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Highlights 

• We provide strong evidence of contagion among global index options markets. 

• A directed acyclic graph analysis reveals strong regional implied volatility clustering. 

• No options market is completely independent of the others in the long run. 

• Implied volatility spillovers are more intense when markets experience crises. 

 

Abstract 

This study uses directed acyclic graph and spillover index models to find significant evidence of 

both implied volatility contagion and spillovers. First, we observe strong regional clustering among 

the implied volatility smiles of global markets. European and American options markets form a 

separate contemporaneous contagion cluster from markets in the Asia-Pacific region. However, no 

market is completely independent from the markets in the other two regions in the long run. The 

European index options markets demonstrate the strongest implied volatility smile contagion. 
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Second, we observe the heterogeneity across different markets in terms of implied volatility 

spillover, and extreme market conditions, such as crises, seem to intensify the spillover effects. The 

trend in the short-run underlying index return, the implied volatility of at-the-money options, and 

the interest rate term spread are key determinants of implied volatility spillovers.  

 

Keywords: Contagion; Directed acyclic graph; Global index options markets; Implied volatility 

smile; Volatility spillover 

JEL Classification: G11, G13, G15 

 

1. Introduction 

The Black–Scholes model suggests that, in theory, the implied volatility is not connected to the 

exercise price of a specific option. However, in real-world financial markets, the implied volatility 

increases as options contracts become increasingly in or out of the money. As a result, the option 

implied volatility smile is one of the best-known financial anomalies. Some scholars believe that 

this puzzle is due to the unrealistic assumptions made in the Black–Scholes model (e.g., Eraker, 

Johannes, and Polson, 2003; Hull and White, 1987; Kim and Ryu, 2015; Ryu, Kang, and Suh, 2015). 

Others suggest that the observed volatility smile arises because of market behavior. For example, 

Pena, Rubio, and Serna (1999) find that implied volatility smiles are positively correlated with 

trading costs and volumes and negatively correlated with historical volatilities and expiry dates. 

Many other factors can explain the shape of the volatility smile as well, including net buying 

pressure (Bollen and Whaley, 2004; Ryu, Ryu, and Yang, 2021; Ryu, Webb, Yang, and Yu, 2022; 

Ryu and Yang, 2022), investor sentiment (Han, 2008), systemic risk factors (Duan and Wei, 2009), 

the liquidity of options and spot markets (Chou, Chung, Hsiao, and Wang, 2011), and heterogeneity 

in investors’ beliefs (Friesen, Zhang, and Zorn, 2012).1 

 
1  Some studies examine the differing responses of the prices of options with different 
moneyness levels to the same underlying price changes (Bakshi, Cao, and Chen, 2000; Sim, 
Ryu, and Yang, 2015; Yang, Choi, and Ryu, 2017). These studies highlight violations of option 
price monotonicity. Considering that levels of and changes in implied volatilities are determined 
by the price dynamics of the underlying assets and options contracts, the topic is also related to 
our study. 
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Nevertheless, we should not forget that, because options are traded globally, implied volatilities 

have both time-varying and cross-sectional features, such as lead-lag effects across different 

countries and regions. Contemporary investors can access more markets through advancements in 

financial technologies, and they must fully understand complex aspects of trading, such as buying 

pressure. Studying implied volatilities and their interdependence, as opposed to time-varying 

volatility spillovers, can help achieve understanding practical aspects of investing. This 

understanding can enable portfolio optimization and risk management from a forward-looking 

perspective.  

Unfortunately, research on this topic is limited. To fill this gap, we conduct a cross-market 

study of both implied volatility smile contagion and spillover effects across global index options 

markets. Our data cover 25 countries and regions worldwide over the period from January 1, 2006, 

to November 9, 2017. First, we address the cross-sectional contagion effects of implied volatilities 

by analyzing the features of volatility smiles. We examine, first, whether volatility smiles can 

explain contagion. Second, we investigate the complex structure through which contemporaneous 

or lagged contagion spreads in a large global network. It is important to understand which markets 

strongly dominate others and drive the lead-lag effects.  

We examine the time-varying and total volatility spillovers at the aggregate level in each 

market and across the entire global network under both normal and crisis conditions. In particular, 

when we include all the index options markets in one complex network, we can better understand 

the dynamics of the information flows within individual markets, between markets, and across the 

entire network. To further understand the more complex information transmission process and the 

increased intensity of contagion, we apply the directed acyclic graph (DAG) method (Awokuse, 

2006; Pearl, 1995; Spirtes, Glymour, and Scheines, 2000) to this classic finance problem.  

To the best of our knowledge, this study is the first network analysis of global index options 

markets. Importantly, this method effectively mitigates many drawbacks of the classic methods. 

Granger causality tests are sensitive to the optimal lags chosen, as the lags affect the robustness of 

the test results; thus, these tests have limitations in studying the causal relationships among multiple 

variables, as in the context of this study. The impulse response and variance decomposition analysis 

Ryu Doo Jin
I have removed the part where desccriptions about the relationships between X, P, and Q variables. Also, I added this citation in the manuscript.
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methods allow for multivariate analyses of contagion effects by decomposing information shocks. 

However, these methods require appropriate variable ordering with support from either theory or 

heuristic prior judgments. For example, classic orthogonal decomposition methods, such as the 

Cholesky decomposition method, rely heavily on subjective priors rather than on solid theoretical 

foundations (Swanson and Granger, 1997; Yang and Zhou, 2013). In contrast, the DAG model does 

not face any of these limitations. It offers a flexible modeling framework for estimating causal 

relationships in a complex system. For example, our model is based on 25 markets. Using traditional 

methods to obtain the variance/covariance matrix for a 25 × 25  vector autoregression (VAR) 

requires incredibly complicated and dense computations. Certain issues, such as variable ranking 

and decomposition, may be more pressing in this context. However, the DAG method utilizes high 

computational algorithms to obtain clusters and causal relations in a large, high-dimensional 

network. In addition, the DAG provides direct visualization of the contagion clusters among the 

global index options markets. The directed flows indicate clear causal relationships and reveal price 

discoveries between the markets. 

Our tests start by obtaining the slope of each index options market’s volatility smile to establish 

a VAR model that identifies the lead-lag relations. Next, we extract VAR residuals and construct a 

DAG to examine the contemporaneous contagion effects among the implied volatilities of the global 

options markets that we study. These contagion effects directly reflect the causal relationships 

among these markets and enable us to build a structural VAR (SVAR) model. With this model, we 

can further study the contemporaneous, short-term, and medium-to-long-term contagion effects for 

spillovers across the whole network and time-varying spillovers in individual markets. Again, this 

method avoids the variable ranking issues that commonly appear in the Cholesky variance 

decomposition. Finally, we investigate the possible economic determinants of network contagion. 

One important finding of this study is that the levels, slopes, and curvatures of volatility smiles 

have direct implications for trading. The level of a volatility smile approximates the overall riskiness 

of the market, but the levels of actual volatility smiles tend to remain stable over time. Thus, these 

levels may not be useful for meaningful forecasting. Our pilot test using the implied volatility smiles 
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of the United States (U.S.), Germany, Japan, and India (Figure 1) clearly illustrates this result.2  

 

[Insert Figure 1 Here] 

 

In contrast, the movements of the slopes are dramatic and, thus, the slope may contain richer 

information than the levels do. Theoretically, the slope of an implied volatility smile indicates the 

market hedging pressure. In a real-world financial market with limited arbitrage, the options supply 

curve should be upward-sloping rather than horizontal. Thus, the net demand for options is 

positively related to their prices. When investors worry about a potential decline in the spot market, 

the demand for deep out-of-the-money put options increases sharply, thereby increasing option 

prices. As a result, the slope of the left side of the implied volatility smile steepens. This idea is 

supported both theoretically and empirically by Bollen and Whaley (2004), Chan, Cheng, and Lung 

(2004), and Garleanu, Pedersen, and Poteshman (2009). In addition, Han, Liang, and Wu (2016) 

explain that the slope of the right side of an implied volatility smile indicates investors’ speculative 

demand. Investors tend to purchase out-of-the-money call options if they speculate that the market 

may rise in the future. 

Moreover, the slope of an implied volatility smile may indicate future market conditions. When 

a market reaches a low point or volatility is high, the implied volatility in that market generally 

becomes flattered when the probability of a market rebound is higher. This information is valuable 

to investors. For instance, the Chicago Board Options Exchange’s SMILE Index is based on the 

slopes of implied volatility smiles, and investors have used it as a primary indicator of the options 

market since 1986.3 

Overall, our results suggest that implied volatilities tend to smile together, but they spread 

across countries and regions with strong geographic features. For example, Europe and America are 

connected in the same contagion cluster and are separate from the Asia-Pacific region. In addition, 

 
2 We standardize the data when we plot volatility smil0es. 
3 We also model the levels and curvatures of the volatility smiles using the VAR and DAG 
approaches and obtain qualitatively similar results. For brevity, we do not report the results here, 
but they are available upon request. 
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certain individual markets, such as the U.S. market, have clear spillover effects on other markets. 

When we study 30-day lags, we find that these markets are well-connected and interdependent. We 

also find that extreme market conditions, such as the recent financial crisis, amplify contagion 

effects. Finally, the short-run trend in the underlying index, the historical volatility, the volatility 

implied by at-the-money (ATM) options, and the interest rate term spread are among the 

determinants that influence the dynamics of implied volatility smile contagion. 

The remainder of this paper is organized as follows. Section 2 reviews the literature. Section 3 

introduces the modeling framework, including the SVAR, DAG, and spillover models, and the 

methodology. Section 4 describes the data, including descriptive statistics and data processing to 

address asynchronization issues across the global options markets. Sections 5 and 6 report the 

empirical results of the DAG approach and the spillover models, respectively, and discuss the 

dynamic features and determinants of spillover effects. Section 7 concludes. 

 

2. Literature Review 

2.1. Contagion in Financial Markets 

The literature on contagion can be traced back to many studies conducted after the 1987 

financial crisis (e.g., Hamao, Masulis, and Ng, 1990; Koutmos and Booth, 1995; Worthington and 

Higgs, 2004) and the 2008 global financial crisis (e.g., Baruník, Kočenda, & Vácha, 2016; Daly, 

Batten, Mishra, and Choudhury, 2019; Kim, Ryu, and Seo, 2015; Sewraj, Gebka, and Anderson, 

2018). Studies of cross-asset contagion are also carried out. The majority suggests that correlations 

among the same assets, such as stocks, across markets, generally increase over time, whereas 

correlations between different assets across markets tend to decrease (e.g., Gulko, 2002; Kim, 

Moshirian, and Wu, 2006). However, Forbes and Rigobon (2002) suggest that these estimated 

correlations between cross-market stock returns tend to be biased and that the spillover effects 

mostly disappear when these biases are corrected. Briere, Chapelle, and Szafarz (2012) reject the 

spillover hypothesis for fixed income assets, although they accept that spillovers among stocks exist 

as a result of financial globalization. Chan-Lau, Mathieso, and Yao (2004) suggest that the 

magnitudes and scales of spillovers are often linked to the initiating country’s economic 
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fundamentals and risk exposure. In contrast, Connolly and Wang (2003) propose that spillovers of 

private rather than public information may be the main driver of the co-movements of stock prices 

in international markets. In addition to these studies, some similar efforts have been made in the 

literature on the options markets as well (Finta and Aboura, 2020; Gemmill and Kamiyama, 2000; 

Greenwood-Nimmo, Nguyen, and Rafferty, 2016; Lin, Engle, and Ito, 1994; Narwal, Sheera, and 

Mittal, 2012; Shu and Chang, 2019). 

 

2.2. Methods of Measuring Financial Contagion 

Although financial contagion is inevitably important and influential, no universally accepted 

definition of contagion exists because of the complexity of the information shock transmission 

process (e.g., Chang and Majnoni, 2002; Corsetti, Pericoli, and Sbracia, 2005). Masson (1999) 

suggests that only a model with multiple equilibria that can handle the transmission of information 

from both fundamentals and exogenous shocks can detect true contagion. However, other studies, 

including that of Morris and Shin (2000), have reservations on the multi-equilibria argument as it 

narrowly equates contagion to spillover effects (Bessler and Yang, 2003; Yang and Bessler, 2004). 

Moreover, Boyer, Kumagai, and Yuan (2006) argue that methods to detect contagion must exclude 

the impacts of common shocks (i.e., fundamentals). 

Regarding the modeling of contagion, early studies try to directly estimate the correlation 

coefficients or conditional covariances among financial variables. However, Forbes and Rigobon 

(2002) argue that high correlations may not necessarily indicate contagion but rather may be the 

outcomes of changes in the relevant countries’ economic fundamentals, risk perceptions, and 

preferences. For example, if two markets are highly correlated, dramatic changes in one market 

naturally lead to similar changes in the other. Thus, only a significant increase in the correlation 

between the two can be considered proof of contagion.  

The common method of contagion analysis is to typically conduct a variance decomposition 

and an impulse response analysis, normally with a VAR model (Eun and Shim, 1989). Diebold and 

Yilmaz (2009) propose measuring the degree of financial contagion with a volatility spillover index. 

Diebold and Yilmaz (2012) use the generalized variance decomposition method to enhance the 

Ryu Doo Jin
This paper was in the reference list but not cited in the manuscript. Thus, I have added it here. Please check if this change is okay.
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robustness of their estimations. Both studies suggest that the overall spillover index reflects 

aggregate contagion. The greater this index is, the more likely it is that market fluctuations are driven 

by contagion. This method has the clear advantage of quantifying the degree to which each market 

responds to information shocks from other markets, thereby establishing a ranking of contagion 

response markets. We, therefore, adopt this method for analyzing the implied volatility smile 

contagion among global index options markets. 

 

3. Methodologies 

Our goal is to examine the contagion effects among 25 individual index options markets 

worldwide. We focus on implied volatility smiles, especially their slopes, because they provide the 

practical benefit of indicating real market conditions, such as hedging pressure and future market 

movements. First, we measure the cross-sectional contagion in this global network so that we can 

observe the interactions among different markets on the whole. We identify contagion and clusters 

and the markets that dominate others. After creating a holistic picture of the global index options 

market, we explore the time-varying contagion across markets. 

To fulfill the above, we construct basic VARs for the slopes of the individual markets’ implied 

volatility smiles. We then obtain the residuals from these VARs and use them as inputs to establish 

our global index options DAG network. The DAG explains the overall causal relationships between 

individual index options markets. These relationships indicate the cross-sectional contagion effects 

among the index options markets. We further establish an SVAR model using the causal parameters 

of the DAG. Unlike the Cholesky decomposition, this model is not heavily dependent on the variable 

ranking. This allows us to further expand Diebold and Yilmaz’s (2009, 2012) spillover index model 

to thoroughly understand the time-varying volatility within the global network. We can compare 

contemporaneous, short-term, and medium-to-long-term (lagged) contagion effects and analyze 

total and directed spillover effects. We describe the technical details of our empirical process in the 

following subsections. 
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3.1. DAG Model 

Following Bessler and Loper (2001) and Bessler and Yang (2003), we may consider a set of 

variables {V, W} in which each variable represents a node in a graph and the nodes can be connected 

by edges. Consequently, they form different types of graphs: (1) an undirected graph that has 

undirected edges (e.g., V–W); (2) a directed graph that has unidirectional edges (e.g., W→V); (3) 

an oriented graph that has both unidirectional and bidirectional (e.g., V«W) edges; and (4) finally a 

mixed graph that has unidirectional, bidirectional, and undirected edges. 

A DAG can visually show whether the causal flows of a set of variables contain cyclic 

relationships. The directed edges in a DAG are established by calculating the conditional 

correlations between the variables or establishing their independence. A DAG presents a non-time 

sequence that is often a full circle of directed causal flows among variables. Thus, this method is 

more flexible than the commonly used Granger causality test, especially in the presence of 

asymmetric information flows (Yang and Zhou, 2013). 

 

We can use the following algorithm to generate a DAG (Bessler and Yang, 2003): 

 

Pr (𝑣𝑣1,𝑣𝑣2,𝑣𝑣3, … , 𝑣𝑣𝑛𝑛) = ∏ Pr (𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝𝑖𝑖)𝑛𝑛
𝑖𝑖=0 ,            (1) 

 

where 𝑃𝑃𝑟𝑟 is the probability of nodes (𝜐𝜐1, 𝜐𝜐2, 𝜐𝜐3, … , 𝜐𝜐𝑛𝑛) and 𝑝𝑝𝑝𝑝𝑖𝑖 is the history of the subsets of 

these variables prior to the realization of vi. Pearl (1995) calls this concept “d-separation,” and 

Spirtes, Glymour, and Scheines (2000) develop an algorithm, known as the PC algorithm,4  to 

determine the directions of the causal relationships among variables using a stepwise procedure that 

reduces the number of edges and orients the directions of the edges between the variables. 

 

 
4  The PC algorithm is programmed in Tetrad III software 
(https://www.phil.cmu.edu/projects/tetrad/old/tet3/master.htm). The specifics of this algorithm are 
provided in the appendix. 



10 

3.2. Spillover Index Model 

Consider a VAR model with n variables and p lags: 

 

𝑥𝑥𝑡𝑡 = ∅1𝑥𝑥𝑡𝑡−1 + ∅2𝑥𝑥𝑡𝑡−2 + ⋯+ ∅𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡,          (2) 

 

where 𝑥𝑥𝑡𝑡 = �𝑥𝑥1,𝑡𝑡,𝑥𝑥2,𝑡𝑡, … 𝑥𝑥𝑛𝑛,𝑡𝑡�
′is a set of endogenous variables, ∅𝑖𝑖(𝑖𝑖 = 1,2, …𝑝𝑝) is an 𝑛𝑛 × 𝑛𝑛 

matrix of the parameters, and 𝜀𝜀𝑡𝑡 are residuals that are independent and identically distributed 

with 𝜀𝜀𝑡𝑡~𝑁𝑁(0,Σ). Assuming that the covariance matrix is stationary, the VAR model can be 

rewritten as follows: 

 

𝑥𝑥𝑡𝑡 = ∑ A𝑖𝑖ε𝑡𝑡−𝑖𝑖∞
𝑖𝑖=0 ,                (3) 

 

where 𝐴𝐴𝑖𝑖  is an 𝑛𝑛 × 𝑛𝑛  parameter matrix such that 𝐴𝐴𝑖𝑖 = 𝜙𝜙1𝐴𝐴1 + 𝜙𝜙2𝐴𝐴2 + ⋯+ 𝜙𝜙𝑝𝑝𝐴𝐴𝑖𝑖−𝑝𝑝 (𝑖𝑖 > 0) 

and 𝐴𝐴𝑖𝑖 = 0 (𝑖𝑖 < 0). 𝐴𝐴0 is the identity matrix. 

In the variance decomposition process, we use H-step forecasting for the variables 𝑥𝑥𝑖𝑖  (𝑖𝑖 =

1,2, … ,𝑝𝑝) driven by endogenous shocks, and we collect the proportion of the forecasted errors in 

the variance resulting from exogenous shocks. We follow Koop, Pesaran, and Potter (1996), Pesaran 

and Shin (1998), and Diebold and Yilmaz (2012) in using a decomposition process that compensates 

for the Cholesky decomposition’s heavy dependence on the variable ranking. In particular, these are 

based on a generalized VAR that separately examines the impacts of individual variables; the 

impacts of the shocks are aggregated at the end of the process, instead of using the static shock 

impact in the Cholesky decomposition or an SVAR model. 

The H-step forecasting error variance decomposition matrix can be defined as: 

 

𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔(𝐻𝐻) = 𝜎𝜎𝑖𝑖𝑖𝑖

−1 ∑ (𝑒𝑒𝑖𝑖
′𝐴𝐴ℎ∑𝑒𝑒𝑗𝑗)2𝐻𝐻−1

ℎ=0
∑ (𝑒𝑒𝑖𝑖

′𝐴𝐴ℎ∑𝐴𝐴ℎ
′ 𝑒𝑒𝑗𝑗)𝐻𝐻−1

ℎ=0
,             (4) 

 

where 𝐻𝐻 = 1,2, …, ∑ is the covariance matrix of 𝜀𝜀𝑡𝑡, 𝜎𝜎𝑖𝑖𝑖𝑖 is the standard deviation of the ith error 
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term, and 𝑒𝑒𝑖𝑖 is the row vector in which the ith element equals one and the other elements equal 

zero. When i = j, we obtain the variance that records all the endogenous shocks, and when 𝑖𝑖 ≠ 𝑗𝑗, 

we obtain the correlation between the generalized forecast orthogonalized error variances, which 

indicates the proportion of the shocks in i that are exogenously caused by j. 

In a generalized VAR model, the information shocks to each variable are not orthogonal. Thus, 

the sum of the estimated errors in the variance may not necessarily sum to one. That is, 

∑ 𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔𝑛𝑛

𝑖𝑖=1 (𝐻𝐻) ≠ 1. To standardize this value, we let 

 

θ�𝑖𝑖𝑖𝑖
𝑔𝑔 (𝐻𝐻) =

𝜃𝜃𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)

∑ 𝜃𝜃𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑛𝑛

𝑗𝑗=1
 such that ∑ �̅�𝜃𝑖𝑖𝑖𝑖

𝑔𝑔𝑛𝑛
𝑖𝑖=1 (𝐻𝐻) = 1 and ∑ �̅�𝜃𝑖𝑖𝑖𝑖

𝑔𝑔𝑛𝑛
𝑖𝑖,𝑖𝑖=1 (𝐻𝐻) = 𝑛𝑛.    (5) 

 

The total spillover index shows the aggregated contribution of the spillovers among all the variables 

to the total forecasted error in the variances. This index can be calculated as: 

 

S𝑔𝑔(𝐻𝐻) =
∑ 𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔𝑛𝑛
𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔𝑛𝑛

𝑖𝑖,𝑗𝑗=1 (𝐻𝐻) × 100 =
∑ 𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔𝑛𝑛
𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)

𝑁𝑁
× 100.        (6) 

 

The directed spillovers can be determined to help identify the directions of the spillovers. 

𝑆𝑆𝑖𝑖
𝑔𝑔(𝐻𝐻) is the outflow spillover, and 𝑆𝑆𝐿𝐿

𝑔𝑔(𝐻𝐻) is the inflow spillover, indicating the spillovers of 

a variable to and from other variables, respectively: 

 

S𝑖𝑖
𝑔𝑔(𝐻𝐻) =

∑ 𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔𝑛𝑛

𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔𝑛𝑛

𝑗𝑗=1 (𝐻𝐻) × 100 and S𝐿𝐿
𝑔𝑔(𝐻𝐻) =

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔𝑛𝑛

𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔𝑛𝑛

𝑗𝑗=1 (𝐻𝐻) × 100.     (7) 

 

The net spillover index 𝑠𝑠𝑖𝑖
𝑔𝑔(𝐻𝐻) is the difference between the outflow and inflow spillovers: 

 

𝑆𝑆𝑖𝑖
𝑔𝑔(𝐻𝐻) = 𝑆𝑆𝑖𝑖

𝑔𝑔(𝐻𝐻)− 𝑆𝑆𝐿𝐿
𝑔𝑔(𝐻𝐻).              (8) 

 

Further, the net cross-spillover between variables, 𝑆𝑆𝑖𝑖𝑖𝑖
𝑔𝑔(𝐻𝐻), can be calculated as follows: 
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𝑆𝑆𝑖𝑖𝑖𝑖
𝑔𝑔(𝐻𝐻) = (

𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔(𝐻𝐻)

∑ ∑ 𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔 (𝐻𝐻)𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

−
𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)

∑ ∑ 𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔 (𝐻𝐻)𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1

).          (9) 

 

Equivalently, it can be written as follows: 

 

𝑆𝑆𝑖𝑖𝑖𝑖
𝑔𝑔(𝐻𝐻) = (

𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔(𝐻𝐻)−𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔(𝐻𝐻)

𝑛𝑛
).              (10) 

 

4. Data 

4.1. Descriptive Statistics 

Globally, 26 markets across Asia, Australia, Europe, and the Americas offer stock index options. 

We include 25 of them in our sample, excluding Singapore’s options market because it uses other 

countries’ and regions’ indices as its options’ underlying assets. Options contracts approaching their 

maturity dates tend to be more liquid. Hence, we use data on near-month contracts with moneyness 

levels of 90%, 95%, 100%, and 105% taken from Bloomberg terminals to study their implied 

volatilities5 for the period from January 3, 2005, to November 9, 2017. Table 1 lists the names, 

years in existence, and associated exchanges of each index option, and Table 2 reports descriptive 

statistics for the data. The mean values of the implied volatilities of Greece, Russia, and Italy are 

among the highest, whereas the corresponding means for Denmark, the U.S., and Israel are the 

lowest. In terms of standard deviations, Italy, Canada, and Norway are the most volatile, whereas 

Brazil, Denmark, and Israel are the least volatile. 

 

[Insert Table 1 Here] 

 

[Insert Table 2 Here] 

 

 
5 If a country or region has more than one index option, we use the index option with the highest 
daily trading volume. 
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4.2. Asynchronization of Trading Times across Markets   

The trading times of these exchanges span four continents, thus, are not synchronized. Some 

markets (e.g., Japan, Taiwan, and the U.S.) have electronic trading platforms that cover hours 

outside of normal trading times. To ensure synchronization, we map the trading times of the 25 

markets to Beijing time (see Figure 2). Furthermore, in a global network, the trading times in 

different geographic markets may overlap. The overlapping trading times of adjacent markets do 

not necessarily imply natural crossovers. Thus, we follow Bessler and Yang (2003) in establishing 

three implied volatility timelines: AsiaPacific-Europe-America (ApEA), Europe-America-

AsiaPacific (EAAp), and America-Asia/Pacific-Europe (AApE). In ApEA, we assign a timestamp 

of t to all markets. In EAAp, we assign a timestamp of t-1 to American options and a timestamp of 

t to options in all other regions. Finally, in AApE, we assign a timestamp of t-1 to European and 

American options and a timestamp of t to Asia-Pacific options. In this way, the options markets form 

natural crossovers globally. These timestamps abide by the fact that Asia-Pacific markets open first, 

followed by European and American markets. Thus, all time zones can be covered with smooth 

transitions. 

 

[Insert Figure 2 Here] 

 

4.3. Empirical Implied Volatility Smile 

Following Deuskar, Gupta, and Subrahmanyam (2008) and Pena, Rubio, and Serna (1999), we 

use the quadratic regression method to estimate the structural parameters of the daily implied 

volatility smiles of index options, as shown in Equation (11). 

 

𝐼𝐼𝐼𝐼 = 𝑏𝑏0 + 𝑏𝑏1 × 𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒𝑀𝑀𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 + 𝑏𝑏2 × 𝑀𝑀𝑀𝑀𝑛𝑛𝑒𝑒𝑀𝑀𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠2,         (11) 

 

where IV is the Black-Scholes model implied volatility; Moneyness is the ratio between the spot and 

exercise prices; and the coefficients 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2 measure the level, slope, and curvature of the 

daily volatility smile, respectively. During each trading day, there are about four moneyness and 
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implied volatility pairs. Hence, we use the cubic spline interpolation suggested by Han, Liang, and 

Wu (2016) to obtain pairs of options values and their implied volatilities before using Equation (11) 

to estimate the coefficients 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2. 

After we exclude non-trading days, each options market contains 604 implied volatilities over 

the sample period. Standard augmented Dickey-Fuller tests show that we can reject the null 

hypothesis of a unit root at the 1% significance level in all markets, satisfying the stationarity 

requirement of the VAR model. Using the Schwartz information criterion (SIC), we obtain an 

optimal lag of one for all series. Table 3 reports the coefficients, all of which are significant at the 

10% significance level. In particular, the coefficients in the row labeled 𝑏𝑏1  are all negative, 

indicating a downward slope. The coefficients in the row labeled 𝑏𝑏2 are positive together with those 

in 𝑏𝑏1, implying a convex smile curve. The majority of the 𝑅𝑅2 and adjusted 𝑅𝑅2 values are over 

90%, and more than half are over 95%, suggesting that implied volatility smiles exist in most of the 

options markets. 

 

[Insert Table 3 Here] 

 

5. Aggregated Contagion Analysis 

We compute the implied volatility for each market using the method described above, and we 

use the calculated slopes to set up a standard VAR model. Once we obtain the VAR model, we collect 

the residuals, and we apply Fisher’s Z-statistics to examine the aggregated causal relationships and 

contagion effects among different options markets.6 Figure 3 shows the contagion results from the 

DAG model for the three constructed time series that are significant at the 5% level. An arrow from 

one market to another indicates the average spillover from the former to the latter market. The 

transmission dynamics indicated by the slopes of the implied volatility smiles are clearly complex; 

 
6 If a market closes before the opening of another market, no contemporary residuals in the 
former market should be caused by shocks from the latter market. In addition, the Japanese and 
Indian markets are both in the Asia-Pacific region, but trading hours overlap for only a short 
period of time (i.e., about 2.5 hours). Thus, the results regarding these two markets may differ 
from expectations. For instance, in Figure 3, the Japanese market appears to be disconnected 
from the other markets, including the other Asia-Pacific markets. 

Ryu Doo Jin
I have changed this to Equation (11), not Equation (10). Please check if this change is correct.
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they appear to form interconnected networks and demonstrate strong geographic similarities. The 

most prominent common feature is that there are two clear clusters: the European and American 

cluster and the Asia-Pacific cluster. In the first cluster, the U.S. options market consistently triggers 

implied volatility contagion in other markets, especially many European markets, such as Italy. 

Switzerland appears to be another dominant market that leads the volatility spillovers. In contrast, 

Greece seems to be strongly dominated by other markets. The remaining markets primarily have 

bidirectional volatility spillover effects at different levels. Among these markets, some tend to be 

affected by contagion but do not cause contagion (e.g., the U.K. and Sweden), while others have 

more balanced inward and outward contagion impacts (e.g., France). Italy appears to exhibit the 

opposite behavior from Sweden. The second cluster, which mostly consists of Asia-Pacific options 

markets, is smaller and less complex. Mainland China dominates the direct or indirect contagion 

effects on other markets. Thailand has some dominance in contagion, but only in Hong Kong. We 

categorize Israel as part of the European market, despite its geographical location, because it belongs 

to many European transnational federations, such as the European Union (EU). Interestingly, Figure 

3 shows that Israel falls into the Asia-Pacific cluster rather than the European cluster, and the 

contagion effects are bidirectional. In this case, Israel’s geographic location, rather than its 

democratic structure, affects its financial connections with other markets. In both clusters, we 

observe reverse contagion dominance across markets. For instance, the direction of the spillover 

between Canada and Taiwan, whose trading times do not overlap, reverses in Panel (c). This result 

may suggest an overnight feedback response from Canada to the existing spillover from Taiwan that 

occurs early in the day. 

 

[Insert Figure 3 Here] 

 

Although the strong geographic contagion effects that we observe are in line with the findings 

of Balli, Hajhoj, Basher, and Ghassan (2015) and Baumöhl, Kočenda, Lyócsa, and Výrost (2018), 

we find that geographically close markets do not necessarily experience contagion clustering. 

However, we observe a few exceptions. Japan always stands alone from both of the two main 
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clusters. Australia also tends to stand alone most of the time. This result may occur because both are 

geographically closer to the Pacific than to Asia and, thus, maintain a fair level of economic 

independence from other, more Asian markets in this region. In contrast, Taiwan and Korea7 appear 

to primarily cluster with European and American markets rather than with Asia-Pacific markets. 

Taiwan, for example, has close interconnections with a few markets in the European and American 

clusters, such as Canada, Brazil, the U.K., and Italy. This finding contradicts the notion of 

geographic clusters. 

As we described previously, the slopes of the implied volatility smile reflect hedging pressure 

or speculative demand from the spot market. When investors in a market are concerned that the 

market may drop significantly, their demand for deep out-of-the-money put options increases 

dramatically. This increase inevitably creates a certain amount of hedging pressure. Figure 3 

suggests that such pressure from the U.S. market can spread to the markets in Canada, Switzerland, 

Greece, the U.K., and Italy directly but does not spread to the markets in Denmark, France, and 

India. Moreover, the slopes of the implied volatility smiles can also be considered as indicators of a 

market’s future performance. When a market reaches a low point, the slope of the implied volatility 

tends to be flatter and may often reflect a higher probability that the market will rebound in the 

future. In Section 6.2, we discuss differences in contagion in different market states in more detail.  

 

6. Time-Varying Spillover Analysis 

Our DAG analysis demonstrates that the global options markets tend to smile together. In this 

section, we first examine contemporary and lagged spillover effects.8  In doing so, we aim to 

overcome the shortcomings of other methods, which require arbitrary prior assumptions on variable 

 
7 In Figure 3, Korea appears to connect only to Brazil in Panels (a) and (b), and it appears to 
stand alone in Panel (c). This result shows that although Korea can be included in the European-
American cluster, it weakly connects to the cluster. This result is very different from the result 
for Taiwan. 
8 We can consider different lags, such as zero, one, two, three, ten, or thirty days, to measure the 
market responses to exogenous shocks. In general, we find that cross-spillovers (i.e., exogenous 
responses) increase and that self-spillovers decrease when the lag is longer (e.g., one versus ten 
days). Meanwhile, these scenarios may produce similar results because the lags are essentially 
overcome by the asynchronization stemming from the time zone differences. Thus, we report the 
contemporary results and the results with a 30-day lag to form clear comparisons. 
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orderings (Swanson and Granger, 1997) 9  to obtain robust results. Second, we implement the 

variance decomposition analysis of the SVAR, which explains the extent to which the estimated 

variance of the H-day forecasting errors in a specific options market can be ascribed to external 

shocks in that market or other markets.  

 

6.1. Contemporary and Lagged Spillover Effects 

Table 4 reports the results for contemporary and long-run (30-day lag) spillovers in panels (a) 

and (b), respectively. The number in the ith row and the jth column of the table indicates the 

percentage of the estimated residuals from the variance decomposition analysis. This value 

illustrates market j’s response to information shocks from market i. The greater this percentage, the 

more powerful the cross-spillover or contagion effects (e.g., Diebold and Yilmaz, 2012). The values 

on the diagonal represent the self-spillover effects within each market. Greater numbers indicate 

less contagion but stronger self-spillovers in response to shocks. Based on this understanding, the 

contemporary contagion spillover analysis finds no contagion effects across the majority of markets. 

This result is demonstrated in two ways. First, for the diagonal values, most of the estimated 

residuals are 100% (e.g., Australia) or nearly 100% (e.g., Turkey), indicating that information 

transmission stays within the market itself. Ten markets, including India and Germany, tend to 

partially contain their responses to shocks internally, but their contagion does not spread to other 

markets apart from Italy. Second, cross-market reactions to shocks arise in nine markets in Asia-

Pacific and Europe, and most of them do not have a high percentage of the residuals apart from 

Germany (49.7%), India (35.9%), and Demark (34.8%). On the receiving end, only a handful of 

markets are affected by contagion effects, and very few of these effects are large (e.g., the 

Netherlands at 49.7% from Germany and Italy at 35.9% from India). These results are consistent 

 
9  For the VAR, the order of the markets that we use is Austria, Australia, Canada, France, 
Germany, Greece, Hong Kong, the Netherlands, India, Italy, Japan, Korea, Sweden, Switzerland, 
Taiwan, and the U.S. Table A1 in the appendix presents the constraint matrix A, which 
corresponds to the DAG results in Figure 3, where the period is a coefficient that must be 
estimated. Matrix A has 61 such coefficients in total, and matrix B is a 25×25 diagonal unit 
matrix. The results of estimating the SVAR model are not reported for brevity. Two of the 
estimated coefficients are significant at the 5% level, whereas the other 59 coefficients are 
significant at the 1% level. 
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with our DAG analysis and prior studies of the contemporary contagion effects of implied volatility 

smile shocks (Morana, 2008). 

 

[Insert Table 4 Here] 

 

However, when markets are given time (e.g., 30 days) to respond to information, we can clearly 

observe that contagion increases significantly and self-responses fall. First, all of the self-responses 

decrease over 30 days, and the majority are these decreases are significant (e.g., Japan from 100% 

to 66.3%, Austria from 100% to 36%, and the U.S. from 100% to 31%). Furthermore, many more 

markets now exhibit contagion. European markets have the most active bidirectional information 

responses not only to other European markets but also to international markets. The Asia-Pacific 

region also experiences a higher level of bidirectional interactions with a 30-day lag than 

contemporaneously, but more markets in this region seem to be affected by contagion than lead to 

contagion. The U.S. appears to move from a unidirectional contemporaneous regime (i.e., receiving 

contagion) to a bidirectional regime, whereas Canada and Brazil show only slight increases in their 

general information responses without indicating major contagion effects. 

We conjecture that the different results of the lagged and contemporaneous tests are due to the 

fact that the time zones of these global index options markets differ, and it may take time for trading 

information to be fully reflected in options prices in these markets. Trading frictions and investors’ 

abilities to absorb information may be other explanations for these results. 

 

6.2. Time-Varying Total Spillovers and Directed Spillover Indices 

Morana (2008) and Chen, McMillan, and Buckle (2018) suggest that market events, such as 

financial crises, significantly affect the total volatility of the market. Moreover, spillovers 

subsequently increase in response to regulatory interventions. Claeys and Vasicek (2012) also 

suggest that the 2008 liquidity crisis significantly increased the level of spillovers or contagion 

among assets, which we demonstrate with consistent findings using DAG and total spillover (i.e., 

both contemporary and lagged) analyses. Thus, we explore the time-varying features of the implied 
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volatilities in the options markets, especially before and after the 2008 financial crisis10, by looking 

at the implied volatility slopes for 16 of the 25 markets in our sample using a 200-day window after 

applying the SIC. We then conduct a variance decomposition analysis based on a 10-step forward 

estimation to obtain the total spillover index. This index measures how the responses to shocks in 

different options markets contribute to the total errors in the variance matrix. In total, we have 2,786 

individual-directed outflow spillover indices.  

Figure 4 plots the directed spillover index (outflow) with magnitudes for 16 options markets 

according to Equation (6) in Section 3.2. Taiwan, the U.S., and Switzerland always maintain high 

levels of outgoing spillovers, whereas Japan, Hong Kong, and India maintain lower levels of these 

spillovers. One prominent phenomenon in Figure 4 is that multiple markets, including France, Italy, 

the Netherlands, and Austria, peak on January 20, 2012. However, Germany, Canada, the U.S., and 

Taiwan valley on that day. This result may be linked to Fitch’s announcement downgrading the long-

term credit ratings of nine eurozone markets (excluding Greece) on January 13, 2012. The ratings 

of Italy, Portugal, and Spain were reduced by two grades, those of France and Australia fell by one 

grade, and those of Germany and Belgium were unchanged. When the market recognized that 

fundamentals had been impacted in the heavily affected countries, such as France, Italy, and the 

Netherlands, the hedging pressure from these countries to less affected or non-affected countries 

started to increase. This result is consistent with Drago and Gallo’s (2016) finding that credit ratings 

can affect financial markets and that downgrades usually cause spillover effects. Furthermore, the 

scale of the resulting spillover is determined by a country’s financial status.  

 

[Insert Figure 4 Here] 

 

 The Greek market peaked on May 18, 2012, only one day before both its long- and short-term 

Fitch credit ratings were degraded from B to CCC and from B to C (the lowest rating), respectively. 

This downgrading occurred only one month after Fitch changed Greece’s rating in April. The change 

 
10 We exclude nine markets that are relatively new to cover a sufficiently long period prior to 
the 2008 financial crisis. 
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was ascribed entirely to the widespread concern that Greece would lose its EU membership. The 

rates of some of the largest economies in the EU, such as France and Italy, did not suffer from rate 

downgrading that day. However, the market may have believed that Greece was going to be removed 

from the EU, further worsening the sovereign debt market in Europe. Thus, we also observe peaks 

in the implied volatilities of these two markets, providing perfect evidence of spillover effects owing 

to the growing hedging pressure.  

Because Greece’s financial stress launched the eurozone sovereign debt crisis, it is essential to 

examine the outflow spillovers from Greece to understand the full picture of the contagion that 

spread across almost the entire continent of Europe. Before October 2009, the scale of outflow 

spillovers from Greece ranged from one to four. Starting on October 20, 2009, when Greece’s 

sovereign debt issue started to emerge, the volatility spillovers of its options market began to 

increase, peaking at 7.5 on February 7, 2010. Even though the peak fell to an extent, Standard & 

Poor still downgraded Greece to BB+ on April 27, 2010. The downgrade occurred exactly three 

days after the Greek government officially asked for financial aid from the EU and the International 

Monetary Fund. This downgrade forced government intervention immediately, causing Greece’s 

spillover index to increase. Thus, our argument that changes in a country’s fundamentals often 

directly affect its risk exposure, as reflected by the spillover index of the implied volatility smile, is 

supported.  

 

6.3. Determinants of Volatility Smile Spillovers  

The literature (e.g., Han, Liang, and Wu, 2016; Pena, Rubio, and Serna, 1999) suggests that 

three groups of variables can explain the implied volatility smiles in a market. These groups of 

variables relate to the benchmark index of the spot market, the options market, and predictors of 

market trends. We use the same sets of variables to explain the economic determinants of global 

options market spillovers.11 

 
11  We thank an anonymous reviewer for pointing out that the spillover effects of classic 
financial factors, such as asset prices, returns, volatilities, jumps, and sentiment, may also 
determine global options market spillovers. Nevertheless, as we discuss in Sections 1 and 2, the 
slopes of the implied volatility smiles seem to contain somewhat different information from 
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The economic indicators used to describe the spot market benchmark include the log returns, 

trends, and volatility of the market index. The log returns are the daily returns of an index. An 

increase in the log returns often indicates that the economy has strong fundamentals, which may 

affect volatility smile spillovers (Drago and Gallo, 2016). The trend in the market index is calculated 

as the difference between the closing price of the index on the previous day and the closing price 30 

days ago. It often indicates the future direction of changes in the index and may influence investors’ 

confidence in the market and, thus, in the level and spillovers of its volatility (Fernandez-Rodríguez, 

Gomez-Puig, and Sosvilla-Rivero, 2015). The historical volatility of the benchmark index reflects 

its fluctuations over the past 30 days. A market may experience high volatility during a short period 

if its fundamentals change significantly, thereby affecting the magnitude of its volatility spillovers. 

The implied volatility of ATM options is commonly used to describe options markets. This 

indicator reflects investors’ expectations of the market’s future volatility. When it is not fairly 

constant, spillovers may increase as more information is transmitted. TermSpread, the difference 

between long- and short-term interest rates, is typically used to capture overall market movements 

and reflect economic cycles. When it increases, the economy expands. However, economic 

expansion ultimately slows, and the economy eventually contracts. As the economic cycle 

progresses, the transmission of spillovers from a market to the rest of the world varies accordingly 

(Bae, Karolyi, and Stulz, 2003). We also introduce MOVE and VIX, which reflect the widely used 

Merrill-Lynch Option Volatility Expectations (MOVE) and VIX indices, respectively, as control 

variables for global risk factors and investors’ uncertainty regarding equity and bond prices. Crisis 

and EuroDebt are dummy variables. Crisis equals one for dates during the 2008 crisis (i.e., from 

October 12, 2007, to March 5, 2009) and zero otherwise. EuroDebt equals one for dates during the 

eurozone sovereign debt crisis (i.e., from October 12, 2009, to December 31, 2014) and zero 

otherwise. The regression model is expressed as follows12:  

 
these classic factors. Thus, it may be reasonable to suspect that spillovers of volatility smile 
slopes are not correlated with spillovers of these other factors. We understand that this concern 
is an empirical issue and choose to address it in a future study. 
12  Descriptive statistics of the variables in Equation (12) are reported in Table A2 in the 
appendix.  
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𝑆𝑆𝑃𝑃 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛 + 𝛽𝛽2 × 𝑇𝑇𝑅𝑅𝑒𝑒𝑛𝑛𝑇𝑇 + 𝛽𝛽3 × 𝐼𝐼𝑀𝑀𝑉𝑉𝑝𝑝𝑅𝑅𝑖𝑖𝑉𝑉𝑖𝑖𝑅𝑅𝑀𝑀 + 𝛽𝛽4 × 𝐴𝐴𝑇𝑇𝑀𝑀 + +𝛽𝛽5 ×

𝑇𝑇𝑒𝑒𝑅𝑅𝑇𝑇𝑆𝑆𝑝𝑝𝑅𝑅𝑒𝑒𝑝𝑝𝑇𝑇 + 𝛽𝛽6 × 𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀 + 𝛽𝛽7 × 𝐼𝐼𝐼𝐼𝑉𝑉 + 𝛽𝛽8 × 𝐶𝐶𝑅𝑅𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 + 𝛽𝛽9 × 𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝑒𝑒𝑏𝑏𝑅𝑅,    (12) 

 

where SP is the directed spillover index for a particular market. We omit the subscripts for each 

market i at time t. 

Table 5 presents the empirical results for the determinants of directed spillover effects. The 

first three columns show the results of the regression models without considering individual and 

time-fixed effects. With the exception of Return, all variables have significant effects at the 1% level. 

The coefficients of Trend and TermSpread are significantly negative, suggesting that when the 

economic outlook is gloomier, the implied volatility smile in this market has stronger spillovers to 

other markets. The coefficients of ATM are all significantly negative for the first three regressions, 

indicating that when investors expect future volatility to fall from a high level, the market has 

stronger spillovers to other markets. In addition, the results of the third model suggest that during 

the 2008 financial crisis, the spillover effects of most markets weakened. However, during the 

eurozone sovereign debt crisis, most market spillovers were enhanced. This finding highlights the 

different impacts of the two major crises on options market spillovers. 

 

[Insert Table 5 Here] 

 

The results in the fourth column account for 15 dummy variables that reflect the individual 

fixed effects of the markets. The adjusted 𝑅𝑅2 value increases to 0.456, suggesting that non-time-

varying factors explain 31.1% of the changes in the spillovers. We conduct a robustness check on 

the individual markets’ fixed effects and obtain a 𝜒𝜒2 value of 24,000, with a p-value of 0.000. This 

result suggests that the individual fixed effects are significant.  

In the fifth model, we explicitly control for time effects. The 𝜒𝜒2 value is 176, with a p-value 

of 0.00. Thus, even if we control for both the 2008 financial crisis and the eurozone debt crisis, the 

spillovers of different markets vary significantly over time. However, the adjusted 𝑅𝑅2  value 



23 

increases by only 2% compared with the fourth model, implying that these time effects do not 

significantly explain the spillovers from individual markets.  

 

7. Conclusions 

The classic VAR and variance decomposition methods and Granger causality models face 

several limitations. Thus, we propose a network approach to analyze the contagion effects among 

global index options markets. Once this flexible method confirms the existence of contagion, we 

comprehensively study contemporaneous, lagged, and time-varying volatility spillover effects. To 

better understand these complex dynamics, we compute both the total and directed spillover indices 

with a forecasting view of the global options markets. In this way, we can robustly confirm that the 

individual options markets within this system transmit information in the form of network contagion 

and clustering, often more organically and in line with the economic links between countries. For 

instance, the DAG results clearly identify two clusters, Europe-America and Asia-Pacific, each 

covering markets across a wide geographic range. 

Most options markets tend to be self-contained, as the contemporary spillover effects indicate. 

However, when we introduce a lag of 30 days, this independence declines, and strong connections 

among countries emerge. In particular, Europe appears to be a highly active region with strong 

bidirectional transmissions of volatilities, which makes sense in that European countries have 

historically been closely economically tied. Another interesting result is that the U.S. seems to be 

more exogenous in the contemporaneous results, but it triggers and is influenced by contagion 

effects when we include a 30-day lag. Finally, we find that volatility spillovers tend to affect many 

Asian countries and regions.  

We also highlight that index options markets worldwide tend to interact well, even during 

various crisis periods. Often, spillover effects are greatly amplified during crisis periods but shrink 

(not necessarily to pre-crisis levels) after a crisis ends. Different markets also experience volatility 

spillovers to different extents, and these differences are commonly connected to changes in the 

fundamentals of each economy. 

Finally, short-run fluctuations in the underlying index, the volatility implied by ATM options, 
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and the term spreads of interest rates are key determinants of volatility spillovers. 
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Appendix A. Correlation Matrix Analysis 

The error terms of vector autoregressions (VARs) reflect information that is not captured in 

historical data. Furthermore, their pairwise correlations indicate the degree to which each pair of 

options markets is affected by information shocks on the same trading day.  

Table A1 reports the correlation matrix of the VAR model. We find that if two options markets 

are located on geographically different continents, they tend to have a low correlation. In contrast, 

markets in the same geographic region are highly correlated. For example, Germany and the 

Netherlands have the highest correlation coefficient of 0.72. Next, Denmark and Switzerland, Italy 

and Denmark, and Sweden and Switzerland have correlation coefficients of 0.70, 0.67, and 0.66, 

respectively. In contrast, Thailand and Austria, Brazil and Turkey, and Canada and Denmark have 

correlation coefficients that are close to zero. Van Rijckeghem and Weder (2001) and Abdul-Rahim, 

Sapian, and Mohd Nor (2008) point out that the more economic links two countries share, the more 

correlated their financial markets, including their options markets, are. Our results corroborate these 

findings. For example, the markets in EU countries are clearly more correlated, consistent with Han, 

Liang, and Wu (2016). In contrast, their correlations with their non-EU counterparts are much 

smaller. For example, Norway, Italy, and Denmark are EU countries in the same time zone. Norway 

and Denmark have a correlation of -0.04, whereas Italy and Denmark have a correlation of 0.67.  

However, we acknowledge that the correlations of countries with high and low correlations are 

very different. This result may be largely due to the time asynchronization across markets, especially 

markets located on different continents. The Taiwanese and Japanese markets are exceptions. These 

markets have low correlations with other markets (<0.1), perhaps because their electronic trading 

platforms run continuously and synchronize with other markets in sequence. 
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Table A1. Correlation Matrix 
This table reports the correlations among all the index options included in this study. 

  AT AU BR CA CN DK FR DE GR HK NL IN IL IT JP KR NO RU SE CH TH TR TW UK US 

AT 1.00 
                        

AU - 1.00 
                       

BR - 0.05 1.00 
                      

CA - 0.08 - 1.00 
                     

CN - - - - 1.00 
                    

DK - - - 0.00 - 1.00 
                   

FR 0.03 - 0.08 - 0.01 0.58 1.00 
                  

DE 0.23 - 0.09 0.06 0.00 - 0.15 1.00 
                 

GR 0.09 0.11 - 0.11 - 0.40 0.04 - 1.00 
                

HK 0.01 - - - 0.12 0.00 0.03 0.00 - 1.00 
               

NL 0.35 - 0.14 0.02 - - 0.16 0.72 - 0.02 1.00 
              

IN 0.01 - - 0.00 0.15 0.01 0.04 - - 0.33 0.00 1.00 
             

IL 0.04 - 0.00 0.02 0.28 0.01 0.04 0.02 - 0.29 0.02 0.61 1.00 
            

IT 0.11 - 0.04 0.08 0.00 0.67 0.59 0.02 0.40 0.01 0.00 0.04 0.05 1.00 
           

JP - 0.01 0.06 0.04 - - - - 0.00 - - 0.00 0.01 - 1.00 
          

KR - 0.04 0.13 0.02 - 0.04 0.08 - - - 0.03 - - 0.06 - 1.00 
         

NO 0.03 0.07 0.07 0.03 - - - 0.00 - - 0.06 - 0/01 - 0.01 0.01 1.00 
        

RU - - 0.02 - 0.01 0.10 0.15 0.02 - 0.04 0.06 0.03 0.03 0.05 0.03 - - 1.00 
       

SE - 0.01 0.04 0.11 0.00 0.60 0.56 - 0.38 0.01 - 0.03 0.01 0.61 - 0.09 - 0.03 1.00 
      

CH - 0.04 0.06 0.11 - 0.70 0.47 - 0.49 0.01 - 0.03 0.03 0.62 - 0.06 0.01 0.04 0.66 1.00 
     

TH 0.00 - - - 0.02 - - 0.00 - 0.30 - 0.05 0.00 - - 0.00 - 0.04 - - 1.00 
    

TR 0.05 - 0.00 - - - - - - - 0.03 - - - 0.02 0.01 0.15 - - - - 1.00 
   

TW 0.04 0.03 0.13 0.16 - 0.01 0.05 0.08 - - 0.07 0.00 0.00 0.01 0.01 0.01 0.07 - 0.04 0.05 - 0.06 1.00 
  

UK 0.03 0.04 0.05 0.09 0.01 0.55 0.41 - 0.48 0.00 - 0.03 0.02 0.54 - 0.10 - 0.07 0.62 0.61 - - 0.10 1.00 
 

US 0.04 0.08 0.02 0.16 - 0.36 0.19 - 0.40 - - 0.00 0.01 0.42 - 0.05 0.00 0.07 0.51 0.50 - - 0.00 0.50 1.00 



 

Table A2. Descriptive Statistics  
This table reports descriptive statistics of the variables for the global index options markets. 

Variables  Sample size  Mean Medium Std. Skew. Kurt. Min. Max. 

Return 44,576  2.18E-05 9.85E-05 0.01 -0.31 12.35 -0.08 0.07 

Trend 44,576  1.73E-03 0.01 0.08 -1.06 7.66 -0.68 0.41 

Volatility 44,576  4.22E-03 2.40E-03 5.24E-05 2.95 13.01 2.40E-04 3.88E-02 

ATM 44,576  22.26 18.62 13.61 5.48 107.88 0.45 477.35 

TermSpread 43,184  1.95 0.53 7.34 7.09 55.37 -2.43 65.17 

MOVE 44,576  88.36 78.94 33.53 1.65 6.18 43.97 264.6 

VIX 44,576  19.8 17.01 9.66 2.34 10.31 9.14 80.86 

 

Appendix B. Specification of the PC Algorithm 
In the global index options directed acyclic graph (DAG), each of the 25 individual markets is 

represented by a node (see Section 4). We use the slopes of the individual implied volatility smiles to set up 

the VAR models (see Equation 1). We collect the residuals from the VARs, which are conditional variances, 

and use them as edges in the DAG. In theory, each node is connected to the other 24 nodes, and we use the 

PC algorithm to determine the directed edges between the pairs of nodes. The first stage in this process is 

the elimination, which removes edges between pairs of variables that have zero correlation. For the 

remaining edges, the algorithm examines first-order partial correlations (the correlations between the pairs 

conditional on a third variable) using Fisher’s Z-statistics. If this correlation is zero for a given pair of nodes, 

that pair is eliminated from the graph; otherwise, the search continues until conditional correlation is 

achieved. The maximum search that the algorithm may reach is N-2=23.    

After this elimination process, the PC algorithm proceeds to the orientation process, which assigns the 

directions of the contemporaneous causal flows among the remaining nodes using subsets. According to 

Yang and Zhou (2013), “the subset of a pair of variables whose edge has been removed is the conditioning 

variable(s) on the removed edge between two variables.” This process removes nodes that have vanishing 

zero-order conditional or unconditional correlations and keeps the rest, which can be connected with directed 

edges. Eventually, the algorithm builds a cyclic graph through a full circle of directed causal flows, which 

visually illustrates such features as the connectivity and centrality among the nodes in the network.  
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Figure 1. Time-varying Slopes and Levels of Implied Volatility Smiles  
Figure 1 shows the time series for the levels and slopes of the implied volatilities of index options in the U.S., Germany, Japan, 

and India. The black (gray) line indicates the time-series process for the level (slope) of each index options implied volatility. 

As the figure shows, the variance of the slope is much higher than that of the level in all four markets.   
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Figure 2. Trading Times of Global Options Markets  
Figure 2 reports the opening and closing hours for each index options market in the sample. All times are adjusted to the 

Beijing time zone. The trading times in these markets overlap in multiple instances, suggesting that we need to consider ways 

to group them according to a certain sequence of trading times.   
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Figure 3. Directed Acyclic Graph Results for Three Global Time Series 
Figure 3 illustrates the aggregated contagion results from the DAG model for the three constructed time series. We illustrate 

significant results at the 5% level. An arrow from market A to market B indicates the average spillover from market A to 

market B. 

Panel (a): AsiaPacific-Europe-America (ApEA) Series 

 

Panel (b): Europe-America-AsiaPacific (EAAp) Series 
 

 
Panel (c): America-AsiaPacific-Europe (AApE)Series 
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Figure 4. Directed Outflow Spillovers of the Implied Volatility Smiles from Global Options Markets 
Figure 4 plots a directed spillover (outflow) index with magnitudes for 16 options markets using Equation (6) in Section 3.2: 

S𝑔𝑔(𝐻𝐻) =
∑ 𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔𝑛𝑛
𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)  

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔𝑛𝑛

𝑖𝑖,𝑗𝑗=1 (𝐻𝐻) × 100 =
∑ 𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔𝑛𝑛
𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 (𝐻𝐻)

𝑁𝑁
× 100 . Taiwan, the U.S., and Switzerland maintain high outflow spillovers 

throughout the sample period, whereas Japan, Hong Kong, and India maintain lower levels of spillovers. 

 

  
 

 
 
 

 
 
 
 



Table 1. Global Index Options Markets 
This table lists the 25 major index options markets. We report the index options markets by country or region and consolidate them into three continents (i.e., Asia-Pacific, 
Europe, and America). The column labeled Code reports the abbreviations for each market. For each index options market, we list the index (Index) and the exchange 
(Exchange) to which it belongs. The sample period indicates when data are available for each index options market. The majority of the index options markets started to 
accumulate data in mid-2015, and a few markets have longer data records. 

  Market Code Sample Period Index Exchange   Market Code Sample Period Index Exchange 

A
si

a-
Pa

ci
fic

 

Australia AU 05/15-11/17 AS51  ASX 

E
ur

op
e 

Switzerland CH 01/06-11/17 SMI  EUX 

Japan JP 01/06-11/17 NKY  OSE Greece GR 01/06-11/17 FTASE  ADE 

South Korea KR 01/06-11/17 KOSPI200  KFE Turkey TR 07/12-11/17 XU030  LSE 

Taiwan TW 01/06-11/17 TWSE  FTX Israel IL 01/08-11/17 TA-35  TAV 

China CN 02/15-11/17 50ETF  SSE Germany DE 01/06-11/17 DAX  EUX 

Hong Kong HK 01/06-11/17 HSI  HKG Austria AT 06/15-11/17 ATX  EUX 

Thailand TH 10/07-11/17 SET50  TEF Denmark DK 10/12-11/17 OMXC20CP  COP 

India IN 01/06-11/17 NIFTY  NSE Sweden SE 05/05-11/17 OMX  SSE 

    
   

  Norway NO 01/14-11/17 OMXO20GI  SSE 

    
   

  Britain UK 10/07-11/17 UKX  ICF 

    
   

  Netherlands NL 01/06-11/17 AEX  EOE 

A
m

er
ic

a U.S. US 01/05-11/17 SPX  UO Italy IT 05/05-11/17 FTSEMIB  MIL 

Canada CA 05/05-11/17 SPTSX60  MSE France FR 01/06-11/17 CAC  EOP 

Brazil BR 06/15-11/17 IBOVE  BOV Russia RU 03/12-11/17 RDXUSD  EUX 



Table 2. Descriptive Statistics 
This table reports descriptive statistics for each index options market. The markets are organized into three continents: Asia-Pacific, America, and Europe. No. Obs., Mean, Median, Std., 

Skewness, Kurtosis, Min., and Max. denote the number of observations (i.e., the sample size) and the sample mean, median, standard deviation, skewness, kurtosis, minimum, and maximum 

values, respectively. The market codes are given in Table 1.  

 Asia-Pacific    America 
Market AU JP KR TW CN HK TH IN    US CA BR 

No. Obs. 12,592 11,636 11,732 11,672 2,684 11,692 9,800 11,676    12,936 12,492 2,380 

Mean 23.29 28.02 24.85 24.24 27.51 27.21 24.53 27.86    21.33 26.97 27.35 

Median 20.13 24.94 21.27 21 24.26 22.62 22.47 23.96    18.92 22.08 26.36 

Std. 13.09 12.42 13.27 11.85 14.74 14.69 12.44 13.74    10.7 21.09 7.23 

Skewness 2.6 1.97 2.08 1.55 1.42 2.42 2.46 1.7    1.69 6.34 1.15 

Kurtosis 13.25 8.45 8.66 5.8 5.83 13.21 15.45 6.88    7.29 87.43 7.1 

Min. 3.63 5.69 5.84 6.05 5.3 4.26 4.05 1.25    3.61 5.09 12.61 

Max. 141.01 117.03 116.36 87.47 110.57 195.18 210.05 131.99    97.51 504.16 95.28 

 Europe 
Market CH GR TR IL DE AT DK SE NO UK NL IT FR RU 

No. Obs. 11,924 11,708 3,892 9,428 12,044 11,850 3,864 12,492 3,096 10,240 12,088 12,636 12,144 5,508 

Mean 22.34 43.03 26.23 21.93 26.41 27.37 20.74 27.6 22.14 23.13 26.6 30.38 27.08 33.14 

Median 19.65 40.79 23.97 20.09 23.37 24.72 18.78 24.17 20.16 20.98 22.62 26.25 23.73 29.9 

Std. 10.96 19.52 11.3 9.21 12.51 14.71 8.16 14.37 21.07 11.37 20.35 24.02 16.03 15.96 

Skewness 1.94 1.6 5.51 1.18 2.07 8.21 2.23 2.14 40.04 2.12 9.79 11.91 6.32 6.61 

Kurtosis 8.72 9.81 57.11 4.61 10.76 132.08 11.52 10.56 1,934.25 11.97 155.9 215.09 80.33 80.32 

Min. 3.76 6.94 9.5 4.71 7.06 0.91 8.96 5.04 8.66 5.81 5.19 4.21 0.45 0.93 

Max. 120.25 245.89 218.43 71.23 164.33 381.6 93.12 154.98 1,062.60 143.46 399.65 618.48 273.944 261.77 

 



Table 3. Empirical Implied Volatility Smiles 
This table presents the coefficients describing the level, slope, and curvature of the daily volatility smile with b0, b1, and b2, respectively for each market. The numbers in parentheses are 

standard errors. The coefficient b0 reflects the level of the daily volatility smile. The coefficient b1 indicates the downward slope of the volatility smile. The coefficient b2 measures the smile’s 

curvature. The coefficient estimates are statistically significant at the 10% level. The majority of the 𝑅𝑅2 and adjusted 𝑅𝑅2 values are over 90%, and more than half are over 95%, suggesting 

that implied volatility smiles exist in most options markets.  

  Asia-Pacific    America 

Market AU JP KR TW CN HK TH IN       US CA BR 

b0 756.34 804.87 650.76 760.55 736.75 699.98 437.33 817.79 
   785.75 1,226.24 365.36 

  (-54.36) (-40.79) (-34.78) (-26.82) (-41.91) (-27.30) (-62.17) (-46.05) 
   

(-40.32) (-66.07) (-19.20) 

b1 -1,572.15 -1,663.12 -1,350.33 -1,562.11 -1,494.11 -1,447.24 -903.57 -1,676.14 
   -1,650.02 -2536.76 -774.08 

  (-108.76) (-81.61) (-69.59) (-53.66) (-83.86) (-54.62) (-124.39) (-92.12) 
   

(-80.66) (-132.18) (-38.41) 

b2 833.85 880.95 720.07 820.90 780.38 769.83 487.82 880.96 
   879.97 1,329.22 433.41 

  (-54.25) (-40.70) (-34.71) (-26.77) (-41.83) (-27.25) (-62.04) (-45.95) 
   

(-40.23) (-65.93) (-19.16) 

R2 0.94 0.95 0.94 0.98 0.89 0.97 0.82 0.94 
   0.98 0.96 0.97 

Adj. R2 0.94 0.94 0.94 0.98 0.88 0.97 0.82 0.94       0.98 0.96 0.97 

  Europe 

Market CH GR TR IL DE AT DK SE NO UK NL IT FR RU 

b0 792.75 246.10 460.10 830.19 775.67 547.06 586.25 870.99 96.51 638.99 986.28 978.37 759.67 332.16 

  (-47.51) (-69.13) (-74.23) (-41.29) (-42.51) (-93.60) (-51.94) (-52.98) (-49.91) (-52.04) (-47.32) (-30.50) (-42.63) (-36.23) 

b1 -1,650.95 -488.90 -955.54 -1,710.36 -1,623.52 -1,142.78 -1,226.16 -1,811.29 -245.18 -1,358.47 -2,039.01 -2,011.36 -1,591.94 -702.56 

  (-95.05) (-138.31) (-148.50) (-82.60) (-85.06) -187.26 (-103.91) (-106.00) (-99.86) (-104.11) (-94.67) (-61.01) (-85.28) (-72.48) 

b2 875 284.54 518.60 896.60 868.76 619.02 656.42 961.93 169.57 737.72 1,072.70 1,057.06 853.95 401.08 

  (-47.41) (-68.99) (-74.07) (-41.20) (-42.42) (-93.40) (-51.83) (-52.87) (-49.81) (-51.93) (-47.22) (-30.43) (-42.54) (-36.15) 

R2 0.96 0.83 0.83 0.96 0.97 0.84 0.92 0.96 0.96 0.96 0.97 0.99 0.97 0.93 

Adj. R2 0.96 0.82 0.82 0.96 0.97 0.83 0.92 0.96 0.95 0.96 0.97 0.99 0.97 0.93 
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Table 4. Contemporaneous and 30-Day Lagged Spillovers 

This table presents the estimated residuals that indicate the contagion effects between markets. The residuals are estimated from the following VAR model: 𝑥𝑥𝑡𝑡 = ∅1𝑥𝑥𝑡𝑡−1 + ∅2𝑥𝑥𝑡𝑡−2 + ⋯+
∅𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡. Panels (a) and (b) show contemporaneous and 30-day lagged spillover effects, respectively. * indicates statistical significance at the 10% level.  
Panel (a): Contemporaneous Spillovers  

      Asia-Pacific Europe America 

      AU JP KR TW CN HK TH IN CH GR TR IL DE AT DK SE NO UK NL IT FR RU US CA BR 

A
sia

-P
ac

ifi
c 

  AU 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  JP 0 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  KR 0 0 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  TW 0 0 0 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  CN 0 0 0 0 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  HK 0 0 0 0 0 80.3* 9 3 0 0 0 7.9* 0 0 0 0 0 0 0 0 0 0 0 0 0 

  TH 0 0 0 0 0 0 100* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  IN 0 0 0 0 0 0 0 64.1* 0 0 0 35.9* 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eu
ro

pe
 

  CH 0 0 0 0 0 0 0 0 91.8* 0 0 0 0 0 0 0 0 0 0 0 0 0 8.2* 0 0 

  GR 0 0 0 0 0 0 0 0 13.0* 70.9* 0 0 0 0 0 0 0 4 0 0 0 2 10.0* 0 0 

  TR 0 0 0 0 0 0 0 0 0 0 97.6* 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

  IL 0 0 0 0 4 0 0 0 0 0 0 96.5* 0 0 0 0 0 0 0 0 0 0 0 0 0 

  DE 0 0 0 0 0 0 0 0 0 0 0 0 50.3* 0 0 0 0 0 49.7* 0 0 0 0 0 0 

  AT 0 0 0 0 0 0 0 0 0 0 0 0 0 100* 0 0 0 0 0 0 0 0 0 0 0 

  DK 0 0 0 0 0 0 0 0 34.8* 0 0 0 0 0 48.9* 0 0 0 0 13.9* 2 0 0 0 0 

  SE 0 0 0 0 0 0 0 0 16.9* 0 0 0 0 0 0 65.9* 1 0 0 0 0 0 16.0* 0 0 

  NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100* 0 0 0 0 0 0 0 0 

  UK 0 0 0 1 0 0 0 0 15.2* 0 0 0 1 0 0 5 0 58.9* 0 1 0 0 17.0* 0 0 

  NL 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 95.7* 0 0 0 0 0 1 

  IT 0 0 0 0 0 0 0 0 18.6* 0 0 0 0 2 0 4 0 0 0 76.2* 0 0 0 0 0 

  FR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.9* 0 0 0 14.5* 71.2* 1 0 0 0 

  RU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100* 0 0 0 

A
m

er
ic

a 

  US 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100* 0 0 

  CA 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 95.5* 0 
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  BR 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97.0* 

Panel (b): Spillovers with a 30-day Lag   

    Asia-Pacific Europe America 

    AU JP KR TW CN HK TH IN CH GR TR IL DE AT DK SE NO UK NL IT FR RU US CA BR 

A
sia

-P
ac

ifi
c 

AU 84.2* 1.2 3.5 3 1.1 0.4 0.5 0.1 0.6 0.2 0.1 0.7 0.1 0.1 0.4 0.2 0.1 0.2 0.2 0.3 0.1 0 0.1 1.5 0.9 

JP 0.7 66.3* 23.9* 1.2 1.6 0.2 0.1 0 1.6 1.1 0.1 0.3 0.1 0.4 0.1 0.1 0.2 0 0 0.2 0.1 0.2 0.2 0.4 0.9 

KR 0.1 1.4 86.8* 1 1.1 0.1 0.1 0.1 1.7 3.1 0.1 0.3 0 1.4 0.2 0.2 0.5 0.1 0.2 0 0.1 0.6 0.3 0.1 0.4 

TW 0.4 4.6 6.2* 80.1* 2.2 0.6 0 0.1 0.5 0.8 0.1 0.5 0.3 0.7 0 0.2 0.2 0.1 0 0.3 0.1 0.2 0.2 1.5 0.2 

CN 0.3 0.7 1.5 0.5 92.9* 0 0 0.1 0.3 0.1 0.2 0.1 0.1 0.3 0.1 0.1 0.5 0 0.2 0.1 0 0.3 0.6 0.5 0.4 

HK 0.6 0.6 3.5 0.3 23.9* 50.0* 4.5 5.1* 0.3 0.1 1.3 7.0* 0.1 0 0 0.4 0.4 0 0.2 0.1 0.1 0 0.3 0.5 0.6 

TH 0.3 0.3 0.9 0.1 8.3* 0.1 85.5* 0.5 0.2 0.1 0.6 1.1 0 0.1 0.1 0 0.3 0.2 0.1 0.1 0.2 0.4 0.1 0.2 0.3 

IN 0.5 0.5 2.7 0.4 29.5* 5.8* 0.2 38.0* 0.3 0 1.2 18.8* 0.2 0.2 0.1 0.3 0.2 0 0.1 0 0 0 0.2 0.4 0.4 

Eu
ro

pe
 

CH 6.5 2.8 4.6 11 2.4 0.5 0 0.1 50.1* 1.8 0.4 0.6 1.5 1.1 0.5 0.2 3.4 2.9 1.8 0.1 0.1 0.3 3.9 0.7 3 

GR 1.3 0.5 0.6 1.7 1.9 0.4 0 0 11.7* 60.4* 0.6 0.6 0.4 1.3 0.2 0.1 0.6 4.4 0.4 0.3 0.1 4.5 7.2* 0.2 0.4 

TR 0.2 0.1 0.9 0.7 4 2.6 0.7 1.3 0.1 0.5 83.1* 0.3 0.5 0.1 0 0 3.5 0.1 0.1 0.2 0 0.4 0.1 0.1 0.3 

IL 0.3 0.6 2.4 0.4 47.2* 0.6 1.4 0 0.2 0.2 0.9 43.4* 0.2 0.1 0.2 0.2 0.2 0 0.1 0 0 0.1 0.6 0.3 0.4 

DE 7.8* 3.2 4.3 12.5* 2.2 0.5 0 0.1 22.5* 1.7 0.4 0.6 7.4* 1 0.1 5.0* 5.5* 4 7.6* 1.4 0.3 0.2 8.9* 0.7 2.2 

AT 4.1 2.3 3.7 7.0* 2 0.4 0.1 0 20.4* 3 0.3 0.3 1.4 36* 1.2 4.1 2.9 0.6 1.9 0.9 0.2 1.1 5.0* 0.1 1 

DK 2.3 2.7 3.7 10.1* 1.9 0.3 0.1 0 27.3* 2.8 0.2 0.4 1.7 1.1 29.5* 0.1 2.7 0.6 2 6.9* 1.2 0.3 0.6 0.2 1.5 

SE 8.7* 2.6 4.5 11.1* 1.4 0.4 0.1 0 10.4* 2.9 0.3 0.5 1 1.8 0.2 33.2* 4.5 2.2 2.1 0.6 0.3 0.3 7.2* 0.7 3 

NO 0.2 2.8 1.6 6.1* 0.9 0.5 0.1 0.1 1 0.2 0.4 0.3 0.3 0.4 0 0.8 82.4* 0 0.2 0.8 0.1 0 0 0.3 0.4 

UK 4.6 2.3 4.5 13.6* 1.8 0.4 0.1 0.1 11.2* 2.9 0.1 0.6 2.4 2 0.1 2.5 4 29.5* 2.5 0.8 0.3 0.5 8.2* 2 3.1 

NL 7.8* 3.2 4.7 12.4* 2.3 0.5 0.1 0.1 21.6* 2 0.4 0.6 1.8 1.6 0.3 4.7 5.9* 2.7 13.4* 1.6 0.3 0.2 9.0* 0.7 2.4 

IT 5.6* 2.6 3.5 9.3* 2.1 0.4 0 0.1 19.6* 1.8 0.3 0.4 1 1.5 0.1 3.4 6.5* 1 1.6 34.7* 1.3 0.5 0.5 0.6 1.4 

FR 6.6* 2.3 3.3 9.4* 2 0.4 0.1 0.1 11.1* 1 0.2 0.5 0.8 0.6 0.4 7.9* 6.3* 2.5 0.8 6.8* 29.4* 0.9 4.1 0.6 1.8 

RU 0.1 0.2 0.2 1.3 0.7 0 0.1 0 0.5 0.9 0.1 0 0.2 2 0.1 0.6 0.1 0.1 1.2 0.5 0 90.7* 0.1 0.1 0 

A
m

er
ic

a US 8.9* 3.4 5.6* 13.3* 2.2 0.4 0.1 0 8.1* 5.7* 0.4 0.6 2 1.9 2.2 1 7 1.3 1.3 0.3 0 0.9 31.0* 0.7 1.7 

CA 1.5 0.4 1.1 2.4 0.4 0.1 0.1 0.1 0.6 0.2 0.1 0.1 0.1 0.1 0.3 0.1 3.2 0 0.1 1.2 0.7 0.3 1.9 84.9* 0.2 

BR 0.1 1.4 4.4 2 1.9 0.2 0.1 0 1.4 1.2 0.2 0.4 0.2 0.5 0.3 0.2 0.1 0.1 0 0.1 0.1 0.1 0.1 0.2 84.8* 
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Table 5. Determinants of the Directed Spillover Effects 
This table reports the estimation results for the determinants of the directed spillover effects. The columns labeled 

OLS show the estimation results for ordinary least squares regressions. The column labeled FE shows the results of 

estimating fixed-effect panel data regressions. Finally, the column labeled FE+Year shows the results of estimating 

panel data regressions controlling for fixed individual market and year effects. Return, Trend, Volatility, ATM, 

TermSpread, MOVE, VIX, Crisis, and Euro Debt denote the spot market return, the spot market trend, the spot market 

volatility, the term spread in the bond market, the MOVE index for the bond market, the VIX index for the options 

market, a dummy variable for the global financial crisis, and a dummy variable for the European debt crisis, 

respectively. Constant is a constant term. The row labeled Individual Effect indicates whether the given model 

includes individual market fixed effects, and the row labeled Time Effect indicates whether the given model includes 

year effects. N is the number of observations. R2 (Adj. R2) is the R-squared (adjusted R-squared) value. F-statistics 

denotes the results of the F-test for model fitness. Numbers in parentheses are t-statistics. ** and *** indicate 

significance at the 5% and 1% levels, respectively. 

  (1) (2) (3) (4) (5) 

  OLS OLS OLS FE FE+Year 

Return 
-2.21 -0.20 -0.87 -1.31 -1.53 

(-1.18) (-0.11) (-0.46) (-0.92) (-1.08) 

Trend 
-2.15*** -1.25*** -1.41*** -0.72*** -0.67*** 

(-12.76) (-7.11) (-7.90) (-5.27) (-4.58) 

Volatility 
-22.31*** -50.29*** -40.05*** 0.89 3.82 

(-6.97) (-13.90) (-10.82) (-0.31) (-1.23) 

ATM 
-0.03*** -0.04*** -0.04*** -0.01*** -0.01*** 

(-22.01) (-26.22) (-26.19) (-8.93) (-8.27) 

TermSpread 
-0.02*** 0.00 -0.01*** -0.02*** -0.02*** 

(-7.12) (-0.29) (-3.02) (-13.64) (-13.42) 

MOVE 
 -0.00*** 0.00 0.00** 0.00 
 (-4.75) (-0.98) (-2.45) (-0.42) 

VIX 
 0.04*** 0.03*** 0.00 -0.01** 
 (-16.62) (-11.86) (-0.89) (-2.45) 

Crisis 
  -0.17*** -0.09** -0.14** 
  (-3.15) (-2.23) (-2.34) 

Euro Debt 
  0.32*** 0.29*** 0.24*** 
  (-12.39) (-14.71) (-3.14) 

Constant 
4.52*** 4.19*** 3.91*** 2.41*** 2.15*** 

(177.71) (103.98) (83.47) (49.36) (24.87) 

Individual Effect NO NO NO YES YES 

Time Effect NO NO NO NO YES 

N 43,184 43,184 43,184 43,184 4,318 

R2 0.04 0.05 0.05 0.46 0.46 

Adj. R2 0.04 0.05 0.05 0.46 0.46 

F-statistics 353.15 301.71 256.50 1,505.23 1,041.16 
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