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Thesis Summary 

Memories are shaped by our emotional state during learning and the integration of 

information during sleep. In this thesis I aim to clarify the contributions of rapid eye 

movement (REM) and non-REM sleep, as well as anxiety, towards emotional memory 

consolidation. In addition, emergent technologies support the progression of sleep research, 

but evidence is needed for their accuracy. I therefore also explore the utility of sleep 

wearables. 

I conducted a validation of the EEG-based Dreem Headband wearable against the gold 

standard of sleep measurement, polysomnography, finding Dreem suitable for the estimation 

of most overnight sleep when manually scored. I then developed and tested a novel, two-day 

discriminative fear conditioning experiment in 38 healthy people (28 female, aged 18–30 

years), utilising Dreem to measure overnight sleep. I extended this investigation in a subset 

of participants to longer-term extinction learning and fear reinstatement after one week, with 

an additional exploration of bad dreams. In contrast to current evidence preferentially linking 

REM sleep and emotional memory consolidation, I found that slow-wave sleep (SWS) 

duration – as well as slow oscillation event count and density – was associated with greater 

fear discrimination maintenance across the post-conditioning night. In a dissociation 

between the stages, more REM sleep in the same night was associated with lower fear 

responses to safe stimuli the next day. Additionally, anxiety predicted maladaptive 

reinstatement of fear while bad dreams were associated with maladaptive responses the 

next day and after one week. 

My results suggest that SWS, particularly the coordinated network activity that generates 

slow oscillations, supports fear memory consolidation in young, healthy people. Meanwhile, 

anxiety and bad dreams may indicate interindividual tendencies towards maladaptive fear. 

Finally, sleep wearables appear to be a viable tool to support these investigations, moving 

towards a mechanistic understanding of sleep and fear learning.  
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Chapter 1  

General Introduction 

 

There is consistent evidence that brain activity during sleep makes vital contributions to 

memory consolidation, yet emotional memory remains somewhat equivocal. In this general 

introduction, I discuss the current understanding of sleep and sleep methodology in this field. 

I concentrate on human literature, which is the focus of this thesis, but draw on the advantages 

of animal models where appropriate. In particular, there is uncertainty regarding the roles of 

rapid eye movement (REM) and non-REM sleep stages in emotional memory consolidation. I 

also evaluate emergent wearable technology for sleep measurement and how it may be used 

to answer these questions.   

In my exploration of emotional memory consolidation, I focus on fear, utilising the conditioning 

model of learning and memory. This highlights the importance of interindividual differences in 

the fear response, for example, across the spectrum of trait anxiety in a healthy sample. This 

research has important implications for understanding maladaptive fear learning and 

ultimately the destructive patterns of pervasive fear seen in conditions such as Post-Traumatic 

Stress Disorder (PTSD).  
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1.1 Sleep 

1.1.1 Sleep for Survival 

Sleep is essential for our wellbeing and function, but it is not a unique requirement of the 

human brain; sleep is conserved in some form across a vast array of diverse species, including 

fruit flies, roundworms, and zebrafish (Cirelli, 2009; Miyazaki et al., 2017; Siegel, 2005). The 

pervasiveness of sleep despite the high cost – in mammals at least – of rendering the body 

defenceless for extensive periods suggests it is a fundamental part of life. Indeed, sleep is 

essential to survival; total forced sleep deprivation of rats led to skin lesions, weight loss, 

increased stress hormones, reduced body temperature and (after 11–32 days) eventual death 

(Rechtschaffen et al., 1989).  

Sleep is driven by homeostatic pressure – an exponential drive that increases with time spent 

awake (Borbély et al., 1989; Borbly, 2001), and the circadian cycle – an endogenous rhythm 

mediated via the anterior hypothalamus which follows the 24-hour light/dark rotation of the 

earth (Borgs et al., 2009). Circadian rhythms regulate a variety of physiological processes 

linked to sleep including body temperature, hormone secretion, and cell cycle regulation 

(Saper et al., 2005; Zee et al., 2013). In particular, melatonin has been strongly tied to these 

rhythms (Arendt & Skene, 2005; Brzezinski, 1997). Released from the pineal gland, melatonin 

starts to increase two hours before natural sleep onset, peaking around five hours later 

(Bartlett et al., 2013). In fact, melatonin supplements have been used as a treatment for 

insomnia and have even been suggested as a protective agent against neurodegenerative 

disorders like Alzheimer’s Disease (Chen et al., 2020; Low et al., 2020; Miller et al., 2015; 

Polimeni et al., 2014).  

Before scientific advances allowed researchers to quantify brain activity, it was thought that 

sleep was a passive state resulting from a lack of input (Jha & Jha, 2020). This changed with 

the development of electroencephalography (EEG): electrodes on the scalp measuring 

electrical activity, largely derived from the summation of postsynaptic potentials; the resultant 

complex waveform can be analysed in both the temporal and frequency domain (Harmon-

Jones & Amodio, 2012). Such analyses indicated that sleep is a dynamic process 

characterised by unique patterns of oscillatory neural network activity; this is discussed further 

in section 1.1.2. Sleep also involves neurochemical alterations such as a gradual reduction in 

adrenaline and noradrenaline (Lechin et al., 2004). Broadly, these large-scale changes 

promote network restoration while sleep supports synaptic plasticity at the cellular level via 

related gene transcription (Abel et al., 2013; Benington & Heller, 1995; Krueger et al., 2013; 

Miraglia et al., 2021). 
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Given this, it is unsurprising that sleep causally contributes to many aspects of psychological 

function. Compromised sleep, for example through night or shift work, has been consistently 

associated with an array of mental health conditions (Hasler & Pedersen, 2020; Torquati et 

al., 2019; Montagni et al., 2020). In fact, sleep problems are diagnostic criteria for many 

disorders including depression and PTSD (Germain, 2013; Nutt et al., 2008; Thase, 2006), 

while even short-term sleep deprivation leads to impairments in attention, working memory, 

and reward or aversive stimulus processing (Killgore, 2010; Krause et al., 2017).  

 

1.1.2 Measuring Sleep 

1.1.2.1 Polysomnography 

Polysomnography (PSG) is the gold standard for the quantification of human sleep. The 

primary feature of PSG is electroencephalography (EEG) which records electrical activity from 

the brain, specifically, voltage fluctuations which arise from the ionic current within neurons 

(Buzsáki et al., 2012; Krishnan et al., 2018). During sleep, the brain generates dynamic and 

coordinated electrical field potentials across cortical networks (Blinowska & Durka, 2006). The 

amplitude and frequency of these neural oscillations indicate hallmark features of sleep 

stages. 

Human EEG is generally recorded non-invasively via electrodes placed across the scalp, 

although intracranial EEG can be obtained from neurosurgery patients (Andrillon et al., 2015; 

Staresina et al., 2015). Intracranial EEG is the default approach in animal studies (Takahashi 

et al., 2010; Mirsattari et al., 2007). Scalp EEG typically has poor spatial resolution reflecting 

the summed electrical activity from large populations of neurons, somewhat distorted through 

the skull, skin, and hair (Burle et al., 2015). In addition, the EEG signal reflects the electrical 

difference between two recording points. Normally, scalp positions are referenced to the 

mastoids: a bony location behind each ear which should yield little electrical activity (see M1 

and M2 in Figure 1.1). EEG is thus not a direct measure of brain activity. Nevertheless, it 

offers excellent temporal resolution and has proved practical for sleep, making it the default 

approach for measuring brain activity overnight (Mantini et al., 2010; McLoughlin et al., 2014).  

PSG comprises of EEG with electrooculography (EOG) and electromyography (EMG) which 

measure eye movement and muscle tone respectively (Rundo & Downey, 2019). An 

internationally recognised arrangement of EEG electrodes is the 10-20 system (Homan, 1988; 

Ives-Deliperi & Butler, 2018): channel Cz is centred to the participant’s midline, measured 

halfway between the mastoids (M1, M2), nasion, and inion (Nz, Iz); other electrodes are placed 

relative to this. For PSG, electrodes around the eyes and chin measure EOG and EMG. 
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Autonomous wearable devices for measuring sleep, such as the Dreem Headband (discussed 

in section 1.1.2.3), may not obtain the same coverage (Figure 1.1).  

 

 

         

Figure 1.1 The 10-20 System for EEG Electrode Placement  

Illustration of the 10-20 system of EEG electrode placement. Primarily, letters refer to brain lobes (F = 

frontal, C = central P = parietal, O = occipital, T = temporal); odd numbers indicate the left hemisphere 

and even numbers indicate the right hemisphere. “A” refers to anterior, and “z” refers to “zero” for 

electrodes placed on the midline and therefore unlikely to reflect cortical activity. For referencing and 

correct placement, “N” and “I” indicate the nasion and inion respectively, “M” refers to the mastoid 

process behind each ear.  

Not all electrodes are essential. Red circles highlight the electrodes recorded during my PSG 

measurement (Chapter 2). Blue circles highlight the electrodes recorded by the wearable device, the 

Dreem Headband (Chapters 2 and 3). Black circles highlight those recorded by both methods.   

 

1.1.2.2 Sleep Stages 

In the most basic distinction, human sleep can be divided into REM and non-REM (Miyazaki 

et al., 2017). While EEG activity in REM is similar to wake, the non-REM stages represent a 

gradually deepening state of synchronisation across the cortex. This can be seen in the EEG 

as slow frequency, high amplitude oscillations which are unique to sleep. Non-REM is divided 

into stages N1, N2, N3, and sometimes N4 (Shrivastava et al., 2014). Rodent sleep follows a 
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less structured pattern through the stages and is only separated into REM and non-REM 

(Figure 1.2); however, it contains many of the same features as human sleep and is therefore 

often utilised to study sleep and memory (Genzel et al., 2014; Havekes et al., 2015; Squire et 

al., 2015).  

 

 

Figure 1.2 Sleep Stages in Humans and Rodents 

Human non-REM sleep shows increasing slow oscillations from light sleep (LS) to slow-wave sleep 

(SWS). In contrast, human REM sleep shows wake-like activity. Rodent sleep shows similar oscillations 

in non-REM and similar frequencies in REM, although the pattern of sleep across the night (hypnogram) 

is very different. Image adapted from Genzel et al. (2014).   

 

In light sleep, N1 is characterised by mixed amplitude, low frequency EEG with slow, rolling 

eye movements. N1 invariably transitions to N2,  characterised by K-complexes, a single well-

delineated slow oscillation at a slow delta 0.5–2 Hz, and sleep spindles, short bursts of activity 

in the sigma 9–16 Hz frequency (Ohayon et al., 2017; Silber et al., 2007). The deep sleep 

stages N3 and N4 are commonly known together as slow-wave sleep (SWS) and in recent 

years are generally not separated. SWS is characterised by increasing slow oscillations, 

although sleep spindles also occur less visibly (Maquet et al., 1997). Both slow oscillations 

and spindles, discussed in more detail in section 1.1.2.3, have been a strong focus of interest 

in memory consolidation (Fernandez & Lüthi, 2019; Fogel & Smith, 2006; Purcell et al., 2017; 

Schabus et al., 2004).  
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REM makes up the final part of healthy overnight sleep. REM sleep has historically been 

known as paradoxical sleep, as cortical activity lacks the synchrony of non-REM and appears 

similar to that seen during waking hours. REM is characterised by low amplitude EEG activity 

in the 4–8 Hz theta frequency alongside rapid eye movements and low muscle tone (Andrillon 

et al., 2015; Valjakka et al., 1998). REM offers less easily defined EEG signatures than non-

REM; however, theta rhythms have been associated with emotional memory consolidation 

(Boyce et al., 2016; Hutchison & Rathore, 2015; Nishida et al., 2009). 

A hypnogram (Figure 1.2) shows how human sleep stages are typically represented across 

the night: on average, people spend approximately 5% in N1, 50% in N2, 20% in SWS and 

25% in REM (Shrivastava et al., 2014). Largely, sleep repeats a 90-minute cycle through the 

stages; however, the amount of REM increases in each subsequent cycle while SWS 

correspondingly decreases. This means that the first half of the night contains the majority of 

our deep sleep while the second half contains the majority of REM. This is thought to be 

regulated by the same interaction between homeostatic and circadian mechanisms which 

determine sleep onset (Borb & Achermann, 1999).  

 

1.1.2.3 Hallmark Features of Sleep EEG 

Most mechanistic details of sleep have been gleaned from the study of non-REM. In particular, 

the synchronisation of thalamocortical circuits seen across non-REM’s hallmark features – 

slow oscillations and sleep spindles (Figure 1.3) – are easily recorded in human scalp EEG 

and have been widely studied in relation to memory consolidation (Gais et al., 2006; Marshall 

& Born, 2007).  
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Figure 1.3 Slow Oscillations and Sleep Spindles in Human EEG 

Non-REM sleep is characterised by slow oscillations and sleep spindles. Fast sleep spindles tend to 

occur time-locked to slow oscillation up-states, while slow spindles occur more often within slow 

oscillation down-states. Image from McDevitt et al. (2017).  

 

1.1.2.3.1 Slow Oscillations  

Slow oscillations are generally defined within 0.3–2 Hz frequencies, although specificity within 

this range is disputed: they have been defined at < 1Hz, < 1.5 Hz, and < 2 Hz (Lockmann et 

al., 2016; Mölle & Born, 2011; Parrino et al., 2009). These high amplitude oscillations reflect 

depolarising up-states of increased neuronal activity alternating with hyperpolarising down-

states of relative neuronal silence (Mölle & Born, 2011; Sanchez-Vives, 2020). Slow 

oscillations indicate a striking coordination across the cortex which is generally not seen during 

waking hours and has been associated with spike timing-dependent plasticity (González-

Rueda et al., 2018). The neocortex receives input from the thalamus during slow oscillations 

(Neske, 2016). However, slow oscillations have also been reported to occur in isolated cortical 

slices in the absence of driving input, when in vitro slices were maintained in specific ionic 

concentrations (Sanchez-Vives & McCormick, 2000).  

During non-REM sleep, slow oscillations have been reported to start in the prefrontal 

neocortex and travel, in slow waves, in an antero-posterior direction at approximately 1–7 

metres/second in young, healthy people (Massimini et al., 2004). Massimini and colleagues 

also found consistent slow oscillation origin and propagation across nights in the same 

individuals, suggesting this non-REM sleep feature is indicative of functional network 

connectivity. In support of this, aberrant slow oscillation patterns have been associated with 
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neurodevelopmental disorders such as schizophrenia (Bartsch et al., 2019; Castelnovo et al., 

2020; Zhang et al., 2020) and autism (Lehoux et al., 2019). 

 

1.1.2.3.2 Sleep Spindles  

Sleep spindles are short (0.5–2 second) bursts of oscillatory activity that occur during non-

REM sleep (Fernandez & Lüthi, 2019). Like slow oscillations, the exact frequency definitions 

vary, but spindles can be divided into fast (approximately 12–15 Hz) and slow (approximately 

9–12 Hz) subtypes. The fast spindle may reflect the ‘classic’ spindle, which originates from 

thalamic circuits and often occurs locked to a slow oscillation up-state, as seen in Figure 1.3 

(Niethard et al., 2018; Silversmith et al., 2020). Intracranial EEG has suggested that this 

happens primarily locally, rather than distributed across the cortex (Nir et al., 2011). There is 

more uncertainty concerning the origin of slow spindles. Generally, slow spindles occur on the 

down-state of the slow oscillation (Klinzing et al., 2016; McDevitt et al., 2017; Mölle et al., 

2011), though this has not been replicated in every study (Gonzalez et al., 2018). 

Fast and slow spindles may be generated by different neural mechanisms. In 28 healthy 

people (10 female, mean age 26 years), either carbamazepine (n=13, targeting a reduction in 

Na+ channel activity) or flunarizine (n=15, targeting a reduction in Ca2+ channel activity) were 

administered prior to sleep. Both were compared to a placebo in the same individuals. The 

results indicated that carbamazepine reduced fast spindles (~14 Hz) but enhanced slow 

spindles (~10 Hz) during non-REM sleep, while flunarizine had the opposite effect (Ayoub et 

al., 2013). In support of this, human intracranial EEG has suggested fast and slow spindles 

originate from separable cortical layers (Hagler et al., 2018). This is reflected in scalp EEG, 

where slow and fast spindles are seen most clearly from frontal and central regions 

respectively (Cox et al., 2017; D’Atri et al., 2018; Mölle et al., 2011).  

In general, spindles show interindividual differences in spatial and spectral dynamics that are 

highly heritable (Purcell et al., 2017). Spindle density (often defined by mostly fast spindle 

frequencies) has been associated with immediate memory consolidation after sleep (Barakat 

et al., 2011; Nishida & Walker, 2007; Schabus et al., 2004), but also with trait factors such as 

intelligence (Fang et al., 2017; Fogel et al., 2007; Ujma et al., 2016). In addition, like slow 

oscillations, aberrant spindles have been associated with various conditions, particularly 

schizophrenia (Castelnovo et al., 2020; Merikanto et al., 2019; Sasidharan et al., 2017). 
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1.1.2.4 Moving Beyond PSG: Wearable Technology 

PSG is the gold standard for sleep measurement and analysis, yet it is resource heavy. A 

trained technician or researcher must correctly place each electrode and ensure recording 

quality: the skin is prepared with a mild abrasive, impedance is lowered with the use of 

conductive recording gel, and electrodes are temporarily affixed to the scalp. PSG equipment 

is also expensive and cumbersome, so participants often have their sleep recorded in a sleep 

laboratory. PSG carried out in the home gives less control, although a familiar environment 

may promote better sleep quality (Bruyneel et al., 2011; Bruyneel & Ninane, 2014; Fry et al., 

1998). However, this imposes a greater demand on the researcher, who has to travel to each 

participant and set up the equipment in unfamiliar surroundings.   

Finally, a trained researcher must visually score every 30-second epoch of the PSG recording 

for characteristic signatures of the sleep stages. The American Association of Sleep Medicine 

(AASM) defines guidelines for human sleep stage scoring, providing a standardised approach 

across sleep research (Danker‐Hopfe et al., 2009). To enhance accuracy, two researchers 

often score the sleep data independently and then compare their classifications. It is generally 

accepted that 80% agreement across each night is adequate to determine sleep stages, 

though this is not always achieved between researchers from different research groups 

(Danker‐Hopfe et al., 2009; Magalang et al., 2013; Norman et al., 2000). Scoring accuracy 

may also vary across sleep stage, with lower agreement reported for N1 and SWS compared 

to N2 and REM (Rosenberg & Van Hout, 2013). Disagreed epochs may be resolved over 

discussion if 100% agreement is required. Manual sleep scoring is not only subjective, but 

also a significant contributor towards the extensive time and resource demands of a PSG-

measured sleep study.   

Recent advances in software, however, have led to the development of automated scoring 

algorithms, potentially negating the need for the time consuming and subjective process of 

visual sleep scoring (Mousavi et al., 2019; Supratak et al., 2017; Tautan et al., 2019). One 

step further, there are now a variety of sleep wearables – autonomous devices to record and 

analyse overnight sleep with no expert input. These range from actigraphy watches which 

record movement and heart rate to more sophisticated devices with EEG electrodes (Garcia-

Molina et al., 2018; Lee et al., 2018; Liang & Chapa Martell, 2018; Zambotti et al., 2019). One 

promising device with a published validation against PSG is the Dreem Headband (Arnal et 

al., 2020). This device is worn as a flexible band around the head with five embedded dry EEG 

electrodes measuring from frontal and occipital regions. The EEG signal is automatically sleep 

scored in real time and Arnal et al. reported 74–85% accuracy against expert scoring of PSG 
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in stages N2, SWS, REM and wake. The Dreem Headband is described in more detail in 

Chapter 2.  

These wearables provide enormous potential. Unlike PSG, a wearable sleep device aimed at 

the general public must be easy to use, affordable, and portable. Replacing the expensive and 

time-consuming PSG recording and analysis with an autonomous device in the home would 

free up valuable resources. For example, in one study more than 3,000 pregnant women were 

sent a wearable device to measure breathing overnight (Facco et al., 2015). The device 

required minimal set up and was sent by post, while the data were securely transferred to the 

researchers remotely. Wearable sleep trackers used in the same way could allow data 

collection on an equally large scale.  

Sleep wearables have the capacity to greatly improve sleep research, allowing greater sample 

sizes and easier replication. However, the literature is still in its early stages and the requisite 

quality must be maintained. Consequently, sleep wearables are an exciting avenue to explore, 

but more validation is needed before they become standard in sleep research. 

 

1.1.3 Sleep-Dependent Memory Consolidation 

Memory relies on widespread connections throughout the brain and can be most simply 

defined as a series of dynamic processes – encoding, consolidation, storage, and retrieval 

(Bliss et al., 2003). Seminal studies demonstrated that the hippocampus was central to 

memory processing (Burgess et al., 2002; Eichenbaum, 2000), and there is now consistent 

evidence that memories are represented in the hippocampus by distinct neuronal firing 

patterns or ‘engrams’ (Goode et al., 2020; Hainmueller & Bartos, 2018; Lacagnina et al., 

2019). Current understanding posits that while much of the information we process in our 

short-term memory is immediately forgotten, some experiences are encoded in the 

hippocampus, consolidated via structural and chemical changes (e.g. a strengthening of 

synaptic connections between neurons), and integrated into long-term storage in the cortex 

where they can be retrieved (Nadel et al., 2012; Squire et al., 2015; Gilboa & Marlatte, 2017).   

It is well-established that sleep supports memory consolidation (Born & Wilhelm, 2012; 

Diekelmann & Born, 2010), but both sleep and memory are multifaceted processes. A 

common distinction in memory is between declarative – explicitly remembered experiences 

such as a recent holiday, and procedural – implicit learning such as riding a bike. In-depth 

case studies have greatly supported evidence for the separation between different types of 

memory. For example, patient S.Z. had severe damage to the medial temporal lobe, yet was 

able to demonstrate significant improvement over time in his saxophone playing (a procedural 
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task), despite not consciously recalling his previous practice (Cavaco et al., 2012). It has been 

suggested that declarative and procedural memories are supported by non-REM and REM 

sleep respectively (Marshall & Born, 2007). However, while there is evidence for this (Fogel 

et al., 2007; Rasch et al., 2007; Smith et al., 2004; Tucker et al., 2006), the notion has also 

been contested with evidence for connections between declarative memory and REM, as well 

as procedural memory and non-REM (Gais et al., 2000; Goerke et al., 2013; Holz et al., 2012).  

In this thesis I focus on declarative memory. Declarative memory relies on cross-cortical 

connections and plasticity at a systems level, while synaptic consolidation processes involve 

the underlying cellular changes (Paller et al., 2021). Patients such as S.Z. with damage to the 

medial temporal lobe display profound impairment in novel declarative learning and memory, 

termed anterograde amnesia (Markowitsch, 2008; Squire, 2009), and so highlight that this 

brain region is crucial for this type of memory. In fact, theories of systems consolidation in 

declarative memory centred around the medial temporal lobe and hippocampus were largely 

based on the findings of such case studies (Klinzing et al., 2019).  

Memory consolidation does not only occur in sleep, but sleep’s unique oscillatory patterns of 

neural network activity have been strongly associated with (compared to an equivalent time 

spent awake) enhanced declarative memory consolidation (Diekelmann & Born, 2010; Gais 

et al., 2006). Many theories have drawn a distinction between REM and non-REM sleep, 

applying a sequential element to memory consolidation mirroring the sequential nature of 

sleep stages. For example, a cortical-hippocampal-cortical loop has been described which 

suggests that experiences are first characterised by cortical activity, hippocampal replay – 

occurring in wake but to a greater extent in non-REM sleep – then plays a vital role in synaptic 

consolidation mechanisms transferring the information back to storage in the cortex (Paller et 

al., 2021). This type of sleep-based reactivation has been suggested to explain how some 

memories are consolidated and others are forgotten. 

Other theories suggest that both REM and non-REM are involved in declarative memory 

consolidation. The “Sequential Hypothesis” suggests that SWS sorts memories and discards 

those which are irrelevant or interfering, while remaining memory traces are strengthened and 

integrated into existing networks in subsequent REM (Giuditta, 2014; Giuditta et al., 1995). In 

contrast, the “Dual Process Hypothesis” suggests that REM supports emotional (and 

procedural) memories while SWS supports non-emotional declarative memory (Ackermann & 

Rasch, 2014; Peigneux et al., 2001).  

The strongest links between sleep and memory consolidation have focussed on oscillatory 

patterns in non-REM sleep. A widely held model, the Active Systems Consolidation Theory, 
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suggests that slow oscillations orchestrate the transfer of newly encoded memories from the 

hippocampus to a long-term store in the cortex. This occurs via coordination with thalamic 

sleep spindles and hippocampal sharp-wave ripples (150–250 Hz oscillations), see Figure 1.4 

(Born & Wilhelm, 2012; Klinzing et al., 2019; Mölle & Born, 2011). As discussed in section 

1.1.2.3, slow oscillations and spindles are characteristic features of non-REM EEG and have 

both been associated with declarative memory consolidation (Lustenberger et al., 2015; 

Miyamoto et al., 2017; Schabus et al., 2004; Varga et al., 2016). Furthermore, hippocampal 

sharp-wave ripples have been found nested in slow oscillations and spindles in human 

intracranial EEG (Clemens et al., 2007; Staresina et al., 2015). These ripples have also been 

associated with memory consolidation (Norman et al., 2019).  

 

 

Figure 1.4 The Active Systems Consolidation Theory 

The Active Systems Consolidation Theory suggests that some experiences, represented by neuronal 

firing patterns, travel from a temporary store in the hippocampus, through the thalamus, to long-term 

storage in the neocortex; in contrast, weakly encoded memories are discarded (A). This process is 

orchestrated via synchronisation between hippocampal sharp-wave ripples, nested in thalamic 

spindles, nested in cortical slow oscillations (B). Image from Mölle & Born (2011).  

 

In animal models, hippocampal engrams encoded during wake reactivate in the same pattern 

during subsequent non-REM sleep; this has been posited as a mechanism of memory 

consolidation (Derdikman & Moser, 2010; Ólafsdóttir et al., 2018; Lee & Wilson, 2002). In 

further support of the Active Systems Theory, this ‘replay’ has been associated with 

hippocampal sharp-wave ripples (Fernández-Ruiz et al., 2019; Ji & Wilson, 2007), while ripple 

A

 

B 
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disruption appears to compromise memory consolidation (Ego‐Stengel & Wilson, 2010; 

Girardeau et al., 2009). In humans, replay has been suggested by the identification of cortical 

firing patterns (recorded via intracranial EEG) that were present during learning, repeated in 

subsequent non-REM sleep (Jiang et al., 2017). Similar results have been suggested using 

non-invasive magnetoencephalography (Higgins et al., 2021), although these findings do not 

reflect specific neuronal firing patterns as in rodent data. Nevertheless, there is excellent 

translational evidence for the Active Systems Theory of non-REM sleep and memory 

consolidation.  

A related theory is also centred around the synchrony of slow oscillations during non-REM 

sleep. The Synaptic Homeostasis Hypothesis suggests that slow oscillations perform a vital 

function in synaptic plasticity and our continuing ability to encode and consolidate new 

memories. Specifically, synaptic strength builds across wake, then slow oscillations during 

non-REM sleep facilitate synaptic downscaling (a negative feedback response) targeted to 

specific memories (Bushey et al., 2011; Cirelli & Tononi, 2015; Tononi & Cirelli, 2003, 2006). 

This is broadly compatible with the Active Systems Theory, as both support a central role of 

non-REM in memory consolidation, although the Synaptic Homeostasis Hypothesis does not 

specifically suggest memory reactivation.  

Finally, some research has sought causal interventions to demonstrate the importance of slow 

oscillations. For example, enhancement of slow oscillations via auditory stimulation has been 

reported to boost memory performance (Marshall et al., 2006; Ngo et al., 2013; Zhang & 

Gruber, 2019). This provides further evidence for non-REM sleep’s role in memory 

consolidation processes. In addition, novel learning has been demonstrated during SWS (Züst 

et al., 2019). There is thus evidence for a strong and consistent role for non-REM sleep in 

memory consolidation. However, the roles of emotion and REM in sleep-dependent memory 

consolidation remain ambiguous. 

 

1.1.4 Emotional Memory Consolidation During Sleep 

Experiences are shaped by our emotional state during learning, consolidation, and retrieval 

(Hamann, 2001; Smeets et al., 2008; Tyng et al., 2017). Broadly, greater emotional arousal 

enhances memory across wake and sleep (Dolcos et al., 2017; Fairholme & Manber, 2015), 

though this may not occur in every situation (Lipinska et al., 2019). As posited by the Dual 

Process Hypothesis, emotional memory consolidation has been most strongly associated with 

REM sleep.  
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A prominent theory of REM-based memory consolidation is the Sleep to Forget, Sleep to 

Remember Hypothesis. This suggests that REM sleep offers a preferential window for 

emotional processing through the reactivation of emotional memories, supported by REM’s 

unique electrical and chemical signatures: activity in limbic and paralimbic structures, 

dominant theta oscillations between cortical and subcortical nodes, and minimal noradrenergic 

input (Stickgold, 2011). The theory predicts that over time, memory reactivation without the 

associated emotional arousal should elicit re-learning and an eventual amelioration of the 

emotional response (van der Helm & Walker, 2009) see Figure 1.5. This complements related 

research into REM sleep and dreams for the reactivation of emotional thoughts and ultimate 

resolution of experiences (Eichenlaub et al., 2018; van Rijn et al., 2015; Vanderheyden et al., 

2015). 

 

 

Figure 1.5 The Sleep to Forget, Sleep to Remember Hypothesis  

The Sleep to Forget, Sleep to Remember Hypothesis suggests that the declarative content of emotional 

memories is strengthened over repeated episodes of REM sleep while the affective tone is gradually 

reduced. Image from Walker and van der Helm (2009).  

 

Evidence linking REM sleep with a reduction in emotional arousal provides support for the 

Sleep to Forget, Sleep to Remember theory. In one study, healthy participants (n=34, 19 

female, aged 18–30 years) viewed the same emotional images in a Magnetic Resonance 

Imaging (MRI) scanner before and after 12 hours of daytime wake or recorded overnight sleep 

(van der Helm et al., 2011). Participants who had slept showed reduced amygdala activity and 

increased prefrontal connectivity, compared to those kept awake. These neural changes were 

associated with overnight reductions in subjective reactivity, and both subjective ratings and 



15 
 
 

neural changes were associated with reduced gamma activity (30–40 Hz) during REM sleep 

– a proxy of adrenergic activity. Although the groups differed in testing time of day, an 

additional test of new stimuli suggested that the results could not be explained by circadian 

factors. This supports the view that REM promotes a reduction in emotional responses to 

previously encoded stimuli.  

REM sleep has also been linked with emotional disturbances outside a laboratory 

environment. Increased REM duration has been associated with PTSD (Habukawa et al., 

2018; Mellman et al., 2014). In addition, REM alterations (shortened REM latency, increased 

REM duration and density) have been consistently found to precede the onset of depression 

and are also found as endophenotypes in the relatives of depression patients (Berger & 

Riemann, 1993; Palagini et al., 2013; Pesonen et al., 2019). This suggests a causal link 

between REM sleep and impaired emotional processing.  

However, there are mixed findings as to whether REM facilitates emotion reduction. In another 

study, participants (n=24, all male, aged 18–30 years) had three hours of SWS-dominant sleep 

in the first half of the night or REM-dominant sleep in the second half of the night. Those who 

had REM showed enhanced discrimination of new versus old emotional pictures, compared 

to those who were kept awake or allowed SWS; however, emotional ratings were unaffected 

(Wagner, 2002). In a similar study where participants (n=16, all male, aged 20–26 years) 

learned neutral and negative pictures before early or late sleep, memory retention was better 

for emotional pictures after REM but valence ratings were preserved rather than reduced 

(Groch et al., 2013). These studies suggest that REM supports emotional memory but not 

necessarily emotional alleviation.  

In more recent evidence though, REM duration has been associated with a short-term 

increase in emotion but long-term reduction. When participants (n=76, all female, aged 18–32 

years) viewed negative images before and after a daytime nap, REM duration was associated 

with increased aversiveness ratings the same day, but reduced intensity, number, and 

duration of intrusive memories of the images three days later (Werner et al., 2020). In support 

of the Sleep to Forget, Sleep to Remember Hypothesis, this study suggests that the timing of 

REM-based effects may be critical. However, the aversiveness of the stimuli could also affect 

whether the emotion of the experience can start to be decoupled over just one night.   

While there is good evidence for a relationship between emotional disturbance and memory 

and REM sleep, emotional memory has also been linked with non-REM sleep. For example, 

healthy participants (n=15, all male, aged 19–28 years) learned emotional and neutral stories 

before three hours of SWS-rich early sleep (Groch et al., 2011). Clonidine, a drug blocking 
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noradrenaline release from the locus coeruleus, eliminated the superior memory for emotional 

items. This suggests that noradrenaline release during SWS supports emotional 

consolidation. SWS may also interact with other sleep stages. For example, REM duration has 

been associated with vocabulary learning after memory reactivation via auditory cues 

presented in SWS (Batterink et al., 2017). This suggests that a dichotomy between REM and 

non-REM sleep may be a simplification which overlooks potential interaction between the 

stages.   

 

1.1.5 Summary 

Sleep is essential for our function, in fact, for our survival. PSG provides a non-invasive 

measurement of neural activity and this has driven a mechanistic understanding of sleep, but 

this method is expensive, slow, and cumbersome. Sleep wearables therefore have enormous 

potential to expand sleep science with greater data collection, which should improve the 

reliability of the field. However, validation is required to build confidence in the accuracy and 

consistency of wearable sleep technology. 

Methodology aside, sleep plays a significant role in the optimisation of learning and memory. 

While various theories of sleep-dependent memory consolidation convergently suggest 

contributions of non-REM and REM towards non-emotional and emotional memory 

respectively, these roles are not clear-cut. In particular, there is good evidence for both the 

mechanisms and outcomes of the Active Systems Theory of non-REM, but there is no reason 

this would not apply to emotional memory; indeed, non-REM has also been associated with 

emotional memory consolidation. The Active Systems Theory also does not preclude a role of 

REM such as that suggested by the Sleep to Forget, Sleep to Remember Hypothesis. 

Therefore, since evidence exists across REM and non-REM sleep stages, the contributions of 

both towards the consolidation of emotional memories warrants further investigation.  

While there is a lack of evidence for complementary roles of REM and non-REM sleep in 

emotional memory consolidation – or whether REM (or non-REM) supports an increasing 

attenuation of emotion over time – these investigations are complicated by the numerous 

contributing factors in sleep-dependent consolidation including the time lapse between sleep 

and encoding, interference from other experiences, and previous reactivation of the memory 

(Kolibius et al., 2021; Mander et al., 2011). This may be compounded by the variety and 

complexity of emotional responses (Agbo & Ngwu, 2017; Bianchin & Angrilli, 2012; Feldner et 

al., 2003; Tsai et al., 2006). A simple model of emotional consolidation is therefore preferable.  
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1.2 Fear  

1.2.1 The Fear Response 

Emotions are complex states which manifest as physiological, behavioural, and psychological 

responses. Occurring in response to threat, fear is seen across the animal kingdom (Adolphs, 

2013; Steimer, 2002), and can elicit rapid autonomic arousal and attention, avoidance 

behaviour, and long-term changes to learning and memory (de Quervain et al., 2017; Field & 

Lawson, 2003; Levenson, 2006; Rachman & Hodgson, 1974; Vuilleumier & Brosch, 2009).  

Physiologically, threat detection triggers a cascade of responses in the nervous and endocrine 

systems. First, activation of the autonomic nervous system recruits the sympathetic pathway; 

this stimulates the release of adrenaline and noradrenaline which leads to physical reactions 

such as increased heart rate (Hamill et al., 2012). At the same time, the Hypothalamic-

Pituitary-Adrenal (HPA) axis stimulates a series of stress hormones leading to the release of 

cortisol from the adrenal glands; this aids in increasing blood pressure and circulating glucose 

in the blood (Novak et al., 2013). This hormonal response happens on a relatively long 

timescale of minutes, compared to the fast-acting autonomic response in milliseconds 

(Herman et al., 2016). 

The behavioural and psychological correlates of fear are more diverse. While immediate fear 

often leads to ‘fight, flight, or freeze’ behaviour (Maack et al., 2015; Thompson et al., 2014), 

there are complex psychological interactions with individual traits and tendencies. For 

example, Olive Flounder fish with prior tendencies towards boldness and shyness were 

significantly more likely to respond to simulated capture with a fight-flight response or freeze-

hide response respectively (Rupia et al., 2016). In addition, female rats were more likely to 

dart in response to an unavoidable footshock whereas male rats were more likely to freeze 

(Jones & Monfils, 2016). In humans, there is consistent evidence of interindividual differences 

in response to the same fear stimuli across a range of experimental situations, most commonly 

associated with measures of trait anxiety (Arnaudova et al., 2013; King et al., 2017; Laing et 

al., 2019; Ochsner et al., 2006). I discuss this in more detail in section 1.2.4.  

Since fear elicits a complex response across the brain and body, it is an oversimplification to 

wholly attribute specific brain regions. Nevertheless, fear has been most often associated with 

the limbic system (Forster et al., 2006; Lai, 2019; LeDoux, 2012), centrally comprised of but 

not necessarily limited to the amygdala, thalamus, and hippocampus (Figure 1.6). These 

structures have been generally associated with emotion, learning, and memory (Grodd et al., 

2020; LeDoux, 1993; Morgane et al., 2005; Rajmohan & Mohandas, 2007; Rolls, 2015), but 

in particular, the amygdala is often considered the fear hub of the brain. Indeed, multiple lines 



18 
 
 

of evidence have suggested that fear processing is substantially impaired when it is damaged 

(Adolphs et al., 1995; Feinstein et al., 2013; LeDoux, 2003; Ressler & Maren, 2019).  

 

 

Figure 1.6 Fear Processing in the Brain: The Extended Limbic System  

The limbic system is centrally composed of the amygdala, hippocampus, and thalamus (directly above 

the hypothalamus). These structures contain strong links to the prefrontal cortex (associated with higher 

reasoning), and cerebellum and brainstem (associated with sensory and motor processing). The 

hypothalamus and pituitary gland link the nervous and endocrine systems, regulating hormone 

secretion. Image from Benson (2020). 

 

Historically, theories of emotional correlates in the brain have been constantly changing (Roxo 

et al., 2011). One prominent theory proposed the limbic structures as an evolutionarily old 

system reflecting that fear is a primitive survival instinct acquired before higher reasoning 

capabilities. However, this has now been contested due to its strong links to the prefrontal 

cortex (LeDoux, 2012). A current model of fear processing posits two distinct fear pathways 

in the brain. Initially, a fast, subcortical pathway via the thalamus to the amygdala sends limited 

information on the perceived threat. Then, a slower pathway through the cortex forms the 

conscious experience of fear (Ledoux, 1998; LeDoux, 2012). In support of this, in human 

intracranial EEG (11 participants, 5 female, aged 29–59 years), only low frequency fearful 

images elicited a fast ~70 ms response from the amygdala, while both low and high frequency 

fearful images elicited a slower ~100 ms response from cortical areas (Méndez-Bértolo et al., 

2016). This supports evidence for the amygdala as an alert mechanism for threat.  
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The human amygdala has been widely studied in relation to fear and fear learning, often in 

conjunction with the hippocampus. Patient case studies have demonstrated a double 

dissociation between these regions: patient R.H. had bilateral damage to the amygdala and 

hippocampus and was unable to acquire declarative facts (sensory details of the stimuli) or 

conditioned fear; patient W.C. had bilateral damage to the hippocampus but intact amygdalae 

and was able to acquire a fear response but not recall sensory details of the stimuli; finally, 

patient S.M. had bilateral damage to the amygdalae but intact hippocampi and was able to 

recall declarative details but not acquire a fear response (Bechara et al., 1995). This highlights 

how the amygdala is crucial specifically to fear while the hippocampus is crucial specifically to 

declarative memory. Consequently, in healthy people, the amygdala plays a significant role in 

fear learning and memory. One proposed mechanism of this interaction is the action of stress 

hormones on beta-adrenergic receptors in the basolateral amygdala influencing memory 

storage (through connections on the vagus nerve to the locus coeruleus stimulating the 

release of noradrenaline) and thereby modulating memory encoding, storage, and retrieval 

(McIntyre et al., 2012).   

 

1.2.2 Measuring Fear 

1.2.2.1 The Fear Conditioning Model  

Conditioning is a simple model of behavioural learning where the response elicited by one 

stimulus is associated with another, potentially unrelated, stimulus. For example, a dog 

exhibits excitement at the sight of his lead because he associates it with (because in the past 

it has often been followed by) an enjoyable outcome – going for a walk. On the other hand, a 

person who was attacked by an aggressive dog may afterwards exhibit fear at the sight of the 

dog. Some conditioning occurs gradually over multiple experiences, but just one highly salient 

experience can cause a strong and lasting conditioned response. These responses are also 

known to generalise, in the latter scenario for example, to a fear of all dogs, even those that 

are friendly.  

Typically, fear conditioning in a laboratory environment links simple sensory stimuli (e.g. 

sounds or images) with a naturally aversive stimulus (e.g. a sudden loud sound or mild electric 

shock). Pairing these items creates a novel and simple acquired fear, the development of 

which can then be measured or perhaps manipulated across learning, consolidation, and 

retrieval. Fear conditioning is typically used across animal and human research to study fear 

learning (acquisition), re-learning the threat no longer exists (extinction), and return of fear 

(reinstatement).  
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Learned fear has both declarative and implicit features, for example conscious awareness of 

shock pairings and an unconscious physical response (e.g. in noradrenaline) to a stimulus. 

These may have different neural correlates, for example hippocampal activity was reported 

only for consciously perceived Pavlovian conditioning, whereas amygdala activity was 

reported for both consciously and unconsciously experienced pairings (Knight et al., 2009). 

These aspects of fear may also generalise differently; in one study, only explicitly recognised 

threats were found to generalise to similar stimuli (Manassero et al., 2019). Therefore, 

conditioning occurs consciously and unconsciously; however, while implicit features should be 

considered within this, fear conditioning in the laboratory is generally considered a primarily 

declarative memory (Dunsmoor & Kroes, 2019).  

During fear acquisition training in an experimental setting, a conditioned stimulus (CS) is 

paired with an aversive unconditioned stimulus (US), as illustrated in Figure 1.7. Repeated 

presentation of the unpleasant US after the CS creates a ‘danger’ stimulus or CS+ and 

eventually the CS+ alone starts to elicit a fear response (Warthen et al., 2011). The US does 

not have to occur on every trial; conditioned responses have been reported to be longer-lasting 

when the pairing has been less predictable (Vansteenwegen et al., 2008). 

 

 

Figure 1.7 A Fear Conditioning Design  

In an example of rodent fear conditioning, the mouse is first habituated to its environment. During 

conditioning, the mouse is exposed to repeated pairings of a specific sound with an unpleasant 

footshock. After a delay, conditioning memory is tested by measuring the fear response to the sound 

alone. Image from Warthen et al. (2011).  

 

The CS+ is sometimes compared to a ‘safe’ stimulus or CS-. In contrast to the CS+ which 

predicts the unpleasant shock, the CS- predicts a period of relative safety. For example, if a 

shock often occurs after one distinct tone then the animal exhibits fear at the beginning of the 

sound because it expects the shock. In contrast, if the animal also repeatedly hears a different 

tone where a shock never follows, it learns to associate the sound with safety. This safety 
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learning relies on adequate distinction between the stimuli and has been associated with 

inhibitory mechanisms (Christianson et al., 2012).  

Rodents have been heavily used in fear conditioning research. This is likely to constitute a 

more immersive experience than human fear conditioning, considering that the rodent does 

not know the shock is coming and cannot withdraw, but the principle of associative learning is 

the same. In particular, rodent models have enhanced understanding of the neurobiology 

underlying the encoding and consolidation of fear conditioned memories (Delgado et al., 

2006). Lesion studies have reported impaired fear conditioning after removal of the amygdala 

(Phillips & LeDoux, 1992). Likewise, activity in the basolateral and central nucleus of the 

amygdala has been linked to fear acquisition (Rosen, 2004). In another study, lesions of the 

central nucleus led to reduced fear responses but a maintenance of avoidance behaviour, 

while in a double dissociation, basolateral lesions led to reduced avoidance behaviour but a 

maintenance of the fear response (Killcross et al., 1997).   

While fear conditioning reflects associative learning processes, fear extinction involves 

updating learned responses via new learning – repeated presentations of the acquired CS+ 

without the aversive US. Recognition that the CS+ no longer predicts danger means that the 

fear response should gradually reduce. A continuation of fear is therefore maladaptive and 

potentially damaging. Various evidence suggests that continued fear relies on a series of 

consolidation processes. For example, the L-type voltage-gated calcium channel antagonist 

nifedipine impaired extinction learning in mice when administered 1 or 3 hours after 

conditioning, but not immediately (Cain et al., 2005). In another study, a chemical blockade of 

the metabotropic glutamate receptor in the rat lateral amygdala impaired fear extinction when 

applied 48 hours after conditioning, but not after 2 hours (Kim et al., 2007). If extinction can 

be blocked by the artificial prevention of different neural mechanisms at different times it 

suggests that extinction relies on the state of the encoded memory – which continues to 

change over at least 48 hours. 

Even after extinction, fear responses are susceptible to reinstatement. This can occur after a 

reminder of the unpleasant US (cued reinstatement) or simply over time (spontaneous 

reinstatement). This may be possible because extinction learning does not erase the original 

fear memory but rather overlays a competing trace: in one study, after fear conditioning and 

extinction, optogenetic stimulation of neurons in the mouse dentate gyrus (part of the 

hippocampal formation) that were active during fear acquisition caused an increase in fear, 

while stimulation of neurons active during extinction suppressed fear (Lacagnina et al., 2019). 

This suggests that the acquisition memory trace persists despite extinction training. Like poor 
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extinction learning, an unwarranted return of fear is often maladaptive and can lead to anxiety 

(Hunt et al., 2019; van Meurs et al., 2014).  

 

1.2.2.2 Quantifying Fear Responses 

With a controlled experimental model such as fear conditioning, the quantification of the fear 

response is critical. Since fear can be expressed physiologically, behaviourally, and 

psychologically, it can be measured across these domains as well. The most appropriate 

measure is likely to depend on the subject. For example, in animal (primarily rodent) models, 

fear conditioned responses are commonly measured by behavioural freezing, a well-

established indicator of animal fear (Kopec et al., 2007). However, a physiological approach 

tends to be favoured in human studies.  

One physiological measure of the fear response which can be translated from animals to 

humans, albeit via different methods, is neural activity. This can be measured by MRI or 

cellular recording from known fear-linked regions such as the amygdala. However, these are 

not universally applicable methods in the context of fear conditioning. MRI is expensive and 

lacks temporal resolution, while any index of neural activity may be a simplification of the 

systemic fear response. That being said, cellular recordings in animal models provide a highly 

localised measure and are therefore informative in some experimental designs.   

A prevalent measure of human fear is the skin conductance response (SCR) derived from 

electrodermal activity. Electrodes on the skin measure its conductance, which rises with 

increased sweating (Green et al., 2014). SCRs are usually measured from the high 

concentration of eccrine sweat glands on the hands or feet, which receive sympathetic 

innervation via cholinergic fibres (Folk & Semken, 1991; Hodge et al., 2021). The popularity 

of the SCR may stem from its sensitivity to small changes, relative ease of use, and high 

participant tolerance (Banks et al., 2012; Christopoulos et al., 2019; Doberenz et al., 2011). 

Other studies have utilised additional measures of sympathetic activation, namely pupil 

dilation (pupil constriction in response to threat) and startle response (the magnitude of 

eyeblink activity) to a startle probe such as a short sound (Leuchs et al., 2019; Kindt & Soeter, 

2013; Korn et al., 2017). The startle response may be specific to negative valence (Kuhn et 

al., 2020), but has in some cases been found to impede safety learning to the CS- (de Haan 

et al., 2018).  

These implicit measures, dependent on the sympathetic nervous system, are indices of 

arousal; they are likely to reflect fear responses in the context of a fear conditioning 

experiment, but this may not be a direct relationship. All are susceptible to confounding factors 
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such as ambient temperature and lighting, as well as interindividual differences in baseline 

levels (Blumenthal et al., 2005; Braithwaite & Watson, 2015; Phillips et al., 2019). Other 

measures of human fear do not rely on sympathetic activity. These include freezing behaviours 

or facial expressions (i.e. measured via muscle activity). However, these are not commonly 

used in conditioning designs and therefore may be challenging to relate to prior literature. 

It is also important to consider measuring both implicit and declarative aspects (Constantinou 

et al., 2021). Declarative measures, such as asking participants to give shock expectancy 

ratings or self-reported fearfulness ratings, give an indication of conscious learning. In 

particular, shock expectancy ratings have shown good diagnostic and construct validity in fear 

conditioning designs (Boddez et al., 2013). This does not reflect the physiology that is integral 

to the fear response; therefore, a combination of implicit and declarative measures is required 

to provide a comprehensive assessment of fear.  

 

1.2.3 Fear Conditioning and Sleep  

Given the heterogeneity of emotions and the experimental control of the conditioning model, 

fear conditioning is an ideal tool with which to study the relationship between fear and sleep. 

As the broader literature on emotional memory consolidation would suggest, fear conditioned 

memories are also supported by sleep. For example, in a sleep versus wake design, healthy 

adults (n=53, 25 female, mean age 23 years) had overnight sleep or a day of wake following 

conditioning either in the morning or evening (Pace-Schott et al., 2009). Participants saw three 

coloured lamps, two of which paired with a shock (CS+), one of these was then extinguished 

(via extinction training) immediately, the other was not. Participants who had overnight sleep 

showed lower (SCR) fear responses to the unextinguished CS+ the next day, compared to 

those who had a day of wake and were tested later that evening. Lower responses after sleep 

to the unextinguished CS+ could suggest that sleep promotes a generalisation of extinction 

learning (from the extinguished CS). However, sleep could also simply promote extinction 

regardless of other stimuli. There may also have been confounding circadian effects, since 

the groups varied in testing time for both learning and recall. 

A more recent study supports a connection between sleep and fear generalisation. In the 

evening, participants (n=40, 32 female, mean age 22 years) were conditioned to two neutral 

male human faces, one paired with an aversive shock (Zenses et al., 2020). Participants spent 

the next 12 hours either in unmonitored sleep at home or being kept awake overnight in the 

laboratory. They were tested the next morning with the CS+, CS-, and a morph of both faces 

to test generalisation of fear. The sleep group showed lower threat expectancy ratings to the 
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CS- and greater SCRs to the CS+ and morph stimulus. These results suggest that sleep 

supports fear consolidation and generalisation. The study also controlled for circadian factors 

by testing participants at the same time, though the wake group was subjected to the stress 

of sleep deprivation. However, together, these examples suggest that sleep supports the 

consolidation and also the generalisation of fearful and extinguished responses. This aligns 

with previous evidence for sleep as a driver for connecting separate experiences into learning 

episodes through generalisation (Chatburn et al., 2021; Landmann et al., 2014; Xie et al., 

2018).  

A link between sleep and fear extinction has been supported by rodent models. These 

conditioning studies provide greater experimental control and the ability to directly record from 

the brain. In one study, mice (n=66, all male, 7–9 weeks old) underwent extinction in a novel 

context either at the beginning of their rest or active phase and the next five hours were 

controlled as either wake or asleep (Melo & Ehrlich, 2016). Extinction learning was greater at 

the beginning of the rest phase, compared to the active phase. Meanwhile, extinction recall 

was greater in the sleep groups compared to the sleep deprivation groups, regardless of 

rest/active phase. These results, controlling for circadian factors, concur with human findings 

that post-learning sleep supports consolidation of extinction memory. In another study, rats 

(n=4, all male, 3 months old) learned the location of an aversive air puff along a running track 

(Girardeau et al., 2017). Coordinated reactivations of neuronal ensembles in the hippocampus 

and basolateral amygdala, that were active during learning, peaked during hippocampal 

sharp-wave ripples in post-learning sleep. These reactivations were stronger for cells active 

during unsafe track runs (CS+) compared to safe runs (CS-). This suggests that fear memories 

are reactivated more strongly during subsequent sleep than non-fearful memories encoded at 

a similar time. This supports the notion of preferential fear memory consolidation, although in 

this case the reactivations were not related to significant differences in post-sleep behaviour. 

Together, these studies suggest that sleep supports the consolidation of fear conditioned 

memories, extinction memories, and a generalisation of fear. Like the broader field of 

emotional memory consolidation, there is also mixed evidence for the roles of REM and non-

REM sleep. For example, several human studies have related the duration of REM sleep to a 

strengthening of discrimination between the CS+ and CS- (Menz et al., 2013, 2016; Wassing 

et al., 2019). However, there is also causal evidence for a role of non-REM. Targeted memory 

reactivation (TMR) is the presentation of learned stimuli during sleep. Several studies have 

reported that TMR with either both CS+ and CS- sounds or contextual odour during SWS 

attenuated fear responses after sleep (Hauner et al., 2013; He et al., 2015; Purple et al., 2017). 

However, in one rodent model, the CS+ presented during non-REM led to a strengthening of 
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the memory (Rolls et al., 2013). I discuss this literature in more detail in Chapter 3, but these 

examples suggest that both REM and non-REM sleep may be involved in fear conditioned 

consolidation, although greater clarity is required. Ultimately, research into how sleep supports 

the development of fear memory will develop our understanding of maladaptive fear and how 

it can lead to persistent fear-related conditions like PTSD.  

 

1.2.4 Variation in Emotional Reponses  

Emotion – fear particularly – affects how we understand and learn from our experiences and 

environment. For example, in a case of complete bilateral amygdala destruction, patient S.M. 

does not experience fear, is unable to recognise dangerous situations and has subsequently 

been the victim of repeated violent crimes (Amaral & Adolphs, 2016). While this is not the case 

for most people, interindividual variation in the fear response has been posited as a driving 

force behind poor mental health (Dibbets et al., 2015; Feldner et al., 2003; Hunt et al., 2019; 

King et al., 2017). 

While fear has been related to a variety of psychopathologies, PTSD in particular may be 

driven by an abnormal continuation of the fear response experienced at the time of the trauma. 

While unpleasant symptoms usually pass, people with PTSD show an extended timeline of 

fear/anxiety-related symptoms such as hyperarousal and distorted cognitive beliefs (Cox et 

al., 2014). However, not everyone who experiences a traumatic event shows maladaptive 

responses such as those that characterise PTSD, our traits and tendencies play some role. 

While these may be numerous, anxiety and dreams in particular have been linked to 

trauma/PTSD and also vary in healthy (non-clinical) samples (Larsson et al., 2008; Taylor, 

2003; Mellman et al., 2007; Moraczewski & McCall, 2019).  

Lifetime prevalence of PTSD in the general population has been reported at 7–9% (Breslau et 

al., 1998; Vries & Olff, 2009), while current treatment options show only mixed efficacy 

(Reisman, 2016; Watkins et al., 2018). Consequently, research exploring factors such as trait 

anxiety and dreams in relation to the fear response and how it translates into long-term fear 

memory will help progress understanding of the susceptibility and maintenance of PTSD and 

related conditions, ultimately assisting in their treatment and prevention. 

 

1.2.4.1 Trait Anxiety 

While fear is an emotional response to threat, anxiety may be a more graded response 

characterised by apprehension, worry, and subsequent avoidance behaviour (Sylvers et al., 
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2011). Physiologically, anxiety recruits many of the same endocrine and autonomic responses 

as fear, though mediated by greater top-down influences such as executive function (Affrunti 

& Woodruff-Borden, 2015; Hamm, 2020; Zainal & Newman, 2018). Stress is also related 

(Duval et al., 2015; Shin & Liberzon, 2010); however, in particular, greater trait anxiety across 

healthy samples has been associated with greater functional MRI activity (Blood Oxygen Level 

Dependent [BOLD]) in the amygdala in response to fearful faces (Etkin et al., 2004), as well 

as greater attentional bias towards mildly threatening images (Koster et al., 2005). This 

suggests that trait anxiety predisposes people towards stronger or more maladaptive fear 

responses.  

Trait anxiety has been associated with fear conditioned responses. A comprehensive overview 

of inter-individual differences in healthy people’s fear conditioned responses suggested that 

Intolerance of Uncertainty questionnaire score and activation of the amygdala/anterior insula 

were associated with maladaptive fear acquisition, extinction, and return of fear (Lonsdorf & 

Merz, 2017). Lonsdorf and Merz highlight that inter-individual results in this literature such as 

those pertaining to anxiety scores are often ignored or difficult to understand given differences 

in study design, so future studies should aim to clarify this dimension, particularly in regard to 

fear generalisation, as it has strong links to understanding clinical fear pathologies. In support 

of this, a meta-analysis of anxiety patients and healthy controls suggested that the patient 

group showed increased fear responses to the CS- during extinction and increased fear 

responses to the CS+ during extinction (Duits et al., 2015).  

In healthy participants (n=23, 13 female, mean age 25 years), subjects underwent both cued 

(human faces) and contextual (coloured background rooms) fear conditioning and extinction 

in the MRI scanner; one face (CS+) was paired with an aversive loud scream (Indovina et al., 

2011). Trait anxiety was positively correlated with amygdala activation and negatively 

correlated with ventromedial prefrontal cortex activation (BOLD) to CS discrimination (the 

difference between responses to the CS+ and CS-). This suggests that trait anxiety is 

associated with a lack of appropriate fear discrimination learning across a healthy population, 

although it is not clear whether these results are limited to neural activity. A similar design 

reported that anxiety in healthy participants (n=32, 20 female, mean age 24 years) was 

positively correlated with increased amygdala activation and reduced anterior cingulate cortex 

activation during fear extinction of neutral male faces (Sehlmeyer et al., 2011). Both the 

ventromedial prefrontal cortex and anterior cingulate cortex have been associated with 

inhibitory mechanisms (Albert et al., 2012; Gonzalez & Fanselow, 2020); therefore, together 

these studies suggest that anxiety is associated with impaired discriminatory learning, 

extended fear, and reduced inhibition.  
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Trait anxiety has also been linked to fear generalisation. In one study, healthy participants 

(n=50, 26 female, mean age 31 years) were divided into low and high trait anxiety groups  and 

conditioned to two neutral female faces, one paired with an aversive scream (CS+) which also 

changed to a fearful expression (Haddad et al., 2012). The other face (CS-) was designed to 

test fear generalisation. These were compared to a blank oval shape, designed to test fear 

sensitisation. Participants with high trait anxiety showed increased fear to the generalisation 

CS- face in startle response, but not SCR or self-reported fear ratings. There was no effect of 

fear sensitisation. This suggests a link between anxiety and fear generalisation. However, the 

use of faces means the results may specifically reflect social anxiety.  

In a study of abstract fear generalisation, 126 healthy participants were selected for low, 

medium, or high trait anxiety (State Trait Anxiety Inventory [STAI]) from a wider screening of 

992 people (Torrents-Rodas et al., 2013). A generalisation task presented 10 rings of varying 

sizes where either the smallest or largest was paired with a shock (CS+), the opposite was 

then the CS-. Participants were conditioned with these two stimuli before being presented with 

the intermediate rings to test generalisation. In startle responses, SCRs, and risk ratings, there 

was a gradual generalisation effect (increasing fear from stimuli close in size to the CS- to 

stimuli close in size to the CS+), but no differences between anxiety groups in acquisition or 

generalisation.  

Fear generalisation may also be influenced by semantic knowledge. Healthy participants 

(n=37, 26 female, mean age 23 years) were conditioned to three CS+ images from one 

category (birds or mammals) and three CS- images from the other category (Dunsmoor & 

Murphy, 2014). This study did not measure trait anxiety, but generalisation was tested with 

new images from both categories, both typical and atypical. The results indicated that 

conditioned fear (SCRs and shock expectancy ratings) generalised to new category items, 

especially from typical to atypical examples. This suggests that generalisation does not require 

perceptual similarity, rather, relying on a conceptual understanding of the stimuli and how they 

relate to each other. Although, this study did not test the effects of anxiety.  

In clinical groups, anxiety has been consistently linked to greater responses to the CS-. For 

example, in a meta-analysis of 44 studies including 963 patients with various anxiety disorders 

and 1,222 healthy controls, patients showed increased fear responses to the CS- during 

acquisition and extinction learning (Duits et al., 2015). No type of fear measure significantly 

accounted for these results, suggesting it was robust across the fear response. 

In summary, trait anxiety may predict greater fear conditioned responses and reduced 

inhibition in neural activity, but it is less clear how this relates to behavioural and autonomic 
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responses. Outside MRI experiments, fear is susceptible to generalisation and anxiety has 

been linked with fear generalisation in clinical groups, but evidence across the normal 

spectrum of anxiety is mixed. Given the importance of anxiety and fear generalisation in 

psychopathologies such as PTSD, trait anxiety’s link to fear conditioned responses warrants 

further investigation.  

 

1.2.4.2 Dreams  

Dreams have been associated with both anxiety and emotional dysregulation. One prominent 

theory suggests that normal dreaming facilitates the resolution of emotional experiences while 

nightmares reflect a failure of emotional resolution (Levin & Nielsen, 2009, 2007). This theory 

describes bad dreams and nightmares as similar constructs under the term ‘disturbed 

dreaming’. This refers to the content of dreams rather than the frequency with which dreams 

are recalled. There is some evidence linking dream recall to personality traits, but greater 

evidence that daytime experiences affect dream content (Blagrove & Pace-Schott, 2010). In 

this thesis I therefore focus on negative dreams. Disturbed dreaming has been associated 

with psychological issues such as increased stress, as well as psychopathologies such as 

PTSD (Miller et al., 2017; El-Solh, 2018).  

There is supporting evidence for dreams as a function of emotional replay in healthy adults. 

In one study, self-reported frequent dream recallers (n=44, 24 female, mean age 21 years) 

kept a daily log of life events for 10 days, then had recorded overnight sleep either at home 

(Nightcap sleep wearable) or in the sleep laboratory (PSG) with multiple awakenings for 

prompted dream reports (van Rijn et al., 2015). At home, participants were woken during REM 

sleep an average 81 times. In the lab, they were woken during both REM and SWS an average 

of 87 times. All participants then kept a dream diary for a further 10 days. The results indicated 

that emotional life events were incorporated into REM dreams both 1–2 and 5–7 nights later. 

This ‘dream lag’ effect was also demonstrated for the emotional experience of sleeping in the 

laboratory, but only for those participants who had expressed apprehension about doing so. 

This suggests that emotional experiences may be reactivated during REM sleep over a time-

course of at least a week.  

In another study, participants (n=20, 10 female, mean age 21 years) were woken from PSG-

recorded overnight sleep (REM and SWS) in the laboratory and again asked for immediate 

dream reports. The frequency of references to recent waking events in REM dreams was 

significantly associated with REM theta activity (Eichenlaub et al., 2018). Theta rhythms have 

been previously associated with emotional memory consolidation (Hutchison & Rathore, 
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2015); therefore, these results also suggest that recent events are replayed and consolidated 

during REM sleep. These studies support the Sleep to Forget, Sleep to Remember 

Hypothesis, though they do not suggest whether such consolidation relates to a subsequent 

amelioration of emotion.  

In summary, dreams during REM sleep have been related to recent emotional events. This 

supports evidence that REM promotes the processing of emotional memories. Given that bad 

dreams have also been associated with anxiety and fear-related conditions such as PTSD, 

dreams are an additional feature of emotional processing within sleep-dependent emotional 

memory consolidation that warrants further investigation, in particular, whether dreams are 

related to the simple fear responses of a conditioning model, i.e. fear learning rather than 

highly emotive experiences.  

 

1.2.5 Summary  

Fear is a persistent emotion which, like sleep, is both essential for survival and conserved 

across the animal kingdom. Conditioning provides a controlled and established method to 

study the relationship between sleep and fear memory. However, like broader sleep-

dependent emotional memory consolidation, greater clarity is required as to how REM and 

non-REM sleep support the consolidation of these experiences and how this affects 

subsequent responses. Further to this, individual differences across the fear response 

according to factors such as trait anxiety and disturbed dreaming may also contribute to the 

understanding of fear memory, but it is unclear how variation across a healthy population 

affects fear generalisation and extinction and so these also warrant further exploration.  

 

 

1.3 This Thesis 

Current literature suggests that sleep is critical for memory consolidation, but ambiguity 

remains about the roles of REM and non-REM sleep, especially for emotional memory. Fear 

is a pervasive emotion with clear neural and physiological correlates while the conditioning 

model provides high experimental control; fear conditioning is therefore a useful model with 

which to study emotional sleep-dependent memory consolidation. However, previous 

research demonstrates that fear responses vary across people, as influenced by factors such 

as trait anxiety and disturbed dreaming. A better understanding of these influences will help 

explain how learning can become maladaptive and destructive. Ultimately, further exploration 
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of interindividual differences in sleep and anxiety as they relate to the fear response across 

various stages of learning will further understanding of debilitating conditions like PTSD.  

In this thesis I aim to investigate sleep-dependent learning and consolidation in the context of 

a fear conditioning experiment, with a view to better understand the contributions of REM and 

non-REM sleep. I also aim to investigate how trait anxiety and bad dreams in a healthy 

population relate to interindividual differences in the development and maintenance of the fear 

response. To do this, I develop a novel fear conditioning design for the exploration of fear 

acquisition, extinction, and reinstatement in young, healthy people.  

At the same time, the methodology of sleep research is changing. In recent years, a growing 

literature on sleep wearables has indicated potential for the advancement of sleep 

quantification, currently a lengthy process which limits sleep study sample sizes. However, 

validation of these devices must be stringent if the quality of PSG is to be preserved. I aim to 

provide evidence for the utility of this emergent technology by replicating and extending the 

validation of a promising device – the Dreem Headband – against the gold standard of sleep 

measurement, PSG. This will indicate the extent to which Dreem is suitable for future sleep 

studies and perhaps encourage the use of these new tools for the advancement of this 

discipline.  

In Chapter 2, I consider the efficacy of the Dreem Headband for sleep staging. I first 

investigate its full functionality in agreement with PSG, that is, to record and analyse sleep. I 

then explore a middle ground where Dreem is used to record sleep, but the data are still 

analysed by eye. I use these findings to inform use of the headband across my fear 

conditioning design. 

In Chapter 3, I present a novel fear conditioning experiment where participants have overnight 

sleep recorded between fear acquisition on day 1 and extinction and reinstatement on day 2. 

I investigate the role of both non-REM and REM sleep across fear response outcomes and 

utilise the Dreem Headband following the results of Chapter 2. I also investigate responses 

after one week to explore longer-term changes and how these relate to post-conditioning 

overnight sleep.  

In Chapter 4, I present analyses of the sleep EEG data which expand upon the themes of 

Chapters 2 and 3. First, I explore how the Dreem Headband can be utilised in EEG-based 

analyses. I use the validation data of Chapter 2 to explore spectral analyses and event 

detection of slow oscillations and sleep spindles between Dreem and PSG. I then apply these 

methods to the post-conditioning sleep data, investigating slow oscillations and sleep spindles 

in relation to fear conditioned responses.    
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In Chapter 5, I investigate the role of self-reported anxiety on fear learning. I explore several 

facets of anxiety – state, trait, and intolerance of uncertainty – across this healthy sample. I 

also explore bad dreams as a predictor of maladaptive fear responses, expanding upon the 

understanding of individual differences associated with fear learning and consolidation.  
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Chapter 2 

The Dreem Headband: A Validation Study 

 

In this chapter I present novel analyses of a wearable sleep device, the Dreem Headband, 

validating it against the gold standard of sleep quantification, PSG. Dreem performed 

moderately in automatic sleep scoring, though did not meet the standards previously reported 

in a validation study by the manufacturers. However, I also investigated manual sleep scoring 

of Dreem-recorded raw data, finding significantly greater agreement against PSG. In 

particular, Dreem was suitable to estimate SWS and REM sleep duration when manually 

scored. Therefore, future sleep studies should consider utilising the flexibility and convenience 

of this wearable technology. 

 

2.1 Introduction   

Technology is now a universal aspect of daily life. Through developments in computing, 

internet, and mobile technology, many people have unlimited access to information. 

Meanwhile, there are more than 300,000 health-related mobile apps (Gordon et al., 2020), 

some of which are recommended as part of healthcare infrastructures (Li & Chang, 2020; NHS 

Apps Library - NHS, 2020). However, the future of health-related technology is not just in 

immediate information, but the ability to measure and analyse biological metrics in wearable 

technology: devices worn on the body offering the user real-time feedback and monitoring 

over time.  
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Sleep is an ideal target for the wearable technology sector. The majority of people get up to 

two hours less sleep per night than they would have 100 years ago (Roenneberg, 2013). 

People are also aware of the negative implications of poor sleep such as obesity, mental 

health concerns, and cognitive decline (Anderson & Horne, 2008; Freeman et al., 2017; 

Khader et al., 2021; Ogilvie & Patel, 2017; Scullin & Gao, 2018; Trahan et al., 2018).  

In research and clinical settings, polysomnography (PSG) is the industry standard for 

measuring sleep. PSG is described in detail in Chapter 1. Briefly, electrodes on the scalp 

record electrical activity from the brain via electroencephalography (EEG). This activity is 

classified as stage 1, stage 2, slow wave, and rapid eye movement sleep (N1, N2, SWS, 

REM). To assist in sleep stage classification, PSG also records muscle activity from the eyes 

(EOG) and chin (EMG). Finally, every 30-second epoch must be evaluated by a trained sleep 

scorer to visually identify the correct sleep stage. Time spent in each sleep stage is a 

commonly used quantification of sleep, although EEG event and spectral analyses are 

valuable as more specific indicators of neural activity (Fogel & Smith, 2006; Nishida et al., 

2009; Purcell et al., 2017).  

PSG is expensive, slow, and cumbersome. It is therefore unsuitable for independent use. 

However, there are now various wearable devices to record, classify, and summarise sleep at 

home. While some are simplified versions of PSG that utilise EEG electrodes to measure 

neural signatures, other devices estimate sleep by just movement and heart rate. Such 

wearable sleep trackers could allow for quicker, easier, and more efficient data collection, but 

validation is needed to determine whether they are suitable replacements for PSG in sleep 

research. On entering the public domain, these devices should have undergone testing 

specific to the advertised claims. However, the demands of the consumer are likely to be 

lighter than those of a sleep scientist. If wearable sleep devices are to revolutionise sleep 

research, a strict set of standards needs to be imposed. 

While sleep science requires an accurate representation of sleep stages over time, this is 

difficult due to the individual differences inherent in sleep-dependent neural signatures. Even 

in the gold standard PSG, it is generally accepted that two experienced scorers will only 

achieve 80% agreement with each other across a night’s sleep (Danker‐Hopfe et al., 2009). It 

is also often unclear what constitutes an experienced scorer and scoring may vary even more 

between research groups (Collop, 2002). In contrast, wearable sleep trackers use algorithms 

to sleep score in real time. This should provide a more consistent measure across multiple 

recordings compared to human visual analysis, but they must be correct. Sleep wearables 

should therefore first pass an initial level of testing against human scoring of PSG, aiming to 

reach the 80% agreement that would put them at the same standard as a human scorer.  
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In this chapter, I test the Dreem Headband against PSG. I also explore manual sleep scoring 

of Dreem raw data and whether this offers a more accurate way to utilise some of the 

advantages of this wearable technology even if it cannot fully replace PSG at this time.  

 

2.1.1 Previous Validations of Wearable Sleep Devices 

A variety of wearables claim to measure sleep. Broadly, these can be divided into the 

classification of sleep through primarily movement (actigraphy; though pulse is also 

measured), or electrical activity from the brain (EEG). I show a range of wearable sleep device 

images at the end of this section (Table 2.1). 

 

2.1.1.1 Actigraphy-Based Sleep Devices 

Actigraphy is the study of activity, commonly measured via an embedded triaxial 

accelerometer. This measure of movement and heart rate has been applied to sleep 

quantification. However, since sleep scoring relies heavily on neural signatures, actigraphy 

may not be able to accurately capture all the stages. For example, a characteristic feature of 

REM sleep is low muscle tone, but this can also occur in non-REM sleep (Tinguely et al., 

2006). Furthermore, while reduced heart rate can signal sleep (Ataie, 2020), SWS has been 

identified by heart rate with only moderate accuracy, ĸ = 56% (Yoon et al., 2018). Actigraphy 

devices may also have a poorer signal quality than an electrocardiogram.  

These issues have been reflected in the literature. A recent study evaluated sleep 

measurement in five smart watches by testing them against a research-grade actigraph 

(ActiGraph GT9X Link) which had been previously validated against PSG (Lee et al., 2018). 

Participants (n=78, 42 female, mean age 28 years) slept at home for three consecutive nights 

yielding 92–195 recordings of overnight sleep for each device. In an estimation of time spent 

asleep, only the Jawbone UP and FitBit Charge fell within 10% of the actigraph. For smart 

watches to equate with PSG, validation should include sleep staging and ideally be compared 

against PSG itself. However, these results suggest that most smart watches are inaccurate in 

the most basic measures of sleep.   

In a study comparing the Jawbone UP against PSG in an adolescent sample (n=65, 28 female, 

mean age 16 years), there was reasonable agreement in basic sleep statistics, with an 

average 10 minutes less total sleep time and 11 minutes more wake after sleep onset, 

although these differences were statistically significant (de Zambotti et al., 2015). Limited 

sleep stage evaluation also indicated that PSG’s N2, REM, and arousal index predicted 35% 
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of the variance in the Jawbone’s ‘sound sleep’, while N2, SWS, arousal index, and awakening 

index predicted 30% of the variance in ‘light sleep’. This study had a good sample size but 

since sleep changes through adolescence (Tarokh et al., 2016), these modest results may not 

be generalisable to the majority of the population.  

In a similar study (n=32, 15 female, mean age 17 years), the FitBit Charge also showed good 

agreement with PSG in basic sleep parameters: an average total sleep time 8 minutes more 

than PSG and 6 minutes less wake after sleep onset, though these differences were also 

statistically significant (de Zambotti et al., 2016). While FitBit achieved 97% sensitivity and 

93% predictive value in detecting sleep, again this was from an adolescent sample and there 

was no analysis of sleep stage. More recently, FitBit was evaluated across all sleep stages, 

although this was not against PSG, but the single channel medical EEG device, SleepScope 

(Liang & Chapa Martell, 2018). In overnight sleep (n=25, 10 female, mean age 25 years), FitBit 

significantly overestimated the percentage of wake, light sleep, and REM by 5–14%, and 

underestimated deep sleep by 10%. Without an epoch-by-epoch analysis, it cannot be 

evaluated whether FitBit reaches the standards of PSG; however, differences in the time spent 

in each sleep stage suggest significant errors.  

Moving away from smart watches, Nightcap was an early autonomous device specifically for 

sleep measurement which recorded eyelid and body movements. Agreement against PSG in 

10 healthy people (3 female, aged 19–42 years) who each recorded three nights of sleep data 

was reported at 93% for non-REM sleep and 80% for REM (Ajilore et al., 1995). Although, this 

was based on 1-minute epochs. Further to this, Nightcap achieved 93% agreement with PSG 

across 10 healthy people (5 female, aged 20–25 years) who each recorded four separate naps 

(Cantero et al., 2002). Although, this later study only measured the reliability of sleep onset 

latency and not sleep stages. Overall, this device had promising indications for the separation 

of REM and non-REM sleep, but it is now no longer commercially available (Jarno et al., 2019).   

Finally, the Oura ring estimates sleep through pulse, temperature, and movement. Participants 

(n=41, 13 female, mean age 17 years) had overnight sleep recorded simultaneously by Oura 

and PSG in a sleep laboratory (Zambotti et al., 2019). There were no significant differences in 

sleep onset latency, wake after sleep onset, or total sleep time, with Oura showing 96% 

sensitivity to detect sleep. In an analysis of sleep stages, agreement for light (N1+N2), deep 

(SWS) and REM sleep was moderate at 65%, 51%, and 61% respectively, with Oura 

significantly underestimating deep sleep and overestimating REM. While these results are 

only moderate, this study does report epoch-by-epoch agreement (the variable of interest 

between two expert scorers of PSG). In addition, although the sample consisted of 
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adolescents as well as young adults, there was no significant effect of age in any PSG-Oura 

discrepancy.  

Overall, the accuracy of actigraphy-based sleep wearables appears to be poor. However, the 

literature is limited by the lack of validation against PSG in adult samples. Additionally, in most 

cases, the lack of an epoch-by-epoch analysis of all sleep stages means that comparison 

against the 80% agreement benchmark expected in PSG is impossible. That being said, while 

many devices are still inaccurate in the broader measures reported, actigraphy devices are 

popular and affordable and could therefore be suited to large studies investigating basic sleep 

parameters such as total sleep time. While Nightcap may have been a promising device for 

sleep stage classification, it is no longer available. Currently, Oura shows some promise to 

deliver accurate sleep stage classification, but agreement is still too poor for it to be considered 

as a replacement for PSG.   

 

2.1.1.2 EEG-Based Sleep Devices 

Considering that PSG classifies sleep stages principally from EEG signatures, wearables 

utilising EEG may be more likely to capture sleep stages with greater accuracy than 

actigraphy. Traditional EEG uses wet electrodes where conductive gel aids alignment with the 

scalp. However, since this would be impractical in a home device, EEG-based sleep trackers 

incorporate dry EEG electrodes into a mask or headband. This means that the electrodes are 

embedded in the device, and no action is required except to pull it onto the head. This is more 

convenient but could cause additional noise in the EEG signal.  

Unlike actigraphy, EEG-based sleep trackers are often designed for sleep measurement. 

These wearables therefore tend to make more specific claims about sleep classification and 

so should have undergone appropriate validation. They can be split into single-channel and 

multi-channel devices. 

 

2.1.1.2.1 Single-Channel EEG Wearables  

One early device for sleep, the Zeo system, recorded a single EEG channel. A validation from 

researchers at the Zeo Sleep Research Centre (n=26, 13 female, mean age 38 years) 

measured overnight sleep simultaneously with Zeo and PSG (Shambroom et al., 2012). With 

classification agreement by sleep stage between two expert scorers (independently scoring 

PSG) and Zeo (scored via its automatic algorithm), Zeo achieved good agreement in REM 
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sleep at 79–85% and light sleep at 80–82%, but only moderate agreement for wake at 56–

62% and deep sleep at 60–67%.  

In a further validation of Zeo, 21 recordings from 10 adults (aged 23–45 years) were used to 

compare Zeo to overnight PSG scored by a sleep expert (Griessenberger et al., 2013). Gender 

was not reported and seven of the participants had been diagnosed with insomnia disorder, 

though the average sleep time was 7.25 hours. Across the whole night, Zeo showed moderate 

agreement with expert scoring of PSG at ĸ = 56%. This was slightly better at 71%, 79%, and 

69% for REM, light, and deep sleep, but poor for the detection of wake at 40%. These results 

were not derived from healthy sleepers and so may not be generalisable. Also, the Zeo 

algorithm removed frequencies below 2 Hz because of excessive noise from the dry 

electrodes. Considering that recognition of deep sleep relies on slow oscillations within 0.5–2 

Hz (Benoit et al., 2000), this may have omitted a key signature in the detection of deep sleep 

and could be one reason Zeo is no longer available.  

A similar current sleep wearable is the Neuroon eye mask, which records a single EEG 

channel, EOG, a pulse oximeter, triaxial accelerometer, and temperature. Neuroon claims to 

accurately measure sleep over time, as well as present light and vibrations to improve waking 

up and encourage lucid dreaming. Neuroon has been validated against the medical EEG 

device SleepScope and simultaneously compared to FitBit. When 32–35 nights were analysed 

for sleep stage agreement from two (1 male, 1 female, age not reported) adult participants 

(Liang & Nishimura, 2017), Neuroon showed an average 158 minutes less total sleep than 

PSG and correspondingly 222 minutes more wake after sleep onset. This contrasted with 

FitBit, which showed significant but much smaller differences of 30 and 8 minutes. This study 

is limited in only recording from two participants and there is a lack of epoch-by-epoch 

analysis. However, the results suggest Neuroon is highly inaccurate in broad sleep 

measurements.  

In a further validation of Neuroon, adult participants (n=25, 10 female, mean age 25 years) 

used Neuroon, FitBit, and SleepScope for three consecutive nights (Liang & Chapa Martell, 

2018). Again, Neuroon showed large errors in total sleep time and wake after sleep onset of 

156 and 173 minutes. Unsurprisingly, in a breakdown of sleep stage there were similar 

disparities, with Neuroon indicating 165 minutes less light sleep and 20 minutes more deep 

sleep, although there was no significant difference in REM.  

Finally, the Phillips SmartSleep Deep Sleep Headband utilises one frontal EEG channel and 

one reference channel at the right mastoid. In a validation against manual scoring of the 

device’s raw data by a trained sleep scorer, participants (n=28, 18 female, mean age 37 years) 
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used the headband for 10 nights, eight at home and two in a sleep laboratory (Garcia-Molina 

et al., 2018). Accurate identification of ‘light’ (in this case, N1, N2 and REM) and deep sleep 

was reported over the whole sample at 75% and 74% respectively. Though, this was greater 

in deep sleep for the younger participants (< 40 years old) at 79% compared to 67%. The older 

participants had less deep sleep, but this does not explain why detection was worse; therefore, 

deep sleep identification may be affected by age. This study also advocates manual scoring 

of wearable raw data as an alternative measure of validation.   

Overall, these studies suggest that single channel EEG, like actigraphy, is largely unsuitable 

for use in research. In fact, these devices may in some cases perform significantly worse than 

actigraphy. While the SmartSleep Headband reported good detection of SWS when the raw 

data were scored by a trained researcher, this was not validated against the same sleep 

recorded by PSG. Therefore, it is unclear how the hardware of the headband affected sleep 

scoring, i.e. the EEG signal from the headband is unlikely to be analogous to the coverage of 

PSG, given the use of one dry EEG electrode.  

 

2.1.1.2.2 Multi-Channel EEG Wearables  

Multi-channel EEG sleep trackers offer the closest facsimile to PSG. A significant advantage 

of multiple channels is the ability to simultaneously record from different areas, considering 

that many neural signatures exhibit clearer EEG signals in specific brain regions. For example, 

alpha waves seen in relaxed wake originate in the occipital region (da Silva, 2010), slow 

oscillations characteristic of SWS arise in the frontal region (Borbly, 2001), and sleep spindles 

indicating N2 are best seen in the central region (Hagler et al., 2018). While single channel 

EEG devices tend to record from a frontal electrode, multiple channels should also detect 

signals from other regions.      

One sleep wearable, the Dreem Headband, utilises multi-channel EEG and has shown 

promise in a published validation. Dreem started in 2014 and have since released three 

versions of this device. In 2016, a beta headband only available to 500 customers utilised 

frontal (Fpz, Fp1, Fp2) electrodes referenced to both mastoids and a 3-D accelerometer. In 

2017, the official Dreem Headband (now known as ‘Dreem 1’) carried a new design of frontal 

(Fpz, F7, F8) and occipital (O1, O2) electrodes, 3-D accelerometer, and pulse oximeter, 

without reference to the mastoids. Finally in 2019, an updated headband was released, 

‘Dreem 2’, which keeps the same broad design but claims greater comfort and accuracy 

(Dreem 2, 2019).  
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Initial use of Dreem in a scientific setting was for closed-loop auditory stimulation 

(Debellemaniere et al., 2018). This technique has been reported to boost the slow oscillations 

that occur during sleep via short bursts of sound (Besedovsky et al., 2017; Navarrete et al., 

2020; Tononi et al., 2010). This may lead to subsequent improvement in memory performance 

(Ngo et al., 2013), although null effects have also been reported (Henin et al., 2019).  

The Dreem Headband (Dreem 1) has also been validated against PSG for sleep stage 

classification by the Dreem science team: participants (n=25, 6 female, mean age 35 years) 

had their sleep measured by the Dreem Headband and PSG overnight (Arnal et al., 2020). 

Correlations between Dreem and PSG frontal electrodes were moderate to strong in alpha 

(.71), beta (.71), delta (.76), and theta (.61) frequencies, compared to correlations between 

two PSG electrodes at .82–.91. Considering the differences in hardware and coverage, this 

suggests that the Dreem Headband shows a good capability to record the necessary 

frequencies seen across sleep. For sleep stage classification, the headband’s algorithm was 

tested against PSG scored by a consensus of five expert sleep scorers. Agreement between 

the five scorers was high at 86%, and a consensus for each epoch was reached through the 

four experts who showed most agreement with each other. When the algorithm was tested 

against this consensus, agreement was promising for wake, REM, N2, and SWS at 74%, 85%, 

83% and 83%, though poor for N1 at 48%. These results suggest that the Dreem Headband, 

surpassing the 80% agreement target, could be a suitable replacement for PSG in sleep 

stages N2, SWS and REM. 

In summary, the Dreem Headband presents a convincing alternative to PSG via the previous 

validation. However, this finding must be replicated. It is also unclear whether the variance 

between PSG and the Dreem Headband originates from the difference between manual and 

automatic scoring or the difference in recording quality. Consequently, scoring of the raw data 

would provide further evidence for Dreem’s effectiveness. 
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Table 2.1 Wearable Sleep Devices  

Jawbone 

Up 

 

 

(Swider, 2014) 

Neuroon 

Eye Mask 

 

 

(Neuroon Open, n.d.) 

FitBit 

Charge 

 

(Fitbit Charge 2 

Specifications, Features 

and Price, n.d.) 

Smart 

Sleep 

Deep 

Sleep 

Headband 

 

 

(SmartSleep Deep Sleep 

Headband, n.d.) 

Oura 

Ring 

 

 

(Oura Ring CEO on the Future of 

Illness Detection and Self-

Isolation, 2020) 

Dreem 

Headband 

 

Beta 

(2016) 

 

 

 

 

 

 

Dreem 1 

(2017) 

 

 

 

 

 

(Dreem - Helping the World Being 

Better at Sleep, n.d.) 

Zeo  

 

(Zeo Sleep Manager Goes Right 

to the Phone, 2011) 
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2.1.2 Aims  

Previous literature suggests that many sleep wearables are inaccurate in broad sleep 

measurements. However, the Dreem Headband has shown some promising results. In this 

study I aimed to validate the Dreem Headband against PSG, field-testing results of the 

previous validation study (Arnal et al., 2020). Specifically, I aimed to replicate greater than 

80% agreement in N2, SWS, and REM between expert scoring of PSG and automatic scoring 

of the headband to provide additional evidence for or against Dreem’s use in sleep science.  

Manual sleep scoring of the Phillips SmartSleep Deep Sleep Headband indicated that raw 

data from a wearable sleep device could be sleep scored by a trained technician and 

compared to algorithmic scoring of the same data (Garcia-Molina et al., 2018). However, it 

was unclear how this would relate to PSG. Consequently, I also aimed to explore manual 

scoring of Dreem raw data when PSG is recorded simultaneously. This additional comparison 

addresses the extent to which variance when tested against PSG can be explained by a lack 

of accuracy in the sleep scoring algorithm, when such automatic scoring software is yet to 

replace expert scoring in typical PSG studies.  

 

2.1.3 Hypotheses 

1. Dreem’s algorithm will achieve at least 80% agreement in N2, SWS and REM scoring, 

when tested against manual scoring of PSG. 

2. Manual scoring of the Dreem Headband will achieve significantly greater agreement, 

when tested against manual scoring of PSG, than Dreem’s algorithm against PSG. 
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2.2 Methods  

This chapter presents data previously collected and obtained with permission from Dr Ullrich 

Bartsch and Professor Matt Jones. Data collection was conducted by Dr Ullrich Bartsch, Dr 

Ross Purple, Amber Roguski and Callum Young. However, I have independently conducted 

all data processing and analyses for the purposes of this validation study. These analyses are 

novel, and these data have not featured in any prior publication. 

 

2.2.1 Participants  

I obtained sleep data from 10 participants (8 female, 2 male; aged 20–37 years, mean = 25.33) 

who all contributed two consecutive nights of sleep recorded simultaneously by Dreem and 

PSG. The original study design recruited 20 participants via advertisements placed around 

the University of Bristol, UK. Participants completed an online ‘Big 5’ personality questionnaire 

which measured neuroticism, extraversion, openness, agreeableness, and 

conscientiousness, with a free, open-source test (Free Open-Source BigFive Personality 

Traits Test, 2019). Only the participants scoring in the top 25% and bottom 25% in neuroticism 

were invited to have their sleep recorded. These data were therefore recorded from 

participants in the top or bottom quartile of trait neuroticism, albeit from a very small sample.   

When I obtained these data, four nights were missing (three recorded by PSG, one by Dreem). 

I discarded an additional Dreem recording due to a loss of readable signal before sleep onset. 

Since direct comparison relies on intact data from both PSG and Dreem, the final sample 

consisted of two nights from six participants (n=12) and one night from a further three 

participants (n=3), a total of 15 nights. I disregarded neuroticism classification in all analyses 

of PSG and Dreem sleep recordings, following no significant differences between participants 

in the low and high neuroticism groups in sleep stage classification, p = .934. These results 

are presented in Appendix D.   

 

2.2.2 Materials 

Ambulatory wireless PSG (Embla Titanium) recorded six EEG channels (F3, F4, C3, C4, O1, 

O2), mastoids (M1, M2), EOG (E1, E2) and EMG (ChinL, ChinR). All channels were 

referenced to Cz and sampled at 256 Hz. 

The Dreem Headband ‘Dreem 1’ (the same version used in the previous validation study) 

recorded five dry EEG electrodes (Fpz, F7, F8, O1, O2) sampled at 250 Hz, referenced to 
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each other yielding seven derivations (Fpz-O1, Fpz-O2, Fpz-F7, F8-F7, F7-O1, F8-O2, Fpz-

F8). In addition, a 3D accelerometer measured movement, position, and breathing, while a 

red-infrared pulse oximeter measured heart rate, sampled at 50 Hz. EEG data were 

automatically processed internally by Dreem with a Butterworth (order 2) bandpass 0.4–18 Hz 

filter and (order 3) 50 Hz, 60 Hz and 62.5 Hz notches.  

The Dreem Headband automatically scores sleep in real time. Like a human scorer, the 

algorithm takes previous epochs into account, basing its decision on features from the last 30 

(30-second) epochs, as well as power frequency in the delta, alpha, theta and beta bands, 

and detection of characteristic signals such as spindles, K-complexes, and slow oscillations 

(Arnal et al., 2020; Debellemaniere et al., 2018). Dreem scores ‘S0’, ‘S1’, ‘S2’, ‘S3’, ‘REM’ and 

‘MT’, as wake, N1, N2, SWS, REM, and movement time (analogous to artefacts), respectively. 

While the headband can deliver closed-loop auditory stimulation, this was deactivated.  

 

2.2.3 Procedure 

On responding to the study advertisement, participants were invited to complete the online 

personality test. Selected participants then attended Sphere House: a two-bedroomed house 

in Bristol, UK, designed to accommodate participants for research purposes. Participants gave 

informed consent, indicated they were in good physical and mental health, and understood 

the aims of the study.  

On two consecutive nights, participants arrived in the early evening and were ‘wired up’ to the 

ambulatory wireless PSG system several hours before sleep onset; the Dreem Headband was 

worn on top. Participants slept overnight in individual bedrooms, sleeping at their normal time. 

In the morning, PSG electrodes and Dreem Headband were removed, and participants were 

free to go about their day as normal. This study was approved by the University of Bristol 

Ethics Committee. 

 

2.2.4 Data Processing  

I obtained these data for the purposes of this validation study prior to any processing. I 

therefore carried out all analyses described hereafter.   

Firstly, I filtered and re-referenced PSG recordings using MATLAB with EEGlab and Fieldtrip 

toolboxes (Delorme & Makeig, 2004; Oostenveld et al., 2010). EEG and EOG channels were 

bandpass filtered between 0.3–35 Hz and re-referenced to the linked mastoids (M1, M2). EMG 
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channels were bandpass filtered between 10–100 Hz and re-referenced to each other in a 

bipolar derivation. I did not filter or re-reference Dreem recordings beyond Dreem’s internal 

processing. However, I resampled respiration channels from the accelerometer from 50 to 250 

Hz.   

To enable synchronisation of the Dreem and PSG recordings, I truncated PSG files to exactly 

two hours after the start of the Dreem recording and hence Dreem’s automatic scoring. This 

was accomplished by accessing the timestamp of each recording, deleting the necessary raw 

data, then creating a new EDF file. This was possible because all recordings were started 

early in the evening with several hours before sleep onset. This ensured that there was an 

even number (240) of whole 30-second epochs, all of wake before sleep onset, which could 

be removed after scoring to match with PSG. Finally, I coded all file names using a random 

number generator to avoid bias during scoring. 

I scored all PSG and Dreem recordings according to AASM guidelines, using the Python-

based software Visbrain Sleep (Combrisson et al., 2017). I also utilised the respiration 

channels provided by Dreem’s accelerometer to assist sleep stage classification (see Douglas 

et al., 1982, for an explanation of how respiration varies across sleep stage). I checked my 

PSG sleep scoring accuracy via two recordings which were independently scored by another 

experienced sleep scorer (Dr Ross Purple, University of Bristol). The results of this agreement 

are presented in section 2.3.2.  

Finally, I re-matched recordings of the same sleep as scored by PSG and Dreem. The PSG 

scoring was exactly two hours (240 epochs) ahead of Dreem; therefore, these epochs were 

deleted from algorithmic and my scoring of Dreem – all were scored as wake. Following this, 

further extraneous wake was removed from the beginning and the end of each file, according 

to the epoch of sleep onset and offset as defined by PSG. Each night was therefore scored 

three times via two recordings: PSG, Dreem-algorithm, and Dreem-manual. 

 

2.2.5 Statistical Analyses 

To compare the sleep scoring of Dreem against PSG, I calculated Cohen’s Kappa, sensitivity, 

specificity, positive predictive value, and negative predictive value. I tested differences 

between the scoring methods with repeated measures ANOVAs or t-tests, with a significance 

threshold of p < .050.  

Cohen’s Kappa is a widely used statistical technique to compare agreement between two 

raters who classify items into mutually exclusive categories, accounting for the chance of 
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agreement if category ratings were random. A suggested interpretation is 0–.20 = no 

agreement, .21–.40 = minimal agreement, .41–.60 = weak agreement, .61–.80 = moderate 

agreement, .81–.90 = strong agreement, and .91–1.00 = almost perfect (McHugh, 2012). A 

confusion matrix is used to calculate Cohen’s Kappa (values for illustration only, Table 2.2). 

Each possible category is shown across both rows and columns and the number of times each 

category is scored is shown across both raters. Each category is wholly independent and 

reflects the number of epochs scored as each stage across a single night’s sleep. Therefore, 

Kappa does not consider similarity between the stages.  

 

Table 2.2 Illustrative Confusion Matrix Showing Classification for Each Sleep Stage by Two 

Raters in a Single Recording 
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                                                  Rater 1 (e.g. PSG)  

  1 2 3 4 5 6 

  N1 N2 SWS REM Wake  Total 

A N1 6 13 0 0 3 22 

B N2 0 210 53 3 0 266 

C SWS 0 4 124 0 0 128 

D REM 0 39 0 259 0 298 

E Wake 1 2 0 0 160 163 

F Total 7 268 177 262 163 877 

 

Kappa is calculated: 

𝑃𝑜 − 𝑃𝑒

1 −  𝑃𝑒
 

Where Po is equal to the sum of observed agreed values, and Pe is equal to the sum of 

expected values if the categories were assigned randomly.  

Therefore: Po = A1 + B2 + C3 + D4 + E5 and Pe = PN1 + PN2+ PSWS + PREM + Pwake  
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Where:  PN1 = (F1/ F6) * (A6/ F6), PN2 = (F2/ F6) * (B6/ F6), PSWS = (F3/ F6) * (C6/ F6), PREM = 

(F4/ F6) * (D6/ F6), Pwake = (F5/ F6) * (E6/ F6).  

Sensitivity, specificity, positive predictive values, and negative predictive values were 

calculated per sleep stage. For these analyses, one scorer must be considered the ground 

truth (e.g. rater 1), and true positives, true negatives, false positives, and false negatives are 

defined by the other scorer’s ratings (rater 2) in relation to this (Parikh et al., 2008). 

Sensitivity indicates how good rater 2 is at identifying each stage when it occurs. This is 

equivalent to the % agreement reported in most sleep studies. In contrast, specificity indicates 

how good rater 2 is at identifying the absence of a stage when it does not occur. Positive 

predictive value indicates the probability that the stage rated by the tested scorer is that stage, 

as rated by PSG. In contrast, negative predictive value indicates the probability that when the 

stage in question is not rated by rater 2, it is not that stage as rated by PSG.  

 

Sensitivity =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Specificity =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Positive Predictive Value =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Negative Predictive Value =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Where: 

• True Positives: positive ratings by rater 2 that agree with the ground truth (the 

diagonal cell in question i.e. A1 for stage 1) where both scorers agree the stage has 

occurred.  

• True Negatives: negative ratings by rater 2 that agree with the ground truth (the sum 

of all cells excluding the row and column of the sleep stage in question i.e. (B2:B5) + 

(C2:C5) + (D2:D5) + (E2:E5) for stage 1). This is the total number of instances where 

both raters agree the stage has not occurred.  

• False Positives: positive ratings by rater 2 that disagree with the ground truth (the row 

total minus the stage in question i.e. A6 – A1 for stage 1). This is the total number of 

instances falsely classified by rater 2 as the stage in question.  
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• False Negatives: negative ratings by rater 2 that disagree with the ground truth (the 

column total minus the stage in question i.e. F1 – A1 for stage 1). This is the total 

number of instances falsely classified by rater 2 as not the stage in question.    

 

Statistics were carried out in Matlab 2019b or IBM SPSS 26. Spectrograms were calculated 

with the Chronux toolbox (Bokil et al., 2010). I used a 10 second window moving in 0.1 second 

steps and a multi-taper spectral estimate at a 0.5 Hz resolution (9 tapers). 

Since I did not collect these data, I conducted a post-hoc sensitivity analysis with G*Power 3.1 

(Faul et al., 2007) to indicate the minimum effect size that the study could reliably yield a 

statistically significant result (Perugini et al., 2018). My hypotheses were based on the 

difference between the algorithm’s agreement with PSG and manual scoring’s agreement with 

PSG (a single matched-pairs comparison). Accordingly, a sensitivity analysis (two-tailed α = 

.05, β = .80) with my sample size of 15 indicated a large effect size of .78 would be reliable. 

This is illustrative of sensitivity across the experiment and indicates that small or medium effect 

sizes may not be reliably detected.  
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2.3 Results  

2.3.1 Sleep Recordings 

The same sleep was captured differently by PSG and Dreem, this also varied over different 

nights. For example, in a recording that showed high agreement between PSG and Dreem, 

power across sleep frequencies (0.4–20 Hz) and sleep scoring showed some consistency 

(Figure 2.1). In contrast, in a recording that showed low agreement between PSG and Dreem, 

power and sleep scoring showed considerable deviation (Figure 2.2). I have shown the EEG 

signal from a frontal channel in each case. However, in the latter, agreement was limited by 

all Dreem frontal-occipital channels being corrupted. I therefore show channel Fpz-F7, which 

may account for the lower power.  

Even when epochs were scored as the same stage, the EEG signal varied. This can be seen 

in illustrative epochs where both algorithmic and manual scoring of Dreem scored correctly 

i.e. agreed with the sleep stage classified by PSG – the ground truth (Figure 2.3), and epochs 

where algorithmic scoring was incorrect but manual scoring was successful (Figure 2.4). 

These epochs were all taken from the congruent night.   

In general, Dreem is likely to give higher power readings than PSG due to an increase in noise, 

possibly attributable to greater movement of the headband on the head and the use of dry 

electrodes (discussed further in section 2.4). This is demonstrated by the particular increase 

in signal variability in wake (seen in Figure 2.3), compared to PSG where electrodes are 

affixed to the scalp.  
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Figure 2.1 A Congruent Night Between PSG and Dreem  

A spectrogram showing frequency power and hypnogram showing sleep scoring of the same night as recorded by PSG channel F3 (A), and by Dreem channel 

Fpz-O1 (B). There was good agreement (ĸ = .79–.83) between scoring methods in this recording.  
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Figure 2.2 An Incongruent Night Between PSG and Dreem 

A spectrogram showing frequency power and hypnogram showing sleep scoring of the same night as recorded by PSG channel F3 (A), and by Dreem channel 

Fpz-F7 (B). There was poor agreement (ĸ = .51–.53) between scoring methods in this recording. 
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Figure 2.3 EEG Sleep Data: Congruent Epochs Between PSG and Dreem 

An illustrative 30-second epoch of each sleep stage as recorded by PSG at channel F3 and Dreem at channel Fpz-O1. Each epoch was scored in agreement 

as the stage in question via PSG, Dreem-algorithm, and Dreem-manual. 
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Figure 2.4 EEG Sleep Data: Incongruent Epochs Between PSG and Dreem 

An illustrative 30-second epoch of each sleep stage as recorded by PSG at channel F3 and Dreem at channel Fpz-O1. Each epoch was scored as that stage 

by PSG and Dreem-manual, but differently by Dreem algorithm (the algorithm scored N1 as wake, N2 as REM, SWS as N2, REM as N2, and wake as N2). 
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2.3.2 PSG Scoring Accuracy 

To test the accuracy of my sleep scoring, a second experienced (5+ years) sleep scorer 

independently scored two PSG recordings: the best (ĸ = .79) and worst (ĸ = .27) nights in 

scoring agreement between PSG and algorithmic scoring of Dreem. This was designed to 

indicate the range of accuracy across all nights (Table 2.3). In both, there was good 

agreement across the whole night but poor agreement in N1 and wake. On further 

investigation, I found a large difference in the number of epochs scored in these stages (Table 

2.4).  

 

Table 2.3 Agreement Between Two Scorers of Two PSG Recordings  

  ‘Worst’ Night ‘Best’ Night Average 

Sensitivity (%)  N1 41.18 21.88 31.53 

N2 86.45 91.37 88.91 

SWS 95.60 94.47 95.04 

REM 83.57 100 91.79 

Wake 18.42 0.00  9.21 

Cohen’s Kappa (%) 69.49 84.59 77.04 

% Agreement 76.59 89.06 82.83 

I tested my scoring against Dr Purple’s as the ground truth. Kappa values expressed as percentages. 

 

Table 2.4 Number of Epochs Scored Over the Worst and Best Nights   

‘Worst’ Night                                               ‘Best’ Night 

 Scorer 1 Scorer 2 Algorithm Scorer 1 Scorer 2 Algorithm 

N1 82 68 3 7 32 3 

N2 294 251 265 259 255 273 

SWS 180 183 117 190 200 184 

REM 215 208 274 128 95 109 

Wake 19 81 157    0 4 25 
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Although there were differences in the number of epochs scored per sleep stage, Dr Purple’s 

and my scoring showed comparable agreement against Dreem’s algorithmic scoring: poor in 

the worst night, 47% and 45% agreement, ĸ = .31 and .29; good in the best night, 81% and 

86% agreement, ĸ = .74 and .80 respectively. Overall, agreement between Dr Purple and 

myself surpassed the 80% benchmark and was high across N2, SWS, and REM; therefore, 

my scoring was likely to be adequate, although analyses of N1 and wake could warrant some 

caution.  

 

2.3.3 Sleep Scoring Agreement Between PSG and Dreem 

I primarily aimed to investigate the performance of the Dreem Headband’s algorithmic sleep 

stage scoring (Dreem-algorithm) when tested against my scoring of PSG. Secondly, I also 

investigated whether my scoring of the Dreem raw data (Dreem-manual) against my scoring 

of PSG exhibited significantly greater agreement. Finally, I show agreement between Dreem-

algorithm when tested against Dreem-manual for each analysis as an indicator of the variance 

due to differences in hardware rather than scoring method (discussed in section 2.4.2).  

 

2.3.3.1 Total Agreement 

I first investigated sleep scoring agreement across all stages. Since Kappa values are not 

always reported in the literature, I also present percentage agreement (the number of epochs 

scored the same by both scoring methods divided by the total number of epochs). Because 

this does not account for chance, it is expected that these values are slightly higher. In 

addition, sleep may vary more between participants than over repeated recordings of the same 

person, I therefore also investigated differences between night 1 and night 2 recordings. The 

results suggested that both Kappa and percentages showed significantly greater agreement 

between Dreem-manual and PSG, compared to Dreem-algorithm and PSG; this was stronger 

when collapsing across night, i.e. treating all nights independently (Figure 2.5).  
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Figure 2.5 Total Scoring Agreement  

Dreem-manual scoring tested against PSG showed significantly greater agreement than Dreem-

algorithm in Kappa (A) and percentage agreement (B). There were no differences between night 1 

(n=7) and night 2 (n=8). *p < .050, ** p < .010. 

 

Across Kappa values, a 3 x 2 repeated measures ANOVA indicated a significant effect of 

scoring method, F (2) = 8.72, p = .006, but no effect of night, F (1) = 0.21, p = .669, nor a night 

* method interaction, F (2) = 1.49, p = .272. There was, similarly, a significant effect of scoring 

method in percentage agreement, F (2) = 4.77, p = .035, but no effect of night, F (1) = 0.18, p 

= .686, nor a night * method interaction, F (2) = 1.36, p = .301. Subsequent pairwise 

comparisons largely indicated significant differences (Table 2.5).  

However, when collapsing across night, 3-way repeated measures ANOVAs (testing 

differences between scoring method only) showed stronger differences between scoring 

methods: Kappa, F (1.33) = 16.49, p < .001; percentage agreement, F (1.31) = 9.14, p = .004. 

This led to greater pairwise differences (also Table 2.5).  
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Table 2.5 Pairwise Comparisons Between Scoring Methods   

 Comparison p-value 

  Dreem-algorithm 

against PSG and 

Dreem-manual 

against PSG 

Dreem-algorithm 

against PSG and 

Dreem-algorithm 

against Dreem-

manual 

Dreem-manual 

against PSG and 

Dreem-algorithm 

against Dreem-

manual 

Cohen’s 

Kappa 

Comparing 

Across Night 

      .002  .005  .006  

Collapsed 

Across Night 

   < .001  .002  .002  

Percentage 

Agreement 

Comparing 

Across Night 

      .066 .065 .117 

Collapsed 

Across Night 

      .004  .023 .022 

The comparison between Dreem-algorithm tested against PSG and Dreem-manual tested against PSG 

is highlighted as most relevant for my hypotheses. 

 

These results do not indicate a significant effect of night 1 versus night 2. In addition, testing 

for differences between night 1 and night 2 may hinder the detection of differences in scoring 

method. All nights were therefore treated as independent in further analyses.  

 

2.3.3.2 Sensitivity and Specificity 

I then investigated scoring agreement per sleep stage. Testing against PSG as the ground 

truth, sensitivity and specificity illustrate the effectiveness of Dreem-manual and Dreem-

algorithm at identifying when each stage does and does not occur respectively (correct stages 

as defined by PSG). Three-way repeated measures ANOVAs indicated significant differences 

in sensitivity in every sleep stage except N2, while specificity differed in every sleep stage 

except REM (Figure 2.6, Table 2.6). For these significant effects, I investigated pairwise 

comparisons between scoring methods. Of particular note for my hypotheses are differences 

between Dreem-manual tested against PSG and Dreem-algorithm tested against PSG, but I 

show the other comparisons for additional information.  
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Figure 2.6 Dreem Sensitivity and Specificity per Sleep Stage  

There were significant differences in sensitivity in N1, SWS, REM, and wake: generally (except in wake), 

greater agreement with PSG in manual scoring than algorithmic scoring (A). In specificity, there were 

significant differences in N1, N2, SWS, and wake: manual scoring showed higher agreement in N2 and 

wake, but algorithmic scoring was greater in SWS (B). Error bars show ± one standard error of the 

mean (SEM). *p < .050, ** p < .010, *** p < .001.
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Table 2.6 Differences in Sensitivity and Specificity Between Scoring Methods per Sleep Stage 

  Three-way Repeated Measures ANOVAs Subsequent Pairwise Comparisons (p-values) 

 Sleep 

Stage 

df F p Dreem-algorithm 

against PSG and 

Dreem-manual 

against PSG 

Dreem-algorithm against 

PSG and Dreem-algorithm 

against Dreem-manual 

Dreem-manual against 

PSG and Dreem-

algorithm against 

Dreem-manual 

Sensitivity N1 2.00   6.25    .006     .002    .007   .657 

N2 1.27   2.06    .167     -     -   - 

SWS 1.15 22.71 < .001  < .001  < .001   .001 

REM 2.00   6.04    .014 < .001     .154   .101 

Wake 1.44   7.92    .006  < .001     .002   .256 

Specificity N1 2.00   8.96 < .001     .582    .004   .003 

N2 2.00 14.03 < .001  < .001    .003   .229 

SWS 1.36 12.42    .001     .005    .001   .001 

REM 1.31   2.61    .116     -        -     - 

Wake 1.02 26.17 < .001  < .001  < .001 < .001  

The comparison between Dreem-algorithm tested against PSG and Dreem-manual tested against PSG is highlighted as most relevant for my hypotheses.  
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2.3.3.3 Positive and Negative Predictive Values 

Positive and negative predictive values suggest the probability that epochs scored by Dreem-

manual and Dreem-algorithm are in fact correct, i.e. as scored by PSG. Again, I conducted 

three-way repeated measures ANOVAs for each sleep stage and pairwise comparisons 

following significant results. Like specificity, positive predictive values differed between scoring 

method in every sleep stage except REM; meanwhile, negative predictive values differed in 

every sleep stage (Figure 2.7, Table 2.7).  

 

 

 

Figure 2.7 Dreem Positive and Negative Predictive Values per Sleep Stage 

There were significant differences in positive predictive value in N1, N2, SWS, and wake; in particular, 

manual scoring showed significantly greater agreement with PSG than algorithmic scoring (A). In 

contrast, in negative predictive value, algorithmic scoring showed greater agreement in N1, SWS and 

REM (B). Error bars show ± SEM. *p < .050, ** p < .010, *** p < .001.
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Table 2.7 Differences in Predictive Values Between Scoring Methods per Sleep Stage 

  Three-way Repeated Measures ANOVAs Subsequent Pairwise Comparisons (p-values) 

 Sleep 

Stage 

 

df 

 

F 

 

p 

Dreem-algorithm 

against PSG and 

Dreem-manual 

against PSG 

Dreem-algorithm against 

PSG and Dreem-

algorithm against Dreem-

manual 

Dreem-manual against 

PSG and Dreem-

algorithm against 

Dreem-manual 

Positive 

Predictive 

Value 

 

N1 2.00 11.73 < .001     .003        .661    .001  

N2 2.00 12.01 < .001  < .001        .001     .951 

SWS 1.27 12.59 < .001     .013        .002     .007 

REM 1.44   3.66    .057     -        -     - 

Wake 1.11 55.38 < .001     .179      < .001  < .001  

Negative 

Predictive 

Value 

N1 1.06 12.08    .003  < .001        .003     .008  

N2 2.00   5.23    .012     .108       .277 < .001  

SWS 1.15 15.35    .001     .003        .003     .002  

REM 1.42   5.03    .026  < .001        .294    .125 

Wake 1.00 14.63    .002     .164       .002     .002  

The comparison between Dreem-algorithm tested against PSG and Dreem-manual tested against PSG is highlighted as most relevant for my hypotheses. 
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2.3.4 Number of Epochs Scored as Each Sleep Stage  

2.3.4.1 Sleep Epochs 

The number of 30-second epochs scored by PSG, Dreem-algorithm and Dreem-manual 

indicate the time spent in each sleep stage. This is a less stringent measure than temporal 

agreement; for example, if PSG and Dreem-algorithm both scored 200 epochs of REM in one 

night, they would not necessarily overlap. Nevertheless, three-way repeated measures 

ANOVAs per sleep stage indicated differences between the scoring methods. Dreem-

algorithm significantly overestimated N2 and wake, and underestimated N1 and SWS. In 

contrast, Dreem-manual only underestimated N1, and significantly less so than the algorithm 

(Figure 2.8, Table 2.8). 

 

 

Figure 2.8 Mean Number of Epochs Scored Between Recording Methods 

The mean number of epochs scored by PSG, Dreem-algorithm, and Dreem-manual across all 

recordings (n=15). There were significant differences between PSG and Dreem-algorithm in N1, N2, 

SWS and wake. In contrast, there was only a significant difference between PSG and Dreem-manual 

in N1. Error bars show ± SEM. *p < .050, ** p < .010, *** p < .001. 
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Table 2.8 Number of Epoch Differences Between Scoring Methods 

  Three-way Repeated Measures ANOVAs Subsequent Pairwise Comparisons (p-values) 

 Sleep Stage  

df 

 

F 

 

p 

PSG against 

Dreem-algorithm 

PSG against            

Dreem-manual 

Dreem-algorithm against 

Dreem-manual 

Number of 

Epochs  

 

N1 1.12 14.70    .001     .001     .009  < .001  

N2 1.38   4.89    .029     .013     .402    .036 

SWS 2.00 13.65 < .001     .002     .546 < .001  

REM 1.40   3.66    .583     -        -     - 

Wake 1.11 41.58 < .001  < .001     .137 < .001  
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2.3.4.2 Artefact Epochs 

I then investigated artefact scoring across the recording and scoring methods. No artefacts 

were scored by Dreem-algorithm; however, significantly more artefacts were scored per night 

via Dreem-manual scoring compared to PSG, t (14) = -2.37, p = .033 (Figure 2.9A). I then 

explored how correct (i.e. PSG-scored) artefacts were attributed by both scoring methods of 

Dreem data. I found that these epochs were attributed similarly according to manual or 

algorithmic scoring: most likely to be scored as N2 and unlikely to be scored as artefacts 

(Figure 2.9B).  

 

    

Figure 2.9 Artefact Epochs as Scored in PSG and Dreem 

Dreem-manual scoring led to significantly more artefact epochs than PSG while Dreem-algorithm 

scored none; scatter shows individual recordings (A). PSG-scored artefact epochs as scored by Dreem-

algorithm and Dreem-manual, on average per recording, were most often attributed to N2 (B). Error 

bars show ± SEM, significant differences between sleep stages are shown in Table 2.9. * p < .050. 

 

To investigate whether the number of artefact epochs wrongly attributed was significantly 

different between stages, a 6 x 2 repeated measures ANOVA indicated a significant difference 

across sleep stages, F (1.93) = 17.59, p < .001, but no difference between Dreem-algorithm 

and Dreem-manual, F (1) = 1.00, p = .334, and no significant interaction, F (1.21) = 3.62, p = 

.068. Subsequent pairwise comparisons (Table 2.9) suggested that artefact epochs were 

significantly more likely to be scored as N2, SWS, or REM than an artefact, but this did not 

differ between manual and automatic scoring of Dreem.  
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Table 2.9 Pairwise Comparisons Between Dreem-Scored Stages of PSG-Scored Artefact 

Epochs  

Comparison  p-value 

N1 N2 < .001  

SWS < .001  

REM < .001  

Wake    .143 

Artefact    .641 

N2 SWS    .007 

REM    .013 

Wake < .001  

Artefact < .001 

SWS REM    .129 

Wake    .219 

Artefact    .001  

REM Wake    .004 

Artefact < .001 

Wake Artefact    .047 

 

 

2.3.5 A Test of Scoring Method: Personality Traits 

An investigation of how personality traits are associated with sleep was not an aim of this 

study; however, I utilised these data to test the effects of scoring method, i.e. the impact of 

differences in scoring (PSG, Dreem scored algorithmically, Dreem scored manually) on 

associations with potential predictors of sleep architecture. I explored, with no a priori 

hypotheses, associations between sleep as scored by PSG and personality traits. For 

significant associations only, I then investigated the effects of Dreem-manual and Dreem-

algorithm scoring. To limit the number of analyses, I focussed on the commonly used sleep 

metrics of time spent in SWS and REM.  

Each trait was considered independently as a predictor of SWS or REM (scored by PSG) in a 

linear regression model. Where participants contributed sleep recordings on two nights (n=5), 

time in SWS or REM was averaged. I found a strong association between agreeableness and 

time spent in SWS (all other associations were non-significant, these results are shown in 

Appendix D); therefore, I tested for a similar association when relying on Dreem-algorithm and 

Dreem-manual sleep scoring (Figure 2.10). The same analyses were conducted using these 
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SWS values (Table 2.10). Agreeableness was not a significant predictor of SWS when scored 

by Dreem-algorithm or Dreem-manual, although values were closer to PSG with manual 

scoring.  

 

 

Figure 2.10 Agreeableness and SWS as Scored by PSG and Dreem 

Agreeableness was strongly positively associated with minutes spent in SWS as scored by PSG (A). 

However, there was no significant association between agreeableness and SWS when scored by 

Dreem-algorithm (B) or Dreem-manual (C), n = 8.   

 

Table 2.10 Associations Between SWS and Agreeableness  

 

SWS 

Measurement 

   Unstandardised Coefficients 

    R2  F (1,6)    p  B [SE]  95% CI 

PSG     .92  65.95 < .001   2.46 [0.30]  1.72, 3.20 

Dreem-algorithm     .22    1.69    .241  1.10 [0.84] -0.97, 3.16 

Dreem-manual     .37    3.53    .109  1.79 [0.96] -0.54, 4.13 

Linear Regression.  
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2.4 Discussion 

2.4.1 Summary of Results 

In this chapter I aimed to replicate the previous validation of the Dreem Headband against 

PSG, specifically, greater than 80% agreement in sleep stages N2, SWS and REM. I found 

that agreement for algorithmic scoring did not reach the targeted 80% in any sleep stage. 

However, I also investigated manual scoring of Dreem raw data as an alternative to the 

automatic algorithm, finding that manual scoring was significantly closer to PSG across the 

night and reached 80% in SWS and REM (Figures 2.5–2.6). This suggests that manual 

scoring of Dreem data is more accurate than algorithmic scoring, sufficiently so for Dreem to 

be suitable for the measurement of SWS and REM.  

I found a moderate 67% agreement between Dreem-algorithm and PSG across the whole 

night, though there was a marked reduction when taking chance into account, ĸ = 53%. In 

contrast, manual scoring of Dreem yielded a significantly greater 75% agreement with PSG 

and with less reduction when accounting for chance, ĸ = 68%. Neither achieved the 80% 

benchmark for two trained sleep scorers scoring PSG; however, some sleep stages surpassed 

this target when assessed separately. In sensitivity, my primary measure of sleep stage 

agreement, PSG and algorithmic scoring agreement achieved 75%, 59% and 72% in the 

targeted stages N2, SWS and REM respectively. However, I found 80% and 86% agreement 

for manual scoring in stages SWS and REM, with agreement at 78% in N2 approaching this 

level. This suggests that manual scoring of the Dreem Headband is an adequate alternative 

to the more costly and time-consuming gold standard, PSG.  

This was confirmed in other measures of agreement. In the balance between sensitivity and 

specificity, there is generally a trade-off where an overestimation of one sleep stage results in 

a good ability to detect the stage when it occurs, but a correspondingly poorer ability to detect 

when it does not occur and vice versa. However, when both Dreem-algorithm and Dreem-

manual were tested against PSG, there was largely a more favourable balance for Dreem-

manual: both sensitivity and specificity were equal or greater than Dreem-algorithm in sleep 

stages N1, N2, and REM. There were only two instances where algorithmic scoring 

significantly outperformed manual scoring. Sensitivity was greater for wake at 47% compared 

to 16%, and specificity was greater for SWS at 96% compared to 92%. Yet, in both cases 

there was worse performance in the other measure: the algorithm’s better ability to detect the 

presence of wake and absence of SWS was marred by worse performance detecting the 

absence of wake and presence of SWS. This suggests that some feature of slow oscillation 



67 
 
 

detection is particularly problematic for the Dreem headband, discussed in section 2.4.2 and 

2.4.3.  

I also explored positive and negative predictive values to assess whether the epochs scored 

by Dreem were correct, regardless of how many were scored in each stage. Like sensitivity 

and specificity, manual scoring of Dreem mostly resulted in greater correct staging for both 

positive and negative identification. In fact, there was only one instance of better identification 

for Dreem’s algorithm: significantly greater positive predictive value in SWS at 85%, compared 

to 77% for manual scoring. This suggests that an epoch scored as SWS by the algorithm is 

more likely to be real SWS as defined by PSG, while manual scoring yields more false 

positives and so each SWS-scored epoch is less likely to be true SWS. However, since 

manual scoring showed significantly greater sensitivity for SWS compared to the algorithm, 

and this difference was larger at 21%, the algorithm’s superior positive identification is traded 

for a poorer ability to detect all the SWS that occurs throughout the night. Therefore, these 

agreement measures generally suggest that manual scoring offers a better balance of 

detection and probability of all sleep stages. However, algorithmic scoring could be utilised if 

an analysis depended on the SWS epochs identified being true SWS and it was of less 

importance whether all SWS was identified.   

While algorithmic scoring of Dreem offered poor temporal agreement with PSG, time spent in 

each sleep stage is a commonly used metric more forgiving to discrepancies. Considering the 

time investment needed to manually score Dreem raw data rather than rely on the automatic 

scoring algorithm, I also investigated whether algorithmic scoring was sufficient for this simpler 

statistic. I found that the algorithm significantly underestimated time spent in N1 and SWS and 

overestimated time spent in N2 and wake. Apart from N2, these differences were 

considerable: the algorithm scored 43.5 minutes of wake, 38 more than PSG; 3.5 minutes of 

N1, 12 less than PSG; and 67 minutes of SWS, 30 less than PSG. In contrast, manual scoring 

of Dreem underestimated time in N1 by 3.5 minutes, but with no difference in any other sleep 

stage. These results support manual scoring as worthwhile in the evaluation of overnight sleep 

recorded by the Dreem Headband.  

I found inaccurate artefact scoring in both algorithmic and manual scoring of Dreem data. 

There were no artefacts scored by Dreem’s algorithm during the sleep period in this sample, 

yet both PSG and manual scoring yielded a significant number of artefacts. This suggests that 

the algorithm wrongly attributes noise in the data as sleep. I investigated how these artefacts 

were scored by Dreem; surprisingly, algorithmic and manual scoring methods were similar – 

both attributed artefact epochs across the stages but most often to N2. Manual scoring of 

Dreem resulted in significantly more artefacts, but these nearly always disagreed with PSG: 
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of an average 17 artefact epochs per recording as scored by PSG, on average only 1 of these 

was also scored as an artefact by Dreem-manual. This suggests a problematic signal-to-noise 

ratio for Dreem that is not improved by manual scoring. Yet, since time spent in any sleep 

stage (except N1) did not significantly differ between manual scoring and PSG, these wrongly 

classified epochs do not appear to adversely affect the efficacy of most manual scoring.  

Finally, I utilised the personality data for this sample to test how different scoring methods 

affected external associations. This was exploratory and the sample size was low; 

nevertheless, I found a clear association between PSG-measured SWS and agreeableness 

which was still significant if corrected for multiple (10) comparisons. When exploring whether 

Dreem scoring could detect the same effect, Dreem-manual was more comparable to PSG 

than Dreem-algorithm but neither showed the association to be significant. This suggests that 

the 80% SWS agreement between Dreem-manual and PSG was insufficient, albeit with the 

reduced power of a very small sample. It is therefore likely that a greater sample size (i.e. 

more statistical power) is required with Dreem to detect effects that are seen more easily with 

PSG. 

 

2.4.2 Dreem’s Scoring Algorithm: Distinguishing Hardware and Software 

The Dreem Headband uses an in-house scoring algorithm to classify sleep stages. This 

technology might rival expert visual scoring. There are many isolated automatic scoring 

algorithms that claim to accurately sleep score PSG data, though like wearables, with mixed 

success. For example, one algorithm (Tautan et al., 2019) was tested against the 

Massachusetts General Hospital dataset of 994 participants and reported agreement of 72%. 

Stronger results may be achieved using deep learning methods. For example, SleepEEGNet 

and Deep Sleep Net have been reported to achieve ĸ = 79% and 80% of 62 and 197 subjects 

respectively (Supratak et al., 2017; Mousavi et al., 2019). Yet, despite these promising 

indications, automatic sleep scoring is yet to replace expert scoring in mainstream sleep 

literature. To replace visual scoring, confidence in automatic algorithms may need to be built 

up over time.  

When comparing algorithmic scoring of the Dreem Headband to PSG, variance originates 

from the difference in software: an automatic scoring algorithm compared to manual sleep 

scoring. However, there are also differences in hardware: the headband records from dry 

electrodes at frontal and occipital regions, omitting several features of PSG such as central 

EEG and eye movement. While these data do not provide a conclusive measurement of 

differences between hardware and software, this would require Dreem’s automatic algorithm 
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(not openly available) to be applied to the PSG data. I have, nevertheless, estimated these 

effects by comparing agreement between PSG, Dreem scored manually and Dreem scored 

algorithmically.   

Sleep is highly heterogenous and sleep scoring relies on subjective judgements, hence why 

the gold standard, PSG, accepts agreement between two scorings of the same night as low 

as 80%. We cannot, therefore, assume that the error between Dreem-algorithm and PSG is 

all due to differences in hardware or software, some is undoubtedly due to the error inherent 

in sleep scoring. In this study I utilised all comparisons between PSG, Dreem-algorithm and 

Dreem-manual and each should have a similar level of this ‘random’ error. Therefore, 

comparing the agreement of two scoring methods when they differ according to hardware or 

software can approximate the level of error caused by each. The scoring methods are 

reiterated below (with differences of hardware and/or software) and average Kappa values as 

found in this sample: 

1. Dreem-algorithm -> PSG (hardware + software), ĸ = 53% 

2. Dreem-manual -> PSG (hardware), ĸ = 68% 

3. Dreem-algorithm -> Dreem-manual (software), ĸ = 58% 

My primary aim in this study was to test Dreem-algorithm against PSG (comparison 1). Here, 

some of the variance will be due to hardware, some due to software (scoring method), and 

the rest due to random error, as would occur between two scorers of PSG (the same hardware 

and scoring method). To estimate the effects of software I tested comparison 2 against 

comparison 1: greater agreement for manual scoring against PSG (ĸ = 68%) indicates how 

much better it is compared to the algorithm against PSG (ĸ = 53%), this difference was around 

15%. Similarly, to estimate the effects of hardware I tested comparison 3 against comparison 

1: greater agreement for Dreem-algorithm against Dreem-manual (ĸ = 58%) indicates how 

much better it is compared to the algorithm against PSG (ĸ = 53%), this difference was around 

5%. 

I focussed on differences in software in this study, evaluating the efficacy of manual scoring 

of Dreem raw data compared to algorithmic scoring. Yet, my third comparison illustrates that 

the Dreem Headband itself contributes some error. Testing comparison 3 against comparison 

1 between sleep stages, there were no significant differences in N2, REM and wake 

suggesting no effect of hardware. However, in N1 and SWS, agreement was 20% and 30% 

greater in comparison 3 respectively when Dreem-algorithm was compared to Dreem-manual. 

This is especially prominent in the 89% agreement between Dreem-algorithm and Dreem-

manual for SWS. This suggests that the appearance of N1 and especially SWS recorded by 
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the Dreem Headband differs from that recorded by PSG, and that this is a source of error for 

both the automatic algorithm and manual scoring. 

In summary, I found a small effect of hardware on the differences between Dreem-algorithm 

and PSG across the night of 5%, compared to a 15% effect of scoring method. However, in 

N1 and SWS, hardware differences have a significant effect and so are likely to reduce 

accuracy in these stages. 

 

2.4.3 Is Dreem a Promising Sleep Wearable? 

Compared to previous validation of other devices, a total agreement of 67% between 

automatic scoring of Dreem and PSG is encouraging. Against arguably the next most 

promising device, the Oura ring, Dreem performed better in light sleep at 72% compared to 

65%, deep sleep at 59% compared to 51%, and REM at 75% compared to 61%. However, my 

results do not match those reported by the previous Dreem validation study (Arnal et al., 2020). 

While the previous Dreem validation reported agreement at 74–85% for all stages except N1, 

I found lower agreement in every stage at 59–75%. Although Arnal et al. reported poor 

agreement for N1 at 48%, my results are again lower at 8%. One contribution to this difference 

could be the way agreement was calculated across the sample. In the previous validation, 

epochs were summed across all nights before agreement statistics were calculated, whereas 

I calculated agreement for each night individually and then averaged across nights. This may 

have meant that poorer nights of sleep, which tend to be shorter, had a greater impact on 

average agreements.  

That being said, individual agreement statistics per night captured the variation between 

recordings. Figure 2.5 shows greater scatter between agreement of Dreem-algorithm and 

PSG than between Dreem-manual and PSG. Furthermore, every night in Dreem-manual 

achieved ĸ > 50% and all but three achieved at least moderate agreement at ĸ ≥ 60% 

(McHugh, 2012). In contrast, two nights for Dreem-algorithm showed minimal agreement at ĸ 

< 30% and the majority (10/15) fell below 60%. This gives an important indication of variability 

between recordings that was not present in the previous validation. 

I found Dreem’s algorithm to have surprisingly low agreement with PSG in SWS at 59%, 

considering that a primary feature of the headband is the optimisation of slow oscillations and 

Arnal et al. (2020) reported SWS agreement at 83%. One factor behind this discrepancy could 

be sample age. The previous validation recruited a wider age range of 23–50 years (mean=35) 

than my study aged 20–37 years (mean=25). Previous literature suggests a marked decrease 

in EEG power below 10 Hz and reduced SWS duration with age (Landolt & Borbély, 2001; 
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Dijk et al., 2010). The effects of age should be investigated in larger samples to clarify this 

issue.  

Alternatively, agreement in SWS has been poorer than N2 and REM in previous literature, as 

discussed in section 2.1 (Griessenberger et al., 2013; Zambotti et al., 2019), suggesting that 

wearable devices in general may struggle to accurately score this stage. There was also high 

variability (SD = 21%) in SWS scoring agreement among the consensus of five sleep scorers 

in the previous validation. This could be impacted by the use of dry electrodes for slow 

frequencies. A recent summary of dry electrodes suggested they were equivalent to traditional 

wet electrodes in some circumstances (Lopez-Gordo et al., 2014); however, a substantial 

increase in noise has been reported elsewhere (Bertelsen et al., 2019; Mathewson et al., 

2017). 

 

2.4.4 Strengths and Limitations 

To my knowledge, this study provides the first evidence that Dreem data can (and should) be 

manually sleep scored. This provides support for the use of the Dreem Headband and perhaps 

wearables in general across sleep science. My application of manual AASM sleep scoring to 

the Dreem raw data is novel to the Dreem Headband but has been previously reported in the 

Philips SmartSleep Deep Sleep Headband (Garcia-Molina et al., 2018). While this is not 

analogous to Dreem manual scoring considering the different devices, it provides a precedent 

for this technique.    

However, this study is limited by the size and homogeneity of the sample. Due to the variation 

expected between nights of sleep it is advisable to have as large a sample as possible, 

although the time and resources required for overnight PSG studies make this challenging. 

Most previous validation studies use more than 15 nights and therefore these results should 

be consolidated with more data. A common issue among sleep studies, this sample also 

consisted of only young, healthy participants. To evaluate the validity of the Dreem Headband 

for a range of uses, it should be assessed over a more representative sample.  

In addition, the original study design recruited participants for two consecutive nights with a 

sample size unlikely to facilitate accounting for either night or participant effects. A ‘first night 

effect’, where a lack of comfort and familiarity promote a poorer night’s sleep in a new 

environment, is well established in sleep literature (Byun et al., 2019; Toussaint et al., 1995). 

I found no significant night effect in this study, though the lack of power (only six participants 

contributed two nights of data) means this result is somewhat unreliable. In a future study, it 

would be informative to evaluate how the headband performs against PSG in the first night 
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effect. This would also enable an investigation into participant effects: sleep is highly 

individualised which could affect the accuracy of the Dreem Headband, for example, it may 

perform better in certain demographic groups.  

Finally, analyses in this study were derived from my sleep scoring. This enabled a consistent 

comparison between Dreem and PSG, yet there is a distinct advantage to a consensus of 

scorers, as in Arnal et al. (2020), because of the variability expected in this metric. To check 

scoring accuracy, two of my PSG recordings were scored by another independent scorer. 

Agreement was high for N2, SWS and REM at 89–95%, but low for N1 and wake at 32% and 

9%. Previously, low agreement has been reported in N1 (Stepnowsky et al., 2013). Also, in 

only two recordings, agreement may have been strongly affected by a few difficult epochs. 

Both myself and Dr Purple agreed similarly strongly with the algorithm in the best night (ĸ = 

71% and 79%) and poorly with the algorithm in the worst night (ĸ = 29% and 28%), suggesting 

that scoring error did not strongly contribute to the total agreement across the sample. 

However, additional scorers would add weight to these findings.   

 

2.4.5 Conclusions and Future Directions 

This study validates the Dreem Headband against the gold standard of sleep scoring, PSG, 

testing the findings of a previous validation study by the manufacturers. I found lower 

agreement between PSG and Dreem’s algorithm in every sleep stage; critically, this fell below 

the 80% benchmark that two scorers should achieve in PSG. It is not immediately clear what 

drove these differences, so future studies should aim to test larger and less homogenous 

samples. Nevertheless, my results capture the variation between nights not reported in the 

previous study.  

Looking beyond the previous validation, I also investigated manual scoring of the Dreem raw 

data. To my knowledge, this is novel to the Dreem Headband. I found that manual scoring of 

Dreem yielded higher agreement with PSG (compared to Dreem’s algorithm) in N1, SWS, and 

REM. Agreement was high enough – greater than 80% – that SWS and REM duration as 

recorded by Dreem should be suitable for sleep analyses. Although agreement in N1 and 

wake was poor, I found 78% agreement of N2; therefore, Dreem may in fact be suitable for 

the analysis of most overnight sleep. Future work should aim to replicate this finding, 

corroborating visual scoring of Dreem raw data among a consensus of sleep scorers. I explore 

these EEG data further in Chapter 4 with spectral power and event detection analyses.  
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Chapter 3 

Associations Between Sleep and Fear Conditioned 

Responses  

 

In this chapter I present a novel fear conditioning experiment to test fear acquisition, overnight 

consolidation, and extinction in healthy people. I utilised the Dreem Headband – a wearable 

device which I validated for sleep measurement in Chapter 2, and employed skin conductance, 

shock expectancy ratings, and heart rate variability to measure fear responses. The results 

indicated that SWS was associated with overnight fear consolidation while REM sleep was 

associated with extinction learning. This suggests dissociable roles for these stages in the 

sleep-dependent processing of fear conditioned memories. 

 

3.1 Introduction 

The origin of documented fear conditioning is often traced back to the infamous case of Little 

Albert (Watson & Rayner, 1920). Albert was an 11-month-old child who was taught to fear a 

white rat. Every time Albert was given the rat, he was deliberately frightened with a loud sound. 

Soon, Albert began to show signs of distress at the sight of the rat, even before the sound 

occurred. In short, Albert had acquired a learned fear. The rat itself had never frightened 

Albert, but its presence had come to predict a frightening event (the loud sound) and 

eventually, the rat alone started to elicit a similar fear. In additional tests, this conditioned 

response showed generalisation to other items that shared characteristics with the rat, such 
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as those that were white. The fear was also long-lasting, evident even a month after the first 

encounter. Although the methods are not reproducible today, this study informed a whole 

literature on fear learning. Much of this research has replicated the longevity and 

generalisation of fear that Watson and Rayner illustrated with Little Albert a hundred years 

ago.  

Conditioning is a simple model of behaviour which relies on a learned relationship between 

two stimuli. It is not specific to fear. For example, at a similar time, physiologist Ivan Pavlov 

was awarded the 1904 Nobel Prize for his work on digestion, which incidentally allowed him 

to observe conditioning behaviour (Clark, 2004). When Pavlov noticed that his dogs salivated 

at the sight of his equipment, he assumed this was because they were correctly anticipating 

the arrival of food. In subsequent famous experiments, he tested this effect by ringing a bell 

before feeding. When the dogs started to salivate at the sound of the bell it demonstrated that 

they were learning through association, exhibiting behaviour based on an expected outcome.  

Conditioning is generally thought to require some level of conscious awareness, especially 

where it results in action (Greenwald & De Houwer, 2017; Skora et al., 2021). In these cases, 

the unconditioned stimulus (US) inherently produces a measurable response, e.g. a loud 

sound frightens Albert or food stimulates the dogs’ salivation. The conditioned stimulus (CS) 

is present before the US, e.g. the white rat or the bell, and acquires its expectational properties 

via associative learning. This can happen over repeated experiences, as in Watson and 

Pavlov’s controlled experiments; however, sometimes just one salient event can cause a 

lasting effect, for example, after trauma.  

Fear learning has a clear evolutionary benefit as an adaptive response to dangerous 

situations. Problems may arise, however, when the fear response generalises to other stimuli 

or does not fade with time. It is not clear what happened to Little Albert after Watson’s 

experiment, but whether he suffered a longer-term fear of rats is likely to have depended on 

his individual traits and tendencies. For example, fear is normal after trauma, but in some 

people an abnormal continuation of fear can lead to the development of a condition like PTSD. 

Why some people and not others develop such afflictions is a prime question facing this field 

of research. 

Sleep supports the processing of emotional memories, as discussed in Chapter 1, and is 

therefore a key facet in understanding how maladaptive fear arises and persists. In this 

chapter, I investigate how sleep architecture relates to fear responses in young, healthy 

people, developing and testing a novel fear conditioning design to explore sleep-dependent 

fear memory consolidation. 
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3.1.1 REM Sleep and Fear Conditioned Memories 

As introduced in Chapter 1, sleep has been associated with memory consolidation (Born et 

al., 2006; Marshall & Born, 2007; Spencer et al., 2017), while emotional processing has been 

most strongly linked to REM sleep (van der Helm & Walker, 2009; van der Helm et al., 2011; 

Krause et al., 2017). This is mirrored in the fear conditioning literature, where there is 

convergent evidence for the role of REM in the consolidation of fear conditioned responses.  

Most often, the simple metric of REM duration has been correlated with fear responses. In one 

study, healthy participants (n=40, all male, mean age 25 years) were conditioned to two CS+ 

(paired with an aversive shock) and one CS- (Menz et al., 2013). Immediate extinction was 

carried out for one CS+, leaving the other unextinguished. This was followed by either PSG-

recorded sleep or overnight sleep deprivation in the laboratory and recall was tested after an 

additional night of recovery sleep. Sleep, compared to wake, led to increased discrimination 

between the unextinguished CS+ and CS- in both expectancy ratings and SCRs. This 

consolidation of fear memory was correlated with time spent in REM sleep. In particular, lower 

fear discrimination after sleep deprivation was driven by greater responses to the CS-. This 

could be explained by fear generalisation, which may reflect a common real-world maladaptive 

response after a fearful experience. Participants who slept showed a more adaptive response 

in lower fear to the safe CS-, suggesting that REM sleep promotes an adaptive (i.e. increased 

discrimination) consolidation of fear learning. 

In a later study, Menz et al. extended these findings by directly comparing SWS and REM 

sleep. After the same conditioning and immediate extinction task, another 40 healthy male 

participants (mean age 26 years) slept for three hours of either early SWS-dominant or late 

REM-dominant sleep (Menz et al., 2016). These results were combined with those of total 

sleep deprivation from the previous study. REM-rich, but not SWS-rich sleep, led to improved 

discrimination between fear and safe stimuli. In addition, both REM-deprived groups (SWS-

rich sleep and no sleep) showed greater SCR fear responses to the extinguished CS+ relative 

to the CS-, paralleled by a discriminatory increase of activation in the amygdala and 

ventromedial prefrontal cortex (vmPFC). This suggests that a lack of REM sleep leads to 

greater fear to both safe stimuli and previously extinguished fear stimuli. Again, this could be 

explained by fear generalisation.  

These findings complement a prior nap study. After a 90-minute daytime nap (n=16, all male, 

mean age 25 years), the participants (n=7) who reached REM sleep after fear acquisition and 

immediate extinction showed a lack of significant CS discrimination, indicating greater 

consolidation of extinction (Spoormaker et al., 2010). In contrast, those who had no REM sleep 
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still showed a significantly higher SCR fear response to the CS+, as well as lower activation 

of the vmPFC and lingual gyrus to the extinguished CS. REM duration did not predict changes 

in CS discrimination, but this could be because participants who did reach REM only had 15 

minutes on average. 

Together, these results indicate a role for REM in extinction memory consolidation and 

suggest this effect is not limited to overnight sleep. However, the MRI results are inconsistent. 

Spoormaker et al. (2010) found stronger activation in the vmPFC to the extinguished CS+ in 

the REM group, whereas Menz et al. (2016) found the same in REM deprived participants. It 

has been suggested that the vmPFC acts as a moderator and inhibitor of the amygdala in 

emotion regulation (Andrewes & Jenkins, 2019); therefore, if REM promotes adaptive 

responses (i.e. discrimination between the CS+ and CS-), the results of Menz et al. may align 

more closely with prior understanding of this region. The results of Spoormaker et al. may be 

due to the low sample size and the REM group reporting significantly greater difficulty in 

getting to sleep. In addition, REM deprivation over a whole night is not equivalent to a naturally 

occurring lack of REM in a 90-minute daytime nap.  

Across these studies, the gender imbalance may also have affected the results. Removing 

previously reported effects of sex and menstrual cycle on fear conditioning and sleep (Baran 

et al., 2009; Glover et al., 2012) by only recruiting male participants probably improved study 

power. However, especially since fear-based conditions such as anxiety and PTSD are more 

common in women (Li & Graham, 2017; McLean & Anderson, 2009), the implications for the 

general population are somewhat limited. 

Nevertheless, additional properties of REM sleep have been associated with overnight 

changes in men and women. Participants (n=42, 18 female, mean age 24 years) had baseline 

sleep, fear acquisition on day 1, post-conditioning overnight sleep, and then a recall test and 

extinction on day 2 (Marshall et al., 2014). REM sleep was assessed by REM duration as a 

percentage of total sleep time, REM efficiency (the proportion of epochs in each episode of 

REM scored as REM) and REM onset latency. These REM sleep factors in post-conditioning 

sleep were together associated with stronger CS discrimination at recall, measured by fear-

potentiated startle. These results suggest that REM metrics other than duration affect 

emotional processing and consolidation. However, there was no association between REM 

and post-recall extinction on day 2 indicating that preceding sleep does not affect subsequent 

extinction, at least in startle response.  

Furthermore, overnight amygdala adaptation has been positively associated with REM sleep 

duration, but only if REM was undisturbed (Wassing et al., 2019). Participants (n=29, 15 
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female, aged 18–70 years) were exposed to two odour cues, one paired with their own out of 

tune singing (CS+) and the other paired with someone else’s singing (CS-). This unusual 

design may have elicited self-consciousness rather than fear, but still yielded activation of the 

amygdala prior to sleep. After a full night’s recorded sleep, participants were tested with the 

same stimuli. The extent of amygdala adaptation – overnight change in bilateral amygdala 

BOLD response – was significantly related to REM sleep. Specifically, fragmented or ‘restless’ 

REM (the number of other epochs within REM episodes, as well as cortical arousals of 3–15 

seconds in REM epochs) was associated with a disruption in emotional consolidation. 

Additionally, the beneficial effect of REM for emotional processing was enhanced by time 

spent in ‘transition to REM’ – spindle rich N2 sleep. This suggests that good quality REM sleep 

supports emotional processing and provides evidence for sleep stages working together 

overnight. 

Wassing et al. (2019) also tested a subset (n=29, 14 female, mean age 41 years) of 

participants who were exposed to CS odour cues during REM sleep (13=cued, 16=control). 

Targeted memory reactivation (TMR), the presentation of sounds or odours during sleep to 

elicit an unconscious reaction and a reactivation of the memory, has been previously shown 

to enhance effects of sleep such as improved memory (Hu et al., 2020). Wassing et al. found 

that TMR enhanced both the beneficial effect of REM duration and the damaging effect of 

REM restlessness on amygdala adaptation. This provides evidence of a causal relationship 

between emotional processing and REM sleep. However, this is limited by the wide sample 

age of 18–70 years. Twelve participants also met the clinical criteria for insomnia disorder, 

whereas most sleep studies limit their sample to young healthy participants. This study is more 

representative of the general population, but the results may not accurately reflect healthy 

sleep processes.  

REM sleep has also been associated with lasting memory effects over longer periods of time. 

For example, REM duration has been associated with a short-term increase in emotion but 

long-term reduction. As mentioned in section 1.1.4, participants who viewed negative images 

before and after a daytime nap showed a positive association between overnight REM 

duration and aversiveness ratings the same day, but a reduced intensity, number, and duration 

of intrusive memories of the images three days later (Werner et al., 2020). However, there is 

no research to my knowledge on longer-term effects of post-conditioning REM on fear 

conditioned responses. This should therefore be investigated.  
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3.1.2 Is Fear Conditioned Memory Processing Confined to REM Sleep? 

Fewer studies provide evidence for the role of non-REM in sleep-dependent emotional 

processing, which could suggest a small or inconsistent role. In fear conditioning, evidence 

appears to be confined to TMR studies suggesting that non-REM effects are difficult to detect 

within the conventions of typical experiments and are more specifically related to reactivation.  

TMR during SWS has been reported to enhance extinction of the fear conditioned response. 

Participants (n=15, 8 female, mean age 25 years) underwent olfactory fear conditioning of four 

neutral faces, two paired with a shock, while two neutral contextual odours were paired with 

one CS+ and one CS- each (Hauner et al., 2013). During a subsequent daytime nap, one 

odour was presented during SWS and responses were tested after sleep. SCR reduction pre- 

to post-sleep was greater for the reactivated CS+ and CS- and the magnitude of SCR 

reduction for the reactivated CS+ (relative to the non-reactivated CS+) was correlated with the 

duration of exposure during sleep. A follow-up experiment with odour re-exposure during wake 

confirmed that the effect was specific to sleep. However, while SCR reduction was associated 

with odour re-exposure time, this coincided with SWS duration and so either could be driving 

the effect. It may also have been expected that duration of SWS would predict change in SCR 

in the non-targeted stimuli, though the limited sleep obtained in the nap could have been 

insufficient for such an effect to be observed in a low sample size (n=15). It also would have 

been informative to explore reactivation in REM.  

Similar results have been reported in rodents. In one study, mice (n=16, all male, 8–10 weeks 

old) were conditioned to a CS+ odour with a footshock and CS- odour without (Rolls et al., 

2013). After 24 hours, they were exposed to the CS+ odour during 2 hours of non-REM sleep 

and recall was tested with another presentation of the CS+ odour after another 24 hours. 

Freezing behaviour was significantly reduced in mice who had been exposed to the odour 

during sleep compared to those who were exposed to the CS- odour. This suggests that 

exposure of the CS+ itself during non-REM also creates an extinction of the learned fear 

response. However, another reactivation study has reported evidence in the opposite 

direction. Mice (total n=29, all male, 8–13 weeks old) were conditioned to an auditory CS+ 

with a time delay before a shock (Purple et al., 2017). The tone was then presented during 

subsequent REM or non-REM sleep. Exposure during non-REM only led to a greater fear 

response to the CS+ after sleep, compared to a control group who heard white noise. This 

conflicting result could be explained by the delay between tone and shock reflecting different 

learning processes. On the other hand, a decrease in fear in the previous studies may be 

specific to odour learning.  
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In summary, TMR provides causal evidence that cued CS reactivation during non-REM sleep 

can affect fear consolidation. However, it is unclear whether it promotes an extinction or a 

strengthening of the learned fear response. This could be dependent on methodological detail 

such as the use of odour. Therefore, more research is required, especially in people, to 

determine whether this occurs across a greater range of fear conditioning designs.  

 

3.1.3 Aims 

Previous literature suggests that sleep supports the consolidation and extinction of fear. Both 

have been consistently associated with REM sleep, and there is some evidence for 

contributions by non-REM; however, there is little evidence for these stages working in 

concert. Consequently, I aimed to replicate findings of a positive association between REM 

sleep and overnight fear consolidation while investigating a role for the non-REM sleep 

recorded over the same night.  

Secondly, while there is evidence that REM supports extinction consolidation when extinction 

occurs before sleep, there is less evidence when extinction occurs after sleep, especially 

across a range of fear measures. In a real-life situation, extinction is unlikely to occur the same 

day as fear learning. Therefore, this warrants exploration. I aimed to investigate the 

relationship between sleep (REM and non-REM) and subsequent post-sleep extinction 

learning.  

Many studies of classic memory tasks (vocabulary learning, paired-associates task, etc.) have 

shown that preferential encoding continues to have an effect a week later, for example when 

information is rehearsed before or after exercise, it is recalled better than control information 

both the next day and seven days later (McNerney & Radvansky, 2015). There is also 

indication that emotional memory in particular could change over the days following encoding 

(Werner et al., 2020). However, there is also little long-term investigation into fear conditioned 

and extinguished responses, I therefore also tested extinction learning after seven days.  

Building on the findings reported in Chapter 2, I used wearable technology – the Dreem 

Headband – which I found to be suitable for the estimation of SWS and REM when scored 

manually. This provides further support for the value of wearable technology in sleep science 

and allowed me to test a greater sample size. For this reason, I confined my assessment of 

non-REM sleep to SWS only. In addition, considering that previous studies using targeted 

memory reactivation have presented convincing evidence, I aimed to design a paradigm 

amenable for future use with TMR by testing two CS+ and two CS-.  
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3.1.4 Hypotheses 

1. REM sleep duration in a full night of post-conditioning sleep will be associated with 

greater consolidation of discriminative unextinguished fear responses the next day. 

2. REM sleep duration in a full night of post-conditioning sleep will be associated with 

greater fear extinction (responses towards zero), both the next day and after seven 

days.  

Non-REM sleep may also play a role in fear conditioning and extinction learning, but there is 

scant evidence outside TMR designs. I therefore additionally explored associative 

relationships for SWS duration across these same hypotheses. Considering the findings of 

Chapter 2 regarding the accuracy of the Dreem Headband, I confined my analyses of non-

REM sleep to SWS. 
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3.2 Methods 

3.2.1 Participants  

I recruited 38 healthy people (28 female, 10 male) aged 19–30 years (mean = 23.00) from 

Cardiff University and the surrounding area through posters and online advertisements. I 

initially recruited 20 participants (18 female, 2 male) aged 19–30 years (mean = 21.95), this 

formed sample 1. Approximately six months later, I recruited a further 18 participants (10 

female, 8 male) aged 20–30 years (mean = 24.17) for the same experiment with an additional 

session a week later, this formed sample 2.  

All participants reported a negative history of mental health, sleep or neurological disorder, 

current medication, and recent sleep disturbance. All were non-smokers, had a regular 

sleep/wake cycle, reported their ability to sleep as good or excellent, and agreed to abstain 

from caffeine, alcohol, naps, and extreme exercise for 24 hours prior to each session.  

 

3.2.2 Materials 

3.2.2.1 Screening 

I created an online questionnaire (Google Forms: Free Online Surveys, 2020) to screen 

participants’ suitability for the experiment. Because of the stimuli used, this included familiarity 

with the languages, Korean, Hungarian, Hebrew, and Turkish. The full questionnaire and 

exclusionary criteria are shown in Appendix A.  

 

3.2.2.2 Questionnaires 

I measured state and trait anxiety with the State Trait Anxiety Inventory (Spielberger, 1983) 

and prospective and inhibitory anxiety with the 12-item Intolerance of Uncertainty Scale 

(Carleton et al., 2007). Because of the risk that the Dreem Headband would disrupt sleep, I 

also tested participants for sleepiness/alertness at the beginning of each session with the 

Stanford Sleepiness Scale (Hoddes et al., 1973).  

 

3.2.2.3 A Novel Fear Conditioning and Extinction Design 

I designed a novel fear conditioning task for fear (CS+) and safe (CS-) learning, and a 

complementary extinction/reinstatement task to extinguish learned fear responses and then 
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test reinstatement through a reminder of the aversive stimulus. The tasks were written and 

presented using Matlab R2017a and the Cogent 2000 toolbox (Cogent 2000, 2018). 

Conditioning and extinction did not require user input. However, both tasks incorporated 

subjective shock expectancy ratings every eight trials, waiting for a correct keypress each 

time. This served to maintain participants’ attention as well as record their changing 

judgements of shock pairings.  

 

3.2.2.3.1 Stimuli 

I sourced four images from The Novel Object and Unusual Name Database. This resource 

offers images of distinct and neutral complex objects for research. When 32 participants (20 

female) were asked to describe each image, language analysis indicated that the objects were 

most likely to be described by their colours (Horst & Hout, 2016). I therefore selected four 

greyscale images; all are photographs of real but unusual objects (288 x 288 resolution) on a 

blank background (Figure 3.1).  

 

 

Figure 3.1 Experimental Stimuli  

Greyscale images of novel, neutral objects. All participants saw these four images.  
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I sourced four spoken word recordings from forvo.com – a pronunciation website. I chose a 

single word spoken in Turkish (Karaciğer), Hungarian (Mennydörgés), Hebrew ( טיםתכשי ), and 

Korean (당신을 사랑해요). These were selected for good recording quality and comparable length 

(all were 3–4 syllables). Since participants were screened to be unfamiliar with these 

languages, meaning was not considered, but all were sourced from common words. Each was 

spoken by a different female speaker and had an approximate 1.5-second length. A slight 

pause at the beginning and end of the sound gave a more realistic experience of hearing an 

object be named for a total sound length of two seconds. These words were randomly matched 

to the images to form four unfamiliar image/sound pairs designed to elicit a neutral response. 

Stimuli were not rated prior to conditioning; however, to mitigate any unwanted effects (e.g. 

some image/sound pairs being perceived as more or less threatening), assignment of CS+ 

and CS- to each image/sound was counterbalanced across the sample. 

I chose electrical stimulation as the most suitable aversive unconditioned stimulus for this 

experiment; it is commonly used in conditioning across animal and human studies, offers 

precise timing, and intensity is easily calibrated and measured. Each ‘shock’ consisted of 30 

stimulations at 200 volts, each lasting 500 µs and separated by a 1 ms interval (total 45 ms). 

The shock was generated with a Digitimer DS7A constant current stimulator for 

transcutaneous stimulation of nerve and muscle tissue and delivered through BioPac 

disposable electrodes placed on the left index finger. Intensity was individually calibrated to 

an aversive level for each participant by varying the milliamperes (mA) of the shock prior to 

the conditioning task (discussed further in section 3.2.3).  

 

3.2.2.3.2 Fear Conditioning Task 

The fear conditioning task was presented on a desktop computer in an individual testing room 

and lasted approximately 15–20 minutes, while sounds were delivered through noise-

cancelling headphones. The task started with instructions asking participants to pay attention 

to the pattern of images, sounds and shocks and explaining how to make shock expectancy 

ratings (shown in Appendix C). Participants used a keypress to start the task once they were 

alone.  

In each trial, the image/sound pair appeared for two seconds, centred on a black background. 

Each CS was presented 16 times (total 64 trials), and each trial was separated by a jittered 

inter-stimulus interval of 8–10 seconds. During these intervals a white fixation cross was 

centred on a black background (see Figure 3.2). For both CS+, the shock co-terminated with 

image/sound presentation on 9 out of 16 trials. The shock was never paired with the CS-. I 
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used partial reinforcement (the shock was not paired with the CS+ every time) because it is 

common among human conditioning studies and promotes less rapid extinction (Grégoire & 

Greening, 2020; Kitamura et al., 2020; Kredlow et al., 2018). 

In the task structure, I aimed to ensure an even distribution of CS presentation while giving 

the perception of randomness so that the next trial was not predictable (Figure 3.2). To 

achieve this, trial order was determined in an underlying block format: every eight trials 

contained each CS presented twice, where one of each CS+ trial was reinforced (whether the 

first or second time was random). Order within each block was random, and the first four and 

last four trials were controlled to ensure that learning started and ended at the same time: all 

participants saw each CS in the order [CS-, CS+, CS-, CS+], both CS+ were reinforced, and 

which CS+ and CS- came first was counterbalanced. 

For subjective ratings at the end of each block, each CS appeared sequentially in a random 

order (without a shock), separated by a 2-second fixation cross. On screen instructions 

presented alongside the image/sound asked participants: ‘When you see this image, how 

often do you expect to receive a shock? 1 = never … 5 = always’. The task waited indefinitely 

for a correct keypress (1, 2, 3, 4 or 5). If an invalid key or multiple keys were detected, 

participants were shown an error message: ‘Sorry, that was not a single number between 1 

and 5. Please press a number between 1 and 5 to rate the image/sound now’. The image 

remained on the screen but the sound was not repeated.  
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Figure 3.2 Fear Conditioning Task Structure 

Participants experienced 64 conditioning trials plus 28 expectancy ratings. The underlying structure of 

the task consisted of seven blocks of eight trials (two of each CS, one of each CS+ paired with the 

shock) and then four expectancy ratings (one of each CS). Trials were separated by a variable interval 

between eight and ten seconds. Expectancy ratings were separated by a shorter two-second interval. 

This block structure was repeated seven times for the middle 56 trials. It was preceded and followed by 

the first and last four trials: one of each CS where both CS+ were paired with the shock.  

 

3.2.2.3.3 Fear Extinction and Reinstatement Task 

The extinction and reinstatement task consisted of three sections: extinction, reinstatement, 

and post-reinstatement. Participants were unaware of this and were told they were completing 

the same task as the previous day with the only contingency that ‘the pattern of images, 

sounds, and shocks may have changed’. Like conditioning, the task took approximately 15–

20 minutes and instructions were identical. 

Extinction contained 32 trials structured in the same way as conditioning: blocks of eight trials 

followed by an additional four expectancy ratings. Unbeknownst to participants, the shock 

ceased to be paired with any of the stimuli. The first four trials were not controlled because 

there was no reinforcement. After 32 trials, participants received four un-signalled shocks 

(unpaired with any image/sound) with a variable interval of 10–20 seconds at the same 

intensity chosen the previous day. Post-reinstatement consisted of another 32 trials without 
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shocks, plus expectancy ratings, in the same structure as before. There were no warnings, 

instructions, or breaks between these phases; all trials were presented continuously.  

 

3.2.2.4 Physiological Recording 

I chose skin conductance responses (SCRs) as my main measure of fear. This is commonly 

used in the fear conditioning literature as a marker of sympathetic nervous system activity and 

is responsive to aversive electrical stimulation (Jones et al., 2017; Leuchs et al., 2019; Pineda 

& Al-Rabadi, 2016). I also utilised heart rate variability as an exploratory secondary measure. 

This has been rarely explored in fear conditioning, and even so, only in relation to a resting 

baseline (Pappens et al., 2014; Sevenster et al., 2015; Wendt et al., 2015). In contrast, I tested 

heart rate variability on a trial-by-trial basis. 

There are several metrics under the umbrella of heart rate variability. I chose to use the root 

mean sum of squared differences (RMSSD) as it has been reported the most suitable for short 

time frames (Wang & Huang, 2012). Although these short time frames generally refer to 

minutes rather than seconds, more recently, 10-second trials have been reported as highly 

accurate (r = .85-.86) against standard 5-minute recordings for RMSSD (Tegegne et al., 2019). 

In addition, while heart rate is mediated by both the sympathetic and parasympathetic 

systems, RMSSD reflects mainly parasympathetic components (Mackersie & Calderon-

Moultrie, 2016), providing a measure complementary to SCRs. 

Skin conductance and heart rate were recorded using BrainProducts EXG AUX amp and 

electrodes (BrainProducts, Germany), sampled at 5000 Hz. For both, skin was prepared with 

a mild abrasive (NuPrep Skin Prep Gel) to improve recording quality. Silver–silver chloride 

electrodes were placed on the skin with conductive paste (Ten20 Conductive Paste) and 

secured with medical tape. Two electrodes recorded skin conductance from the left palm 

thenar and hypothenar muscle sites, which feature a high concentration of eccrine sweat 

glands (Klarkowski et al., 2016), while an electrode on each forearm recorded heart rate. 

 

3.2.2.5 The Dreem Headband 

I used ‘Dreem 1’ headbands to remotely measure overnight sleep, as described in Chapter 2. 

Briefly, the Dreem Headband records from five dry EEG electrodes (FpZ, F7, F8, O1, O2) 

sampled at 250 Hz, referenced to each other. Dreem recordings are internally processed with 

a Butterworth bandpass (order 2) 0.4–18 Hz filter and (order 3) 50 Hz, 60 Hz and 62.5 Hz 

notches applied to the EEG channels: Fpz-O1, Fpz-O2, Fpz-F7, F8-F7, F7-O1, F8-O2, and 
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Fpz-F8. A 3D accelerometer measures movement, position, and breathing while a red-infrared 

pulse oximeter measures heart rate (Arnal et al., 2020). 

 

3.2.3 Procedure  

Participants attended Cardiff University for fear conditioning on day 1, their sleep was recorded 

at home that night, they then returned the next morning for fear extinction and reinstatement. 

Eighteen participants also returned a week later for an additional fear extinction/reinstatement 

session. Testing was scheduled at 3–4 pm on day 1 and 10–11 am on day 2 and day 8 to 

ensure a consistent time between conditioning and extinction. This timeline is illustrated in 

Figure 3.3. 

 

 

 

 

 

Figure 3.3 Experimental Timeline 

All participants were conditioned through my fear acquisition task on day 1, had overnight sleep 

recorded at home with the Dreem Headband, and then completed my extinction and reinstatement task 

on day 2. A subset of 18 participants also returned on day 8 to complete the extinction and reinstatement 

task for a second time.  

 

I aimed to provide a consistent context across participants and testing sessions. All sessions 

were conducted in the same place (same computer, chair, room etc.), while outside sounds 

were minimised by signs asking passers-by to stay as quiet as possible. The testing room 

within the sleep laboratory at Cardiff University was two doors away from the nearest corridor 

and maintained an even temperature (surrounding testing bedrooms were temperature 

controlled). Lighting was controlled with overhead room lights on and closed blackout blinds. 
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On day 1, participants gave informed consent, completed questionnaires measuring anxiety 

and alertness (IU, STAI and SSS) and were ‘wired up’ to the recording and shock equipment. 

Participants were encouraged to ask questions or express concerns about the study; none 

chose to withdraw.  

Shock intensity for the tasks was individually calibrated with increasingly aversive shocks to 

find a level that was highly unpleasant but not painful, in line with previous studies (Koenig et 

al., 2017; Leuchs et al., 2019). Calibration started at 1.0 mA (pilot testing had indicated most 

people could not detect a shock at a lower intensity) and was guided by the participant using 

a 1–10 scale until a rating of highly unpleasant was reached (Figure 3.4). Participants did not 

interact directly with the shock equipment.  

 

 

Figure 3.4 Shock Intensity Calibration Scale  

Participants were given and asked to refer to this scale to guide them through the calibration procedure. 

As shock intensity increased, they were advised that they should move towards highly unpleasant but 

not reach as far as painful, aiming for 7/10. During calibration, participants could ask to repeat the same 

intensity or return to a lower intensity until they were satisfied the level was correct. 

 

After calibration, participants completed the fear conditioning task alone in a testing room while 

electrodermal activity and heart rate were recorded. Before leaving, participants were given a 

Dreem Headband which was set up to record sleep without auditory stimulation or alarm. They 

practised turning on and wearing the headband correctly and were instructed to go to bed and 

wake up at their normal time. This session lasted approximately 60 minutes. 

On day 2, participants completed the STAI, SSS, and the fear extinction task while 

electrodermal activity and heart rate were again recorded. Calibration was not repeated, shock 

intensity was set to the same level as acquisition. For the 18 participants who returned for 

another session on day 8, this was identical to day 2, although participants were not aware of 

this. They were again instructed that ‘the pattern of images, sounds, and shocks may have 

changed’. All participants who took part on day 1 returned for day 2, but one person failed to 

return for day 8. These sessions lasted approximately 45 minutes. 
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Cardiff University Psychology Ethics Committee approved this experiment on condition that 

special consideration was taken for participant wellbeing. Following these discussions, 

participants completed a short series of questions to indicate whether their mood had been 

affected by the experiment at the end of every session (see Appendix B). Anyone who reported 

negative effects would have been assigned 10 minutes of quiet relaxation in the building and 

given support information, though this was never required. Participants received financial 

compensation at the final session.  

 

3.2.4 Data Processing 

3.2.4.1 Sleep 

I sleep scored all Dreem recordings according to AASM guidelines, as described in Chapter 

2. Dreem does not use a specific reference channel, instead referencing each electrode to 

another (Fpz-O1, Fpz-O2, Fpz-F7, F8-F7, F7-O1, F8-O2, Fpz-F8). Accelerometer channels 

were resampled from 50 to 250 Hz, data were not re-referenced or filtered beyond Dreem’s 

internal processing, and extraneous wake before the first epoch of sleep and after the last 

epoch of sleep was discarded. Data loss due to uploading issues (n=7), participant error e.g. 

failing to turn the headband on (n=3), or reported inability to sleep with the headband (n=1), 

meant intact data were available for 27/38 nights. 

  

3.2.4.2 Electrodermal Activity 

I used Matlab 2017b and the Autonomate toolbox (Green et al., 2014) to calculate SCRs 

(Figure 3.5). Failure of recording equipment led to missing SCR data for one participant on 

day 1 and one different participant on day 2. Raw data were downsampled to 625 Hz and trial 

duration was cut to the minimum time of 10 seconds (2 seconds CS duration + 8 seconds 

minimum inter-stimulus interval). 
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Figure 3.5 Example Trials: Autonomate-Calculated Skin Conductance Responses 

Typical calculated SCRs (red) indicate that a reinforced CS+ trial paired with a shock (A), shows a 

similar response to the same CS+ on a trial not paired with a shock (B). In contrast, CS- responses 

changed across early and late trials: an early CS- trial shows a fear response (C), but a late CS- trial 

shows no response (D), in fact, skin conductance decreases across this trial, although only by < 0.1 

µS. 

 

I limited detection of SCR initiation to 0.8–3.5 seconds after CS onset (the CS was presented 

at 0–2 seconds of each trial). While previous studies have generally limited SCR initiation to 

within CS duration, I extended this window due to the short CS length. I did not make use of 

reinforced (with shock) trials, so detection was not limited by the need to exclude a response 

induced by the shock itself, rather than the CS. All SCRs were visually inspected to ensure 

sensible automatic detection and decreases were recorded as zero. Values were square root 
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transformed to reduce right skew, as previous studies (Morriss, Christakou, et al., 2016; Geller 

et al., 2017; Lonsdorf et al., 2017). Finally, to facilitate comparison between the 7 unreinforced 

CS+ trials and 16 CS- trials across acquisition, the number of CS- trials was reduced (trials 2, 

4, 6, 8, 9, 11, 12, 14 and 15 discarded). 

 

3.2.4.3 Heart Rate Variability 

I wrote a custom Matlab script to calculate RMSSD. One participant was completely removed 

due to technical failure. Like SCRs, 10-second trials (2-second CS presentation + 8-second 

minimum inter-stimulus interval) were treated independently. Raw data were filtered with a 5–

30 Hz bandpass filter and QRS peaks (the electrical signature of a heartbeat) were identified 

using a Matlab-based detection package (Pan & Tompkins, 1985). The detection output 

generated the time in milliseconds between heartbeats detected during the trial, these were 

squared, summed, averaged, and then square rooted (Figures 3.6–3.7). This method has 

been previously validated (Shaffer & Ginsberg, 2017).  
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Figure 3.6 QRS Detection Output 

Raw data were filtered and squared to determine likely QRS peaks and calculate a moving threshold. 

Peaks exceeding the threshold (green line) were counted as heartbeats, they did not have to exceed 

the average signal (red line). 
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Figure 3.7 RMSSD Calculation  

The detection output (time between heartbeats/ms) per trial was transformed into the root mean sum 

of squared differences. Values shown are from one typical trial. 

  

I removed trials which had a high likelihood of reflecting erroneous values. Firstly, trials with 

less than eight detected heartbeats in 10 seconds were discarded as likely to contain missing 

QRS peaks. This eliminated 282/4820 trials (5.85%). Despite this, some remaining values 

were greater than 2000 ms. RMSSD has previously been reported at a range of 8–108 ms in 

a time frame of 10-minutes (Pappens et al., 2014). Considering the lack of previous reports 

on 10-second RMSSD values, I defined outliers as greater than three standard deviations from 

the mean (mean = 80.37 ms, SD = 130.47). This led to a cut-off of 471.79 ms, a further 56 

trials removed (1.16%), and a resultant mean of 69.79 ms (SD = 69.29). 

Finally, values were normalised by dividing each trial by the participant mean across all non-

shocked trials during acquisition. This was to account for individual differences in RMSSD  

previously reported according to cardiac fitness and health (Kiviniemi et al., 2017; Habibi et 

al., 2019), age and gender (Rajkumari et al., 2019; Spina et al., 2019), and cognitive 

performance (Schaich et al., 2020).  

 

 

Time Between Heartbeats (ms): 

[953.4     1047.0    1010.2     907.0      809.8     748.8     724.4    706.0] 

 Difference (ms): 

   [93.6     -36.8    -103.2    -97.2    -61.0    -24.4   -18.4] 

 Square (ms): 

[8760.96   1354.24   10650.24   9447.84   3721.00   595.36   338.56] 

 
Mean (ms): 

4981.03 

 Root (ms): 

70.58 
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3.2.5 Statistical Analyses 

SCR data showed some positive skew despite the square root transformation, particularly for 

CS- and extinction trials. However, as means and medians were similar, I report the mean and 

standard error of the mean (SEM). In contrast, subjective shock expectancy ratings showed 

consistent deviation from normality and so I report the median and interquartile range (IQR). 

After normalisation by each participant’s mean score, heart rate variability data were normally 

distributed and so I report the mean and SEM.  

To indicate differences between CS type at multiple trials across the experiment, I used 

repeated measures ANOVAs which are robust to deviations of normality. If the assumption of 

sphericity was violated, I report values calculated with the Greenhouse-Geiser correction. I 

used linear regression to assess associative relationships. For all analyses, responses to both 

CS+ and both CS- were averaged.  

Statistics were carried out in Matlab 2019b or IBM SPSS 26. An a priori power analysis with 

G*Power 3.1 (Faul et al., 2007) for linear bivariate regression (α = .05, power = .80) indicated 

that 26 participants were required to detect an effect size of .50 and 82 participants were 

required to detect an effect size of .30. A post-hoc sensitivity analysis with the 38 participants 

recruited indicated this sample had 80% power to detect a minimum effect of .42.   
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3.3 Results 

3.3.1 Participant Variables  

Self-reported sleepiness/alertness and anxiety remained stable across days and so were 

unlikely to systematically influence measures of fear conditioning (Table 3.1).  

 

Table 3.1 Anxiety and Sleepiness  

 Day 1 

 

Day 2 Day 8 Average   

(all days) 

Mean ± SD Mean ± SD Mean ± SD t (df) Mean ± SD t (df) 

State 

Anxiety  

31.95 ± 9.22 31.16 ± 7.22  0.74 (36) 34.94 ± 8.56 0.89 (16) 31.81 ± 7.34 

Trait 

Anxiety  

37.82 ± 8.90 37.41 ± 8.22  1.30 (34) 37.76 ± 9.45 0.06 (16) 37.76 ± 8.46 

Sleepiness 

(1–7) 

  2.45 ± 1.11   2.26 ± 0.98 -0.57 (36)   2.35 ± 0.93 1.58 (16)   2.32 ± 0.79 

Paired-samples t-tests. There were no significant differences from day 1 on any measure, all ps > .05. 

Lower sleepiness scores indicate higher alertness.  

 

I also examined the range of shock intensity chosen by each participant. This indicated that 

six people selected a very low intensity – either to stay at the initial 1.0 mA test shock or only 

allow a small increase up to 1.5 mA (Figure 3.8A). I considered whether this was affected by 

trait anxiety, finding a significant negative association between shock intensity and trait 

anxiety, R2 = .18, F (1,36) = 7.98, p = .008, B = -0.10, SE = 0.04, CI = [-0.17, -0.03]. However, 

this was strongly driven by the six individuals with very low intensities – see Figure 3.8B 

(without them, R2 = .02, F (1,30) = 0.56, p = .459, B = -0.04, SE = 0.01, CI = [-0.14, 0.06]). I 

also considered whether shock intensity affected learning strength, but there was no 

significant association with CS discrimination at the last trial of acquisition, R2 = .05, F (1,35) 

= 1.69, p = .203, B = 0.04, SE = 0.01, CI = [-0.02, 0.10]. 



96 
 
 

 

Figure 3.8 Shock Intensity Distribution and Association with Trait Anxiety  

Shock intensity distribution showed variation (A). Trait anxiety was associated with shock intensity (B), 

but only when including the six participants who chose 1–1.5 mA intensities.  

 

Finally, I investigated the recorded sleep across the sample. Manual sleep scoring of the 

recorded night via the Dreem Headband indicated a mean time between sleep onset and offset 

of 7.45 hours (SD = 1.58 hours). Average times spent in each sleep stage (Table 3.2) were 

close to expected levels – as described in the General Introduction (Shrivastava et al., 2014). 

Since my findings reported in Chapter 2 suggested that participants tend to be asleep (as 

defined by PSG) for most artefact epochs scored manually in Dreem data, these were included 

in the calculation of total sleep time. 

 

Table 3.2 Time in Each Sleep Stage 

Sleep Stage Number of Epochs Scored 

(Mean ± SD) 

% Total Sleep Period 

(Mean ± SD) 

N1 21.52 ± 19.43 2.57 ± 2.27 

N2 394.63 ± 144.16 44.82 ± 10.98 

SWS 179.85 ± 55.57 21.90 ± 8.44 

REM 216.15 ± 95.74 23.97 ± 8.54 

Artefact 57.52 ± 125.69 6.71 ± 15.24 

Wake 23.81 ± 53.11 - 

Epochs were 30 seconds. Wake epochs were not included in the calculation of total sleep time.  
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Sample 2 was tested approximately six months after sample 1. This time difference could have 

led to changes in the sleep data, for example the headbands used were no longer new. 

Consequently, I compared algorithmic and manual scoring of both samples to the recordings 

of Chapter 2 as an indicator of how the data compared to PSG. There were no significant 

differences in Kappa agreement for manual and algorithmic scoring between sample 1, 

sample 2, and my Dreem validation study, F (2) = 1.76, p = .185. This suggests that both 

samples of these Dreem sleep data, like my Dreem validation data, should be suitable for the 

summary metrics of time spent in SWS and REM. I present a more in-depth comparison 

between algorithmic and manual scoring of these data in Appendix E1. 

 

3.3.2 Successful Fear Conditioning and Extinction 

Since my conditioning and extinction tasks were novel, I first investigated discriminative 

learning between CS+ and CS- trials. I compared skin conductance responses (SCRs) and 

subjective shock expectancy ratings. I was primarily interested in how the difference between 

CS+ and CS- responses changed across each learning phase, but I also report which trials 

showed significant differences between stimuli. These were not corrected for multiple 

comparisons. I also recorded the time taken to make expectancy ratings which generally 

indicated that participants took longer to rate the CS+ but got faster as trials progressed 

(shown in Appendix E2).  

 

3.3.2.1 Fear Acquisition on Day 1 

On average, participants showed large SCRs to both the CS+ and CS- at the beginning of the 

acquisition phase on day 1 (Figure 3.9A). However, responses gradually diverged across 

trials as expected. In contrast, shock expectancy ratings showed an immediate divergence 

between CS+ and CS- (Figure 3.9B), although (as described in section 3.2.2.3) the first block 

of ratings occurred after two trials of each CS, whereas SCRs were recorded alongside CS 

presentation.  
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Figure 3.9 Acquisition Training on Day 1  

Mean SCRs (n=37) gradually diverged across the learning phase, driven by a steeper decrease in CS- 

responses (A); only the 7/16 trials without shock are illustrated, error bars show ± SEM. In contrast, 

median ratings (n=38) showed an immediate divergence and a smaller change across the task (B), 

although this was also driven by a decrease in CS- responses. Each block refers to ratings collected 

after 8 trials (two of each CS, one of each CS+ with shock), error bars show IQR. 

  

A 2 x 7 repeated measures ANOVA comparing CS+ and CS- SCRs across trials indicated a 

significant CS difference, F (1) = 39.58, p < .001, a difference between trials, F (2.94) = 17.03, 

p < .001, and a significant interaction, F (4.33) = 7.38, p < .001. This is consistent with 

successful discriminative learning. Post hoc paired-samples t-tests indicated significant 

differences between CS+ and CS- in trials 3–7, ps <.001–.037.  

In shock expectancy ratings, a 2 x 7 repeated measures ANOVA indicated a significant CS 

difference, F (1) = 250.73, p < .001, no difference across blocks, F (3.59) = 0.87, p = .473, but 

a significant interaction, F (2.79) = 5.21, p = .003. This suggests an increasing divergence in 

CS responses across the task, although this is not apparent from the median values. Post hoc 

paired-samples t-tests indicated significant differences between CS+ and CS- in all trials, all 

ps < .001.  

 

3.3.2.2 Fear Extinction and Reinstatement on Day 2 

At the start of fear extinction training on day 2, participants on average showed no immediate 

CS discrimination in SCR and a decrease in both CS+ and CS- responses across trials (Figure 

3.10A). Initially, there was a difference in shock expectancy ratings, but this diminished rapidly 

(Figure 3.10B). Likewise, after reinstatement shocks there was no immediate CS 
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discrimination in SCR (Figure 3.10C), but there was a difference in shock expectancy ratings 

(Figure 3.10D). After reinstatement, responses in both measures reduced evenly across 

subsequent trials. 

 

 

  

Figure 3.10 Extinction and Reinstatement on Day 2 

Mean SCRs (n=37) decreased similarly over extinction although some trials showed a divergence 

between CS+ and CS- (A); in contrast, median ratings (n=38) showed a difference between the CS+ 

and CS- at the first block and then rapid extinction (B). Error bars show ± SEM. After reinstatement, 

SCRs to both the CS+ and CS- increased but decreased similarly over the following eight trials (C); in 

contrast, ratings showed a small discrimination after one block but then convergence (D). Ratings for 

the CS+ and CS- are slightly offset for better illustration, error bars show IQR. 
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Across extinction on day 2, a 2 x 8 repeated measures ANOVA comparing CS+ and CS- SCRs 

across trials indicated a significant CS difference, F (1) = 9.54, p = .004, a significant difference 

between trials, F (3.28) = 28.85, p < .001, and approached a significant interaction, F (7) = 

1.83, p = .083. Post hoc paired-samples t-tests indicated significant differences between the 

CS+ and CS- in trials 2, 3, and 5, ps = .005–.006. Shock expectancy ratings were similar: a 2 

x 4 repeated measures ANOVA indicated a significant difference in CS, F (1) = 22.71, p < 

.001, across blocks, F (1.67) = 19.18, p < .001, and interaction, F (2.41) = 13.63, p < .001. 

Here, post hoc paired-samples t-tests indicated significant differences between the CS+ and 

CS- in all trials, ps <.001–.019. 

Following reinstatement, another 2 x 8 repeated measures ANOVA comparing CS+ and CS- 

SCRs across trials indicated a significant difference across trials, F (1) = 4.05, p < .001, but 

not between the CS+ and CS-, F (1) = 1.78, p = .189, nor a significant interaction, F (4.71) = 

1.28, p = .278. I therefore did not explore CS differences in each trial. In shock expectancy 

ratings, a 2 x 4 repeated measures ANOVA indicated a significant CS difference, F (1) = 8.53, 

p = .006, a significant difference across blocks, F (1.56) = 16.91, p < .001, but no interaction, 

F (1.47) = 1.50, p = .233. Post hoc paired-samples t-tests indicated significant differences 

between the CS+ and CS- in all trials, all ps <.001.  

 

3.3.2.3 Fear Extinction and Reinstatement on Day 8  

Like day 2, participants on average showed large SCRs to both the CS+ and CS- at the 

beginning of the session. However, there were no differences between the CS+ and CS- 

across eight trials of extinction (Figure 3.11A). Shock expectancy ratings showed no 

discrimination (Figure 3.11B). Following reinstatement, however, (unlike day 2) there was a 

clear CS+/CS- discrimination immediately after reinstatement in SCRs (Figure 3.11C). There 

was also a small discrimination in shock expectancy (Figure 3.11D).  
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Figure 3.11 Extinction and Reinstatement on Day 8 

Mean SCRs (n=17) decreased non-discriminately over extinction (A), while median ratings (n=17) were 

minimal for both CS+ and CS- throughout (B). Error bars show ± SEM. After reinstatement, SCRs 

increased discriminatively to the CS+ after un-signalled shocks (C), there was also a small 

discrimination in ratings (D). Ratings for the CS+ and CS- are slightly offset for better illustration, error 

bars show IQR. 

 

Across extinction on day 8, a 2 x 8 repeated measures ANOVA comparing CS+ and CS- SCRs 

across trials indicated a significant difference between trials, F (2.98) = 13.23, p < .001, but 

unlike day 2, no significant difference between the CS+ and CS-, F (1) = 0.34, p = .566, nor a 

significant interaction, F (7) = 1.22, p = .297. In shock expectancy ratings, a 2 x 4 repeated 

measures ANOVA indicated a significant CS difference, F (1) = 9.09, p = .009, but no 

difference across blocks, F (1.23) = 3.11, p = .088, nor an interaction, F (1.70) = 1.78, p = 
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.192. Post hoc paired-samples t-tests indicated significant differences between the CS+ and 

CS- in blocks 1–3, ps = .014–.028, but not block 4, p = .086. 

Finally, following reinstatement, another 2 x 8 repeated measures ANOVA comparing CS+ 

and CS- SCRs across trials indicated a significant difference between trials, F (2.72) = 3.83, 

p = .019, a non-significant difference between the CS+ and CS-, F (1) = 3.21, p = .092, and a 

significant interaction, F (7) = 2.25, p = .035. Post hoc paired-samples t-tests indicated a 

significant difference in trial 1 only, p = .042. In shock expectancy ratings, a 2 x 4 repeated 

measures ANOVA indicated a significant CS difference, F (1) = 7.83, p = .014, and a significant 

difference across blocks, F (1.51) = 3.80, p = .048, but no interaction, F (3) = 0.70, p = .556. 

Again, post hoc paired-samples t-tests indicated significant differences between the CS+ and 

CS- in blocks 1–3, ps = .013–.049, but not block 4, p = .072. 

 

3.3.2.4 Summary of Task Efficacy and Approach to Hypotheses  

I designed this fear conditioning experiment to capture changing responses to CS+ and CS- 

image/sound pairs across fear acquisition training, extinction learning, and reinstatement. 

Defining success by my primary dependent variable, SCRs, I found strong evidence of a 

learned CS discrimination across acquisition trials on day 1, indicating successful associative 

learning. On day 2, there was no immediate significant maintained discrimination on average, 

although there was a divergence between CS+ and CS- responses at trials 2, 3 and 5, and 

CS discrimination decreased as expected over extinction trials. However, reminder shocks did 

not lead to greater CS+ responses, instead there was an increase to all stimuli. On day 8, 

there was no maintenance of CS discrimination on average; however, there was a small 

discriminative reinstatement effect after reminder shocks suggesting that longer-term cued 

reinstatement was more effective.  

I defined overnight consolidation and extinction learning by a single trial, as the results 

suggested that responses were still changing across the final trials of each phase. For 

example, the largest gap between the CS+ and CS- during acquisition training on day 1 was 

in the final trial. Consequently, I defined overnight consolidation as the CS discrimination 

change between the last trial of acquisition on day 1 and the first trial of extinction on day 2. I 

defined extinction learning as CS discrimination at the last trial of extinction on day 2 or day 8.  

There was no association between reinstatement and sleep: R2 = .00–.06, ps = .104–.993, full 

results presented in Appendix E3. I explore associations between reinstatement and anxiety 

in Chapter 4.  
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Finally, while I found evidence for discriminatory learning on average across this sample, 

10/37 participants showed a zero or negative CS discrimination in SCRs at the end of 

acquisition training. None of these participants showed negative CS discrimination in shock 

expectancy ratings – greater expectancy rating to the CS- compared to the CS+. This positive 

discrimination in conscious ratings suggests that they were aware that the shock was paired 

with the CS+ and not the CS-. Therefore, these participants can be considered to have learned 

in the declarative sense but for some reason have lacked the implicit physiological learning 

that is central to fear. This demonstrates the separation between conscious and unconscious 

learning which may be crucial to our understanding of fear-based pathology.  

While it is common to find such ‘non-learners’ based on SCRs to fear conditioning and they 

are often excluded (Lonsdorf et al., 2019), this promotes bias as it is unclear if conditioning 

was wholly unsuccessful. Therefore, I included all participants in the appraisal of my 

hypotheses but also investigated how the results changed when excluding non-learners. I 

defined non-learners as participants who showed a CS discrimination of zero or lower at the 

last trial of acquisition on day 1. This criterion was indicative of an impaired acquisition curve 

(Figure 3.12). Learners and non-learners did not differ in the shock level chosen, p = .545.   

 

 

Figure 3.12 CS Discrimination Curve Across Acquisition for Learners and Non-Learners 

Non-learners (n=10) showed an impaired CS discrimination curve across the acquisition phase on day 

1. The expected increase was seen in the majority of ‘learner’ participants (n=27). Error bars show ± 

SEM.  
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Comparing learners and non-learners, a 2 x 7 factorial ANOVA indicated a significant 

between-subjects difference in CS discrimination, F (1) = 10.66, p = .002, no significant 

difference across trials, F (4.24) = 1.99, p = .095, but a significant interaction, F (6) = 3.80, p 

= .005. This suggests that learners showed greater CS discrimination compared to non-

learners, with an increasing difference across trials. 

 

3.3.3 Sleep and Fear Learning 

3.3.3.1 Skin Conductance Responses  

For these analyses, I tested for associations between REM or SWS and fear conditioned 

outcomes. Participants who had more REM tended to have more SWS (r = .35, p = .070). 

However, when adjusting REM and SWS duration as a percentage of total sleep time, REM 

% and SWS % were not correlated with each other (r = -.10, p = .626), and so were considered 

as separate predictors in all outcomes. How each analysis changed by excluding non-learners 

is illustrated in Table 3.3. 

I first hypothesised that REM duration in a full night of post-conditioning sleep would be 

associated with greater consolidation of unextinguished fear responses the next day. In 

contrast, I found that SWS % was significantly associated with greater overnight consolidation 

(Figure 3.13A–B). Secondly, I hypothesised that REM % would be associated with better 

extinction learning on day 2 and day 8, that is, a diminished CS discrimination towards zero at 

the final trial. However, I found REM % to be significantly associated with a positive maintained 

discrimination and SWS % to be unrelated. Conversely, after additional extinction learning on 

day 8, I found SWS % to be significantly associated with a positive maintained discrimination 

and REM % to be unrelated (Figure 3.13C–F).  
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Figure 3.13 Associative Relationships Between Sleep and Overnight/Extinction Learning 

REM % was not associated with overnight maintenance of CS discrimination (A), but SWS % was 

positively associated (B). On day 2, REM % was positively associated with CS discrimination after 

extinction learning (C), SWS % was not associated (D). In contrast on day 8, REM % was not associated 

with CS discrimination (E), but SWS % was positively associated (F). Significant p-values are shown.     

p = .008–.016   

p = .188–.037   

p = .002–.012   
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Table 3.3 Associations Between Sleep and Overnight/Extinction Learning: SCRs 

  Non-

Learners 

 

     R2 

 

F (df) 

 

  p 

Unstandardised Coefficients 

B [SE] 95% CI 

O
v
e
rn

ig
h
t 

REM % Included     .02  0.57 (1,23)  .459  0.01 [0.02] -0.02, 0.05 

Excluded      .01  0.31 (1,16)  .829 -0.01 [0.02] -0.04, 0.05 

SWS % Included     .23  6.77 (1,23)  .016 a  0.04 [0.02]  0.01, 0.07 

Excluded      .36  9.04 (1,16)  .008   0.05 [0.01]  0.01, 0.08 

E
x
ti
n
c
ti
o
n
 D

a
y
 2

 REM % Included     .17  4.86 (1,23)  .037 b  0.02 [0.01]  0.00, 0.04 

 Excluded      .11  1.89 (1,16)  .188  0.02 [0.01] -0.01, 0.04 

SWS % Included     .00  0.07 (1,23)  .796  0.00 [0.01] -0.02, 0.03 

 Excluded      .01  0.11 (1,16)  .744  0.00 [0.01] -0.03, 0.03 

E
x
ti
n
c
ti
o
n
 D

a
y
 8

 REM % Included     .06  0.68 (1,11)  .429 -0.01 [0.01] -0.03, 0.02 

 Excluded      .10  0.98 (1,8)  .364 -0.01 [0.01] -0.04, 0.02 

SWS % Included     .45  8.97 (1,11)  .012 c  0.03 [0.01]  0.01, 0.05 

 Excluded      .73  21.45 (1,8)  .002  0.03 [0.01]  0.02, 0.05 

a This effect was driven by more positive CS+ responses: R2 = .23, F (1,23) = 6.86, p = .015, B = 0.03, 

SE = 0.01, CI = [0.01,0.05]. There was no significant association for CS- responses, p = .409.   

b This effect was driven by more negative CS- responses: R2 = .19, F (1,24) = 5.63, p = .026, B = -0.02, 

SE = 0.01, CI = [-0.04, 0.00]. There was no significant association for CS+ responses, p = .871.     

c This effect was not significantly driven by CS+ or CS- responses, ps = .496–.532.      

 

Positive associations between SWS % and CS discrimination in overnight maintenance and 

after extinction on day 8 were strengthened by excluding non-learners. This could suggest 

that SWS supports consolidation of learned fear responses dependent on the strength of 

learning. I therefore explored an association between SWS % and the strength of learning 

before sleep (Figure 3.14A). This indicated that CS discrimination at the last trial of acquisition 

was negatively associated with subsequent SWS %, R2 = .16, F (1,24) = 4.50, p = .044, B = -

0.02, SE = 0.01, CI = [-0.04, 0.00]. This was also stronger excluding non-learners, R2 = .41, F 

(1,17) = 11.79, p = .003, B = -0.03, SE = 0.01, CI = [-0.04, -0.01]. This suggests that the 

association between SWS and overnight consolidation may be driven by these participants 

displaying poorer learning and potentially having more ground to make up across sleep.  

However, I also found a positive association between SWS % and CS discrimination at the 

first trial of extinction on day 2 (Figure 3.14B), R2 = .17, F (1,24) = 4.99, p = .035, B = 0.02, 
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SE = 0.01, CI = [0.00, 0.04]. This was similar but weaker when excluding non-learners, R2 = 

.16, F (1,16) = 2.99, p = .103, B = 0.02, SE = 0.01, CI = [0.00, 0.04]. This in fact suggests that 

greater SWS % also promotes enhanced CS discrimination after sleep, regardless of learning. 

Pre-sleep fear discrimination, therefore, does not completely explain the consolidation effect 

in this sample.  

 

 

 

Figure 3.14 Driving Factors Behind SWS and Overnight Change Association 

SWS % was negatively associated with CS discrimination at the last trial of acquisition training on day 

1, this was stronger when excluding non-learners (A). In contrast, SWS % was positively associated 

with CS discrimination at the first trial of extinction training on day 2, this was weaker when excluding 

non-learners (B).  

 

3.3.3.2 Subjective Shock Expectancy Ratings  

In subjective ratings change overnight, the data met the assumptions for linear regression; 

however, there were no significant associations with REM or SWS % (R2 = .00 in both cases, 

ps = .851–.913). Given the lack of variation across the sample at the end of extinction, I did 

not expect to find associations with sleep, which was supported, R2 = .00–.07, ps = .180–.876, 

I present full results in Appendix E4.  

 

3.3.4 Heart Rate Variability as a Measure of Fear Learning 

Finally, I explored HRV as a dependent measure, to investigate associations between SWS 

% and REM % with overnight changes and extinction learning, as found in SCRs. RMSSD 
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values were normalised by dividing each trial by the participant’s mean (as described in 

3.2.4.4). HRV and SCR values were not significantly correlated with one another in overnight 

CS discrimination change, r = -.11, p = .558, extinction on day 2, r = .00, p = .999, or extinction 

on day 8, r = -.15, p = .579, suggesting that these metrics reflect dissociable processes.  

I found no evidence for HRV as an indicator of discriminatory learning on average across the 

sample (ps = .135–.820, full results in Appendix E5), though HRV as a dependent measure 

(rather than SCR) was highly exploratory so this is not surprising. Nevertheless, I investigated 

differences between participants in regard to their sleep. I found a significant negative 

association between REM % and HRV-measured CS discrimination maintenance overnight, 

while there was no association with SWS % (Figure 3.15A–B). In extinction learning on day 

2, HRV-measured CS discrimination at the last trial was not associated with REM %, but there 

was a negative effect for SWS %. On day 8, neither REM % nor SWS % were associated with 

HRV-measured extinction learning (Figure 3.15C–F). Non-learners were still defined by 

SCRs; I compare results excluding non-learners in Table 3.4.   



109 
 
 

Figure 3.15 Associations Between Sleep and Overnight/Extinction Learning When Measured 

by HRV  

REM % was associated with an overnight reduction in CS discrimination (A), while there was no 

association for SWS % (B). In contrast, REM % was not associated with CS discrimination at the last 

trial of extinction (C), but there was a negative effect for SWS % when excluding non-learners (D). On 

p = .184–.034   

p = .009–.047   
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day 8, neither REM % (E) nor SWS % (F) were associated with extinction learning. Significant p-values 

are shown.  

Table 3.4 Associations Between Sleep and Overnight/Extinction Learning: HRV 

  Non-

Learners 

 

     R2 

 

F (df) 

 

    p 

Unstandardised Coefficients 

B [SE] 95% CI 

O
v
e
rn

ig
h
t 

REM % Included     .17  4.44 (1,22)    .047 a -0.06 [0.03] -0.12, 0.00 

Excluded      .39  9.05 (1,14)    .009 -0.10 [0.03] -0.17, -0.03 

SWS % Included     .00  0.00 (1,22)    .986  0.00 [0.03] -0.07, 0.07 

Excluded      .00  0.01 (1,14)    .944   0.00 [0.05] -0.10, 0.09 

E
x
ti
n
c
ti
o
n
 D

a
y
 2

 REM % Included     .01  0.20 (1,24)    .663  -0.01 [0.02] -0.05, 0.03 

 Excluded      .01  0.07 (1,16)    .793 -0.01 [0.02] -0.06, 0.05 

SWS % Included     .07 1.87 (1,24)    .184 -0.03 [0.02] -0.07, 0.01 

 Excluded      .25 5.37 (1,16)    .034 -0.05 [0.02] -0.10, 0.00 

E
x
ti
n
c
ti
o
n
 D

a
y
 8

 REM % Included     .00  0.03 (1,10)    .875  0.00 [0.01] -0.04, 0.03 

 Excluded      .02  0.11 (1,7)    .748 -0.01 [0.02] -0.05, 0.04 

SWS % Included     .00  0.03 (1,10)    .878   0.00 [0.02] -0.04, 0.03 

 Excluded      .00  0.00 (1,7)    .965  0.00 [0.02] -0.05, 0.05 

a This effect was driven by more positive CS- responses: R2 = .20, F (1,24) = 6.01, p = .022, B = 0.07, 

SE = 0.03, CI = [0.01,0.12]. There was no significant association for CS+ responses, p = .875.       

 

Like SCRs and SWS %, the association between overnight change in RMSSD and REM % 

was reflected in an association between CS discrimination at the final trial of day 1 learning, 

R2 = .30, F (1,23) = 9.63, p = .005, B = 0.05, SE = 0.02, CI = [0.02, 0.08], and also stronger 

excluding non-learners, R2 = .69, F (1,15) = 33.56, p < .001, B = 0.08, SE = 0.01, CI = [0.05, 

0.11]. There was no significant association between REM % and RMSSD (CS+/CS-) 

discrimination at the first trial of day 2 (p = .468), suggesting the overnight effect was driven 

by pre-sleep learning.  
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3.4 Discussion 

3.4.1 Summary of Results  

In this study I designed a novel fear conditioning protocol. I found evidence for discriminatory 

learning, suggesting my design was successful in promoting fear to the CS+ over the CS-. I 

also measured overnight sleep after fear acquisition using sleep wearable technology: the 

Dreem Headband. I hypothesised that REM sleep would promote greater overnight fear 

consolidation and extinction learning, although ambiguity in previous literature led me to 

explore SWS as well. In contrast to my hypotheses, I found that SWS % was associated with 

greater overnight consolidation and a maintenance of CS discrimination after extinction on day 

8, whereas REM % was only associated with extinction on day 2 (Figure 3.13).  

Across the sample, some participants showed no evidence of learning i.e. SCR discrimination 

between the CS+ and the CS- at the final trial of acquisition on day 1. Excluding these non-

learners strengthened some associations, particularly, between CS discrimination 

consolidation and SWS. While SWS was associated with CS discrimination at the final trial of 

acquisition, this was also strengthened by excluding non-learners suggesting that sleep-

dependent consolidation may be associated with the strength of initial learning before sleep, 

but only for participants who showed at least some learning. In alignment with this, excluding 

non-learners weakened the association between SWS and CS discrimination at the first trial 

of day 2, suggesting evidence for overnight consolidation in SWS (between day 1 and day 2) 

above that explained by differences in learning on day 1.    

I also investigated how shock expectancy ratings differed from SCRs, finding that shock 

expectancies were acquired and changed more rapidly. For example, participants learned that 

CS+ trials were paired with shocks during conditioning and ceased to be paired with shocks 

during extinction after only one block (two trials of each CS). Ratings after reinstatement on 

day 2 also suggested that participants consciously understood that this was likely to signal a 

resurgence of the CS+/shock pairing, even though it was not echoed in greater SCRs. This 

suggests that autonomic learning lags behind conscious awareness, which may reflect the 

presentation of fear-related disorders: affected individuals consciously know their feelings are 

irrational but continue to experience fear, panic, or anxiety regardless (Horwitz & Wakefield, 

2012). 

Finally, I measured heart rate variability (HRV) as an exploratory metric of fear conditioning. I 

found no evidence that HRV measures fear learning, yet HRV-measured consolidation and 

extinction discrimination were associated with post-conditioning REM and SWS % 

respectively. Surprisingly, these presented the opposite pattern to SCR findings: REM % was 
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associated with overnight consolidation and SWS % was associated with CS discrimination 

after extinction on day 2. In view of these parallels, my findings suggest future avenues for 

investigation into the role of HRV in fear learning and consolidation across sleep. 

 

3.4.2 Implications for Emotional Memory Consolidation  

Contrary to my hypothesis, I found that SWS duration was associated with overnight 

consolidation of fear discrimination. Specifically, this was driven by greater CS+ responses, 

suggesting that SWS promotes consolidation of learned fear to dangerous stimuli. In keeping 

with this, SWS was also associated with a maintenance of discrimination after extinction on 

day 8. This suggests that a high proportion of SWS following conditioning leads to a stronger 

fear memory which is resistant to extinction. This finding was unexpected, but aligns with prior 

research such as that supporting the Active Systems Consolidation Theory, which suggests 

that non-REM sleep promotes a strengthening of memories (Born et al., 2006; Diekelmann & 

Born, 2010). My findings indicate that participants who had a very low SWS % showed 

negative discrimination (greater responses to the CS- than the CS+). This suggests that a lack 

of consolidation after learning could leave participants susceptible to long-term maladaptive 

responses to safe stimuli.  

I did not find that REM supports overnight consolidation of CS maintenance. However, 

Marshall et al. (2014) previously found that a combination of REM duration, efficiency and 

latency was together associated with a greater consolidation of fear recall after post-

conditioning sleep. This is equivalent to the first trial of extinction in my study. Meanwhile, 

Wassing et al. (2019) found that fragmented REM was associated with disrupted emotional 

consolidation. It is not clear whether my finding that REM did not support emotional 

consolidation was due to my focus on REM duration, when this evidence suggests that the 

quality of REM is also important. Although, these studies used startle response and amygdala 

activity to define fear responses, so the differences could also be due to my choice of 

dependent measure. I confined my sleep analyses to sleep stage duration because Dreem is 

relatively unproven. However, some of these additional analyses are likely to be possible with 

further exploration.  

I also hypothesised that REM would promote better extinction learning, i.e. CS discrimination 

towards zero. Instead, I found that REM was related to greater CS discrimination; however, 

this was driven by smaller responses to the CS-. This suggests that REM was associated with 

extinction learning, but specifically to the safe stimuli. In short, REM may support adaptive 

extinction learning but not necessarily reduced CS discrimination. Previously, a lack of REM 
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has been associated with a generalisation of fear (Menz et al., 2013, 2016; Spoormaker et al., 

2010). Although my finding was not as expected, this result still aligns with the previous 

literature, since participants who had a low proportion of REM sleep after conditioning tended 

to have greater fear responses to the CS-. Fear responses to a CS- experienced in the same 

context are generally interpreted as reflecting a generalisation of fear (Baker et al., 2019; 

Dibbets et al., 2015; Kull et al., 2012).   

 

3.4.3 Causal Effects Between Sleep and Fear Learning? 

I found both REM and SWS to significantly relate to several fear conditioned outcomes; 

however, the data do not confirm the causality of these relationships. Sleep has been strongly 

linked to memory consolidation, as discussed in Chapter 1. Therefore, my results are likely to 

suggest that sleep-dependent consolidation affected subsequent fear responses. However, 

since I did not measure baseline sleep, it is possible that fear conditioning itself affected sleep, 

which in turn affected consolidation. There is some literature – albeit from rodent studies – 

which suggests that fear conditioning changes subsequent sleep architecture. 

For example, fear conditioning in mice (n=8, all male, 3–4 months old) led to a decrease in the 

number of REM episodes, average REM duration, and increased REM latency (Sanford et al., 

2001). These results were replicated in a subsequent study (n=14, all male, 7–9 weeks old), 

while further evidence suggested that the effects extended to 4–5 days post-conditioning and 

varied in strength according to mouse strain (Sanford et al., 2003). This suggests that fear 

conditioning effects on sleep are not confined to the immediate sleep after conditioning and 

may also have a high dependence on individual differences.  

In another study to support these findings, rats (total n=21, all male, 2 months old) were 

conditioned to associate an auditory tone with a footshock; fear was tested with presentation 

of the tone after 24 hours and two weeks (DaSilva et al., 2011). Stress-sensitive Wistar-Kyoto 

rats, but not control Wistar rats, showed a 27% increase in REM sleep from baseline 

immediately following the conditioning procedure. REM microarchitecture also changed, with 

significantly more sequential REM episodes. After two weeks, the amount of REM had 

decreased to baseline levels, but there were still significantly more sequential REM episodes 

i.e. fragmented REM. There were no sleep changes in control animals that received the same 

shocks unpaired with the tone, which suggests that fear learning and not simply a stressful 

experience can induce REM changes. The stress-sensitive rats did not exhibit normal 

extinction even at day 14, suggesting that the lingering effects of conditioning on REM sleep 

could lead to a long-term continuation of fear.  
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There is also evidence for non-REM changes following conditioning. Mice (total n=43, all male, 

3–6 months old) exposed to fear conditioning exhibited a greater time spent in subsequent 

non-REM sleep (Hellman & Abel, 2007). There was also an increase in delta power (a marker 

of deep non-REM sleep) and a decrease in theta power (a marker of REM sleep). This study 

found no evidence of REM changes and the previous studies discussed found no evidence of 

non-REM changes; however, this study had a far greater sample size (12–16 subjects per 

group) and so the results may be more robust. Alternatively, differences in methodology 

(timing, stimuli, species strain) may account for these discrepancies. For all of these rodent 

results, it is unclear how females respond because of the unilateral use of males.  

Few human studies have explicitly reported a focus on whether fear conditioning affects 

subsequent sleep, although including a baseline night controls for this. For example, Marshall 

et al. (2014), as discussed in section 3.1, recorded sleep before and after conditioning. There 

was no change in any sleep measure, including time spent in each sleep stage, REM efficiency 

or REM latency. This suggests that fear conditioning in people does not affect subsequent 

sleep, unlike previous rodent studies. However, it is likely that fear conditioning is a more 

salient experience for an animal. When people agree to take part in a psychological 

experiment, they are aware that no real harm can come to them which probably dampens the 

fearfulness of the experience.  

In summary, while fear conditioning may affect subsequent sleep in (male) rodents, there is 

no evidence to my knowledge that these effects translate to people. Furthermore, all my 

participants underwent fear conditioning, and so even if this experience caused changes in 

sleep architecture, this would not necessarily counter my findings regarding SWS % and fear 

consolidation, or REM % and extinction. This would depend specifically on whether the level 

of learning affected sleep stage duration. Therefore, while my SWS results could be 

interpreted as better fear learning leading to more SWS %, previous studies of memory 

consolidation and sleep (Diekelmann & Born, 2010), suggest that my results are more likely 

to reflect sleep-dependent memory consolidation. In other words, differences between 

participants’ sleep contributed to changes in post-sleep fear responses. With more resources, 

my design could be adapted to include baseline sleep before conditioning and explicitly test 

for this possibility. However, there is not necessarily a causal effect: people who tend to have 

more SWS may also tend to have better overnight consolidation and maintenance of CS 

discrimination due to other factors that I did not measure. 
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3.4.4 The Exclusion of Non-Learners 

As reported in a recent systematic literature search, a quarter of recent fear conditioning 

studies excluded participants if they showed a zero or negative SCR discrimination by the end 

of the acquisition phase (Lonsdorf et al., 2019). In my study, 10 out of 37 participants failed to 

show discriminative fear learning on the basis of SCRs at the last trial. Given that non-learners 

are a common occurrence in fear conditioning studies, I investigated the impact of their 

exclusion.  

Non-learners are not a trivial issue. If participants do not show learning, it could be argued that 

subsequent changes in discrimination are meaningless. If this were the case, their results 

would add unnecessary noise to the data, reducing the power of the study to detect real 

effects. In my study, a lack of learning was not just evident at the last trial, I show in Figure 

3.12 that the last trial criterion was sensitive to an impaired learning curve across acquisition 

training. Elsewhere, participants who fail to show discriminative SCR fear learning have been 

previously found to exhibit hypoactivation of fear and inhibitory regions (amygdala, anterior 

cingulate cortex, insula) in the brain (Marin et al., 2020). This suggests that people who do not 

show significant fear conditioning (as measured by SCRs) may process these stimuli 

differently. On the other hand, in my study, shock expectancy ratings showed that non-learner 

participants were consciously aware of CS+/CS- attributions. It is possible, therefore, that they 

would show an improvement after sleep. Alternatively, confounding factors in the 

measurement of skin conductance may have affected their data (e.g. skin differences, 

susceptibility to temperature), and so when other measures of fear are also utilised it may not 

be necessary to wholly exclude them. Given these conflicting aspects, more evidence as to 

the effects of non-learners is of clear value to the fear conditioning literature.   

I found that SWS-driven associations were strengthened by excluding non-learners, despite 

the reduced sample size. There was a particularly large effect in the association between 

sleep and strength of learning, increasing the proportion of explained variance from 16% to 

41%. This suggests that non-learners add considerable noise to some data. However, the 

association between REM and CS- responses at extinction on day 2 was weakened (to non-

significance) by excluding non-learners. This could suggest these participants show expected 

responses in extinction. Defining non-learners by SCRs also affected associations measured 

by HRV. Excluding non-learners strengthened associations between REM % and overnight 

consolidation from 17% to 39%, between REM % and learning strength from 30% to 69%, and 

between SWS % and extinction learning on day 2 from 7% to 25%. This suggests that SCR 

learning interacts with HRV responses to a considerable degree.  
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On balance, these findings suggest that non-learners add noise to SWS-driven analyses, but 

some outcomes after further learning (e.g. extinction) may be similar to other participants. 

However, I did not explore interaction effects. In a larger sample, it would be prudent to 

investigate the effect size and statistical significance of this observation by comparing non-

learners and learners across outcomes.  

 

3.4.5 Heart Rate Variability as a Marker of Fear Learning 

HRV has gained momentum in recent years as a marker for physical and mental resilience, 

especially emotion regulation. Specifically, high beat-to-beat variability reflects faster adaptive 

responses to a changing environment through the autonomic nervous system (for a review, 

see Shaffer & Ginsberg, 2017). HRV could therefore provide a complementary measure to 

SCR in the study of the conditioned fear response: while SCRs reflect mainly sympathetic 

activity, HRV reflects autonomic (sympathetic/parasympathetic) balance, and RMSSD 

specifically reflects mainly parasympathetic components. However, I found no evidence that 

RMSSD values indicated fear to the CS+ compared to the CS-.  

Previously, resting HRV (rather than trial-by-trial) has been linked to fear conditioning. In 

healthy participants (n=57, 10 male, aged 18–30 years), higher 10-minute resting RMSSD 

was associated with better extinction of the startle response to an unpleasant period of 

breathlessness (achieved via breathing apparatus) and safety learning to a period without 

breathlessness (Pappens et al., 2014). RMSSD was not related to SCRs. In addition, when 

healthy participants (n=114, 56 female, aged 18–33 years), underwent fear conditioning with 

geometric shapes and an unpleasant shock, higher 5-minute resting RMSSD was associated 

with better extinction, again in startle response but not SCRs (Wendt et al., 2015). These 

results suggest that startle response-measured extinction learning is related to resting HRV. 

However, my investigation into 10-second RMSSD trials was without precedent.  

Nevertheless, I did find that HRV measured in this way for overnight consolidation and 

extinction was significantly associated with sleep. Interestingly, the separation between REM 

and SWS was reflected in a divergence between SCRs and HRV. While in SCRs, SWS % 

was associated with overnight consolidation and REM % was associated with extinction, I 

found in HRV that REM % was significantly associated with overnight consolidation and SWS 

% was significantly associated with extinction. These results suggest that the parasympathetic 

components measured by RMSSD and sympathetic components measured by SCRs could 

relate to the roles of REM and SWS % in the consolidation of fear and extinction learning 

respectively. It cannot be ruled out that unknown factors drove these converging associations, 
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but further investigation in future studies may clarify the connection between HRV and SCR 

in fear conditioned responses that vary according to sleep.  

 

3.4.6 Strengths and Limitations  

Strong evidence of discriminatory acquisition learning across the sample on day 1 suggests 

that my development of a novel fear conditioning task was successful in promoting acquired 

fear responses to specific stimuli. It could be argued that the uncommon use of both images 

and sounds for my conditioned stimuli affected the results, for example, increased the number 

of non-learners. However, since real-life fearful experiences are multimodal, the results may 

have a higher real-world application. In addition, the use of sounds means this design has the 

potential for sleep-dependent reactivation, providing a precedent for future TMR studies.  

Use of the Dreem Headband allowed me to test a larger sample than would have been 

practical using the standard approach, PSG. It also extends my previous Dreem validation 

study (Chapter 2), adding evidence for the value of wearables in sleep science. I found in 

Chapter 2 that the Dreem Headband was suitable to estimate time spent in SWS and REM 

when manually scored, providing a justification for its use in my investigation of emotional 

memory. In further support of Dreem’s accuracy, I found close to the expected average levels 

of each sleep stage: 5% in N1, 50% in N2, 20% in SWS and 25% in REM (Shrivastava et al., 

2014). In addition, agreement between manual and algorithmic scoring of Dreem did not 

significantly differ from that in Chapter 2. While not necessarily indicative of how the results 

would compare to PSG, this suggests that Dreem performed consistently across both samples 

and is therefore likely to be similarly suitable for the estimation of sleep stages.  

I did not allow for an adaptation night wearing the Dreem Headband. Given time and resource 

constraints, I chose to prioritise sample size over this potential advantage. Sleep data loss 

was mainly due to technical issues which I encountered sporadically throughout the 

experiment, so adaptation nights would not have alleviated this issue. I also minimised the risk 

of participants struggling with the headband as far as possible by limiting my sample to young, 

healthy people who reported their ability to sleep as good or excellent, and subsequently only 

one participant removed the headband in the night. Nevertheless, Dreem sleep data were lost 

for 11/38 recordings. Normally, a consumer would synchronise their headband to an app on 

their mobile phone where the data would be uploaded to Dreem. Using multiple headbands 

across many participants, I sought advice from Dreem, but had to re-synchronise each 

headband to one app many times which may have caused technical issues. Although 

summary statistics always presented Dreem’s algorithmic scoring, some nights failed to 
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upload correctly and the raw data for manual scoring were not available. This meant that the 

second round of data collection had only 13 participants. These results should therefore be 

interpreted with caution, as low sample sizes can lead to reduced generalisability and a greater 

rate of false discovery. 

Finally, I did not investigate hormonal effects as a confounding factor. Menstrual cycle has 

been reported to affect discriminative fear conditioning and extinction, primarily based on 

cycling oestrogen (Hwang et al., 2015; Kobayashi et al., 2020). Consequently, the use of 

hormonal contraceptives may affect discriminative fear learning (Lonsdorf et al., 2015). While 

I collected data on early versus late menstrual cycle for eligible participants, I did not record 

use of hormonal contraceptives in sample 1 (n=18). Since 70% of eligible participants (n=10) 

in sample 2 reported using hormonal contraceptives, it is unlikely there would have been 

sufficient statistical power to assess differences between hormonal contraceptive users and 

early or late cycle phases in the remaining people, but I did not have the data to explore this.  

 

3.4.7 Conclusions and Future Directions  

In this chapter I present a novel fear conditioning design. This allowed a comprehensive 

investigation into how fear responses change over various learning phases across one week. 

I also utilised the Dreem Headband to increase my sample size and demonstrate how a sleep 

study can make use of this evolving technology.  

My results provide further evidence towards understanding the relationship between sleep and 

fear learning. I found that the proportion of time dedicated to SWS within the post-conditioning 

night supported overnight consolidation and a week-long maintenance of CS discrimination. 

In contrast, time spent in REM during the same night promoted lower responses to the safe 

CS- after extinction learning the next day. In more exploratory analyses, I also found evidence 

that HRV calculated on a trial-by-trial basis did not define fear learning, yet when taken as the 

measure of consolidation and extinction it was significantly associated with REM and SWS 

respectively – the opposite pattern to SCRs.  

Together, these results suggest different but perhaps complementary roles of REM and SWS 

% for the consolidation of fear discrimination and extinction learning respectively. This could 

be specific to unextinguished responses and so previous studies which extinguish before 

sleep may have missed these divergent roles. Since extinction is unlikely to occur before a 

night’s sleep after a traumatic event, unextinguished responses as measured in my study 

could better reflect real-world fearful events.   



119 
 
 

In further research, longer-term associations between post-conditioning sleep and CS 

discrimination should be replicated with a greater sample size, while HRV should be further 

investigated in relation to fear conditioned responses. This fear conditioning design also 

provides a basis for the investigation of targeted memory reactivation, while my results 

suggest this should be explored during both REM and SWS. Finally, these results should be 

extended with an exploration of spectral analyses and event detection. I present an 

investigation of these factors in Chapter 4.  
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Chapter 4 

Exploring Sleep Neurophysiology with the Dreem 

Headband: From Validation to Fear Consolidation  

 

In this chapter I present further analyses of my sleep EEG data recorded by the Dreem 

Headband. Moving beyond the sleep stage duration metrics of previous chapters, I explored 

slow oscillations, spindles, and their interactions using spectral analysis, event detection, and 

phase-amplitude coupling. I first investigated whether Dreem was suitable for these analyses 

by extending my validation against PSG (Chapter 2). I used these results to inform further 

analyses of my fear conditioning experiment (Chapter 3), investigating whether my findings 

relating SWS duration to overnight fear consolidation were reflected in these more precise 

quantifications of non-REM sleep. I found mixed results across spectral power, but there were 

indications Dreem was suitable for event detection. Consequently, detected slow oscillation 

events were significantly associated with overnight fear consolidation. This extends both my 

validation of the Dreem Headband and evidence for the association between SWS and fear 

memory consolidation.  

 

4.1 Introduction 

In Chapter 2, I found that manual scoring of Dreem raw data provided sufficient (> 80%) 

agreement with PSG-recorded sleep of the same night, providing evidence for Dreem as 

suitable for the estimation of SWS and REM duration. I also found 78% agreement in N2, so 
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Dreem may be suitable for all non-REM sleep, though I confined my fear conditioning analyses 

to SWS. As reported in Chapter 3, I used the Dreem Headband to record participants’ 

overnight sleep at home, finding that SWS percentage during the night following fear 

acquisition was significantly associated with a greater maintenance (less reduction) of CS 

discrimination overnight. I interpreted this as sleep-dependent fear consolidation. 

Consolidation was also evident after one week, where the same post-conditioning SWS % 

was associated with greater CS discrimination on day 8.  

I initially focussed on sleep stage duration because this metric has often been associated with 

emotional memory (Tucker & Fishbein, 2009; Lau et al., 2010; Diekelmann et al., 2012). Sleep 

staging was also the focus of the previous Dreem validation (Arnal et al., 2020), so there was 

a greater precedent for such analyses. However, further to my results in Chapter 2, relating 

behavioural measures to hallmark physiological features of the EEG signal extends these 

analyses towards underlying neural mechanisms. Such analyses are commonly based on the 

EEG features of non-REM sleep: slow oscillations (SOs) and spindles. Considering that my 

previous results support the potential utility of Dreem data in sleep science, a logical next step 

is to explore how far these analyses can be taken. In addition, my fear conditioning results 

regarding SWS duration would be strengthened – and related more directly to neural activity 

– by complementary findings in spectral power and event detection.  

In this chapter I explore SOs and spindles in my Dreem-recorded non-REM sleep data. First, 

I quantify how Dreem performs against PSG in the measurement of SO and spindle activity 

using my validation data (Chapter 2), I then use these analyses to strengthen my evidence 

towards non-REM sleep and emotional memory consolidation (Chapter 3). 

 

4.1.1 Oscillatory Activity in Non-REM Sleep and Memory Consolidation   

4.1.1.1 Slow Oscillations and Sleep Spindles   

The Active Systems Consolidation Theory suggests that phase locking between cortical slow 

oscillations, thalamic sleep spindles, and hippocampal sharp wave ripples during non-REM 

sleep promotes key mechanisms supporting sleep-dependent memory consolidation, as 

discussed in Chapter 1 (Diekelmann & Born, 2010; Born & Wilhelm, 2012), see Figure 4.1. 

Because these events are required to score N2 and SWS, time spent in non-REM sleep will 

reflect these events. However, a higher-resolution quantification of SOs and spindles (and 

ripples, primarily in rodent data) provides more specific evidence for their roles in memory 

consolidation, informing potential mechanisms relying on coordinated network activity. 
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Figure 4.1 Systems Memory Consolidation During Sleep  

There is a co-occurrence between cortical low frequencies, sub-cortical higher frequencies, and local 

network neuronal firing (A); systems consolidation relies on such coordination between slow 

oscillations, spindles, and ripples (B); brain regions involved are the cortex (red), thalamus (green), and 

hippocampus (blue) respectively (C). Image taken from Klinzing et al. (2019). 

 

In one previous study to demonstrate the utility of these more specific analyses, when 

participants with schizophrenia, their first-degree relatives, and a control group (n=47, 20 

female, mean age 30 years) had overnight sleep recorded with PSG after an auditory learning 

task, there were no differences in N2 or SWS duration. However, schizophrenia patients 

showed reduced fast spindle density (the average number of detected spindle events per 

epoch), which in turn was related to poorer post-sleep recall (Schilling et al., 2017). This also 

occurred to a lesser extent in first-degree relatives of the patients, compared to the control 

group. This suggests that sleep spindles relate more strongly to some types of memory 

consolidation than non-REM duration, they may also be indicative of genetically influenced 

memory consolidation.  

In an example of healthy participants (n=25, all male, mean age 33 years) after overnight 

PSG-recorded sleep, slow oscillation amplitude during SWS predicted working memory 

performance in an n-back task for participants who had improved overnight, while there was 

A 

B 

C 
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no effect of N2 or SWS duration (Ferrarelli et al., 2019). This suggests that SO power supports 

the consolidation of task performance (rather than memory of the content), and again sleep 

stage duration may not be the most sensitive measure of the relationship between non-REM 

sleep and memory. 

In support of this, boosting slow oscillations – which increases SO power but not always SWS 

duration – causally leads to better declarative memory consolidation in various tasks (Marshall 

et al., 2006; Ngo et al., 2013; Garcia-Molina et al., 2018). Meanwhile, further evidence 

suggests that SO activity reflects enhanced limbic-thalamic-cortical coordination and the 

alignment of reactivated memory ensembles encoding task-relevant information (Fernandez 

& Lüthi, 2019; Jiang et al., 2017, 2019; Manoach & Stickgold, 2019; Wei et al., 2018).  

SOs and spindles have been investigated less often in relation to emotional memory, but there 

is mounting evidence for their contributions. For example, in a daytime nap study, participants 

(n=57, 29 female, mean age 21 years) completed an encoding task where they viewed 

negative or neutral object images (Payne et al., 2015). They were then assigned to either a 

nap group or two wake control groups to account for differences in time of day, and all 

participants spent four hours in structured activities before memory was tested. The results 

indicated that recognition memory was better in the nap group for negative objects. However, 

SWS duration was correlated with both emotional and neutral object memory, while spectral 

power in the delta 1–4 Hz frequency was associated only with emotional object recognition. In 

contrast, there were no associations between memory performance and REM sleep. This 

suggests that SWS promotes memory consolidation in general while delta power specifically 

supports preferential emotional memory, evident even after a daytime nap.  

In a subsequent study, spindle activity during SWS was associated with emotional memory 

(Alger et al., 2018). Young (18–39 years) or middle-aged (40–64 years) participants (n=80, 52 

female) encoded negative or neutral objects on a neutral background. Participants were then 

either kept awake, had a 90-minute nap, or a delayed 90-minute nap. During testing four hours 

later, negative objects were remembered better but only after an immediate nap. In young 

adults, SWS was positively associated with negative recall, as were slow oscillation 0.5–1 Hz 

and delta 1–4 Hz power as well as spindle density, amplitude, and power (11–15 Hz). In 

contrast, the older group had less SWS, and spectral associations showed less significant 

effects. These measures were all derived from C3, C4, F3, and F4, to confirm that they were 

not driven by one electrode site. However, this study defined sleep spindles between 11–15 

Hz, which omits many slow spindles at 9–12 Hz (Cox et al., 2017; Mölle et al., 2011). Overall, 

these results suggest that not only time in SWS, but slow oscillation and (mainly fast) spindle 
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spectral dynamics promote emotional consolidation. This may, however, depend on a young 

sample and sleep occurring shortly after encoding.  

There is also evidence from conditioning models for associations between non-REM EEG 

features and fear learning. In one study, rats (n=28, all male, 8–10 weeks old) were exposed 

to the single prolonged stress procedure, a model of PTSD. After this stress, increased REM 

sleep and reduced spindle (10–15 Hz) power during ‘transition to REM’ sleep were associated 

with greater freezing behaviour during fear extinction training one week later (Vanderheyden 

et al., 2015). In another conditioning study, rats (n=4, all male, 12 weeks old) learned the 

location of an aversive air puff while running along a track (Girardeau et al., 2017). 

Reactivation patterns (coordinated firing between the hippocampus and amygdala) that were 

present during encoding peaked with hippocampal sharp wave ripples during post learning 

non-REM sleep. This was stronger for runs with the air puff (CS+) compared to safe (CS-) 

runs. Finally, in mice (n=6, all male, 3–5 months old), optogenetic suppression of hippocampal 

ripples impaired contextual fear conditioned memory the day after acquisition learning (Wang 

et al., 2015). Together, these studies provide consistent evidence that slow oscillations, 

spindles, and sharp wave ripples support emotional memory consolidation.  

 

4.1.1.2 Slow Oscillation-Spindle Coupling  

In addition to SO, spindle, and ripple events during non-REM sleep, recent evidence suggests, 

as proposed in the Active Systems Theory, that the strength of coupling between these events 

also predicts memory consolidation. This has generally been limited to SOs and spindles, 

which are more accessible to study via human EEG. For example, participants (n=28, 14 

female, mean age 22 years) were tested with a verbal memory task after PSG-recorded sleep 

(Niknazar et al., 2015). In a repeated measures design, participants were administered 

zolpidem (to increase GABA-A receptor-mediated signalling), sodium oxybate (to increase 

GABA-B receptor-mediated signalling), or a placebo, before sleep. The results indicated that 

spindle and SO power were correlated with memory performance across groups. After 

zolpidem particularly, more spindles occurred in the slow oscillation transition from the down- 

to up-state which was associated with better verbal memory. This concurs with previous 

findings, where spindles at this specific phase have been associated with better memory 

(Mölle et al., 2011).  

Similar findings have also been reported in a rodent model. Optogenetically stimulated 

thalamic spindles in mice (n=25, all male, 11–14 weeks old) caused an increase in coupling 

between SOs, spindles, and ripple events as well as an increase in memory performance, but 
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again only if stimulation occurred in phase with a slow oscillation up-state (Latchoumane et 

al., 2017). Meanwhile, suppression of thalamic spindles impaired memory performance. 

Together, these studies suggest a causal link between SO-spindle-ripple coupling and 

memory consolidation. 

Despite these findings, like event detection, SO-spindle coupling remains underexplored in 

relation to emotional memory. In one recent study, the first to my knowledge to report this, 

coupling unexpectedly predicted poorer emotional memory. Participants (n=65, 34 female, 

mean age 22 years) underwent the Trier Social Stress Task which provokes social stress by 

asking participants to perform a 5-minute speech and mental arithmetic in front of judges 

(Denis et al., 2021). Comparison against a control task without judges (the social stress) was 

sufficient to elicit significantly greater cortisol in the stress group. Participants then completed 

an emotional image task where they viewed 300 International Affective Picture System images 

and were asked whether they would approach the situation in real life to promote deep 

encoding. Finally, participants had PSG-recorded sleep overnight before a surprise memory 

test the next morning. 

The results indicated better recognition memory for negative and positive images compared 

to neutral, while time spent in SWS was associated with better memory for all image types, 

but only in the stress group. Further investigation indicated that this effect was driven by high 

cortisol responders. Greater coupling between frontal SOs and central spindles was then 

negatively associated with recognition memory for emotional (positive and negative) images, 

again in the stress group only. These results suggest that SWS is associated with better 

memory, but SO-spindle coupling is associated with poorer emotional memory after stress. 

Therefore, stressful encoding potentially leads to greater coupling as a compensatory 

mechanism, but this requires replication. Stress has been consistently reported to affect the 

relationship between sleep and learning due to the interaction between stress hormones and 

subsequent noradrenaline release during encoding (Kim & Payne, 2020; Payne & Kensinger, 

2018). However, this is not often considered in human fear conditioning which represents a 

relatively low stress event. Overall, evidence for SO-spindle coupling in emotional memory 

consolidation is thus somewhat limited.  

 

4.1.1.3 Summary 

There is good evidence for the mechanistic roles of sleep-dependent memory consolidation 

that form the basis of the Active Systems Theory: cortical slow oscillations, thalamic sleep 

spindles, and hippocampal sharp wave ripples, as well as coupling between these events. 
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Though the Active Systems Theory does not explicitly make predictions concerning emotional 

memory, there is also evidence that emotional memory is supported by these same 

mechanisms during non-REM sleep. This concurs with my findings in Chapter 3, where SWS 

duration was significantly associated with fear consolidation. However, slow oscillations and 

spindles should be explored in relation to human fear conditioned responses. 

 

4.1.2 Aims 

In Chapter 3, I found that SWS duration was associated with overnight fear consolidation, 

while previous literature suggests that the EEG hallmarks of SWS – slow oscillations and 

spindles – also relate to emotional memory consolidation. Consequently, I aimed to explore 

whether spectral power, event detection, and phase-amplitude coupling of slow oscillations 

and spindles were also associated with overnight consolidation of the human fear conditioned 

response. I also investigated N2 sleep since it shares the same oscillatory hallmarks as SWS.  

However, while the Dreem Headband may be suitable to estimate sleep stage duration, it is 

not analogous to PSG. Based on my previous findings in Chapter 2, the EEG signal is noisier, 

more prone to artefacts, and has limited coverage. There is also little precedent for such 

analyses in Dreem Headband (or similar) data. Given this, I expected oscillatory analyses to 

present challenges. I therefore first compared the matched PSG and Dreem sleep data 

(Chapter 2), using this to inform my approach to the fear conditioning data.  

These analyses are largely exploratory and so I did not make explicit hypotheses. I aimed to 

quantify slow oscillations and spindles in regard to power spectra, event detection, and phase-

amplitude coupling, ultimately providing further evidence for the utility of the Dreem Headband, 

as well as a greater understanding towards non-REM sleep events and emotional memory 

consolidation.
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4.2 Methods 

In this chapter I present further analyses of the data previously presented in Chapters 2 and 

3. I therefore only briefly reiterate details of the sample and previous data processing. 

 

4.2.1 Samples 

For my validation data, 10 healthy participants (8 female, aged 20–37 years, mean = 25) had 

overnight sleep in a laboratory environment. This was measured by simultaneous PSG and a 

Dreem Headband over two consecutive nights. Four recordings were missing and one was 

discarded for loss of signal, so the final sample consisted of 15 Dreem and 15 PSG recordings 

of matched overnight sleep. While some of these nights are from the same participants, I 

collapsed across night in Chapter 2 after finding no significant differences between night 1 and 

night 2. Likewise, I treat all nights independently in these analyses.  

For my fear conditioning data, 38 healthy participants (28 female, aged 19–30 years, mean = 

23) underwent fear conditioning on day 1 and fear extinction/reinstatement on day 2, 18 

returned for an additional test of extinction and reinstatement on day 8. All participants took a 

Dreem Headband home after fear conditioning on day 1 to record overnight sleep. Sleep data 

were lost for 11 nights, leaving a final sample of 27 Dreem recordings.  

 

4.2.2 Data Processing 

4.2.2.1 Prior Data Processing  

For the validation data (Chapter 2), an ambulatory PSG system recorded six EEG channels 

F3, F4, C3, C4, O1, and O2 at 256 Hz. After recording, these were bandpass filtered at 0.3–

35 Hz and re-referenced from Cz to the linked mastoids (M1, M2). I scored these data 

according to AASM guidelines.  

For both datasets (Chapters 2 and 3), the Dreem Headband recorded five EEG channels Fpz, 

F7, F8, O1, and O2 at 250 Hz, referenced to each other (Fpz-O1, Fpz-O2, Fpz-F7, F8-F7, F7-

O1, F8-O2, Fpz-F8), and bandpass filtered at 0.4–18 Hz. A 3D accelerometer measured 

movement, position, and breathing, while a red-infrared pulse oximeter measured heart rate 

(Arnal et al., 2020). I did not use the pulse oximeter, but I resampled the accelerometer from 

50 to 250 Hz to match the EEG channels and utilised this measure of breathing frequency to 

aid sleep stage classification. With this addition, I also scored these data according to AASM 

guidelines. 
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4.2.2.2 Subsequent Data Processing  

For this chapter, I retrieved and concatenated all 30-second epochs of EEG scored as either 

N2 or SWS for each recording. Because my focus was slow oscillations and spindles which 

are most clearly seen in frontal and central regions, I limited my analyses of PSG to the frontal 

(F3, F4) and central (C3, C4) channels. For Dreem, I compared all frontal-occipital channels 

as the closest approximation to PSG: 'CH1 Fpz-O1', 'CH2 Fpz-O2', 'CH5 F7-O1', and 'CH6 

F8-O2'. I maintained a separation between N2 and SWS.  

Although some epochs (where the majority of the EEG signal was disrupted) were scored as 

artefacts during sleep scoring, these SO and spindle analyses required a cleaner signal and 

thus a more stringent selection process. Therefore, I reviewed every epoch of N2 and SWS 

across the selected channels, removing those still containing artefacts (Figure 4.2). I 

employed visual artefact rejection using the Fieldtrip toolbox (Oostenveld et al., 2010), since 

it was unclear how automatic rejection would apply to Dreem data. Initially, I rejected whole 

channels containing a large number of corrupt trials, then trials (30-second epochs) were 

assessed individually. 

 

Figure 4.2 Example Rejected Channel and Trials 

First, channels with a large number of corrupted trials were rejected, this only occurred in Dreem 

recordings (A). Remaining individual trials were then reviewed. Those containing artefacts were 

rejected; for example, Dreem (B) and PSG (C).  
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4.2.3 Data Analyses 

I defined slow and fast spindle frequencies at 9–12 Hz and 12–15 Hz respectively (Cox et al., 

2017; Mölle et al., 2011). For slow oscillations, the AASM defines 0.5–2 Hz (Parrino et al., 

2009), but slow oscillations modulating spindles have been previously defined at < 1 Hz (Mölle 

et al., 2011), or 0.5–1.5 Hz (Cox et al., 2012). Since Dreem filters out frequencies below 0.4 

Hz, I followed the latter 0.5–1.5 Hz slow oscillation definition.  

I calculated power spectra using the Chronux toolbox (Bokil et al., 2010). Frequencies 

between 0.5 and 20 Hz were analysed using a Fast Fourier Transform based spectral analysis 

with 0.5 Hz resolution and a 10-second multi-taper window: (resolution*window*2) - 1 = 9 

tapers. This analysis separates distinct frequencies within a complex signal and plots the 

relative magnitudes. I used the log10 decibel (dB) scale to illustrate power across frequencies.  

I employed an automatic algorithm for spindle and slow oscillation event detection (Navarrete, 

2017). This algorithm detects spindles at 9-16 Hz over a 0.5–2 second duration and single 

oscillations at 0.3–2 Hz, based on Silber et al. (2007); it does not distinguish slow and fast 

spindles. Detection occurs only in N2 and SWS scored epochs, and an adaptive noise-signal 

threshold is used based on the EEG data of each recording. This software illustrates detected 

events plotted onto the EEG signal input (shown in Appendix F). 

Phase-amplitude coupling describes a form of covariance between oscillations of different 

frequencies when the phase of a slower (modulating) oscillation is consistently associated with 

the amplitude of a faster (modulated) signal (Jensen & Colgin, 2007). I calculated phase-

amplitude coupling (PAC) using MATLAB code which was previously developed in the lab 

(Onslow et al., 2011; Onslow, 2012). I used the modulation index calculation method which 

has been suggested for short epochs and noisy data (Onslow et al., 2011; Hülsemann et al., 

2019), with a phase and amplitude frequency resolution of 0.5 Hz. This code shuffles the data 

50 times to determine statistically significant PAC values, so only those where p < .05 are 

retained.    

I used paired-samples t-tests to test for differences between PSG and Dreem, and linear 

regression with 95% confidence intervals to test for associations between PSG and Dreem. 

Statistics were carried out in Matlab 2019b and IBM SPSS 26. 
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4.3 Results 

I first compared PSG and Dreem for the analysis of slow oscillations (SOs) and spindles using 

the validation data presented in Chapter 2. I then investigated these metrics in the post-

conditioning Dreem data of Chapter 3.  

 

4.3.1 Dreem Validation Data 

I investigated artefact rejection within Dreem and PSG. Two Dreem recordings were discarded 

because all frontal-occipital channels were corrupted. I compared the remaining recordings 

(n=13) matched for the same sleep as recorded by PSG and Dreem, finding significantly 

greater channel and trial rejection in Dreem across both N2 and SWS (Table 4.1). This was 

driven by high removal of CH2 and CH6 (Table 4.2), suggesting these sites may have been 

particularly vulnerable to movement or disruption by simultaneous PSG.  

 

Table 4.1 Average Rejected Channels and Trials per Recording for Dreem and PSG  

  Mean ± SD   

  Dreem PSG t (12) p 

Channels  

(max = 4) 

N2   1.92 ± 0.64 0 ± 0 -10.82 < .001 

SWS   1.62 ± 0.96 0 ± 0  -6.06 < .001 

Trials N2  
 

119.62 ± 86.73 44.08 ± 46.50   3.03     .011 

SWS 
 

 32.08 ± 18.97 5.15 ± 2.41   4.90  < .001 

Paired-samples t-tests. Mean total number of trials for N2/SWS: PSG (391/194), Dreem (380/202). 

 

Table 4.2 Dreem Channels Retained 

 CH1 Fpz-O1 CH2 Fpz-O2 CH5 F7-O1 CH6 F8-O2 

N2 12 1 13 1 

SWS 12 3 13 3 

Maximum retention = 13.  
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I then investigated power between the selected channels. First, I show a previous study of 

high-density EEG to demonstrate a clear spectral distinction between frontal and central 

electrodes in slow and fast spindle frequency peak (Figure 4.3). 

 

 

Figure 4.3 Example Power Spectra Showing Fast and Slow Spindles  

Example of high density EEG data showing fast and slow spindle power (Mölle et al., 2011). There 

tends to be greater power in slower frequencies, but there is a distinct spindle peak in both the slow 

and fast spindle frequency range in SWS (A). Slow oscillations and slow spindles are strongest in frontal 

electrodes, while fast spindles are strongest in central electrodes (B).  

A

 

B
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In my data, I was interested in SO (0.5–1.5 Hz), slow spindle (9–12 Hz), and fast spindle (12–

15 Hz) power. Average spectral peaks in the slow oscillation band of around 0.85 Hz indicated 

that this range was suitable for PSG and Dreem. PSG also showed a spindle peak at 9–14 Hz 

for frontal channels and 14 Hz for central channels, although Dreem power was greater across 

all frequencies with no clearly discernible spindle peak (Figure 4.4).  

 

 

Figure 4.4 Power Spectra Across Frequencies in Dreem and PSG  

Spectral power (dB), averaged across recordings (n=13), indicated that Dreem channels similarly 

showed greater SO power compared to PSG and no discernible spindle peak, for N2 (A) or SWS (B). 

In contrast, PSG showed a spindle peak at 9–14 Hz in frontal channels and ~14 Hz in central channels 

for both N2 (C) and SWS (D). Slow oscillation and spindle frequency bands are highlighted.  

 

Average power spectra indicated little difference between Dreem channels. However, 

considering prior rejection, I averaged CH1 Fpz-O1 and Channel CH5 F7-O1 per recording 

(Figure 4.5). For PSG, I averaged the frontal (F3, F4) and central electrodes (C3, C4). 
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Figure 4.5 Power Spectra per Recording 

Channel CH1/CH5, F3/F4, and C3/C4 averaged power (dB) for N2 and SWS across Dreem (A, D), frontal PSG (B, E) and central PSG (C, F). Mean across 

recordings (n=13) is shown in bold. Where CH1 was rejected (n=1), I used CH5 only.
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To quantify differences between Dreem and PSG, I averaged power within the frequency 

bands of interest (0.5–1.5, 9–12, 12–15 Hz). Since Dreem showed greater power across all 

frequencies, I also quantified power as a proportion of total power: average power in the 

specified range divided by average power across all measured frequencies (0.4–20 Hz). I 

focussed on frontal PSG channels as the closest comparison to Dreem.  

As indicated by the power spectra (Figure 4.5), I found significantly greater power in Dreem 

compared to PSG in N2 and SWS for SOs, and in SWS for slow and fast spindles (Figure 

4.6). Broadly, adjusting power by the proportion of total power reduced the differences 

between Dreem and PSG in SWS but increased them in N2. However, the effect of outliers 

appears to be reduced. This suggests that calculating proportional power does not account 

for the raw power difference yielded by Dreem recordings, though it may enable a more 

consistent estimate in relation to PSG.  

I also investigated associations between Dreem and PSG power with linear regression. This 

indicated that a significant group difference did not necessarily translate into strength of 

association: all power metrics suggested that Dreem values significantly predicted PSG 

values. As a proportion of total power, all metrics across N2 showed a significant association 

but Dreem slow spindle power in SWS no longer predicted PSG. However, associations were 

generally stronger when values were calculated as a proportion of total power (Figure 4.7, 

Table 4.3). 
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Figure 4.6 Power in Slow Oscillation and Spindle Frequencies Across Dreem and PSG  

Dreem recordings showed significantly increased power across SO in N2 and SO, slow spindles, and fast spindles in SWS (A–C). As power proportional to 

total power, Dreem was greater in SO, slow spindles, and fast spindles in N2, but only in fast spindles in SWS (D–F).  * p < .050, ** p < .010, *** p < .001.  
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Figure 4.7 Associations Between Dreem and PSG in Slow Oscillation and Spindle Frequency Power 

Dreem power was significantly associated with PSG power across SWS in SO (A), slow spindle (B), and fast spindle (C) frequencies; there were no associations 

in N2. Still, except N2 fast spindles, proportional power was significantly associated in all frequencies across N2 and SWS (D–F). Significant p-values shown.  
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Table 4.3 Power Differences and Associations Between Dreem and PSG Across SO and Spindle Frequencies 

   Paired-Samples t-test Linear Regression (Unstandardised Coefficients) 

 Frequency (Hz)  t (12) p      R2 F (1,11)        p B [SE] 95% CI 

Power SO: 0.5–1.5 N2   4.02    .002 .01  0.09   .768 0.06 [0.20] -0.39, 0.51 

SWS   5.15 < .001 .40  7.23   .021 0.60 [.22]  0.11, 1.08 

Slow Spindle: 9–12  N2   2.12    .055 .07  0.05   .825 0.05 [0.23] -0.45, 0.55 

SWS   2.93     .013 .58  5.62   .037 0.58 [0.25]  0.04, 1.12 

Fast Spindle: 12–15  N2   0.35    .730 .22  0.54   .478 0.18 [0.25] -0.36, 0.73 

SWS   3.13    .009 .34  5.66   .037 0.56 [0.24]  0.04, 1.08 

Proportional 

Power  

SO: 0.5–1.5 N2   6.35 < .001 .66 21.10   .001 0.91 [0.20]  0.48, 1.35 

SWS  -0.66    .520 .44   8.71   .013 0.68 [0.23]  0.17, 1.19 

Slow Spindle: 9–12  N2   3.53    .004 .24   3.46   .090 0.33 [0.18] -0.06, 0.72 

SWS  -0.80    .438 .51 11.40   .006 1.00 [0.30]  0.35, 1.65 

Fast Spindle: 12–15  N2   5.90 < .001 .08   0.97   .345 0.21 [0.21] -0.25, 0.67 

SWS 13.63 < .001 .81 47.87 < .001 0.78 [0.11]  0.53, 1.03 
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I then investigated event detection of SOs and spindles. Because the high rejection of Dreem 

data could have affected the results and the detection algorithm uses an adaptive threshold 

to account for noise, I used all trials scored as N2 or SWS. Again, I averaged PSG channels 

F3/F4 and all Dreem frontal-occipital channels (excluding rejected channels per recording). 

This indicated significantly more detected SOs across N2 and fewer spindles across both N2 

and SWS in Dreem, though there was no significant difference in SOs across SWS. 

Meanwhile, linear regression indicated that Dreem detections significantly predicted PSG 

detections in SO count across SWS but not N2, and PSG spindle count across N2 but not 

SWS (Figure 4.8, Table 4.4). 

 

 

 

Figure 4.8 Slow Oscillation and Spindle Event Detection in Dreem and PSG 

More slow oscillations (A) and fewer sleep spindles (B) were detected in Dreem recordings across N2. 

There was no significant difference in SOs and a smaller difference in spindles in SWS. * p < .050, *** 

p < .001. There were positive associations between Dreem and PSG in detected SOs in SWS (C) and 

spindles in N2 (D), but not SOs in N2 or spindles in SWS. Scatter shows individual recordings (n=13). 

Significant p-values are shown.  
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Table 4.4 Differences and Associations in Slow Oscillation and Spindle Detection  

  Paired-

Samples t-test 

Linear Regression (Unstandardised Coefficients) 

  t (12)     p      R2 F (1,11)  p  B [SE] 95% CI 

Slow 

Oscillations 

(100s) 

N2 -2.77    .017     .16 2.13 .172  0.20 [0.14] -0.10, 0.51 

SWS -0.22    .827     .51 11.33 .006  0.69 [0.21]  0.24, 1.15 

Spindles 

(100s) 

N2  7.14 < .001     .61 17.28 .002  0.98 [0.24]  0.46, 1.50 

SWS  2.23    .046     .03 0.36 .562  0.23 [0.38] -0.61, 1.07 

 

 

Potentially, event detection could have been affected by the number of epochs scored in N2 

and SWS as this differed across PSG and Dreem recordings of the same night. However, 

density results (SO or spindle count divided by the number of epochs scored in N2 or SWS) 

were similar: Dreem-detected density positively predicted PSG-detected density in SO across 

SWS (p = .004) but not N2 (p = .365), and spindle density across N2 (p = .018) but not SWS 

(p = .683). Full results are shown in Appendix F.  

Finally, I investigated PAC between slow oscillation (0.5–1.5 Hz) phases and spindle (9–15 

Hz) amplitudes. I simulated EEG data with a phase-amplitude coupling between a 0.5 Hz 

phase modulating a 10.5 Hz amplitude, with a secondary coupling between a 1 Hz phase 

modulating a 14 Hz amplitude. Analogous to my sleep EEG data, I created 200, 30-second 

trials with a random phase shift (≤ pi/2) to distinguish each trial, code developed by Onslow 

(2012). I concatenated trials and calculated PAC in the same way as my sleep data. I also 

show the simulated raw EEG trace (Figure 4.9). Each pixel represents the coupling power 

within a 0.5 Hz range; if this did not reach significance (p < .05) the value was recorded as 

zero. 



140 
 
 

 

 

Figure 4.9 Simulated Data: SO-Spindle Phase-Amplitude Coupling 

An illustrative 15-second segment of the simulated raw EEG signal (A) used to calculate phase-

amplitude coupling across 200, 30-second trials (B). Warmer colours indicate greater power. 

I used this phase-amplitude coupling method to compare PSG and Dreem recordings across 

N2 and SWS. Coupling in Dreem was strongest at a phase of 1–1.5 Hz and an amplitude 

around 9–12 Hz. This reflects slow spindle frequencies. PSG coupling was more widely spread 

across a phase of 0.5–1.5 Hz and amplitude of 9–15 Hz. This reflects both slow and fast 

spindle frequencies (Figure 4.10). 
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Figure 4.10 PACgrams Showing SO-Spindle Phase-Amplitude Coupling in Dreem and PSG  

Mean (n=13) PAC values for 0.5–3.5 Hz phases and 8–16 Hz amplitudes were greater in PSG compared to Dreem, in N2 sleep (A–C), and SWS (D–F). Across 

methods, PAC tended to be greater in SWS than N2. All power axes are set to the same scale.   
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As with the power spectra, I averaged PAC values within slow oscillation 0.5–1.5 Hz (phase) 

and slow spindle 9–12 Hz / fast spindle 12–15 Hz (amplitude) frequencies and then compared 

Dreem and PSG. I found significantly greater coupling in PSG at fast spindle amplitudes in 

N2, but no significant differences in SWS or for slow spindle amplitudes. However, linear 

regression indicated that Dreem was an effective predictor of PSG in fast spindle coupling 

(Figure 4.11, Table 4.5).  

 

 

   

 

Figure 4.11 Phase-Amplitude Coupling Differences and Associations Between Dreem and 

PSG  

There were no significant differences between PAC for slow spindle amplitudes (A), but PSG showed 

greater PAC in N2 for fast spindle amplitudes (B). There was a significant association for slow spindle 

amplitudes between Dreem and PSG coupling in SWS but not N2 (C). However, in fast spindle 

amplitudes there were significant positive associations in both N2 and SWS (D). Significant p-values 

are shown. ** p < .010.  
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Table 4.5 Phase-Amplitude Coupling Differences and Associations Between Dreem and PSG  

  Paired-

Samples t-test 

Linear Regression (Unstandardised Coefficients) 

Frequency 

(Hz) 

 t (12)     p      R2 F (1,11)        p B [SE] 95% CI 

Slow 

Spindle: 

9–12 

N2 -1.20    .253     .27   4.05      .069  1.11 [0.55] -0.10, 2.31 

SWS -0.41     .689     .44   8.79      .013  0.55 [0.18]  0.14, 0.95 

Fast 

Spindle: 

12–15 

N2 -2.73    .018     .72  27.58   < .001  1.25 [0.24]  0.73, 1.78 

SWS  -1.26    .233     .83  54.66   < .001  1.26 [0.17]  0.89, 1.64 

 

In summary, Dreem was generally a poor indicator of PSG-measured SOs and spindles, 

showing overestimated spectral power, no discernible spindle peak, and reduced SO-spindle 

coupling. However, event detection was more successful with strong associations between 

Dreem and PSG for SOs in SWS and spindles in N2 sleep. 

 

4.3.2 Fear Conditioning Data 

Following analysis of my Dreem validation data, I investigated event detection and spectral 

power in the sleep recorded as part of my fear conditioning experiment. In Chapter 3, I found 

a positive association between SWS duration and overnight change in discriminatory learning 

of the fear conditioned response, so I confine my analyses here to this outcome. These data 

were processed as the Dreem data above.  

Of 27 intact Dreem sleep recordings, three were discarded because all frontal-occipital 

channels were corrupted (final n=24). Trial and channel rejection were slightly lower than the 

Dreem data of Chapter 2 (Table 4.6). Again, channel rejection was primarily from CH2 Fpz-

O2 and CH6 F8-O1, but not as severe as the validation study (Table 4.7). 
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Table 4.6 Dreem Channels and Trials Rejected: Fear Conditioning Data 

 Sleep Stage Mean ± SD 

Channels                                      

(max = 4) 

N2   1.28 ± 1.06 

SWS   0.76 ± 1.01 

Trials 

 

N2 96.08 ± 82.78 

SWS  17.32 ± 18.51 

Mean total number of trials for N2/SWS: 395/180. 

 

Table 4.7 Dreem Channels Retained: Fear Conditioning Data 

 CH1 Fpz-O1 CH2 Fpz-O2 CH5 F7-O1 CH6 F8-O1 

N2 22 13 21 12 

SWS 23 17 24 17 

Maximum retention = 24.  

 

Visual analysis of power spectra between the channels indicated few differences. Therefore, 

unlike the validation data, I averaged across all available channels for every participant 

(Figure 4.12). 
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Figure 4.12 Power Spectra in Fear Conditioning Data 

Dreem power (dB) averaged across recordings (n=24) was similar to the validation data, for N2 (A), 

and SWS (B). Slow oscillation and spindle frequencies are highlighted. Spectra per participant, 

however, showed greater variation, in N2 (C), and SWS (D). The mean is shown in bold. 

 

I then calculated power and event detection for SO and spindle frequencies. Based on my 

previous findings in the validation data, I limited power analyses to a proportion of total power. 

I investigated associations between these metrics and overnight consolidation of the fear 

conditioned response (Table 4.8). There was a negative but non-significant association 

between fast spindle power in N2 sleep and overnight fear consolidation, and a positive 

association between SO count in SWS. These were significantly driven by CS- change and 

CS+ change respectively (Figure 4.13).  
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Table 4.8 Power and Event Detection Associations with Overnight Fear Consolidation  

 

Power/Event 

  

     R2 

 

 F (1,20) 

 

     p 

Unstandardised Coefficients 

 B [SE] 95% CI 

Slow Oscillation 

Power 

N2     .02  0.37     .549 -0.03 [0.05] -0.13, 0.07 

SWS     .00  0.01     .923 -0.01 [0.05] -0.10, 0.09 

Slow Spindle 

Power 

N2     .01  0.18     .676  0.01 [0.01] -0.02, 0.04 

SWS     .01  0.25     .623  0.03 [0.06] -0.10, 0.17 

Fast Spindle 

Power 

N2     .12  2.75     .113 a -0.15 [0.09] -0.33, 0.04 

SWS     .09  1.88     .185 -0.12 [0.08] -0.29, 0.06 

Slow Oscillation 

Count (100s) 

N2     .01  0.18     .676  0.01 [0.01] -0.02, 0.04 

SWS     .27  7.20     .014 b  0.04 [0.02]  0.01, 0.07 

Spindle Count 

(100s) 

N2     .04  0.88     .361 -0.04 [0.05] -0.14, 0.05 

SWS     .10  2.13     .160  0.14 [0.09] -0.06, 0.33 

a Driven by CS- change: R2 = .35, F (1,20) = 10.97, p = .003, B = 0.19, SE = 0.06, CI = [0.07, 0.31]. 

This in turn was strengthened by excluding non-learners: R2 = .38, F (1,13) = 8.00, p = .014, B = 0.23, 

SE = 0.08, CI = [0.06, 0.41]. There was no association for CS+ change, p = .554. 

b Driven by CS+ change: R2 = .40, F (1,20) = 10.27, p = .004, B = 0.03, SE = 0.01, CI = [0.01, 0.05]. 

This in turn was strengthened by excluding non-learners: R2 = .46, F (1,13) = 11.27, p = .005, B = 

0.04, SE = 0.01, CI = [0.01, 0.06]. There was no association for CS- change, p = .510. 
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Figure 4.13 Spindle and SO Associations Overnight Fear Consolidation  

Fast spindle power in N2 was positively associated with overnight change in CS- responses, while there 

was no association for CS+ change (A). SO count in SWS was positively associated with overnight 

change in CS+ responses, while there was no association for CS- change (B). Significant p-values are 

shown (n=21). 

 

I also investigated whether the finding in SO count was reflected in SO density (SO 

count/number of scored epochs), and found a significant positive association between SO 

density in SWS and CS+ change overnight, R2 = .20, F (1,20) = 4.96, p = .038, B = 0.07, SE 

= 0.03, CI = [0.01, 0.13].  

Finally, I calculated the PAC between slow oscillation phases and fast or slow spindle 

amplitudes. There was coupling within these frequencies similar to my previous Dreem 

(Chapter 2) data (Figure 4.14), but no associations with overnight change in CS discrimination 

(Table 4.9).  
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Figure 4.14 PACgrams Showing Slow Oscillation-Spindle Coupling Across N2 and SWS 

During Post-Conditioning Sleep 

There was significant phase-amplitude coupling in the expected frequencies, mainly in slower spindle 

amplitudes in N2 sleep (A). This was stronger and extended into faster spindle frequencies in SWS (B). 

Power is set to the same scale.  

 

Table 4.9 Associations Between PAC Power and Overnight Fear Consolidation  

 

Power Range  

  

     R2 

 

F (1,21) 

 

     p 

Unstandardised Coefficients 

 B [SE] 95% CI 

Slow Spindle 

Coupling  

N2     .00  0.05    .834  0.01 [0.02] -0.04, 0.05 

SWS     .01  0.23    .636  0.01 [0.01] -0.02, 0.04 

Fast Spindle 

Coupling  

N2     .01  0.14    .709 -0.02 [0.06] -0.15, 0.10 

SWS     .00  0.02    .888  0.00 [0.03] -0.07, 0.06 

Linear Regression.  
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4.4 Discussion 

4.4.1 Summary of Results 

In this chapter I explored my Dreem EEG data from Chapters 2 and 3 for the analyses of slow 

oscillations (SOs) and sleep spindles. I first compared matched nights of sleep recorded by 

Dreem and simultaneously by the gold standard of sleep measurement, PSG. Subsequently, 

I explored whether SOs and spindles were associated with overnight fear consolidation, 

finding that detected SO events in SWS were associated with a more positive change in CS+ 

(SCR) responses (Figure 4.13). 

In spectral analyses, Dreem showed significantly greater spectral power than PSG across SO 

and spindle frequencies. However, this was driven by a wideband increase in power across 

all frequencies. I attempted to correct for this by calculating power as a proportion of the total 

power across all measured frequencies. This was successful in reducing outliers, but 

significant differences between PSG and Dreem remained. Linear regression indicated that 

Dreem was largely more successful in proportional power, but the PSG variance explained by 

Dreem was still irregular (e.g. very good in fast spindle power in SWS, but non-existent in fast 

spindle power in N2). This suggests that Dreem overestimates power and may not be 

indicative of the variation in PSG in some metrics. Nevertheless, power spectra of my fear 

conditioning data showed greater variation and a discernible spindle peak for three 

participants. This suggests that Dreem can detect spindles in a minority of individuals; it may 

also be reflective of better-quality data, as indicated by the lower artefact rejection. An 

exploration of these metrics in relation to my fear conditioning results indicated that fast spindle 

power was associated with a more negative change in CS- fear response overnight, but this 

result requires replication.  

In subsequent event detection, Dreem was relatively accurate in the defining features of each 

stage: spindles in N2, and SOs in SWS. This disparity between power and event detection 

could be caused by poor signal quality, suggesting that the Dreem EEG signal contains noise 

in the SO and spindle frequency bands even after removal of visually identifiable artefacts. In 

SWS in particular, Dreem predicted 51% of the variance in PSG and there was no significant 

group difference. For spindles in N2, there were significantly fewer spindles detected in 

Dreem, but Dreem predicted 61% of the variance in PSG. Dreem was less accurate for 

spindles in SWS and SOs in N2, with significantly fewer spindles and more SOs; there were 

also no significant associations between Dreem and PSG detections in these metrics. 

However, in the fear conditioning data, SO count was significantly associated with overnight 

fear consolidation in accordance with the association with SWS duration (Chapter 3). SO 
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density (the average number of SO events in each 30-second SWS epoch) was similarly 

associated with fear consolidation, suggesting this effect is independent of SWS duration.  

Finally, I found that quantification of the phase-amplitude coupling (PAC) between SO phases 

and spindle amplitudes indicated significant coupling on average in Dreem, but this was 

greater and more specific in PSG. That being said, some Dreem coupling significantly 

predicted PSG coupling, explaining 72–83% of the variance in fast spindle frequencies. I found 

similar coupling in my fear conditioning Dreem data; however, there were no significant 

associations with overnight fear consolidation.  

Overall, Dreem, when compared to PSG, was inaccurate in spectral power, showing no 

discernible spindle peak and reduced SO-spindle coupling. Nevertheless, event detection was 

successful, especially for the characteristic signatures of each stage i.e., SOs in SWS and 

spindles in N2 sleep. I subsequently found a positive association between SO event detection 

and overnight fear consolidation in my fear conditioning data. There was also an association 

between fast spindle power in N2 and CS- change overnight, though I did not find any effect 

of SO-spindle coupling. However, these results suggest that some event detection is 

appropriate for Dreem-recorded data and that Dreem-detected SOs promote fear memory 

consolidation. 

 

4.4.2 Fear Memory Consolidation in Non-REM Sleep   

In Chapter 3 I found that SWS duration as a proportion of total sleep time was significantly 

associated with a maintenance of CS discrimination overnight: change in CS+/CS- responses 

from the last trial of acquisition training on day 1 to the first trial of extinction training on day 2. 

In this chapter, I explored whether this consolidation was reflected in SO and spindle power 

spectra, event detection, and PAC. In Chapter 3 I also found an association between SWS % 

and CS discrimination on day 8, but I chose to focus on overnight change, considering the low 

day 8 sample size.  

I did not find that power spectra or SO-spindle PAC was related to overnight fear consolidation. 

However, the positive association with SO count suggests evidence for the neural 

mechanisms underlying memory consolidation, specifically, the maintenance of learned fear 

discrimination overnight. Like SWS %, the association with SO count was driven by CS+ 

changes: more detected oscillations during SWS were associated with a more positive change 

in fear response (as measured by SCR) to the danger stimuli overnight. This was also 

strengthened by excluding non-learners, despite the reduced sample size. This suggests that 

the coordinated neural activity reflected by SOs promotes consolidation of fear learning, in line 
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with previous literature (Krugliakova et al., 2020; Menicucci et al., 2020; Tatsuno et al., 2020). 

This overnight association was also reflected in SO density suggesting that the number of SOs 

in each SWS-scored epoch, regardless of the number of scored epochs, has a beneficial 

memory consolidation effect.  

I also found a positive association between fast spindle power in N2 and overnight change in 

fear response to the CS-. However, this result is tenuous, considering that my Dreem 

validation data suggested Dreem was highly inaccurate in this measure. In addition, Dreem is 

not expected to detect many fast spindles, since they are seen most clearly from central 

locations which Dreem does not record. Furthermore, I found no evidence that detected 

spindle events in N2 were related to CS- change. 

If the association between fast spindle power and an increase in CS- response overnight were 

substantiated, it could suggest that fast spindles in N2 following fear learning play a role in 

fear generalisation (from the CS+ to the CS-). Previously, fast spindles have been associated 

with the generalisation of non-emotional declarative memory (Hennies et al., 2016; Chatburn 

et al., 2021). One possible mechanism is a tighter coupling than slow spindles with slow 

oscillations and hippocampal ripples (Clemens et al., 2011; Mölle et al., 2011). Fast spindles 

have also been associated with memory reactivation during sleep. In 25 female participants 

(mean age 20 years), presentation of a contextual odour during non-REM sleep, previously 

present during the learning of word pairs, elicited greater fast spindle amplitude and density, 

although this was not related to improved post-sleep memory (Cox et al., 2014). On balance, 

my result fits with previous literature but should primarily be viewed as showing potential for 

further investigation.  

 

4.4.3 Limitations of EEG Analyses in the Dreem Headband   

Arguably, the Dreem Headband was not designed for the analyses I have presented in this 

chapter. While the previous Dreem validation study assessed spectral power, reporting a 

mean percentage error of 10–16 % across alpha, beta, delta, and theta frequencies, Dreem 

were able to develop an algorithm to determine spectral similarity between Dreem and 

concurrent PSG which automatically selected the best channel for each frequency band per 

30-second epoch. This was not replicable in my data. PSG channels were also referenced to 

occipital channels; this provided greater similarity between PSG and Dreem but may not reflect 

the typical PSG signal. Consequently, my validation of sleep wearable technology (and by 

extension the investigation of emotional memory consolidation using this method) was still 
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somewhat exploratory. While these wearables will continue to develop, current limitations 

curtail some analyses.  

Firstly, the Dreem Headband lacks the basic coverage of PSG. This is most notable in the 

absence of central electrodes, but the frontal electrodes are also further forward than standard 

PSG positions F3 and F4 (shown in Figure 1.1, General Introduction). Dreem also lacks the 

mastoid electrodes which normally provide the reference for a PSG-recorded EEG signal. 

Instead, Dreem references frontal channels to either other frontal channels or the occipital 

channels. I analysed the frontal-occipital electrodes because, based on the topography, they 

are most likely to represent a signal closest to PSG. However, it is difficult to establish exactly 

what effect referencing had on the data. For example, PSG channel F3 shows the electrical 

signal from this point minus the signal averaged from the mastoids. In contrast, CH1 FPz-O1 

shows a (further forward) frontal signal minus that from the back of the head. This means that 

even if the recording from Dreem versus PSG electrodes were identical, the EEG would not 

look the same.  

The other major disadvantage of Dreem (compared to PSG) is the use of dry electrodes which 

are not fixed in position. This is likely to increase impedance and reduce the signal-to-noise 

ratio. This was reflected in my power spectra results. Event detection, along with visual 

examination of the data during the sleep scoring of Chapter 2, suggested that sleep spindles 

can be seen in Dreem data; therefore, the lack of spindle peak in spectral power suggests that 

noise around these frequencies obscures the usual pattern. This is despite the substantial 

artefact rejection I employed before spectral analyses to clean the data. In contrast, I found 

event detection to be relatively accurate, at least for spindles in N2 and SOs in SWS. This 

suggests that the more specific measure of event detection is more suitable than power band 

estimates in Dreem EEG data.  

Poor quality Dreem data in my validation study could be a direct consequence of unwanted 

interactions between Dreem and PSG, for example, PSG electrodes causing the headband to 

sit outside the normal position. I rejected nearly half of all Dreem channels and then 31% of 

N2 trials and 16% of SWS trials. This level of rejection meant that my estimates of spectral 

power were based on reduced data and so may be less reliable. Nearly all of the channel 

rejection in Dreem came from Channel 2 Fpz-O2 and Channel 6 F8-O2, which could suggest 

that Dreem’s O2 electrode was particularly sensitive to disruption. In contrast, the previous 

validation study (Arnal et al., 2020) only reported a 2.1% rejection; however, this is likely to be 

due to switching between channels per epoch. My approach was arguably less refined, but 

more replicable. Artefact rejection in my fear conditioning data was also not as severe as my 

validation study: channels 2 and 6 were rejected more often than the others but were still 
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retained for approximately half the recordings, while subsequent trial rejection at 24% and 9% 

for N2 and SWS respectively was also improved. This indicates a higher quality of Dreem data 

when it was the only recording device worn during sleep. 

Finally, the Dreem Headband was designed for closed loop auditory stimulation: short bursts 

of sound to boost SOs (Debellemaniere et al., 2018). If designed with SO detection in mind, it 

is conceivable that the headband actively overestimates SOs in the EEG signal to target as 

many as possible. This could explain why Dreem overestimated SOs in N2, although it showed 

good accuracy in SWS. A consistent overestimation of SOs in N2 would need to be replicated 

in a larger dataset to be confirmed.  

 

4.4.4 Strengths and Limitations  

A strength of this study is that the event detection algorithm I used offers a visual 

representation of detected events on the EEG input signal, as well as event histograms and 

power spectra per epoch (see Appendix F). Since these analyses of Dreem EEG data were 

novel, it was advantageous to view the data in this way. I did not count SOs and spindles 

manually, but I visually checked every recording for sensible detection. My finding that 

detected SOs were positively associated with fear consolidation concurs with the finding in 

Chapter 3 regarding SWS duration. This was based on my sleep scoring of Dreem data and 

so agreement provides a corroboration of both measures.  

However, a limitation of my Dreem validation is the small sample size. In Chapter 2, I collapsed 

across night for measurements of sleep stage, but SO and spindle metrics may be more prone 

than sleep stage duration to stronger consistency across the same individuals (Massimini et 

al., 2004; Purcell et al., 2017; Cox et al., 2017). After additional rejection of two nights (from 

the same participant), only five people contributed both consecutive nights of data for these 

analyses; therefore, statistical comparisons within and between individuals would not have 

been particularly meaningful. In the future, a larger sample which records multiple nights would 

be informative. My validation could have also been affected by the PSG system, which only 

comprised of six EEG channels. Higher density recording would have better captured fast and 

slow spindles. In contrast, my fear conditioning data offered a larger sample which was 

reflected in lower artefact rejection and more typical power spectra; although, there is no 

indication of how the results would compare to PSG-recorded sleep after fear conditioning.  

Furthermore, because of the limitations of Dreem, I did not synchronise event detection, i.e. 

attempt to detect the same events in Dreem and PSG as defined by their time stamp. I 

expected that differences in recording quality, coverage, and referencing would make such an 
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analysis unreliable. Although my analysis of SO/spindle count and density is less precise, it 

gives some indication of the utility of Dreem for such analyses, especially when this agrees 

with sleep stage duration – as was the case with my findings between SWS duration and 

emotional memory consolidation.  

My quantification of phase-amplitude coupling may also have lacked precision. In a previous 

investigation of emotional memory consolidation (Denis et al., 2021), SO–spindle coupling 

was measured from channels F3/F4 for SOs and channels C3/C4 for spindles. Another study 

reported the isolation of events and then the detected coupling of spindles specifically within 

each slow oscillation (Mikutta et al., 2019). My coupling analyses were arguably a simplified 

version of this, adapted to the Dreem Headband’s lack of central channels and atypical 

referencing. Consequently, I only looked for coupling between slow oscillation frequency 

phases with spindle frequency amplitudes across the whole EEG; this may not reflect actual 

SOs and spindles. While I did find significant coupling in the expected frequencies, these 

results are likely to be a broad estimation of the true coupling in these data.  

Finally, my assessment of non-REM sleep would have been strengthened by the exploration 

of delta oscillations. Distinguishing between slow oscillations and delta oscillations is 

complicated by a lack of standard approach to precise parameters in the literature. SOs have 

been defined at < 1 Hz, < 2 Hz, or 0.5–1.5 Hz (Cox et al., 2012; Lanquart et al., 2018; Mölle 

et al., 2011; Parrino et al., 2009), whereas delta oscillations have been defined from 0.5–4 Hz, 

to 1.5–4 Hz (Amzica & Steriade, 2002; Dang-Vu et al., 2005). Delta power during non-REM 

sleep has been associated with greater emotional object recognition after sleep in the absence 

of an effect for slow oscillations at 0.5–1Hz (Payne et al., 2015). Although, in a subsequent 

study, both SO and delta power were associated with post-sleep recall for negative items 

(Alger et al., 2018). Alternatively, slow oscillations and delta waves may have competing roles. 

In one rodent study (n=12 rats, all male, 12 weeks old), reactivation during SOs and delta 

waves led to a weakening and strengthening of the memory respectively (Kim et al., 2019), 

though this was not emotional memory but brain-machine interface learning. Slow and delta 

oscillations were defined by their waveforms, with average frequencies of 0.41 and 1.12 Hz 

respectively. By these definitions, my results would span both of these effects. This issue 

requires clarification in a well-powered study and the comparison of small frequency bands 

against emotional memory performance. Possibly, this is a question unsuited to the use of 

wearable technology.  
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4.4.5 Conclusions 

In this chapter I investigated the Dreem Headband for spectral power and event detection of 

slow oscillations and spindles. Dreem showed mixed efficacy across power spectra and 

phase-amplitude coupling. This was somewhat expected considering the results of Chapter 2. 

However, automatic detection of events in their defining sleep stage was accurate, especially 

SO events in SWS. Correspondingly, I found that the association in Chapter 3 between 

overnight fear consolidation and SWS duration was reflected in both SO count and density. 

This suggests that Dreem is suitable for such non-REM sleep event detections, but there is 

less indication it should be utilised for spectral analyses. This requires replication, yet the 

results extend the findings of Chapters 2 and 3 for the utility of the Dreem Headband and the 

relationship between SWS and fear memory.  
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Chapter 5 

Fear Responses: Associations with Anxiety and 

Bad Dreams 

 

In this chapter I investigate how fear conditioned responses relate to self-reported anxiety. I 

found that state, trait, and intolerance of uncertainty anxiety measures similarly predicted 

maladaptive reinstatement of fear, while post-hoc analyses suggested this was driven by 

female participants. In a subset of participants, bad dreams were unrelated to anxiety but 

people who reported bad dreams showed more maladaptive fear responses across the 

experiment. These results suggest that anxiety and bad dreams could be relevant indicators 

of poor fear learning and consolidation.  

 

5.1 Introduction 

Anxiety is a complex emotional response that reflects an anticipation of real or perceived 

threat. It is characterised by worry, restlessness, and impaired concentration (Andrews et al., 

2010). State and trait anxiety can be dichotomised as momentary feelings and long-term 

tendencies respectively, but these facets are highly interconnected with trait anxiety fuelling 

state anxiety and potentially, vice versa (Endler & Kocovski, 2001; Leal et al., 2017). In fact, 

state and trait anxiety have been suggested to rely on the same functional network including 

the orbitofrontal cortex, cingulate cortex, and thalamus (Takagi et al., 2018). The correlation 

between state and trait anxiety was .35–.70 in a sample of 1058 twin pairs (aged 8–16 years); 
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this was stronger in monozygotic twins, females, and adolescents over 12 years (Lau et al., 

2006). However, state anxiety was primarily influenced by environmental factors while trait 

anxiety had 30% heritability. This suggests dissociable elements between state and trait 

anxiety.  

As discussed in Chapter 1, anxiety recruits the autonomic nervous system (Bajkó et al., 2012; 

Mizuno et al., 2017; Thayer et al., 1996). It is therefore intrinsically related to the fear response. 

Anxiety also recruits top-down executive functions in the brain (Affrunti & Woodruff-Borden, 

2015; Hamm, 2020; Zainal & Newman, 2018), though its neural correlates are still centred 

around the amygdala (Ahrens et al., 2018; Babaev et al., 2018; Tye et al., 2011). Like fear, 

anxiety can be a normal and valuable response to threat, for example, promoting an 

awareness about potential danger (Robinson et al., 2012; Thwaites & Freeston, 2005). Anxiety 

therefore spans a spectrum that can be adaptive but becomes damaging when persistent or 

excessive. Consequently, the fear response, particularly fear generalisation, has been posited 

as a driving force behind clinical anxieties (Chen & Lovibond, 2020; Dymond et al., 2015; Via 

et al., 2018). This is not limited to anxiety-centred conditions (e.g. Generalised Anxiety 

Disorder), but also those relating to stress and trauma, such as PTSD (Gilbar, 2020; Thome 

et al., 2017). Given this, understanding how anxiety interacts with fear learning will inform a 

fuller understanding of the fear response and how it leads to various psychopathologies.  

Dreams have also been associated with anxiety and emotion dysregulation, as discussed in 

Chapter 1 (Levin & Nielsen, 2009, 2007). The mechanisms and causality of this relationship 

have not been fully clarified, but dreams – particularly negative dreams – have been previously 

related to the consolidation of emotional experiences (Eichenlaub et al., 2018; van Rijn et al., 

2015), and may be an underexplored facet in the context of fear conditioning.  

In Chapters 3 and 4 I found that individual differences in sleep architecture were associated 

with fear learning and consolidation. This was based on the well-established links between 

sleep, learning and memory (Born et al., 2006; Born & Wilhelm, 2012). However, as discussed 

in Chapter 3 in the case of Little Albert (Watson & Rayner, 1920), whether or not people 

develop chronic psychological problems after fear learning may be influenced by their 

individual traits and tendencies. In this chapter, I therefore investigate how state and trait 

anxiety relate to fear acquisition, extinction, and reinstatement of fear in young, healthy people. 

I also explore associations between bad dreams and fear conditioned outcomes. 
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5.1.1 Anxiety and Fear Conditioning 

5.1.1.1 State and Trait Anxiety  

Both state and trait anxiety have been related to fear conditioning, particularly a lack of safety 

learning (low fear responses to the safe CS-) and a generalisation of fear following 

reinstatement. In short, stimuli that have never been or are no longer associated with danger 

should evoke little fear response; however, anxiety may promote impaired discrimination 

between learned fear and safe stimuli, i.e. fear generalisation, in a variety of settings (Baker 

et al., 2019; Dibbets et al., 2015; Kull et al., 2012). 

As discussed in the General Introduction, a review of inter-individual differences in healthy 

fear conditioned responses suggests that anxiety – perhaps specifically intolerance of 

uncertainty – is associated with maladaptive fear acquisition, extinction, and return of fear 

(Lonsdorf & Merz, 2017). Fear generalisation has strong links to understanding how 

maladaptive fear may promote clinical pathologies. For example, anxiety patients compared 

to healthy controls show increased fear responses (Duits et al., 2015). Current theories of fear 

development support the view that maladaptive fear arises from the same generalisation 

systems that help humans to be so adept at learning and memory (Dunsmoor & Paz, 2015).   

Non-clinical trait anxiety has been associated with maladaptive fear acquisition, extinction, 

and reinstatement. In one study, healthy participants (n=42, 29 female, mean age 20 years) 

were selected based on high or average STAI-measured trait anxiety (Gazendam et al., 2013). 

Highly anxious participants showed greater startle responses and shock expectancy ratings 

to the CS- at the end of acquisition, a slower extinction curve for both CS+ and CS- the next 

day, and greater expectancy ratings for the CS- after reinstatement. This suggests that trait 

anxiety promotes greater fear responses during acquisition, extinction, and reinstatement; 

although, there were no significant effects in SCRs and so this may not be reflected in every 

physiological measure of the fear response. In contrast, trait anxiety in healthy participants 

(n=73, 36 female, aged 18–64 years) across a variety of measures including the Penn State 

Worry Questionnaire and Beck Anxiety Inventory, but not the STAI, predicted greater 

differential SCR conditioning to coloured shapes, one paired with an aversive shock (Otto et 

al., 2007). This suggests that the STAI-trait scale may not be strongly related to SCRs.   

Elsewhere, state (rather than trait) anxiety modulated return of fear in SCRs after 

reinstatement: healthy participants (n=36, 21 female, mean age 27 years) completed fear 

acquisition, immediate extinction, and reinstatement (Kuhn et al., 2016). State anxiety (STAI) 

predicted generalisation of fear after cued reinstatement: more anxious participants showed 

an increase in fear response to both the CS+ and CS- after reinstatement shocks; in contrast, 
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less anxious participants showed a discriminatory increase (greater for the CS+) – a more 

adaptive response to a re-presentation of danger.  

In a replication of Kuhn and colleagues’ design, trait anxiety predicted maladaptive 

consolidation after sleep and reinstatement of fear. Healthy participants (n=152, 81 female, 

mean age 25 years) were selected on the basis of either childhood or recent adversity 

(Scharfenort et al., 2016). In the MRI scanner, participants completed fear acquisition and then 

extinction and reinstatement the next day. The control and childhood adversity groups showed 

differential SCRs to the CS+ and CS-, both at the first trial of day 2 and the first trial after 

reinstatement. In contrast, those who had experienced recent adversity – who also had 

significantly higher levels of trait anxiety – showed a generalised increase to both stimuli. This 

was reflected in greater activity in the hippocampus and amygdala. This study suggests that 

trait anxiety, albeit possibly driven by recent adversity, may predict impaired overnight 

consolidation of fear discrimination and an impaired non-discriminative reinstatement 

response.  

Together, these studies suggest an association between anxiety and maladaptive fear 

learning, but the results are made ambiguous by various measures of anxiety and fear 

response, as well as differences in fear conditioning design. For example, Gazendum et al. 

(2013) found that trait anxiety was associated with SCR extinction and reinstatement 

expectancy ratings after 24 hours, whereas Kuhn et al. (2016) found that state anxiety was 

related to reinstatement in SCRs, but before sleep. In addition, Gazendum et al. used human 

faces, while Kuhn et al. used inanimate shapes. Since faces could specifically recruit social 

anxiety, the impact of stimuli should also be kept in mind.  

 

5.1.1.2 Anxiety Beyond the STAI  

The STAI is a well-validated and widely used measure of trait and state anxiety (Guillén-

Riquelme & Buela-Casal, 2011; Ortuno-Sierra et al., 2016). However, anxiety is a complex 

emotion of which different facets can be assessed by a variety of measurement tools. In 

particular, the Intolerance of Uncertainty Scale (IU) comprised of prospective and inhibitory 

subscales has gained momentum in recent years. IU has been described as a trait variable 

measuring excessive concern over future events regardless of their probability: prospective 

anxiety as the anticipation of uncertainty and inhibitory anxiety as the tendency towards 

inaction based on uncertain situations (Mahoney & McEvoy, 2012). Clinically, the IU scale has 

been associated with Generalised Anxiety Disorder, Obsessive Compulsive Disorder, and 
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social anxiety (Holaway et al., 2006; Carleton et al., 2010). It has also shown good 

psychometric properties (Buhr & Dugas, 2002; Gosselin et al., 2008). 

In fear conditioning designs, IU has predicted poorer extinction learning. Healthy participants 

(n=22, 12 female, mean age 24 years) completed fear acquisition and immediate extinction 

(Morriss et al., 2015). During early extinction learning, higher IU was associated with a lack of 

CS discrimination in SCRs and greater amygdala activity to the CS-. During late extinction 

learning, higher IU was associated with greater SCRs to the CS+ and increased ventromedial 

prefrontal cortex (vmPFC) activity to both the CS+ and CS-. This study was then replicated 

with a larger sample outside the MRI scanner (Morriss, Christakou, et al., 2016). Healthy 

participants (n=38, 32 female, aged 18–25 years) completed the same fear acquisition and 

extinction task. Again, IU was associated with a lack of CS discrimination in early extinction 

and continued fear expression in late extinction to the safe CS-. In both studies, there was no 

effect of STAI-measured trait anxiety. This suggests that IU is a sensitive measure of 

maladaptive extinction learning. However, the 100% reinforcement design (all previously 

mentioned STAI-measured studies used partial reinforcement) may have affected the results. 

Some evidence suggests that 100% reinforcement induces faster extinction (Xia et al., 2017), 

especially in people with a tendency towards anxiety (Allen et al., 2014).  

Subsequently, another sample (n=60, 33 female, mean age 24 years) completed the same 

acquisition and extinction task, but this time with 50% reinforcement (Morriss & van Reekum, 

2019). Only participants reporting high IU but also not given explicit contingency instructions 

showed impaired extinction. This suggests, in keeping with the definition, that the negative 

effects of high intolerance of uncertainty are mediated by prior knowledge of unpleasant 

events. These results replicate an earlier study where high IU was more strongly associated 

with greater fear responses at a lower 50% reinforcement rate, compared to 75% (Chin et al., 

2016). In short, as uncertainty increases, the effects of IU anxiety also increase.  

Together, these studies suggest that IU as a trait measure is associated with altered extinction 

learning. However, more research is needed to determine whether it is substantially more 

sensitive than the STAI to extinction and other fear conditioned outcomes, particularly 

reinstatement. It is also unclear how IU predicts fear responses when extinction occurs after 

sleep – as may be more likely in a real-life situation. 

 

5.1.1.3 Summary   

There is consistent evidence that anxiety predicts maladaptive responses under a range of 

experimental settings. In particular, high anxiety has been associated with impaired CS 
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discrimination resulting from greater maladaptive fear responses to the CS-. The literature 

also shows inconsistent effects for different outcomes; IU may predict poorer extinction when 

uncertainty in the task is high, but this has not been explored in relation to fear reinstatement 

– a situation which also reflects high uncertainty.  

 

5.1.2 Bad Dreams, Anxiety, and Fear Conditioning  

Dreams have long been the topic of discussion and debate as to their role in emotional 

processing. Although dreams occur in non-REM sleep, they are more frequent, vivid, and 

emotional in REM sleep and hence are more often associated with this sleep stage 

(McNamara et al., 2010; Nemeth & Fazekas, 2018). However, dreaming of a learning task in 

non-REM sleep has been associated with greater post-sleep performance, suggesting that 

dreams may indicate new processing/learning and that this occurs in non-REM sleep 

(Wamsley et al., 2010). Based on such evidence, sequential hypotheses of sleep and memory 

have suggested that emotional dreams in REM sleep, reflecting emotional processing, may 

play some role in the consolidation processes of these memories in non-REM (Paller et al., 

2021; Walker & Stickgold, 2010). This would explain why emotional memories tend to show 

enhanced consolidation, but the mechanisms of such actions are yet to be elucidated.  

As discussed in the General Introduction, dreaming has been related to the processing of 

recent emotional experiences during sleep (Eichenlaub et al., 2018; van Rijn et al., 2015). 

Further to this, a recent study has suggested that dreams are also related to aversive 

responses during wake. Healthy participants (total n=89, 58 female, mean age 22 years) kept 

a sleep and dream diary for one week. They were then tested with neutral and aversive images 

in the MRI scanner: fear conditioned CS+ and CS- (neutral human faces, one paired with an 

aversive sound), funny or sad images, and neutral and negative faces (Sterpenich et al., 

2020). Participants who reported more fear in their dreams showed greater activation to 

aversive stimuli in the medial prefrontal cortex and lower activation in the amygdala, insula, 

and midcingulate cortex. Insula activity was also related to pupillometry during the conditioning 

task, suggesting that participants who had fearful dreams showed lower autonomic fear 

conditioned responses.  

In an additional smaller sample within this study (n=18, 14 female, mean age 40 years), serial 

awakenings asking participants to report fear in their dreams throughout the night indicated 

greater insula and midcingulate cortex activity during fear-related dreams, as measured with 

high density scalp EEG. This suggests that conditioned fear responses may share neural 

correlates with fearful dreams themselves. In addition, fearful dreams could promote lower 
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fearful responses to subsequent and (presumably) unrelated stimuli. This posits fearful 

dreams as a protective factor towards future fear learning, as well as the consolidation of 

previous experiences. Overall, this study offers valuable insights, but does not offer causal 

evidence for these relationships; it is equally likely that fear in dreams and fear learning are 

driven by other factors not measured here.  

Dreaming has also been related to trait anxiety, though this has varied across dream metrics. 

For example, in children (n=624, 284 girls, aged 10–16 years), trait anxiety predicted distress 

due to bad dreams independently of bad dream frequency (Schredl, 2020). Elsewhere, in a 

longitudinal study of adolescents (n=610, 330 girls), disturbing dreams were associated with 

trait anxiety at age 13 and with symptoms of Generalised Anxiety Disorder, separation anxiety, 

and Overanxious Disorder at age 16 (Nielsen et al., 2000). In adults, one survey study found 

that participants (n=30, 20 female, aged 17–45 years) with greater alexithymia (an inability to 

identify or describe emotions) reported significantly lower dream sharing and 

creative/problem-solving dreams, while higher STAI-measured trait anxiety was associated 

with nightmare frequency (Montebarocci & Giovagnoli, 2019). Together, these findings 

suggest an ambiguous relationship between the various facets of anxiety and dreams.  

In summary, Sterpenich and colleagues (2020) provide evidence for a link between fearful 

dreams and subsequent fear conditioned responses, as well as support for the emotion 

regulation theory of dreaming. However, this study tested fear acquisition training; it is not 

clear how overnight consolidation, extinction learning, and reinstatement of fear relate to 

dreams. In addition, Sterpenich did not find that STAI-measured trait anxiety was related to 

dream emotion or frequency, but given the uncertainty from retrospective surveys, this would 

benefit from further investigation with additional measures of anxiety. Finally, Sterpenich only 

measured fear within dreams, when other types of negative dreams could also reflect 

emotional learning and consolidation. Therefore, ‘bad dreams’ as have been quantified in 

large-scale studies and which cover a range of negative dreams and nightmares (Robert & 

Zadra, 2014; Zadra & Donderi, 2000), could more broadly relate to fear conditioned responses.  

 

5.1.3 Aims 

Given mixed evidence, I aimed to investigate state, trait, and intolerance of uncertainty anxiety 

in a sample of young, healthy adults. The strongest evidence appears to converge on anxiety 

promoting increased fear to the CS-, this was therefore my focus. Specifically, I aimed to clarify 

whether the spectrum of anxiety relates to increased CS- responses across a range of time 

points within fear learning: after acquisition on day 1, after extinction on day 2, and after 
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reinstatement on day 2. There is also a lack of longer-term investigation in this field, so I aimed 

to test how anxiety relates to fear extinction and reinstatement after one week (day 8), as well 

as spontaneous reinstatement – a re-emergence of the fear response over time without 

additional learning.  

Trait and state anxiety as measured by the STAI are common in this literature. However, 

intolerance of uncertainty has shown promising indications that it may be specifically related 

to conditioned responses. A recent factor analysis indicated that anxiety sensitivity and 

intolerance of uncertainty may not be separate constructs and structurally both are 

manifestations of neuroticism (Naragon-Gainey & Watson, 2018). However, the STAI does 

not necessarily wholly reflect anxiety sensitivity. An exploration of both the STAI and IU scale 

in regard to fear conditioning suggested a substantial shared variance, but a specific 

association between STAI-trait scale and CS-discrimination in SCRs, and IU with CS-

discrimination in fear-potentiated startle (Sjouwerman et al., 2020). Considering these issues 

and the scope of this project (measuring SCR but not startle responses), I tested all three 

types of anxiety (STAI-trait and state scales, IU scale) against my hypotheses but did not test 

for differences between anxiety types.  

Since most cases of impaired discrimination resulted from greater fear to the safe CS- in 

previous literature, I focussed on the CS- responses, though I tested associations with CS+ 

responses as well. Based on previous research linking dreams to trait anxiety and fear 

conditioned responses, I also aimed to explore bad dreams in relation to sleep metrics and 

the fear conditioned outcomes measured in this sample.  

 

5.1.4 Hypotheses 

1. Greater anxiety will predict greater responses to the CS- immediately after fear 

acquisition training. 

2. Greater anxiety will predict greater responses to the CS- immediately after fear 

extinction training, after 24 hours and after 7 days.  

3. Greater anxiety will predict greater responses to the CS- immediately after fear 

reinstatement, after 24 hours and after 7 days.  

 

Additionally, I explored self-reported bad dreams in the week between fear acquisition and the 

final fear extinction a week later. Specifically, I investigated how bad dreams were associated 

with trait anxiety and fear conditioning in this healthy sample.  
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5.2 Methods 

These data were collected within the fear conditioning experiment outlined in Chapter 3, where 

the experimental timeline is described in more detail. 

 

5.2.1 Participants 

I recruited 38 healthy participants (28 female, 10 male) aged 19–30 years (mean = 23.00) 

from Cardiff University and the surrounding area. All completed the fear conditioning and 

extinction/reinstatement protocol. A subset of 18 participants (10 female, 8 male) aged 20–30 

years (mean = 24.17) completed further extinction and reinstatement on day 8, one failed to 

return for the final session. These participants were also asked to complete sleep and dream 

reports of the preceding night between and including the morning of day 2 and day 8.  

Participants were asked about their gender, not biological sex, and all stated either male or 

female. In relevant analyses I therefore report on self-identified gender: male or female. 

 

5.2.2 Measures 

As described in Chapter 3, I recorded skin conductance responses (SCRs) as my primary 

measure of fear. Participants also gave subjective shock expectancy ratings (1–5) every eight 

trials. I measured overnight sleep using the Dreem Headband. These data were manually 

scored according to AASM guidelines.  

I tested state and trait anxiety with the State Trait Anxiety Inventory (Spielberger, 1983). This 

measure has been widely studied and accepted for good psychometric properties (Guillén-

Riquelme & Buela-Casal, 2011; Ortuno-Sierra et al., 2016). Cronbach’s Alpha indicated 

excellent internal consistency for my sample: STAI-trait = .95, STAI-state = .92. In addition, I 

tested intolerance of uncertainty (comprising prospective and inhibitory anxiety) with the 12-

item Intolerance of Uncertainty Scale. This more recently developed short scale has shown 

better psychometric properties than the original 27-item scale (Carleton et al., 2007; Helsen 

et al., 2013). Cronbach’s Alpha indicated good internal consistency for my sample: IU = .84.   

For a measure of sleep and dreams, I designed a short online survey using PsyToolkit (Stoet, 

2010, 2017) to be completed each morning upon waking (Figure 5.1). Survey progression 

was shown, answers could be changed before submission, and participants were reminded of 

the research email address at the instruction screen to report questions or concerns. 
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Figure 5.1 Online Sleep Survey 

Each question was presented on a new screen to which participants could progress in their own time. 

The text is shown exactly as it appeared. Each question was followed by an empty text response box.  

 

5.2.3 Procedure 

Anxiety measures were recorded via pen and paper questionnaires prior to fear conditioning 

and extinction. Intolerance of uncertainty was completed once at the first testing session, while 

state and trait anxiety were completed at every session (the experimental timeline is shown in 

Chapter 3). 

Sleep and dream reports were collected remotely each morning from day 2 to day 8 (total 7 

days). Before the experiment began, participants were emailed survey instructions, a unique 

4-digit code, and the online survey hyperlink. Their understanding of the instructions was 

discussed at the first testing session. Participants were prompted to enter their code (linked 

elsewhere to their participant ID) before and after the survey and so all data were immediately 

anonymised. There were no reminders to complete the survey throughout the week and no 

technical issues, questions, or concerns were reported. 

This short survey will ask you to recount any dreams or experiences you had while 

asleep.  

Remember: 

- describe everything you can remember, including narrative, thoughts, feelings, and 

places 

- please give as much detail as possible  

- it's OK if you're not 100% sure of what you remember, just say e.g. 'I'm not sure but I 

think there was ...' 

 

Q2: Approximately what time did you wake up this morning? e.g. 8 am 

Q3: Please describe any/all experiences you had while asleep. 

Q1: Approximately what time did you go to sleep last night? e.g. 11 pm 
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5.2.4 Data Processing 

5.2.4.1 Raw Data 

Anxiety questionnaires were scored according to published instructions (see Appendix B). 

One participant failed to complete the trait anxiety measure on day 2. For all other participants, 

trait anxiety was averaged across testing sessions (there were no significant differences 

between days, reported in Chapter 3, Table 3.1).  

I employed a simplified content analysis to quantify dream reports as bad dreams using criteria 

from a previous publication which were developed from the Typical Dreams Questionnaire, 

refined with pilot testing, then used to classify 9,796 dream reports (Robert & Zadra, 2014). 

Bad dreams were dependent on the identification of at least one theme: being chased, 

physical aggression, interpersonal conflict, environmental abnormality, evil presence, 

accidents, disaster/calamity, failure or helplessness, insects/vermin, health-related concerns 

or death, apprehension/worry, or others. A description of each category is shown in Appendix 

G. Two participants who did not complete the dream survey at least once were excluded. 

All descriptive sleep/dream entries (my sleep survey, Q3) were collapsed across participant, 

separated from sleep/wake times, and shuffled to a random order. This ensured that answers 

from the same participants were not clustered together during analysis. Entries were assessed 

for whether a dream was reported and if so, whether the dream met the criteria for a ‘bad 

dream’. Finally, these were classified into one of the bad dream categories. The classification 

of dream/no dream was not critical to my analyses and only facilitated the removal of non-

dream entries (see example in Table 5.9). For this reason, the only parameter for this decision 

was whether any narrative was determined in the text. Finally, following the methodology of 

Robert and Zadra (2014), all entries were re-randomised and rated independently by another 

researcher (Dr Ross Purple, University of Bristol). I calculated agreement between our 

classifications, then the small number of entries for which we disagreed were discussed. All 

were successfully resolved. 

 

5.2.4.2 Content Analysis: Dream Reports 

Agreement between Dr Purple’s and my independent content analyses (stage 1) was 98% 

and 93% at the first and second question, though 67% on the third question regarding which 

category best fitted the dream (Figure 5.2). Following the resolution of disagreed entries 

(stage 2), 60 dreams were identified, 16 of which were classified as bad dreams. 
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Figure 5.2 Content Analysis Agreement of Sleep and Dream Survey Descriptive Entries 

Stage 1 shows agreement between independent classification of each entry according to the bad dream 

criteria. Those not agreed were resolved with discussion in stage 2 – those agreed ‘yes’ then fed into 

the next question. Agreed bad dream categorisations are illustrated in Figure 5.9.  

 

5.2.5 Statistical Analyses 

I used linear regression with 95% confidence intervals to assess the relationships between 

anxiety and SCRs. Assumptions for multicollinearity (if applicable) and heteroscedasticity 

were met unless otherwise indicated. Prior analyses in Chapter 3 of subjective shock 

expectancy ratings suggested highly uneven distributions. I therefore employed a median-split 

approach (creating ‘high’ and ‘low’ groups for each anxiety measure) and used the non-

parametric Mann-Whitney U test to assess the significance of differences. 
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5.3 Results 

5.3.1 Anxiety Demographics 

Anxiety measures showed expected distributions, while a Friedman’s ANOVA indicated no 

significant differences in state anxiety between days, χ2 (2) = 0.64, p = .725 (Figure 5.3). Most 

anxiety measures and subscales showed strong and significant positive associations with one 

another, though prospective anxiety was unrelated to state anxiety (Table 5.1).  

 

 

Figure 5.3 Anxiety Measure Distributions 

There was no change in state anxiety across testing days (A). Average trait anxiety showed a normal 

distribution (B). Intolerance of uncertainty showed a largely normal distribution (C); of its subscales, 

prospective anxiety was normally distributed but inhibitory anxiety was slightly skewed towards lower 

responses.  
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Table 5.1 Correlations Between Anxiety Measures   

 

 Prospective 

Anxiety 

Inhibitory 

Anxiety  

Total 

Intolerance of 

Uncertainty 

State Anxiety 

(day 1) 

State Anxiety 

(day 2) 

State Anxiety 

(day 8) 

State Anxiety 

(mean) 

Trait 

Anxiety 

(mean) 

Prospective Anxiety         

Inhibitory Anxiety  .53 **        

Total Intolerance of 

Uncertainty 

 .90 *** .84 ***       

State Anxiety (day 1)  .23 .42 * .36 *      

State Anxiety (day 2)  .19 .33 * .29 .70 ***     

State Anxiety (day 8) -.09 .42 .24 .63 * .40    

State Anxiety (mean)  .26 .44 ** .39 * .93 *** .87 *** .81 ***   

Trait Anxiety (mean)  .46 ** .57 *** .58 *** .66 *** .57 *** .82 ** .72 ***  

* p < .050, ** p < .010, *** p < .001. 
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5.3.2 Trait Anxiety and Fear Conditioning 

While I hypothesised associations between anxiety and CS- responses, I also tested CS+ 

responses. As in Chapter 3, I used the last trial of each phase to indicate learning and did 

not correct for multiple comparisons.  

The median split of shock expectancy ratings meant 22/38 participants were assigned the 

same group for all anxiety types. I considered this variation sufficient to explore each anxiety 

individually. As expected, following this split, anxiety scores in the high groups were 

significantly greater: trait anxiety, t (35) = -7.13, p < .001; state anxiety, t (35) = -6.85, p < 

.001; intolerance of uncertainty, t (35) = -8.68, p < .001. Two participants (one male, one 

female) who scored exactly the median value in trait anxiety were excluded from this 

variable. 

Finally, testing for associations between anxiety and total sleep time, SWS %, and REM % 

suggested that anxiety was independent of post-conditioning sleep, ps = .188–.969 (full 

results in Appendix G). 

 

5.3.2.1 Fear Acquisition and Extinction 

No anxiety measure was significantly associated with CS+ or CS- responses (SCRs) after 

acquisition on day 1, or after extinction on day 2 or day 8 (Figure 5.4, Table 5.2). Further to 

this, I did not find an association between anxiety and overnight change in CS+ or CS-, ps = 

.315–.890 (full results in Appendix G).  
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Figure 5.4 Associations Between Anxiety and SCRs After Fear Acquisition and Extinction 

There were no significant associations between trait, state, or intolerance of uncertainty anxieties and 

CS+ or CS- responses after acquisition (A–B). Likewise, there were no associations with responses 

after extinction on day 2 or day 8 (C–F).   
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Table 5.2 Associations Between Anxiety and SCRs After Acquisition and Extinction 

   

Anxiety Type 

 

     R2 

 

F (1,35) 

 

    p 

Unstandardised Coefficients 

B [SE] 95% CI 

A
c
q
u
is

it
io

n
 

CS+ Trait     .00  0.03    .865  0.00 [0.01] -0.02, 0.02 

State     .01  0.31    .583 -0.01 [0.01] -0.03, 0.02 

IU      .02  0.06    .812  0.00 [0.01] -0.02, 0.02 

CS- Trait     .01  0.23    .635  0.00 [0.01] -0.01, 0.01 

State     .00  0.10    .751  0.00 [0.01] -0.01, 0.01 

IU     .01  0.19    .668  0.00 [0.01] -0.01, 0.01 

E
x
ti
n
c
ti
o
n
 D

a
y
 2

 

CS+ Trait     .03  0.94    .339  0.01 [0.01] -0.01, 0.02 

 State     .02  0.52    .474  0.01 [0.01] -0.01, 0.02 

 IU     .04  1.49    .231  0.01 [0.01] -0.01, 0.03 

CS- Trait     .00  0.03    .860  0.00 [0.01] -0.01, 0.01 

 State     .01  0.18    .679  0.00 [0.01] -0.02, 0.01 

 IU     .01  0.19    .662  0.00 [0.01] -0.01, 0.02 

E
x
ti
n
c
ti
o
n
 D

a
y
 8

 

CS+ Trait     .03  0.03    .535 -0.01 [0.01] -0.04, 0.02 

 State     .04  0.69    .421 -0.01 [0.01] -0.04, 0.02 

 IU     .10  1.70    .212 -0.02 [0.02] -0.06, 0.01 

CS- Trait     .09  1.42    .252  0.02 [0.01] -0.01, 0.04 

 State     .00  0.00    .982  0.00 [0.02] -0.03, 0.03 

 IU     .00  0.01    .937  0.00 [0.02] -0.04, 0.05 

Linear Regression.  

In subjective shock expectancy ratings, there were no significant differences between high 

and low anxiety groups at the end of fear acquisition. On day 2, there was a non-significant 

difference where high trait anxiety was associated with greater CS+ responses, but this was 

not present on day 8 or across other anxiety measures (Figure 5.5, Table 5.3). 
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Figure 5.5 Subjective Shock Expectancy Ratings by High and Low Anxiety After Fear 

Acquisition and Extinction  

There were no significant differences in subjective shock expectancy ratings between all low and high 

anxiety groups after acquisition on day 1 (A). There was a non-significant difference in trait anxiety after 

extinction on day 2, though this is not evident from the median values (B). There were no differences 

after extinction on day 8 (C). On day 8, low and high anxiety groups were redefined by participants who 

returned for this session. Error bars show IQR, though in many cases this was 0.   
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Table 5.3 Subjective Rating Differences Between High and Low Anxiety Groups After 

Acquisition and Extinction Learning 

Learning 

Phase 

Stimulus Anxiety 

 

    Z       p 

 

A
c
q
u
is

it
io

n
 (

D
a
y
 1

) 

CS+ Trait    -0.54      .587 

State    -0.58      .565 

IU     -1.25      .213 

CS- Trait    -1.11      .266 

State    -0.21      .833 

IU    -0.89      .375 

E
x
ti
n
c
ti
o
n
 o

n
 D

a
y
 2

 

CS+ Trait    -1.66      .097 

 State    -0.24      .813 

 IU    -0.21      .826 

CS- Trait    -0.40      .693 

 State    -1.61      .107 

 IU    -0.50      .615 

E
x
ti
n
c
ti
o
n
 o

n
 D

a
y
 8

 

CS+ Trait     0.00     1.000 

 State    -0.28      .781 

 IU     0.00    1.000 

CS- Trait     0.00    1.000 

 State    -0.18      .854 

 IU     0.00    1.000 

Mann Whitney U tests.  

 

5.3.2.2 Fear Reinstatement 

I then investigated associations between anxiety and reinstatement. I assessed cued 

reinstatement on day 2 and day 8 as well as spontaneous reinstatement over this 7-day period 

where no learning occurred. Anxiety predicted greater CS- responses at the first trial after 

cued reinstatement on day 2, but there were no other significant associations (Figure 5.6, 

Table 5.4). Further analyses of anxiety subscales suggested that the IU and state anxiety 

results were driven by prospective anxiety and state anxiety on day 2 respectively (Table 5.5).  
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Figure 5.6 Associations Between Anxiety and SCRs After Reinstatement 

There were no significant associations between anxiety and CS+ responses (A), but all anxiety 

measures predicted greater CS- responses after cued reinstatement on day 2 (B). There were no 

significant associations on day 8 (C–F). Significant p-values are shown.  
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Table 5.4 Associations Between Anxiety and SCRs After Reinstatement  

  

Anxiety 

     

     R2 

 

F (1,35) 

   

    p 

Unstandardised Coefficients 

B [SE]  95% CIs  

C
u
e
d
 R

e
in

s
ta

te
m

e
n
t 

  

D
a
y
 2

 

CS+ Trait     .01  0.44    .511 -0.01 [0.01] -0.03, 0.01 

State     .02  0.64    .429 -0.01 [0.01] -0.03, 0.01 

IU      .00  0.02    .892  0.00 [0.01] -0.03, 0.03 

CS- Trait     .23 10.55    .003  0.03 [0.01]  0.01, 0.04 

State     .18  7.86    .008  0.03 [0.01]  0.01, 0.05 

IU     .20  8.77    .005  0.03 [0.01]  0.01, 0.05 

C
u
e
d
 R

e
in

s
ta

te
m

e
n
t 

  
  

  

D
a
y
 8

 

CS+ Trait     .08  1.30    .272  0.02 [0.02] -0.02, 0.06 

 State     .01  0.19    .668  0.01 [0.02] -0.04, 0.05 

 IU     .06  0.93    .349  0.03 [0.03] -0.03, 0.08 

CS- Trait     .03  0.38    .545 -0.01 [0.01] -0.04, 0.02 

 State     .01  0.20    .660  0.01 [0.02] -0.03, 0.04 

 IU     .50  0.75    .400 -0.02 [0.02] -0.06, 0.03 

S
p
o

n
ta

n
e
o

u
s
  

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 8

 

CS+ Trait     .01  0.11    .747  0.01 [0.02] -0.04, 0.05 

 State     .02  0.27    .620 -0.01 [0.02] -0.06, 0.04 

 IU     .03  0.47    .504  0.02 [0.03] -0.04, 0.08 

CS- Trait     .01  0.17    .690  0.01 [0.02] -0.03, 0.05 

 State     .01  0.11    .743 -0.01 [0.02] -0.05, 0.04 

 IU     .01  0.14    .713  0.01 [0.03] -0.05, 0.07 

Linear Regression.  
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Table 5.5 Driving Factors for Associations Between Anxiety and CS- SCRs After 

Reinstatement on Day 2 

 

Anxiety 

 

     R2 

 

F (1,35) 

 

    p 

Unstandardised Coefficients 

 B [SE]  95% CI 

IU Prospective 

Anxiety 

    .21  9.12    .005  0.05 [0.02]  0.02, 0.08 

Inhibitory 

Anxiety 

    .10  3.70    .063  0.04 [0.02]  0.00, 0.09 

State 

Anxiety 

Day 1      .09  3.46    .071   0.01 [0.01]  0.00, 0.03 

Day 2     .17  7.02    .012  0.03 [0.01]  0.01, 0.05 

Day 8     .09  1.46    .247  0.02 [0.02] -0.01, 0.05 

Linear Regression.  

 

Subjective shock expectancy ratings after reinstatement showed similar but weaker results. 

There were no significant differences between low and high anxiety. However, despite equal 

medians, there was a non-significant effect where participants with high IU gave higher ratings 

to the CS- after cued reinstatement on day 2 (Figure 5.7, Table 5.6). In this case, the data 

met the assumptions for linear regression and further investigation indicated a significant 

association between prospective anxiety and these CS- ratings, R2 = .11, F (1,36) = 4.58, p = 

.039, B = 0.04, SE = 0.02, CI = [0.00, 0.08]. There was a non-significant association for 

inhibitory anxiety, R2 = .05, F (1,36) = 1.99, p = .167, B = 0.03, SE = 0.02, CI = [-0.01, 0.08]. 
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Figure 5.7 Shock Expectancy Ratings by High and Low Anxiety After Reinstatement 

There were no significant differences between low and high anxiety groups in shock expectancy ratings 

after cued reinstatement on day 2 (A), cued reinstatement on day 8 (B), or spontaneous reinstatement 

(C), error bars show IQR. However, there was a non-significant difference between IU and CS- 

responses on day 2, not evident from the medians. Subsequent analyses indicated a significant 

association in prospective but not inhibitory anxiety (D). Significant p-values are shown. 
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Table 5.6 Subjective Rating Differences Between High and Low Anxiety After Reinstatement 

  Anxiety     Z     p 

C
u
e
d
 R

e
in

s
ta

te
m

e
n

t 
  
  

  

D
a
y
 2

 

CS+ Trait    -0.67    .505 

State    -0.55    .583 

IU    -0.79    .428 

CS- Trait    -1.25    .213 

State    -0.32    .750 

IU    -1.85    .064 

C
u
e
d
 R

e
in

s
ta

te
m

e
n
t 

  
  

  

D
a
y
 8

 

CS+ Trait    -0.85    .397 

 State    -0.23    .820 

 IU    -1.31    .190 

CS- Trait    -0.19    .854 

 State    -0.56    .577 

 IU    -0.68    .496 

S
p
o

n
ta

n
e
o

u
s
  

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 8

 CS+ Trait    -0.41    .685 

State    -0.82    .413 

IU    -0.58    .563 

CS- Trait    -0.19    .854 

State    -0.26    .796 

IU     0.00  1.000 

Mann Whitney U tests.  

 

In post-hoc analyses, I investigated gender differences (10 males, 28 females; one male 

participant was missing from SCR data) within the significant SCR reinstatement effect across 

the sample on day 2. Moderated multiple regression testing the effect of gender on the 

relationship between anxiety and CS- responses indicated significant moderation effects in all 

anxiety measures (Figure 5.8, Table 5.7). This cannot be explained by significant differences 

between males and females in any reported anxiety measure, ps = .367–.380 (I show how 

males and females responded across the experiment in Appendix G).  
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Figure 5.8 Gender as a Moderator for the Association Between Post-Reinstatement CS- 

Responses on Day 2 and Anxiety  

There were similar moderation effects of gender between CS- responses after reinstatement on day 2 

and trait anxiety (A), state anxiety (B), and intolerance of uncertainty (C). This was slightly short of 

significance in trait anxiety. In all measures, females showed a positive association whereas males 

showed a slightly negative or neutral association. Anxiety groups were not redefined based on gender 

(males were split evenly between all groups). Error bars show IQR. Significant p-values indicating 

moderation effects are shown.  
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Table 5.7 Gender Moderation Between Anxiety and CS- SCRs After Day 2 Reinstatement 

 

Model Predictors 

 

   t 

 

   p 

Unstandardised Coefficients 

B [SE] 95% CI 

Trait Anxiety 

and Gender 

Constant   5.24 < .001  0.73 [0.14]  0.45, 1.02 

Trait Anxiety   2.92    .006  0.02 [0.01]  0.01, 0.04 

Gender  0.87    .393  0.14 [0.16] -0.19, 0.46 

Interaction  1.76    .087   0.04 [0.02] -0.01, 0.08 

State Anxiety 

and Gender 

Constant   4.57    .001  0.67 [0.15]  0.37, 0.97 

State Anxiety   1.15    .258  0.01 [0.01] -0.01, 0.04 

Gender  1.15    .260  0.19 [0.17] -0.15, 0.53 

Interaction  2.29    .029  0.08 [0.04]  0.01, 0.15 

Intolerance of 

Uncertainty 

and Gender 

Constant   5.34 < .001  0.75 [0.14]  0.46, 1.03 

IU Anxiety   3.13    .036  0.03 [0.01]  0.01, 0.05 

Gender  0.94    .354  0.15 [0.16] -0.18, 0.47 

Interaction  2.21    .034  0.05 [0.02]  0.00, 0.10 

Continuous variables were mean centred. Each section shows a separate linear regression model. R2 

= .31, .29, and .33 respectively, df = (3,33), all p < .010.   

 

 

5.3.3 Bad Dreams, Anxiety, and Fear Conditioning 

In the second sample of participants within my fear conditioning experiment, I also explored 

bad dreams. All retained participants (n=16) completed the sleep and dream survey for at 

least 4 out of 7 nights (mean completed = 6.19, SD = 1.05). Most (n=14) participants reported 

entries later classified as dreams, the average word count of these entries was 90.04 (SD = 

35.75), 27% of these were classified as bad dreams. Examples are illustrated in Table 5.8. 

An investigation into bad dream frequency per category and per participant indicated that the 

most common category was interpersonal conflict and nearly half the sample did not have any 

bad dreams (Figure 5.9). I therefore disregarded these factors and, for subsequent analyses, 

compared participants who reported at least one bad dream throughout the week (n=9) with 

those who did not (n=7). 
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Table 5.8 Sleep Survey Examples 

Descriptive sleep entries as collected from my sleep and dream survey (Q3). The agreed category for 

this bad dream was interpersonal conflict. 

 

 

 

Figure 5.9 Bad Dream Frequency per Category and Participant 

The most common category of bad dream was interpersonal conflict, some categories were not 

observed (A). Nearly half of the sample did not report any bad dreams, but of participants that did, it 

was most common to only report one (B).  
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felt anything good was ignored, and only the apparently disappointing sides 

were remembered/ falsely recalled.~~~~I also woke myself worrying I had 

overslept.that was enough to startle me to check my clock.” 

 

Dream (did not 

meet criteria for a 

bad dream)  

“All I can remember was I was at a fare with my boyfriend. Just have little 

snippets of going on ride, eating food and winning toys” 

 

Non-Dream Entry “I had one awakening during the night but I don't remember any dreams.” 

B  A  
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5.3.3.1 Sleep and Anxiety 

I explored whether the presence of bad dreams was associated with anxiety. There was no 

significant difference between bad dreamers and non-bad dreamers across state, t (14) = -

0.25, p = .807, trait, t (14) = 0.79, p = .443, or intolerance of uncertainty, t (14) = 1.15, p = .270 

measures (Figure 5.10A). 

I then explored the presence of bad dreams in relation to self-reported sleep over seven days 

and the single Dreem-recorded night between day 1 and day 2 of the experiment, though only 

11/16 recorded nights were intact (7/9 bad dreamers, 4/7 non-bad dreamers). Bad dreamers 

had significantly greater average self-reported total sleep times during the week after 

conditioning, t (14) = -2.33, p = .035. A corresponding difference in the recorded post-

conditioning night was not significant after correction for unequal variance, t (3.37) = -2.19, p 

= .106 (Figure 5.10B). However, total monitored sleep time was positively correlated with self-

reported sleep time of the same night, r = .75, p = .007, although participants significantly 

overestimated their time spent asleep (mean =  0.51 hours, SD = 0.71; t (10) = 2.39, p = .038). 

Finally, SWS % in the recorded post-conditioning night was lower in bad dreamers, t (9) = 

3.43, p = .008; there was no difference in REM %, t (9) = -0.32, p = .759 (Figure 5.10C).  

 

 

 

 

Figure 5.10 Anxiety and Sleep in Bad Dreamers and Non-Bad Dreamers 

There were no significant differences in state, trait, or intolerance of uncertainty anxiety measures 

between participants who did or did not report bad dreams (A). However, participants reporting bad 

dreams had significantly more sleep across the week (total n=16) and had more (though not 

significantly) recorded sleep immediately following conditioning (total n=11; B), they also showed less 

SWS % but similar REM % (C). Error bars show ± SEM. * p < .050, ** p < .010. 
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Lower SWS % in the night following conditioning could not be explained by more time spent 

asleep, as these participants also spent fewer minutes in SWS, t (9) = 2.44, p = .037. There 

was also no difference in self-reported sleep time averaged between the nights when the bad 

dreams occurred (mean = 8.45 hours, SD = 0.89) and nights when they did not occur (mean 

= 8.50 hours, SD = 0.59), t (8) = -0.33, p = .747. This suggests that people with a propensity 

for bad dreams tend to sleep for longer on all nights, rather than bad dreams themselves 

causing longer sleep.  

 

5.3.3.2 Bad Dreams and Fear Learning 

I then investigated bad dreams and fear learning. I found that participants who reported bad 

dreams were significantly less likely to show discriminative fear learning at the end of 

acquisition training on day 1, χ2 = 5.66, Fisher’s Exact p = .034 (Table 5.9).  

 

 

Table 5.9 Contingency Table: Frequency of Bad Dreamers and Non-Learners   

 
Did Learn Did Not Learn 

Did Report Bad Dreams 4 5 

Did Not Report Bad Dreams 7 0 

Non-learners were defined by a zero or negative discriminatory (SCR) response between the CS+ and 

CS- at the last trial of fear acquisition on day 1. This was reflective of an impaired learning curve (see 

Chapter 3).  

 

Given that bad dreams were related to sleep but not anxiety, I then explored fear conditioned 

outcomes previously related to sleep: overnight consolidation and extinction. Bad dreamers 

showed significantly greater CS- responses compared to non-bad dreamers in change 

overnight and after day 8 extinction; on day 8 this led to significantly reduced CS discrimination 

(Figure 5.11). These results could be driven by bad dreamers being more likely to lack fear 

learning. However, despite the smaller sample size, I found similar effects with only the 11 

participants who showed fear learning, i.e. excluding non-learners (Table 5.10).  
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Figure 5.11 Bad Dreamer and Non-Bad Dreamer Fear Responses Overnight and After 

Extinction  

Bad dreamers showed significantly greater CS- SCR changes overnight (A). There were no significant 

differences after extinction learning on day 2 (B), but bad dreamers showed greater CS- SCRs and a 

more negative CS discrimination on day 8 (C). N=16, error bars show ± SEM.* p < .050 ** p < .010. 

 

Table 5.10 Differences Between Bad Dreamers and Non-Bad Dreamers in Overnight Change 

and Extinction Learning: Including and Excluding Non-Learners 

  Original Result 

(n=16, 9 bad dreamers) 

Learners Only 

(n=11, 4 bad dreamers) 

t (df) p t (df) p 

Overnight Change  CS+ -1.22 (13) .245 -0.39 (9) .709 

CS- -2.41 (13) .032  -3.26 (9) .010  

CS Disc.  0.54 (13) .599  1.60 (9) .143 

Extinction (Day 2) CS+   0.75 (14) .467  0.48 (9) .643 

CS-  0.54 (14) .595  0.72 (9) .492 

CS Disc.  0.09 (14) .932 -0.35 (9) .733 

Extinction (Day 8) CS+ -0.08 (13) .940 -0.96 (8) .365 

CS- -2.75 (13) .017 -2.65 (8) .029  

CS Disc.  3.23 (12.56) .007   2.38 (8) .045  

Independent-samples t-tests.  
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5.4 Discussion  

5.4.1 Summary of Results 

In this chapter I investigated the relationship between anxiety and fear conditioned outcomes 

in healthy people. I hypothesised that anxiety would predict maladaptive fear acquisition, 

extinction, and reinstatement via greater CS- responses. I found no evidence for an 

association with fear acquisition or extinction, but greater anxiety predicted maladaptive 

reinstatement on day 2 in line with previous literature, though I did not find that the effect 

extended to reinstatement on day 8 (Figure 5.6). In a post-hoc exploration of the day 2 result, 

I found a significant moderation effect of gender whereby the positive association was only 

present in females. This suggests that the sample-wide effect was driven by the greater 

proportion of female participants.  

I tested trait, state, and intolerance of uncertainty anxiety measures, finding that all predicted 

CS- reinstatement on day 2. However, further investigation indicated the strongest differences 

in state anxiety measured on day 2 and the prospective anxiety subscale of IU. State and 

prospective anxiety were not significantly associated with each other, so these different facets 

of anxiety may independently predict maladaptive reinstatement, though this would require 

replication. I did not test for differences between the anxiety measures.  

Subjective shock expectancy ratings followed a similar pattern to SCRs. I found no significant 

differences in acquisition or extinction when splitting the sample into low and high anxiety 

groups. Anxiety predicted greater CS- shock expectancy ratings at reinstatement on day 2, 

but unlike SCRs, only in prospective anxiety. This measure could therefore be particularly 

sensitive to conscious reinstatement, which may be less strongly affected by anxiety than 

SCRs.  

Finally, I explored the presence of bad dreams in a subset of participants. I found no 

association between bad dreams and anxiety, but participants who reported at least one bad 

dream in the week between fear acquisition and extinction on day 8 showed a range of 

maladaptive fear responses. Specifically, bad dreamers showed a greater increase in CS- 

change overnight following acquisition as well as greater CS- responses after extinction on 

day 8. In effect, less fear learning. In addition, bad dreamers had significantly longer self-

reported sleep across the week, with a corresponding (non-significant) difference towards 

longer Dreem-recorded sleep on the post-conditioning night, as well as a lower percentage of 

SWS. In line with Sterpenich et al. (2020), these results suggest an association between 

maladaptive fear learning and bad dreams, though neither offer causal evidence for bad 

dreams affecting fear learning or vice versa. 
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5.4.2 Greater CS- Responses: A Generalisation of Fear 

My results suggest that greater anxiety predicts greater fear responses to the CS- after cued 

reinstatement. This can be explained by a generalisation of fear from the CS+ to other stimuli 

experienced in the same context. Fear generalisation may be considered an opposing 

mechanism to fear discrimination. In the context of a fear conditioning experiment, this reflects 

maladaptive and adaptive learning respectively (Dunsmoor & Paz, 2015). In support of this, 

fear generalisation and discrimination have been found to engage different circuits within the 

lateral amygdala, suggesting separable neural correlates (Grosso et al., 2018). However, both 

are crucial aspects of learning. While discrimination helps us determine danger, we must also 

be able to generalise, i.e. we do not need to see every possible example of a dangerous 

category to know to avoid it, but we cannot overgeneralise to be afraid of safe situations. A 

recent systematic review and meta-analysis suggested that trait anxiety increases vulnerability 

to anxiety disorders through fear generalisation (Sep et al., 2019). Therefore, the 

discrimination versus generalisation of fear appears to be a balance disrupted by anxiety, 

pushing responses towards a better safe than sorry, generalisation-heavy approach (Cho et 

al., 2021). 

Anxiety has been strongly associated with fear generalisation, especially when uncertainty in 

the task is high (Dunsmoor & Paz, 2015; Dymond et al., 2015). In one study, participants 

(n=80, 43 female, mean age 21 years) were selected for high or low anxiety measured by the 

Depression Anxiety Stress Scale (Wong & Lovibond, 2018). Relative positions of a black dot 

indicated an unpleasant shock (CS+) or safety (CS-), while intermediate positions served as 

generalisation stimuli. Participants were also asked to determine the rule. The results indicated 

no effect of anxiety when a rule was identified, but excessive generalisation of fear (SCRs) in 

the high anxiety group when a rule was not identified. This suggests that higher anxiety in an 

uncertain situation promotes fear generalisation. My finding of greater fear responses to the 

safe CS- with greater anxiety could similarly represent a generalisation of fear in an uncertain 

situation – in this case after a reminder shock.  

Correspondingly, IU anxiety has also been associated with fear generalisation. For example, 

participants (n=48, 25 female, mean age 20 years) were presented with a CS+ image paired 

with a shock and a range of perceptually similar images to test generalisation while EEG was 

recorded (Nelson et al., 2015). Like my study, participants completed the 12-item IU scale and 

the STAI. The late positive potential, an index of motivationally salient attention, was greater 

for the CS+ compared to the generalisation stimuli, but this effect was attenuated in 

participants reporting higher IU. In another study, participants (n=54, 49 females, mean age 

19 years) completed a similar conditioning and generalisation procedure and high IU was 
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associated with delayed discrimination between threat and safe cues during extinction 

(Morriss, Macdonald, et al., 2016). In both cases, the effects were independent of STAI-

measured trait anxiety.  

These studies suggest that anxiety leads to reduced discrimination between fear and safe 

stimuli, an effect which may be modulated by uncertainty. This corresponds with my 

reinstatement results, despite generalisation to a known safe stimulus (CS-) arguably being 

less likely – or requiring a greater level of anxiety – than generalisation to new, perceptually 

similar stimuli in an experiment designed to promote generalisation. This aligns with fear 

generalisation as a core feature of clinical anxiety and PTSD (Andrews et al., 2010; Thome et 

al., 2017). Overall, results are somewhat mixed between different measures, but the literature 

supports the conclusion that anxiety promotes fear generalisation. My results add to this by 

suggesting that anxiety, even graded across the average spectrum, promotes an unhealthy 

generalisation of fear after reinstatement. 

Alternatively, another possible factor in fear generalisation is that return of fear may reflect a 

form of mood-congruent memory (Bouton, 2002; MacLeod & Mathews, 2004). In the case of 

fear conditioning, since extinction has not erased the original learning (as discussed in section 

1.2.2), the memory trace which more closely matches individual’s current mood state is most 

likely to retrieved. This would suggest that anxious people are more likely to display a return 

of fear because they are more likely to have a negative mood state. This is unlikely to explain 

why anxiety was specifically related to greater CS- responses (rather than the CS+) but may 

be a more general factor influencing the relationship between anxiety and return of fear.  

Finally, a possible mechanism behind the link between anxiety and return of fear, trait anxiety 

may enhance connectivity between emotional control centres during emotional memory 

encoding. Healthy participants (n=65, 33 female, mean age 30 years) underwent resting-state 

functional MRI and encoding of emotional (fearful, sad, or happy) faces paired with neutral 

faces (Hakamata et al., 2020). Anxious participants (scoring more than one SD from a 

previously estimated population mean) showed greater performance in fear-related face 

memory but impaired happy-related face memory. This bias was associated with greater 

resting-state connectivity between the basolateral amygdala and dorsal anterior cingulate 

cortex (dACC). This same connectivity has been linked to pathological fear in PTSD (Morey 

et al., 2020). To shed further light on these effects, future studies could aim to replicate my 

results in the MRI scanner. 
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5.4.3 Anxiety in Fear Acquisition, Extinction, and Reinstatement  

I did not find that anxiety affected fear acquisition and extinction, yet this has been suggested 

in previous literature. Gazendam et al. (2013) reported that high anxiety impaired CS 

discrimination at the end of acquisition and after extinction learning. However, the average 

STAI-measured trait anxiety score in my sample was 37, closer to the control group of the 

previous study (32) than the high anxiety group (47). This suggests that moderate trait anxiety 

is unrelated to acquisition and extinction learning, though there may be an association too 

small to be detected in these sample sizes (n < 45).  

My finding that anxiety is related to maladaptive reinstatement is strongly in line with previous 

literature. Gazendam et al. (2013) found that more anxious participants showed maladaptive 

reinstatement the day after conditioning, although only in startle response and not SCRs. 

Differences in study design (number of trials, type of stimuli, testing environment, equipment) 

could have caused this discrepancy, or it may be explained by the higher anxiety found in the 

previous study’s sample. In support of this, Kuhn et al. (2016) and Scharfenort et al. (2016) 

found respectively that state and trait anxiety (STAI) in young, healthy people predicted poorer 

CS discrimination in SCRs after reinstatement but had no effect on acquisition or extinction. 

Kuhn et al. found a significant reinstatement effect when extinction and reinstatement 

immediately followed acquisition. Reinstatement may therefore be somewhat independent of 

prior overnight consolidation. 

Other studies have reported that greater IU predicts poorer extinction learning beyond the 

STAI (Morriss et al., 2015, 2016). However, with an equal or greater sample size (n=22 and 

38 in the previous studies), I found no evidence that either the STAI or IU scales were 

associated with extinction learning. IU predicted maladaptive reinstatement, but not better 

than STAI-measured trait or state anxiety. This disparity could be explained by differences in 

IU between the samples, but this is difficult to determine because the previous study used the 

longer 27-item IU scale. Therefore, while IU may not be more sensitive to differences in fear 

acquisition and extinction, there is stronger evidence in the literature of all anxieties predicting 

maladaptive reinstatement. My results concur with previous literature to suggest this occurs 

even in a healthy sample.  

I did not find that the reinstatement effect of day 2 was replicated on day 8, though there was 

a stronger reinstatement effect (irrespective of anxiety) across the sample on this final testing 

day (reported in Chapter 3). Previous studies of long-term reinstatement are uncommon, but 

one study investigating appetitive reinstatement in rats (n=76, 38 female, 11 weeks old) found 

that chronic stress (via restraint) caused an attenuation of cue-induced reinstatement in 
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females but not males after one week; however, a high anxiety phenotype was associated 

with a decrease in long-term reinstatement for male rats whereas there was no effect for 

females (Ball et al., 2020). This suggests that females may be more susceptible to the effects 

of recent chronic stress on appropriate reinstatement responses while males are more 

susceptible to effects caused by existing anxiety phenotypes. Although, this requires 

replication in fear conditioning and human subjects. My null finding on day 8 could be due to 

the reduced sample size, or prior extinction and reinstatement on day 2. Considering the links 

between anxiety and the development of long-term fear responses into anxiety-related 

conditions, this deserves further investigation.  

 

5.4.4 Conscious Reinstatement: Subjective Shock Expectancy Ratings 

Prospective anxiety was the only metric to show an association with subjective shock 

expectancy ratings. It may therefore be more sensitive than the STAI as a metric of conscious 

awareness of fear and safe discrimination after a cued reminder of fear. This result, however, 

was weaker than those measured by SCRs. In Chapter 3, I found that subjective shock 

expectancy ratings occurred much faster than physiological learning, suggesting that 

conscious awareness may supersede autonomic responses. My results in this chapter 

suggest that anxiety may be less strongly aligned to conscious learning.  

Previously, Morriss et al. (2015, 2016) found that participants with high IU scores reported 

greater uneasiness ratings to the CS+ and CS- across acquisition and extinction, as discussed 

in section 5.1. This does not concur with my results; however, uneasiness may not wholly 

reflect a conscious expectation of shock pairings. In another study, healthy participants (n=46, 

38 female; mean age 19 years) were taught to expect a shock after a CS+ image; the CS+ 

was then presented together with a new neutral image (blocking CS) before the shock 

designed to attenuate the fear response (Boddez et al., 2012). STAI-measured trait anxiety 

was positively associated with shock expectancy ratings to the blocking CS, while there was 

no association in SCR. This suggests that higher anxiety promotes an impairment in conscious 

discrimination of shock pairings; in other words, participants with greater anxiety tend to show 

a generalisation of conscious fear to safe stimuli, in agreement with my results. In the future, 

additional research should determine whether prospective anxiety is particularly sensitive to 

this effect.  
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5.4.5 Gender Differences  

A post-hoc exploration of my results indicated that female anxiety predicted maladaptive 

responses to cued reinstatement (greater fear responses to the CS-) while there appeared to 

be a neutral or slightly negative association in male participants. To my knowledge, gender as 

a moderator for the relationship between anxiety and fear reinstatement in a sample of healthy 

participants has not previously been reported. 

Gender differences may be driven by social/cultural or biological factors. A recent review 

suggests that social gender roles and gender-mediated qualities such as ‘instrumentality’ and 

‘expressivity’ are negatively and positively associated with threat appraisal respectively (Pittig 

et al., 2020). Fear responses have also been suggested to rely on biological differences such 

as hormonal factors, especially in women. For example, in one large-scale study, participants 

(n=377, 261 females, aged 18–35) underwent fear acquisition on day 1 and then extinction 

and a context-reinstatement test on day 2 (Lonsdorf et al., 2015). Females showed lower CS 

discrimination than males on both days. There were no differences between female 

participants in the early or late menstrual phase, but those taking hormonal contraceptives 

showed reduced CS discrimination across day 2. This suggests that females may be more 

susceptible to impaired fear learning and reinstatement, while this is somewhat dependent on 

hormones such as oestrogen. This aligns with my results. However, my findings only relate to 

self-reported gender rather than biological sex and I did not measure hormone levels; 

therefore, the driving factors are unclear.  

Despite the statistically significant results, the lack of power means these may not be detected 

in another well-powered sample, since statistical power is decreased for interaction effects 

and when a categorical moderator has non-matched subgroups (Aguinis & Gottfredson, 

2010). In particular, a different effect in males may occur with a greater sample size. That 

being said, my results provide a potential connection between anxiety, maladaptive fear 

learning, and gender differences. If females with high anxiety are more susceptible to 

maladaptive generalisation after a cued reminder of fear, this aligns with the greater 

prevalence of both clinical and non-clinical anxiety among women (Bekker & van Mens-

Verhulst, 2007; Altemus et al., 2014; Teymoori et al., 2020). In fact, women are 1.5–2 times 

more likely than men to receive a clinical anxiety diagnosis (Bandelow et al., 2017). Given this, 

gender differences are an important issue for future research to explicitly test for these effects. 
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5.4.6 An Exploration of Bad Dreams in Relation to Fear Learning  

Levin and Nielsen (2009, 2007) have suggested that dreams promote emotional resolution 

and more recently, Sterpenich et al. (2020) found evidence that fear in dreams predicts lower 

subsequent fearful responses. I found that people who reported at least one bad dream 

showed greater maladaptive fear learning overnight and after one week. I did not quantify the 

emotion of each dream, but my results could be interpreted as in keeping with the theory of 

emotional resolution. I present evidence in Chapter 3 that SWS % is associated with poorer 

discriminative consolidation and extinction on day 8, and in this chapter, I have found that 

people who reported bad dreams showed consistent maladaptive learning and lower SWS %. 

This could suggest that bad dreams reflect poorer fear consolidation and further extinction 

learning, perhaps as a compensatory mechanism, but further evidence is required to support 

this association and suggest the causality of the relationship.   

Participants who reported bad dreams had longer total sleep times but lower proportions of 

SWS following conditioning. This could indicate poorer quality sleep, given the known benefits 

of SWS (Born & Wilhelm, 2012; Diekelmann & Born, 2010; Van Der Werf et al., 2009). 

However, while disturbed dreaming is often associated with the perception of worse sleep, a 

study of people with frequent nightmares compared to a control group over three consecutive 

nights at home (total n = 34, 32 female, mean age 24 years), suggested that self-reported 

poor quality sleep in the nightmare group was not supported by changes in sleep architecture 

(Paul et al., 2015). This suggests that bad dreams are unlikely to cause less SWS or longer 

sleep times, rather that these changes and perhaps the dreams themselves reflect the 

maladaptive emotional memory consolidation I also found in this group. Nevertheless, it is 

possible that either poor fear conditioning caused an increase in bad dreams or both were 

affected by uncontrolled factors such as shared genetic influences. In the future, collecting 

dream reports prior to fear conditioning would help to clarify the direction of this effect.  

Finally, I did not find evidence for an association between bad dreams and anxiety. There is 

a previous link between anxiety and bad dreams which may interact with gender. Where trait 

anxiety predicted distress due to bad dreams (Schredl, 2020), this was significantly more 

common in girls. In addition, where disturbing dreams were associated with symptoms of 

Generalised Anxiety Disorder, separation anxiety, and overanxious disorder at age 16, girls 

reported a greater number of overanxious symptoms with disturbed dreaming (Nielsen et al., 

2000). However, I did not test for interaction effects, which require a greater sample size for 

adequate statistical power (McClelland & Judd, 1993). Considering the gender differences 

that I found, this would benefit from further exploration. 
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5.4.7 Strengths and Limitations 

I did not have sufficient statistical power to detect the medium effect sizes in anxiety on days 

1 and 2, while analyses of day 8 responses were further limited by the smaller sample (n=17) 

that took part in additional extinction, reinstatement, and dream reports. There was also an 

uneven number of males and females. These issues limit the robustness of my findings. I also 

disregarded information on the category of bad dream and number of bad dreams across the 

week – which may have led to a richer understanding of the relationship between dreams and 

fear responses.  

In addition, the testing of three anxiety types resulted in multiple significance tests which can 

increase the likelihood of false positives, although my results are consistent. I have not 

corrected for multiple comparisons as it may be overly conservative when comparisons are 

highly interrelated (Chen et al., 2017). Nevertheless, high correlations between the measures 

indicates these questionnaires did not assess distinct anxieties, the results could therefore 

point towards a more general effect. Future research may benefit from a more streamlined 

approach to outcome, for example focussing only on reinstatement effects.  

Finally, my shock expectancy ratings are limited by the highly correlated anxiety measures, 

as this led to a large proportion of participants being assigned to the same low or high anxiety 

group for all measures. I used a median-split approach to assess anxiety because the shock 

expectancy ratings data did not meet the assumptions of linear regression. However, in the 

future, a more sensitive scale of shock expectancy such as 0–100 or a sliding bar would 

provide a more precise distribution of results where associative investigations could be closer 

to those shown via SCRs. 

 

5.4.8 Conclusions and Future Directions  

In this chapter I provide evidence for the relationship between anxiety and fear learning 

outcomes. I found that greater anxiety in a young, healthy sample predicted maladaptive 

reinstatement after a cued reminder of the fear stimulus, even in the absence of significant 

effects on fear acquisition or extinction learning. In contrast, when assessed by conscious 

awareness of shock expectancy, only prospective anxiety predicted this effect.  

I also found significant gender differences in reinstatement, suggesting that the results across 

the sample were driven by the greater number of female participants. In addition, participants 

who reported bad dreams showed greater maladaptive responses before and after the 

recorded week, suggesting bad dreams as a marker of poor fear learning and consolidation. 
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These analyses suggest avenues for future investigations. Further research on anxiety and 

fear conditioning should consider longer-term reinstatement effects in a larger sample and 

explore the crossover from anxiety within the normal range to clinical groups such as PTSD.  
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Chapter 6  

General Discussion 

 

In this chapter I summarise my main findings, discuss the strengths and limitations of my 

experiments, and explore the implications and future directions of this work. My aims for this 

thesis were: 

(1) Provide evidence for the roles of REM and non-REM sleep in emotional memory 

consolidation.  

(2) Investigate how anxiety and bad dreams in a healthy sample are associated with 

maladaptive fear responses across acquisition, extinction, and reinstatement of fear learning.  

(3) Test the validity of the Dreem Headband for sleep measurement against the gold standard, 

PSG. 

My results indicated that non-REM sleep supports overnight fear consolidation while REM 

sleep in the same night supports fear extinction of safety cues, though these findings were 

based on associations rather than causal interventions. In addition, anxiety predicted 

maladaptive reinstatement of fear while bad dreams were also associated with maladaptive 

fear responses. Finally, when manual AASM scoring was applied to raw data, the Dreem 

Headband proved suitable for the measurement of most overnight sleep. These results have 

implications for understanding the roles of sleep, anxiety, and dreams in emotional memory 

consolidation, as well as the practicality of sleep wearables for research. 
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6.1 Summary of Main Findings  

The first aim of this thesis was to provide further clarity to the roles of REM and non-REM 

sleep in fear memory. I developed a novel fear conditioning design to test fear learning (day 

1), overnight consolidation across measured sleep, extinction learning (day 2 and day 8), and 

reinstatement of fear (day 2 and day 8). Based on previous literature, I hypothesised that 

overnight REM duration would be associated with greater overnight consolidation and 

extinction learning. However, I found that SWS duration was associated with greater overnight 

consolidation and a lack of extinction learning on day 8. Meanwhile, REM sleep was 

associated with lower fear responses to the safe CS- on day 2, but not the diminished CS 

discrimination that is the hallmark of successful extinction learning. Further to this, in spectral 

and event analysis of the sleep EEG, fast spindle power in N2 sleep was significantly 

associated with a greater (more positive) CS- change overnight, while slow oscillation count 

was significantly associated with fear consolidation and specifically, greater (more positive) 

CS+ change overnight. These results suggest that SWS and REM in the same overnight sleep 

following fear learning support separable processing of fear consolidation and extinction safety 

learning respectively. 

The next aim of this thesis was to explore interindividual differences besides sleep that may 

be associated with fear learning. The primary focus of this investigation was self-reported 

anxiety; however, in my second round of fear conditioning data collection, I also explored bad 

dreams as an indicator of maladaptive learning. I found that anxiety was strongly associated 

with greater (SCR) fear responses to the CS- after cued reinstatement on day 2. There was 

no distinction between trait, state, and intolerance of uncertainty anxiety measures, although 

prospective anxiety was the only measure to relate to subjective shock expectancy ratings of 

the CS- at the same time. I then explored, post-hoc, whether this result was driven by the high 

proportion of female participants, finding a statistically significant moderation of gender on the 

association between anxiety and CS- responses after reinstatement for all three anxiety 

measures. Furthermore, participants who reported at least one bad dream during the week 

between fear acquisition and final extinction showed greater fear response to the CS- change 

overnight and after extinction on day 8. Bad dreams were not related to anxiety, suggesting 

that these facets could indicate separable predictors of maladaptive fear learning.  

The final aim of this thesis was methodological, testing the utility of a wearable EEG device in 

the context of my emotional memory studies. I conducted a validation study of the Dreem 

Headband. In novel analyses of previously collected data, I explored how Dreem’s automatic 

algorithm compared to the gold standard, PSG, when both were used to record overnight 

sleep simultaneously. I found that Dreem performed better than other devices reported in 
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previous literature but did not meet the 80% agreement requirements to replace PSG. 

However, AASM manual sleep scoring of Dreem’s raw data yielded significantly greater 

agreement, such that Dreem was suitable for the estimation of most overnight sleep. Given 

this, I utilised Dreem for my fear conditioning experiment and also explored these sleep data 

for spectral analyses and event detection. I found mixed results in power spectra and phase-

amplitude coupling. However, my results indicated that Dreem was suitable to estimate 

detected events, especially in the hallmarks of each sleep stage: spindles in N2 sleep and 

slow oscillations in SWS. 

 

6.2 Strengths and Limitations  

6.2.1 The Development of a Novel Fear Conditioning Design 

For the exploration of my hypotheses, I developed a new fear conditioning design to test fear 

acquisition, sleep, extinction, and reinstatement in healthy, young adults. This enabled the 

comprehensive evaluation of these factors but carried its own strengths and limitations. My 

design choices were based on the fear conditioning literature, external collaboration with 

researchers with substantive experience in fear conditioning protocols (Tina Lonsdorf, 

University Medical Center Hamburg-Eppendorf; Joseph Dunsmoor, University of Texas), and 

pilot testing.  

I sourced novel images and spoken words for my conditioned stimuli to confer a greater 

ecological validity than a single modality. Use of a single modality is the default approach in 

conditioning literature (this has been the case in every conditioning study I have discussed), 

as conditioning aims to create a simple behavioural response. However, some evidence has 

suggested that visual and auditory fear conditioned cues are processed with both common 

and separable neuronal firing patterns in the amygdala (Bergstrom & Johnson, 2014). 

Therefore, limiting conditioned responses to one modality, which may not accurately represent 

real-life fearful learning, could also result in a more limited or specific recruitment of fear 

regions. Previously, one fear conditioning design (n=22–72 male rats over five separate 

experiments) explicitly tested the effect of simultaneous light and tone stimuli paired with an 

aversive shock (Jones et al., 2013). The results indicated that a multimodal (CS) fear memory 

was more resistant to extinction than simple tone-shock pairings. The memory was also 

disrupted by the presentation of only one feature (tone or light) during extinction. I did not test 

for such an effect, but this has important implications for future work such as targeted memory 

reactivation of the sound part of the CS during sleep, discussed further in section 6.4.2.  
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I did not explicitly inform participants about CS-US contingencies (instructed conditioning). In 

a meta-analysis of fear conditioning studies comparing instructed and uninstructed designs, 

greater explicit knowledge was more likely to recruit the hippocampus, prefrontal cortex, and 

nucleus accumbens (Mechias et al., 2010). Explicit instructions may increase the strength of 

conditioning (Mertens et al., 2021), but again reduce ecological validity, as fearful experiences 

are not often preceded by an explanation. I also chose partial 56% reinforcement (the 

proportion of CS+ shock pairings) to maximise retention of the fear discrimination overnight, 

since previous literature suggested that lower reinforcement rates promote slower extinction 

(Chan & Harris, 2019). For this reason, perhaps, partial reinforcement is more common in 

human conditioning designs (Menz et al., 2013; Morriss et al., 2015).  

My results suggest that this fear conditioning experiment strongly promoted acquired fear to 

the CS+ on day 1. In addition, testing for differences between sample 1 and sample 2, which 

were collected approximately six months apart, indicated consistency across the results 

(shown in Appendix H), especially in CS discrimination acquired after acquisition training. This 

suggests that sample 2 effectively replicated the results of the initial study. I found no overnight 

maintained discrimination at the first trial of day 2, or discriminative reinstatement on day 2; 

however, I was primarily interested in differences between individuals and thus the range of 

responses from negative to positive across the sample. Broadly, therefore, my fear 

conditioning design was successful in conditioning the sample as a whole while also 

encouraging a range of discriminative responses.  

 

6.2.2 A Range of Fear Measurement   

I investigated psychological and physiological fear outcomes to provide a comprehensive 

picture of fear responses and how they changed across the fear conditioning design. I used 

skin conductance responses (SCRs) as my primary measure of fear, which is common across 

human conditioning designs (for a review, see Lonsdorf et al., 2017). I also investigated heart 

rate variability on a trial-by-trial basis and asked participants to give shock expectancy ratings 

to each CS. This gave complementary insight into the difference between sympathetic and 

parasympathetic activation of the autonomic fear response, as well as the difference between 

physiological and psychological learning; this latter pairing is also common in previous 

conditioning studies (Menz et al., 2013, 2016; Zenses et al., 2020). This range of 

measurement is a strength of the study, but each measure is subject to its own limitations.  

Skin conductance has been a popular metric of arousal in human psychology for several 

decades. However, early studies demonstrated that responses (sudden increases in 
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conductance over several seconds) can be elicited spontaneously (Nikula, 1991), and that the 

response shows strong habituation and individual differences. For example, a study of two 

samples of same-sex monozygotic and dizygotic twins (total 78 pairs, 37 male, mean age 22 

years in one sample, 42 years in the second sample), raised together or apart, reported that 

SCR habituation to loud sounds had a heritability of 59% (Lykken et al., 1988). In addition, the 

SCR can reflect other emotional responses. In a study of emotion, SCRs were elicited for fear, 

happiness, and to a lesser degree sadness and peacefulness (Khalfa et al., 2002). Therefore, 

while the SCR is a useful metric of sympathetic arousal, it may not directly reflect fear.  

I also recorded subjective shock expectancy ratings, a measure of the psychological response 

to fear conditioning, i.e. participants’ understanding of shock pairings as the task progresses 

and changes. Previously, autonomic and subjective measures of fear have been suggested 

to have dissociable structural neural correlates. In healthy participants (n=52, mean age 22 

years) left amygdala volume significantly predicted differential (CS+/CS-) SCR magnitude but 

had no effect on contingency ratings; meanwhile, bilateral hippocampal volume predicted 

contingency ratings but not SCRs (Cacciaglia et al., 2015). My results reflect such a 

divergence: shock expectancy was acquired quickly in every learning phase whereas 

physiological learning lagged behind. This suggests that psychological understanding of threat 

may not necessarily be reflected in autonomic responses, which has important implications in 

the development of anxiety and fear-based pathology. I discuss this in more detail in section 

6.3.2.  

Finally, I recorded heart rate variability as an exploratory measure. I used the metric of RMSSD 

as it reflects mainly parasympathetic activity from the autonomic nervous system (Mackersie 

& Calderon-Moultrie, 2016), and has been reported as the most accurate measure of HRV 

over short time frames, even 10-seconds (Wang & Huang, 2012; Tegegne et al., 2019). While 

I did not use full electrocardiogram equipment, heartbeat detection was largely successful with 

93% trial retention. However, unlike SCRs, I found no evidence that variation across RMSSD 

(during the 10-seconds of CS duration and subsequent inter-stimulus interval) was a marker 

of fear learning. This could suggest that parasympathetic activity does not change as a 

function of fear anticipation. Alternatively, the variability between detected heartbeats may be 

too indirect a measure of parasympathetic activity to detect a significant CS+/CS- difference, 

or the change may occur over a longer time than 10 seconds. However, my finding that HRV-

measured CS discrimination change overnight and extinction learning on day 2 were 

significantly associated with both REM sleep and SWS, suggests that HRV has some 

relationship to fear learning. This would need to be explored in more detail in subsequent 

research.   
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6.2.3 Interpreting Associative Relationships  

A primary aim of this thesis was to clarify the roles of REM and non-REM sleep in emotional 

memory. My design facilitated the comparison between sleep stages recorded over the same 

post-conditioning night, but the associations I have reported are not necessarily causal. In the 

context of previous literature, my findings arguably suggest that SWS promotes memory 

consolidation and REM promotes future safety extinction. Yet, it is possible that fear 

conditioning had a causal effect on sleep. For example, greater discriminative fear learning 

led to more SWS that night, which in turn led to better consolidation. As discussed in Chapter 

3, there is some evidence from rodent studies which suggests that fear conditioning affects 

sleep architecture (DaSilva et al., 2011; Hellman & Abel, 2007; Sanford et al., 2001; Sanford 

et al., 2003). However, this was most often found for REM sleep and has not been replicated 

in studies of people (Marshall et al., 2014), though this may warrant more research. In my 

results, it is also possible that people who tended to have more SWS also tended to have 

better fear conditioned consolidation; in other words, the association could have been driven 

by factors that were not controlled in this experiment, for example, shared genetic effects.  

Furthermore, not all changes that occur across sleep are attributable to sleep itself, since 

changes in memory also occur across time. Generally, most evidence suggests that recently 

encoded memories degrade across wake (due to interference) and strengthen across sleep 

(Gais et al., 2006; Mander et al., 2011; Payne et al., 2012). This is an important factor in how 

fearful memories consolidate and generalise, for example, wake interference may be 

preferable after fear learning if it reduces an unhealthy fear generalisation. I could have 

controlled for this by comparing sleep to an equivalent period of wake. However, as discussed 

in Chapter 3, this would have substantially increased the time demands of the study. It also 

introduces circadian effects if the wake group is tested in the morning then the evening and 

the sleep group vice versa, as Pace-Schott et al. (2009). Otherwise, if the wake group are 

deprived of sleep overnight, as Zenses et al. (2020), this introduces another confound as sleep 

deprivation is highly stressful and in itself impairs memory (Gais et al., 2006; Graves et al., 

2003). These factors all affect the strength of evidence and invariably some aspect is 

compromised. In my results, the associative nature of the evidence should be kept in mind.  

I measured anxiety prior to each testing session and responses remained stable across days. 

As a result, anxiety was unlikely to have changed as a function of fear conditioning, although 

uncontrolled factors may still have affected both anxiety and fear conditioned responses. I can 

therefore have greater confidence that anxiety predicts maladaptive fear responses to cued 

reinstatement, but causal interventions would further strengthen this finding. This is also true 

of my findings relating to bad dreams. My results cannot determine whether people who 
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happened to have bad dreams that week were particularly affected by the fear conditioning 

protocol. Emotional experiences may be consolidated via subsequent dreams, but since the 

salience of my fear conditioning protocol is difficult to assess, further evidence is required to 

fully understand these relationships. Currently, I can conclude that bad dreams are potentially 

associated with fear conditioned overnight consolidation and fear extinction learning a week 

later.  

Together, my results indicate associative evidence for separable roles of REM and non-REM 

sleep for fear consolidation and extinction. To my knowledge, no other fear conditioning study 

has reported roles of both REM and SWS in the same night relating to responses the next 

day. I have also extended this finding to fear discrimination responses one week later and 

provided further evidence for the roles of anxiety and bad dreams towards maladaptive fear 

responding over one week. However, future studies should be mindful of associative versus 

causal effects in this field. Adaptations to better account for this could include a baseline sleep 

night, comparing sleep to an equivalent period of wake, or using targeted memory reactivation. 

I discuss such potential future work in section 6.4.2. 

 

6.2.4 Sampling and Statistical Power  

Like all studies, I have tried to limit confounding factors and recruit a large sample, but this 

could be improved. In my fear conditioning experiment, the sample was comparable to 

previous literature (n=38). Also, to minimise common confounds, all participants were young 

adults, self-reported good sleepers, had no history of mental health or sleep pathology, and 

reported full compliance with the abstinence from caffeine, alcohol, naps, and extreme 

exercise. However, analyses of day 8 were limited to 17 participants, reduced to 11 when 

accounting for sleep data loss. This means that my findings of day 8 – namely that SWS was 

associated with a lack of extinction but anxiety was unrelated – provide less robust evidence 

for the impact of sleep or against the impact of anxiety on conditioned responses. Specifically, 

the effect sizes are less precisely estimated and so there is greater uncertainty about these 

associations.  

My validation of the Dreem Headband was also limited by its sample. The matched nights 

where sleep was recorded simultaneously by Dreem and PSG only yielded 15 nights of data, 

while EEG analyses were confined to 13 of these nights. As well as the low number of 

recordings, the sample was potentially confounded by the recruitment based on neuroticism 

and the recording of multiple nights from the same individuals. I did not find neuroticism (low 

[n=5] versus high [n=3]) or night (first versus second [n=6]) to have a significant effect on sleep 



202 
 
 

agreement; however, these analyses themselves lacked statistical power and are therefore 

somewhat unreliable. That being said, while these confounds may affect sleep, they are not 

obviously indicative of differences in agreement between Dreem and PSG. In addition, my 

findings are broadly comparable with the previous literature on sleep wearables.  

Limited sample sizes are most relevant in their effect on statistical power. This is an issue 

across PSG-measured sleep research, in fact, across science (Anderson & Maxwell, 2017; 

Lindsay, 2015). Statistical power is the probability that a study will detect an effect of interest, 

given the effect exists in the studied population. Generally, 80% power – an 80% likelihood of 

detecting a statistically significant effect if one exists – is considered acceptable (Brysbaert, 

2019; Cohen, 1992). An underpowered study decreases the likelihood of finding a true effect 

(a false negative), but as noted in Chapter 5, also means that significant effects are more likely 

to be spurious (a false positive) than significant effects in adequately-powered studies (Button 

et al., 2013; Fraley & Vazire, 2014). In my fear conditioning experiment, the analyses regarding 

sleep were underpowered after data loss reduced the sample size from 38 to 27. Analyses of 

bad dreams and sleep/anxiety, particularly on day 8, also lacked sample size, while my 

exploration of gender moderation was seriously underpowered, considering the greater 

sample needed for moderation analyses and the uneven number of males and females. My 

Dreem validation study had sufficient power to detect only large differences.  

Finally, these experiments had substantial ‘experimenter degrees of freedom’. This refers to 

the numerous choices made over the course of experiments and analysis, unconsciously 

increasing the chances of finding positive results (Wicherts et al., 2016). For example, my 

findings regarding an increase in CS discrimination overnight could have been explained by 

either processing or consolidation; the former allows for a result showing decreased reactivity 

and the latter for the increased reactivity (SCR) that I report. I have related my findings to 

previous literature; however, the robustness of these conclusions would have been enhanced 

if I had pre-registered this experiment. 

In summary, the significant effects I have found are at risk of being false positives. In addition, 

I did not have enough power to detect medium or small effect sizes. Therefore, the implications 

are somewhat limited. However, my results are strengthened by the consistency of the findings 

across this thesis and in the context of previous literature and so warrant replication in larger 

samples.  
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6.3 Implications  

6.3.1 Emotional Memory Consolidation 

The Active Systems Consolidation Theory, a dominant theory of sleep-dependent memory 

consolidation, suggests that slow oscillations, sleep spindles, and hippocampal sharp-wave 

ripples support memory consolidation during non-REM sleep (Diekelmann & Born, 2010). 

While it does not specifically relate to emotional memory, abundant evidence suggests that 

emotional memories are also supported in this way (Denis et al., 2021; Girardeau et al., 2017; 

Göder et al., 2015; Jones et al., 2019; Kaestner et al., 2013). My findings align with this. 

Specifically, the association between SWS duration and a maintenance of CS discrimination 

overnight provides further evidence for the specific role of non-REM sleep in emotional 

memory consolidation, not just after one night, but after one week as well.  

In Chapter 4, I also provide evidence for the neural mechanisms at play in such consolidation. 

Complementary to the association between SWS duration and maintenance of fear 

discrimination, slow oscillation count and density were also associated with this discrimination, 

suggesting that slow oscillations during non-REM sleep play a mechanistic role in long-term 

consolidation of fear memory. Previously, the spatial and temporal patterns of slow oscillations 

have been suggested to determine the synaptic strength between neurons and in turn promote 

replay of neuronal firing sequences (Wei et al., 2016). While my results are a much broader 

measure of slow oscillations, they concur with this prior literature, adding evidence for the role 

of slow oscillations in emotional memory consolidation.  

I also found that fast spindle power in N2 sleep related to CS- change overnight. There was 

poor agreement between PSG and Dreem in this metric which weakens the strength of this 

finding. However, it could suggest that fast spindles promote generalisation of fear (from the 

CS+ to the CS-), which also aligns with previous literature (Chatburn et al., 2021; Lewis et al., 

2018). Potentially, therefore, my results also indicate a divergence between sleep stages SWS 

and N2 for fear consolidation and generalisation respectively.  

Beyond theories of non-REM, my results suggest that REM and SWS in the same post-

conditioning night promote complementary consolidation processes that may impact future 

responses, even after further learning. This aligns with Wassing et al. (2019), where 

fragmented REM was associated with poorer negative/neutral discrimination, while the 

beneficial effect of unfragmented REM was enhanced by spindle rich N2 sleep prior to REM 

episodes. In support of this, healthy participants (n=15, 3 male, mean age 20 years) viewed 

positive, negative, and neutral images in an MRI scanner, then had PSG-recorded sleep 

overnight before a recognition test (Cairney et al., 2014). SWS duration was associated with 
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better memory for negative images and reduced hippocampal activation during recollection, 

while REM duration was associated with an overnight increase in hippocampal-neocortical 

connectivity for these images. This suggests that SWS and REM have complementary roles 

during overnight sleep which support preferential emotional memory. I am unaware of any fear 

conditioning design which has reported complementary roles between REM and non-REM in 

this way. Therefore, my results are novel in the conditioning literature but align with growing 

evidence for both REM and non-REM sleep in emotional memory consolidation. 

The Sleep to Forget, Sleep to Remember Hypothesis suggests that REM promotes a gradual 

reduction in emotional responses over time and after multiple bouts of REM sleep. I found that 

REM was associated with reduced fear responses to the CS- after extinction on day 2, but 

there was no association on day 8. However, I only recorded REM over a single night’s sleep. 

Thus, a gradual attenuation of fear should be investigated with sleep recording over 

consecutive nights. In addition, since fear responses are the metric of consolidation, fear 

conditioning may sometimes conflate emotional responses and memory consolidation. A 

separation between discriminative memory and amelioration of emotion would therefore 

benefit from additional evidence via a different experimental design.  

Nevertheless, my results align with other previous literature linking fear learning to REM 

(Marshall et al., 2014; Menz et al., 2013, 2016; Spoormaker et al., 2010; Wassing et al., 2019). 

To my knowledge, no previous study has reported that REM sleep supports extinction learning 

the next day. My finding that REM promotes more adaptive future responses suggests a role 

in the separation of danger and safe stimuli consolidation after initial encoding. In support of 

this, there is evidence that the CS+ and CS- are encoded in separable neuronal ensembles 

(Corches et al., 2019). In addition, REM duration was recently reported to be associated with 

increased fear generalisation in healthy people (n=24, 11 female, mean age 23 years), but of 

learned CS+/CS- responses to novel situations (Lerner et al., 2021). Therefore, while REM 

may play a complex role, there is consistent evidence that this sleep stage supports the 

processing of fear conditioned responses.  

 

6.3.2 Anxiety, Stress, and Sleep Problems  

My results suggest that anxiety as a trait factor predicts maladaptive responses to a cued 

reminder of fear; that is, an increase in fear to the safe CS- rather than to the previously known 

dangerous CS+. Interestingly, these results were only partially replicated in subjective shock 

expectancy ratings, suggesting that physiological metrics may supersede conscious 

knowledge in the development of maladaptive generalisation of fear. This is supported by 
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previous literature, for example, participants (n=124, 72 female, mean age 30 years) with high 

physical anxiety sensitivity showed a greater attentional bias towards masked and unmasked 

negative words (Hunt et al., 2006). This suggests that anxious tendencies are driven at least 

in part by unconscious responses. 

Understanding how individual differences in anxiety promote maladaptive fear responses has 

important implications for a number of psychopathologies, most notably clinical anxiety and 

PTSD. These disorders are common and stem, at least in part, from an abnormal continuation 

and generalisation of fear. However, while many people experience unpleasant events, only 

a minority will go on to develop a condition such as PTSD (Dekkers et al., 2010; Kessler et al., 

2017; Kolassa et al., 2010; Shalev et al., 1996, 2019). Therefore, PTSD is not an inevitable 

response to trauma. My findings were derived from a young, healthy sample but suggest that 

trait anxiety, REM, and non-REM sleep should be investigated further to explore causal 

effects. In particular, my fear conditioning design could be adapted to an exploration of 

targeted memory reactivation to explore how these findings could be applied to not only 

understand how sleep interacts with fear consolidation, but how fear memories could be 

manipulated and ultimately ameliorated.  

In 2021, my results have additional implications considering the long-term stress, anxiety, and 

fear of the COVID-19 pandemic. In college students (n=707, 431 female, 32 gender diverse) 

aged 18–22 across the US, a mental health survey in April and again in July 2020, suggested 

that most students were suffering from stress and anxiety. In particular, women reported 

significantly poorer outcomes than men, while gender diverse and sexual minorities reported 

significantly poorer outcomes than cisgender, heterosexual individuals (Hoyt et al., 2021). This 

suggests that added stress affects people differently based on their gender and again posits 

interesting and important avenues for further exploration.  

COVID-19 has also impacted sleep. For example, in May 2020 during a national lockdown in 

India, an online survey (n=958, 393 female, mean age 37 years) indicated that self-reported 

sleep quality had reduced from a retrospective baseline, while these reductions were 

significantly associated with depressive symptoms (Gupta et al., 2020). Further to this, a study 

in China (n=7236, 3952 female, mean age 35 years) found that young people (< 35 years) 

were affected more than older people by anxiety and depression symptoms during the 

pandemic (Huang & Zhao, 2020). The Dreem Headband has been used to study these factors. 

In participants who were already accustomed to the device (n=599, 174 female, aged 36–59), 

sleep was compared over 5 weeks both before and during the pandemic (specifically during a 

lockdown). Overall, people slept for longer, had less SWS, more light sleep, and longer REM 

sleep, while these changes were greater in people who reported an eveningness chronotype 
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(Pépin et al., 2021). These findings suggest that various interrelated factors (age, gender, 

chronotype, anxiety, depression) interact with sleep, potentially affecting the propensity for 

maladaptive fear responses. This is an important avenue for further research as the effects of 

the pandemic persist.  

 

6.3.3 The Impact of Gender 

There is an issue with gender balance across the fear conditioning literature. In general, rodent 

studies tend to only use males (DaSilva et al., 2011; Hellman & Abel, 2007; Purple et al., 2017; 

Rolls et al., 2013; Sanford et al., 2001, 2003). This focus on males has also been the case for 

some human studies (Menz et al., 2013, 2016; Spoormaker et al., 2010). On the other hand, 

some human studies which rely on psychology undergraduate students are dominated by 

women (Morriss, Christakou, et al., 2016; Sterpenich et al., 2020). It is difficult to establish 

what impact this has on the results, but as noted in Chapter 5, clinical anxiety is more prevalent 

in women (Teymoori et al., 2020), which suggests that gender does affect these processes, 

or at least, how they manifest.  

While my fear conditioning sample heavily comprised of females, my findings potentially 

suggest that male and female (gender as self-reported) participants are affected differently by 

anxiety. The positive association between anxiety and reinstatement to the CS- was driven by 

female participants, while males showed a neutral or even slightly negative association, albeit 

in exploratory post-hoc analyses. This could be indicative of the greater susceptibility to clinical 

and non-clinical anxiety in women (Asher et al., 2017; Gao et al., 2020; McLean & Anderson, 

2009; Teymoori et al., 2020).  

However, while all participants identified as male or female in my moderately-sized sample, 

minority gender groups may suffer from greater anxiety. For example, in college students 

(n=43,632) completing the Health Minds Study, people who identified as pansexual, 

demisexual, asexual, queer, questioning, or transgender/nonconforming reported significantly 

greater anxiety and depression than heterosexual individuals (Borgogna et al., 2019). An 

interesting avenue would be to explore fear conditioning and reinstatement in these groups, 

perhaps distinguishing between biological and social/cultural factors towards gender 

differences which my results do not consider, since I only asked participants about their self-

identified gender. Therefore, while my results do not clarify this issue, they suggest the 

importance of considering gender in future investigations.  

 



207 
 
 

6.3.4 Wearable Technology 

Sleep research has historically been dependent on PSG, but this is an expensive, time-

consuming procedure which limits the sample size of sleep studies. Meanwhile, a boom in the 

development of wearable technology may revolutionise health research. This has extended to 

sleep, despite its complexity. Consequently, sleep wearables have huge potential, but 

research is still in the early stages. Across the array of sleep wearables currently available, 

most yielded poor sleep measurement when scientifically evaluated, as discussed in Chapter 

2. In contrast, previous validation of the Dreem Headband suggested it performed well against 

PSG, but this required substantiation.  

My results suggest that the Dreem Headband introduces too much error in sleep measurement 

from differences in both hardware and scoring method. However, when the manual sleep 

scoring method that was developed for PSG was applied to Dreem raw data, it was suitable 

for sleep stage metrics. To my knowledge, this is yet unreported using the Dreem Headband. 

The previous validation suggested that Dreem’s automatic sleep scoring algorithm was 

sufficient against PSG (Arnal et al., 2020), but my results cast doubt on this finding. Dreem 

must be shown to consistently perform well against PSG in a variety of settings before it can 

be fully trusted in sleep research for both sleep measurement and analysis.  

Even with manual sleep scoring, Dreem is not a perfect replacement for PSG and there will 

be circumstances where wearables are unsuitable. Dreem sleep data are more difficult to 

sleep score and carry an impoverished signal coverage and quality, i.e. no eye movement, 

muscle tone, and central EEG measurement, as well as increased artefacts and poorer signal-

to-noise ratio. However, Dreem could be utilised for large-scale studies where estimations of 

SWS and REM sleep stages take precedence. The convenience of sending a fully 

autonomous wearable to participants’ homes could hugely increase the size of sleep studies, 

even if the data are manually sleep scored. I also found that Dreem was suitable for the 

detection of sleep spindles in N2 sleep and slow oscillations in SWS, and I was able to use 

this to strengthen my findings regarding emotional memory consolidation. In the future, this 

may be further improved with developments in wearable technology, but currently, my results 

advocate the use of Dreem – with the caveat of manual sleep scoring – for sleep staging as 

well as spindle and slow oscillation detection.  
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6.4 Future Directions  

6.4.1 Replicating These Experiments  

In a replication of my fear conditioning experiment, I would collect sleep, dream, and anxiety 

measures one week prior to the first conditioning session. This would enable a more 

comprehensive evaluation of how these factors may cause (or affect) changes in fear 

conditioned responses across acquisition, extinction, and reinstatement. It would also be 

beneficial to recruit a larger sample size with equal numbers of male and female participants, 

and pending a separate investigation into minority gender groups, ask people about both their 

biological sex and gender identity so that potential confounds between biological and social 

factors can be controlled. To limit possible effects of oestrogen, female participants could also 

be asked to participate within the same menstrual phase, or hormone levels could be 

quantified if more resources were available.  

With greater resources, it would also be informative to test the effects of time between 

encoding, sleep, and extinction. The stress hormone cortisol peaks in the morning and 

decreases throughout the day (Gagnon et al., 2018), while the optimal time of day for learning 

varies between individuals (Delpouve et al., 2014; May et al., 1993; Ngo & Hasher, 2017). 

Meanwhile, circadian disruption impairs fear extinction and safety learning in rodents (Clark et 

al., 2020; Kordestani-Moghadam et al., 2020). In my current results, I tested fear acquisition 

in the afternoon and fear extinction the following morning. While this was the same for all 

participants, a variation of time of day would inform how these factors affect the relationship 

between fear conditioning, sleep, and anxiety. In addition, interindividual differences in 

chronotype could be tested with a measure such as the Morningness Eveningness 

Questionnaire (Panjeh et al., 2021). This would give an indication of how wake interference 

before sleep, chronotype, and circadian timing – factors at play in real-life fearful experiences 

– affect fear learning. This could help to clarify why some people suffer from maladaptive and 

long-term fear.  

In a replication of my Dreem validation study, a larger sample size would also be 

advantageous, but in particular, I would test whether the accuracy of Dreem is affected by a 

‘first night effect’. Participants are generally unfamiliar with sleep measurement and it is not 

clear from my current findings how much this affected the results. In addition, like most 

technologies sleep wearables are a fast-moving field and the validation of their efficacy needs 

to stay apace. Therefore, I would also use the latest ‘Dreem 2’ headband to investigate this 

newest development against PSG.  

 



209 
 
 

6.4.2 Further Study of Emotional Memory Consolidation  

My findings indicate several avenues for further research into emotional memory consolidation 

beyond replication. In particular, my fear conditioning task could be easily applied to targeted 

memory reactivation (TMR). Specifically, the sound component of the CS (one each of the 

CS+ and the CS-) would be presented during sleep. This may initially utilise the control of PSG 

but could potentially be adapted for sleep wearables too.  

TMR has gained popularity in recent years as an instrument to understand sleep through 

manipulation. It is advantageous in that it can be applied translationally to animal and human 

subjects, is non-invasive, and provides causal evidence (Creery et al., 2015; Hu et al., 2020; 

Lewis & Bendor, 2019; Oudiette & Paller, 2013; Schouten et al., 2017). Furthermore, as 

described in Chapter 3, TMR in non-REM sleep has already been applied to fear conditioning 

designs (Hauner et al., 2013; Purple et al., 2017; Rolls et al., 2013), though there is ambiguity 

as to whether it strengthens or reduces fear responses.  

Since REM was associated with lower CS- responses after extinction, my results could 

suggest that REM reactivation would promote extinction of the CS-. Although, reactivation 

does not necessarily enhance the effects associated with that stage. Based on evidence for 

specific weakening of emotional memories after reactivation (Hauner et al., 2013; Simon et 

al., 2018), TMR during SWS may also ameliorate fear responses. Therefore, both REM and 

non-REM sleep warrant investigation. If an amelioration of fear was achieved, TMR could be 

applied to more complex or older fear memories with a view towards eventual application to 

fear-based pathologies such as PTSD.  

 

6.5 Conclusions 

In this thesis I have provided evidence for the contributions of REM and non-REM sleep 

towards the consolidation of fear conditioned responses. I have also explored how anxiety and 

bad dreams relate to maladaptive fear. In addition, I have extended the literature on sleep 

wearables with a novel validation of the Dreem Headband including spectral analyses and 

event detection.  

My results suggest associations between SWS and overnight fear consolidation as well as 

anxiety and maladaptive fear reinstatement. Moreover, the Dreem Headband may be suitable 

to measure time spent in SWS and REM, but only when expertly sleep scored. Finally, in more 

exploratory analyses, I found that bad dreams may relate to poor sleep-dependent 

consolidation while anxiety’s effect on reinstatement may be specific to female participants. 
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These findings suggest avenues for further research into emotional processing and dreams 

as well as the impact of gender on fear reinstatement.  

Together, these results will help inform future studies of fear memory consolidation and sleep 

wearable validation. Ultimately, this research may support the development of more efficient 

sleep measurement, as well as a better understanding of the fear response and how it 

manifests into disabling psychopathologies such as PTSD. 
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Appendices 

 

Appendix A  

Screening Forms 

 

I used Google Forms to create a screening tool which all participants were asked to complete 

prior to testing. If forced response, options are shown in brackets - []. Red indicates that the 

response would exclude the respondent, green indicates the response was acceptable for the 

experiment.  

 

1. Your age (in years) – less than 18 or greater than 30 

2. Gender [male; female; prefer not to say] 

3. Left or right-handed [left-handed; right-handed; I use my hands equally] 

4.  Are you happy to disclose where in your menstrual cycle you are? [yes; no; I may be unsure 

of this information; N/A] 

5. Are you familiar with any of these languages? [Hebrew; Hungarian; Turkish; Korean; none of 

the above] 

6. Do you have any form of hearing impairment? [yes; no] 

7. Have you ever suffered from any of the following illnesses? [mental illness (e.g. depression); 

neurological disorder; I’m not sure; undiagnosed but I feel I may have a disorder; none of the 

above] 

8. Do you have hypersensitive skin or any known contact allergies? [yes; no] 

9. Are you currently taking any medications? [yes; no] 

10. Do you smoke? [yes; no] 

11. Do you agree not to consume caffeine or engage in extreme physical exercise within 24 hours 

before your visit to the laboratory? [yes; no] 

12. Do you agree not to consume alcohol within 24 hours before your visit to the laboratory? [yes; 

no] 

13. At what time do you usually go to bed (enter in format 0:00 - 23:59)? – times later than 2am 

were excluded based on an abnormal sleep/wake cycle.  

14. How long does it usually take you to fall asleep? [almost instantly; somewhere between 10 

minutes and half an hour; longer than half an hour, I often toss and turn] 

15. What time do you usually wake up (0:00 - 23:59)? – times later than 10am were excluded 

based on the start time of experimental session 2.   
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16. Has your sleep and wake cycle (i.e. the times you get up and go to sleep) remained relatively 

constant over the past 4 weeks? [yes; no] 

17. Have you engaged in any regular night shift work over the past two months? [yes; no] 

18. Have you travelled across more than two time zones in the past two months? [yes; no] 

19. Do you usually wake up during the night? [yes; no] 

20. If yes, how many times and for what reason? – many participants indicated that they wake 

up to use the bathroom in the night once. These participants were not excluded.  

21. Have you experienced any severe stressful life event(s) in the past six weeks? [yes; no; I’m 

not sure] 

22. Have you had any form of continuous sleep disturbance for longer than two weeks in the 

past? [yes; no] 

23. If 'Yes' please give details – all were excluded 

24. How would you generally describe your ability to sleep? [excellent; good; fair; poor] 

25. How much do you think wearing the headband will affect your sleep? [I’m confident it will not 

affect me; it may affect me slightly but I’ll still be able to sleep well; it will probably affect me 

quite a lot, I may struggle to sleep; I’m not sure how much it will affect me] 

26. Have you previously taken part in any sleep study at CUBRIC/Cardiff University? [yes; no] 

Number of excluded respondents per question: Q7 – 9; Q8 – 1; Q9 – 8; Q10 – 2; Q13 – 2; Q14 – 5; 

Q15 – 3; Q16 – 10; Q17 – 3; Q18 – 1; Q21 – 3; Q24 – 8; Q25 – 6.  
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Appendix B  

Questionnaires Administered During Fear Conditioning Experiment  

I sourced the Intolerance of Uncertainty Scale and State Trait Anxiety Inventory (STAI) to 

measure anxiety and the Stanford Sleepiness Scale to measure alertness. I created the mood 

questionnaire to be administered after conditioning in conjunction with Cardiff University’s 

Ethics Committee. All were anonymised with participant IDs: no names or identifying 

information was written on these questionnaires.  

Externally accessed questionnaires: For Intolerance of Uncertainty, participants answer on a 

scale of 1 to 5 as to how much they agreed with various statements on 11 items. Similarly, for 

the STAI, participants answered on a scale of 1 to 4 on 20 items for state anxiety and 20 items 

for trait anxiety. For the Stanford Sleepiness Scale, participants circled one for seven options 

labelled 1 to 7 describing states of increasing sleepiness.  

I wrote guidelines to the mood questionnaire which explain how it would have been used if 

necessary:  

This questionnaire will be administered at the end of every testing session; participants will be 

reminded to answer as honestly as possible, and that their answers will not affect their results. 

If the participant answers a 3 or 4 on the first two questions, a 4 or 5 on the third question, or 

indicates in the final two questions that they have been negatively impacted emotionally by 

taking part in the experiment the following procedure will be carried out.  

Participants will be asked to sit in a quiet room while relaxing music is played for 10 minutes. 

Previously, various studies have found that relaxing music reduces physiological indicators of 

stress (Khalfa et al., 2003; Knight & Rickard, 2001). They will think this is part of the 

experiment. Before they leave, the participant will also be given the information sheet about 

various mental health help services to take away, and they will not be invited to take part in 

subsequent parts of this experiment, or any other similar experiment.  

This will also be offered to any participant exhibiting signs of emotional distress, regardless of 

their answers to this questionnaire 
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Mood Questionnaire 

Please answer the following questions as honestly as you can by indicating the statement which best 

describes you in this exact moment.  

How anxious do you feel? 

1     I am not at all anxious 

2     I am alert but not anxious 

3     I feel slightly anxious 

4     I am very anxious  

How do you feel about leaving the experiment and going about your day? 

1 I feel very able to continue my day as planned  

2 I feel able to continue my day as planned  

3 I feel it will be somewhat difficult to continue my day as planned 

4 I feel it will be very difficult to continue my day as planned 

How much do you think your mood has changed from when you started the experiment? 

1 I feel much more positive  

2 I feel slightly more positive   

3 I feel about the same 

4 I feel slightly more negative 

5 I feel much more negative 

Has your experience in this experiment brought up any unpleasant memories for you? 

      Yes 

      No 

Please add any additional information you would like concerning the experiment and how it has affected 

your mood.  

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 
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Support Information (only given to participant if signs of distress were shown) 

Cardiff University Wellbeing Team 

If you are a Cardiff University student, the wellbeing team offer a range of free and easy to access 

services including counselling, interactive workshops, courses, and groups.  

You can contact them via email at wellbeingandcounselling@cardiff.ac.uk or by phone on 029 2087 

4966 

Alternatively, you can find out more about the services on offer on their website: 

https://www.cardiff.ac.uk/study/student-life/student-support/counselling-and-wellbeing  

CALM 

Campaign Against Living Miserably is a service aimed at men who may be struggling with mental health 

problems. You can access free telephone support by calling 0800 585858 between 5pm and midnight, 

365 days a year. Alternatively, you can use their webchat service by going to their website: 

https://www.thecalmzone.net/  

The Mix 

The Mix offers a confidential service aimed at under 25s. Open from 11am to 11pm every day you can 

call 0808 808 4994 for free advice from trained supporters. Alternatively, you can use their online chat 

service or crisis messenger service, where you can discuss any issues via text message. To access 

crisis messenger, text THEMIX to 85258, this is free and anonymous. To find out more, go to their 

website: 

https://www.themix.org.uk/get-support   

Mind 

Mind is a mental health charity aimed at anyone experiencing a mental health problem. They offer a 

wide array of information about mental health online and offer a helpline from 9am to 6pm Monday to 

Friday on 0300 123 3393. Alternatively, you can email info@mind.org.uk, or find out more on their 

website: 

https://www.mind.org.uk/  

mailto:wellbeingandcounselling@cardiff.ac.uk
https://www.cardiff.ac.uk/study/student-life/student-support/counselling-and-wellbeing
https://www.thecalmzone.net/
https://www.themix.org.uk/get-support
mailto:info@mind.org.uk
https://www.mind.org.uk/
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Appendix C  

Fear Conditioning Task Instructions (Acquisition and Extinction) 

 

 

------------------- 

 

In this experiment you will see pictures and hear sounds 

 

Sometimes you will also experience a shock 

 

Focus on the pattern of images, sounds and shocks 

 

Press the SPACE BAR to continue 

 

------------------- 

 

Between each picture there will be a fixation cross 

 

It can seem like a long wait between pictures 

 

But try not to let your attention wander 

 

The task only takes around 15 minutes 

 

Press the SPACE BAR to continue 

 

------------------- 

 

On some trials, we would like you to rate the image/sound pair 

 

You will see the image/sound AND be asked to rate how much you expect a shock 

 

Answer using the keyboard numbers, on a scale of 1 to 5 

 

1 indicates you NEVER expect a shock and 5 indicates you ALWAYS expect a shock 

 

Press the SPACE BAR to continue 
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------------------- 

 

Remember, on most trials you do not need to do anything 

 

However, pay attention to the images, sounds, and shocks 

 

Think about when these things are presented, and any patterns you can see 

 

When you are asked for a rating, consider the patterns you have observed 

 

Press the SPACE BAR to start the task
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Appendix D  

Supplementary Analyses – Chapter 2 

 

D1 Neuroticism Classification 

Because participants were recruited on the basis of high or low neuroticism, which was not of 

interest for the current hypotheses, I investigated whether neuroticism classification affected 

agreement measures between PSG and Dreem across sleep stages. A 2 x 5 x 3 factorial 

ANOVA of individual recordings, regardless of night 1 or night 2, between participants scoring 

high (n=10) and low (n=5) in neuroticism across five sleep stages (N1, N2, SWS, REM, wake) 

and three scoring methods (PSG, Dreem-algorithm and Dreem-manual) indicated no 

significant effect of neuroticism F (1) = 2.49, p = .139, suggesting that data contributed by 

participants of low and high neuroticism were similar. There was also no neuroticism * sleep 

stage interaction, F (4) = 0.21, p = .934, nor a neuroticism * scoring method interaction, F (2) 

= 1.72, p = .199, suggesting that neuroticism had no significant effect on sleep measures. 

 

D2 A Test of Scoring Differences: Personality Data 

Most of the tested personality traits did not significantly correlate with each other. However, 

greater neuroticism was associated with lower conscientiousness and higher openness; 

correspondingly, conscientiousness and openness were negatively associated (Table D1). 
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Table D1 Pearson Correlation Between Measured Personality Traits 

 Neuroticism Extraversion Agreeableness Conscientious-
ness 

Openness 

Neuroticism      

Extraversion -.22 

 

    

Agreeableness -.31 

 

.56 

 

   

Conscientious-
ness 

-.92 *** .29 

 

.35 

 

  

Openness .85 ** -.12 

 

.15 

 

-.70 *  

*p < .050, ** p < .010, *** p < .001 

I investigated each personality trait separately as a predictor of time spent in SWS and REM 

(Table D2). Where participants contributed sleep recordings on two nights (n=5), time in SWS 

or REM was averaged. A longer time in SWS across night 1 was weakly associated with longer 

in night 2, r = .86, p = .063; there was no association in REM, r = .10, p = .878. Agreeableness 

was a strong predictor of time spent in SWS, but no other trait showed a significant association 

(Figure D1). 
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Figure D1 Personality Traits and PSG-Scored SWS 

Agreeableness showed a positive association with time spent in SWS (C). There was no association 

with other personality traits: neuroticism (A), extraversion (B), conscientiousness (D), or openness (E).  
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Table D2 Linear Regression: SWS and Personality Traits   

    Unstandardised Coefficients 

     R2  F (1,6)    p  B [SE]  95% CI 

Neuroticism     .19  1.36    .288 -0.83 [0.71] -2.56, 0.91 

Extraversion     .35  3.17    .125  1.28 [0.72] -0.48, 3.03 

Openness     .00  0.01    .928 -0.11 [1.21] -3.06, 2.84 

Agreeableness     .92  65.95 < .001   2.46 [0.30]  1.72, 3.20 

Conscientiousness     .28  2.34    .179  1.15 [0.75] -0.70, 2.99 

 

No trait showed a strong association with REM (Figure D3). Again, each trait was considered 

independently as a predictor of REM (as scored by PSG) in a linear regression model (Table 

D4). No personality traits predicted time spent in REM, therefore no further analyses were 

conducted.    
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Figure D3 Personality Traits and PSG-Scored REM 

There was no association between REM and the measured personality traits: neuroticism (A), 

extraversion (B), agreeableness (C), conscientiousness (D), or openness (E). 
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Table D4 Linear Regression: REM and Personality Traits  

    Unstandardised Coefficients 

     R2  F (1,6)    p  B [SE]  95% CI 

Neuroticism     .07  0.46    .525  0.58 [0.86] -1.52, 2.68 

Extraversion     .02  0.13    .733  0.35 [0.99] -2.07, 2.78 

Openness     .14  0.94    .370  1.23 [1.27] -1.88, 4.34 

Agreeableness     .05  0.30    .604  0.64 [1.16] -2.20, 3.47 

Conscientiousness     .00  0.01    .936 -0.08 [1.00] -2.54, 2.34 
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Appendix E 

Supplementary Analyses – Chapter 3 

 

E1 Algorithmic and Manual Scoring in Fear Conditioning Dreem Data 

I calculated agreement between algorithmic and manual scoring of Dreem-recorded sleep in 

my fear conditioning study, as an indication that my manual scoring performed similarly to the 

data from my validation of Dreem against PSG (Chapter 2). In addition, the six-month delay 

between data collection may also have affected sleep: sample 2 was close to the summer 

exam period, summer daylight hours may have meant earlier wake times/more disrupted 

mornings, or Dreem may have updated their software.  

Therefore, I compared total agreement across the night for sample 1 (fear conditioning), 

sample 2 (fear conditioning) and Chapter 2, testing algorithmic scoring against manual scoring 

as the ground truth. Kappa values from Chapter 2 scored manually and algorithmically were 

closer to that of Sample 2, consistent with the fact these data were collected around the same 

time. However, values did not significantly differ from either sample: sample 1, t (27) = 1.40, 

p = .172; sample 2, t (26) = -0.31, p = .761, without correction for multiple comparisons (Figure 

E1).  

 

 

Figure E1 Cohen’s Kappa Agreement Between Fear Conditioning Samples 1 and 2, and the 

Dreem Validation Data from Chapter 2 

Sample 1 showed greater agreement between algorithmic and manual scoring of Dreem data than 

sample 2 and Chapter 2, though this difference was not significant. Scatter shows individual Dreem 

recordings.  
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Per sleep stage, there was a difference in sensitivity for N1, REM and wake, and in specificity 

for N1, SWS, and wake (Figure E2).   

 

 

Figure E2 Sensitivity per Sleep Stage Between Fear Conditioning Samples 1 and 2, and the 

Dreem Validation Data from Chapter 2 

Sensitivity in N1 was significantly greater in Chapter 2 compared to sample 1, sensitivity in REM was 

significantly greater in Chapter 2 compared to sample 2, and finally sensitivity in wake was significantly 

greater in sample 1 compared to sample 2 and Chapter 2. There were no significant differences in N2 

or SWS.  

Three-way between-subjects ANOVAs indicated no differences in N2, F (2,41) = 2.35, p = 

.109, or SWS, F (2,41) = 0.99, p = .382, but significant differences in N1, F (2,41) = 4.66, p = 

.015, REM, F (2,41) = 3.92, p = .028, and wake, F (2,41) = 13.72, p < .001. Subsequent post-

hoc tests indicated which comparisons significantly differed within these stages (Table E1). 
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Table E1 Algorithmic and Manual Scoring Agreement: Sensitivity per Sleep Stage 

Chapter 2 = Dreem validation study.

Sleep Stage Comparison        p 

N1 Sample 1 against Sample 2      .114 

 Sample 1 against Chapter 2      .016 

 Sample 2 against Chapter 2    1.000 

REM Sample 1 against Sample 2      .097 

 Sample 1 against Chapter 2    1.000 

 Sample 2 against Chapter 2      .037 

Wake Sample 1 against Sample 2      .045 

 Sample 1 against Chapter 2   < .001  

 Sample 2 against Chapter 2      .077 
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E2 Shock Expectancy Ratings: Reaction Times  

Reaction times greater than 10 seconds (n=3), all of which occurred on the first rating of day 

2, were excluded. Unlike ratings, these data were normally distributed.  

Reaction times decreased across acquisition training, although there was some divergence 

between CS+ and CS- responses (Figure E2). A 2 x 7 repeated measures ANOVA indicated 

a significant difference in CS, F (1) = 5.41, p = .026, and across blocks, F (3.74) = 21.42, p < 

.001, but no significant interaction, F (3.77) = 1.02, p = .398.  

 

 

Figure E2 Reaction Time Across Trials on Day 1 

Reaction times decreased similarly for CS+ and CS- across acquisition. Error bars show ± SEM.  

 

Reaction times decreased during extinction, but all post-reinstatement trials were similar 

(Figure E3). A 2 x 4 repeated measures ANOVA indicated no significant difference in CS, F 

(1) = 0.04, p = .853, a significant difference across blocks, F (2.09) = 6.49, p = .002, but no 

significant interaction, F (2.06) = 0.28, p = .764. Likewise, for trials after reinstatement, a 2 x 

4 repeated measures ANOVA indicated no significant difference in CS, F (1) = 1.66, p = .206, 

a significant difference across blocks, F (2.48) = 7.45, p < .001, but no significant interaction, 

F (2.44) = 1.52, p = .223. 
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Figure E3 Reaction Time Across Trials on Day 2 

There were no significant differences between CS+ and CS-, or across trials during extinction (A) or 

after reinstatement (B). Error bars show ± SEM. 

Day 8 reaction times showed a similar pattern to day 2 (Figure E4). A 2 x 4 repeated measures 

ANOVA indicated no significant difference in CS, F (1) = 2.41, p = .142, a significant difference 

across blocks, F (1.44) = 10.59, p = .002, but no significant interaction, F (1.67) = 1.75, p = 

.198. After reinstatement, a 2 x 4 repeated measures ANOVA indicated no significant 

differences in CS, F (1) = 1.83, p = .197, across blocks, F (3) = 0.27, p = .847, or a significant 

interaction, F (1.45) = .26, p = .856.  

 

 

 

Figure E4 Reaction Time Across Trials on Day 8  

Reaction times decreased across extinction (A). There were no significant differences after 

reinstatement (B). Error bars show ± SEM. 
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E3 Associations Between Reinstatement Effects and Sleep 

Linear regression indicated no significant associations between REM % or SWS % with CS 

discrimination at the first trial after cued reinstatement on day 2 or day 8, or any spontaneous 

reinstatement at the first trial of day 8 after the 7-day period between sessions.  

Table E2 Associations Between Sleep and Reinstatement 

   

     R2 

 

F (df) 

 

p 

Unstandardised Coefficients 

B [SE] 95% CI 

C
u
e
d
 

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 2

 

REM %     .00  0.01 (1,24)  .931  0.00 [0.02] -0.03, 0.03 

SWS %     .06  1.64 (1,24)  .213 -0.02 [0.02] -0.05, 0.01 

C
u
e
d
 

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 8

 

REM %     .03  0.35 (1,11)  .566 -0.01 [0.02] -0.07, 0.04 

SWS %     .00  0.00 (1,11)  .993  0.00 [0.03] -0.05, 0.05 

S
p
o

n
ta

n
e
o

u
s
 

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 8

 

REM %     .22  3.14 (1,11)  .104 -0.01 [0.00] -0.01, 0.00 

SWS %     .00  0.00 (1,11)  .927  0.00 [0.00] -0.01, 0.01 

  



230 
 
 

E4 Associations Between Subjective Shock Expectancy Ratings and Sleep 

Linear regression indicated no significant associations between REM % or SWS % with shock 

expectancy ratings change overnight, or after extinction learning on day 2 or day 8.    

Table E4 Associations Between Sleep and Subjective Shock Expectancy Ratings After 

Reinstatement 

   

     R2 

 

F (df) 

 

p 

Unstandardised Coefficients 

B [SE] 95% CI 

O
v
e
rn

ig
h
t 

C
h
a
n

g
e

 

REM %     .00  0.01 (1,24)  .913  0.00 [0.03] -0.06, 0.06 

SWS %     .00  0.04 (1,24)  .851 -0.01 [0.03] -0.07, 0.06 

E
x
ti
n
c
ti
o
n
 

L
e
a
rn

in
g

 D
a
y
 2

 REM %     .00  0.03 (1,25)  .876  0.00 [0.02] -0.03, 0.03 

SWS %     .07  1.91 (1,25)  .180  0.02 [0.01] -0.01, 0.05 

E
x
ti
n
c
ti
o
n
 

L
e
a
rn

in
g

 D
a
y
 8

 REM %     .07  0.04 (1,10)  .841 -0.01 [0.03] -0.07, 0.06 

SWS %     .01  0.08 (1,10)  .788  0.01 [0.03] -0.06, 0.08 
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E5 Heart Rate Variability as an Indicator of Discriminatory Fear Learning  

I investigated differences between CS+ and CS- responses across the fear conditioning 

experiment, with HRV as the dependent variable, to explore whether it showed markers of 

discriminatory fear learning as I found in SCRs. I found no significant CS differences, there 

was a significant reduction in variability across extinction on day 2, but no significant 

interaction with CS.  

Table E4 HRV as a Marker for Acquisition and Extinction Learning 

   

F (df) 

 

p 

A
c
q
u
is

it
io

n
 CS 0.10 (1) .754 

Trial 0.75 (6) .612 

CS*Trial 1.65 (6) .135 

E
x
ti
n
c
ti
o
n
 D

a
y
 

2
 

CS 0.07 (1) .792 

Trial 2.99 (7) .005 

CS*Trial 1.26 (4.38) .285 

E
x
ti
n
c
ti
o
n
 D

a
y
 

8
 

CS 0.17 (1) .685 

Trial 0.37 (3.86) .820 

CS*Trial 0.39 (3.04) .761 

Values calculated via 2 x 7 (acquisition) or 2 x 8 (extinction) repeated measures ANOVAs. The 

Greenhouse-Geisser correction was used when the assumption of sphericity was violated.  
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Appendix F 

Supplementary Analyses – Chapter 4 

F1 Slow Oscillation and Spindle Event Detection 

I show an example epoch of detected slow oscillations and spindles in Figure F1.  

A 

 

B 

 

Figure F1 Slow Oscillation and Spindle Detection  

A recently developed detection algorithm uses EEG input to determine adaptive noise-signal 

thresholds. Detection is not necessarily consistent between Dreem (A) and the same epoch as recorded 

by PSG (B). The algorithm plots detected slow oscillations and spindles onto the inputted EEG signal, 

per channel. On the left, histograms plot the frequency of these events (red = slow oscillations, purple 

= spindles). Power in the delta, theta, alpha, sigma, and beta frequency bands is also shown. Note that 

Dreem has an extra 240 epochs extraneous wake as described in Chapter 2.  
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F2 Power and Overnight Fear Consolidation 

In Chapter 4 I show differences and associations between slow oscillation and spindle event 

detection count. To add strength to this finding, I show that event density (the average event 

count in each scored epoch) indicates very similar results (Table F1).  

 

Table F1 Differences and Associations in Slow Oscillation and Spindle Detection Density 

  Paired-

Samples t-test 

Linear Regression (Unstandardised Coefficients) 

  t (12)     p      R2 F (1,11)  p  B [SE] 95% CI 

Slow 

Oscillations 

(100s) 

N2 -3.65    .003     .08 0.89 .365  0.15 [0.16] -0.20, 0.51 

SWS  1.05    .312     .55 13.62 .004  0.79 [0.21]  0.32, 1.26 

Spindles 

(100s) 

N2  6.67 < .001     .41 7.77 .018  0.85 [0.31]  0.18, 1.52 

SWS  1.46    .171     .13 0.18 .683  0.10 [0.24] -0.42, 0.62 
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Appendix G 

Supplementary Analyses – Chapter 5 

 

G1 Bad Dream Criteria 

I used the criteria from Robert and Zadra (2014) to classify dream reports. I classified an entry 

as a ‘bad dream’ if it met one of the criteria in Figure G1.   

 

 

Figure G1 Bad Dream Criteria  

Image reproduced from (Robert & Zadra, 2014). The criteria were used as shown.  
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G2 Anxiety and Overnight Changes in Fear Responses 

I investigated whether overnight changes in CS+ or CS- responses (SCRs) were associated 

with anxiety. Linear regression indicated no significant effects (Table G1).  

 

Table G1 Associations Between Anxiety and SCR Change Overnight  

  

Anxiety Type 

 

     R2 

 

F (1,34) 

 

p 

Unstandardised Coefficients 

B [SE] 95% CI 

CS+ Trait     .01  0.18    .672  0.00 [0.01] -0.02, 0.02 

State     .03  1.04    .315  0.01 [0.01] -0.01, 0.04 

IU      .01  0.25    .624  0.01 [0.01] -0.02, 0.03 

CS- Trait     .01  0.01    .890  0.00 [0.01] -0.02, 0.02 

State     .01  0.41    .528  0.01 [0.01] -0.01, 0.03 

IU     .00  0.04    .836  0.00 [0.01] -0.02, 0.03 

 

 

G3 Sleep and Anxiety Associations  

I also investigated whether sleep was associated with anxiety. Again, linear regression 

indicated no significant effects (Table G2).  

 

Table G2 Associations Between Anxiety and SCR Change Overnight  

  

Anxiety Type 

 

     R2 

 

F (1,34) 

 

p 

Unstandardised Coefficients 

B [SE] 95% CI 

REM 

% 

Trait     .00  0.00    .969  0.01 [0.17] -0.35, 0.37 

State     .01  0.14    .717  0.08 [0.21] -0.36, 0.52 

IU      .04  0.91    .349 -0.27 [0.24] -0.72, 0.26 

SWS 

% 

Trait     .01  0.16    .693 -0.01 [0.18] -0.43, 0.29 

State     .00  0.01    .929  0.02 [0.22] -0.43, 0.47 

IU      .00  0.08    .771  0.07 [0.24] -0.43, 0.57 
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G4 Differences Between Male and Female Anxiety 

Comparing reinstatement effects between males (n = 10 on Day 2, n = 7 on Day 8) and 

females (n = 28 on Day 2, n = 10 on Day 8), females showed a tendency towards more 

negative reinstatement on day 2 and lower (SCR) responses to both stimuli on day 8 but there 

were no significant differences (Figure G1, Table G3).  

 

 

 

Figure G2 Male and Female Reinstatement 

After cued reinstatement on day 2, males showed positive reinstatement where females showed 

negative reinstatement, but this difference was not significant. On day 8, female responses tended to 

be lower, but there were no significant differences. Error bars show ± SEM.  
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Table G3 Differences Between Male and Female Reinstatement Responses  

      t (df)    p 

Day 2 Cued 

Reinstatement  

CS+    -0.10 (35)    .918 

CS-     0.77 (35)    .445 

CS disc.    -0.68 (35)    .504 

Day 8 Cued 

Reinstatement 

CS+    -0.84 (15)    .413 

CS-    -1.26 (15)    .226 

CS disc.     0.05 (15)    .963 

Day 8 Spontaneous 

Reinstatement  

CS+    -1.31 (15)    .211 

CS-    -1.33 (15)    .203 

CS disc.    -0.09 (15)    .927 

Independent-samples t-tests. 

 

There were also no differences between females and males in reported anxiety levels (Table 

G4). 

 

Table G4 Differences Between Female and Male Anxiety Measures 

Anxiety  Gender  Mean ± SD t (36) a p 

Intolerance of 

Uncertainty  

 

Female 26.68 ± 6.93 0.41 .830 

Male 26.30 ± 7.18   

State Female 32.18 ± 7.63 0.91 .697 

Male 31.10 ± 6.97   

Trait Female 37.57 ± 6.60 1.03 .367 

Male 34.50 ± 7.53   

Independent-samples t-tests. 
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Appendix H 

Differences Between Fear Conditioning Samples 1 and 2 

I investigated potential differences between the fear conditioning results between the two 

rounds of data collection. These groups (sample 1 and sample 2) were recruited and tested 

approximately six months apart.  

Independent-samples t-tests indicated no significant differences between CS discrimination 

measured at the start, t (35) = 0.12, p = .905, or end of acquisition training on Day 1, t (35) = 

0.10, p = .923. This suggests that the conditioning task was highly consistent in promoting 

acquired fear.  

Furthermore, there were no significant differences between sample 1 and sample 2 on day 2: 

at the first trial, t (35) = 1.82, p = .077, at the last trial of extinction, t (35) = 1.65, p = .109, or 

the first trial after reinstatement, t (35) = 1.79, p = .083. There were also no differences 

between SWS, REM, or any anxiety measure between the samples (Table H1).  

 

Table H1 Sleep and Anxiety Differences Between Sample 1 and Sample 2  

 Mean ± SD   

 Sample 1 Sample 2 t (df) p 

SWS % 21.99 ± 7.65 21.79 ± 9.54 0.06 (25)  .951 

REM % 26.48 ± 6.66 21.27 ± 9.73 1.64 (25)  .114 

Trait Anxiety 36.18 ± 9.79 37.08 ± 8.70 -0.30 (36)  .767 

State Anxiety 30.55 ± 7.32 32.93 ± 7.53 -0.99 (36)  .329 

IU Anxiety  26.65 ± 8.21 26.78 ± 5.33 -0.99 (32.90)  .955 

 

Both samples showed similar inclinations towards the associations between SWS and 

overnight change, REM and extinction, and anxiety and reinstatement (Table H2).  
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Table H2 Associations Between Sleep and CS Discrimination per Sample 

   

R2 

 

F (df) 

 

 p 

Unstandardised Coefficients 

B [SE] 95% CI 

S
W

S
 %

 a
n
d
 

O
v
e
rn

ig
h
t 

C
h
a

n
g
e

 Sample 1 .18 2.65 (1,12) .129 0.03 [0.02] -0.01, 0.06 

Sample 2 .29 3.72 (1,9) .086 0.06 [0.03] -0.01, 0.13 

R
E

M
 %

 a
n

d
 

E
x
ti
n
c
ti
o
n
 L

e
a
rn

in
g
 

D
a
y
 2

 

Sample 1 .19 2.81 (1,12) .120 0.04 [0.02] -0.01, 0.08 

Sample 2 .18 2.13 (1,10) .175 0.01 [0.01] -0.01, 0.02 

A
n
x
ie

ty
a
 a

n
d
 C

S
-

R
e
in

s
ta

te
m

e
n
t 

D
a
y
 2

 Sample 1 .21–

.32 

4.83–8.64 

(1,18) 

.009–.041  0.03–0.03 

[0.01–0.01] 

 0.00–0.01, 

 0.05-0.06 

Sample 2 .07–

.18 

1.08–3.32 

(1,15) 

.088–. 315  0.02–0.03 

[0.01–0.02] 

-0.03–0.01, 

 0.05–0.08 

a range across trait, state, and IU anxiety measures.   
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