
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/146505/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chen, Changjian, Wu, Jing , Wang, Xiaohan, Xiang, Shouxing, Zhang, Song-Hai, Tang, Qifeng and Liu,
Shixia 2022. Towards better caption supervision for object detection. IEEE Transactions on Visualization

and Computer Graphics 28 (4) , pp. 1941-1954. 10.1109/TVCG.2021.3138933 

Publishers page: http://dx.doi.org/10.1109/TVCG.2021.3138933 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



1

Towards Better Caption Supervision
for Object Detection

Changjian Chen, Jing Wu, Xiaohan Wang, Shouxing Xiang, Song-Hai Zhang, Qifeng Tang, Shixia Liu
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Fig. 1. MutualDetector: (a) a node-link-based set visualization consists of a tree of labels ( 1©), the relationships between the
labels and image clusters ( 2©), and a matrix ( 3©) to show the representative images with the detected objects for each cluster; (b)
an information panel to show important words, captions, and selected images.

Abstract—As training high-performance object detectors requires expensive bounding box annotations, recent methods resort to free-
available image captions. However, detectors trained on caption supervision perform poorly because captions are usually noisy and cannot
provide precise location information. To tackle this issue, we present a visual analysis method, which tightly integrates caption supervision
with object detection to mutually enhance each other. In particular, object labels are first extracted from captions, which are utilized to train
the detectors. Then, the label information from images is fed into caption supervision for further improvement. To effectively loop users into
the object detection process, a node-link-based set visualization supported by a multi-type relational co-clustering algorithm is developed
to explain the relationships between the extracted labels and the images with detected objects. The co-clustering algorithm clusters labels
and images simultaneously by utilizing both their representations and their relationships. Quantitative evaluations and a case study are
conducted to demonstrate the efficiency and effectiveness of the developed method in improving the performance of object detectors.

Index Terms—Machine learning, interactive visualization, object detection, caption supervision, co-clustering.

F

1 INTRODUCTION

Object detection is to localize and classify objects from images. It
is a fundamental problem in computer vision [1], [2] and is widely
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used in many real-world applications [3], such as self-driving cars,
augmented reality, and object tracking. With the rapid development
of deep neural networks, there has been significant progress in the
accuracy and efficiency of object detection methods [3]. However,
the training process requires a large number of annotations,
including the bounding box annotations and labels of all the
objects in images [3], which are expensive to acquire. As a result,
researchers turn to other cheaper or free annotations [4], [5]. For
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example, web users often provide descriptions (i.e., alt-texts or
captions) about the images that they upload to social media. These
image captions provide hints about the objects in these images and
thus can be utilized for training [5].

There have been some methods to utilize image captions for
training object detectors (e.g., Cap2Det [5]). With such methods,
the training is carried out in two steps. First, a natural language
processing (NLP) model is trained to extract object labels from
the captions. These labels are then used as supervision to train
a detector. Although these methods can leverage image captions
to train detectors, the performance is not satisfactory due to two
reasons. First, the captions are usually non-exhaustive. They
usually only describe the content of interest but ignore other
content in the images. For example, the caption in Fig. 2 only
focuses on the horse, without mentioning the people and the van
behind. As a result, such non-exhaustive captions do not provide
enough supervision for detecting all the objects in the images.
Second, captions are image-level descriptions and do not provide
object-level locations. It is usually hard to obtain high-performance
detectors without object-level location annotations [6].

To improve the performance of detectors with caption super-
vision, an intuitive way is to introduce a small number of images
with bounding box annotations into the training data. Such a
small number of annotated images are more labor-efficient to
collect compared to annotating all images. Moreover, humans
can be involved in the analysis process to provide validation.
For example, humans can provide missing labels or validate
uncertain bounding boxes. The validation can then be added to the
training data for further improving the detectors. However, there
are still challenges. The first challenge is how to combine the small
number of annotated images with captions to build an effective
object detector. To the best of our knowledge, this has not been
investigated by existing methods. Second, humans have to explore
all the extracted labels, images with detected objects, and their
relationships to identify important data for validation, especially
those that can bring a relatively large gain. This process is time-
consuming and labor-intensive. Thus, a tool to facilitate efficient
exploration is needed. Third, existing methods only leverage the
extracted labels to improve object detection, but not the other way
around. Generally, label extraction and object detection are not
independent but mutually influence each other. With such mutual
influence, if one of them is improved via user validation, the other
can also be improved. Thus, it is necessary to study how this mutual
enhancement works.

In this paper, we develop MutualDetector, a visual analysis tool,
to help machine learning experts and practitioners 1) explore ex-
tracted labels, images with detected objects, and their relationships;
2) provide missing labels and validate uncertain bounding boxes to
improve the model performance. With MutualDetector, the users
do not need to have much knowledge on the underlying model.
Specifically, our tool starts from images with captions. A small
part (e.g., 5%) of these images are annotated with bounding boxes
to balance the labeling cost and model performance. To effectively
utilize both the captions and bounding box annotations, we develop
a semi-supervised object detection method to train a label extractor
and an object detector. The labels extracted from captions and the
objects detected from images are then visualized to facilitate the
exploration and validation. Since one label may appear in multiple
images and one image may contain multiple labels, the relationships
between the labels and images with detected objects can be modeled
as a many-to-many set relationship. We thus develop a node-link-

“One horse getting a well earned cool 
downafter the hot conditions on the first 
day of the Swan River Horse Trials.”

Fig. 2. The associated caption describes the horse but ignores the
people and van in the image. Such a caption does not provide
enough supervision for training an object detector.

based set visualization as the core of MutualDetector. Since the
numbers of labels and images are large, to address the scalability
issue, we cluster the labels and images simultaneously, which is
formulated as a multi-type relational co-clustering problem [7].
With the help of interactive visualization, the users can explore the
relationships between the extracted labels and images with detected
objects, and then provide validation for them. The validation can be
utilized by the developed semi-supervised object detection method
to improve the label extractor and object detector and enhance each
other. The developed object detection method and the interactive
visualization are tightly integrated to support a human-in-the-loop
validation pipeline for improving object detection. Experiments are
conducted to quantitatively evaluate the developed semi-supervised
object detection method. A case study on the COCO17 dataset [8]
shows the effectiveness of MutualDetector. The demo is available
at: http://mutual-detector.thuvis.org/.

In summary, the main contributions of this work are:
• A semi-supervised object detection method that utilizes

both the captions and a small number of bounding box
annotations to improve the detection performance.

• A node-link-based set visualization supported by a multi-
type relational co-clustering algorithm to explain the rela-
tionships between extracted labels and images with detected
objects.

• A visual analysis tool that tightly integrates the object
detection method and interactive visualization to facilitate
the exploration and validation of labels and object bounding
boxes. This tool loops humans into the object detection process
to improve the detection performance.

2 RELATED WORK

Our work relates to semi-supervised object detection and visualiza-
tion work for annotation quality improvement. This section reviews
the related work and contrasts our contributions.

2.1 Semi-Supervised Object Detection

There are two types of semi-supervised object detection methods:
self-training methods and consistency regularization methods. Self-
training methods first train a detector with the annotated images,
which is then used to detect objects in all images. Some detected
objects are treated as annotations to retrain the detector. The key
for this type of method is how to select detected objects for
training. Kumar et al. [9] used a simple strategy that detected
objects with high confidence are selected as annotations. Wang et
al. [10] selected the detected objects that could also be detected
when being patched into other images. Although self-training
methods are effective, they need to be repeated many times,
which is time-consuming. Unlike self-training methods, consistency

http://mutual-detector.thuvis.org/
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regularization methods add a robustness constraint between each
unlabeled image and its perturbed version, which only needs to train
the detector once. For example, Jeong et al. [11] developed CSD-
SSD based on the widely used annotation-based object detection
method, SSD [12]. It ensures that the detector is robust to given
perturbed inputs.

The aforementioned semi-supervised methods ignore the cap-
tions of images, which can further improve the performance. Some
recent work has been proposed to train detectors with captions. For
example, Cap2Det [5] trains the object detector by utilizing the
labels extracted by an NLP model. Cap2Det sufficiently utilizes
captions to train detectors. However, it does not utilize object
bounding box annotations to improve the detection performance.
Compared with it, our method tightly integrates both captions and a
small number of bounding box annotations for better performance.

2.2 Visualization for Annotation Quality Improvement

Based on whether there are noisy annotations or insufficient
annotations, existing visualization work for annotation quality
improvement can be classified into two categories: improving the
quality of noisy annotations and interactive labeling [13].

Improving the quality of noisy annotations. To improve the
quality of crowdsourced labels, Park et al. [14] developed a
visual analysis platform, C2A, to help detect anomalies and build
a consensus on crowdsourced labels. LabelInspect [15] allows
experts to interactively verify uncertain labels and unreliable
workers in an iterative and progressive procedure. In practice,
some datasets, such as ImageNet [16], do not contain crowd
information. To handle label noise in such datasets, Xiang et
al. [17] tightly integrated a scalable trusted-item-based correction
algorithm with an incremental t-SNE algorithm to support an
iterative refinement procedure. Bäuerle et al. [18] proposed three
error detection measures, class interpretation error score, instance
interpretation error score, and similarity error score, and leveraged
them to correct label errors.

Interactive labeling. Moehrmann et al. [19] used a self-
organizing map to place similar images close to each other and
facilitate users in labeling multiple images at the same time. Such
a similarity-based strategy is also employed for labeling social
spambot groups [20] and errors in electrical engines [21]. In
addition to the similarity-based strategy, filtering and sorting are
also used to facilitate the labeling process [22], [23]. Moreover,
there are some efforts that integrate interactive visualization
with active learning methods. Höferlin et al. [24] introduced
the concept of “intra-active learning.” Users can label instances
recommended by an active learning algorithm or select informative
instances to label with the help of visualization, which are used to
further improve the underlying model. Such an integration is also
substantiated by other work [25], [26], [27], [28], [29], [30], [31].

Different from the above methods that focus on classification,
our work focuses on object detection. A recent work, VATLD [32],
combines disentangled representation learning and semantic ad-
versarial learning to help understand the object detection method
and resolve data quality issues, such as mislabeled data. However,
VATLD requires the bounding box annotations for each training
data, which is not applicable for an image set with a small number
of bounding box annotations. To improve the performance of object
detectors trained on images and their captions, the relationships
between labels extracted from captions and images with detected

objects need to be analyzed. To this end, we developed a node-
link-based set visualization supported by a multi-type relational co-
clustering algorithm. It allows users to analyze the extracted labels,
images with detected objects, and their relationships. Based on the
analysis, they provide validation to improve model performance.

3 DESIGN OF MUTUALDETECTOR

This section presents the requirements and system overview of
MutualDetector.

3.1 Requirement Analysis
The development of MutualDetector was in collaboration with
two groups of machine learning experts who are not co-authors
of this work. The first group consists of two Ph.D. students (E1
and E2) who have won the first place in the CVPR 2020 EPIC-
Kitchens Action Recognition Competition [33]. Object detection
is a key component in this competition. The videos used in the
competition have many frames with subtitles, and thus contain a
large number of images with captions. The second group includes
a professor (E3), a post-doctor (E4), and two Ph.D. students. They
have collaborated with two hospitals and developed models for
disease detection from computed tomography (CT) images. Each
CT image is associated with a textual diagnosis report. Both groups
used Cap2Det [5], a state-of-the-art method for training object
detectors based on image captions. However, the performance
was not satisfactory. There were incorrect labels extracted from
the captions and imprecise detected objects. They would like to
provide validation to improve the performance. However, due to
the large number of labels and objects, the manual validation is
tedious and time-consuming. Therefore, the experts desired a tool
to efficiently validate the extracted labels and detected objects.

To identify the requirements for the tool, we conducted four
semi-structured interviews with the experts from the two groups.
Based on the interviews, we derived the following requirements.

R1 - Combine captions and annotations to train an object
detector. In many object detection applications, images have cap-
tions, and a small number of them have bounding box annotations.
The experts agreed that effectively integrating the annotations and
captions provided more supervision for learning and thus could
boost the detection performance. For example, E3 said that they had
asked doctors to annotate some CT images. But existing methods
only utilize either annotations or captions, not the combination,
which limits the detection performance. Thus, a seamless combi-
nation of them is required to build an effective object detector.

R2 - Understand the matching relationships between the
extracted labels and images with detected objects. As
captions are descriptions of the images, the labels extracted
from captions and detected from images should be consistent [5].
However, due to the noisy nature of captions and unsatisfactory
detection results, mismatches often exist. This is where user
validation is required. However, when the dataset is large, exploring
the mismatches is challenging. Thus, the experts expressed the
need for an effective tool to understand such matching.

R3 - Examine the extracted labels in the context of captions.
All the experts agreed that the non-exhaustive nature of captions
is the main reason for the unsatisfactory extraction of labels, such
as the failed extraction of label “van” and “person” in the example
in Fig. 2. To effectively improve the extracted labels, they need
to identify which labels are missing or incorrect in the context
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Fig. 3. MutualDetector pipeline: (a) starting from images with captions and a small number of bounding box annotations; (b) training a la-
bel extractor and an object detector; (c) simultaneously clustering extracted labels and images, and analyzing extracted labels, images with
detected objects, and their relationships; (d) validating the results to improve the performance of both the label extractor and object detector.

of captions. E1 commented, “I want to know which words are
important for the extraction of a certain label. If the important
words do not make sense, then I can directly remove them from
the captions and retrain the label extractor. ”

R4 - Explore the images and their detected objects at
different levels of detail. All the experts expressed the desire to
quickly explore the overall distribution of images for identifying
the images with poor detection results, such as images whose
detected objects are mismatched with the extracted labels. Then
they wanted to examine the regions with these images at different
levels of detail to understand the poor performance. For example,
E2 said, “I hope I can check only a few representative images to
have an overview of the performance first and then zoom from
the overview to the regions of interest at different granularities.”

R5 - Mutually improve the performance of the label extrac-
tor and object detector. In current practice, the extracted labels
are used as supervision to train the object detector, but are not
affected by the object detector. The relationships between the
label extractor and the object detector are bidirectional. On the
one hand, the labels extracted by the label extractor can serve as
supervision for training the object detector. On the other hand,
the objects detected by the object detector can compensate for
the deficiency of non-exhaustive captions and improve the label
extractor. The mutual influence between the label extractor and
object detector can boost their performance more effectively. E3
commented, “Such a mutual influence is very useful to achieve
better model performance, especially when a little amount of user
validation is provided. For example, when some detected objects
are validated to improve the object detector, the label extractor can
also be improved. The improved label extractor further boosts the
performance of the object detector (and vice versa).”

3.2 System Overview

Guided by these requirements, we developed MutualDetector to
interactively improve the performance of object detection based
on the combination of captions and annotations (R1). As shown
in Fig. 3, MutualDetector contains two main modules: object
detection (Sec. 4) and visualization (Sec. 5).

The object detection module (Fig. 3(b)) takes as input images
with captions and a small number of bounding box annotations
and trains a label extractor and an object detector. The extractor
is used to extract labels and their representations, and the detector
is employed to detect objects and learn image representations. In
the visualization module (Fig. 3(c)), to facilitate the exploration of
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Fig. 4. The two steps in the developed semi-supervised object
detection method: (a) training the label extractor using the labels
and captions of the annotated images (purple); (b) training an
object detector using the labels extracted from captions and the
bounding box annotations from images (blue).

these results, a multi-type relational co-clustering algorithm [7] is
applied to cluster labels and images simultaneously. The clustering
results are then fed into the tree view and matrix view for exploring
the extracted labels (R3), images with detected objects (R4), and
the matching relationships between them (R2). During exploration,
users can validate the extracted labels and detected objects. The
validation is then used to mutually improve the label extractor and
object detector (R5).

4 SEMI-SUPERVISED OBJECT DETECTION

The major goal of the developed semi-supervised object detection
method is to train an object detector utilizing image captions and
a small number of bounding box annotations (R1). For annotated
images, the detected objects should be consistent with their
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bounding box annotations, including both locations and labels,
while for images with captions, labels of the detected objects
should be consistent with those extracted from their captions.
However, the object detector easily overfits to the noise in captions
if trained with these two constraints only. The previous study [34]
has shown that the robustness constraint is effective in reducing
such overfitting by ensuring that the detector is robust to given
perturbed inputs. Thus, we add this constraint to reduce overfitting.
To satisfy these three constraints, as shown in Fig. 4, our method
consists of two steps: 1) training the label extractor using the labels
and captions of the annotated images (purple), and 2) training
the object detector using both the labels extracted from captions
and the bounding boxes annotated in images (blue).

Label extractor. Similar to Cap2Det [5], the label extractor is
obtained by fine-tuning a word embedding model, GloVe [35],
followed by two fully connected layers. Other NLP models, such
as BERT [36], can also be employed directly. The captions of the
small number of annotated images and the labels of their annotated
bounding boxes are used for fine-tuning. As only the parameters
of the fully connected layers will be trained, such an amount of
data is enough for training. After that, for images with captions,
the trained extractor is applied to extract labels from their captions.

Object detector. The developed object detector is based on
SSD [12], which works well to satisfy the bounding box consistency
constraint of the annotated images. Given the extracted labels and
the small number of annotated images, our method extends the loss
function of SSD with a second term satisfying the label consistency
constraint and a third term satisfying the robustness constraint.

Lfine +α1Lcoarse +α2Lrobust. (1)

The first term Lfine is the MultiBox loss of SSD, which
ensures the detected objects of the annotated images to be consistent
with the bounding box annotations (Fig. 4C), including both
locations and labels. If another object detection neural network,
such as YOLO [1] and Faster-RCNN [2], is employed, its loss
function can be directly applied here.

The second term Lcoarse is the label consistency constraint
applied to images with captions. It enforces that the detected objects
in an image must be consistent with the labels extracted from its
captions (Fig. 4A). Here the widely used cross-entropy loss is
employed to measure their difference.

The third term Lrobust is the robustness constraint to ensure
the detector to be robust to given perturbed inputs. It can well
reduce overfitting to noisy captions. As a result, we apply this
constraint to the images with captions. The idea is that if one image
is perturbed, the detected objects in the perturbed image and in
the original image should be consistent, while the detected object
locations in them should be corresponding to the perturbation. For
example, the detected object locations in a horizontally flipped
image and the original image should be symmetrical in the
horizontal direction (Fig. 4B). The original robustness constraint
proposed in [11] is applied to all detected objects in one image,
which includes falsely detected ones whose labels are not described
in its caption. Such falsely detected objects can be the majority of
detection and dominate the calculation of the third term, especially
when the detector performance is poor at the beginning of training.
Therefore, we modify the original robustness constraint by only
applying this constraint to the detected objects whose labels are
extracted from the captions. In our implementation, the widely used
horizontal flip is employed to perturb the images, which illustrates

the basic idea. Other perturbations, such as rotations, can also be
included to improve the performance [37]. Following [11], Jensen-
Shannon divergence and L2 loss are respectively used to measure
the difference of labels and the difference of locations.

α1 and α2 are two weights to balance the three terms. In our
implementation, α1 is set according to the sizes of datasets. We
set α1 to be 1 for datasets with less than 50,000 images and 2 for
datasets with more than 50,000 images. α2 is set to be 1, following
the same setting in [11]. The detailed formulations of the three
terms can be found in supplemental material.

5 MUTUALDETECTOR VISUALIZATION

The output results of the object detection method, including labels,
images with detected objects, and their relationships, can be
modeled as a many-to-many set relationship. To better understand
such results, we first utilize the multi-type relational co-clustering
algorithm for efficiently handling the large numbers of labels
and images. Then with the clustering result, a set visualization
is developed to illustrate the clustering results and facilitate the
analysis and validation. Finally, an interactive improvement process
based on user validation is introduced.

5.1 Multi-type Relational Co-clustering

To facilitate the exploration of the large numbers of labels and
images, we hierarchically cluster them such that 1) similar labels
(images) are clustered together; 2) labels that are matched with
similar images are clustered together and vice versa. This can
be formulated as multi-type relational co-clustering [7], which
simultaneously clusters the labels and images by taking into account
both their representations and relationships. Such clustering results
enable users to efficiently identify label and image cluster pairs
with many label-image mismatches.

Algorithm overview. Multi-type relational co-clustering utilizes
both representation and relationship information for simultaneously
clustering labels and images. It ensures the compactness of label
and image clusters in their representation space and allows their
clustering results to influence each other through their relationships,
which is achieved by minimizing the following cost function:

‖M−DCS(DI)T‖2+β1‖XC−DCFC‖2+β2‖X I−DIF I‖2. (2)

The first term ensures matched labels and images to be in the
same co-clusters. The second and third terms ensure that labels
(images) are close to their cluster centers. Here, XC and X I are
the representations of labels and images, respectively. Each row
of XC (X I) represents a representation vector of a label (image).
Label representations are extracted using a word embedding
method, GloVe [35], fine-tuned on the captions [38], and image
representations are extracted using the detector [39], [40], [41]
described in Sec. 4. M is the relationship matrix between labels
and images. Mi j = 1 indicates that the i-th label is detected from
the j-th image and extracted from its caption as well; otherwise
Mi j = 0. DC (DI) denotes the clustering result of labels (images).
DC

i j = 1 (DI
i j = 1) indicates that the i-th label (image) belongs

to the j-th cluster. FC (F I) denotes the cluster centers of labels
(images) in the representation space. S is the cluster association
matrix, where Spq is the mean of the co-cluster between the p-th
label cluster and q-th image cluster. β1 and β2 are two weights
to balance the three terms. In our tool, we set both of them to be 1.
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To facilitate the exploration of large image sets with many
labels, we repeatedly apply the above co-clustering to build the
label and image hierarchies in a top-down manner. Here we take
the label as an example to illustrate the basic idea. To get the
sub-clustering result of a label cluster, we fix the image clustering
result and apply the above co-clustering to the labels in this label
cluster. This process repeats until the number of labels in a cluster
is smaller than a threshold.
Determining the number of clusters. A widely used method to
determine the number of clusters is to evaluate the results with dif-
ferent numbers of clusters, and then choose the one with the best re-
sult [42]. The key to this method is the choice of the evaluation mea-
sures. As multi-type relational co-clustering considers both repre-
sentation and relationship information, we thus combine two widely
used measures, the coefficient of variance (CV) [43] and sum of
squared distance (SSE) [44], to evaluate the clustering results:

CV−λ1SSEI−λ2SSEC, (3)

where CV measures the relationship difference between co-clusters.
Intuitively, the larger difference between co-clusters, the better
the clustering result. SSE evaluates clustering compactness in
the representation space. The smaller SSE, the more compact the
clustering result. SSEI and SSEC are the SSE of the image and label
clusters, respectively. λ1 and λ2 are two weights to balance these
three terms and are both set to be 1 in our tool. The numbers of label
clusters and image clusters are then determined by a grid search.

5.2 Set Visualization
All the experts we interviewed required to simultaneously explore
the labels, images with detected objects, and relationships between
them. A previous study has shown that the node-link-based set
visualization has the advantage to visually emphasize all of them
as individual objects [45]. As a result, we employ this visualization
in MutualDetector.

The node-link-based set visualization is shown in Fig. 1. Labels
are placed on the left side of the set visualization as a tree
(Fig. 1 1©). Images are placed on the right side as a matrix (Fig. 1 3©).
Links between them represent their relationships (Fig. 1 2©). An
information panel (Fig. 1(b)) is provided to help examine the
details of the extracted labels and detected objects. To further
assist exploration, a set of rich interactions, such as zooming and
link highlighting [46], are provided. For example, users can select
one row to zoom in for analyzing more images in a grid layout
(Fig. 5(a)).

5.2.1 Visualization of Labels
To support the exploration of labels, the label hierarchy is shown as
an indented tree (Fig. 1 1©), inspired by the Windows File Explorer.
Each rectangle represents one node in the hierarchy. Intermediate
nodes are with glyphs ( for collapsed nodes and for expanded
nodes) in front, and leaf nodes are without glyphs. The heights of
the violet and blue bars in each node represent the precision and
recall of the corresponding label calculated on annotated images.
The precision and recall of an intermediate node are the averages
over its descendants. The label hierarchy can be modified in the
visualization by dragging and dropping if it is not satisfactory.
Improving the readability of the label hierarchy. As
intermediate nodes in the label hierarchy have no labels to
summarize their content, labels are automatically extracted for
them based on a knowledge graph (e.g., Wikipedia [47]). For each
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Fig. 5. (a) The grid layout of a selected image cluster; (b) region C
after zooming in; (c) a sub-region in (b); (d) a selected image in (c).

intermediate node, all of its descendants are first matched with
entities in the knowledge graph. Then we find the lowest common
ancestor of these matched entities in the knowledge graph and
assign its label to the intermediate node. When an intermediate
node has only two descendants, we use “&” to connect labels of
its descendants, which serves as the label of this intermediate node.
The labels generated by this rule are more readable with a suitable
length. We also allow users to edit their labels in the visualization
if the automatically extracted labels are not satisfactory.

Tree cut. Due to the space limitation, it is difficult to display all
labels simultaneously. Therefore, we use a tree cut algorithm [48]
to select the part in the hierarchy that users are interested in. The
other nodes are either collapsed or stacked (Fig. 1B). For each node
x in the hierarchy, its “Degree of Interest” is calculated by

DOI(x|y) = API(x)−Distance(x,y) (4)

where Distance(x,y) is the tree-distance between node x and the
focus node y that is currently selected by users. API(x) is the apriori
importance of x. It can be set using the check box in Fig. 1A, either
as the correctness score or mismatch score. The correctness score
is measured by the F1 measure (the harmonic mean of precision
and recall), which helps identify incorrectly extracted labels. We
use F1 measure rather than accuracy here because most labels are
imbalanced in object detection tasks [8]. The mismatch score of a
label is the sum of mismatches between all images and that label,
which helps identify the labels with many mismatches. Here, one
mismatch is counted when the label disagrees with the detected
objects in one image.

5.2.2 Visualization of Images
To support the exploration of images and their detected objects, a
matrix and a grid layout are used, which have shown their advantage
to support content-level analysis [49]. The highest level in the
image hierarchy is displayed as a matrix (Fig. 1 3©) to provide an
overview, where each row with ten representative images represents
one image cluster. Each row can be zoomed in for further analysis in
a grid layout (Fig. 5(a)). With the help of the grid layout, users can
explore all the images in one image cluster. If they are not satisfied
with one of the representative images, they can replace it by the
drag-and-drop operation. Links (Fig. 1 2©) between the indented
tree and matrix represent the matching relationships between label
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Labels with low precision and/or recall
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Fig. 6. A typical improvement process: 1) improving the label extractor (green); 2) improving the object detector (orange).

clusters and image clusters. A link of red dashed line indicates the
number of mismatches between an image cluster and a label cluster
is larger than a given threshold.
Representative image. To improve the readability of intermediate
nodes in the image hierarchy, we select several representative im-
ages for them. As analyzing mismatches is an essential requirement
of the experts (R2), we use a sampling method motivated by the
outlier-biased sampling method [50]. This method preserves the
overall distribution while prioritizing the sampling of the images
with larger mismatch scores. In particular, the sampling probability
of an image is 1/ρ +π . ρ is the density of the local region around
the image. Following the outlier-biased sampling method [50],
1/ρ is approximated by the radius of k-nearest neighbors. π is
the mismatch score of the image, which is the sum of mismatches
between its detected objects and extracted labels. The representative
images are sampled in a bottom-top manner. For each intermediate
node, its representative images are sampled from the representative
images of its children.
Image grid. When an image cluster with many mismatches is
identified, users can zoom in using in front of it to examine the
mismatched images and their detected objects in a grid layout. Each
cell in the grid layout represents an image. The locations of the cells
are determined by the kNN-based grid layout algorithm proposed
in [49], which first projects images on a 2D plane as scattered
points using t-SNE and then assigns these points to grid cells by
solving a linear assignment problem. This layout algorithm places
similar images together. Colors are used to indicate the matched
images (gray) and mismatched ones (red). If the selected image
cluster contains a large number of images, several representative
images are displayed first (Fig. 5(a)). These representative images
are selected in descending order of their mismatch scores, and their
content is displayed near the associated grid cells only when they
are not too close to previously displayed images. Users can zoom
in the regions with cells of interest and examine more relevant
images (Fig. 5(b)). If the sizes of the grid cells are large enough,
the image content is then displayed in the corresponding cells.

5.2.3 Information Panel
The information panel consists of two parts: a label panel (Fig. 6A)
and an image panel (Fig. 6B).

The label panel aims to show important words in captions.
Several word summary techniques, such as a word cloud and a list
can be used here. A previous study [51] has shown that although
a word cloud is not the optimal choice for judging proportions
between pairs of values encoded by word sizes, it makes words
with larger sizes easier to identify. Moreover, the word cloud

is compact in space. Therefore, we employ the word cloud in
this panel to show important words in captions, which are those
with high contributions to the extraction of a selected label. The
word size encodes its contribution. The contribution of a word is
estimated by the information-based measure [52]. This measure
adds a Gaussian noise to a word and observes the change of the
label extractor’s prediction on the selected label. A larger change
in the prediction means a larger contribution of this word to this
label. In our tool, the top 20 words whose contributions are higher
than 0.5 are displayed in the word cloud. Users can click a word
of interest to examine the associated captions, which are displayed
as a list below. The grey rectangles above each caption display
the labels extracted from this caption.

The image panel shows the selected image and the detected
objects in it. As shown in Fig. 6B, the green boxes in the image
indicate the locations of detected objects. The grey rectangle
above the image shows the label of a selected box. By default,
the detected objects with confidence higher than 0.5 are displayed.
Users can use the confidence threshold filter above the image to
examine the detected objects with different confidence. In this
panel, users can modify incorrect detection results, including both
the locations and labels of detected objects, or add bounding boxes
for undetected objects.

5.3 Mutual Improvement via Interactive Validation
Fig. 6 shows a typical process of how MutualDetector mutually
improves the extractor and detector based on user validation. First,
the detected objects are used to improve the label extractor. And
then, the extracted labels are used to improve the performance of
the object detector. Accordingly, this process contains two parts:
improving 1) the label extractor and 2) the object detector.
Improving the label extractor. The label extractor can be
improved by removing abnormal words with high contributions
and adding the objects that are not described in the captions (the
green part in Fig. 6). The users first focus on identifying abnormal
words with high contributions. By examining extracted labels in
the tree layout, they find the labels with low precision and/or low
recall. By analyzing the word contributions to these labels, the
users identify abnormal words with high contributions and remove
these words for the extraction of these labels. To remove a word
for the extraction of a specific label, they select the word in the
word cloud and click the in the top-right corner.

After removing the abnormal words, the users continue to
find the objects presented in the images but not described in
the captions. Then the image representations of these objects are
extracted and added to the input for retraining the label extractor.
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This compensates for the missing objects in those non-exhaustive
captions. Usually, the labels of uncommon objects, such as “giraffe,”
are unlikely to be ignored in captions. The labels that tend to be
ignored often refer to small and common objects, such as “cup.”
The recall of these easily ignored labels is often low. With this
prior knowledge, the users can select the easily ignored objects and
click in Fig. 1A to add them.

Improving the object detector. The labels extracted from the
label extractor are then added to the input for training the object
detector. After training, the users can improve the object detector
at the global and local levels (the orange part in Fig. 6). They
start by checking mismatches between the labels and images. If
there is a significant number of red links (mismatches), they turn
to the image matrix to check the representative images in the
corresponding image clusters and find the root cause of such a
large number of mismatches. A typical problem of the detected
objects is that the labels are correctly extracted, but the objects
are detected with low confidence. It means that the constraint
enforcing the consistency between the detected objects and the
extracted labels is not strong enough. The users then improve the
detector by increasing the weight of the label consistency constraint
in the developed semi-supervised object detection method (global
level).

If the number of red links is small, the users turn to the grid
layout to explore local regions with mismatched images (local
level). During the local exploration, the users interactively modify
the incorrect detection results. As the amount of user validation is
small, we provide a validation propagation method. This method
is motivated by the self-training strategy, which is widely used to
augment training data [53], [54]. More specifically, if one bounding
box is validated, similar bounding boxes (N nearest neighbors)
whose confidence is higher than a threshold are added to the
training data. These bounding boxes are then used as seeds to find
more nearest bounding boxes. Empirically, we set N as 10, the
threshold as 0.9. After the propagation, the model is fine-tuned.
This process can be repeated several times until the detection results
are satisfactory (e.g., there are no red links).

6 EVALUATION

We performed an experiment to quantitatively evaluate the perfor-
mance of the developed semi-supervised object detection method.
A case study with experts E1 and E2 was conducted to indicate the
usefulness of MutualDetector.

6.1 Quantitative Evaluation on Object Detection
This experiment aims to evaluate the advantages of utilizing both
captions and a small number of bounding box annotations.

Datasets. Three popular datasets for object detection were em-
ployed for the evaluation. VOC07 [55] is used in the PASCAL
Visual Object Classes Challenge 2007. It contains 5,011 training
images and 4,952 test images, and the task is to detect 20 categories
of objects. VOC12 [55] is used in the PASCAL Visual Object
Classes Challenge 2012, whose task is the same as VOC07. It
consists of 11,540 training images. As the ground truth of its
test images are not available, a common practice is to use the
test images of VOC07 [2]. COCO17 [8] is used in the COCO
2017 Object Detection Task. 80 object categories are considered.
However, we noticed that small objects (less than 2,000 pixels)
were hard to be detected, even for humans. We thus removed the

TABLE 1. Performance comparison between our method and two
baselines in terms of mAP (in %) on three datasets.

# annotations 500 1,000 1,500 2,000 2,500
Ours 51.16 61.25 63.48 65.90 66.79

CSD-SSD 45.68 58.30 60.78 63.48 64.42
Cap2Det 48.52 (no annotations)

(a) VOC07

# annotations 500 1,000 1,500 2,000 2,500
Ours 52.27 58.74 63.41 65.06 67.68

CSD-SSD 44.08 52.68 59.27 62.59 65.07
Cap2Det 45.11 (no annotations)

(b) VOC12

# annotations 1,000 2,000 3,000 4,000 5,000
Ours 17.24 26.80 30.22 33.58 35.32

CSD-SSD 13.70 23.82 26.70 31.27 33.27
Cap2Det 23.44 (no annotations)

(c) COCO17

TABLE 2. Computation time (in hour) comparison between our
method and two baseline.

Dataset VOC07 VOC12 COCO17
# annotations 500 2,500 500 2,500 1,000 5,000

Ours 3.95 4.01 3.93 4.06 8.44 8.54
CSD-SSD 3.89 3.93 3.92 3.94 8.52 8.53

Cap2Det (no
annotations)

6.19 8.97 69.84

bounding box annotations of such small objects. Moreover, 15
categories with low occurrence frequency in the images (less than
2,000) were also removed. After cleaning, 65 categories, 112,297
training images, and 4,845 test images were obtained.

Experimental settings. We used CSD-SSD [11] and Cap2Det
as the baselines, which are the state-of-the-art semi-supervised and
caption-based object detection methods, respectively. Cap2Det
uses only captions for supervision, and CSD-SSD uses only the an-
notated images, while the developed method uses both of them. To
save the time and efforts of users to annotate the images for CSD-
SSD and the developed method, we randomly sampled images
and used their ground truth bounding box annotations for training.
For VOC07 and VOC12, we randomly sampled m images (m
∈ {500k, k = 1, ...,5}). For COCO17, as there are more object
categories, we randomly sampled more images (m ∈ {1,000k,
k = 1, ...,5}). For COCO17, labels were extracted from captions.
As VOC07 and VOC12 do not have captions, we used the ground
truth labels for supervision. For CSD-SSD, the parameters were set
as the same in the original papers [11]. For the developed method,
we followed [11], and set α1,α2 = 1 for VOC07 and VOC12, and
α1 = 2,α2 = 1 for COCO17. We did not fine-tune the parameters
of our method as it has performed well with these parameter
settings. We will show in the case study how to fine-tune the pa-
rameters to improve the performance with the help of visualization.

Results. We evaluated the performance of object detection by
the widely used measure, mAP [55]. The results are shown in
Table 1. Our method performs better than CSD-SSD in all three



9

datasets. Compared to Cap2Det, our method can achieve better
performance with only a small number of annotated images. The
results show that utilizing both captions and a small number of
annotated images can effectively improve the performance of object
detection (R1). We also evaluated the complexity of our method
and the two baselines. As it is hard to analyze the complexity
theoretically, we compare their computation time instead. The
experiments were run on a server with an Intel Xeon Silver 4214
CPU (2.20GHz) and 10 Nvidia RTX 2080Ti GPUs. The results
are shown in Table 2. For each dataset, the computation time of
our method and CSD-SSD was tested with different numbers of
annotated images. We found that there was not much difference
in their computation time (≤ 0.13h). Due to the page limit, we
only show the results with the smallest and the largest numbers
of annotated images. Other results can be found in supplemental
material. The results show that our method is faster than Cap2Det
and comparable with CSD-SSD. Cap2Det has a key step of region
proposal which runs on CPU and is very time-consuming [2]. Both
our method and CSD-SSD are based on SSD [12], which does not
have this region proposal step, and is thus faster than Cap2Det.

6.2 Case Study

To evaluate how MutualDetector helps analyze and improve the
object detector, we invited two experts (E1 and E2) who participated
in the interviews to carry out a case study on the subset of
COCO17. The subset is the same as that we have used in the
quantitative evaluation. Both E1 and E2 are not familiar with the
underlying model we used. All images have captions, of which
initially 5,000 have bounding box annotations. The mAP on the
test images was 35.32%, which was unsatisfactory. Thus, E1 and
E2 would like to use MutualDetector to improve the performance.
Specifically, E1 focused on improving the extracted labels, and
E2 focused on improving the detected objects. Both of them also
participated in the analysis and discussion of each other’s parts.
Before the case study, we briefly introduced MutualDetector to
them. As we have shown them the prototype during the interviews,
they got familiar with the tool in 25 minutes. In the case study, a
pair analytics protocol [56] was used, in which the experts drove the
exploration and analysis, and we navigated the tool. This strategy
is a natural way to capture the reasoning process and allows the
experts to focus more on the analysis.

Understanding the relationships between labels and images
(R2). To have an overview of the extracted labels and detected
objects, E1 first checked the label clusters, image clusters, and
their relationships. There were ten label clusters and nine image
clusters (Fig. 7). He noticed that some extracted labels of the label
clusters did not precisely summarize their content. For example,
the label of label cluster A (Fig. 7) is “entity,” which is too high
level to well summarize its three children: “cutlery,” “container,”
and “food.” By checking their relationships with the image clusters,
E1 found that they were connected to image cluster B (Fig. 7).
The representative images of cluster B were mostly taken in dining
rooms. Thus, E1 changed the label of cluster A to “dining room”
using the editing function. Similarly, he changed the labels of
other four label clusters. During this process, he also found that
the clustering result of label cluster D was inaccurate. As shown
in Fig. 7E, label “apple” was wrongly clustered with label “laptop.”
To correct this, E1 moved “apple” to label cluster C with the name
“plant organ”, which contained fruits and vegetables.
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Fig. 7. (a) The tree layout to show label clusters and (b) the matrix
to show image clusters.

Improving extracted labels (R3, R5). E1 began the analysis
by checking the performance of extracted labels first. The prior
importance of the tree cut algorithm was set as the correctness
score by default to help find labels with poor performance. He
found that some labels were low in precision and recall (Fig. 8(a)).
Among them, label “cup” had the lowest precision (Fig. 8A). To
find the root cause for the poor performance of “cup,” E1 checked
the important words for its extraction. He immediately noticed
the largest word “restaurant” (Fig. 9A). Cups are indeed common
in restaurants. However, it is not necessary that the images of
restaurants always contain cups. E1 suspected the high contribution
of “restaurant” might lead to the wrong extraction of “cup” when
there were no cups in the images of restaurants.

To confirm that, E1 clicked “restaurant” in the word cloud
and checked the associated captions. He found that some of these
captions did not mention cups, and their images did not contain
cups (e.g., Fig. 9B). However, label “cup” was extracted from them
because they contained the word “restaurant.” To tackle this issue,
E1 removed “restaurant” for the extraction of label “cup” using

. Similarly, E1 also removed “breakfast” and “coffee.” After that,
“cup” was no longer extracted from the corresponding captions. In
addition to wrongly extracted “cup,” E1 also noticed that sometimes
“cup” was not extracted from captions whose corresponding images
did contain cups (e.g., Fig. 9C). Checking their captions, he found
that these captions did not mention the cups in the images. As cups
are common objects and small in size, they are easily ignored by the
captions. E1 then added the label “cup” extracted from the images
to compensate for the absence of “cup” from the corresponding
captions. By removing abnormal words with high contributions and
adding labels extracted from images, the precision and recall for
the extraction of “cup” were improved from 63.91% and 30.22%
to 64.57% and 63.07%. In the similar way, E1 processed other 15
labels with poor performance. The averaged precision and recall
were improved from 88.41% and 61.67% to 90.04% and 69.94%.
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Fig. 8. The tree layout (a) before improving the extracted labels;
(b) after reducing the mismatches at the global level and (c) the
associated image matrix of (b).

The object detector was then fine-tuned with the new extracted
labels. The mAP was increased from 35.32% to 36.41%.

Reducing mismatches at the global level (R2, R5). After E1
refined the extracted labels, E2 would like to check the detected
objects and their mismatches. Setting the prior importance of the
tree cut algorithm as the mismatch score, he immediately noticed
that almost all the image clusters were connected with red links
(Fig. 1 2©). This indicated many mismatches between the detected
objects and extracted labels. To find the main reason for so many
mismatches, E2 turned to examine the representative images of the
image clusters. He first checked the third image cluster (Fig. 1D),
which had the most red links. Examining the ten representative
images of this image cluster, he found that five of them had
undetected objects, including benches, chairs, umbrellas, person,
and cats. To figure out why the detector failed to detect these objects,
E2 selected one image with an undetected bench for detailed
examination (Fig. 1C). he found that the bench occupied almost half
of the image but was still not detected. He commented that there
could be two reasons: the detector failed to detect the object, or it
located the object with low confidence. To determine the reason,
E2 turned to the information panel and lowered the confidence
threshold to check the detected objects with low confidence. The
bounding box of the bench appeared when the confidence threshold
was reduced from 0.5 to 0.3 (Fig. 1E). This indicated that the
detector successfully located the bench, but with low confidence.
Checking the corresponding caption, E2 found that label “bench”
was correctly extracted. E2 commented, “the object bench would
be more confidently detected if the detection was more strongly
constrained to be consistent with the extracted label.” Similar pat-
terns were found in the other four images with undetected objects.
Given the high ratio of such images, E2 decided to make changes
more globally. He increased the weight of the label consistency
constraint, α1, in the semi-supervised object detection method

A smiling woman ... is sharing at 
an outdoor restaurant...

E
The man is wakling through the 
airport near a restaurant...

(a) (b)

A
B C

Fig. 9. (a) Important words for the extraction of label “cup”; (b)
two examples where “cup” is extracted from the caption but the
object cup is not in the image, and the object cup is in the image
but “cup” is not extracted from the caption.

(Eq. (1)). This constraint ensures that the extracted labels and the
detected objects are consistent with each other. E2 tried a few α1
values (5, 10, 30, 50, and 70) and finally set it to be 50, as the
number of mismatches no longer decreased with α1 larger than 50.
The mAP was then increased from 36.41% to 38.74%. With the
improved object detector, new image representations were obtained
and used to improve the label extraction. The precision and recall of
the label extractor were then improved from 90.04% and 69.94%
to 90.06% and 69.99%. Based on the improved extracted labels,
the mAP of the object detector was further improved to 38.78%.
After that, the number of red links was largely reduced (Fig. 8(b)).

Reducing mismatches at the local level (R4, R5). There were
still a few red links (Fig. 8(b)). E2 then utilized the grid layout
to examine the remaining mismatches. The eighth image cluster
(Fig. 8B) had the most red links, so it was first selected and
zoomed into the grid layout. This cluster had mismatches with two
labels, “truck” and “car.” Selecting “truck” first, the red grids in
the grid layout (Fig. 5(a)) represented the mismatched images. E2
noticed three regions with many mismatched images (Figs. 5A, 5B,
and 5C) and decided to examine these regions one by one. He first
zoomed in region C and found that in many mismatched images,
the locations of trucks were correctly detected (Fig. 5(c)). He
examined one of such images in the information panel (Fig. 5(d))
and found that the detected truck in it was wrongly predicted as a
car (Fig. 5D). Further inspection showed that both labels “car” and
“truck” were extracted from the corresponding caption. Considering
trucks and cars did look similar, when both labels were extracted
from the caption, the model could not tell them apart. For this image,
increasing the weight of the label consistency constraint in Eq. (1)
did not help, which explained why mismatches still existed after
the global-level adjustment. Object-level validation was needed
instead. Similar patterns were also found in the neighboring images.
Fig. 5(c) shows some of them. E2 confirmed the “truck” label for
eight detected objects in these images and adjusted three imprecise
bounding boxes among them. Similarly, he examined other regions,
as well as other labels and image clusters. In total, 351 bounding
boxes were confirmed, among which 91 imprecise bounding boxes
were adjusted. The mAP was increased from 38.78% to 40.01%.
The object detector and label extractor further mutually enhanced
each other. The precision and recall of the label extractor were then
improved from 90.06% and 69.99% to 90.27% and 70.76%. The
mAP of the object detector was improved to 40.12%. After that,
there were no red links in the set visualization. The experts were
satisfied and stopped the exploration and validation.

Table 3 summarizes the performance improvement after each
step in the aforementioned expert validation process. To evaluate the
efficiency of MutualDetector, we also compared the performance
of MutualDetector with a human-in-the-loop method without
MutualDetector (baseline). This baseline method randomly samples
images for users to annotate. We simulated the annotation per
image by using the associated ground truth bounding boxes. With
MutualDetector, the expert only validated 351 bounding boxes and
achieved 40.12% mAP. While without MutualDetector, 5,000 more
annotated images were required to achieve 39.38% mAP. This com-
parison shows that MutualDetector largely reduced user annotation
efforts and improved the annotation efficiency accordingly.

7 EXPERT FEEDBACK AND DISCUSSION

In this section, we discuss the usability and limitations based on
expert feedback.
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TABLE 3. Performance improvement with MutualDetector.

Step Precision Recall mAP

Base 88.41% 61.67% 35.32%
Improving extracted
labels 90.04% 69.94% 36.41%

Globally reducing
mismatches 90.06% 69.99% 38.78%

Locally reducing
mismatches 90.27% 70.76% 40.12%

7.1 Usability
After the case study, we conducted seven semi-structured interviews
with the four experts we worked with (E1, E2, E3, E4) and three
newly invited ones (E5, E6, E7). The three new experts are Ph.D.
students or post-doctors from three different research institutes and
have more than two years of experience in object detection research.
They are not co-authors of this work. Each of the interviews took
between 45 and 60 minutes. In general, all experts have positive
comments on MutualDetector. We summarized their feedback into
four groups.

Enhancing understanding. E1 especially praised the simultane-
ous clustering of labels and images. “It puts similar labels and
images together based on not only their representations but also
their relationships, which helps me better understand the extracted
labels and detected objects from the additional angle of their
matching relationships.” Both E1 and E7 liked the word cloud that
shows important words for the extraction of labels. “It allows me to
identify the potential reason for the poor performance of the label
extractor,” E1 said.

Reducing analysis efforts. E2 was impressed by the 4.80%
gain in mAP, with only 351 bounding boxes being validated.
He commented, “With this tool, I can quickly identify incorrect
detection results. Validating and correcting such detection results
brings in relatively large gains compared to randomly selecting
images to annotate.” E6 liked the grid layout a lot, especially the
idea of exploring the images and their detected objects at different
levels of detail. “It helps me quickly identify the images of interest
at the global level and zoom in for details. Also, the grid layout
allows me to explore multiple images and their detected objects
simultaneously, which makes the exploration more efficient.”

Learning curve. The visual metaphors employed in MutualDe-
tector are commonly used, such as node-link-based set visualiza-
tion, grid layout, and indented tree. It took an average of 21.3
(STDEV=2.6) minutes for the experts to become familiar with the
tool. The experts believed that the performance gain achieved with
MutualDetector outweighed the learning cost. To help users get
familiar with the tool quickly, we also provide a tour function to
illustrate the visual encodings and interactions.

Generalization. In our implementation, the widely used SSD
is employed as the base object detector to demonstrate the idea
of the developed semi-supervised object detection method. Other
annotation-based object detection methods, such as YOLO [1],
can also be used in our method. The bounding box consistency
constraint in Eq. (1) needs to be replaced with the loss function of
the according object detection method, while the label consistency
and robustness constraints can be directly applied. Moreover, the
set visualization is also model-agnostic. It presents extracted labels

and detected objects regardless of the underlying label extractor
and object detector.

7.2 Limitations and Future Work
In addition to the aforementioned positive feedback, several
limitations of MutualDetector are also identified, which give
directions for future improvement.
Extensive evaluation. Although we developed MutualDetector in
collaboration with six machine learning experts, they commented
that practitioners could also use this tool to improve the perfor-
mance of object detection. This is because our tool does not require
the users to understand the inner workings of the underlying model.
In addition, the experts mentioned that more visual cues, such as
the ratio of images with large mismatch scores in each cluster,
would guide them in the exploration. However, they also worried
that the complexity induced by more functions might confuse users.
To better investigate the usefulness of MutualDetector, we plan
to share it with practitioners and collect feedback from them for
further improving the usability, especially the visualization design.
Time efficiency. When user validation is provided, the model is
fine-tuned with the updated training data. This process is time-
consuming. For example, it takes around 5 hours to fine-tune the
model for the COCO17 dataset, which contains 112,297 training
images. The training time becomes intolerable when the dataset
is larger. As a result, how to update the object detector more
efficiently (e.g., incremental training only with validated images)
is an interesting venue for future work.
Parameter adjustment. The two balance weights (Eq. (1)) in
the developed semi-supervised object detection method directly
affect the performance. Thus, the experts who collaborated with
us would like to adjust them for better performance. Our tool can
guide the adjustment direction of these two weights (increased
or decreased). However, it cannot indicate how much the weight
should be increased or decreased. In the case study, the experts
tried five different values for the weight of the label consistency
constraint. It is still time-consuming. Thus, it would be interesting
to investigate an effective parameter adjustment method. A potential
solution is to infer a more suitable parameter setting from user
validation as it provides hints about the deficiency of the detector.
Validation confidence. Currently, MutualDetector regards user
validation as ground truth. However, it may not always be correct.
Incorrect user validation usually leads to model performance
degradation. In order to avoid such incorrect validation, a potential
solution is to evaluate the confidence of validation. When the
confidence is low, an alert for rechecking together with a visual
explanation can be presented in the visualization. The visual
explanation can facilitate the further improvement of the validation.

8 CONCLUSION

We have developed MutualDetector, a visual analysis tool to explore
and improve the performance of object detectors trained on image
captions and a small number of bounding box annotations. A semi-
supervised object detection method is developed to utilize both
captions and a small number of bounding box annotations to build
an effective object detector. A node-link-based set visualization
supported by a multi-type relational co-clustering algorithm is
developed to help explore labels extracted from captions, images
with detected objects, and their relationships. With the visualization,
users can validate the extracted labels and detected objects. Based
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on the user validation, the label extractor and object detector can
enhance each other and be further improved. The quantitative
evaluation on the developed semi-supervised object detection
method and the case study carried out by two experts demonstrated
the effectiveness and usefulness of MutualDetector.
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Supplemental Material: Towards Better Caption
Supervision for Object Detection
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APPENDIX A: SEMI-SUPERVISED OBJECT DETECTION

Given labels extracted from image captions and a small number of
object bounding box annotations, the proposed semi-supervised object
detection method trains a detector with a bounding box consistency
constraint, a label consistency constraint, and a robustness constraint.

Lfine +α1Lcoarse +α2Lrobust. (1)

Bounding box consistency constraint. The first term Lfine ensures
the detected objects of annotated images to be consistent with the
bounding box annotations, including both the locations and labels. Here
we use the same MultiBox loss as in SSD [1]. Lfine is the averaged
loss over MultiBox losses of all annotated images. For each image, the
MultiBox loss is:

1
M

(
Lcon f +µLloc

)
, (2)

where M is the number of detected bounding boxes. µ is set to 1 as
in SSD [1]. Lloc is the localization loss that measures the difference
between the locations of the detected bounding boxes and the ground
truth bounding boxes, i.e.,

Lloc =
M

∑
i

N

∑
j

∑
m∈{cx,cy,w,h}

δi j · smoothL1(lm
i −gm

j ). (3)

N is the number of ground truth bounding boxes. lcx
i and lcy

i are
offsets for the center of the i-th detected bounding box. lw

i and lh
i are

the width and height of the i-th detected bounding box. gcx
j and gcy

j are
normalized offsets for the center of the j-th ground truth bounding box.
gw

j and gh
j are the normalized width and height of the h-th ground truth

bounding box. δi j = {0,1} is an indicator for the matching between
i-th predicted bounding box and j-th ground truth bounding box. Two
bounding boxes are matched if their Jaccard overlap is higher than 0.5.

Lcon f , the confidence loss, measures the difference between the
labels of the detected bounding boxes and the ground truth bounding
boxes.

Lcon f =−
M

∑
i

P

∑
p

cp
i log ĉp

i . (4)

cp
i = 1 means that the i-th detected bounding box matches to the

ground truth bounding box with the p-th label. otherwise cp
i = 0. ĉp

i is
the confidence score that the i-th detected bounding box has the p-th
label. P is the number of labels.
Label consistency constraint. The second term Lcoarse is the label
consistency loss that is applied to images with captions. It enforces
that the labels of detected objects in an image must be consistent with
the labels extracted from its captions. Lcoarse is the averaged label
consistency loss of all images with captions. For each image, the label
consistency loss is:

−
P

∑
p

ep log êp. (5)

ep = 1 means that the p-th label is extracted from the caption; otherwise
ep = 0. êp is the confidence score that this image contains objects of
the p-th label, which is calculated by

êp = max
i

ĉp
i . (6)

Robustness constraint. The third term Lrobust is the robustness con-
straint to ensure the detector to be robust to given perturbed inputs.
Lrobust is the averaged robustness constraint of all images with cap-
tions. For each image, the robustness constraint is:

1
M

(
Lrobust−con f +Lrobust−loc

)
, (7)

where M is the number of detected bounding boxes. Lrobust−loc is the
robustness constraint for locations that measures the difference between
the detected bounding boxes in the original image and perturbed image.

Lrobust−loc =
M

∑
i

ep
∑

m∈{cx,cy,w,h}
δi j · smoothL1(lm

i − lm
i ). (8)

lcx
i , lcy

i , lw
i , lh

i are the locations and sizes of detected bounding boxes

in the original image, as described in Eq.(3). lcx
i , lcy

i , lw
i , lh

i are the
locations and sizes of detected bounding boxes in the perturbed image.
ep in the constraint ensures that the robustness constraint is only applied
to detected objects whose labels are extracted from the captions.

Lrobust−con f is the robustness constraint for classification that mea-
sures the difference between the predicted labels of detected objects in
the original image and perturbed image.

Lrobust−con f =
M

∑
i

JS(ci,ci). (9)

ci (ci) is the prediction vector of i-th detected bounding box in
the original image (perturbed image). ci = [c1

i ,c
2
i , ...,c

P
i ]. ci =

[c1
i ,c

2
i , ...,c

P
i ]. JS(·, ·) is Jensen-Shannon divergence.



APPENDIX B: COMPUTATION TIME

Table 1 shows the computation time of our method and the two base-
lines. The experiments were run on a server with an Intel Xeon Silver
4214 CPU (2.20GHz) and 10 Nvidia RTX 2080Ti GPUs. The results
show that our method is faster than Cap2Det and comparable with
CSD-SSD. Cap2Det has a key step of region proposal which runs on
CPU and is very time-consuming. Both our method and CSD-SSD are
based on SSD, which does not have this region proposal step, and thus
are faster than Cap2Det.

Table 1: Computation time (in hour).

# annotations 500 1,000 1,500 2,000 2,500
Ours 3.95 3.92 4.12 3.94 4.01

CSD-SSD 3.89 3.92 4.05 3.93 3.93
Cap2Det 6.19 (no annotations)

(a) VOC07

# annotations 500 1,000 1,500 2,000 2,500
Ours 3.93 3.76 3.97 3.99 4.06

CSD-SSD 3.92 3.78 3.87 3.85 3.94
Cap2Det 8.97 (no annotations)

(b) VOC12

# annotations 1,000 2,000 3,000 4,000 5,000
Ours 8.44 8.48 8.46 8.57 8.54

CSD-SSD 8.52 8.45 8.42 8.51 8.53
Cap2Det 69.84 (no annotations)

(c) COCO17
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