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Abstract: Given the importance of catalysts in the chemical industry, they have been extensively
investigated by experimental and numerical methods. With the development of computational
algorithms and computer hardware, large-scale simulations have enabled influential studies with
more atomic details reflecting microscopic mechanisms. This review provides a comprehensive
summary of recent developments in molecular dynamics, including ab initio molecular dynamics and
reaction force-field molecular dynamics. Recent research on both approaches to catalyst calculations
is reviewed, including growth, dehydrogenation, hydrogenation, oxidation reactions, bias, and
recombination of carbon materials that can guide catalyst calculations. Machine learning has attracted
increasing interest in recent years, and its combination with the field of catalysts has inspired
promising development approaches. Its applications in machine learning potential, catalyst design,
performance prediction, structure optimization, and classification have been summarized in detail.
This review hopes to shed light and perspective on ML approaches in catalysts.

Keywords: catalysts; molecular dynamics; reactive force field; machine learning

1. Introduction

Catalysts have attracted growing interest due to their unique effects on chemical reac-
tions. A catalyst can increase or decrease the chemical reaction rate without changing its
chemical properties and does not change the chemical equilibrium. Therefore, catalysts are
widely used in numerous fields, like electroreduction [1–3], chemical formation [4,5], com-
bustion [6–8], and environmental conservation [9–11]. There are many kinds of catalysts,
such as metal catalysts, metal oxide catalysts, molecular sieve catalyst [12], biocatalyst [13],
and nano catalyst [14]. With the development of catalysts, different catalysts are constantly
being discovered and created.

Although new catalysts are still being discovered, a deep understanding of the cataly-
sis mechanism in chemical reactions still lacks and needs continuous improvement. Com-
putational simulation and experimentation are two main approaches to study catalysts.
Compared with experiments, computational simulations can provide atomic insights that
go deeper into the microscopic mechanism [15]. First-principles calculation is a common
computational approach in the catalysis field. The ab initio molecular dynamics (AIMD)
method is preferred to study the reaction mechanism of catalytic reactions, which can solve
the difficulties in describing the chemical reactions accurately, including the precise calcu-
lation of electronic structure and the dynamic process of atomic motion [16]. The AIMD
approach solves the Schrödinger equation by various approximations [17]. It combines
quantum mechanics and molecular dynamics that can accurately describe the electronic
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structure and atomic motion. However, due to the expensive calculation cost, this approach
can only be applied to small systems.

Compared with the AIMD, classical molecular dynamics (MD) simulation can handle
more significant and more complex systems. Still, the drawbacks of this simulation method,
which is based on classical mechanics, are also evident, such as the lack of accurate
electronic structure calculation. Empirical interatomic potential (EIP) is the basis of classical
MD, which is expressed as the function of parametrized approximation to describe the
interaction between atoms [18]. The accuracy of EIP determines the accuracy of calculation
results. Besides, EIP also strongly restricts the progress of classical MD. In recent years,
the development of force fields such as reactive force field [19] (ReaxFF) has improved the
performance of classical MD and expanded the scope of its applications. On the one hand,
ReaxFF is a bridge between quantum chemistry and non-reactive EIP that can describe
the chemical reaction process [20]. On the other hand, although the calculated speed is
one order of magnitude slower than classical force fields due to the charge equilibration
calculations at each timestep and the modeling of bond formation and breaking [21],
ReaxFF is still a useful molecular dynamics method to study chemical reactions that is still
evolving [22,23].

The burst of numerical simulations not only promoted the development of catalysts
but also produced vast amounts of relevant data. With the widespread use of data science
methods in numerous field [24], especially machine learning [25–29] (ML), searching for
new catalysts through big data has gained widespread attention [30,31]. New catalyst
with good performance in a chemical reaction is difficult to discover because it depends
on various properties, such as particle size [32], composition [33], and support [34–37]. It
was mainly empirical-based for traditional catalyst selection and needed intensive time
and capital to find the optimal candidate. However, ML offers a new approach to find
new catalysts and is helpful to select highly efficient catalysts. Moreover, it shortens the
research time [38]. ML that can provide good prediction results and is based on sufficient
relevant data and different factors considered together through the model to determine the
optimized results [39,40].

Many great reviews have reported and discussed the AIMD and ReaxFF molecular
dynamics for catalysis. Stirling et al. [15] reviewed both the experiments and calculations
study of the Wacker process. In this review, the study of the mechanism of the Wacker
process by using static calculation and ab initio molecular dynamics was sufficiently re-
ported. Furthermore, the restrictions of static analyses and the necessary use of the AIMD
approach in studying the Wacker process were explained. Senftle et al. [41] reviewed the
development of reactive force field from the beginning to maturity. The applied range of
ReaxFF was listed, including heterogeneous catalysis, atomic layer deposition, and others.
Notably, this review proposed the future development of ReaxFF and exhibited the strong
computing capacity and high computing speed of a ReaxFF molecular dynamics code,
PuReMD-PGPU.

This review briefly introduces molecular dynamics, including ab initio molecular
dynamics and reactive molecular dynamics, and their application in several chemical
reactions. Most importantly, the advantages and disadvantages of AIMD and ReaxFF are
comprehensively reviewed and compared to the machine learning approaches in catalysis,
especially the development of the machine learning potentials. This paper is divided
into two main parts. The first part will review the study of the AIMD method and the
ReaxFF molecular dynamics in calculating different reactions, including the growth of
carbon materials, dehydrogenation, hydrogenation, oxidation reaction, segregation, and
restructuring. The second part will provide an overview of the ML methods report of the
application of machine learning in catalysis, including machine learning potentials, new
catalyst discovery and design, and some helpful machine learning community projects.
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2. Molecular Dynamics
2.1. Introduction of Molecular Dynamics

Although the reaction mechanism of a chemical reaction can be investigated by experi-
ments even assisted with robot [42], studying complex systems by experiments is still tricky.
Calculations provide the feasibility to explore the complex systems and reactions. Both
static calculations and molecular dynamics have been intensively used to study the reaction
mechanism. However, analyses on the reaction mechanism require accurate electronic
structure calculations and the real-time tracking of atomic motions. Molecular dynamics
provide more information and give vivid dynamics configurations that order more kinetics,
thermal dynamics, and reaction trajectories for visual inspection. Furthermore, with the
increasing complexity of the reaction process, molecular dynamics offer more computations
possibilities to help solve the time-scale gap of AIMD.

2.1.1. Ab initio Molecular Dynamics

Ab initio molecular dynamics, which combines molecular dynamics with force directly
calculated from the electronic structure, is a helpful method in the theoretical calculations
of chemical reactions [43]. The electronic structure is solved directly at each step, and
therefore it allows for bond breaking and formation [44,45]. Although a direct solution of
the Schrödinger equation can fully reflect the wave function and the exact total energy of
the nucleus and electron [44], it is impossible to solve the Schrödinger equation directly
in complex systems. Therefore, several approximations are employed to solve these
problems. One of the most important approximation methods is the Born-Oppenheimer
approximation [46]. The Born-Oppenheimer approximation assumes that the motion of
the nucleus and electron can be separated due to the difference between the nuclear and
electronic masses. Moreover, many other approximations have been used to simplify
further and create several different methods such as Hartree-Fock molecular dynamics [47];
Kohn-Sham molecular dynamics [48]; Car-Parrinello molecular dynamics [49,50]; and Path
Integral molecular dynamics [51]. There are numerous AIMD codes that are popular and
widely used, including VASP [52], Quantum ESPRESSO [53], CP2K [54], and CPMD [55].

2.1.2. Reactive Force Field Molecular Dynamics

Wide use of the AIMD approach, the computing speed and expenditure restricts the
size of systems. As for the large systems, such as polymers [56,57], many active sites [58]
and different approaches should be employed for simulation, like ReaxFF molecular
dynamics. Unlike the AIMD approach, in which the electronic structure is solved directly,
ReaxFF molecular dynamics is based on the reactive force field. ReaxFF is a bond-order-
dependent force field that can be expressed as:

Esystem= Ebond+Eover+Eunder+Eval+Epan+Etors+Econj+Evdw+Ecoulomb (1)

where the first term Ebond is bond energy and the second and third terms Eover and Eunder are
the over-coordination and under-coordination penalty terms, respectively. The fourth term
Eval is the valence angle term. The fifth term Epan is also a penalty term representing the
effects of over-coordination and under-coordination in the central atom. Etors is the torsion
angle term, and Econj describes the conjugation effects to the total energy. The last two
terms Evdw and Ecoulomb denote the non-bonded van der Waals interactions and Coulomb
interactions, respectively. The most important assumption in ReaxFF is the bond order,
which can be calculated directly based on the interatomic distance rij, and the following
equation:

BO′ij= exp[P bo,1(r ij/ro)
Pbo,2+Pbo,3(r ij/ro)

Pbo,4+Pbo,5(r ij/ro)
Pbo,6 ] (2)

The three terms in Equation (2) represent the sigma bond, the first pi bond, and the
second pi bond, respectively. The initial ReaxFF only described the hydrocarbons and
gradually expanded to other materials, such as Si, SiO2 [59], MgH [60], and Al2O3 [61]. A
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tree-like development process [60,62–64] was illustrated in the Figure 1. The formulation
of ReaxFF is complicated, and until 2005, the form of expression became uniform and
was supported direct access from some open-source software, such as LAMMPS [65] and
PuReMD [66,67].

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 19 
 

 

The three terms in Equation (2) represent the sigma bond, the first pi bond, and the 

second pi bond, respectively. The initial ReaxFF only described the hydrocarbons and 

gradually expanded to other materials, such as Si, SiO2 [59], MgH [60], and Al2O3 [61]. A 

tree-like development process [60,62–64] was illustrated in the Figure 1. The formulation 

of ReaxFF is complicated, and until 2005, the form of expression became uniform and was 

supported direct access from some open-source software, such as LAMMPS [65] and 

PuReMD [66,67]. 

 

Figure 1. The development of ReaxFF [41]. Copyright 2016 Springer Nature. 

In the following subsections, different chemical processes studied by molecular dy-

namics were reported, including the growth of carbon materials, dehydrogenation and 

oxidation reaction. In addition, several dynamical phenomena in catalysis that can only 

model with molecular dynamics, such as segregation and restructuring, were also re-

ported. 

2.2. Application of AIMD and ReaxFF 

2.2.1. The Growth of the Carbon Materials 

Undoubtedly, carbon materials have been fascinating in the last two decades, espe-

cially with the discovery of carbon nanotubes and graphene [68–71]. In the past, carbon 

materials have been extensively studied and prepared by different methods in experi-

ments, whereas, even now, the growth mechanisms of some carbon materials, such as 

multi-walled carbon nanotubes, are still lacking [72]. Chen et al. [73] investigated the dy-

namics of the growth of amorphous carbon in graphene using AIMD. The generated struc-

tures derived from sp3-carbon and sp2-carbon showed significant differences when the 

system temperature varied from 300 K to 1800 K under the catalysis of nickel, and this 

transformation process is depicted in Figure 2. In addition, a particularly different trans-

formation process from the conventional chemical vapor deposition (CVD) growth was 

found. Fukuhara et al. [74] investigated nickel-carbon binary clusters as catalysts for the 

Figure 1. The development of ReaxFF [41]. Copyright 2016 Springer Nature.

In the following subsections, different chemical processes studied by molecular dy-
namics were reported, including the growth of carbon materials, dehydrogenation and
oxidation reaction. In addition, several dynamical phenomena in catalysis that can only
model with molecular dynamics, such as segregation and restructuring, were also reported.

2.2. Application of AIMD and ReaxFF
2.2.1. The Growth of the Carbon Materials

Undoubtedly, carbon materials have been fascinating in the last two decades, espe-
cially with the discovery of carbon nanotubes and graphene [68–71]. In the past, carbon
materials have been extensively studied and prepared by different methods in experi-
ments, whereas, even now, the growth mechanisms of some carbon materials, such as
multi-walled carbon nanotubes, are still lacking [72]. Chen et al. [73] investigated the
dynamics of the growth of amorphous carbon in graphene using AIMD. The generated
structures derived from sp3-carbon and sp2-carbon showed significant differences when
the system temperature varied from 300 K to 1800 K under the catalysis of nickel, and this
transformation process is depicted in Figure 2. In addition, a particularly different transfor-
mation process from the conventional chemical vapor deposition (CVD) growth was found.
Fukuhara et al. [74] investigated nickel-carbon binary clusters as catalysts for the formation
of carbon nanotubes. Using AIMD, the kinetic process of ethanol dehydrogenation was
simulated, and the catalytic mechanism of nickel-carbon clusters was revealed at the atomic
scale. The phenomenon that more carbon atoms tended to stay on the surface of nickel
was observed. Meanwhile, carbon chains formed on the surface as the number of carbon
atoms increased.
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In addition, the problems of the chirality of carbon nanotubes have long been men-
tioned. The process of carbon nanotube growth, which includes the dissolution of car-
bon and the formation of carbon nanotube, was widely studied by a reactive force field.
Neyts et al. [75] employed ReaxFF molecular dynamics and Monte Carlo simulations to
investigate the growth process of carbon nanotubes. The observed growth process was
consistent with the previous studies. Most importantly, the change of the chirality during
the growth process was firstly reported, which is shown in the Figure 3.
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2.2.2. Dehydrogenation and Hydrogenation

Ethylene is a necessary chemical raw material, and ethane dehydrogenation is one
of the essential methods to produce ethylene. Though there is comprehensive application
in industry, there are still numerous challenges [76], such as deactivation of the catalyst.
The study of the ethane dehydrogenation mechanism and the funding of more effective
catalysts will be helpful to confront these challenges. Using density functional theory
and ab initio microkinetic model, Jalid et al. [77] systematically investigated the reaction
mechanism of ethane dehydrogenation with transition metals (Pt, Pd, Co, Ni, Rh, Ru, Re,
Cu, Au, and Ag) as catalysts and CO2 as mild oxidant. Different surface types (111 and 211)
were considered as factors affecting the reaction. The simulation results show that ethane
is directly and mainly dehydrogenated to ethylene, and Rh and Pt are the most efficient
catalysts compared to the other calculated transition metals.

In addition, coupling of thermodynamics and dynamics, which has been proven to be
a more difficult challenge, was also neglected. In contrast to the ethane dehydrogenation
reaction, the reaction mechanism of ethylene hydrogenation on the surface of δ-MoC(001)
was investigated by Jimenez et al. [78]. A suitable structure was optimized by density
functional theory and ab initio thermodynamics and kinetics to estimate the relationship
between hydrogen surface coverage and activation energy barriers with the reaction rate
on the δ-MoC(001) surface. In this study, the activation energy barrier of the δ-MoC(001)
surface was found to be lower compared to the Pt(111) and Pd(111) catalyst surfaces.
Figure 4 show a vivid picture representing the relationship between the hydrogen coverage
and ethylene’s hydrogenation.
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As for the application of ReaxFF molecular dynamics in dehydrogenation, oxidative
dehydrogenation plays an important role. Chenoweth et al. [79] fitted the parameters for
the oxidative dehydrogenation of ReaxFF over vanadium oxide catalysts using a quantum
mechanical approach. The structure and energies of several different vanadium oxides,
such as V2O5, VO2, and V2O3, were well calculated by using the fitted parameters of ReaxFF.
In addition, the oxidation process of methanol was simulated by using molecular dynamics
simulations, and the results were in agreement with experiments, proving the accuracy of
the fitted parameters. The oxidation process of methane was studied through the molecular
dynamics method by Feng et al. [80], and ReaxFF was chosen as the force field to simulate
the oxidative dehydrogenation process of methane. Several catalysts were considered, e.g.,
functionalized graphene sheets (FGS), Pt, and Pt@FGS, and the Pt@FGS catalyst showed
the best catalytic performance. The essence of catalytic oxidation of methane is the breaking
of C–H bonds and the formation of hydroxyl groups. The Pt@FGS catalyst increases the
dehydrogenation rate of methane and drives the catalytic cycle that all conduced to the
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increase of the reaction rate. In addition, the hydroxyl groups generated by oxidation
further enhance the functionalization of FGS, leading to an enhanced reaction.

2.2.3. Oxidation Reaction

Oxidation reactions are common but essential chemical reactions. As a promising
green technology, water and CO oxidation process was widely researched. The oxidation
process of water over a cobalt oxide catalyst was investigated in atomic depth using
AIMD by Mattioli et al. [81]. The simulation results were directly compared with the
X-ray absorption spectroscopy results. An agreement of bond distance calculations and
measurements was found. Both calculations and experiments further revealed the real
structure of the cobalt oxide catalyst in the water oxidation reaction. They supported
that the cobalt oxide catalyst promoted the presence of low resistance hydrogen bonds.
Wang et al. [82] observed the CO oxidation reaction process at the atomic scale using
AIMD. The catalytic reaction mechanism of the Au/TiO2 interfacial oxidation reaction was
further investigated. Due to the catalysis of Au/TiO2 catalyst, the oxidation reaction of CO
can occur in a wide temperature range from 120 K to 700 K. Additionally, faster reaction
rates were observed at high temperatures compared to low temperatures. In addition, the
surface charge of gold greatly influences the oxidation reaction process, and the charge
cycle diagram is shown in Figure 5.
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In addition, there still exist many limitations in understanding the oxidation reaction
process of complex organic matter, and some mechanisms are still unclear. Due to the lack
of powerful tools for complicated systems, ReaxFF molecular dynamics are widely used to
understand the oxidation process. Zhang et al. [83] employed ReaxFF molecular dynamics
simulations to study ethanol oxidation and Al nanoparticles. The reaction temperature
decreased to 324 K due to the existence of Al nanoparticles. More reaction pathways
were found.

Most importantly, with the increase of reaction temperature, the Al nanoparticles
converted from solid to a liquid state, which resulted in the more effective diffusion of
H and O atoms in nanoparticles. Thus, it ordered a more active site and accelerated the
reaction. The oxidation of methane on a palladium catalyst surface was comprehensively
investigated by Mao et al. [84] ReaxFF molecular dynamics simulations were used to model
bond breakage and formation. In addition to the bare surface, oxygen-covered surfaces
were calculated, and different levels of oxygen coverage were considered. The reaction
temperature was used as an indicator to evaluate the difficulty of the reaction. During
the oxidation reaction of methane, oxygen is more likely to occupy the active site, while
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the oxygen covering the surface of the palladium catalyst hinders the dissociation and
adsorption of oxygen. However, the oxygen-covered palladium catalyst has a more sub-
stantial effect on the oxidation reaction compared to the bare palladium catalyst, which is
supported by the lower reaction temperature. The optimization of catalysts is complicated
due to the kinetic processes and numerous factors involved in catalytic reactions.

2.2.4. Segregation and Restructuring

Many studies about the reaction mechanism have combined static calculation and
AIMD approaches. Gibbs energy differences and free energy barriers are calculated by static
analysis, which can relate to experiments. However, molecular dynamics can only simulate
some phenomena, like segregation, restructuring, and excitation. By using AIMD methods,
Hoppe et al. [85] studied the segregation behavior of Ag atoms. The DFT calculations and
AIMD simulations suggested that the silver atom is next to the chain and does not replace
the gold atom.

Furthermore, a more intuitive dynamic process can be seen with the AIMD methods.
Wittkamper et al. [43] studied the restructuring of the Rh–Ga model because of the oxidation
behavior. In this research, the simulation results were consistent with the experiments. They
all supported the claim that compared to the β-Ga2O3, Rh is less likely to stay at bulk Ga
solution. Barnard et al. [86] systematically investigated the role of interstitials in radiation-
induced segregation (RIS). Due to the low migration barrier, interstitial diffusion can be
easily simulated by molecular dynamics. Considering the accuracy of calculations, the
AIMD approach was preferable. In this study, a Weidersich-type rate theory was modeled
in Ni–18Cr alloy. Using the AIMD method, the prediction that interstitial diffusion may
result in the enrichment of Cr near the grain boundary was certified. In addition, despite
the errors in the lower temperature simulations, AIMD still can be a great method to study
the RIS.

2.2.5. Discussion

The successful use of molecular dynamics cannot cover up the shortcoming of AIMD
and ReaxFF molecular dynamics. For ReaxFF, many challenges still need to be confronted,
including the charge description [87], parameter optimization [88], and the complexity
of bond order [41]. For example, bond order is essential for ReaxFF molecular dynamics,
but for condensed systems, the description of bond order becomes more complicated. In
addition, ReaxFF molecular dynamics are empirical methods based on assumptions and a
preset formula. The parameters are acquired from the DFT calculations and experimental
data. However, even using the parameters with enough optimization, the limitations
of parameters and preset formula error still exist. Thus, a method whose calculation
accuracy is close to the DFT calculations and whose computing speed approaches the
ReaxFF molecular dynamics is imperative. Machine learning produces new opportunities
and challenges, especially the development of machine learning potentials, which provide
a new direction to solve the above problems. This topic will be detailed discussed in the
next part.

3. Machine Learning in Catalysts

More efficient catalyst performance and the discovery of new catalysts are the goals
pursued by chemists [89–91]. However, the optimization and search for catalysts are com-
plicated because the factors affecting catalyst performance are diverse, and sometimes, a
subtle structural change can cause a dramatic shift in catalyst performance [92]. Unfor-
tunately, the catalytic mechanisms of some reactions still lack understanding and need
to be further explored. In addition, traditional catalyst optimization and search require
keen scientific intuition and extensive experience. This poses a considerable challenge to
scientists. However, ML has facilitated new approaches to address these issues.

Traditional problem-solving methods are based on deduction and inference, but ML
methods are based on generalization and summarization [93]. With the development of big
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data science, ML has been extended to numerous fields, such as aiding medicinal chemical
discovery [94–96] and material discovery [97–99]. Additionally, this approach can be used
for catalyst discovery and optimization.

Machine learning is a broad concept that includes many methods, such as artificial
neural networks [100], support vector machines [101], linear regression [102], and kernel
methods [103]. The methods used in catalyst discovery and optimization are not uniform,
and sometimes different methods are used simultaneously. However, the most critical issue
in catalyst discovery and optimization is the choice of descriptors, which determines the
model’s accuracy. The importance of descriptor derives from the catalyst performance being
sensitive to the change of structure and energy. Even an energy difference of 1 kcal/mol
can change the choice of catalyst [92]. Another reason is the prediction and extrapolation
of the results, although the correctness of the extrapolated results is not strictly proven.
Predicting and extrapolating results is still an important part of the ML approach. An
accurate descriptor helps to make reasonable predictions. Therefore, descriptors should be
carefully chosen when using ML methods. In this subsection, we briefly introduce three
different forms, including neural networks, regression, and random forests, and machine
learning potentials, which represent a critical development, are reported.

3.1. Introduction of Methods

Convolutional neural networks (CNNs) have become a widely used method in image
recognition because of their powerful feature-capturing ability. In recent years, CNN meth-
ods have been applied in the area of catalysts. Xie et al. [104] promoted CNN methods in
catalyst performance prediction. The main component of this CNN method is to transform
the catalyst structure into catalyst graphs. Both atomic and binding energy information is
considered, and the workflow is shown in Figure 6. A significant alteration in this study is
the data input layer that transforms the entire structure into a planar graph. In Figure 6,
each point represents a different atom, and the connections between the different points
consider the environment of a particular atom. Only one convolutional layer; one pooling
layer; and, finally, two fully connected layers are used. The role of the convolutional and
pooling layers is to capture each atom’s feature by nonlinear convolution function and
further generate the feature of the crystal, respectively. The final two fully connected layers
and output layer are used to predict the target properties. The optimized equation can be
expressed as:

min
W

J(y, f (ε; W)) (3)

where y is the predictive value and f is the function that represents the target property.
This model can achieve a computational accuracy close to that of density generalization
theory methods with sufficient data training. In addition, this CNN method has been
used to classify the types of materials in this study, and the highest accuracy of about
0.95 can reach the identification of 9350 catalysts. Additionally, based on the CNN method,
Back et al. [105] modified the technique proposed by Xie [104] for improving the accuracy
of predicting the absorption energy. It was demonstrated that the CNN method could be
used to predict surface coverage and site activity, which can be helpful for catalyst design.
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The random forest method is another commonly used ML approach. The decision
tree method is briefly introduced before the random forest method because the former is
the latter’s foundation. Generally, a decision tree contains finite numbers, nonempty nodes,
and a set of edges. By a series of the child’s decisions, the original data set can be divided
into numerous data sets of different attributes. Information gain is usually used to separate
the feature, and its equation can be expressed as:

Gain(D, a)= Ent(D) −
N

∑
n=1

|Dv|
|D| Ent(D v) (4)

where D is the information entropy. Can et al. [106] used a decision tree to study the
factors leading to high hydrogen production, which may have given a simple example.
The random forest method carefully considers several different classifications that come
from the decision tree method.

Regression methods generally can be split into the following types: linear regression,
which includes ridge regression [107]; selection operator regression [108]; nonlinear regres-
sion, such as kernel ridge regression [109]; support vector regression [110], etc. The most
straightforward linear regression is the linear combination of variables.

y(x, w) = w0+w1x1+ . . . + wDxD (5)

where x is the input variable and w is a linear parameter. This equation also can be extended
to combine with the nonlinear function.

y(x, w)= w0 +
N−1

∑
j=1

wjϕj(x) (6)
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where ϕ is the nonlinear function; in addition, the parameters of this equation are derived
from the error function minimizing.

E(w) =
1
2

N

∑
n=1
{y(xn, w) − tn}2 (7)

where E is the error value and tn is the target value. The example of using linear regression
in catalysis can be seen in Werth et al. [111] study.

3.2. Applications of Machine Learning in Catalysis
3.2.1. Machine Learning Potentials

Machine learning potential is one of the most critical calculations advances in recent
years and has been intensively studied and applied in catalysis [112–127]. The machine
learning potential is a method that uses the machine learning algorithm to find the under-
neath relationship of the atomic configuration and energy [128]. It is different from the
empirical interatomic potentials, which are based on the presupposed mathematic formula.
Hence, the error of the assumptions that correspond to mathematical expressions and
parameter optimization can be significantly avoided. The simulation accuracy increases
compared to the empirical interatomic potentials. As an example, the calculation process of
machine learning potentials [129] is shown in Figure 7. Firstly, a series of configurations are
acquired from the AIMD approach or other methods. Then, a sufficient number of configu-
rations are chosen to calculate the energy, force, and other critical physical quantities by
using the DFT method. Next, the atomic structure is converted to descriptors as the input
of the machine learning model, and the calculated energy and force are designated as target
quantity. Finally, the model is trained, and the machine learning potential is achieved. Sev-
eral machine learning models are chosen to acquire the machine learning potentials, such
as neural networks [130,131] and gaussian process regression [132–139]. Ulissi et al. [140]
studied the active sites of bimetallic catalysts. By using the DFT calculations, hundreds of
possible active sites were found, and neural network potentials were used to accelerate the
calculation process. Nickel gallium bimetallic was calculated as the example.
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3.2.2. The Development of Descriptors

Discovering the simple standard features that influence the properties in a small
group of materials as descriptors is a valuable approach in properties prediction, such as
catalytic activity and materials finding [141–149]. Several descriptors can be used, e.g., in-
teratomic distance, nearest neighbor coordination number (CN), surface strain, the number
of facets, and p-band center [150]. However, the accuracy of these simple descriptors is
challenging to verify experimentally because catalysts have complex structures that change
dynamically during the reaction. Timoshenko et al. [151] proposed an ML method that
directly processes data from X-ray absorption spectroscopy (XAS) containing structural
and electronic information. This information is directly used to obtain specific features of
some simple descriptors, such as the charge states and radial distribution function. Both
the supervised ML and unsupervised ML methods that are shown in Figure 8 were used to
reveal the relationships hidden in the XAS data. Sinthika et al. [151] proposed a special
descriptor π electronic structure for nitrogen-, boron-, and co-doped graphene. In this
article, several descriptors were summarized and illustrated in Table 1, such as surface
energy [152,153], vacancy formation energy [154], occupancy [155,156], and d-band cen-
ter [157]. Takahashi et al. [158] used the random forest method to search for new catalysts
for methane oxidation coupling (OCM) reactions. In order to overcome the difficulty of the
uncertainty in terms of methane activation, three key factors that were discovered from
1868 OCM catalyst data were first summarized as the descriptors that could determine C2
yields. By using the discoverable descriptors and the random forest method, new catalysts
that could improve C2 yield were found.

Graph neural networks (GNN) have given a new direction to acquire the descrip-
tors [159], which is different from the traditional approaches obtained from functions.
Simple GNN [160] contains a series of nodes, edges, node attributes, and edge attributes.
Atomic structures are only needed and as input in the GNN approach. Nodes can represent
the atoms, and the neighbor information of the specified atom is encoded by the edges.
The conversion and parameters optimization will be operated by using the graph. This
approach has gained more and more attention and is widely used in materials founding
and properties prediction [161–164].
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3.3. Discussion

Machine learning approaches have been extensively and successfully applied in
numerous fields, including new materials finding, materials properties prediction, and
calculation acceleration. Additionally, some helpful machine learning community projects,
like DeepChem [165,166] and OpenCatalysts, are proposed to help use the machine learning
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method for materials and chemistry [165–171], whereas it deficiencies still exist that restrict
the development of machine learning approaches and need to be overcome. (1) Descriptors
have been sufficiently introduced, and kinds of descriptors were listed in above. However,
there were all static descriptors based on the fixed function with no optimizable parameters.
Graph neural networks (GNN) have given a new direction to acquire the descriptors [159],
which is different from the traditional approaches obtained from functions. (2) As for
the machine learning potentials, with the increasing training data, the training time and
accuracy are still problems. In addition, the development of universal machine learning
potentials faces enormous challenges. The existing machine learning potential is obtained
from specific problems by fitting the calculated data.

Table 1. A series of descriptors derive from different types of catalysts and reactions [150], Copyright 2017, Small.

Descriptor Class of Catalyst Reaction Optimal Catalyst(s) Identified

d-band center [157] Transition metals, transition
metal alloys ORR Pt and Pd [172]

eg occupancy [155] Transition metal oxides ORR Pt3Ni [173], LaCoO3 (t2g5eg1)
and LaNiO3(t2g6eg1)

t2g occupancy [168] Transition metal oxides OER CuCoO2, PtCoO2

O p-band ceter [174] Transition metal oxides OER (Pr0.5Ba0.5)CoO3

Evac vacancy formation
energy [154]

Core shell transition metal
nanoparticles ORR Pd3Cu1@Pt (core@shell)

Esurf surface energy [155] Pure metals Hydrogen evolution reaction Pt

Esurf surface energy [156] Transition metal carbides Hydrogen evolution reaction Pt/Mo2C

4. Conclusions and Outlook

The focus of this review is on molecular dynamics calculations of catalysts. Differ-
ent types of molecular dynamics are outlined, including AIMD and ReaxFF molecular
dynamics. The development of both methods in applications including growth, dehydro-
genation, hydrogenation, oxidation reactions, bias and recombination of carbon materials
is discussed. Although both AIMD methods and ReaxFF molecular dynamics simulations
have been successfully applied in mechanistic studies of different catalytic interactions,
some limitations remain, such as the expensive cost of AIMD and its limitations in complex
systems, as well as the parameter optimization and charge description problems of ReaxFF.
In recent years, ML methods have been widely applied in various fields. An overview
of the application of ML methods in catalysis, which can address the above limitations,
is given. Several different ML algorithms, such as neural networks, random forests, and
regression, are briefly described. Their applications in new catalyst search and performance
prediction are reported. Most importantly, the potential of one of the most significant
advances, machine learning, is presented. With accuracy close to that of DFT calculations,
but with lower computational cost, machine learning potential has become one of the most
promising directions in analysis. In addition, the challenges of applying machine learning
methods, especially the limitations of descriptors, are discussed. Finally, GNN, a viable
solution, is discussed.
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