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Early CNS transplantation studies used foetal derived cell products to provide a foundation
of evidence for functional recovery in preclinical studies and early clinical trials. However,
it was soon recognised that the practical limitations of foetal tissue make it unsuitable for
widespread clinical use. Considerable effort has since been directed towards producing tar-
get cell phenotypes from pluripotent stem cells (PSCs) instead, and there now exist several
publications detailing the differentiation and characterisation of PSC-derived products rel-
evant for transplantation in Huntington’s disease (HD). In light of this progress, we ask if
foetal tissue transplantation continues to be justified in HD research. We argue that (i) the
extent to which accurately differentiated target cells can presently be produced from PSCs
is still unclear, currently making them undesirable for studying wider CNS transplantation
issues; (ii) foetal derived cells remain a valuable tool in preclinical research for advancing
our understanding of which products produce functional striatal grafts and as a reference
to further improve PSC-derived products; and (iii) until PSC-derived products are ready for
human trials, it is important to continue using foetal cells to gather clinical evidence that
transplantation is a viable option in HD and to use this opportunity to optimise practical
parameters (such as trial design, clinical practices, and delivery strategies) to pave the way
for future PSC-derived products.

The underpinning concept of cell therapies in regenerative medicine is restoration of structure and
function. This can be achieved through several approaches, including implantation of cells to provide
support for vulnerable host cells (for example, by releasing key neurotrophic substances) or implantation
of cells which will integrate and adopt the function of cells lost to the disease process [1]. Here, we focus
on the latter application (replacement of cells lost to the disease process) and consider whether, in light of
the development of novel stem cell-derived alternatives, transplants of foetal cells continue to be justified
for the neurodegenerative condition, Huntington’s disease (HD).

HD is a devastating neurodegenerative disease which most commonly manifests in mid-life and results
in progressive deterioration of movement, cognition and mental health [2]. No disease-modifying treat-
ments are yet available, although there is a global effort to identify such therapeutics [3]. It is an inherited
autosomal dominant disorder in which an expansion of >39 CAG repeats in exon 1 of the huntingtin
(HTT) gene is associated with 100% penetrance. The earliest and most profound pathological change in
HD is the dysfunction and degeneration of striatal medium spiny neurons (MSNs), starting years before
clinical disease onset [4,5]. This focal loss of a specific cell phenotype makes HD an excellent candidate for
regenerative medicine, either alone or combined with other disease-modifying approaches that are being
actively explored, such as gene silencing [3].

CNS transplantation has a history going back several decades, with Parkinson’s disease (PD) and HD
as the most frequently studied target conditions. Early studies demonstrated the need to transplant im-
mature cells, rather than fully differentiated cells which survive the transplantation process poorly [6].
Selective dissections of foetal brain regions within a specific developmental window can yield cells that
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have undergone sufficient normal development to be committed to the target cell populations; for HD the relevant
foetal brain region is the ganglionic eminence, which gives rise to the striatum and is where MSNs develop [7]. Foetal
cells were used to provide key evidence in animal models of HD, that transplanted cells can survive long term in the
adult CNS, can continue to mature into appropriate neuronal phenotypes, are capable of integrating into host neural
circuitry, and can ameliorate functional deficits (reviewed in [8]). However, it was recognised that in the long-term,
clinical application of foetal cells is probably limited as (i) their availability is limited and unpredictable, (ii) they are
difficult to transport and store without compromising the tissue quality, requiring a specialised procurement route and
facilities, (iii) their preparation is difficult, requiring substantial training and personnel skill as there is little chance to
validate their accurate dissection without compromising the final product, and (iv) minimising batch variability be-
tween final cell products is limited by uncontrollable factors such as the gestational age, genetic background, the need
to sometimes use more than one sample to acquire sufficient cell numbers (not always a requirement for HD where
a single sample may suffice) and other issues resulting from variations in the method of acquisition and processing.
Overall, these issues make foetal tissue-based cell products highly challenging to use in research/preclinical settings
and unsuitable for widespread clinical use [1]. Thus, the need for an alternative cell source that does not suffer these
limitations was clear, and considerable effort has since been directed at producing target cells from stem cell popula-
tions. For both PD and HD, significant progress has been made in deriving target cell populations from pluripotent
stem cells (PSCs) and there are now several publications detailing the production of dopaminergic neurons and MSNs
from PSCs, with clinical trials having now commenced for PD using PSC-derived products [9,10].

Considering these advancements, is it still justified to continue pursuing transplants of foetal derived cell prod-
ucts? To determine this, we must consider whether these PSC-derived products are currently a viable alternative to
foetal derived cells, particularly with regard to their use in cell replacement therapy. Additionally, we need to con-
sider whether further understanding of the complex developmental course of MSNs is warranted to optimise the
novel PSC-derived cell therapy products. For HD, it is currently understood that transplanted cell products will need
to reconnect the degenerated neural circuits of the striatum by forming appropriate synaptic connections and per-
forming the function of normal adult MSNs [1]. Therefore, they will likely need to exhibit many aspects of authentic
MSNs. It is also likely that the degree of fit to the hosts’ endogenous MSNs will need to be closer than is required for
PD, where a cell capable of synaptic release of dopamine into the striatum may be sufficient [11].

There are a number of published protocols for differentiating PSCs towards an MSN-like phenotype, by first
inducing a neuroectodermal fate and then guiding regional specificity by manipulating Shh and Wnt pathways
[12–17,19,23,25,26] and/or Tgfβ pathways [18,19,23]. Indication of appropriate phenotype is commonly determined
by identification of key MSN gene markers such as CTIP2 (BCL11B), FOXP1, and DARPP-32 (PPP1R1B) [20,21], but
to date no protocol has been able to consistently produce a high yield of cells expressing these markers. For example,
DARPP-32 is present in the majority of mature MSNs in the brain, reported as high as 96% in some studies [22], yet
PSC-derived MSN cultures report generally low DARPP-32 yields, often between 10 and 50% of total cells produced
[12,14–19,23,26], with only occasional exceptions reporting higher proportions of up to ∼80% [13,25] demonstrating
that current methodologies are not yet specific or robust enough to consistently produce a high-yield MSN popula-
tion. Additionally, these markers are not individually unique to MSNs, nor do they account for the full plethora of
biological functions required by normal MSNs. Therefore, expression of these markers alone may not adequately de-
scribe an authentic and functional MSN. Indeed, there are data suggesting that such cells are different from bona
fide MSNs (e.g. foetal derived tissues). Specifically, we have shown that ESC and iPSC derived MSN-like cells have a
vastly different epigenome compared with foetal WGE. (i.e. authentic MSN progenitors) [23,24], further indicating
that current differentiation protocols do not yet produce cells comparable with genuine MSNs, although single cell
analysis is required to more fully understand the functional consequences of such differences.

Despite this, there is some evidence that PSC-derived MSNs may be able to elicit some functional recovery in
animal models [13,14,16,25,26], but the mechanisms underlying this recovery are as yet unclear. For example, recov-
ery occurring only 1 month post-graft, when no/few functional synapses have been detected between DARPP-32+
grafted cells and host brain, may suggest trophic support as a mechanism rather than neural circuit reconstruction
[26]. There is also some indication that PSC-derived neural cell types that are not pre-patterned to an MSN fate may
also be capable of facilitating such recovery, indicating that an MSN-like product may not even be necessary [27–29].
Understanding exactly which features of engrafted cell products are responsible for inducing functional benefits is es-
sential for optimising PSC-derived products further, and critically, determining these factors may be more achievable
with authentic foetal tissues because they have undergone a normal developmental processes and have historically
provided more consistently functional grafts (for reviews, see [8,30]).

Furthermore, there has been a tendency to focus on single target phenotypes (such as MSNs) and ignore the other
neural phenotypes present in foetal donor cell populations (such as glia and interneurons), but the success of foetal
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transplants may be at least in part due to these additional populations. Indeed, there is now some evidence that
transplantation of astrocytes can also offer some functional recovery in models of HD [29,31]. Understanding the role
of, and interactions between, the various cells required for optimal transplantations will be easier using a product that
already produces a diverse population of high quality, authentic and relevant cells (i.e. human foetal tissue), as opposed
to attempting to explore these concepts using multiple challenging and potentially non-optimised PSC protocols and
their resulting products. For these same reasons, foetal cells may also serve as the best option for determining other
key graft parameters, such as defining the best developmental window to allow optimal cell survival, differentiation
and integration post-transplantation. Once the requirements for a viable and functional transplant have been defined,
foetal tissues will then act as a useful gold standard to which PSC-derived MSNs can be compared. Thus, we argue
that despite the shortcomings of human foetal tissue, it continues to be an important resource for preclinical research
aiming to optimise PSC differentiation protocols, cell product composition, transplantation procedures, and serves
as a standard by which to evaluate cell products that may have potential for human use.

Given that PSC-derived donor cells are progressing towards, but not currently ready for, clinical trials in HD,
we propose that it is important to continue gathering clinical evidence that transplantation is a viable therapeutic
option for HD. A number of studies over an extended number of years have provided preliminary data suggesting
that the safety of foetal cell transplants is acceptable (reviewed in [32]). There is also preliminary evidence that they
can provide functional benefit. Specifically, two pilot studies reported improvements in clinical outcome measures
associated with MRI evidence of graft survival, alongside either FDG PET evidence of increased metabolism of the
grafted region and frontal cortex (suggesting that the graft had connected to downstream structures), or increased
graft region raclopride signal (suggesting at least some MSN-like differentiation in the graft) [33–35]. However, it is
also clear that the parameters for successful clinical interventions remain poorly understood and further investigation
is required to produce consistently effective outcomes. For example, the Bachoud-Levi et al. went on to undertake
the largest foetal tissue transplant clinical trial to date (MIG-HD), which did not meet its primary outcome measures
[36]. Notably, there was little evidence of surviving grafts in patients, and no evidence that the cell product was viable
at the time of grafting (further discussed in [37,38]). Such outcomes are reflective of the challenges of using foetal
tissue, but also demonstrate that large-scale clinical trials investigating cell therapies are a complex process, in need
of further refinement [39]. Further clinical studies may therefore represent an important opportunity to optimise the
clinical trial parameters (such as trial design and delivery strategies) to pave the way for future trials of PSC-derived
products [39].

There remain many challenges to undertaking transplantation studies, irrespective of the donor cell source. One
in particular is that of the effective and safe delivery of viable cells. The impermeable nature of the intact blood–brain
barrier means that many therapeutics intended to reach the brain cannot be delivered systemically attempts are on-
going to identify viable alternative routes of administration [40]. This is a particular problem for cells where their
size and the need for accurate placement means that currently, they need to be delivered directly to the caudate and
putamen. Simple scale-up of delivery devices from rodent to human brain have revealed problems of cell sedimen-
tation and cell viability within the much longer and larger bore delivery devices needed to deliver the significantly
greater cell numbers needed for human (rather than rodent or non-human primate) brain and the issue of cell reflux
back along the delivery needle track [36], emphasising the need for optimisation of delivery routes and devices [41].
Other challenges include achieving optimal targeting of the cell product to the striatum and developing appropriate
technical expertise, monitoring to ensure operative fidelity, and regulatory issues around devices and the therapies
they deliver for experimental studies. Each of these challenges is surmountable, but they must be addressed alongside
optimisation of PSC-derived cell products and can be addressed immediately through well-conducted human stud-
ies using foetal cells as the donor source. Despite theoretical concerns around neurosurgical safety [42], the clinical
risks of stereotactic neurosurgery are very low and are equally applicable to gene and cell therapy, as the targets and
number of tracks required are similar and convection enhanced delivery times for gene therapy delivery are at least
as long, if not longer than for cells. Moreover, the practical real-world risks of neurosurgery for gene therapies have
been shown to be low and clinically very acceptable and cell delivery is therefore likely to be at least as safe.

The value of exploring cell therapy in HD goes beyond treating individuals with HD; understanding and optimising
cell therapy strategies in HD will provide key information for other neurodegenerative conditions. There are several
reasons for regarding HD as a model neurodegenerative condition to test cell therapies: it features the major patho-
physiological hallmarks of the most prevalent multigenic and/or multifactorial neurodegenerative diseases, including
progressive and selective neuronal death, transcriptional dysregulation, mitochondrial dysfunction, and protein ag-
gregation [43]; the range of HD animal models facilitates translation between animal and clinical studies [44]; and
the highly reliable genetic and almost complete gene penetrance allows confident clinical diagnosis, greatly increasing
power and reliability of clinical studies, compared with conditions in which a definitive diagnosis is more difficult.
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More specifically, it is an excellent model in which to address the challenges of circuit reconstruction as donor cells
are most effective when placed homotopically in their normal position within the striatum, thus allowing restoration
of near normal circuitry anatomy [30]. This is in contrast with PD where donor dopaminergic progenitors are grafted
ectopically into the striatum, rather than into the substantia nigra (from where their projections are unable to reach
and reactivate their normal striatal targets). In this ectopic position they are unable to completely restore normal cir-
cuitry. It is also likely that the knowledge and experience gained from cell therapy studies in HD will inform ongoing
gene therapy studies and future attempts to achieve endogenous repair.

In summary, we argue that foetal cells remain an essential research tool, offering a precise and detailed understand-
ing of the characteristics of authentic human striatal cells and as a standard against which to test PSC-derived MSNs.
We also maintain that human studies of foetal cell transplantation remain important, both for testing the value of cell
therapy in HD and for future validation of PSC-derived products in people.
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