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Abstract. A new finite volume method for solving the incompressible Navier–Stokes equations is
presented. The main features of this method are the location of the velocity components and pressure
on different staggered grids and a semi-Lagrangian method for the treatment of convection. An
interpolation procedure based on area-weighting is used for the convection part of the computation.
The method is applied to flow through a constricted channel, and results are obtained for Reynolds
numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner
is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical
results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393–414] and the asymptotic
theory of Smith [J. Fluid Mech., 90 (1979), pp. 725–754].
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1. Introduction. In this paper a semi-Lagrangian finite volume method is pre-
sented for solving incompressible flows of Newtonian fluids. This approach is shown
to be particularly well suited to solving the Navier–Stokes equations for which the
discretization of the governing equations is well known to be crucial when the flow is
convection dominated. Numerical difficulties can occur for large values of the Reynolds
number, a nondimensional quantity which measures the relative importance of con-
vection compared to diffusion. Central difference schemes, which perform well for
low Reynolds number flows, are prone to numerical difficulties for higher Reynolds
numbers. For low Reynolds numbers central difference schemes produce a diagonally
dominant system of equations which can be solved without any difficulty using stan-
dard relaxation techniques. At higher Reynolds numbers diagonal dominance is lost
with the result that one can encounter problems using the same schemes. These dif-
ficulties can manifest themselves in several ways. For example, relaxation techniques
may fail to converge, and if a solution is obtained for the steady problem, it may
exhibit physically unrealistic oscillations.

A popular finite volume approach for overcoming the difficulties associated with
the treatment of convection uses interpolation biased towards the upwind direction
when the flow is convection dominated. Low-order interpolation invariably results in
artificial or false diffusion being added to the scheme. The effect of this is a degra-
dation in accuracy. Higher-order interpolation schemes such as quadratic upwind
interpolation for convection kinematics (QUICK) [6] and SMART [9] increase the
complexity of the scheme and create difficulties near boundaries. In the presence of
high gradients, they may additionally produce overshoot or undershoot values. Non-
linear flux limiting functions may be used in conjunction with high-order upwinding
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2153

techniques to prevent the appearance of over- or undershoots. The underlying idea
behind these techniques is to control the gradients of the computed solution through
the use of total variation diminishing schemes (TVD) schemes (see Hirsch [1] for a
comprehensive review of this subject). It is the treatment of convection together with
the positioning of the mesh points that distinguish one finite volume method from
another.

In time-dependent calculations standard finite volume schemes possess time-step
restrictions due to stability. These may be more severe than the conditions imposed
by accuracy considerations alone. When particle following techniques are used the
stability conditions are much less restrictive. However, the unrestricted movement of
the points used in Lagrangian methods, which involves following a fixed set of particles
throughout the flow, introduces other difficulties. For example, a set of fluid particles
which is initially regularly distributed soon becomes greatly deformed, in general,
and is thus rendered unsuitable for numerical integration. Semi-Lagrangian meth-
ods avoid this difficulty while still following particles. A semi-Lagrangian method
for treating the convection term, in which particles on a regular grid of points are
traced backwards over a single time-step to their departure points, provides the focus
of this paper. Although semi-Lagrangian finite volume methods have been developed
for advection problems [22, 24, 25], this paper describes their application to problems
in Newtonian computational fluid dynamics. This scheme circumvents the problems
associated with upwind biased interpolation schemes, possesses less restrictive sta-
bility requirements, and combines the advantages of fixed grids inherent in Eulerian
methods with modifications to the location of grid points at previous time-steps based
on the Lagrangian approach.

The remaining terms in the governing equations are treated implicitly and are
discretized by integrating over an appropriate control volume. The discrete equations
are solved using the semi-implicit method for pressure linked equations revised (SIM-
PLER) [19] algorithm. Therefore, this approach may be viewed as a time-splitting
scheme in which the different operators in the governing equations are discretized by
appropriate techniques.

The emphasis in this paper is on the semi-Lagrangian treatment of convection.
This can only be accomplished within the framework of time-splitting schemes for
time-dependent problems. Therefore, the proposed semi-Lagrangian finite volume
method is described for time-dependent problems even though, in this paper, it is
only used as a means of reaching the steady state solution. The temporal accuracy
of the scheme depends on the discretization of the characteristic paths as well as
the temporal discretization of the governing equations. Since a first-order scheme
is used for the latter, there is no advantage in using a higher-order scheme for the
characteristic calculation. The development of high-order discretizations for all the
component parts of the proposed scheme is an area of ongoing activity.

The important features of the method are illustrated on a pure convection problem
before it is applied to the flow through an abruptly contracting channel in which the
ratio of the channel widths before and after the contraction is 2:1. Numerical results
are presented for Reynolds numbers in the range [0,1000]. The behavior of the vortex
in the salient corner is investigated, and comparisons are made with other results in
the literature. Smith [12] developed an asymptotic theory for the flow upstream of
the contraction. Good agreement is shown with this theory for the location of the
upstream separation point for Reynolds numbers greater than about 100. The size of
the salient corner vortex decreases as the Reynolds number increases from 0 to around
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2154 T. N. PHILLIPS AND A. J. WILLIAMS

50. As the Reynolds number is increased further, the vortex grows slowly.

This paper is organized as follows. In section 2 the governing equations and
flow geometry are described. The location of the dependent variables on a staggered
grid and the conventional finite volume discretization of the governing equations are
described in section 3. In section 4 we describe the semi-Lagrangian treatment of
the convection terms. In section 5 we show how this is incorporated into a solution
procedure for solving the Navier–Stokes equations based on the SIMPLER algorithm.
Numerical results and comparisons with other work are presented in section 6. Finally,
concluding remarks are made in section 7.

2. Governing equations. We consider the laminar flow of an incompressible
fluid of viscosity η through an abruptly contracting channel with walls at y = ±1 for
x < 0, y = ± 1

2 for x > 0, and 1
2 ≤ |y| ≤ 1 for x = 0. A schematic diagram of the lower

half of this geometry is shown in Figure 1. Upstream of the contraction we impose
parabolic Poiseuille flow, and we suppose that the flow is parabolic again far enough
downstream. Since the flow is symmetric about y = 0, it is only necessary to seek a
solution for y ≤ 0.

Fig. 1. Geometry for the 2:1 planar contraction.

The time-dependent Navier–Stokes equations are

ρ

[
∂u

∂t
+ u.∇u

]
= η∇2u−∇p,(2.1)

∇.u = 0,(2.2)

where u = (u, v) is the velocity vector, p is the pressure, and ρ is the density. Nondi-
mensional quantities are defined as

x∗ =
x

L
, t∗ =

Ut

L
, u∗ =

u

U
, p∗ =

p

ρU2
,

where U is a characteristic flow speed and L is a characteristic length scale of the
flow. With the Reynolds number, Re, defined by

Re =
ρUL

η
,

we may write the Navier–Stokes equations in dimensionless form. In two-dimensional
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2155

component form they are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

[
∂2u

∂x2
+

∂2u

∂y2

]
− ∂p

∂x
,(2.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re

[
∂2v

∂x2
+

∂2v

∂y2

]
− ∂p

∂y
,(2.4)

∂u

∂x
+

∂v

∂y
= 0,(2.5)

where we have dropped the ∗ notation for ease of notation.
For the contraction problem the characteristic length scale (L) is chosen to be the

downstream half-channel width, and the characteristic flow speed (U) is chosen to be
the mean velocity across half of the downstream channel. Therefore, the boundary
conditions are given by

u = 0 on y =

{ −1 forx ≤ 0,
− 1

2 forx ≥ 0,

u = 0 on x = 0 for −1 ≤ y ≤ −1
2
,

v = 0,
∂u

∂y
= 0 on y = 0,

u→ 3

2
(1− y2), v → 0 as x→ −∞,

u→ 3(1− 4y2), v → 0 as x→∞.

3. Finite volume discretization. The finite volume method is generally ap-
plied to a system of differential equations written in conservation form, e.g.,

∂w

∂t
+

∂f

∂x
+

∂g

∂y
= S,(3.1)

where w is the vector of unknowns, f and g are vector functions of x = (x, y), w,
and ∇w, and S is the source term. In this paper we consider cell center finite volume
methods. These methods are closely related to finite difference methods.

A grid is placed on the computational domain, and a control or finite volume is
associated with each unknown on the grid. Each component equation of (3.1) is inte-
grated over the appropriate control volume. Finite difference type approximations are
then used to approximate line integrals over each side of the control volume. There is
a number of ways of doing this, each leading to a numerical scheme satisfying certain
properties. In the finite volume formulation mass and momentum are conserved over
every control volume and therefore over the whole computational domain. The prop-
erty of conservation of physical quantities, which is preserved by the discrete system,
is one of the attractions and advantages of the finite volume method.

A staggered grid is used in which the different dependent variables are approxi-
mated at different mesh points (see Figure 2). This type of mesh arrangement ensures
that the solution is not polluted by spurious pressure modes. On a nonstaggered mesh
the familiar checkerboard mode is present.
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2156 T. N. PHILLIPS AND A. J. WILLIAMS
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Fig. 2. A staggered grid depicting the control volumes for (a) u-momentum equation, (b)
v-momentum equation, and (c) continuity equation.

Table 1
Definition of the symbols in the general equation (3.2).

Equation φ δ Γ Sφ

u-momentum u 1 (Re)−1 − ∂p
∂x

v-momentum v 1 (Re)−1 − ∂p
∂y

continuity 1 0 0 0

Each of the governing equations (2.3)–(2.5) can be cast into the general conser-
vative form

δ
∂φ

∂t
+

∂

∂x

(
uφ− Γ

∂φ

∂x

)
+

∂

∂y

(
vφ− Γ

∂φ

∂y

)
= Sφ,(3.2)

where δ and Γ are constants and φ and Sφ are functions that are defined depending
on the particular equation under consideration (see Table 1 ).

Equation (3.2) is discretized in time using the backward Euler method with time-
step ∆t to give

∂

∂x

(
uφn+1 − Γ

∂φn+1

∂x

)
+

∂

∂y

(
uφn+1 − Γ

∂φn+1

∂y

)
= Sn+1

φ − δ

∆t
(φn+1 − φn),

(3.3)

where φn+1 denotes the approximation to the variable φ at the (n + 1)th time-step.
Note that this semidiscrete scheme can be used as the basis for determining solutions
to transient or steady problems.

The finite volume methodology proceeds by integrating (3.3) over a control volume
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Fig. 3. A general control volume.

(see Figure 3, for example) and using the divergence theorem. This yields the equation
∫ t

b

[(
uφn+1 − Γ

∂φn+1

∂x

)
r

−
(

uφn+1 − Γ
∂φn+1

∂x

)
l

]
dy

+

∫ r

l

[(
vφn+1 − Γ

∂φn+1

∂y

)
t

−
(

vφn+1 − Γ
∂φn+1

∂y

)
b

]
dx

=

∫ t

b

∫ r

l

[
Sn+1
φ − δ

∆t
(φn+1 − φn)

]
dxdy.(3.4)

Each of the integral terms on the left-hand side of (3.4) represents a transport by
convection and diffusion through the relevant control-volume face. All schemes use
central differences to approximate the diffusive flux across each face. For example,
across the vertical face passing through the point r we have(

∂φ

∂x

)
r


 φR − φP

∆x
.(3.5)

It is the approximation of the convective flux which differentiates one finite volume
scheme from another. We shall review briefly some of the common approaches, many
of which are based on some form of upwinding to retain accuracy and stability when
convection dominates diffusion.

A central difference approximation to the convective flux would take the form

(uφn+1)r 
 un
r

(φn+1
R + φn+1

P )

2
,(3.6)

for example. Note that the velocity component u is frozen at its value from the
previous time-step. In steady calculations it would be frozen at its value from the
previous iteration since iterative methods are generally used to solve the algebraic
equation resulting from a finite volume discretization. Therefore, in the case of the
u-momentum equation, we arrive at the discretization

APun+1
P = ARun+1

R + ALun+1
L + ATun+1

T + ABun+1
B

+
un
P∆x∆y

∆t
+ (pn+1

l − pn+1
r )∆y,(3.7)
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2158 T. N. PHILLIPS AND A. J. WILLIAMS

where

AR = −Fr

2
+ Dr,

AL =
Fl

2
+ Dl,

AT = −Ft

2
+ Dt,

AB =
Fb

2
+ Db,

AP = AR + AL + AT + AB + Fr − Fl + Ft − Fb +
∆x∆y

∆t
,(3.8)

and Fr = un
r∆y, Dr =

1
Re

∆y
∆x , etc.

The local truncation error for the central-difference approximation is second-
order. An essential requirement for a bounded solution is that all the coefficients
Anb, where the subscript nb refers to the neighbors of P, should be of the same sign,
usually all positive. If the resulting system of equations is diagonally dominant, then
many of the standard iterative methods can be used, and convergence is guaranteed.
This property is assured, and oscillatory solutions arising from negative roots to the
characteristic equation are prevented, if the following conditions are satisfied:

Anb > 0 and AP ≥ −(AR + AL + AT + AB).(3.9)

However, looking at the coefficients given in (3.8), we see that in some circumstances
some coefficients Anb may become negative. Thus for convergence to be guaranteed
we require the mesh Peclet number given by

Pe =
F

D
,

where F = u∆y and D = 1
Re

∆y
∆x , to be less than 2 in order to satisfy this boundedness

criterion, i.e.,

uRe∆x < 2,

or

∆x <
2

uRe
.(3.10)

Similarly, we also require

∆y <
2

v Re
.(3.11)

For Pe > 2 the scheme may converge but to physically unrealistic solutions. This
means that the central-difference method is limited to low values of Re unless the
mesh is suitably refined so that conditions (3.10) and (3.11) are satisfied. Since this
would be computationally expensive, the central-difference technique is not suitable
for convection-dominated flow problems.

From a physical point of view central difference schemes are not suitable for
convection dominated problems because the direction of the flow is not used in the
derivation of the approximation. The upwind scheme takes this into account and
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2159

proposes that the value of u at the interface is equal to the value of u at the grid
point on the upwind side of the face, i.e.,

un+1
r =

{
un+1
P if un

r > 0,
un+1
R if un

r < 0.
(3.12)

This approximation again leads to an equation of the form (3.7), but now the coef-
ficients satisfy the boundedness criterion (3.9) for all Reynolds numbers. The local
truncation error for the upwind scheme is first order. Since the upwind scheme is sim-
ple to use, it has been widely applied in applications in computational fluid dynamics.
It is easily extended to three-dimensional problems. However, a major drawback with
the scheme is that it causes the distribution of the transported properties to become
smeared, particularly when the flow is not aligned with the grid lines. The error has
a diffusion-like appearance and is referred to as artificial diffusion. Refinement of the
grid can overcome this problem, but it is expensive. At high Reynolds numbers the
error due to artificial diffusion can be large enough to give physically incorrect results.

In an attempt to reduce the amount of false diffusion present in the simple upwind
scheme and to improve the overall accuracy of the finite volume scheme Leonard [6]
introduced the QUICK scheme to approximate the convective fluxes. This scheme is
based on the use of a second degree polynomial biased toward the upstream direction
to interpolate the value of the dependent variable, ur, at each face of the control
volume.

�

�

�

�

�

� �� �

LLL R RRP

T

TT

BB

B

b

t

l r

Fig. 4. A control volume for use with the QUICK scheme.

This leads to a third order approximation possessing a larger stencil as shown in
Figure 4. A drawback of the scheme is that the coefficients corresponding to points
R, L, T, and B are not guaranteed to be positive and the coefficients correspond-
ing to points RR, LL, TT, and BB are negative. Thus the QUICK scheme is only
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2160 T. N. PHILLIPS AND A. J. WILLIAMS

conditionally stable, and there is a tendency for QUICK to give oscillatory results.
Furthermore, the conversion of this method to a three-dimensional scheme is likely
to cause more difficulties than the upwind method due to the extra terms in the
momentum equations.

In this paper we have pursued an entirely different approach to the treatment of
convection. Instead of using upwinding to stabilize the scheme at moderate values
of the Reynolds number, we have chosen to treat convection in a semi-Lagrangian
manner. This is described in the next section.

4. A semi-Lagrangian approach. The underlying problem with the tradi-
tional finite volume treatment of convection diffusion problems is that the convection
term is discretized using what is essentially a technique that has been constructed
and tested for diffusion problems. Upwinding attempts to redress the situation as
far as convection is concerned by giving some weighting to the convection part of the
problem. The approach adopted in this paper is a time-splitting technique in which
we decouple the treatment of convection and diffusion and use appropriate methods
of discretization for each subproblem. Over each time interval [tn, tn+1] we solve a
convection equation of the form

∂u

∂t
+ un.∇u = 0,(4.1)

followed by the solution of an unsteady generalized Stokes problem

∂u

∂t
− 1

Re
∇2u +∇p = 0,(4.2)

∇.u = 0.(4.3)

The natural frame of reference in which to solve (4.1) is defined by the particle
following transformation

dξ(t)

dt
= un(ξ(t), η(t), τ),

dη(t)

dt
= vn(ξ(t), η(t), τ),

dτ(t)

dt
= 1,

(4.4)

where ξ and η are the spatial variables and τ is the temporal variable. For x = (x, y) ∈
R2 the solution of the system of ordinary differential equations (4.4) for t ∈ [tn, tn+1]
subject to

ξ(tn+1) = x, η(tn+1) = y, τ(tn+1) = tn+1,(4.5)

is a continuous curve, known as the trajectory, in space-time passing through the
point (x, y, tn+1). After applying a transformation which satisfies (4.4), the governing
equation for u becomes

du

dτ
(ξ, η, τ) = 0.(4.6)

Thus smooth solutions of (4.1) are constant along the characteristic paths [18].
In this section we concentrate on the novel features of our finite volume scheme

which is the discretization of (4.1) using a semi-Lagrangian approach. This approach
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2161

differs from that proposed by Manson and Wallis [25]. The scheme of Manson and
Wallis [25] was developed for pure advection problems in one dimension and is based on
a fractional-staged strategy that combines a conventional control volume discretization
over a partial time-step τ∆t (0 < τ < 1) with a semi-Lagrangian treatment over the
partial time-step (1−τ)∆t. The value of τ is chosen to avoid the need for interpolation
in the semi-Lagrangian part of the calculation. The solution of (4.2) and (4.3) follows
standard finite volume methodology. The discrete formulation of this problem can be
solved using the SIMPLER approach, for example.

The computational domain is partitioned into a number of nonoverlapping control
volumes or cells, Ci,j . This grid, known as the reference grid, remains fixed in space
for all time. Consider the mesh associated with one of the dependent variables, φ,
say, where φ = u or v. Let Ci,j be one such control volume. Let the positions of the
corners of cell Ci,j be located at the points Xi±1/2,j±1/2 = (xi±1/2, yj±1/2). Particles
which arrive at these four corner points at time t = tn+1 were located at the vertices
of some cell, which is to be determined as part of the solution process, at time t = tn.
In general, this will be a deformed control volume which may lie anywhere on the
underlying grid or indeed outside the domain if the time-step is sufficiently large. We
approximate this cell by a quadrilateral C∗n

i,j , formed by joining the departure points
by straight line segments.

Associated with each cell Ci,j at each time tn = n∆t an approximation is intro-
duced, denoted by φ̄n

i,j , to the cell average of φ(x, y, tn), i.e.,

φn
i,j ≈

1

∆xi∆yj

∫ ∫
Ci,j

φ(x, y, tn) dxdy,(4.7)

where

∆xi = xi+1/2 − xi−1/2, ∆yj = yj+1/2 − yj−1/2.

Note that φn
i,j will, in general, be distinct from the pointwise approximation to

φ(xi, yj , tn).
An approximation to the solution of (4.1) is given by

φ̄n+1
i,j = φ̄∗n

i,j ,(4.8)

where

φ̄∗n
i,j ≈

1

∆xi∆yj

∫ ∫
C∗n

i,j

φ(x, y, tn) dxdy.(4.9)

Thus there are two stages to the numerical calculation at each time-step. In the first
stage the departure points are determined. These are the vertices of the cells C∗n

i,j .
In the second stage the cell average values of φ∗n are determined from a knowledge
of the cell average values of φ at time t = tn on the reference grid. These values
are then inserted into the discretized versions of equations (4.2) and (4.3) in order to
determine the values of velocity and pressure at the new time-step.

4.1. Calculation of departure points. The departure points at time tn of
each point on the reference grid are determined by solving the particle following
transformation (4.4) for t ∈ [tn, tn+1], subject to

ξ(tn+1) = xi+ 1
2 ,j+

1
2
, η(tn+1) = yi+ 1

2 ,j+
1
2
, τ(tn+1) = tn+1.(4.10)
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2162 T. N. PHILLIPS AND A. J. WILLIAMS

This computation is performed for each grid point, i.e., for a suitable range of values
of i and j in (4.10). The solution of this problem describes the path of the particle
that passes through the grid point

Xi+ 1
2 ,j+

1
2
= (xi+ 1

2 ,j+
1
2
, yi+ 1

2 ,j+
1
2
)

at time t = tn+1. Each of these paths is traced backwards in time over one time-step.
For example, if Ci,j represents a control volume for the u component of velocity, then
the following one-step method may be used to determine the positions of the corners
of C∗n

i,j :

x∗n
i+ 1

2 ,j+
1
2
= xn+1

i+ 1
2 ,j+

1
2

− ∆t

4
(un

i,j + un
i+1,j + un

i,j+1 + un
i+1,j+1),

y∗n
i+ 1

2 ,j+
1
2
= yn+1

i+ 1
2 ,j+

1
2

−∆tvni+ 1
2 ,j+

1
2
,(4.11)

where subscripts indicate grid locations and superscripts indicate the time-step. The
above scheme is first-order in time. Higher-order schemes in time may also be used.

4.2. Calculation of area-weighting coefficients. At the beginning of each
time-step the values of φn

i,j are known in all control volumes. Given the location of the
departure points of the reference grid at time tn, the values φ∗n

i,j must be determined.
This approximation is generated by means of an area-weighting technique which uses
a weighted sum of the values of φn over the control volumes on the reference grid
which overlap with cell C∗n

i,j . Area-weighting techniques are not new, and they have
been demonstrated to possess attractive stability properties. They were originally
developed by users of particle-in-cell methods [21, 20]. In the Lagrange–Galerkin finite
element method the evaluation of inner products using nonexact integration must be
performed with great care [3]. Large classes of well-known quadrature rules lead to
conditionally unstable schemes. However, the use of area-weighting can restore the
stability properties of the exactly integrated schemes, albeit with a slight degradation
in accuracy. In the application of this technique the centroid of each element is
tracked, and the whole element is deemed to move without distortion and rotation.
However, in the present application of the technique the control volumes are allowed
to move with distortion and rotation.

The first-order area-weighting scheme of Scroggs and Semazzi [4] for determining
the value of φ∗n

i,j is

φ∗n
i,j =

1

∆xi∆yj

∑
I,J∈Z

ωI,J
i,j φ̄n

I,J ,(4.12)

where ωI,J
i,j is the common area between C∗n

i,j and CI,J , i.e., the area of CI,J ∩C∗n
i,j , and

Z is the set of indices of all the points in the computational domain. This involves
determining how the cell C∗n

i,j intersects with the control volumes in the fixed grid at
time tn and then to perform an area weighting based on the amount of overlap. Al-
though this procedure is a straightforward exercise in coordinate geometry, it requires
careful programming. Details can be found in Williams [17]. This scheme possesses
the important property that when it is applied to systems of conservation laws the
numerical approximation preserves the discrete conservation property identically, i.e.,

∑
i,j∈Z

u∗n
i,j =

∑
i,j∈Z

un+1,(4.13)D
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2163

if the boundaries of each control volume CI,J remain inside the computational domain
from time tn to tn+1 since

∑
i,j∈Z

ωI,J
i,j = area of CI,J .(4.14)

Higher-order extensions of this scheme have been derived by Phillips and Williams
[16] and have been applied to conservation laws. In particular, Phillips and Williams
[16] apply the first-order and higher-order schemes to a rotating disk test problem.
The results which have been obtained fully demonstrate the conservation properties
of all the schemes.

5. Stability and accuracy. In this section we investigate the stability and
convergence properties of the semi-Lagrangian scheme on a pure convection problem
in one space dimension. Consider the scalar conservation law

∂φ

∂t
+ a

∂φ

∂x
= 0, x ∈ R, 0 < t < T,(5.1)

where a is a function of x and t, and T is some finite time, with the initial condition

φ(x, 0) = φ0(x), x ∈ R.(5.2)

Assume a uniform distribution of grid points {xj : j ∈ Z} in the x direction with
xj = jh. The discretization of this equation using the semi-Lagrangian scheme (4.8)
and (4.12) is

φ̄n+1
j = φ̄∗n

j ,(5.3)

where

φ̄∗n
j = α̂φ̄n

j−m−1 + (1− α̂)φ̄n
j−m,(5.4)

where

α̂ = α−m, α =
an+1
j ∆t

h
.

Here we have assumed, without loss of generality, that the departure point at time
t = tn of the particle which is at the point xj at time t = tn+1 lies in the interval
[xj−m−1, xj−m]. Note that area-weighting in one dimension involves no more than
linear interpolation using the information at the two nearest grid points.

Note. If a(x, t) is not constant, then the characteristic path is not a straight line.
In this case an error is incurred in locating the departure point. This contributes to
the overall global error of the approximation. Furthermore, if a(x, t) varies rapidly
in the domain x ∈ R, 0 < t < T , then it is necessary to choose ∆t sufficiently small
so that the computed and the actual departure points of the characteristic passing
through the point xi at time tn+1 lie in the same reference cell.

5.1. Stability. The stability analysis is performed in the case when a is a positive
constant. If we assume that (5.3)–(5.4) has a solution of the form

φ̄n
j = φ̄0λn exp(ikjh),(5.5)
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2164 T. N. PHILLIPS AND A. J. WILLIAMS

then we can show that λ is given by

λ = [1− α̂(1− exp(−ikh))] exp(−ikmh).(5.6)

One can show the sufficient condition for stability, i.e., |λ|2 ≤ 1, is satisfied when

0 ≤ α̂ ≤ 1.

This condition is satisfied since we have chosen the interval [xj−m−1, xj−m] so that
the departure point lies in it. So the scheme is unconditionally stable.

5.2. Convergence. We define the Sobolev space W 2,∞(R) by

W 2,∞(R) =

{
ψ : sup

x∈R

∣∣∣∣∂
2ψ

∂x2

∣∣∣∣ <∞
}

with corresponding seminorm

‖ψ‖2,∞ = sup
x∈R

∣∣∣∣∂
2ψ

∂x2

∣∣∣∣ .
Similarly, we define W 2,∞(R×[0, T ]) to be the space of functions with bounded second
derivatives in R × [0, T ]. We denote by L∞(0, T ;W 2,∞(R)) the space of functions
ψ(x, t) defined in R× [0, T ] that belong to W 2,∞(R) for any t ∈ [0, T ] and that satisfy

ess sup
t∈[0,T ]

‖ψ(·, t)‖2,∞ <∞.

This space is equipped with the norm

‖ψ‖L∞(0,T ;W 2,∞(R)) = ess sup
t∈[0,T ]

‖ψ(·, t)‖2,∞.

The following convergence result is proved in Phillips and Williams [16].
Theorem 5.1. Let the solution of (5.1) belong to

W 2,∞(R× [0, T ]) ∩ L∞(0, T ;W 2,∞(R)),

and let the numerical approximation be generated by (5.3)– (5.4). Then the error
enj = φ(xj , tn)− φ̄n

j satisfies the bound

‖en‖∞ = O(∆t) + O(min(h, h2/∆t)).(5.7)

One can deduce from this result that for some values of the discretization parameters
h and ∆t the error will increase as ∆t is reduced up to a maximum error which is
O(∆t)+O(h). This behavior of the error as a function of the time-step ∆t is in general
agreement with a result of Süli and Ware [7] for the spectral method of characteristics
for a similar class of problems.

6. Method of solution. The generalized Stokes problem

un+1 − u∗n

∆t
=

1

Re
∇2un+1 −∇pn+1,(6.1)

∇.un+1 = 0,(6.2)
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2165

with given boundary conditions on un+1 is discretized using the traditional central
difference approach described earlier. Note, however, that now there will be no con-
tribution due to convection. After the governing equations have been discretized in
time and space, a suitable solution strategy must be devised to solve the resulting
system of algebraic equations. One option is to solve the full problem for velocity and
pressure directly at each time-step. For a large number of degrees of freedom this is a
very inefficient approach. Instead we have chosen to follow the semi-implicit method
for pressure linked equations (SIMPLE) methodology first advocated by Patankar and
Spalding [5], which involves decoupling the velocity and pressure computations and
iterating between them until convergence is reached at each time-step.

Within the SIMPLE procedure the pressure correction equation is prone to diver-
gence unless some underrelaxation is used. The method recommended by Patankar
[19] underrelaxes the velocity components in the momentum equations, with a relax-
ation factor α approximately equal to 0.5, and to only add a fraction of the pressure
correction to the pressure, i.e.,

p = p∗ + αpp
′,

where αp is approximately equal to 0.8. These values for α and αp are suggested
since they have been shown to be satisfactory for a large number of flow problems.
They are not necessarily the optimum values and for some problems will not produce
a converged solution. It is clear that α and αp will vary for different flow situations
and may also vary for different mesh sizes within the same computational domain.
Other relaxation techniques may be applied, and some of these are discussed in [23].
Clearly this algorithm is not robust. In an effort to overcome this problem Patankar
[8] devised SIMPLER—SIMPLE Revised.

The argument used in the derivation of SIMPLE is that since the neighbor-point
velocity corrections are removed from the velocity correction formula, the pressure
correction has the sole responsibility of correcting the velocities. This leads to severe
changes in the pressure correction field. Patankar [19] supposes that the pressure
correction equation does a reasonable job of correcting the velocities but a poor job
of correcting the pressures. The SIMPLER methodology was developed to overcome
this deficiency.

To derive a pressure field equation the momentum equation is first written as

ur =

∑
Anbunb + br

Ar
+ dr(pP − pR).(6.3)

We define a pseudovelocity of the form

ûr =

∑
Anbunb + br

Ar
.(6.4)

Substitution of (6.4) into (6.3) gives

ur = ûr + dr(pP − pR).(6.5)

Similarly, we have

vt = v̂t + dt(pP − pT ).(6.6)

The pressure equation is derived in a similar manner to the pressure correction
equation. We again integrate the continuity equation over the control volume. If

D
ow

nl
oa

de
d 

02
/2

8/
14

 to
 1

31
.2

51
.2

54
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2166 T. N. PHILLIPS AND A. J. WILLIAMS

we substitute (6.5) and (6.6) into the discrete continuity equation and rearrange the
terms, we obtain

aP pP = aRpR + aLpL + aT pT + aBpB + b1(6.7)

with

aR = dr∆y,(6.8)

aL = dl∆y,(6.9)

aT = dt∆x,(6.10)

aB = db∆x,(6.11)

aP = aR + aL + aT + aB ,(6.12)

b1 = [ûl − ûr]∆y + [v̂b − v̂t]∆x.(6.13)

No approximations have been used in the derivation of the pressure equation, so if a
correct velocity field is used to calculate the pseudovelocities, the pressure equation
will give the correct pressure at once.

The algorithm used is based on the SIMPLER algorithm suitably ammended to
incorporate the semi-Lagrangian treatment of the convection term and is described
below.

The algorithm.
1. Set n← 0 and define an initial velocity field u(n). Put u← u(n).
2. Calculate u∗(n) and v∗(n) using the semi-Lagrangian approach described in

section 4.
3. Calculate pseudovelocities û, v̂ from

ûr =
∑

Anbunb+br
Ar

,

v̂t =
∑

Anbvnb+bt
At

,

where

Ar =
∑

nb Anb +
∆x∆y

∆t , At =
∑

nb Anb +
∆x∆y

∆t ,

br = u
∗(n)
r

∆x∆y
∆t , bt = v

∗(n)
t

∆x∆y
∆t .

4. Solve the pressure equation for p∗

aP p∗P = aRp∗R + aLp∗L + aT p∗T + aBp∗B + b,

where

aR = (∆y)2

Ar
, aL = (∆y)2

Al
,

aT = (∆x)2

At
, aB = (∆x)2

Ab
,

aP =
∑

nb anb,

and

b = (ûl − ûr)∆y + (v̂b − v̂t)∆x.

5. Solve the momentum equations for u′, v′.

Aru
′
r =

∑
nb Anbu

′
nb + br +∆y(p∗P − p∗R),

Atv
′
t =

∑
nb Anbv

′
nb + bt +∆x(p∗P − p∗T ).
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6. Solve a pressure correction equation for p′

aP p′P = aRp′R + aLp′L + aT p′T + aBp′B + b,

where

b = (u′
l − u′

r)∆y + (v′b − v′t)∆x.

7. Correct the velocity field using

ur = u′
r +

∆y
Ar

(p′P − p′R),
vt = v′t +

∆x
At

(p′P − p′T ).

8. Return to step 3 and repeat until convergence is obtained.
9. Set u(n+1) ← u and n← n + 1.
10. Return to step 2, let u ← u(n), and repeat until a steady state solution is

obtained.
Note that step 2 is performed once at the beginning of each time-step and steps 3–

8 take place within each time-step. Only when we have a convergent velocity solution
within a time-step do we proceed to the next time-step.

7. Numerical results: Conservation law. In this section we perform a nu-
merical experiment to illustrate the important features of the finite volume scheme
developed in this paper. In this experiment we demonstrate the accuracy of this
scheme by solving a problem possessing an exact solution. We consider uniform
meshes only with h = ∆x = ∆y. Consider the model problem

∂φ

∂t
+ x

∂φ

∂x
− y

∂φ

∂y
= 0, x ∈ [1, 2]× [1, 2], t ≥ 0,(7.1)

in which the velocity field, u = (x,−y), is divergence-free. On the two inflow bound-
aries we prescribe

φ(1, y, t) = 1 + y2, y ∈ [1, 2], t ≥ 0,
φ(x, 2, t) = 1 + 4x2, x ∈ [1, 2], t ≥ 0.

(7.2)

The initial condition is

φ(x, y, 0) = 0, x ∈ (1, 2], y ∈ [1, 2).(7.3)

The steady state solution of this problem is

φ(x, y) = 1 + (xy)2.(7.4)

The semi-Lagrangian algorithm is terminated when

‖φn+1 − φn‖∞
∆t

≤ 10−5.(7.5)

If φ̃h denotes the converged numerical approximation to the steady state solution of
the problem given by (7.4) on a grid with mesh size h, the accuracy of the discrete
approximation is measured using

E(h) =
‖φ− φ̃h‖∞
‖φ̃h‖∞

.(7.6)
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2168 T. N. PHILLIPS AND A. J. WILLIAMS

Table 2
Dependence of the error and number of iterations on mesh size with ∆t = 0.01. Estimates of

the order of spatial convergence are also given.

h ‖e‖∞ Iterations p

0.25 1.013 × 10−1 246 -
0.125 4.633 × 10−2 182 1.13
0.0625 1.846 × 10−2 140 1.33
0.03125 4.625 × 10−3 111 1.36

Table 3
Dependence of the error on mesh size with ∆t = 0.001.

h ‖e‖∞
0.25 1.088 × 10−1

0.125 5.473 × 10−2

0.0625 2.715 × 10−2

0.03125 1.324 × 10−2

In Table 2 we show how the error decays as a function of mesh size when ∆t = 10−2

for the scheme described in this paper. If it is assumed that the error behaves like
O(hp), then the error information on two successive meshes given in Table 2 can be
used to estimate the order, p, using

p =
ln(E(h)/E(h/2))

ln 2
.

These values are also provided in Table 2. We see that in the limit of small h the
scheme is more than first-order accurate. The number of iterations required to attain
the tolerance (7.5) is also given. An interesting feature is that for a given method the
semi-Lagrangian algorithm converges in a fewer number of iterations as the mesh is
refined. In Table 3 we show how the errors decay for a smaller time-step ∆t = 10−3.
In all cases the errors are higher than the corresponding ones in Table 2 as predicted
by the error estimate derived in Theorem 1, and the orders of spatial convergence
are slightly lower. A second-order variant of the scheme has been developed for
conservation laws [16]. This is based on a second-order Runge–Kutta method for
determining the departure points and a second-order area-weighting scheme to ensure
that the discrete conservation principle is satisfied identically.

8. Numerical results: Newtonian flow. In this section numerical calcula-
tions of laminar flow through a 2:1 contraction are presented for a range of Reynolds
numbers. These calculations are compared with those generated by other authors [11],
[10], [2] using different techniques. In particular, the behavior of the salient corner
vortex is investigated qualitatively and quantitatively.

The work of Dennis and Smith [11] on the 2:1 contraction problem is a benchmark
against which to test new and emerging numerical techniques for the Navier–Stokes
equations. Their method is based on a finite difference approximation of the stream
function-vorticity formulation of the governing equations. An upwind differencing
scheme of Dennis and Hudson [13] is used to approximate the vorticity transport
equation by adding an extra “viscous-like” term proportional to h2. As we mentioned
earlier, the standard upwind approximation is only first-order accurate. The addition
of this term, known as artificial viscosity, is essential in order to obtain converged so-
lutions for reasonably large values of Re. Without it the system of algebraic equations
loses its diagonal dominance which presents convergence difficulties when solved by
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A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2169

iterative methods unless the mesh size is sufficiently decreased. The advantage of this
upwinding scheme is that the second-order accuracy of the finite difference equations
is maintained and that the artificial viscosity is applied sparingly at each grid point
only if it is required. The local truncation error of the scheme is O(h2), and, therefore,
it is strictly second order if hRe << 1. Therefore, for large values of Re small grid
sizes are required for meaningful results.

Hunt [2] also uses a finite difference discretization of the stream function-vorticity
formulation but on a nonuniform grid. The vorticity unknowns are eliminated to give
a system solely in terms of unknown values of the stream function. There are some
puzzling features of the scheme. First, when upwinding is used, the scheme fails to
converge for Re > 500, even though one would expect the addition of a “viscous-like”
term to have a stabilizing effect. Second, for a given value of Re, convergence becomes
more difficult with mesh refinement.

Karageorghis and Phillips [10] use a spectral domain decomposition method to
discretize the stream function formulation of the Navier–Stokes equations. The flow
region is decomposed into a number of rectangular subdomains, on each of which the
stream function is approximated by a truncated double Chebyshev expansion. The
approximations are C1 continuous across subregion interfaces. The nonlinear fourth-
order partial differential equation for the stream function is linearized using Newton’s
method.

Mesh refinement is studied with reference to the size of the salient or corner
vortex. This flow feature is also used as the basis of comparisons with other methods.
The length of the corner vortex, L1, is defined to be the distance between the point
where the separation line meets the bottom of the channel and the salient corner.
The width, L2, of the corner vortex is defined to be the distance between the point
where the separation line meets the wall parallel to the y-axis at x = 0 and the salient
corner.

Numerical computations are performed on a series of meshes in order to ensure
that the solutions obtained are independent of the mesh parameters. Both uniform
and nonuniform meshes are used. The mesh parameters for the four uniform meshes
(A–D) are given in Table 4. The main characteristics of the nonuniform meshes (E–
G∗) are given in Table 5. Meshes E–G∗ have mesh spacings which vary geometrically
from the reentrant corner. In this way we can ensure a greater density of mesh points
in the region where the solution changes most rapidly. Note that although meshes F
and G contain approximately the same number of control volumes, they differ in the
way the nonuniform mesh spacing varies. Mesh G is more refined around the reentrant
corner than mesh F. Mesh G∗ corresponds to a computational domain in which the
exit length is doubled from four to eight units. This extended domain allows for the
examination of domain truncation effects on the numerical solution for Re = 500 and
Re = 1000.

Tables 6 and 7 show the dependence of the length L1 and the width L2 of the
salient corner vortex on the mesh. These flow characteristics are sensitive to the
computational mesh. The results demonstrate that convergence with mesh refinement
has been obtained over the whole range of values of the Reynolds number. The results
on all the meshes were calculated with ∆t = 10−3. Tables 6 and 7 also show that
the use of the extended domain has no appreciable effect on the values of L1 and
L2, thus confirming that the length of the downstream channel is adequate for these
computations.

Allowing x → ∞ along y = − 1
2 , we would expect ξ → −12 for a fully developed
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Table 4
The mesh spacings and degrees of freedom for the uniform meshes A–D.

Mesh ∆x ∆y degrees of freedom
Mesh A ∆x = 0.05 ∆y = 0.05 6840
Mesh B ∆x = 0.025 ∆y = 0.05 13720
Mesh C ∆x = 0.05 ∆y = 0.033 10420
Mesh D ∆x = 0.05 ∆y = 0.025 14000

Table 5
Mesh characteristics and degrees of freedom for the nonuniform meshes E–G∗.

Mesh ∆xmin ∆ymin Degrees of freedom
Mesh E 1.131× 10−2 2.5× 10−2 10800
Mesh F 1.131× 10−2 1.852× 10−2 14580
Mesh G 4.118× 10−3 1.512× 10−2 14400
Mesh G∗ 4.118× 10−3 1.512× 10−2 16800

flow profile at the exit. We may apply this test to check that the downstream channel
is long enough for the Re numbers that we solve for. In Figures 5–7 we have plotted
vorticity against downstream channel length for Re = 1, Re = 100, and Re = 500,
respectively. These figures suggest that the downstream channel length of 4 is suitable
for this range of Reynolds numbers.

The sensitivity of the computation with respect to the choice of time-step is
shown in Table 8. In this table the dependence of L1 with respect to the time-step is
presented for Re = 100. The choice of time-step does not significantly influence the
value of this characteristic of the flow problem.

The asymptotic theory of Smith [12] predicts that a separation will occur asymp-
totically far ahead of the step at a position x = −L1, given by

L1 = 0.1289lnRe + D forRe� 1.(8.1)

The constant D is of order unity, and its value depends on the contraction ratio. It is
determined here by looking at the asymptotic behavior of L1−0.1289lnRe. From this
analysis we obtain D = −0.547. In Figure 8 we plot L1 given by (8.1) as a function
of Re. On this figure we also include the values of L1 obtained by our numerical
calculations. Excellent agreement is obtained with the theoretical prediction for Re ≥
300. Note that the theoretical prediction is only valid for large values of the Reynolds
number, although in Figure 8 it is plotted on the whole domain.

In Figures 9–14 the streamline contours are presented for Re=1, 10, 50, 100, 200,
and 500, respectively, in the domain −2 ≤ x ≤ 2, −1 ≤ y ≤ 0. The salient corner
vortex diminishes in size as Re increases from Re = 1 to Re = 50 and then starts to
grow slowly for Re > 50.

In Table 9 we compare the values of L1 obtained for different values of Re on
mesh G (G∗ for Re = 500, 1000) with other results in the literature (Dennis and
Smith [11], Hunt [2], and Karageorghis and Phillips [10]). The results of Dennis and
Smith [11] have been obtained using two successive h2-extrapolations on grids with
mesh spacings of h = 1

10 , 1
20 and h = 1

40 . The results of Hunt [2] are obtained using
a transformed grid with 48 × 128 points and are calculated with and without the
artificial viscosity term. The results of Karageorghis and Phillips are given for the
most refined grid that they use with 1537 degrees of freedom.

The results in columns (a), (b), and (c) of Table 9 differ by at most 5% from each
other for 1 ≤ Re ≤ 150. As Re increases from 150, the values for L1 in the first three

D
ow

nl
oa

de
d 

02
/2

8/
14

 to
 1

31
.2

51
.2

54
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



A SEMI-LAGRANGIAN FINITE VOLUME METHOD 2171

Table 6
The length, L1, of the salient corner vortex on meshes A–G as a function of Re.

Re A B C D E F G G∗
0 0.255 0.285 0.287 0.285
1 0.246 0.247 0.252 0.255 0.255 0.255 0.255
10 0.145 0.142 0.152 0.153 0.151 0.152 0.151
50 0.118 0.123 0.122 0.122 0.122 0.123 0.122
100 0.148 0.155 0.146 0.144 0.143 0.144 0.144
150 0.164 0.163 0.163
200 0.240 0.219 0.194 0.188 0.186 0.185 0.185
300 0.223 0.222 0.223
400 0.249 0.248 0.249
500 0.267 0.267 0.267 0.268
1000 0.334 0.334 0.335 0.338

Table 7
The width, L2, of the salient corner vortex on meshes A–G as a function of Re.

Re A B C D E F G G∗
0 0.346 0.345 0.345
1 0.301 0.316 0.295 0.293 0.295 0.294 0.294
10 0.154 0.162 0.148 0.144 0.147 0.147 0.146
50 0.114 0.127 0.109 0.106 0.109 0.110 0.110
100 0.127 0.151 0.120 0.115 0.118 0.118 0.119
200 0.155 0.174 0.140 0.133 0.133 0.135 0.134
500 0.157 0.158 0.157 0.158
1000 0.174 0.173 0.173 0.175

columns of the table become closer to each other and agree to within 2%. This shows
that the semi-Lagrangian scheme performs particularly well for convection dominated
flows. Hunt’s finite difference scheme with artificial viscosity gives results that are
closer to those in the first three columns than the scheme without artificial viscosity.

In Table 10 the width, L2, is presented for various values of Re and is compared
with the values published by Dennis and Smith [11] and Hunt [2]. The values in
columns (a) and (b) are within 11% of each other, although as Re increases from
Re = 50 this percentage difference falls and for Re = 500 the results in columns (a)
and (b) are around 1% of each other. As for the L1 results, this would appear to show
that the semi-Lagrangian scheme behaves well for high values of Re. For the schemes
of Hunt [2] the values of L2 generated are smaller than those in the first two columns
for the scheme with artificial viscosity and, equivalently, larger for the scheme without
artificial viscosity.

An interesting feature of the results in Tables 9 and 10 is that as Re grows from 1
to 50, both values drop so that for Re = 50 the value of L1 is approximately half of its
equivalent value for Re = 1, and the value of L2 is approximately a third of its value
for Re = 1. As Re increases from 50 to 1000, both the width and the length of the
vortex grow but at different rates; L1 grows more quickly than L2. At Re = 500 the
length L1 is slightly larger than it was for Re = 1, while the value of L2 at Re = 500
is still only 50% of its value at Re = 1. This shows that the vortex grows in size along
the upstream channel more quickly than up the wall at x = 0 as Re increases.

The maximum values of the stream function ψ, ψmax, are presented in Table 11.
As we would predict from the results in Tables 9 and 10, the strength of the vortex
diminishes in size between Re = 1 and Re = 50 and then grows for 50 < Re ≤ 1000.

There is no downstream recirculation region pictured in the streamline plots
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2172 T. N. PHILLIPS AND A. J. WILLIAMS

Fig. 5. Wall vorticity ξ(x,− 1
2
) for x > 0, for Re = 1.

Fig. 6. Wall vorticity ξ(x,− 1
2
) for x > 0, for Re = 100.

Fig. 7. Wall vorticity ξ(x,− 1
2
) for x > 0, for Re = 500.
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Table 8
Dependence of L1 on ∆t for Re = 100.

∆t L1 L2
10−3 0.144 0.119
10−4 0.145 0.121
10−5 0.145 0.122

0 200 400 600 800 1000

−0.6

−0.4

−0.2

0.0

0.2

0.4

Fig. 8. Comparison of the asymptotic predition of the value of L1 by Smith [12] with the
numerical results obtained in column (a) of Table 9 as a function of the Reynolds number.

0.9
0.8

0.70.6
0.50.4 0.30.2 0.1

1.
0

Fig. 9. Streamlines for Re = 1.

shown in Figures 9–14. However, a close examination of the values of u and v in
the region of the reentrant corner indicates that for Re ≥ 100 some recirculation may
exist. For this part of the flow to be accurately resolved more work needs to be done
on refining the mesh.
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0.9
0.8

0.70.6
0.50.4 0.30.2 0.1

Fig. 10. Streamlines for Re = 10.

0.9
0.8

0.70.6
0.50.4 0.30.2
0.1

Fig. 11. Streamlines for Re = 50.

0.9
0.8

0.70.6
0.5

0.40.3
0.20.1

Fig. 12. Streamlines for Re = 100.

0.9
0.8

0.70.6
0.5

0.40.3
0.20.1

Fig. 13. Streamlines for Re = 200.
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0.9
0.8

0.70.6
0.5

0.40.3
0.2 0.1

1.0

Fig. 14. Streamlines for Re = 500.

Table 9
The length, L1, of the salient corner vortex for (a) the semi-Lagrangian scheme, (b) the spectral

collocation method of Karageorghis and Phillips [10], (c) the finite-difference scheme of Dennis and
Smith [11], (d) the finite-difference scheme of Hunt [2] without artificial viscosity, and (e) the finite-
difference scheme of Hunt [2] with artificial viscosity.

Re (a) (b) (c) (d) (e)
1 0.255 - 0.255 - -
10 0.151 0.148 0.155 - -
50 0.122 0.123 0.129 - -
100 0.144 0.140 0.144 - -
150 0.163 0.155 - - -
200 0.185 0.183 - - -
250 0.208 0.205 - 0.227 0.209
300 0.223 0.223 - - -
350 0.237 0.233 - - -
400 0.249 0.244 - - -
450 0.260 0.255 - - -
500 0.268 0.265 0.266 0.308 0.260
1000 0.338 - 0.341 0.394 -

Table 10
The width, L2, of the salient corner vortex for (a) the semi-Lagrangian scheme, (b) the finite-

difference scheme of Dennis and Smith [11], (c) the finite-difference scheme of Hunt [2] without
artificial viscosity, and (d) the finite-difference scheme of Hunt [2] with artificial viscosity.

Re (a) (b) (c) (d)
1 0.294 0.303 - -
10 0.146 0.160 - -
50 0.110 0.122 - -
100 0.119 0.125 - -
500 0.158 0.159 0.164 0.149
1000 0.175 0.177 0.188 -

9. Concluding remarks. A semi-Lagrangian finite volume method for solving
the time-dependent incompressible Navier–Stokes equations is presented. A time-
splitting scheme is used to decouple the treatment of convection from the solution
of a generalized Stokes problem. The convection problem is solved using a semi-
Lagrangian approach in which the vertices of a control volume at the new time level
are traced back in time over a time-step using a particle following transformation.
The values of the velocity components in the transformed control volumes at the
previous time level are determined using an area-weighting technique which ensures
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Table 11
The maximum value of the streamfunction, ψ, of the salient corner vortex.

Re ψmax

1 1.00047
10 1.00009
50 1.00007
100 1.00010
500 1.00054
1000 1.00109

that the conservation property enjoyed by the pure convection problem is satisfied
indentically by construction. This approach circumvents problems associated with
upwind biased schemes. The generalized Stokes problem is solved using the standard
SIMPLER method. The scheme is applied to the flow through a 2:1 contraction and is
demonstrated to be robust and accurate. Comparisons are made with other published
work on this problem and excellent agreement is found.

Future work will concentrate on developing higher-order methods in time for
integrating along the particle paths. The extension of this technique to problems in
computational rheology is currently in progress [14, 15].
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