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Reproducing kernel Hilbert spaces, polynomials and the classical moment problem

Holger Dette∗ and Anatoly Zhigljavsky†

Abstract. We show that polynomials do not belong to the reproducing kernel Hilbert space of infinitely dif-

ferentiable translation-invariant kernels whose spectral measures have moments corresponding to a

determinate moment problem. Our proof is based on relating this question to the problem of the best

linear estimation in continuous time one-parameter regression models with a stationary error process

defined by the kernel. In particular, we show that the existence of a sequence of estimators with vari-

ances converging to 0 implies that the regression function cannot be an element of the reproducing

kernel Hilbert space. This question is then related to the determinacy of the Hamburger moment

problem for the spectral measure corresponding to the kernel.

AMS Subject Classification: 46E22, 62J05, 44A60

Keywords and Phrases: Reproducing kernel Hilbert spaces, classical moment problem, best

linear estimation, continuous time regression model

1. Introduction.

1.1. Main results. Let X⊆R
d, d≥1, K :X ×X→R be a positive definite kernel on X and

define H(K) as the corresponding Reproducing Kernel Hilbert Space (RKHS). We assume that

X has a non-empty interior and K is an infinitely differentiable (on the diagonal) translation-

invariant kernel so that K(x, y)=k(x−y), where k : Rd → R is a non-constant positive definite

function infinitely differentiable at the point 0. Clearly, the function k(·) is even so that k(u) =

k(−u) for all u ∈ R
d. Without loss of generality, we suppose k(0) = 1.

It is well-known, see e.g. Corollary 4.44 in ?, that in the case of the Gaussian (squared expo-

nential) kernel

k(x) = exp{−λ‖x‖2} with λ > 0,(1.1)

the constant function does not belong to H(K). This result has been generalized to arbitrary

polynomials in ?. The purpose of this paper is to significantly extend these results (previously

only known for the case of the Gaussian kernel) to a substantially larger class of kernels.

In the main part of the paper, we consider the case X ⊂ R. In this case, by Bochner’s theorem

(?), there exists a measure α, such that the function k can be represented in the form

k(x) =

∫ ∞

−∞
eitxα(dt) for all x ∈ X.(1.2)
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The measure α is called spectral measure. As function k(·) is even and k(0) = 1, α(dt) is a

probability measure symmetric around the point 0. The moments of this measure (in the case of

their existence) will be denoted by cn =
∫∞
−∞ tnα(dt). Since we assume k(·) in (??) is infinitely

differentiable and even, we have

cn =

∫ ∞

−∞
tnα(dt) =





(−1)n/2 k(n)(0), if n is even

0, if n is odd

,(1.3)

where k(n)(0) = ∂n

∂unk(u)
∣∣
u=0

.

The classical Hamburger moment problem is to give necessary and sufficient conditions such that

a given real sequence (cn)n∈N is in fact a sequence of moments of a distribution α defined on

the Borel sets of R = (−∞,∞). In particular, the sequence (cn)n∈N is a sequence of moments

of some distribution if and only if the Hankel matrices (ci+j)i,j=0,...,n are positive semidefinite

for all n ∈ N; see e.g. ?? among many others. The Hamburger moment problem is called

determinate if the sequence of moments (ck)k∈N determines the measure α(dt) uniquely.

The main results of this paper are Theorems ?? and ?? formulated below. These theorems

provide sufficient conditions ensuring that the polynomials do not belong to the RKHS H(K).

The proofs are given in Section ??.

Theorem 1.1. Let X ⊂ R and assume that the spectral measure α(dt) in (??) has infinite support

and no mass at the point 0. If the Hamburger moment problem for this measure is determinate,

then the non-zero constant functions do not belong to the RKHS H(K).

Theorem 1.2. Let X ⊂ R, m be a positive integer and assume that the spectral measure α(dt)

in (??) has infinite support. If the Hamburger moment problem for the measure αm(dt) =

t2mα(dt)/c2m is determinate (here, as in (??), c2m =
∫
t2mα(dt)), then the RKHS H(K) does

not contain polynomials on X of degree precisely m.

Theorem ?? can be considered as a corollary of Theorem ?? and therefore the result of Theo-

rem ?? is more fundamental. In the very important particular case (see the sufficient condition

for moment determinacy (??) and related discussion in Section ??), when the function k(·) is

real analytic and vanishes at infinity while X is bounded, H(K) contains only those analytic

functions that vanish at infinity. This is formally proven in ? and basically follows from the fact

that if f ∈ H(K) then f(x) is a point-wise limit of the sums µN (x) =
∑N

i=1wik(xi − x) with

xi ∈ X, which necessarily vanish at infinity.

Combining Theorems ?? and ?? with their variations in the cases when the spectral measure

α(dt) has finite support (see Section ??) and when this measure has positive mass at 0 (see

Theorem ??), we obtain the following corollary.
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Corollary 1.3. Let X ⊂ R and the Hamburger moment problem for the spectral measure α(dt) be

determinate. Then we have the following:

(a) the constant functions f(x) = const 6= 0, ∀x ∈ X, belong to H(K) if and only if α(dt) has a

positive mass at the point 0;

(b) if additionally k(·) is a real analytic function, then H(K) does not contain non-constant poly-

nomials on X.

Theorems ??, ?? and Corollary ?? can be easily extended to the multivariate case, see Section ??.

1.2. Implications and related results. Gaussian process (GP) models deal with an unknown

deterministic function assuming that it is a realization of Gaussian process (field) with some

mean and covariance kernel, which are perhaps parameterized. The popularity of the GP model

comes from its transparency, flexibility and computational tractability; it is used as a general-

purpose technique to model, explore and exploit unknown functions. As a result, methods based

on the GP models constitute much of the modern statistical toolkit for function approximation,

interpolation and prediction (??), integration (?), machine learning (??), space-filling (?), signal

processing (?), probabilistic numerics (?) and global optimization (?). The practical application

areas of the GP model are vast, and we refer the references in the cited papers and to the work

of ?, ? among others.

Consider the common framework of GP regression (simple kriging), where the a function f :

X → R to be approximated (X ⊂ R
d) is considered as a realization of a GP, say {Zx}x∈X , with

mean zero, covariance

E{ZxZx′} = σ2K(x, x′) for all x, x′ ∈ X ⊂ R
d,(1.4)

and σ2 > 0 may be unknown; see ? for more details. Let the kernel K be strictly positive

definite, XN = {x1, . . . , xN} be an N -point design consisting of distinct points xi ∈ X and

FN = [f(x1), . . . , f(xN )]⊤ ∈ R
N be the vector of exact observations of f at the points of XN .

The conditional process {Zx|(XN , FN )}x∈X is again Gaussian with conditional mean

(1.5) µN (x) = F⊤
NK

−1
N bN (x)

and covariance function

CN (x, y) = K(x, x′)− b⊤N (x)K−1
N bN (x′),(1.6)

where KN = (K(xi, xj))
N
i,j=1 and bN (·) = [K(x1, ·), . . . ,K(xN , ·)]⊤. Straightforward calculation

shows that the conditional mean µN (x) is the best linear predictor of f(x) and σ2CN (x, x) is

the corresponding mean squared prediction error at the point x.

GP regression is equivalent to kernel interpolation, see e.g. ?, Section 3.3 in ? and Chapter 3 in
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?. More precisely, the conditional mean µN (·) is the minimal-norm interpolant to f among all

functions in H(K), where we use the norm on H(K) denoted below by ‖ · ‖H(K). This property

implies in particular that if f ∈ H(K) then ‖µN‖H(K) ≤ ‖f‖H(K), where this inequality holds

for any f ∈ H(K) and any set of points XN . If f /∈ H(K) then the conditional mean µN (·) is
still an element of H(K) but its norm tends to infinity as N grows and XN becomes denser.

Therefore, there is a fundamental difference between the complexity of the approximation prob-

lem of f depending on whether f ∈ H(K) or f /∈ H(K). Correspondingly, properties of all

other techniques based on the use of the GP model also heavily depend on whether an unknown

function of interest belongs to the corresponding RKHS. We also refer to the work of ? and to

Section 4.4 in ? for a discussion on the importance of this issue for the learning performance

of support vector machines (SVMs) in the case of the Gaussian kernel (??) as well as for the

difficulty of deciding whether a given function f belongs to the RKHS H(K) for a chosen kernel

K. In GP regression, knowing that the non-zero constant functions do not belong to the RKHS

H(K) is especially important as it can be used to justify omitting function centering; see, for

example, Assumption 2 in ?.

Assume now that the factor σ2 in (??) is unknown and that the maximum likelihood estimator

(MLE) σ̂2N of σ2 is constructed from the observations of the function f at the points xi ∈ XN ;

see Section ??. If f is indeed a realization of the GP with covariance (??), it follows by the

well-known results on microergodicity (see Chapter 6 in ?) that σ̂2N → σ2 almost surely (a.s.)

as N → ∞ and XN becomes dense in X. Note, however, that such realizations do not belong

to H(K) a.s. and if f ∈ H(K) then σ̂2N → 0 as N → ∞. This observation is a consequence

of the useful relation σ̂2N = 1
N ‖µN‖2H(K) (see equation (3.4) in ?) and the relation ‖µN‖H(K) ≤

‖f‖H(K), which has already been mentioned. This is in full agreement with Corollary ?? below,

which states that f ∈ H(K) if and only if limN→∞N σ̂2N <∞ (assuming XN becomes dense in

X as N → ∞). Our numerical studies in Section ?? of this paper show, however, that for finite

sample sizes the asymptotic behaviour of σ̂2N has much less effect on uncertainty quantification

in GP regression than the smoothness of the function k(x) and its flatness at x ≃ 0.

The problem of deciding whether a given function f belongs to the RKHS H(K) for a chosen

kernel K is well-known in literature, see e.g. Section 3.4 in ?. This problem is well-studied in

the case of kernels with finite number of derivatives, (???). For infinitely differentiable kernels,

only the case of Gaussian kernel (??) is well-understood; see ? for most advanced results. In a

preprint citing the present paper, ? gives further new results for analytic translation-invariant

kernels with lim‖x‖→∞ k(x) = 0.

1.3. Sufficient conditions for moment determinacy. There are many sufficient conditions

for moment determinacy of probability measures, see e.g. ?, ? and ?, Chapter 11. The fol-

lowing sufficient condition for moment determinacy of a measure α(dt) with moments ck in the

Hamburger moment problem, the so-called Carleman condition, is one of the most commonly
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used:

(A.1) :
∞∑

n=1

c
−1/(2n)
2n = ∞ .

Note that if a probability measure α(dt) has finite moments cj for all j = 0, 1, . . . and satis-

fies (A.1), then for any m = 0, 1, . . . the measure αm(dt) = t2mα(dt)/c2m of Theorem ?? with

moments
∫
tjαm(dt) = c2m+j/c2m also satisfies (A.1).

Less known than (A.1) is the following sufficient condition for the moment determinacy (in the

Hamburger moment problem) of a measure α(dt):

(A.2) : ∃ ε > 0 such that

∞∑

n=1

|cn|xn
n!

<∞ for all |x| < ε,

see Theorem 30.1 in ?. This condition is clearly equivalent to the assumption (A.3): the random

variable (r.v.) ξα with distribution α has moment generating function and, see Theorem 1 in

?, to (A.4): lim supn→∞
1
2nc

1/(2n)
2n < ∞; this is one of the most known and easiest to verify

sufficient conditions for moment determinacy. Theorem 2.13 in ? yields that the assumptions

(A.2)–(A.4) are also equivalent to the assumption (A.5): the r.v. ξα is sub-exponential. In

view of this assumption, the tail behaviour of α(dt) is a natural indicator of the degree of

moment-determinacy of α.

The conditions (A.2)–(A.5) are stronger than the Carleman condition (A.1) in the sense that

any of them implies (A.1). A technique of constructing measures α satisfying (A.1) but violating

lim supn→∞
1
2nc

1/(2n)
2n <∞, and hence all other assumptions in (A.2)–(A.5), is given in ?, Section

11.9.

In view of (??) and symmetry of k(·), |cn| = |k(n)(0)| for all integers n = 0, 1, . . . This yields

that (A.2) coincides with the assumption that k(·) is a real analytic function at the point 0,

see Definition 1.1.5 and Corollary 1.1.16 in ?. Summarizing, if k(·) is a real analytic at 0, then

the corresponding spectral measure α(dt) is moment-determinant in the Hamburger sense. It

is not difficult, however, to construct moment-determinant (in the Hamburger sense) spectral

measures α(dt) which do not satisfy (A.2); see Sections 11.9 and 11.10 in ?. For such measures,

the corresponding functions k(·) are symmetric, positive definite and infinitely differentiable

but not real analytic at 0. Nevertheless, for practical purposes the class of functions which are

symmetric, positive definite and real analytic can be considered as the main class of functions

k(·), for which the corresponding spectral measures are moment determinant in the Hamburger

sense. Note also that if the function k(·) is real analytic then all functions in H(K) have to be

analytic too; see ?.

Let us give four examples of kernels K(x, y) = σ2k(x− y) whose spectral measures α(dt) satisfy
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the Carleman condition (A.1) and hence assumptions of Theorems ??, ?? and Corollary ?? (we

will return to these kernels in Sections ?? and ??). The spectral density corresponding to the

spectral measure α(·) will be denoted by ϕ(·), so that α(dt) = ϕ(t)dt. In examples (E.1)–(E.4)

below, we also provide asymptotic expressions for CN (α) =
∑N

n=1 c
−1/(2n)
2n . In view of (A.1),

the rate of divergence of CN (α) (as N → ∞) can also be used to characterize the degree of

moment-determinacy of α (additionally to the tail behaviour of α).

(E.1) Gaussian kernel: k(x) = exp{−λx2/2}, ϕλ(t) = 1√
2πλ

exp{−t2/(2λ)} (t ∈ R), c2n =

λn(2n− 1)!!, CN (α) =
∑N

n=1 c
−1/(2n)
2n =

√
N/λ(1 + o(1)), N → ∞.

(E.2) Cauchy kernel: k(x) = 1/(1 + x2/λ2), ϕλ(t) = λ
2 exp{−λ|t|} (t ∈ R), c2n = λ−n(2n)!,

c
−1/(2n)
2n = e

√
λ/n+ o(1/n), so that CN (α) = e

√
λ logN(1 + o(1)) as N → ∞.

(E.3) The kernel whose spectral density is a symmetric Beta-density:

ϕa(t) = 2−2a−1(1− t2)a/B(a+ 1, a+ 1) with a > −1 and t ∈ [−1, 1].

Here we have CN (α) = const ·N(1 + o(1)) as N → ∞.

(E.4) k(x) = cos(λx) with λ 6= 0; here the spectral measure α is concentrated at ±λ with

masses 1/2 yielding c2n = λ2n, c
−1/(2n)
2n = 1/λ and CN (α) = N/λ for all N .

1.4. Main steps in the proofs and the structure of the remaining part of the paper.

Section ?? is devoted to proving Theorems ?? and ??; the proofs are given in several steps. The

main idea in our approach is to relate the problem of interest to properties of the best linear

unbiased estimate (BLUE) in linear regression models, which will be worked out in Sections ??

and ??. Sections ?? and ?? provide different characterizations of the moment determinacy of

spectral measures and finally the proofs will be completed in Section ??. We now explain the

different steps in more detail.

In Section ?? we consider a one-parameter linear regression model y(x) = θf(x)+ε(x) with

Eε(x)ε(x′)=K(x, x′) and a regression function f ∈H(K) and show that in this case θ̂BLUE , the

BLUE of θ, exists and its variance is strictly positive, see Lemma ??. We also show that in the

case f /∈H(K), the BLUE does not exist and establish in Lemma ?? that for proving f /∈H(K),

it is sufficient to construct a sequence of linear unbiased estimators θ̂n of the unknown parameter

with variances tending to 0. Such a sequence is constructed in Section ?? for the location scale

model and an explicit expression for the variance of these estimators in terms of the ratio of

determinants

var(θ̂n) =
det(c2(i+j))

n
i,j=0

det(c2(i+j))
n
i,j=1

(1.7)

of Hankel-type matrices of the moments of the spectral measure is derived in Lemma ??. In

Section ?? we establish several properties of moment-determinant symmetric measures which

we use in Section ?? for building up an equivalence between the moment determinacy of the
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spectral measures and the statement that the sequence (??) converges to zero. This is arguably

the most important step in the proof of both theorems (see Lemma ??). Finally, these results

are combined in the proofs of Theorem ?? and ?? in Section ??.

In Section ?? we consider several extensions and interpretations of the main results. In Section ??

we consider spectral measures with finite support, while Section ?? discusses the multivariate

case. This discussion is continued in Sections ??–??, where we also consider general metric

spaces. In Section ?? we explain a technique of characterizing the inclusion f ∈ H(K) via

suitable discretization of the set X and show that 1/‖f‖H(K) is the limit of variances of the

related discrete BLUEs. These results are used in Section ??, where we prove that the constant

function belongs toH(K) if and only if the spectral measure has positive mass at 0. In Section ??

we show that the problem of parameter estimation in a one-parameter regression model is

equivalent to the problem of estimating the variance of a Gaussian process (field). Thus we are

able to relate our findings to the estimation problems considered in ? and ?. In Section ?? we

return to the one-dimensional case and give an interpretation of Theorem ?? in terms of the

L2-error of the best approximation of a constant function by polynomials of the form a1t
2 +

a1t
4 + . . .+ ant

2n.

In Section ??, for two specific classes of kernels we derive explicit results on the rates of con-

vergence to 0 of the ratio of determinants (??). In the case of Gaussian kernel (??), we detail

and improve one of the asymptotic expansions of Theorem 3.3 in ?. Finally, in Section ?? we

discuss results of a numerical study for uncertainty quantification in GP regression in relation

to the theoretical results of this paper.

2. Parameter estimation, moment determinacy and proofs of main results.

2.1. BLUE in a one-parameter regression model . Consider a one-parameter regression

model with stationary correlated errors:

y(x)=θf(x)+ε(x), x∈X, Eε(x)=0, Eε(x)ε(x′)=k(x−x′).(2.1)

Here θ is a scalar parameter, f :X→R is a given regression function and k(·) is an infinitely

differentiable positive definite function with k(0) = 1 making the kernel K(·, ·) defined by

K(x, y) = k(k − y) an infinitely differentiable correlation kernel. For constructing estimators of

the parameter θ, the observations of the process {y(x)|x ∈ X} along with observations of all of

its derivatives {y(k)(x)|x ∈ X}, k = 1, 2, . . ., can be used.

An estimator θ̂ for the parameter θ is called linear, if it is a linear function of the observations

(in our case of the process and its derivatives). An unbiased estimator satisfies E[θ̂] = θ for all

θ. The best linear unbiased estimator (BLUE) of θ is defined as an unbiased estimator θ̂BLUE

such that var(θ̂BLUE) ≤ var(θ̂), where θ̂ is any linear unbiased estimator of θ. If the kernel K is

differentiable and the BLUE exists, then for its computation all available derivatives of y(x) are

7



used, see ?. In general, the BLUE may not exist but the next lemma shows that it does exist

when f ∈ H(K).

Lemma 2.1. If f ∈ H(K), then the BLUE θ̂BLUE in model (??) exists and

var(θ̂BLUE) = 1/‖f‖H(K) > 0.

The statement of lemma follows from Theorem 6C (p. 975) of ?. Formally, only the case

X = [0, 1] is considered in ?, but Parzen’s proof does not use the structure of X and is therefore

valid for a general metric space X.

Lemma 2.2. If there exists a sequence of linear unbiased estimators (θ̂n)n∈N of θ in model (??)

such that var(θ̂n) → 0 as n→ ∞, then f /∈ H(K).

Proof. Assume that f ∈ H(K). By Lemma ??, the continuous BLUE θ̂BLUE exists and

var(θ̂BLUE) = 1/‖f‖H(K) > 0. From the definition of the BLUE, var(θ̂n) ≥ var(θ̂BLUE) > 0 for

all n ∈ N. We have arrived at a contradiction and hence f /∈ H(K). �

2.2. A family of estimators θ̂n in the location scale model. Consider the location scale

model

y(x)=θ+ε(x) , x∈X ⊂R, Eε(x)=0, Eε(x)ε(x′)=k(x−x′),(2.2)

where k(·) is an infinitely differentiable at 0 positive definite function. Choose any interior point

x0 ∈ X and set ε0 = ε(x0). For construction of the estimator θ̂n, which we will apply in Lemma

??, we use the following n + 1 observations: the observation y(x0) = θ + ε0 at the point x0

and n mean-square derivatives of the process y at the point x0:

εj = y(j)(x0) =
djy(x)

dxj

∣∣∣∣
x=x0

=
djε(x)

dxj

∣∣∣∣
x=x0

, j = 2, 4, . . . , 2n .(2.3)

As discussed in Section ??, for the main class of kernels of interest, the RKHS H(K) is a subset

of analytic functions. If we observe y(x) everywhere on [0,1], then, since f ∈ H(K) and ε(x)

are analytic, we also know all y(k)(x) for all x ∈ [0, 1] and any integer k ≥ 0. Again, because of

the analyticity, observing y(x) everywhere on X = [0, 1] is the same as observing y(k)(x) for any

x ∈ [0, 1] and any integer k ≥ 0. This yields that in practice we do not need to directly observe

y(k)(·) for constructing estimators of θ.

The following result provides a necessary and sufficient condition for the existence of the deriv-

atives. For a proof, see page 164 (Section 12) in ?.

Lemma 2.3. Let x0 be an interior point of X. The mean-square derivative εj = djε(x)/dxj
∣∣
x=x0

8



of the stationary process {ε(x)|x ∈ X} in (??) at the point x0 exists if and only if c2j < ∞,

where

c2j =

∫ ∞

−∞
t2jα(dt) = (−1)j

∂2j

∂u2j
k(u)

∣∣∣∣
u=0

(2.4)

is the 2j-th moment of the spectral measure α corresponding to the kernel k in Bochner’s theorem.

As we have assumed that the kernel k(·) is infinitely differentiable at 0, all moments cj (j =

0, 1, . . .) exist. As an immediate consequence of the existence of all moments and the represen-

tation (??), for the random variables εj defined in (??), we obtain by Lemma ??

Eεiεj =
∂i+j

∂xiyj
k(x− y)

∣∣∣∣
x,y=x0

= (−1)i+j ∂
i+j

∂ui+j
k(u)

∣∣∣∣
u=0

= ci+j .(2.5)

for all i, j = 0, 1, . . . Note that all derivatives ∂m/∂umk(u)
∣∣
u=0

of odd order m vanish as the

function k(·) is symmetric around the point 0.

Next, we introduce the random variables δi = (−1)iε2i, i = 0, 1, . . .. The observations (??) used

for constructing the discrete BLUE in model (??) can then be rewritten as

y0 = y(x0) = θ + ε0, y1 = y(2)(x0) = δ1, . . . , yn = y(2n)(x0) = δn.

Moreover, the covariance matrix of the vector (δ0, δ1, . . . , δn)
⊤ is the Hankel matrix

Cn = (Eδiδj)
n
i,j=0 = (c2(i+j))

n
i,j=0 ,(2.6)

where c2, . . . , c2n are the moments defined in (??).

Assume that the spectral measure α(dt) has infinite support. In this case, the matrices Cn are

positive definite for all n = 0, 1, . . . (see, for example, Proposition 3.11 in ?) and the discrete

BLUE is obtained as

θ̂n =
e⊤0,nC

−1
n Yn

e⊤0,nC
−1
n e0,n

,(2.7)

where Yn = (y0, y1, . . . , yn)
⊤ and e0,n = (1, 0, . . . , 0)⊤ ∈ R

n+1 denotes the first coordinate vector

in R
n+1.

Lemma 2.4. The variance of the estimator (??) is

var(θ̂n) =
1

e⊤0,nC
−1
n e0,n

=
Hn

Gn
,(2.8)
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where Hn and Gn are the determinants

Hn = det (Cn) = det
[(
c2(i+j)

)n
i,j=0

]
, Gn = det

[(
c2(i+j)

)n
i,j=1

]
.(2.9)

Proof. The expression (??) follows from the standard formula var(θ̂n) = 1/(e⊤0,nC
−1
n e0,n) for

the variance of the BLUE and Cramér’s rule for computing elements of a matrix inverse; in our

case, e⊤0,nC
−1
n e0,n coincides with the top-left element of the matrix C−1

n . �

Observing Lemma ?? we conclude that a non-vanishing constant function does not belong to

H(K) if limn→∞Hn/Gn = 0. In the following sections we relate this condition to the moment

determinacy of the spectral measure.

Let us now briefly consider the case where the spectral measure has a positive mass at the

point 0. Consider the location scale model (??) and let

αγ(dt) = (1− γ)α(dt) + γδ0(dt)(2.10)

denote the spectral measure corresponding to a nonnegative definite and symmetric kernel kγ ,

where 0 < γ < 1, δ0 is the Dirac measure at the point 0 and α(dt) is a symmetric probability

measure on R with no mass at 0. The measure αγ(dt) is symmetric around the point 0 with

even moments c̃0 = 1 and

c̃2j = (1− γ)c2j , j = 1, 2, . . .

Recall the definition of the matrix Cn in (??) and define the matrices

C̃n = (c̃2(i+j))
n
i,j=0 = γe0,ne

⊤
0,n + (1− γ)Cn

and the corresponding determinants

H̃n = det C̃n , G̃n = det
[(
c̃2(i+j)

)n
i,j=1

]
= (1− γ)nGn ,

where Gn is defined in (??). Using standard formulas of linear algebra we obtain

H̃n = det [γe0,ne
⊤
0,n + (1− γ)Cn] = (1− γ)n

[
(1− γ) + γe⊤0,nC

−1
n e0,n

]
Hn .

In accordance with (??), the variance of θ̃n, the BLUE of θ constructed similarly to θ̂n but for

10



the spectral measure αγ(dt), is given by

var(θ̃n) =
1

e⊤0,nC̃
−1
n e0,n

=
H̃n

G̃n

=
Hn

Gn

[
(1− γ) + γe⊤0,nC

−1
n e0,n

]

= var(θ̂n)[(1− γ) + γ/var(θ̂n)] = (1− γ)var(θ̂n) + γ > 0 .

This implies that var(θ̃n) cannot converge to 0 and Lemma ?? is not applicable if the spectral

measure has a positive mass at the point 0.

In Theorem ?? of Section ?? we will prove that for any compact set X ⊂ R
d the constant

functions indeed belong to H(K), if the spectral measure has a positive mass at the point 0.

2.3. Moment-determinacy of the spectral measure. Consider the spectral measure α in-

troduced in equation (??). As a spectral measure, α is a symmetric measure (around 0) on the

real line and we have assumed that α does not have a positive mass at the point 0. Moreover,

we have assumed k(0) = 1 making α a probability distribution. In the following we relate α to

a (unique) measure on the nonnegative axis [0,∞). Loosely speaking, if a real valued random

variable ξ has distribution α(dt), then α+(dt) is the distribution of the random variable ξ2. In

the opposite direction, if the nonnegative random variable η has distribution α+(dt), then ±√
η

has distribution α(dt), where ± denotes a random sign.

For a more formal construction we follow the arguments in Section 3.3 of ? and denote by B
the Borel sigma field on R, define τ : R → [0,∞); τ(x) = x2 and κ : [0,∞) → R, κ(x) =

√
x.

Then for any symmetric (Radon) measure α on B, the measure α+ defined by

(2.11) α+(B) = α(τ−1(B)) B ∈ B ∩ [0,∞)

defines a measure on B ∩ [0,∞). Conversely, if α+ is a measure on B ∩ [0,∞), then

(2.12) α(B) =
1

2

(
α+(κ

−1(B)) + α+((−κ)−1(B))
)

defines a symmetric measure on B. It now follows from Theorem 3.17 in ? that the relations

(??) and (??) define a bijection from the set of all symmetric measures on R onto the set of all

measures on [0,∞).

The even moments of a symmetric probability measure α on B are related to the moments of

the measure α+ from (??) by

c2j =

∫ ∞

−∞
t2jα(dt) = 2

∫ ∞

0
t2jα(dt) =

∫ ∞

0
tjdα+(t) = bj , j ∈ N ,(2.13)
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and as a consequence the determinants Hn and Gn in (??) can be represented as

Hn = det
[
(bi+j)

n
i,j=0

]
, Gn = det

[
(bi+j)

n
i,j=1

]
.(2.14)

Similarly to the case of the Hamburger moment problem, the Stieltjes moment problem is to

give necessary and sufficient conditions such that a real sequence (bj)j∈N is in fact a sequence of

moments of a measure α+(dt) on the Borel sets of [0,∞); that is bj =
∫∞
0 tjdα+(t) for all j ∈ N0.

The Stieltjes moment problem is determinate if the sequence of moments (bj)j∈N determines the

measure α+(dt) uniquely. For a proof of the following result, which relates the Hamburger and

Stieltjes moment problem, see ?, Lemma 1, ?, Proposition 3.19 and ?, Sect. 11.10.

Lemma 2.5. Let α be a symmetric probability measure on B. The Hamburger moment problem

for α is determinate if and only if the Stieltjes moment problems for the measure α+ defined by

(??) is determinate.

Note that for the equivalence in Lemma ?? to hold, the assumption that α does not have mass

at 0 is not required. This assumption, however, is needed in the next lemma.

Lemma 2.6. Let α be a symmetric probability measure on B with no mass at the point 0. The

Hamburger moment problem for α is determinate if and only if the Hamburger moment problem

for the measure α+ defined by (??) is determinate.

Proof. Using the result of Theorem A in ? (see also (?, p.113) and (?, Remark 2.12)), if

the Stieltjes moment problems for the measure α+ is determinate and the measure α+ has no

mass at 0, then the Hamburger moment problems for this measure is also determinate. From

Lemma ??, the required equivalence follows. �

2.4. Relating moment-determinacy of the measure α+ to var(θ̂n).

Lemma 2.7. Let α be a symmetric probability measure on B with infinite support and no mass at

the point 0. The Hamburger moment problem for the measure α+ defined by (??) is determinate

if and only if Hn/Gn → 0 as n→ ∞, where the determinants Hn and Gn are defined in (??).

Proof. (i) Assume that the moment problem for the measure α+ is determinate. Let Pn denote

the class of all polynomials of degree n and define

ρn(t0) = min

{∫

R

|Pn(t)|2α+(dt) | Pn ∈ Pn, Pn(t0) = 1

}

for any t0 ∈ R, which is not a root of the nth orthogonal polynomial with respect to the measure

α+ (see equation (2.26) in Lemma 2.11 of ?). Then

lim
n→∞

ρn(t0) =: ρ(t0)
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exists, by Theorem 2.6 in ?. As the point 0 is not a support point of the measure α+ and all roots

of the orthogonal polynomials with respect to the measure α+ are located in supp(α+) ⊂ (0,∞)

we have from Corollary 2.6 in ? that

ρ(0) = lim
n→∞

ρn(0) = 0.

Moreover, by the discussion on p. 72 (middle of the page) in ? it follows that ρn(0) is exactly the

ratio Hn/Gn, where Hn and Gn are the determinants in (??). Hence the moment determinacy

for the measure α+ implies Hn/Gn → 0 as n→ ∞.

(ii) To prove the converse, assume that Hn/Gn → 0 as n→ ∞. Let λn be the smallest eigenvalue

of the matrix Cn. Theorem 1.1 in ? states that the condition

lim
n→∞

λn = 0

is necessary and sufficient for the moment-determinacy of the measure α+.

From the definition of λn as the smallest eigenvalue of the matrix Cn and the representation

(??) it follows

λn ≤ 1

e⊤0,nC
−1
n e0,n

=
Hn

Gn
= ρn(0)

for all n ∈ N (see also a related discussion in ?). Therefore, Hn/Gn → 0 as n → ∞ implies

λn → 0 as n→ ∞ and this yields the moment determinacy of α+. �

2.5. Proof of Theorem ?? and ?? . Proof of Theorem ??. Use Lemma ?? with the

estimator defined in (??). By Lemma ?? the variance of this estimator is given by (??). From

Lemma ??, the determinacy of the measure α+ is equivalent to var(θ̂n) → 0 as n → ∞. By

Lemma ??, this is also equivalent to the moment determinacy of the spectral measure α. �

Proof of Theorem ??. Assume that the function f in (??) is a polynomial of degree m≥1. Take

m derivatives of both sides in (??). The model (??) thus reduces to ỹ(x) = θ̃ + ε̃(x), x ∈ X,

where θ̃ is the new parameter, ỹ(x) = y(m)(x) are new observations and ε̃ = ε(m) is the new

error process. From (2.178) in ?, the autocovariance function of the process {ε(m)(x)|x ∈ X} is

given by

Eε(m)(x)ε(m)(x′) = km(x− x′) with km(x) = (−1)mk(2m)(x).

From (??), the spectral measure associated with the kernel km(x−x′) is αm(dt) = t2mα(dt)/c2m.

Hence, the statement for the case when f is a polynomial of degree m ≥ 1 is reduced to the

case of the constant function proved in Theorem ??; this theorem is applicable as the measure

αm(dt) does not have mass at 0 for any m ≥ 1. �
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3. Extensions of Theorems ?? and ?? and further discussion. In this section we discuss

several extensions of the results derived in Sections ?? and ??. In particular, we consider

spectral measures with positive mass at the point 0 and extends the results to the multivariate

case. Moreover, we briefly indicate a relation of our results to the optimal approximation of a

constant function by polynomials with no intercept.

3.1. Spectral measures with finite support . If the spectral measure α(dt) in (??) has finite

support, say T = {±t1, . . . ,±tm} with m ≥ 1 and 0 < t1 < . . . < tm, then the matrices Cn in

(??) are invertible for n ≤ m− 1 but

(3.1) det(Cn) = det(c2(i+j))
n
i,j=0 = 0 for n ≥ m.

Consequently, observing Lemma ?? we have in this case

var(θ̂n) = 0 for n = m,m+ 1, . . .

Therefore, by Lemma ?? a non-vanishing constant function does not belong to H(K) if the

corresponding spectral measure has finite support.

The relation (??) follows, observing the representation

Cn = 2
m∑

i=1

wig(ti)g
⊤(ti) ∈ R

(n+1)×(n+1)

where g(t) = (1, t2, . . . , t2n)⊤ and w1, . . . , wm are the masses of the measure α at the points

t1, . . . , tm. As Cn is a sum of rank one matrices, it is singular whenever n > m − 1. On the

other hand, in the case m = n+ 1 we have by the Vandermond determinant formula

det Cn =

n+l∏

i=1

(2wi)
∏

1≤i<j≤n+1

(t2i − t2j )
2 > 0 ,

which shows that Cn is nonsingular. Finally, if m ≥ n+ 1 we have (in the Loewner ordering)

Cn ≥ 2

n+1∑

i=1

wig(ti)g
⊤(ti)

where the matrix on the right-hand side is positive definite.

3.2. Multivariate case . Consider the location scale model (??) but assume that X is a

subset of Rd with non-empty interior. Extensions of Theorems ?? and ?? to the multivariate
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case, when d > 1, essentially follow from the one-dimensional results because it is sufficient to

use derivatives of the process {y(x);x ∈ X} with respect to one variable for construction of

estimators (θ̂n)n∈N and subsequent application of Lemma ??. In the following discussion we

consider two cases for the kernelK(x, x′) using the notation x = (x1, . . . , xd)
⊤, x′ = (x′1, . . . , x

′
d)

⊤

and t = (t1, . . . , td)
⊤. We also denote by x(i), x

′
(i) and t(i) ∈ R

d−1 the vectors x, x′ and t with

i-th component removed, respectively.

Case 1: Assume that K is a product kernel, that is

K(x, x′) =
d∏

j=1

Ki(xj , x
′
j) ,(3.2)

where for all j = 1, . . . , d the kernel Kj (defined on a subset of R
2) satisfies Kj(xj , x

′
j) =

kj(xj − x′j) and kj is a non-constant positive definite function infinitely differentiable at the

point 0. Denote by αj(dtj) the spectral measure for kj and define α(dt) = α1(dt1) · · ·αd(dtd).

To construct the sequence of estimators (θ̂n)n∈N for the application of Lemma ??, we can use

the derivatives with respect to the i-th coordinate for any i. Therefore, Corollary ?? can be

generalized as follows.

Corollary 3.1. Assume that X ⊂ R
d and the kernel K has the form (??). Then we have the

following:

(a) If the measure α has a positive mass at the point 0, then the constant functions belong to H(K).

(b) If for at least one i ∈ {1, . . . , d} the Hamburger moment problem for the measure αi(·) is deter-

minate and the measure αi does not have a positive mass at the point 0, then any non-vanishing

constant function does not belong to H(K).

(c) If for at least one i ∈ {1, . . . , d} the Hamburger moment problem for the measures t2mi αi(dti)/c2m

is determinate for all m = 0, 1, . . ., then H(K) does not contain non-constant polynomials on X.

Note that the set X in Corollary ?? does not have to be a product of one-dimensional sets.

Moreover, we also point out that the assumption (??) can be generalized to kernels of the form

K(x, x′) = ki(xi − x′i)K(d−1)(x(i), x
′
(i)),

where K(d−1)(·, ·) is a positive definite and suitably differentiable kernel on R
d−1 ×R

d−1 and ki

is a non-constant positive definite function infinitely differentiable at the point 0.

Case 2: The kernel K satisfies

K(x, x′) = k(x− x′),

where k is a positive definite function on R
d. Consider the spectral measure α(dt) corresponding
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to k by Bochner‘s theorem, that is

k(x) =

∫

Rd

ei(t1x1+...+tdxd)α(dt) ,(3.3)

and denote by

αi(B) =

∫

Rd

IB(ti)α(dt) , B ∈ B,

the ith the marginal distribution of the measure α (i = 1, . . . , d), where IB denotes the indicator

function of the set B. In this case, we can generalize Corollary ?? as follows.

Corollary 3.2. If the spectral measure α(dt) does not have a positive mass at the point 0 and if

for at least one i ∈ {1, . . . , d} the Hamburger moment problems for the measures proportional

to t2mαi(dti) are determinate for all m = 0, 1, . . ., then H(K) does not contain non-vanishing

polynomials.

The case when the spectral measure has positive mass at the point 0 is treated similarly in

one-dimensional and multi-dimensional cases, see Section ??.

3.3. Discretization of space and the limit of discrete BLUEs. In Section ?? below we will

prove that constant functions belong to H(K) if the spectral measure has positive mass at the

point 0. The proof requires an auxiliary result which is of own interest and shows that in the

case f ∈ H(K) the variance of the continuous BLUE is the limit of the variances of discrete

BLUEs, after a suitable discretization of X has been performed.

Lemma 3.3. Let X be a compact in R
d, (xN )N∈N be a sequence of distinct points in X such that

f(x1) 6= 0 and

sup
x∈X

min
1≤i≤N

‖x− xi‖ → 0 as N → ∞ .(3.4)

Let θ̂BLUE,N be the BLUE of θ in model (??) from the observations of y(x1), . . . , y(xN ). Then

f ∈ H(K) if and only if var(θ̂BLUE,N ) → c > 0 as N → ∞.

Moreover, if f ∈ H(K), the continuous BLUE θ̂BLUE of θ in model (??) exists and

c = 1/‖f‖H(K) = var(θ̂BLUE).

Proof. Let XN = {x1, . . . , xN}, KN denote the restriction of K on XN , and define HN =

H(KN ) as the RKHS corresponding to the kernel KN . By Theorem 6 in Section 1.4.2 of ? we

have for fN = f
∣∣
XN

, the restriction of f on XN , that fN ∈ HN and ‖fN‖HN
≤ ‖fN+1‖HN+1

≤
‖f‖H(K) .

Consequently, the sequence of (var(θ̂BLUE,N ))N∈N= (1/‖fN‖HN
)N∈N is monotonously decreasing

so that the limit c = limN→∞ var(θ̂BLUE,N ) ≥ 0 exists for any f . Moreover, var(θ̂BLUE,N ) ≥ c
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for all N ∈ N. If f ∈ H(K) we have by Proposition 3.9 in ? that limN→∞ var(θ̂BLUE,N ) =

c = 1/‖f‖H(K) . Conversely, if var(θ̂BLUE,N ) → c as N → ∞ for some c > 0, we can use the

equivalence between (1) and (2) in Theorem 3.11 of ? to deduce that f ∈ H(K). �

Recall that the explicit expression for the variance of the discrete BLUE θ̂BLUE,N of Lemma ??

is given by

var(θ̂BLUE,N ) = 1/F⊤
NK

−1
N FN ,(3.5)

where

FN = (f(x1), . . . , f(xN ))⊤ , KN = (K(xi, xj))
N
i,j=1 .(3.6)

Since the kernel K(·, ·) is assumed to be strictly positive definite, the matrix KN is invertible

for all N = 1, 2, . . .

3.4. Spectral measures with positive mass at the point 0. In this section we investigate

the case, where the spectral measure has a positive mass at the point 0 and hence generalize

the result obtained at the end of Section ??. We assume that the covariance kernel of the error

process has the form

Kγ(x, x
′) = γ + (1− γ)K(x, x′) ,(3.7)

where 0 ≤ γ < 1 and K(x, x′) is a strictly positive definite kernel on a compact set X ⊂ R
d.

Note that in the particular case d = 1 and K(x, x′) = k(x − x′) with k having the spectral

measure α(dt), we obtain the representation (??) for the spectral measure αγ .

Theorem 3.4. Let X ⊂ R
d be a compact set and assume the kernel Kγ has the form (??) with

0 < γ < 1. Then then the constant functions belong to H(Kγ).

Proof. Consider the location scale model

y(x)=θ+ε(x) , x∈X, Eε(x)=0, Eε(x)ε(x′)=Kγ(x, x
′) .(3.8)

and let (xn)n∈N denote a sequence of distinct points in X such that (??) is satisfied. Let

θ̂m,γ be the BLUE of θ in the model (??), constructed on the observations of y(x1), . . . , y(xm).

Define Wm,γ = (Kγ(xi, xj)
m
i,j=1, Ym = (y(x1), . . . , y(xm))⊤ and 1m = (1, . . . , 1)⊤ ∈ R

m. As

the covariance kernel K(x, x′) is strictly positive definite, the matrix Wm,γ is invertible for all

m ≥ 1, 0 ≤ γ < 1. Therefore, the BLUE is unique and given by

θ̂m,γ = 1⊤mW
−1
m,γYm/1

⊤
mW

−1
m,γ1m .
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Its variance is

var(θ̂m,γ) = 1/1⊤mW
−1
m,γ1m .

For simplicity of notation, denote κm,γ = 1⊤mW
−1
m,γ1m = 1/var(θ̂m,γ). The same arguments

as given in the proof of Lemma ?? show that for any 0 ≤ γ < 1, the sequence (κm,γ)m∈N is

monotonously increasing with some limit cγ = limm→∞ κm,γ ∈ (0,∞]. Observing the represen-

tation

Wm,γ = (1− γ)Wm,0 + γ1m1⊤m

(for all m = 1, 2, . . . and 0 < γ < 1), we have

W−1
m,γ =

1

1− γ

[
W−1

m,0 −
γ

1− γ + γ1⊤mW
−1
m,01m

W−1
m,01m1⊤mW

−1
m,0

]
.

This implies

κm,γ =
κm,0

1− γ

[
1− γκm,0

1− γ + γκm,0

]
=

κm,0

1− γ + γκm,0
,

and therefore it follows that

var(θ̂m,γ) = 1/κm,γ = γ + (1− γ)var(θ̂m,0) .(3.9)

Taking the limit (as m→ ∞) in (??) we obtain for all 0<γ<1:

lim
m→∞

var(θ̂m,γ) = γ + (1− γ)/c0 ≥ γ > 0 .

Lemma ?? now yields that the constant functions belong to H(Kγ). �

3.5. Estimation of the variance of a Gaussian random field. Let X ⊂ R
d be a compact

set, and let f denote of a Gaussian random process (field) on X with a strictly positive definite

covariance kernel R(x, x′) = σ2K(x, x′) on X × X, where the kernel K(x, x′) is known but

σ2 is unknown. For estimating σ2 we assume that one can observe f at N distinct points

x1, . . . , xN ∈ X. Then it is easy to deduce (see, for example, p.140 in ?) that the corresponding

log-likelihood function is

LL(σ2) =
1

2

[
−N log(2π)−N log(σ2)− log(det(KN ))− 1

σ2
F⊤
NK

−1
N FN

]
,(3.10)

18



where FN and KN are defined by (??). Moreover, a simple calculation shows that the maximum

likelihood estimator (MLE) of σ2 is given by

σ̂2N =
1

N
F T
NK

−1
N FN .(3.11)

Comparing (??) with (??) we get

σ̂2N =
1

N var(θ̂BLUE,N )
,(3.12)

and by Lemma ?? we obtain the following corollary.

Corollary 3.5. Let X be a compact set in R
d, K a strictly positive definite kernel on X ×X and

f a function on X. If x1, x2, . . . is a sequence of distinct points in X satisfying (??) and σ̂2N is

the MLE of σ2 constructed from the observations f(x1), . . . , f(xN ) under the assumption that

f is a realization of a GP with zero mean and covariance (??), then f ∈ H(K) if and only if

limN→∞N σ̂2N <∞.

3.6. Best polynomial approximation . Let L2(α) denote the space of square integrable

functions with respect to the measure α(dt) on the real line and define Pn−1 to be the space of

of polynomials of degree n− 1. For p ∈ Pn−1 we consider the L2(α)-distance

V (p) =

∫ −∞

−∞
(1− t2p(t2))2α(dt)

between the constant function g(t) ≡ 1 and the even polynomial t2p(t2) of degree 2n with no

intercept. A well know result in approximation theory (see, for example, ?, p. 15-16) shows that

minpn∈Pn−1
V (p) =

det(c2(i+j))
n
i,j=0

det(c2(i+j))
n
i,j=1

= var(θ̂n) ,(3.13)

where c0, c2, c4, . . . are the (even) moments of the spectral measure α defined in (??) and the

last equality is a consequence of Lemma ??.

From this representation it follows that var(θ̂n) → 0 as n→ ∞ if and only if non-zero constant

functions can be approximated by polynomials of the form p̃n(t) = t2pn(t
2) with arbitrary small

error. Moreover, for any polynomial p on (−∞,∞), we have

V (p) =

∫ ∞

0
(1− tp(t))2α+(dt) = b2

∫ ∞

0
(1/t− p(t))2α2,+(dt),

where the measure α+(dt) is defined by (??), b2 =
∫∞
0 t2dα+(t) and α2,+(dt) = t2α̃+(dt)/b2.

From Corollary 2.3.3 in ?, it therefore follows that the set of all polynomials P∞ = ∪∞
n=0Pn
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is dense in the space L2([0,∞), ν) if the measure ν on [0,∞) is the (unique) solution of a

determinate Hamburger moment problem. As the function f(t) = 1/t belongs to L2((0,∞), α2,+)

we thus obtain from (??) another proof of the fact that if α(dt) has no mass at 0 and α2,+(dt)

is moment-determinate in the Hamburger sense then var(θ̂n) → 0. Note that this is almost

equivalent to the ‘if’ statement in the important Lemma ??.

4. Rates of convergence. In this section, we derive for several specific classes of correlation

kernels explicit results on the rate of convergence of the ratio var(θ̂n) = Hn/Gn, see (??), where

Hn and Gn are the determinants defined in (??).

4.1. Gaussian kernel. Let K(x, x′) = exp{−λ(x− x′)2} with X ⊂ R and λ > 0. Assuming

for simplicity λ = 1/4, we obtain that the spectral measure is absolutely continuous with density

ϕ(t) =
1√
π
e−t2 , −∞ < t <∞ .

The moments of even order of the measure α are given by

c2j =

∫ ∞

−∞
t2jϕ(t)dx =

∫ ∞

0
tjg(t)dt = bj = 2j(2j − 1)!! j = 0, 1, . . . ,

where g(y)= 1√
π
y−1/2e−y, y > 0. Using any of the sufficient conditions (A.1)–(A.5) of Section ??,

the corresponding Hamburger moment problem is determinate and therefore non-vanishing con-

stant functions (and all polynomials) do not belong to the corresponding RKHS. We now in-

vestigate the variance of the discrete BLUE defined in (??), which is given by the ratio of the

determinants Hn and Gn.

It follows from results in ? that the determinant of the Hankel matrix defined in (??) has the

representation

(4.1) Hn =
∣∣c2(i+j)

∣∣n
i,j=0

=
∣∣bi+j

∣∣n
i,j=0

=

n∏

i=1

(
d̃2i−1d̃2i

)n−i+1
,

where d̃j are the coefficients of the three-term recurrence relation

(4.2) Pℓ+1(t) = (t− d̃2ℓ − d̃2ℓ+1)Pℓ(t)− d̃2ℓ−1d̃2ℓPℓ−1(t), ℓ = 0, 1, . . .

of the monic orthogonal polynomials with respect to measure g(y)dy (d̃0 = 0, P0(t) = 1, P−1(t) =

0). Observing the three-term recurrence relation

(ℓ+ 1)L
(α)
ℓ+1(t) = (−t+ 2ℓ+ α+ 1)L

(α)
ℓ (t)− (ℓ+ α)L

(α)
ℓ−1(t)
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for the Laguerre polynomials L
(α)
n (t) (orthogonal with respect to e−yyαdy, y > 0) we can identify

the coefficients in (??). More precisely, the monic polynomials

L
(α)
ℓ+1(t) = (−1)ℓ+1(ℓ+ 1)!L

(α)
ℓ+1(t)

satisfy a three-term recurrence relation of the form (??) with d̃2k = k, d̃2k−1 = k + α, see ?,

Lemma 2.2 (b). As Pℓ(t) = L
(−1/2)
ℓ (t) we have d̃2k = k, d̃2k−1 = k − 1/2 , and therefore obtain

Hn=
n∏

k=1

(k(2k−1))n−k+1
n∏

k=1

(1
2

)n−k+1
=

(1
2

)n(n+1)/2
n∏

k=1

(k(2k−1))n−k+1 .(4.3)

Now we move on to the determinant Gn =
∣∣bi+j

∣∣n
i,j=1

. Note that we have

bj =
1√
π

∫ ∞

0
yj−2y3/2e−ydy =

3

4
aj−2

for j ≥ 2, where ak =
∫∞
0 ykg̃(y)dy and the density g̃k is defined by g̃(y) = 4

3
√
π
y3/2e−y, y > 0.

Therefore,

Gn =
(3
4

)n∣∣ai+j

∣∣n−1

i,j=0
=

(3
4

)n
n−1∏

l=1

(
d2l−1d2l

)n−l
,

where d2l−1 = l + 3/2, d2l = l. Consequently,

Gn =
(3
4

)n(1
2

)n(n−1)/2
n−1∏

k=1

(k(2k + 3))n−k

and it follows

Hn

Gn
=

(4
3

)n(1
2

)n [ n−1∏

k=1

(k(2k − 1))n−k+1

(k(2k + 3))n−k

]
n(2n− 1)

=
(2
3

)n
n!(2n− 1)

n−1∏

k=1

(2k − 1)n−k+1

(2k + 3)n−k
.

Since
n−1∏

k=1

(2k − 1)n−k+1

(2k + 3)n−k
=

3n

(2n− 1)(2n+ 1)!!

we obtain

Hn

Gn
=

2n n!

(2n+ 1)!!
=

√
π

2
√
n

[
1− 3

8n
+

25

128n2
+O

( 1

n3

)]
, n→ ∞.(4.4)
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The expansion (??) details the asymptotic relation formulated as Theorem 3.3 in ? in the case

p = 0. Note that formula (??) also corrects a minor mistake in this reference, which gives
√
π√
2n

as the leading term.

4.2. Spectral measure with Beta distribution . For measures with a compact support the

determinants Hn and Gn can be conveniently evaluated using the theory of canonical moments,

see e.g. ?. Exemplarily, we consider the symmetric Beta (α, α) distribution on the interval

[−1, 1] with density

(4.5) ψ′
α(t) =

1

22α+1B(α+ 1, α+ 1)
(1− t2)α, −1 < t < 1,

where α > −1 and B(α, β) denotes the Beta-function. For later purposes we also introduce the

Beta(α, β) distribution on the interval [0, 1] with density

φα,β(t) =
1

B(β + 1, α+ 1)
tβ(1− t)α , 0 < t < 1,(4.6)

where the α, β > −1. The canonical moments of the Beta-distribution with density (??) are

given by

p2j =
j

2j + 1 + α+ β
, p2j−1 =

β + j

2j + α+ β
;(4.7)

see e.g. formula (1.3.11) in ?. It is easy to see that the distribution on the interval [0, 1] related to

the distribution ψα in (??) by the transformation (??) is a Beta (α,−1
2) distribution. Therefore,

it follows from (??) that the corresponding canonical moments are given by

(4.8) p2j =
j

2j + 1/2 + α
, p2j−1 =

j − 1/2

2j − 1/2 + α
.

Now Theorem 1.4.10 in ? gives

(4.9) Hn = |(bi+j)
n
i,j=0| =

n∏

i=1

(q2i−2p2i−1q2i−1p2i)
n+1−i ,

where q0 = 1, qj = 1− pj (j ≥ 1) and (observing (??))

(4.10) q2i−2p2i−1q2i−1p2i =
4i (i+ α) (2 i− 1 + 2α) (2 i− 1)

(4 i+ 1 + 2α) (4 i− 1 + 2α)2 (4 i− 3 + 2α)
, i = 1, 2 . . .
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For the calculation of the determinant Gn = |(bi+j)
n
i,j=1| we note the relation

(4.11) bi =
B(52 , α+ 1)

B(12 , α+ 1)
b̃i−2 i = 2, 3, . . .

where b̃0, b̃1, . . . are the moments of the Beta(α, 3/2) distribution. Consequently, we obtain from

Theorem 1.4.10 in ? that

Gn = |(bi+j)
n
i,j=1| = |(b̃i+j)

n−1
i,j=0| =

[
B(52 , α+ 1)

B(12 , α+ 1)

]n

×
n−1∏

i=1

(q̃2i−2p̃2i−1q̃2i−1p̃2i)
n−i

=

[
3

(2α+ 3)(2α+ 5)

]n
×

n∏

i=2

(q̃2i−4p̃2i−3q̃2i−3p̃2i−2)
n+1−i ,(4.12)

where p̃1, p̃2 are the canonical moments of Beta(α, 3/2) distribution, that is

p̃2i =
j

2i+ 5/2 + α
, p̃2i−1 =

3/2 + i

2i+ 3/2 + α
,

and

(4.13) q̃2i−2p̃2i−1q̃2i−1p̃2i =
4i (i+ α) (2 i+ 3 + 2α) (2 i+ 3)

(4 i+ 5 + 2α) (4 i+ 3 + 2α)2 (4 i+ 1 + 2α)
, i = 1, 2 . . .

Consequently, it follows from (??), (??) and (??)

Hn

Gn
=

[(2α+ 3)(2α+ 5)

3

]n
(q0p1q1p2)

n
n∏

i=2

[ q2i−2p2i−1q2i−1p2i
q̃2i−4p̃2i−3q̃2i−3p̃2i−2

]n+1−i

=
[ 4(1+α)

3 (3+2α)2

]n n∏

i=2

[ i (i+α) (i−1/2) (i+α−1/2)

(i−1) (i−1+α) (i+1/2) (i+α+1/2)

]n+1−i
.
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Observing the relations

n∏

i=2

[ i

i− 1

]n+1−i
= n! ,

n∏

i=2

[ i− 1/2

i+ 1/2

]n+1−i
=

3n

(2n+ 1)!!
,

n∏

i=2

[ i+ α

i− 1 + α

]n+1−i
=

Γ(n+ 1 + α)

(1 + α)nΓ(1 + α)
,

n∏

i=2

[ i+ α− 1/2

i+ α+ 1/2

]n+1−i
=

(3 + 2α)nΓ(3/2 + α)

2nΓ(n+ 3/2 + α)
.

we obtain

Hn

Gn
=

[ 4(1+α)

3 (3+2α)

]n n!3nΓ(n+1+α)(3+2α)nΓ(3/2+α)

(2n+1)!!(1+α)nΓ(1+α)2nΓ(n+3/2+α)

=

√
π

22α+1B(α+ 1, α+ 1)
× (2n)!!

(2n+ 1)!!
· Γ(n+ 1 + α)

Γ(n+ 3/2 + α)

=
π

22α+2B(α+ 1, α+ 1)
× 1

n

(
1 +O

( 1

n

))
, n→ ∞(4.14)

where the expansion in the last line follows by straightforward but tedious calculation using

Stirling’s formula.

We finally mention the special cases α = 0 (the spectral measure is a uniform spectral density

on the interval [−1, 1] with corresponding kernel function k(x) = sin(x)/x) and α = −1/2

(the spectral measure is the arcsine distribution on [−1, 1] and the corresponding kernel is

k(x) = 2J1(x)/x, where Jα(·) is the Bessel function of the first kind) for which the expansions

are given, respectively, by

Hn

Gn
=

[
(2n)!!

(2n+ 1)!!

]2
=

π

4n
+O

( 1

n2

)
,(4.15)

Hn

Gn
=

(8
3

)n[1
8

]n
n!

3n

(2n+ 1)!!

2nΓ(n+ 1/2)

Γ(1/2)

1

n!
=

1

2n+ 1
=

1

2n
+O

( 1

n2

)

as n→ ∞. Interestingly, the ratio Hn/Gn in (??) is the squared ratio Hn/Gn of (??).

5. Some results of numerical studies and discussions. We have made extensive numerical

studies to assess the uncertainty quantification in GP regression, as introduced in Section ?? for

functions f ∈ H(K) and f /∈ H(K); some of our results are illustrated in the figures below. At

the end of this section, we summarize our conclusions. Different kernels K (including Matérn
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kernels and the kernels discussed at the end of Section ??) have been investigated as well. In

the figures below, we use X = [0, 1], Gaussian and Cauchy kernels (see (E.1) and (E.2) at the

end of Section ??) and the two functions

f1(x) = exp{−2(x− 1/3)2} and f2(x) = 1− 2(x− 1/3)2.

These two functions look similar but we note that f1 ∈ H(K) and f2 /∈ H(K) for both kernels

with the correlation lengths considered below. Visually, the chosen kernels also look similar but

it turns out that they exhibit completely different behaviour.

Figure 1. Kriging confidence regions for kernel approximation of f1 (left) and f2 (right): Gaussian kernel,
λ = 15, N = 6.

In Figs. ?? and ?? we plot either f1 or f2 in solid black, the kernel approximation µN (x)

computed by (??) in dotted red and the so-called kriging confidence regions µN (x)±3σ̂2N CN (x, x)

in grey, where CN (x, x) is the kernel variance computed by (??) and σ̂2N is the MLE of σ2

computed by (??). The main reason for providing Figs. ?? and ?? is the demonstration of

the big difference in the width of the confidence regions for the Gaussian and Cauchy kernels.

In Figs. ??, ?? and ??, we plot the deviation f(x) − µN (x) in brown and confidence bounds

µN (x) − f(x) ± 3σ̂2N CN (x, x) in filled grey. Again, the left and right panels show the results

for the functions f1 and f2, respectively. The points xj , where observations of f are taken, are

equally spaced on the interval [0, 1] with xj = (j − 1)/(N − 1), j = 1, . . . , N .

The results for the Gaussian kernel K(x, y) = σ2 exp{−15(x − y)2} are depicted on Figs. ??

and ??. The corresponding results for the Cauchy kernel K(x, y) = σ2/(1 + 20(x − y)2) can
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Figure 2. Kriging confidence regions for kernel approximation of f1 (left) and f2 (right): Cauchy kernel,
λ = 20, N = 6.

be found Figs. ?? and ??. It is clear from comparing left and right panels in Figs. ??–??

that kernel approximations for f1 ∈ H(K) are significantly more accurate than for f2 /∈ H(K).

The two chosen kernels (Gaussian with λ = 15 and Cauchy with λ = 20) look very similar

but have different tail behaviour of the corresponding spectral density: the tail of the spectral

density of the Cauchy kernel has a heavier tail. The confidence regions for the regression function

constructed by the Cauchy kernel are rather wide and resemble the regions for the Matérn kernels

with shape parameters 3/2 and 5/2 having similar correlation lengths. The confidence regions

in the case of Gaussian kernel are much narrower (in fact, far too narrow) and the confidence

regions for the kernels in (E.3) and (E.4) of Section ?? are even narrower; the spectral measures

for these kernels have finite support.

In Figure ?? we plot the deviations and confidence regions for kernel approximation with Gauss-

ian kernel K(x, y) = σ2 exp{−2(x − y)2}; the Gaussian kernel with λ = 2 is perfectly suited

for function f1. A naive visual inspection of the two functions might suggest the Gaussian

kernel should also work well for f2 but, as we can observe from Figure ?? (right), it is not so

for f2 /∈ H(K). The confidence region on Figure ?? (right) cannot be seen as the deviations

|µN (x)− f2(x)| are on average 105 times larger than 3σ̂2N CN (x, x).

From the numerical studies partially illustrated in these figures we make the following conclu-

sions concerning uncertainty quantification in GP regression models with infinitely differentiable

translation-invariant kernels:
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Figure 3. Deviation and confidence bounds in kernel approximation: Gaussian kernel, λ = 15, N = 9; f1
(left) and f2 (right)

• if f /∈ H(K), then the kriging confidence regions for f are always inaccurate;

• the heavier are the tails of the spectral measure of the kernel, the wider are the confidence

regions;

• if the tail of the spectral measure of the kernel is light and the function f does not

belong to the respective RKHS, then the kernel approximation of f appears to be rather

inaccurate and the confidence regions seem to be missing f almost entirely;

• if the function f does not belong to the respective RKHS, then σ̂2N → ∞ as N → ∞,

but this has little effect on the size of the confidence intervals, at least for small N ;

• for kernels with light tails of the respective spectral measures, the kernel approximation

is accurate and confidence regions are adequate only if the shape of f precisely matches

the shape of the kernel functions K(x, ·), as in Figure ?? (left).

Acknowledgements This research was partially supported by the research grant DFG DE

502/27-1 of the German Research Foundation (DFG). The authors are grateful to Timo Karvo-

nen (Alan Turing Institute) for intelligent discussions, spotting an essential typo and pointing

out several important references. We would also like to thank both referees and especially the

associate editor for their constructive and very valuable comments on earlier versions of this

paper.

References.

Achieser, N. I. (1956). Theory of Approximation. Frederick Ungar Publishing Co., N.Y.

27



Figure 4. Deviation and confidence bounds in kernel approximation: Cauchy kernel, λ = 20, N = 9; f1 (left)
and f2 (right)

Akhiezer, N. (1965). The Classical Moment Problem and Some Related Questions in Analysis.

Oliver & Boyd.

Archetti, F. and Candelieri, A. (2019). Bayesian Optimization and Data Science. Springer.

Berg, C., Chen, Y., and Ismail, M. E. (2002). Small eigenvalues of large Hankel matrices: The

indeterminate case. Mathematica Scandinavica, 90:67–81.

Berlinet, A. and Thomas-Agnan, C. (2011). Reproducing Kernel Hilbert Spaces in Probability

and Statistics. Springer.

Billingsley, P. (2008). Probability and Measure. John Wiley & Sons, forth edition.

Bochner, S. and Chandrasekharan, K. (1949). Fourier Transforms. (AM-19). University Press,

Princeton, N.J.

Briol, F.-X., Oates, C., Girolami, M., Osborne, M., and Sejdinovic, D. (2019). Probabilistic

integration: A role in statistical computation? Statistical Science, 34(1):1–22.

Cambanis, S. and Masry, E. (1983). Sampling designs for the detection of signals in noise. IEEE

Transactions on Information Theory, 29(1):83–104.

Dette, H., Pepelyshev, A., and Zhigljavsky, A. (2019). The BLUE in continuous-time regression

models with correlated errors. Annals of Statistics, 47(4):1928–1959.

Dette, H. and Studden, W. (1992). On a new characterization of the classical orthogonal poly-

nomials. Journal of Approximation Theory, 71(1):3–17.

Dette, H. and Studden, W. (1997). The Theory of Canonical Moments with Applications in

28



Statistics, Probability and Analysis. John Wiley & Sons.

Hennig, P., Osborne, M., and Girolami, M. (2015). Probabilistic numerics and uncertainty in

computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 471(2179):20150142.

Heyde, C. (1963). Some remarks on the moment problem (i). The Quarterly Journal of Mathe-

matics, 14(1):91–96.

Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperumbudur, B. (2018). Gaussian processes

and kernel methods: A review on connections and equivalences. arxiv e-prints, art. arXiv

preprint arXiv:1807.02582.

Karvonen, T. (2021). On non-inclusion of certain functions in reproducing kernel Hilbert spaces.

arXiv preprint arXiv:2102.10628.

Karvonen, T., Wynne, G., Tronarp, F., Oates, C., and Särkkä, S. (2020). Maximum likelihood
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Schmüdgen, K. (2017). The Moment Problem. Springer.

Schulz, E., Speekenbrink, M., and Krause, A. (2018). A tutorial on Gaussian process regression:

Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16.

Shohat, J. and Tamarkin, J. (1943). The Problem of Moments. American Math. Soc.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer.

Steinwart, I., Hush, D., and Scovel, C. (2006). An explicit description of the reproducing kernel

Hilbert spaces of Gaussian RBF kernels. IEEE Trans. on Inform. Theory, 52(10):4635–4643.

Stoyanov, J. M. (2013). Counterexamples in Probability. Courier Corporation.

Sun, H.-W. and Zhou, D.-X. (2008). Reproducing kernel Hilbert spaces associated with analytic

translation-invariant Mercer kernels. J. Fourier Analysis and Applications, 14(1):89–101.

Wainwright, M. (2019). High-dimensional statistics: A non-asymptotic viewpoint. Cambridge

University Press.

Wendland, H. (2004). Scattered Data Approximation. Cambridge University Press.

Xu, W. and Stein, M. L. (2017). Maximum likelihood estimation for a smooth Gaussian random

field model. SIAM/ASA Journal on Uncertainty Quantification, 5(1):138–175.

Yaglom, A. (1986). Correlation Theory of Stationary and Related Random Functions. Volume

I: Basic Results. Springer.
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