pearson type II distributions.
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Appendix C

Numerical experiments for von

Mises-Fisher distributions

In the Appendix C, tables of mean square errors of estimates of κ and α and plots

with relations of the generalized von Mises-Fisher distributions are presented. The

procedure of simulation obtaining several samples of generalized von Mises-Fisher

distributions with 1000 entries on 2- dimensional sphere is also shown.

Table C.1: Mean square error of estimator of α̂M (top raw) and α̂L (bottom raw) for GvMF1,3 distribution, for
different values of α (rows) and κ (columns) with aspect of Type I

0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.01131
0.01103

0.00309
0.00294

0.00229
0.00209

0.00334
0.00290

0.00720
0.00600

0.00234
0.01028

0.00067
0.01568

0.00044
0.02000

0.00046
0.02222

1 0.27260
0.21929

0.03760
0.03207

0.01778
0.01518

0.01126
0.00838

0.00766
0.00569

0.00633
0.00480

0.00686
0.00508

0.00950
0.00644

0.02210
0.00850

1.5 2.89363
2.75421

0.44954
0.20300

0.12728
0.07216

0.07166
0.03613

0.04616
0.02355

0.03330
0.01725

0.02049
0.01081

0.01535
0.00904

0.01465
0.00793

2 8.34069
10.16847

2.90354
1.30990

0.89834
0.30051

0.44383
0.13914

0.27728
0.08601

0.16970
0.05726

0.08593
0.03554

0.05445
0.02187

0.04011
0.01650

2.5 8.68665
15.44292

6.79656
4.46642

3.96727
1.21787

2.18844
0.42840

1.23084
0.23206

0.62982
0.16395

0.35996
0.08478

0.18528
0.05083

0.13112
0.03633

3 10.1863
18.7129

8.74483
8.33385

6.31636
3.35711

6.33024
1.24416

3.48461
0.60680

2.84763
0.36062

1.35829
0.20265

0.62283
0.11569

0.50274
0.08699
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Table C.2: Mean square error of estimator of κ̂M (top raw) and κ̂L (bottom raw) for GvMF1,3 distribution, for
different values of α (rows) and κ (columns) with regard to Type I

0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.01899
0.01717

0.01699
0.01598

0.01898
0.01727

0.02602
0.02396

0.03563
0.03306

0.03419
0.04987

0.03749
0.07889

0.04394
0.10651

0.06683
0.13889

1 0.22319
0.11194

0.07076
0.05895

0.06534
0.05552

0.06965
0.05215

0.06449
0.05029

0.06737
0.05277

0.08770
0.06947

0.11201
0.08617

0.19431
0.10606

1.5 2.11049
1.19008

0.64790
0.19097

0.26637
0.14496

0.25165
0.12205

0.23415
0.11508

0.22145
0.11355

0.20812
0.10874

0.20797
0.12384

0.23012
0.12786

2 3.68444
3.19240

4.15468
0.92650

1.72159
0.39620

1.18887
0.29374

1.05376
0.27322

0.82951
0.24016

0.63399
0.24388

0.54231
0.20779

0.49912
0.19860

2.5 2.17772
4.02490

6.54718
2.52365

7.27056
1.19600

5.81158
0.61967

4.41608
0.50278

2.47149
0.50154

2.26686
0.41390

1.43704
0.35365

1.34411
0.35024

3 1.87215
4.29139

5.16488
3.63187

7.11001
2.47833

13.30717
1.40486

10.1227
0.99006

11.05648
0.80562

7.43739
0.74920

4.25858
0.62553

4.56458
0.61910

Let us illustrate the generalized von Mises-Fisher distribution on 2-dimensional sphere

by several samples with 1000 entries. For all samples, mean directionµ= (0,
p

2/2,
p

2/2)

is fixed. For different values of α and κ, locations of samples entries on a unit sphere

are presented for Type I, see Figure C.2 (with value α = 0.5) and Figure C.4 (with

α = 1.5); for Type 2, Figures C.6 and C.8 with α = 0.5 and α = 1.5, respectively,

and the samples of axial data are presented in Figure C.10 (with α = 0.5) and C.12

(with α = 1.5). The corresponding histograms and probability densities of random

variables µT Xi , i = 1, 2,3 can be found in Figures C.1 (with value α = 0.5) and C.3

(with value α = 1.5) for Type I, in Figures C.5 (with value α = 0.5) and C.7 (with

value α = 1.5) for Type II, and in Figures C.9 (with value α = 0.5) and C.11 (with

value α= 1.5) for axial data.

Table C.3: Mean square error of estimator of α̂M (top raw) and α̂L (bottom raw) for GvMF2,3 distribution, for
different values of α (rows) and κ (columns) with aspect of Type II

0.1 0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.04439
0.03719

0.00892
0.00571

0.00384
0.00244

0.00240
0.00131

0.00200
0.00111

0.00176
0.00082

0.00174
0.00069

0.00208
0.00073

0.00112
0.00072

1 0.11476
0.15498

0.02662
0.02641

0.01238
0.01200

0.00779
0.00721

0.00620
0.00555

0.00508
0.00469

0.00415
0.00369

0.00424
0.00357

0.00384
0.00341

1.5 0.20015
0.30670

0.05429
0.05952

0.02785
0.02937

0.01742
0.01765

0.01432
0.01473

0.01291
0.01303

0.00981
0.01006

0.00956
0.01004

0.00925
0.00962

2 0.30415
0.40585

0.09795
0.09406

0.05169
0.05020

0.03786
0.03618

0.02962
0.02640

0.02579
0.02466

0.02137
0.01993

0.02306
0.02191

0.02314
0.02198

2.5 0.56165
0.51124

0.12324
0.12344

0.08668
0.06832

0.06643
0.05349

0.05643
0.04539

0.05414
0.04304

0.05298
0.04235

0.04757
0.03748

0.05055
0.04087

3 0.71927
0.52430

0.18736
0.16199

0.14068
0.09598

0.11660
0.08051

0.11100
0.07280

0.11534
0.07200

0.09450
0.06493

0.10280
0.07062

0.10102
0.06307
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The mean square errors of κ̂L and κ̂M can be found in Tables C.4 (Type II), and

C.6 (axial data). We group error values of κ̂L , κ̂M and α̂L , α̂M in order to decide

which method is more appropriate for parameter estimation. The method of mo-

ments is preferable fot Types I and II, if the computing power plays a decisive role.

For axial data, this method has no such advantage because it needs to operate with

an orientation tensor.

Table C.4: Mean square error of estimator of κ̂M (top raw) and κ̂L (bottom raw) for GvMF2,3 distribution, for
different values of α (rows) and κ (columns) with aspect of Type II

0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.00593
0.00585

0.00788
0.00619

0.01080
0.00815

0.01751
0.01132

0.03210
0.02080

0.05088
0.02932

0.14597
0.06803

0.39689
0.16595

0.26720
0.29599

1 0.00460
0.00504

0.00611
0.00602

0.00912
0.00885

0.01508
0.01432

0.02487
0.02260

0.03871
0.03695

0.08568
0.07654

0.18878
0.16276

0.31815
0.28533

1.5 0.00382
0.00433

0.00496
0.00497

0.00712
0.00715

0.01159
0.01170

0.02027
0.02050

0.03192
0.03221

0.07540
0.07713

0.16707
0.17453

0.28675
0.29832

2 0.00507
0.00594

0.00512
0.00515

0.00658
0.00663

0.01078
0.01090

0.01733
0.01729

0.02968
0.02992

0.07776
0.07590

0.17039
0.16294

0.33426
0.32125

2.5 0.00725
0.00797

0.00705
0.00761

0.00885
0.00847

0.01145
0.01155

0.01878
0.01850

0.03171
0.03021

0.08975
0.07865

0.19040
0.16314

0.36456
0.29699

3 0.01072
0.01004

0.01052
0.01033

0.01256
0.01179

0.01447
0.01420

0.02044
0.02058

0.03274
0.03070

0.09333
0.07711

0.24011
0.17748

0.45512
0.30782

It can be seen that the critical values of xβ , j , j = 1,2, 3, are obtained as a sample

quantiles for test statistic T̂ L
j,3 with respect to significance level β = 0.025 are pre-

sented clearly in Table C.7 for T̂ L
1,3, in Table C.8 for T̂ L

2,3 and in Table C.9 for T̂ L
3,3.

Table C.5: Mean square error of estimator of α̂M (top raw) and α̂L (bottom raw) for GvMF3,3 distribution, for
different values of α (rows) and κ (columns) with aspect of Type III

0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.18987
0.16463

0.05705
0.04162

0.02550
0.02490

0.01188
0.01907

0.00814
0.01631

0.00512
0.01637

0.00236
0.02073

0.00128
0.02427

0.00045
0.02521

1 0.72857
1.99071

0.23713
0.21501

0.11809
0.08130

0.07490
0.04956

0.05300
0.03309

0.03753
0.02432

0.02852
0.02189

0.01925
0.01923

0.01203
0.02272

1.5 1.41746
7.55889

0.69305
1.11221

0.28007
0.28031

0.16580
0.14598

0.09577
0.08200

0.07204
0.06144

0.04872
0.04110

0.03733
0.03296

0.03224
0.02763

2 2.16193
11.8352

1.34087
4.29336

0.66370
1.22665

0.37039
0.40504

0.20955
0.20974

0.15980
0.16143

0.09065
0.08807

0.05605
0.05484

0.04741
0.04622

2.5 3.14653
17.0535

2.42570
7.75701

1.51950
3.11424

0.79157
1.16675

0.47397
0.52106

0.33253
0.34421

0.17312
0.18537

0.11837
0.12071

0.08002
0.08197

3 4.87133
17.9716

4.04307
10.7576

2.64681
5.75811

1.72811
2.78415

1.07167
1.28941

0.70276
0.74024

0.33226
0.35797

0.20734
0.22610

0.15167
0.15511
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Table C.6: Mean square error of estimator of κ̂M (top raw) and κ̂L (bottom raw) for GvMF3,3 distribution, for
different values of α (rows) and κ (columns) with aspect of Type III

0.5 1 1.5 2 2.5 3 4 5 6

0.5 0.06602
0.06010

0.05435
0.04156

0.05186
0.04885

0.04292
0.05101

0.04582
0.05939

0.04249
0.06571

0.05097
0.10154

0.05318
0.12560

0.06447
0.15621

1 0.14994
0.64104

0.12997
0.14258

0.13578
0.10734

0.14216
0.10834

0.14670
0.10368

0.12929
0.09266

0.14336
0.11498

0.14140
0.12950

0.14276
0.17055

1.5 0.22813
1.96361

0.22610
0.54431

0.21028
0.25810

0.22102
0.22148

0.19741
0.18410

0.19829
0.17962

0.21212
0.18814

0.23031
0.21156

0.24706
0.21623

2 0.15945
2.32459

0.29881
1.70401

0.35199
0.86157

0.36035
0.45843

0.31712
0.35382

0.33244
0.35891

0.31035
0.30941

0.30316
0.30274

0.32061
0.31870

2.5 0.15577
3.15115

0.37208
2.58508

0.55335
1.76622

0.55512
0.99471

0.51438
0.65380

0.51368
0.58423

0.48383
0.53832

0.49249
0.50869

0.42680
0.43904

3 0.14980
3.34039

0.44026
3.09945

0.67499
2.79798

0.86090
1.99287

0.84880
1.32447

0.85450
1.07203

0.69410
0.79730

0.67099
0.75204

0.66948
0.69418

Table C.7: Critical values xβ ,1 for test statistic T̂ L
1,3 and β = 0.025 with respect to α (rows) and κ (columns),

multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7

0.5 6.251 6.212 6.364 6.716 6.803 6.477 6.484 6.909 7.037 6.917 7.116
1 5.957 6.08 6.301 5.905 6.8 6.32 6.046 6.837 6.872 7.375 7.101

1.5 5.682 6.147 5.826 6.09 6.17 6.107 6.095 5.883 6.714 6.675 6.811
2 6.305 6.22 6.149 6.289 6.17 6.097 5.794 6.62 6.476 6.729 6.556

2.5 6.207 6.123 6.098 6.132 6.354 5.847 6.471 6.55 6.142 6.391 6.258
3 6.33 6.127 5.962 6.026 6.055 6.002 6.115 5.672 6.326 6.077 5.802

Table C.8: Critical values xβ ,2 for test statistic T̂ L
2,3 and β = 0.025 with respect to α (rows) and κ (columns),

multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7

0.5 5.634 5.792 6.048 6.222 6.357 6.899 6.86 7.125 6.695 6.935 7.17
1 5.226 6.544 6.30 6.111 6.51 6.667 6.771 6.731 6.582 7.029 6.551

1.5 5.556 6.086 5.46 6.566 6.446 6.135 6.374 6.571 6.949 6.767 6.542
2 6.183 5.945 6.438 5.902 6.267 7.026 6.736 6.558 6.605 6.425 6.618

2.5 6.421 5.93 5.949 6.476 6.872 7.033 6.112 6.696 6.513 6.285 6.824
3 6.004 6.597 5.854 6.876 6.167 6.407 6.90 6.493 6.363 6.71 6.627
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Table C.9: Critical values xβ ,3 for test statistic T̂ L
3,3 and β = 0.025 with respect to α (rows) and κ (columns),

multiplied by 102.

0.1 0.5 1 1.5 2 2.5 3 4 5 6 7

0.5 5.988 6.192 6.573 6.32 7.043 6.726 6.925 7.338 7.384 7.524 8524
1 6.286 6.178 6.052 6.626 5.632 6.731 6.549 7.223 6.533 7.491 8.313

1.5 5.773 5.846 5.879 6.16 6.845 6.214 6.157 6.437 7.153 6.832 7.11
2 5.901 5.959 5.917 6.057 6.414 6.46 6.344 6.732 6.477 6.329 6.478

2.5 6.409 5.725 6.305 6.237 6.037 6.068 6.167 6.145 6.115 6.769 6.817
3 6.188 5.981 5.974 6.158 6.261 5.941 5.961 5.762 5.883 6.348 6.652

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.1: Density f1 from (4.50) for α= 0.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.2: Realisations of X ∼ GvMF1,3(α,κ,µ) with α= 0.5 and different values of κ.
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(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.3: Density f1 from (4.50) for α= 1.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.4: Realisations of X ∼ GvMF1,3(α,κ,µ) with α= 1.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.5: Density f2 from (4.51) for α= 0.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.6: Realisations of X ∼ GvMF2,3(α,κ,µ) with α= 0.5 and different values of κ.
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(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.7: Density f2 from (4.51) for α= 1.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.8: Realisations of X ∼ GvMF2,3(α,κ,µ) with α= 1.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.9: Density f3 from (4.52) for α= 0.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.10: Realisations of X ∼ GvMF3,3(α,κ,µ) with α= 0.5 and different values of κ.
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(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.11: Density f3 from (4.52) for α= 1.5 and different values of κ.

(a) κ= 1 (b) κ= 4 (c) κ= 8

Figure C.12: Realisations of X ∼ GvMF3,3(α,κ,µ) with α= 1.5 and different values of κ.
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Appendix D

Historical perspective of Entropy

The concept of entropy has an exciting long history. The notion of entropy way first

defined by German physicist Rudolph Clausius in 1865 as a general law of physics,

which now is known as the second law of thermodynamic. Researchers in that time

were forced to understand and predict macroscopic observable phenomenon since

the atomic (microscopic) nature of matter was not discovered yet. Clausius showed

that there exist an exact differential function dS = dQ/T where dS is the differential

change in entropy resulting from an infinitesimal flow of heat dQ at temperature T ,

[89]. Clausius also showed that in any equilibrium state, the observable thermody-

namic state parameters (such as mole number, pressure and volume) attain values

for which the entropy is maximum subject to any physical constraints, see [6].

In 1876, the physicists, Joshua Willard Gibss formulated the principles of sta-

tistical mechanics based on the Clausius ideas. Later in the 19th and early 20th

centuries, James Clerk Maxwell and Ludwing Boltzmann developed these concepts

further. Boltzmann was able to describe his entropy function by the equation

H = kB log W or H = kB log P (D.1)

where kB denotes the Boltzmann’s constant and P = 1/W and W is the number of

microstates that are consistent with the given equilibrium microstate. The constant

kB was not written by Boltzmann himself because of the Planck’s reading of [96].

Boltzmann considered the entropy as a measure of statistical disorder or "mixedup-

ness". Then, American mathematical physicist J. Willard Gibbs refined this concept

into a common formula for statistical mechanical entropy which is considered as one

of the foundations of statistical mechanics theory. The general formula for the en-

tropy of a system that was obtained by Gibbs’ systematic development of statistical

thermodynamics is given by

H = −kB

∑

pK log pK (D.2)
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where pK denotes the probability of a system being in various {K} microstates. The

next significant development in entropy appeared in 1948 from an unexpected area

of communication theory. The concept of information entropy was published in a

seminal paper "A mathematical Theory of Communication" by an American mathe-

matician Claude Elwood Shannon, known as the father of information of Shannon

theory [110]. In that year, Claude Shannon developed a complete theoretical frame-

work for quantifying the performance of communication links. Shannon entropy is

a measure of the uncertainty or disorder associated with a random variable. Primar-

ily, Shannon entropy measures the expected value of the information contained in

a message. Any communication link contains a source, transmitter, a physical link

and a receiver. Such a link will be used to transmit a message of interest. Shannon

defined as a following form:

H = −K
∑

pK log pK (D.3)

where K denotes a positive constant, Shannon interpreted H as the average uncer-

tainty. Shannon also proposed that the entropy help us to maximize of the bit transfer

rate under a quality constraint. Jaynes (1950) suggested to use the entropy measure

for radio interferometric image deconvolution in order to choose from a group of

possible solutions that include minimum information or following the definition of

Shannon entropy that has maximum entropy. A great amount of work has been

achieved in the last 30 years using entropy for the general question of data filtering

and deconvolution. Significant developments and applications of theory have been

established by Irving S. Reed, David E. Muller and Fumitada Itakura in 1960 and

1966 respectively, [6].

The concept of entropy in other areas science

In molecular biology, using the concept of information entropy in molecular biology

allows us to distinguish information- coding regions between random ones in ensem-

bles of genomes and quantify the information content. The application of information

theory in molecular biology indicates the association of regulatory molecules accom-

panied by their binding sites and protein-protein interactions. Besides, information

theory demonstrates the recognition of the polymorphism nature of many viral pro-

teins based on drug design by maximizing the information shared between the target

and drug ensembles, see [2].
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In psychology, entropy has many practical applications in psychological sciences.

As indicated in from information theory, the concept of entropy supplies a useful

framework for explaining the nature and psychological impact of uncertainty. Hirsh

[57] found out that the entropy model of uncertainty enables us to understand the

competition between behavioural affordance and competing perceptual. Psycholog-

ical entropy emerges conversely in associated with the integrity of the existence of

an individual in the world. The entropy-based model also demonstrates the critical

importance of uncertainty management for productivity, well-being and individual’s

survival within the physical context and a broader evolutionary. Entropy model of

uncertainty plays an essential role in psychological sciences. It presents a critical

adaptive challenge for any organism and appears with activity in heightened nora-

drenaline release and the anterior cingulate cortex. Finally, the entropy-based frame-

work shows how cognitive and behavioural consequences of heightened uncertainty

can be defined.

In finance, the concept and relevant principles of entropy have been used in the

area of finance for an extended period. Entropy usually can be defined as an essential

tool in portfolio selection and asset pricing. The entropy concept in portfolio selection

was adjusted initially in [101]. Entropy was first used as a measure of risk in the field

of portfolio selection. It was replaced with variance in typical mean-variance models

by some scholars. In contrast, entropy was added to the original portfolio models and

optimized the new models later by some other scholars. Moreover, entropy can also

be used as a measure of risk for applying fuzzy portfolio selection situation. Finally,

entropy can be used as a measure of capital increment, portfolio diversification and

option pricing in finance [131].

It is well-known that the concept of entropy has various explanations and is mea-

sured in a separate system in other areas. In classical physics, entropy aims to point

out the proportional of the quantity of energy to do physical movements. It appears

to be key concept in the Second Law of thermodynamics that describes an isolated

system; any activity increases the entropy. In other words, entropy is a significant

physical concept originated from this law. It also helps to measure the quantity of or-

der, disorder and chaos. In quantum mechanics, the notion of entropy was extended

by von Neumann entropy to the quantum system with the density matrix’s help. In

a dynamical system, entropy quantifies the exponential complexity of the average

flow of information per unit of time. In the theory of probability, the entropy of

random variable measures the uncertainty. In sociology, entropy is the natural decay

of structures, such as organization, law and convention [80].
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Appendix E

Numerical simulation codes

The python code below can be used to fit our simulation model to investigate the

behaviour of test statistics. The data are generated sample points from multivariate

generalized Gaussian distribution are generated using the Python software which was

implemented for computing programme codes. Here, 5000 number of replications

of experiments of different sizes (N = 10,100, 1000, vs) are generated from several

alternatives to normality and ÒHN ,k is computed from samples of different sample sizes

generated from normal distributions with parameters s = 0.5,1, 1.5,2, 2.5,3, 3.5,4

and for the first, second and third nearest neighbour distances.

For an alternative hypothesis, the Student distribution has been considered. Be-

tween 100 and 1000 simulated random samples of size N have been generated and

sample values of test statistics are evaluated using a Monte Carlo simulation and also

each of the sample sizes has been repeated 5000 times. The aim is to demonstrate

that this empirical distribution is not a Gaussian distribution.

For different values of (N , k) and (m, s), we generate NT = 1000 samples from

the GG(m, s) distribution and record the corresponding values of TN ,k(m, s), repeating

this M = 100 times. To each of these 10 samples from the distribution of TN ,k(m, s)

we then apply the Shapiro-Wilk test for normality and record the p-value returned

by the test.

import numpy as np
import scipy as sc
import scipy.stats as st
import matplotlib.pyplot as plt
import matplotlib.ticker as tkr
from sklearn.neighbors import KDTree
GR = (1+np.sqrt(5))/2 # aspect ratio for plots

# Multivariate Gaussian distribution
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def create_points_GG(npts, dim=2, expo=2, std=True):
'''

If X = UR where U is uniformly distributed on the unit sphere in R^m
and R = V^{1/s} where V ~ Gamma(m/s,2) then X ~ GG(m,s). From (Solaro 2004).
'''

# set mean vector and covariance matrix
mvec = [0]*dim
cmtx = np.identity(dim)
# create isotropic normal vectors
zpts = st.multivariate_normal.rvs(mvec, cmtx, npts)
# project onto sphere
upts = np.array([z/np.linalg.norm(z) for z in zpts])
# create gamma values
gvals = st.gamma.rvs(dim/expo, scale=2, size=npts)**(1/expo)
# create points
points = np.multiply(upts, gvals[:, np.newaxis]) if dim > 1 else
np.reshape(np.multiply(upts, gvals),(npts,1))
# standardise if required
if std:

sf = (2**(2/expo))*sc.special.gamma((dim+2)/expo)/
(dim*sc.special.gamma(dim/expo))
points = points/np.sqrt(sf)

return points

# Multivariate Student-t distribution
def create_points_T(npts, dim=2, dof=10, std=False):

'''If X = Z/\sqrt{G} where Z ~ N(0,I_m) and G ~
Gamma(nu/2,2/nu) then X ~ IST(m,nu)'''
# set mean vector and covariance matrix
mvec = [0]*dim
cmtx = np.identity(dim)
# create normal vectors
zpts = np.random.multivariate_normal(mvec, cmtx, npts)
# create gamma values
gvals = np.tile(np.random.gamma(dof/2.0, 2.0/dof, npts),(dim,1)).T
# create points
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points = zpts/np.sqrt(gvals)
# standardise if required
if std:

sf = dof/(dof-2)
points = points/np.sqrt(sf)

return(points)
\begin{minted}{python}
def compute_constant(dim=2, expo=2):

return (expo*np.e/dim)**(dim/expo)*np.pi**(dim/2)*sc.special.gamma
(dim/expo+1)/sc.special.gamma(dim/2+1)

def compute_sample_moment(points, expo):
# Euclidean norms
norms = np.sqrt(np.sum(points**2, axis=1))
# power-weighted norms
pw_norms = norms**expo
# value
return np.mean(pw_norms)

def compute_near_neighbour_distances(points, nnmax):
# search tree
tree = KDTree(points)
# extract distances
dist, ind = tree.query(points, k=nnmax+1)
# exclude zeroth neighbour (the point itself)
return dist[:,1:]

def compute_entropy_estimates(points, nnmax=1):
# dimensions
npts, dim = points.shape
# volume of unit ball
vub = (np.pi**(dim/2))/(sc.special.gamma(dim/2 + 1))
# digamma function values (scipy.special.digamma is slow)
psi = -np.euler_gamma + np.array([0] +
[1/i for i in range(1,nnmax)]).cumsum()
# near neighbour distances
nnd = compute_near_neighbour_distances(points, nnmax)
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# geometric means
gmeans = sc.stats.mstats.gmean(nnd)
# value
return m*np.log(gmeans) + np.log(vub) + np.log(npts-1) - psi

def compute_statistics(points, expo=2, nnmax=1):
# dimensions
npts, dim = points.shape
# entropy estimates
eest = compute_entropy_estimates(points, nnmax)
# moment estimate
smom = compute_sample_moment(points, expo)
# constant
const = compute_constant(dim, expo)
# value
return eest - (dim/expo)*np.log(smom) - np.log(const)

# Set parameter values
# These are used further down!
# dimension
mvals = np.array([1,2,3])
# neighbours
kvals = np.array([1,2,3])
# exponent
svals = np.array([0.5, 1.0, 1.5, 2.0, 2.5])
# sample size
Nmin = 10, Nmax = 500, Ninc = 10
Nvals = np.arange(start=Nmin, stop=Nmax+1, step=Ninc)
# repetitions
nreps = 10

# Create data
def create_data(Nvals, mvals, svals, kvals, nreps):

# init memory
datacube = np.zeros(shape=(nreps,len(Nvals),len(mvals),
len(svals), len(svals), len(kvals)))
# info
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import datetime
print('Started at: {}'.format(datetime.datetime.now()))
# main loop
for rep in range(nreps):

# progress bar
print('\r' + 'x'*(rep+1) + '-'*(nreps-rep-1), end='')
# iterate over m-values
for midx, m in enumerate(mvals):

# iterate over sR-values (reality)
for sRidx, sR in enumerate(svals):

# create sample
pts = create_points_GG(Nmax, dim=m, expo=sR)
# iterate over subsamples
for Nidx, N in enumerate(Nvals):

#iterate over sH-values (hypothesised)
for sHidx, sH in enumerate(svals):

datacube[rep,Nidx,midx,sRidx,sHidx:]=
compute_statistic(pts[:N], expo=sH,
nnmax=len(kvals))

print('Ended at: {}'.format(datetime.datetime.now()))
return(datacube)

# check
if input("Generate data: are you sure? (y/n)") == "y":

data = create_data(Nvals, mvals, svals, kvals, nreps)

# save data
np.save('datacube1.npy', data)
data.shape

# load data
data2 = np.load('datacube1.npy')
data2.shape

# plot separately with errorbars (k fixed)
kval = 1
kidx = np.where(kvals==kval)[0][0]
width = 12
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fig, axes = plt.subplots(nrows=len(svals), ncols=len(mvals),
sharex=True, sharey=True, figsize=(width,1.5*width))
for sidx, sval in enumerate(svals):

for midx, mval in enumerate(mvals):
ax = axes[sidx,midx]
ax.axhline(y=0, linewidth=1, color='k')
desc = st.describe(data[:,:,midx,sidx,sidx,kidx])
ax.errorbar(x=Nvals, y=desc.mean, yerr=np.sqrt(desc.variance)/
np.sqrt(nreps), capsize=5, errorevery=5)
ax.set_title('m={}, s={}, k={}'.format(mval,sval,kval));
if sidx == len(svals)-1: ax.set_xlabel('$N$', fontsize=12)
if midx == 0: ax.set_ylabel('$T_{N,k}(m,s)$', fontsize=16)
ax.set_xlim([Nmin,Nmax])
ax.set_ylim([-0.05,0.05]) # tweak
ax.grid(1);

fig.tight_layout()
plt.savefig('consistency-k={}.png'.format(kval))
plt.show();
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