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Abstract

We investigate propagation of harmonic axial waves in a class of periodic two-
phase phononic rods whose elementary cells are designed adopting the quasicrys-
talline silver mean Fibonacci substitution rule. The stop-/pass-band spectra of this
family are studied with the aid of a trace-map formalism which provides a geometri-
cal interpretation of the recursive rule governing traces of the relevant transmission
matrices: the traces of two consecutive elementary cells can be represented as a
point on a surface defined by an invariant function of the circular frequency, and
the recursivity implies the description of an orbit on the surface. We show that, for
a sub-class of silver mean-generated waveguides, the orbits predicted by the trace
map at specific frequencies are periodic. The configurations for which this occurs,
called canonical, are also associated with periodic stop-/pass-band diagrams along
the frequency domain. Several types of periodic orbits exist and each corresponds
to a self-similar portion of the dynamic spectra whose scaling law can be studied by
linearising the trace map in the neighbourhood of the orbit. The obtained results
provide both a new piece of theory to better understand the behaviour of classical
two-phase composite periodic waveguides and an important advancement towards
design and realisation of phononic quasicrystalline-based metamaterials.

Keywords: Silver-mean Fibonacci sequence, phononic waveguide, quasicrystalline

metamaterial, band gap, Kohmoto’s invariant.
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1 Introduction

In the last twenty years, wave propagation in mechanical metamaterials and their ap-

plications in different areas of structural and mechanical engineering have attracted an

increasing interest from the scientific community. Many different phononic composites

and structures have been designed and tested with the aim of achieving and controlling

several innovative dynamical phenomena, such as frequency filtering [1, 2, 3], wave fo-

cussing [4, 5], cloaking [6, 7], negative refraction [8, 9, 10] and non-reciprocal propagation

[11, 12].

Recently, elastodynamics of composite beams following a quasiperiodic pattern has

gained considerably attention (see e.g. [13, 14, 15, 16]). In particular, the non-standard

dispersive properties of a class of two-phase periodic structured rods whose unit cells

are generated according to the Fibonacci substitution rule have been presented [13, 17,

18]. This class belongs to the subset of quasicrystalline media [19, 20] and portions of

Floquet-Bloch frequency spectra of its members display a self-similar pattern which scales

according to factors linked to an invariant function, the so-called Kohmoto’s invariant

[21].

In this paper, we generalise these concepts to study the dynamical properties of an-

other type of periodic quasicrystalline-generated waveguide, namely, that composed of

elementary cells conceived by adopting a generalised Fibonacci substitution rule based on

the binary sequence, commonly known as silver mean [21, 22]. By considering harmonic

axial wave propagation, we show that the corresponding Floquet-Bloch dynamic spectra

can be fully determined by studying the behaviour of the traces of the transmission matri-

ces of three ‘adjacent’ elementary cells, which are related through recursive relationships.

These connections allow us to apply the trace-map formalism [23], which provides the

geometrical representation of the traces as coordinates of points which describe orbits on

a surface defined by the Kohmoto’s invariant. Those orbits are studied in detail, to find

that, for a sub-class of silver-mean waveguides, they are periodic at specific frequencies,

called canonical frequencies, in analogy to those determined for the standard Fibonacci

sequence by Gei et al. [24]. In particular, there exist three types of canonical frequencies

and each of them can be associated with a well-defined configuration of the elementary

cell called, likewise, canonical configuration.

Each of the three families of canonical configurations is characterised by self-similar

properties of the layouts of stop and pass bands, a feature that can be linked to the

periodic orbits on the invariant surface. By means of a linearisation procedure of the

trace map, we obtain analytical scaling factors governing the different self-similar ranges

of the spectra for all three families of canonical rods. The scaling factors could be used

to predict, design and optimise the unique filtering properties of a two-phase silver-mean
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Figure 1: Representative elementary cells for periodic silver-mean phononic rods: F2 = (AAB),
F3 = (AABAABA) and F4 = (AABAABAAABAABAAAB).

generated structured rods.

2 Analysis of wave propagation

We introduce a particular class of infinite, one-dimensional, two-component quasiperiodic

phononic rods consisting of a repeated elementary cell where two distinct phases, say A

and B, are arranged in series according to the so-called Silver Mean (SM) sequence. The

repetition of the fundamental cell implies global periodicity along the axis and then the

possibility of applying Floquet-Bloch technique to investigate propagation of harmonic

elastic waves in these systems. The two-component SM sequence belongs to the family

of patterns commonly known as one-dimensional generalised Fibonacci tilings [23] and is

based on the following substitution rule:

A→ AAB, B → A. (1)

Expression (1) implies that element of i−th order of the sequence (i = 0, 1, 2, . . . ), here

denoted by Fi, obeys the recursive rule

Fi = F2
i−1Fi−2, (2)

where the initial condition is F0 = B and F1 = A (in Fig. 1, elementary cells representing

F2, F3 and F4 are sketched, where the notation Fi will also indicate the i-th elementary

cell of the structured rod). The total number of elements of Fi corresponds to the

generalised Fibonacci number ñi, given by the recursive relation ñi = 2ñi−1 + ñi−2, with

i ≥ 2 and ñ0 = ñ1 = 1. The limit ñi+1/ñi for i→∞ corresponds to the silver mean ratio

σs = (1 +
√

2) ∼= 2.414.

Further in the text, we will refer to those structured elements as SM rods. According

to the general criterion for the classification of the one-dimensional quasiperiodic patterns

proposed in [25], the SM arrangement is quasicrystalline. Quasicrystalline media possess

specific properties that make them an intermediate class between periodic crystals and

random amorphous solids [26, 27]. An example of these interesting and intriguing features

is the self-similarity of the distribution of stop and pass bands detected for phononic
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waveguides arranged according to several generalised Fibonacci sequences [17, 24]. The

focus of the paper is on the analysis of harmonic axial wave propagation in SM rods.

We will show that the spectrum of this class of structures is characterised by specific

self-similar properties, different from those pertaining to other quasicrystalline-generated

waveguides. In particular, we will illustrate how these unique features are closely related

to the properties of the Floquet-Bloch dispersion relationship, reported in this Section.

Let us introduce the geometrical and physical properties of phases A and B. The

lengths of the two elements are indicated respectively with lA and lB, while SX , EX ,

and %X (X ∈ {A,B}) denote cross-section area, Young’s modulus and mass density

per unit of volume of each element, respectively. For both segments, we define the

displacement function along the rod u(z) and the axial force N(z) = ESu′(z), where z is

the longitudinal axis. The governing equation of harmonic axial waves in each phase is

u′′X(z) +QX ω
2uX(z) = 0, (3)

where ω is the circular frequency (simply the ‘frequency’ in the following) and QX =

%X/EX corresponds to the reciprocal of the square of the speed of propagation of longi-

tudinal waves in material X. The general solution for eq. (3) assumes the form

uX(z) = CX sin(
√
QX ωz) +DX cos(

√
QX ωz), (4)

where CX and DX are integration constants, to be determined by the boundary condi-

tions.

To obtain the dispersion diagram of the periodic rod, displacement and axial force

at the right-hand boundary of the elementary cell, respectively ur and Nr, have to be

identified in terms of those at the left-hand boundary, respectively ul and Nl, as

Ur = TiUl, (5)

where Uj = [uj Nj]
T (j = r, l) and Ti is the transmission matrix [28] of the cell Fi.

The latter is the result of the product Ti =
∏ñi

p=1 TX , where TX (X ∈ {A,B}) is the

transmission matrix relating quantities across a single element, given by

TX =

 cos(lX
√
QX ω)

sin(lX
√
QX ω)

EXSX

√
QX ω

−EXSX

√
QX ω sin(lX

√
QX ω) cos(lX

√
QX ω)

 . (6)

Transmission matrices Ti are unimodular, i.e. det Ti = 1, and follow the recursion rule

Ti+1 = Ti−1T
2
i , (7)

with T0 = TB and T1 = TA.
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The Floquet-Bloch condition requires that Ur = exp(iK)Ul, so that, by combining

this with eq. (5), the dispersion equation takes the form det[Ti − exp(iK)I] = 0, or, in

explicit terms1,

K = arccos

(
trTi

2

)
. (8)

The solution to eq. (8) provides the complete Floquet-Bloch spectrum and allows to

obtain the mentioned stop-/pass-band pattern of the waveguides at varying index i.

In particular, waves propagate when |trTi| < 2, stop bands correspond to |trTi| > 2,

whereas |trTi| = 2 is the condition for standing waves. In finite-size waveguides composed

of a finite number of elementary cells, stop bands (resp. pass bands) are the range of

frequencies when the reflection (resp. transmission) coefficient approaches one [28], a

property that will be verified later in the text with a couple of ad hoc examples.

3 Trace map and Kohmoto’s invariant

This Section is devoted to the study of the properties of trace trTi and how these features

affect the frequency spectrum of SM rods. A nonlinear recursive relationship connecting

traces for consecutive fundamental cells Fi is introduced. An invariant function defining

a three-dimensional surface, the so-called Kohmoto’s surface, is found for this map. At

any frequency, the evolution of the traces corresponds to an orbit on this surface. By

means of this analysis, we introduce a special sub-class of structures, characterized by

–closed– periodic orbits on the Kohmoto’s surface associated with particular values of

the frequency.

3.1 Nonlinear map and Kohmoto’s invariant

General recursive relations for the traces of unimodular 2 × 2 transmission matrices of

generalised Fibonacci chains have been derived in [23] in terms of Chebyshev polynomials

of first and second kind. Specialising these expressions to the case SM, we derive the pair

of equations {
xi = xi−1ti − xi−2,
ti+1 = xixi−1 − ti,

with i ≥ 2, (9)

where xi = trTi and ti = tr(Ti−2Ti−1). Through the new set of variables

x̃i = ti+2, ỹi = xi+1, z̃i = xi (10)

1The reader is referred to [29, 30] for a generalisation of the dispersion equation to the case of
bi-coupled systems in which the square transmission matrix is of order 4.
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and its substitution into expression (9), the following nonlinear map determining the

evolution of xi and ti is obtained

T : R3 → R3, T (x̃i, ỹi, z̃i) = (x̃i+1, ỹi+1, z̃i+1) =
(
x̃iỹ

2
i − ỹiz̃i − x̃i, x̃iỹi − z̃i, ỹi

)
, (11)

where the initial conditions are given by

z̃0 = x0 = 2 cos
(
lB
√
QBω

)
, ỹ0 = x1 = 2 cos

(
lA
√
QAω

)
,

x̃0 = t2 = 2 cos
(
lA
√
QAω

)
cos
(
lB
√
QBω

)
− β sin

(
lA
√
QAω

)
sin
(
lB
√
QBω

)
, (12)

where the impedance mismatch β takes the form

β =
S2
AE

2
AQA + S2

BE
2
BQB

SAEASBEB

√
QAQB

. (13)

Since (11) is a differentiable map, its jacobian, namely

J =
∂(x̃i+1, ỹi+1, z̃i+1)

∂(x̃i, ỹi, z̃i)
=

 ỹ2
i − 1 2x̃iỹi − z̃i −ỹi
ỹi x̃i −1

0 1 0

 , (14)

can be evaluated, showing that det J = −1. Through a little algebra we can also demon-

strate that, similarly to all precious-mean sequences [17], the quantity

I(ω) = x̃2
i + ỹ2

i + z̃2
i − x̃iỹiz̃i − 4 = (β2 − 4) sin2

(
lA
√
QAω

)
sin2

(
lB
√
QBω

)
(15)

is an invariant of the map. This means that at a given frequency ω, the value I(ω) is

independent of the order i of the sequence Fi. In the three-dimensional space spanned

by the cartesian coordinate system Ox̃ỹz̃, the cubic

x̃2 + ỹ2 + z̃2 − x̃ỹz̃ − 4 = I(ω) (16)

is the equation of a two-dimensional manifold that was named by the authors Kohmoto’s

surface. For a given frequency ω, all points detected by the triad Ri = (x̃i, ỹi, z̃i) and

generated through (11) can be mapped onto the surface defined by eq. (16). By taking

into account that ỹi, z̃i correspond to real traces (see eq. (10)), the position of point

Ri may reveal if, at a given ω, structures Fi and Fi+i are/are not in a pass band; in

particular, i) both Fi and Fi+i are in a pass band if {|xi|, |xi+1|} < 2; ii) both are in a

stop band if {|xi|, |xi+1|} > 2.

The four plots in Fig. 2 refer to a prototype SM rod whose parameters2 will be

further described in the next section, at a dimensionless frequency lA
√
QAω = 1.548.

2QB/QA = 1, EB/EA = 1, SB/SA = 1/2, lB/lA = 5.
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Figure 2: Kohmoto’s surface for a SM rod whose parameters are QB/QA = 1, EB/EA = 1, SB/SA =
1/2, lB/lA = 5. a) 3-dimensional representation where three out of six saddle points are indicated.
b), c), d) sketches in the plane (ỹ, z̃), where the reported trajectories have parametric equations: b)
(x2(ω), x1(ω)); c) (x3(ω), x2(ω)); d) (x4(ω), x3(ω)). In all plots of b), c), d) the red line is for ω̄ =
lA
√
QAω ∈ [0, π/2], the green one is for ω̄ ∈ [π/2, π]. SB stands for ‘stop band’.

In Fig. 2a), the Kohmoto’s surface in the 3-dimensional space Ox̃ỹz̃ is represented; the

yellow domain corresponds to {|xi|, |xi+1|} < 2 and three out of the six saddle points

possessed by the surface are indicated with a green dot. In Figs. 2b) c) d), the same

surface is sketched in the subspace Oỹz̃, where the white squares in the centre of the

three panels match, in projection, the yellow sub-surface in part a). Therefore, a point

R̂i(ω) = (ỹi, z̃i) = (xi+1(ω), xi(ω)) belonging to these squares indicates that the circular

frequency ω for both Fi and Fi+i lies in a pass band.

The trajectories sketched in the three plots of the same figure have parametric equa-

tions (x2(ω), x1(ω)) (b), (x3(ω), x2(ω)) (c) and (x4(ω), x3(ω)) (d). All trajectories start
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at the corner of coordinates (2, 2) that corresponds to ω = 0, then the red line covers

the range ω̄ = lA
√
QAω ∈ [0, π/2] after which the green line follows, reaching ω̄ = π.

The trajectory then continues with a pattern that the reader can easily envisage. In b)

the represented trajectory describes all frequencies ω̄ ∈ [0,+∞[ as the continuation for

ω̄ ∈ [π, 2π] corresponds to the same path, but travelling in the opposite direction, and

so on. Moreover, as expected, |x1| ≤ 2, ∀ω, as F1 is a homogeneous waveguide with any

stop band in its spectrum. In the same part b), the first three low-frequency stop bands

(SB) for F2 are indicated. Parts c) and d) can be similarly interpreted, in particular the

location of stop bands can be spotted following the curved lines, however the complexity

increases at increasing index i of the sequence. Note, for instance, where is the point of

transition between red and green lines (i.e. ω̄ = π/2) in Fig. 2d).

3.2 Periodic orbits on Kohmoto’s surface and canonical config-
urations

By recalling the analyses performed by Morini and Gei [17] and Gei et al. [24], there

are essentially three kinds of orbits which can be followed by points Ri as a consequence

of the iteration map (11): (i) periodic orbits, (ii) non-periodic bounded orbits and (iii)

escaping orbits. At any frequency ω, corresponding to a determinate Kohmoto’s surface

(16), the type of orbit is uniquely determined by the initial point R0 = (x̃0, ỹ0, z̃0) whose

coordinates are given by expressions (12).

We focus now our attention on periodic orbits and in particular to the investigation of

specific configurations for SM periodic rods. Guided by the previous work on standard,

golden mean (GM) rods, we indicate with Pj (j = 1, . . . , 6) the six saddle points of

the manifold (16) whose coordinates are P1,4 = (0, 0,±α1), P3,6 = (0,∓α2, 0), P2,5 =

(±α3, 0, 0), where the top sign is associated with the lowest index and αk (k = 1, 2, 3)

depend on the specific case. As anticipated, in Fig. 2a) three out of six saddle points

are sketched. We then wonder if any periodic orbit joining those points might exist. The

answer can be found by imposing, at some frequencies,

ỹ0 = z̃0 = 0, (17)

or

x̃0 = z̃0 = 0, or x̃0 = ỹ0 = 0. (18)

The requirements (17) and (18) can be fulfilled only for particular classes of layouts,

namely the canonical (SM) layouts, in analogy to the definition proposed by Gei et al.

[24] for GM sequences. By substituting expressions (12) into condition (17), the following

relationship between physical and geometrical properties of phases A and B are derived,
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i.e. (C = lB/lA
√
QB/QA)

C1 =
1 + 2j

1 + 2k
, with j, k ∈ N. (19)

Similarly, by using (12) into eqs. (18), we obtain

C2 =
1 + 2j

2q
, C3 =

2q

1 + 2k
, with j, k, q ∈ N, (20)

respectively. C1, C2 and C3 are the canonical ratios. Each of them identifies a family

of canonical SM rods (no. 1, no. 2 and no. 3, respectively). In turn, the canonical

frequencies are given by

ωCrn = ωCr(1 + 2n), with n ∈ N, r = 1, 2, 3, (21)

where

ωC1 = ωC3 =
π

2lA
√
QA

(1 + 2k), with k ∈ N, (22)

ωC2 =
π

lA
√
QA

q, with q ∈ N. (23)

Eq. (21), with eqs. (22) and (23), identifies the values of the circular frequencies satisfying

conditions (17) and (18).

Any arbitrary canonical SM waveguide Fi displays a periodic stop-/pass-band layout

whose period depends only on the value of the canonical frequency. In particular, peri-

odicity is enforced by requirements (17) and (18). The least frequency interval where all

traces are periodic is [0, 4ωCr ] (r = 1, 2, 3), as an inspection of the first two equalities in

(12) may reveal.

Elements of Family no. 1 possess features that differ from those characterising the

other two families that can be studied together.

Due to rule (9)1 and eq. (17), it turns out that, for Family no. 1, x2 = x1t2 − x0, an

expression which leads to x2 = 0 at the canonical frequencies. Therefore, xi(ωC1n) = 0,∀i,
implying that at these frequencies a waveguide belonging to Family no. 1 always displays

a pass band. Moreover, a two-point periodic orbit is achieved at ωC1n , namely

P2 = (β, 0, 0)
T−→ P5 = (−β, 0, 0)

T−→ P2, (24)

or, equivalently, T 2(P2,5) = P2,5. The orbit (24) will be denoted henceforth as T̄ 2. Note

that I(ωC1) = I(ωC1n) = β2 − 4 > 0.

For Families no. 2 and 3, the invariant evaluated at a canonical frequency always

vanishes, i.e. I(ωCrn) = 0 (r = 2, 3). The recursive rule (9) provides a four-point periodic

orbit encompassing the four saddle points not involved in T̄ 2, namely

P1 = (0, 0, 2)
T−→ P3 = (0,−2, 0)

T−→ P4 = (0, 0,−2)
T−→ P6 = (0, 2, 0)

T−→ P1. (25)
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This orbit will be referred from now on as T̄ 4.

Additional periodic orbits can be found at non-canonical frequencies ω̂ such that

I(ω̂) = 0. This may occur in a large variety of cases depending on the value of C that

are however not classified here. Nevertheless, the following cases are universal (i.e., valid

for all three Families of canonical rods):

(i) the pair x0 = x1 = 2 can be found at the endpoints of the interval where traces

are periodic, namely at ω = 0, 4ωCr ; therefore, Ri = (2, 2, 2), ∀i, corresponding to a

fixed-point orbit, i.e. T (Ri) = Ri;

(ii) for ω = 2ωCr , x0 = −x1 = −2, then R0 = (−2, 2,−2) = R2 = Rk, with k even,

whereas R1 = (−2,−2, 2) = R3 = Rm, with m odd; the general rule for this frequency is

that the orbit is two-point periodic, i.e. T 2(Rk,m) = Rk,m.

To illustrate the features of the dispersion diagram for canonical SM rods, the stop-

/pass-band layouts are displayed in Figs. 3 and 4 for two prototype examples belonging

to Family no. 1 (C1 = 5) and Family no. 3 (C3 = 2/3), respectively. In all cases displayed

in the paper, QB/QA = 1, EB/EA = 1, SB/SA = 1/2, so that β = 2.5. Therefore, the

chosen length ratio lB/lA corresponds to C.
In the top part of Fig. 3, the invariant I(ω) is sketched in the interval in which the

function itself – but not the traces (!), see above – is periodic, namely [0, 2 lA
√
QA ωC1 ].

While, on the one hand, it is confirmed that, as predicted, I(ωC1) > 0 (its value is

2.25), on the other hand, in addition to cases classified as (i) and (ii) just above, at
ˆ̄ω = lA

√
QAω̂ = p π/5 (p = 1, . . . , 4) the function vanishes. There, periodic orbits may

be found which are all 6-point periodic. However, the initial point R0 of each orbit

depends on p: for instance, for ˆ̄ω = π/5, R0 = (−φ, φ,−2), where φ is the golden ratio

(φ = (
√

5 + 1)/2), whereas for ˆ̄ω = 2π/5, R0 = (1/φ, 1/φ, 2).

In the bottom part of the figure, the layout of stop/pass bands is sketched for se-

quences F2 to F4. A higher index i could have been studied for the whole interval, but

the increasing smallness of the widths of the bands in certain frequency ranges would

have made the diagram illegible. However, a close-up view of the layout for F4 to F6

in the neighbourhood of the canonical frequency is included to highlight the local self-

similar pattern of the spectra. It is evident that in the scaled domain, F4–F5–F6 show

a sequence of pass bands very similar to that pertaining to F2–F3–F4 (sketched in red)

in the whole domain. The ‘match’ between patterns improves at increasing index i; the

value of the scaling factor will be determined with the method developed in Sect. 4.

In Fig. 4, the function I(ω) in the same interval (i.e. [0, 2 lA
√
QAωC3 ]) is reported. Dif-

ferently than Fig. 3, at the canonical frequency the invariant vanishes, namely I(ωC3) = 0,

and this also occurs for ˆ̄ω = π, 2π. All the three frequencies are loci where 4-point peri-

odic orbits are present with initial point being equal to R0 = (1,−2,−1) for ˆ̄ω = π and

R0 = (−1, 2,−1) for ˆ̄ω = 2π.
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Figure 3: Canonical SM rod with C1 = 5 (Family no. 1). Top: sketch of the invariant I(ω) in the
domain [0, 2 lA

√
QAωC1

], the frequencies at which periodic orbits occur are indicated; bottom: stop-
/pass-band layout in the same interval for sequences F2 to F4 and close-up view of the layout for F4 to
F6 in the neighbourhood of the canonical frequency. The dimensionless canonical frequency is π/2.
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F4

0.0

1.0
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I(�)
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4-point periodic orbit

0 � 3�3�/2

2-point periodic orbit�xed point

Figure 4: Canonical SM rod with C3 = 2/3 (Family no. 3). Top: sketch of the invariant I(ω)
in the domainl [0, 2 lA

√
QAωC3

] where the frequencies at which periodic orbits occur are indicated;
bottom: stop-/pass-band layout in the same interval for sequences F2 to F4. The dimensionless canonical
frequency is 3π/2.

In order to give the reader an insight into the diagrams illustrated in Figs. 3 and 4, we

consider two finite waveguides composed of six elementary cells F2 and F4, respectively,

belonging to Family no. 1. They join two semi-infinite, identical outer media whose

elastic properties match those of phase A (Fig. 5a)). We expect the system to be able

to transmit (resp. reflect) a signal whose frequency belongs to a pass band (resp. stop
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Figure 5: Canonical SM rod with C1 = 5 (Family no. 1). a) Schematic of the finite-size waveguide; b)
plot of the reflection coefficient Rc for elementary cell F2 for a dimensionless frequency in the interval
[0, 2 lA

√
QAωC1

]; c) same as in b), but in the domain [0, 6 lA
√
QAωC1

]; d) plot of the reflection coefficient
Rc for elementary cell F4 in the domain [1.376, 1.764].

band). To this end, transmission coefficient Tc and reflection coefficient Rc = 1− Tc can

be calculated following the method presented in [28]. The reflection coefficients for the

two problems at hand are displayed in Fig. 5. For F2, the whole domain [0, 2 lA
√
QA ωC1 ]

represented in Fig. 3 is analysed in Fig. 5b), whereas for the elementary cell F4, the range

lA
√
QA ω ∈ [1.376, 1.764] is analysed in Fig. 5d). In both diagrams, it is evident that

Rc approaches 1 in the stop bands, thus confirming that the model of infinite, periodic

waveguide provides an excellent estimation of the range of frequencies at which waves

cannot propagate. For cell F2, the reflection coefficient for a domain three times wider

than that in Fig. 5b) is reported in Fig. 5c) to show the periodicity of the response

of the finite-size device, confirming once again the prediction of the theory of canonical

phononic waveguides.
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4 Scaling and self-similarity of the frequency spectra

of canonical SM rods

In this Section, analytical scaling factors which govern the self-similar pattern of stop-

and pass-band layouts of canonical SM rods are obtained through the linearisation of the

map (11) about the relevant periodic orbits, i.e. (24) and (25).

4.1 Linearisation of the trace map about saddle points

Following the approach presented in [17] and [24], we can study non-periodic bounded

orbits on the Kohmoto’s surface as linear perturbations of the periodic orbits defined in

the previous Section.

Consider a saddle point Pj̄ as a point of a p−periodic orbit. Let us assume, for a

‘small’ δω, that R̄i = Ri(ω + δω), where Ri(ω) = Pj̄. Then, R̄i is in the neighbourhood

of Pj̄ and the modulus of the vector δri(δω) = R̄i − Pj̄ is small with respect to the

value of the non-vanishing coordinate of Pj̄. On the one hand, by applying p times the

transformation T , the exact position of R̄i+p = T p(R̄i) can be established. On the other,

due to the smallness of |δri|, a linearisation of the nonlinear map can be performed such

that the position of point R̄i+p can be approximated by Pj̄ + δr̂i+p, where

δr̂i+p = Āpδri. (26)

The operator Āp depends on the orbit and examples in this paper include

Ā2 = J(P5)J(P2)

for T̄ 2 [cf. (24)] and

Ā4 = J(P6)J(P4)J(P3)J(P1)

for T̄ 4 [cf. (25)], where J(Pj) is the jacobian matrix (14) evaluated at the saddle point

Pj
3.

To proceed further, let us focus on the spectral representations of Ā2 and Ā4 that

are matrices whose determinants are both unitary. They both share an eigenvalue equal

to one that is associated with a unit eigenvector, say g?. The remaining two eigenvalues

are

κ±2 = −1

2

[
2 + β2 ± β

√
4 + β2

]
, κ±4 = (2

√
2± 3)2, (27)

respectively, and note that κ+
p = 1/κ−p (p = 2, 4) and κ+

4 = σ4
s . We indicate the unit

eigenvector related to κ+
p (resp. κ−p ) as g+ (resp. g−). κ+

p is usually much larger than

3In the just mentioned examples, Ā2 and Ā4 have those expressions if Pj̄ = P2 and Pj̄ = P1,
respectively.
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Figure 6: Canonical SM rod with C1 = 5 (Family no. 1). a) Plot of traces x2(ω/κ), x4(ω), x6(κω)
(κ = −8.127) in the neighbourhood of the canonical frequency (lA

√
QAωC1 = π/2); b) plot of traces

x2(ω/κ) and x8(ω) (κ = 197.89) in the neighbourhood of the point ω̄ = lA
√
QAω = π/5 where a 6-point

periodic orbit is detected (see Fig. 3).

the other two eigenvalues and its value will be also indicated from now as κp, or simply

κ, as there is no risk of confusing it with another quantity.

Imagine now to decompose δri with respect to the basis {g+,g−,g?} as δri = ξ+g+ +

ξ−g− + ξ?g?. Therefore, by applying eq. (26), it turns out that δr̂i+p = Āpδri =

κpξ
+g+ + ξ−/κpg

− + ξ?g?. Due to the dominance of the highest eigenvalue,

δr̂i+p ≈ κpξ
+g+ ≈ κpδri. (28)

Note that, due to the fact that we are analysing a saddle point, eigenvector g? is or-

thogonal to the tangent plane at Pj̄ whereas the other two eigenvectors span the tangent

plane. Therefore, vector κpξ
+g+ belongs to the tangent plane itself.

For periodic orbits other than those originating in the neighbourhood of a saddle

point, the methodology is similar and based on the linearisation about one of the point

of the orbit.

4.2 Scaling of the frequency spectra

Examples of the interpretation of the linearisation of the trace map as a method to

explain scaling of the frequency spectra of canonical SM rods are reported in Figs. 6 and

7, which analyse self-similar portions of the stop-/pass-band layouts displayed in Figs. 3

and 4, respectively. In detail, in Fig. 6a) the neighbourhood of the canonical frequency

(lA
√
QAωC1 = π/2), at which a 2-point periodic orbit occurs, is investigated.

With reference to the linearisation procedure, the involved saddle point is here Pj̄ =

P5, where the two vanishing coordinates correspond to x2 and x3. To the first order,
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Figure 8: Canonical SM rod with C1 = 5 (Family no. 1): plot of traces x3(ω), x4(κω), x5(κ2ω),
x6(κ3ω) (κ = σs) in the neighbourhood of ω = 0 where a fixed-point orbit, R0 = (2, 2, 2), is present.
The plots of x5 and x6 are almost indistinguishable.

vector δr2(δω) = R̄2 − P5 can be written as

δr2(δω) ≈ γδω, (29)

where γ = gradωδr2. Approximation (29) lies in the tangent plane spanned by coordinates

x2 and x3, therefore, we can say that, in the neighbourhood of the canonical frequency,

x2 ≈ γ2δω and x3 ≈ γ3δω, where γk (k = 2, 3) are the projections of vector γ onto axes

xk (k = 2, 3). Focusing on x2, it is clear that after a 2-point cycle, eq. (28) leads to

x4 ≈ κγ2δω and, by repeating the cycle, x6 ≈ κ2γ2δω. This is exactly what is reported
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in Fig. 6a) where traces x2, x4, x6 are scaled accordingly by using the factor κ = −8.127

(cf. eq. (27)1, evaluated for β = 2.5); the only difference is that the frequency range

reported on the horizontal axis pertains strictly to x4, therefore x2 is scaled and plotted

as x2(ω/κ) whereas x6 is plotted as x6(κω). It is evident that within the range comprised

within the brace in the figure, the scaling of traces explains quantitatively very well their

behaviour about the canonical frequency. As a consequence, the stop-/pass-band layout

can be predicted through scaling about the canonical frequency, as shown on top of Fig.

6a). Note that in this case, and for all canonical SM rods belonging to Family no. 1,

the scaling factor can be negative. For Fig. 6b), similar comments can be made, here

the focus is the neighbourhood of frequency ω̄ = π/5, where a 6-point periodic orbit is

detected. Therefore, the two represented traces are x8(ω) and the scaled x2(ω/κ), where

this time the multiplicative factor is κ = σ6
s = 197.89.

Fig. 7a) covers the case belonging to Family no. 3 reported in Fig. 4, where the

canonical frequency (lA
√
QAωC3 = 3π/2) is the locus of a 4-point periodic orbit. There-

fore, the represented traces are x6(ω), x2(ω/κ) and x10(κω) with κ = σ4
s = 33.971 (cf.

eq. (27)2). The feature that distinguishes this example from that in Fig. 6a) is that the

function x2 evaluated at ωC3 is not null. We will show however that the scaling factor be-

tween the chosen three traces is still κ despite the fact that they are not linear functions

of circular frequency in the vicinity of ωC3 .

The involved saddle point is now P1 that should be better seen as the point of

Kohmoto’s surface whose coordinates are (t4, x3, x2)|ω=ωC3
= (0, 0, 2). On the one hand,

following the argument presented before, about the canonical frequency, t4 and x3 are

linear in the frequency, then t4 ≈ η4δω and x3 ≈ γ3δω; on the other hand, at the lowest

order, x2 can be approximated as x2 ≈ 2− ζ2δω
2 and the invariant as I ≈ δω2 as it can

be easy inferred with a Taylor expansion of (15). The use of the above approximations

still in (15) yields, to the leading (second) order,

δω2 = (η4δω)2 + (γ3δω)2 − 4ζ2δω
2 − 2η4γ3δω

2, (30)

and, finally,

4ζ2 = (η4 − γ3)2 − 1, (31)

which is a consequence of the recursive relationships between adjacent traces.

Let us turn now our attention to the same saddle point, but evaluated after a cycle

of four applications of the trace map, i.e. (t8, x7, x6)|ω=ωC3
= (0, 0, 2). By repeating the

argument, we can write

t8 ≈ η8δω, x7 ≈ γ7δω and x6 ≈ 2− ζ6δω
2
, (32)

where

η8 ≈ κη4 and γ7 ≈ κγ3, (33)
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and the overbar has been added to the independent variable because we need to consider

a scaled domain. Our goal is to find the connection between ζ2 and ζ6 through the factor

κ. In particular, note that in analogy to the case illustrated in Fig. 6a), x7 (resp. t8)

matches x3 (resp. t4) if δω = δω/κ. Therefore, we can again consider eq. (30) and

substitute the terms of the r.h.s. with those expressed as a function of δω, i.e.

δω2 = (η8δω)2 + (γ7δω)2 − 4ζ6δω
2 − 2η8γ7δω

2
. (34)

Updating the l.h.s. of eq. (34) using δω = κδω and employing (33) yields

κ2[(η4 − γ3)2 − 1]/4 = ζ6, (35)

which transforms to κ2ζ2 = ζ6 with the help of eq. (31). Therefore, we have proofed

our conjecture; κ enters as a square as it is associated with a second-order term in the

Taylor expansion. Note that for the parameters selected in Fig. 7a), ζ6 = 8867.11 and

ζ2 = 7.778 whose ratio has square root equal to 33.76, a value very close to κ.

In Fig. 7b), the neighbourhood of ω̄ = 2π is analysed. As at this frequency a 4-point

periodic orbit takes place, trace x6(ω) and the scaled one x2(ω/κ) are sketched where

κ = 33.971 is still the scaling factor obtained from the linearisation of the trace map.

Fig. 8 illustrates the effectiveness of the presented method to explain scaling by

sketching the plots of the functions of four scaled traces (x3 to x6, the represented domain

is that of the function x3(ω)) at the origin (ω = 0) where a fixed-point orbit is present

(see case i) in Sect. 3.2). The scaling factor is now κ = σs.

5 Conclusions

Periodic quasicrystalline-based phononic waveguides can be studied as a collection of ele-

mentary cells whose frequency spectra are connected through a function, the Kohmoto’s

invariant, that is an invariant of the set and depends only on the wave frequency. A typical

expression of this close connection is the self similarity of spectra in the neighbourhood of

specific frequencies. It has been shown by the Authors in an earlier paper [24] that for a

notable quasicrystalline sequence, i.e. the standard, or golden-mean Fibonacci sequence,

there exist special configurations of the elementary cells, called canonical configurations,

that display periodic frequency spectra.

The goal of this paper is to study the existence of similar canonical arrangementd

for silver-mean Fibonacci phononic waveguides that are based on one of the possible

generalisation of the standard Fibonacci chain. We give a positive answer to the initial

objective and the outcomes of the present research can be listed as follows:

� the dispersive properties of harmonic axial waves in SM rods are fully determined

by studying the variation of the traces of the transmission matrices as a function
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of the angular frequency. For any value of the frequency, the traces corresponding

to three arbitrary subsequent elementary cells are related through a recursive rela-

tionship that is different from that ruling standard, or golden-mean, structures [17],

but characterised by the same Kohmoto’s invariant. This allows us to represent

geometrically the traces as coordinates of points which describe orbits on the 3D

surface defined by the invariant;

� similarly to the standard Fibonacci sequence, for SM rods three families of canon-

ical configurations can be defined, each of them associated with a specific rational

value of the quantity C = lB/lA
√
QB/QA. Canonical SM rods display a periodic

frequency spectra, however, as distinct from the case addressed by Gei et al. [24],

at the canonical frequency, Family no. 1 displays a two-point periodic orbit on the

Kohmoto’s surface, whereas for Families no. 2 and 3 periodic orbits involve four

saddle points;

� in general, there exist some frequencies at which additional periodic orbits are

present. For all these frequencies ω̂, the Kohmoto’s invariant vanishes (i.e. I(ω̂) =

0). This could be detected in several cases depending on the value of the ratio C
which determines the modulation of the invariant with respect to ω. The follow-

ing two universal cases are found: (i) at ω = 0, 4ωCr , where ωCr is the canonical

frequency, a fixed-point exist; (ii) at ω = 2ωCr , a two-point periodic orbit occurs;

� a self-similar layout of the stop-/pass-band diagram is observed for canonical SM

rods. Analytical scaling factors capturing this pattern are derived through the

linearisation of the trace map about the relevant periodic orbits. Depending on the

number of points p composing the orbits, portions of the spectra corresponding to

elementary cells of the order i and i + p are related by means of these factors. A

detailed analysis of the frequency ranges where the scaling is effective is performed;

� we finally propose a different way to represent the sequence of pass bands and

stop bands by following the trajectories of points at varying frequency on a 2D

projection of the Kohmoto’s surface.

The exceptional self-similar properties of the spectrum of two-phase canonical silver-

mean rods here illustrated could be applied to realise phononic waveguides possessing stop

and pass bands of tunable width centered at a selected frequency. The filtering properties

of these devices can be predicted and optimised by means of the novel analytical approach

introduced in the paper.

Acknowledgements. AKMF acknowledges support from Embassy of Lybia (ref.

18



no. 13556). LM acknowledges support from Cardiff University. MG is grateful to the

support provided by University of Trieste through grant FRA2021 ‘NEO-PHONON’.

References

[1] M. Brun, S. Guenneau, A. B. Movchan, and D. Bigoni. Dynamics of structural

interfaces: filtering and focussing effects for elastic waves. J. Mech. Phys. Solids,

58:1212–1224, 2010.

[2] G. Shmuel and R. Band. Universality of the frequency spectrum of laminates. J.

Mech. Phys. Solids, 92:127–136, 2016.

[3] G. Trainiti, Y. Xia, J. Marconi, G. Cazzulani, A. Erturk, and M. Ruzzene. Time-

periodic stiffness modulation in elastic metamaterials for selective wave filtering:

Theory and experiment. Phys. Rev. Lett., 122:124301, 2019.

[4] S. Tol, F. L. Degertekin, and A. Erturk. Structurally embedded reflectors and mirrors

for elastic wave focusing and energy harvesting. J. Appl. Phys., 122:164503, 2017.

[5] T. P. Waters. A chirp excitation for focussing flexural waves. J. Sound Vibr.,

439:113–128, 2019.

[6] A.N. Norris. Acoustic cloaking theory. Proc. Roy. Soc. A, 464(2097):2411–2434,

2008.

[7] M. Brun, S. Guenneau, and A. B. Movchan. Achieving control of in-plane elastic

waves. Appl. Phys. Lett., 94:061903, 2009.

[8] A. Srivastava. Metamaterial properties of periodic laminates. J. Mech. Phys. Solids,

96:252–263, 2016.

[9] J. R. Willis. Negative refraction in a laminate. J. Mech. Phys. Solids, 97:10–18,

2016.

[10] L. Morini, Y. Eyzat, and M. Gei. Negative refraction in quasicrystalline multilayered

metamaterials. J. Mech. Phys. Solids, 124:282–298, 2019.

[11] E. Riva, M. Di Ronco, A. Elabd, G. Cazzulani, and F. Braghin. Non-reciprocal

wave propagation in discretely modulated spatiotemporal plates. J. Sound Vibr.,

471:115186, 2020.

[12] Z.-N. Li, Y.-Z. Wang, and Y.-S. Wang. Tunable mechanical diode of nonlinear elastic

metamaterials induced by imperfect interface. Proc. R. Soc. A, 477:20200357, 2020.

19



[13] M. Gei. Wave propagation in quasiperiodic structures, stop/pass band distribution

and prestress effects. Int. J. Solids Struct., 47:3067–3075, 2010.

[14] V. S. Sorokin. Longitudinal wave propagation in a one-dimensional quasi-periodic

waveguide. Proc. R. Soc. A, 475:20190392, 2019.

[15] R. K. Pal, M. I. N. Rosa, and M. Ruzzene. Topological bands and localized vibration

modes in quasiperiodic beams. New J. Phys., 21:093017, 2019.

[16] Y. Xia, A. Erturk, and M. Ruzzene. Topological edge states in quasiperiodic locally

resonant metastructures. Phys. Rev. Appl., 13:014023, 2020.

[17] L. Morini and M. Gei. Waves in one-dimensional quasicrystalline structures: dy-

namical trace mapping, scaling and self-similarity of the spectrum. J. Mech. Phys.

Solids, 119:83–103, 2018.

[18] L. Morini, Z. G. Tetik, G. Shmuel, and M. Gei. On the universality of the frequency

spectrum and band-gap optimization of quasicrystalline-generated structured rods.

Phil. Trans. R. Soc. A, 378:20190240, 2019.

[19] A.N. Poddubny and E.L. Ivchenko. Photonic quasicrystalline and aperiodic struc-

tures. Physica E, 43:1871–1895, 2010.

[20] H.-F. Zhang. Investigations on the two-dimensional aperiodic plasma photonic crys-

tals with fractal Fibonacci sequence. AIP Advances, 7:075102, 2017.

[21] M. Kohmoto and Y. Oono. Cantor spectrum for an almost periodic Schroedinger

equation and a dynamical map. Phys. Lett., 102A:145–148, 1984.

[22] M. Holzer. Nonlinear dynamics and localization in a class of one-dimensional qua-

sicrystals. Phys. Rev. B, 38:5756–5760, 1988.

[23] M. Kolar and M.K. Ali. Generalized Fibonacci superlattices, dynamical trace maps,

and magnetic excitations. Phys. Rev. B, 39:426–432, 1989.

[24] M. Gei, Z. Chen, F. Bosi, and L. Morini. Phononic canonical quasicrystalline waveg-

uides. Appl. Phys. Lett., 116:241903, 2020.

[25] M. Kolar. New class of one dimensional quasicrystals. Phys. Rev. B, 47:5498–5492,

1993.

[26] W. Steurer. Twenty years of structure research on quasicrystals. Part I. Pentagonal,

octagonal, decagonal and dodecagonal quasicrystals. Acta Crystals, 219:391–446,

2004.

20



[27] W. Steurer and S. Deloudi. Fascinating quasicrystals. Acta Crystals, A64:1–11,

2008.

[28] J. Lekner. Light in periodically stratified media. J. Opt. Soc. Am. A, 11:2892–2899,

1994.

[29] F. Romeo and A. Luongo. Invariant representation of propagation properties for

bi-coupled periodic structures. Journal of Sound and Vibration, 257:869–886, 2002.

[30] G. Carta and M. Brun. Bloch–Floquet waves in flexural systems with continuous

and discrete elements. Mechanics of Materials, 87:11–26, 2015.

21


