
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/146726/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Hawa, Asyl, Lewis, Rhydian and Thompson, Jonathan 2022. Exact and approximate methods for the score-
constrained packing problem. European Journal of Operational Research 302 (3) , pp. 847-859.

10.1016/j.ejor.2022.01.028

Publishers page: https://doi.org/10.1016/j.ejor.2022.01.028

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Exact and Approximate Methods for the Score-Constrained
Packing Problem

Asyl L. Hawaa,∗, Rhyd Lewisb, Jonathan M. Thompsonb

aSouthampton Business School, University of Southampton, Southampton SO17 1BJ, UK
bSchool of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK

Abstract

This paper investigates a packing problem related to the one-dimensional bin pack-
ing problem in which the order and orientation of items influences the feasibility of a
solution. We give an exact polynomial-time algorithm for the Constrained Ordering
Problem, explaining how it can be used to find a feasible packing of items in a single
bin. We then introduce an evolutionary algorithm for the multi-bin version of the prob-
lem, which incorporates the exact algorithm along with a local search procedure and
three recombination operators. The mechanisms and results produced by each of the
recombination operators are compared, and we discuss the circumstances in which each
approach proves most advantageous.

Keywords: Evolutionary computations, packing, combinatorial optimization

∗Corresponding author
Email addresses: A.Hawa@soton.ac.uk (Asyl L. Hawa), LewisR9@cardiff.ac.uk (Rhyd Lewis),

ThompsonJM1@cardiff.ac.uk (Jonathan M. Thompson)

Preprint submitted to Elsevier January 17, 2022

1. Introduction

Many problems in operational research and discrete mathematics involve the grouping of
elements into subsets. These types of problems can be seen in areas such as scheduling
(Thompson & Dowsland, 1998; Carter et al., 1996), frequency assignment (Aardal et al.,
2007), graph colouring (Lewis, 2015; Malaguti et al., 2008), and load balancing (Rekiek
et al., 1999), as well as in practical problems in computer science such as table formatting,
prepaging, and file allocation (Garey et al., 1972). Formally, given a set I of n elements,
the aim in such problems is to produce a partition S = {S1, S2, . . . , Sk} such that⋃k

j=1
Sj = I, (1a)

Si ∩ Sj = ∅ ∀ i, j ∈ {1, 2, . . . , k}, i 6= j, (1b)

Sj ∈ F ∀ j ∈ {1, 2, . . . , k}. (1c)

Here, Constraints (1a) and (1b) state the requirement that every element must be in
exactly one of the k subsets, whilst (1c) specifies that each subset Sj ∈ S must be feasible,
where F denotes the set of all feasible subsets of elements. The notion of feasibility is
dependent on the particular constraints of the given problem. For example, in the graph
colouring problem where vertices of a graph must be assigned colours such that no two
adjacent vertices are in the same colour class, F contains all possible independent sets
of vertices, whilst for the classical one-dimensional bin-packing problem (BPP) which
requires a set of items of varying sizes to be packed into the fewest number of bins of
fixed capacity, a bin Sj is feasible only if the sum of its item sizes is less than or equal
to the bin’s capacity.

The focus of this paper is on a special type of packing problem that occurs in the
packaging industry, where flat rectangular items of varying widths are to be cut and
scored from fixed-length strips of cardboard which are then folded into boxes.

Consider a set I of n rectangular items of fixed height H. Each item i ∈ I has
width wi ∈ Z+, and is marked with two vertical score lines in predetermined places. The
distances between each score line and the nearest edge of the item are known as the score
widths, ai, bi ∈ Z+ (where without loss of generality ai ≤ bi). An example of an item
i with these dimensions is provided in Fig. 1. In this industrial process, pairs of knives
mounted on a bar simultaneously cut along the score lines of two adjacent items, making
it easier to fold the cardboard at a later stage; however, due to the manner in which the
machine is designed, the knives in each pair must maintain a minimum distance from
one another – a so-called “minimum scoring distance” τ ∈ Z+ (approximately 70mm in
practice). For the knives to score all of the items in the correct locations, the distance
between two score lines of adjacent items must therefore equal or exceed the minimum
scoring distance. Hence, the following vicinal sum constraint must be fulfilled:

rhs(i) + lhs(i+ 1) ≥ τ ∀ i ∈ {1, 2, . . . , |S| − 1}, (2)

where lhs(i) and rhs(i) denote the left- and right-hand score widths of the ith item in
bin S. Clearly, if this constraint is satisfied, the distance between the score lines will be

2

sufficient for the knives to be able to cut appropriately. An example of this is also shown
in Fig. 1. Here, although the vicinal sum constraint is met between items A and B, the
full alignment of all three items is infeasible as the sum of the adjacent score widths of
items B and C is less than the minimum scoring distance τ ; hence the knives are unable
to move close enough together to score the lines in the required locations.

i

wi

ai bi

H A B C

16 52 31 43 25 64

≥ τ < τ

Figure 1: Dimensions of an item i marked with dashed score lines, and an example packing showing
both feasible and infeasible alignments of three items to be scored by pairs of knives. Here, the minimum
scoring distance τ = 70.

The remainder of this section will formally define both this single-bin problem and
the corresponding multi-bin problem, known as the Score-Constrained Packing Problem
(SCPP). In the next section, we will give a polynomial-time algorithm that exactly solves
the single-bin problem. Section 3 then explains the difficulties associated with the SCPP
and analyses existing heuristics from literature. A tailored evolutionary algorithm (EA)
for the SCPP is then presented in Section 4, along with results from our experiments.
Finally Section 5 concludes the paper and discusses outcomes and possible directions for
further work. A summary of the notation used in this paper is provided in Table 1.

1.1. Problem Definitions

We now formally define the main problem to be investigated in this paper:

Definition 1. Let I be a set of n rectangular items of height H with varying widths wi

and score widths ai, bi for all i ∈ I. Given a minimum scoring distance τ , the Score-
Constrained Packing Problem (SCPP) involves packing the items from left to right into
the fewest number of H ×W bins such that (a) the vicinal sum constraint is satisifed in
each bin and (b) no bin is overfilled.

Each item i ∈ I can be packed into a bin in either a regular orientation, denoted (ai, bi),
where the smaller score width ai is on the left-hand side of item i, or a rotated orientation
(bi, ai), where the larger score width bi is on the left-hand side. Therefore, for the SCPP,
F is the set of all item subsets that can be feasibly packed into a bin such that the
vicinal sum constraint is fulfilled. Thus, there is the packing sub-problem within each
individual bin, defined as follows:

Definition 2. Let I ′ ⊆ I be a set of rectangular items whose total width A(I ′) =∑
i∈I′ wi is less than or equal to the bin width W . Then, given a minimum scoring

distance τ , the Score-Constrained Packing Sub-Problem (sub-SCPP) consists in finding
an ordering and orientation of the items in I ′ such that the vicinal sum constraint is
satisfied.

3

Table 1: Summary of the notation used for the problems considered in this paper.

Term Description

I An instance of the problem comprising n items.
W The maximum capacity of each bin.
S A feasible solution for an instance of the SCPP comprising bins S1, . . . , Sk.
F The set of all item subsets that can be feasibly packed into a single bin.
wi The width of an item i ∈ I.
ai, bi The score widths of an item i ∈ I, with ai ≤ bi.
τ The minimum scoring distance.
A(.) The total width/area of the set of items between the parentheses.

M An instance of the COP, which is a multiset of unordered pairs of integers.
T A solution for an instance M of the COP.
V A vertex set comprising 2n+ 2 vertices.
w(vi) The weight of a vertex vi.
p(vi) The partner of a vertex vi.
B The set comprising n+ 1 “blue” edges between partner vertices.
R The set comprising “red” edges between vertices that meet the vicinal sum constraint

and are not partners.
m(vi) The match of a vertex vi.
R′ A set comprising red edges between matched vertices, R′ ⊆ R.
C1, . . . , Cz The cyclic components of the subgraph G′ = (V,B ∪R′).
L A list of edges in R′.
R′′ A collection of edge subsets R′′1 , R

′′
2 , . . .

t The theoretical minimum t =
⌈∑n

i=1 wi/W
⌉
, which is a lower bound for k.

f(S) The fitness function f(S) =
∑

Sj∈S(A(Sj)/W)2/|S|.

It is this single-bin problem, the sub-SCPP, that was originally introduced as an open-
combinatorial problem by Goulimis in 2004 and subsequently studied by Becker (2010),
Lewis et al. (2011), and Becker & Appa (2015). However, the only known studies at the
time of writing on the problem involving multiple bins (i.e. the SCPP) is by Lewis et al.
(2011), Hawa et al. (2018), and Hawa (2020).

In Fig. 1, observe that a feasible alignment of the three items in a single bin can be
obtained by rotating item C.1 However, because there are 2n−1n! distinct orderings of n
items in a single bin, it is clear that enumerative methods are not suitable. Fig. 2 shows
feasible solutions for a set of items I as an instance of the BPP and the SCPP. For the
SCPP, an extra bin is required to accommodate all items whilst fulfilling the vicinal sum
constraint. Note that the solution produced for the BPP is not feasible for the SCPP in
this case as the constraint is violated at least once in every bin. Thus, the BPP can be
seen as a special case of the SCPP when τ = 0 as the vicinal sum constraint will always
be satisfied.

1Note that the outermost score widths in each bin are disregarded as they are not adjacent to any
other items.

4

13 28 11 40 35 50 14 38 4 57

314 251 202 127 106

8 42 16 22 15 30

522 347 131

3 27 33 65

603 397

(a) BPP

11 40 30 15

251 131

16 22 50 35 38 14

347 202 127

8 42 28 13 57 4

522 314 106

3 27 65 33

603 397

(b) SCPP

Figure 2: Solutions for the BPP and SCPP using the same set I of 10 items and W = 1000. For the
SCPP, τ = 70. The red score lines on the solution for the BPP show the vicinal sum constraint violations
if it were to be used as a solution for the SCPP.

The BPP forms the basis of many packing problems including those of different item
and bin shapes, sizes, and dimensions: Haouari & Serairi (2009) and Liu et al. (2021)
both studied the variable-sized bin packing problem using bins of unequal sizes, whilst
Zhou et al. (2009) extended the problem such that, in addition to differing bin sizes,
items and bins are assigned different types; bins can only accommodate items of the
same type. Problems comprising circular items have been addressed by Yuan et al.
(2021) and He et al. (2021), where the items must be packed into a minimum number of
circular and square bins respectively. One particular problem of interest to us involving
non-rectangular items is the trapezoid packing problem (TPP) (Lewis et al., 2011; Lewis
& Holborn, 2017), where trapezoids are to be packed into bins so as to minimise the
number of bins required whilst also attempting to reduce the amount of triangular waste
between adjacent trapezoids.

Another variation of the 2D-BPP requires rectangular items to be packed in their
given orientations (Lodi et al., 1999; Ntene & van Vuuren, 2008), whilst much literature
exists on the problem where items can be rotated by 90◦ (Kenmochi et al., 2009; Cui
et al., 2013; He et al., 2013). Other problems related to the BPP include guillotineable
constraints (Bennell et al., 2018; Kröger, 1995; Hifi, 1998), shelf divisions (Xavier &
Miyazawa, 2008), and unloading constraints (da Silveira et al., 2013), as well as the dual
version of the BPP studied by Csirik & Totik (1988) in which the aim is to pack the
items into the maximum number of bins such that the capacity in each bin is at least
some specified value C.

Another problem similar to the BPP is the cutting stock problem (CSP), which
involves cutting large pieces of material into smaller pieces whilst minimising material
wasted. The main difference between the BPP and the CSP is that, according to the
typology of Wäscher et al. (2007), the items in the BPP tend to be strongly heteroge-
neous (the items are of many different sizes) whilst in the CSP the items are weakly
heterogeneous (many items have the same size). The classical CSP has been widely
studied, with notable works by Gilmore & Gomory (1961, 1963), however, as with the
BPP, many adaptations stem from the CSP to satisfy real-life problems. Similarly to
above, Belov & Scheithauer (2002) and Poldi & Arenales (2009) consider the CSP with
varying stocks lengths with the aim of reducing waste materials. Furthermore, with
the increase in interest in sustainability, Coelho et al. (2017) and do Nascimento et al.

5

(2020) focus on solving the CSP such that any leftover materials produced can be used
in the future or sold for a profit. Cui et al. (2017) considers the same problem but using
previous leftover materials along with new material in subsequent orders. In addition,
there exists an abundance of literature concerning the reduction of initial setup costs:
Wu & Yan (2016) propose a balance approach, whilst Ma et al. (2019) implement two
heuristics to address the significant setup times for the multi-period capacitated CSP,
where multiple rods can also be cut simultaneously.

One particular case of the CSP, described by Garraffa et al. (2016), considers sequence-
dependent cut-losses (SDCL). Here, rectangular items of varying lengths are to be cut
from strips of material of fixed lengths; however the type of cutting machine used results
in material loss between items during the cutting process. The amount of loss can vary
between different items, and is also dependent on the order of the items (i.e. a cut
loss between two adjacent items A and B, with A packed first, may not necessarily be
equal to the cut loss that arises when B is packed first). Hence, the CSP-SDCL involves
packing the items into the fewest number of bins such that the sum of item lengths and
the sum of cut losses between all adjacent items in each bin does not exceed the bin
capacity.

As with the TPP and CSP-SDCL, the SCPP not only involves deciding which bin
each item should be packed into, but also, unlike the BPP, how the items should be
packed – that is, determining the order and orientation of items within each bin. One
specific difference, however, concerns the feasibility of individual bins. In the TPP,
although clearly not optimal, it is still legal to place trapezoids with opposite angles, i.e.
‘\’ and ‘/’, alongside one another. Likewise in the CSP-SDCL, two items with a large
cut loss between them can still be packed alongside one another if necessary. Both of
these problems allow items to be packed in any order and orientation as long as the bins
are not overfilled. In contrast, the SCPP possesses the strong vicinal sum constraint
which, if violated, immediately causes an alignment of items in a bin to be invalid, thus
rendering the entire solution infeasible. It is this distinction that leads us to seek new
methods capable of producing high quality solutions that fulfil the constraints of the
SCPP in a reasonable amount of time.

2. Solving the Score-Constrained Packing Sub-Problem

In this section we focus on the sub-SCPP, which involves packing items into a single bin.
To begin, consider the following sequencing problem defined by Hawa et al. (2018):

Definition 3. LetM be a multiset of unordered pairs of integersM = {{a1, b1}, {a2, b2},
. . . , {an, bn}}, and let T be a sequence of the elements of M in which each element is
an ordered pair. Given a fixed value τ ∈ Z+, the Constrained Ordering Problem (COP)
consists in finding a solution T such that the sum of adjacent values from different
ordered pairs is greater than or equal to τ .

For example, given the COP instance M = {{4, 21}, {9, 53}, {13, 26}, {17, 29}, {32, 39},
{35, 41}, {44, 57}, {48, 61}} and τ = 70, one possible solution is T = 〈(4, 21), (53, 9),

6

(61, 48), (26, 13), (57, 44), (32, 39), (35, 41), (29, 17)〉. It is evident that the COP is in fact
equivalent to the sub-SCPP, whereby each pair inM can be seen as an item i represented
by its score widths ai, bi, and the value τ is the minimum scoring distance. It follows
that the requirement for the sum of adjacent values to equal or exceed τ corresponds to
the vicinal sum constraint (2). The items in an instance I ′ of the sub-SCPP have total
width A(I ′) ≤W , and so when seeking a feasible arrangement the items’ widths can be
disregarded. Therefore, we are able to simplify any given instance I ′ of the sub-SCPP
by transforming I ′ into an instance of the COP.

In this section we present the Alternating Hamiltonian Construction (AHC) algo-
rithm, a polynomial-time algorithm for solving the COP and hence also the sub-SCPP.
The underlying algorithm was originally proposed by Becker (2010) and determines
whether a feasible solution exists for a given instance. This is extended here so that,
if a solution does indeed exist, AHC is able to construct the final solution quickly. In
addition, we also simplify and increase the efficiency of this algorithm.

To prevent executing the algorithm unnecessarily, a basic preliminary test is first
performed. Of the 2n values in M, suppose the two smallest values are placed in the
outermost positions in the sequence T . Then, if the third smallest value in M and
the largest value in M do not sum up to greater than or equal to τ there cannot
exist a feasible ordering of all elements in M. As an example, consider the instance
M = {{1, 46}, {3, 52}, {8, 30}, {2, 61}} and τ = 70. The third smallest value, 8, and the
largest value, 61, do not add up to τ , and so as there is no larger value inM that can be
aligned alongside 8 in the sequence T , it is not possible for a feasible solution to exist.
Note that a positive outcome from this test does not necessarily imply that a feasible
solution exists for the instance; however a negative outcome confirms the non-existence
of a solution.

2.1. Modelling the Constrained Ordering Problem

If an instance M of the COP has passed the preliminary test and has not yet been
deemed infeasible, we can proceed to model M graphically. For each pair {ai, bi} ∈ M,
two vertices u, v with weights w(u) = ai, w(v) = bi are created, together with a “blue”
edge {u, v}. Vertices joined by a blue edge are referred to as partners. This gives a vertex-
weighted graph G comprising n components. Without loss of generality, we assume that
the vertices {v1, . . . , v2n} are labelled in weight order such that w(vi) ≤ w(vi+1).

An extra pair of partner vertices v2n+1, v2n+2 is then added to G with weights
w(v2n+1) = w(v2n+2) = τ , together with a blue edge {v2n+1, v2n+2}. All blue edges
between partners are now said to belong to the edge set B. It is also useful to denote the
partner of a vertex vi as p(vi); thus the set B can be written as {{vi, p(vi)} : vi ∈ V }.
Note that |B| = n+ 1, so B is a perfect matching. Fig. 3a depicts the graph G = (V,B)
comprising n + 1 components based on the example instance M of the COP stated at
the beginning of this section.

Next, a second set of “red” edges, R, is added to G containing edges between vertices
that are not partners and whose combined weight equals or exceeds τ ; thus B ∩R = ∅.
Fig. 3b illustrates the resulting graphG = (V,B∪R) produced from our example instance

7

M. The graph has a noticeable pattern, with the degree of each vertex increasing in
accordance with the weight of the vertices. It can also be seen that the additional vertices
v2n+1 and v2n+2 are, in fact, universal vertices with deg(v2n+1) = deg(v2n+2) = 2n + 1
as their weights mean they are adjacent to every other vertex via an edge in R.

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(a) G = (V,B)

v1(4)v17(70)
v18(70)

v2(9)

v8(32)
v9(35)

v3(13)

v7(29)

v4(17)

v5(21)

v12(44)

v15(57)

v6(26)

v10(39)

v11(41)

v13(48)

v14(53)

v16(61)

(b) G = (V,B ∪R)

Figure 3: The graph G = (V,B ∪R) modelling our example instance M of the COP. Members of B are
shown by thick blue edges and R by thin red edges, with the vertices’ weights in parentheses.

Now, recall that a Hamiltonian cycle in a graph G is a cycle that visits every vertex of
G exactly once. A graph containing such a cycle is said to be Hamiltonian. From this,
we present the following definition:

Definition 4. Let G = (V,B ∪ R) be a simple, undirected graph where each edge is a
member of exactly one of two sets, B or R. An alternating Hamiltonian cycle in G is a
Hamiltonian cycle whose successive edges alternate between sets B and R.

All values in M must be in the solution T , and so all the vertices on our graph G must
be in a single cycle that represents a feasible solution; thus we require a Hamiltonian
cycle. The order of the values within each pair in M can be rearranged, however the
values themselves cannot be changed – every pair of values inM must remain as a pair
in the final sequence T . It follows then that we need a Hamiltonian cycle in which each
vertex is either preceeded by or succeeded by its partner vertex in the cycle. Therefore,
our aim is to seek an alternating Hamiltonian cycle in the graph G.

Observe that an alternating Hamiltonian cycle in G corresponds to a legal sequence
of the elements inM because (a) the edges in B represent each pair of values inM, and
(b) edges from R depict the values that meet the vicinal sum constraint (Hawa, 2020).
As all edges in B must be in the final cycle, the task involves finding a suitable matching
subset of red edges R′ ⊆ R that, together with the blue edges in B, form an alternating
Hamiltonian cycle in G. The universal vertices, v2n+1 and v2n+2, aid the construction
of the alternating Hamiltonian cycle as they are able to connect to the lowest-weighted
vertices that correspond to the values in M that will be in the outermost positions of
the sequence T ; however once a cycle has been produced these vertices and any incident

8

edges are removed, resulting in a path corresponding to a feasible COP solution T .
Fig. 4 shows the alternating Hamiltonian cycle found in G for our example instance of
the COP, which translates to a feasible solution T .

v1(4)v17(70)
v18(70)

v2(9)

v8(32)
v9(35)

v3(13)

v7(29)

v4(17)

v5(21)

v12(44)

v15(57)

v6(26)

v10(39)

v11(41)

v13(48)

v14(53)

v16(61)

(a)

v1(4)

v5(21)

v14(53)

v2(9)

v16(61)

v13(48)

v6(26)

v3(13)
v15(57)

v12(44)

v8(32)

v10(39)

v9(35)

v11(41)

v7(29)

v4(17)

v17(70)
v18(70)

(b)

v1 v5 v14 v2 v16 v13 v6 v3 v15 v12 v8 v10 v9 v11 v7 v4

4 21 53 9 61 48 26 13 57 44 32 39 35 41 29 17, , , , , , , ,() () () () () () () ()〈 〉T =

(c)

Figure 4: (a) The graph G = (V,B ∪ R) modelling our example instance M; (b) a subgraph of G
comprising all edges in B and a subset of edges R′ ⊆ R that form an alternating Hamiltonian cycle; and
(c) removing the universal vertices produces an alternating path corresponding to a feasible solution T .

In general, determining whether a graph is Hamiltonian is NP-complete, whilst the
problem of actually finding a Hamiltonian cycle is NP-hard (Karp, 1972). Consequently,
the alternating Hamiltonian cycle problem is also NP-hard, as it is a generalisation of
the former (Häggkvist, 1977). Despite this, due to the special structure of the graphs
modelling instances of the COP, here we are able to determine the existence of an
alternating Hamiltonian cycle in polynomial-time (Hawa et al., 2018).

2.2. The Alternating Hamiltonian Construction Algorithm

Our algorithm for finding an alternating Hamiltonian cycle in G is the Alternating
Hamiltonian Construction (AHC) algorithm. AHC comprises two subprocedures: one
to produce an initial matching R′ ⊆ R, and another to modify R′, if necessary, so that it
contains suitable edges that form an alternating Hamiltonian cycle with the fixed edges
B in G. We now describe these two stages.

2.2.1. Finding a matching R′ ⊆ R
The first subprocedure of AHC is the Maximum Cardinality Matching (MCM) algorithm,
which seeks a matching R′ comprising n + 1 edges on the graph induced by the set of
red edges R. Note that this could actually be achieved via standard matching processes
such as the Blossom algorithm (Edmonds, 1965); however due to the special structure of

9

G, such a matching can also be achieved via more efficient methods (Mahadev & Peled,
1994; Becker & Appa, 2015).

Algorithm 1 MCM (G = (V,B ∪R))

1: R′ ← ∅
2: m(vi)← null ∀ vi ∈ V
3: for i← 1 to 2n+ 2 : m(vi) = null do
4: for j ← 2n+ 2 to i+ 1 : m(vj) = null do
5: if {vi, vj} ∈ R then
6: m(vi)← vj , m(vj)← vi
7: R′ ← R′ ∪ {{vi, vj}}
8: break
9: if m(vi) = null and i 6= 1 and m(vi−1) 6= null

and m(p(vi)) = null and {vi−1, p(vi)} ∈ R then
10: R′ ← R′\{{vi−1,m(vi−1)}}
11: m(vi)← m(vi−1), m(m(vi))← vi
12: m(vi−1)← p(vi), m(p(vi))← vi−1
13: R′ ← R′ ∪ {{vi−1, p(vi)}} ∪ {{vi,m(vi)}}
14: return R′

As shown in the pseudocode in Algorithm 1, vertices are considered in turn in weight-
ascending order and are matched with the highest-weighted unmatched vertex adjacent
in R. Here, the match of a vertex vi is denoted as m(vi). The set R′ then consists of all
edges from R between matched vertices, i.e. {{vi,m(vi)} : vi ∈ V }. In the event that a
vertex vi is not adjacent to any other vertex via an edge in R, the previous vertex vi−1
can be rematched provided vi−1 has been matched successfully and is adjacent to vi’s
partner, p(vi). Then, vi is matched with vi−1’s match, and vi−1 is rematched with p(vi)
(Lines 9–13).

It has been proven that MCM returns a matching R′ of maximum cardinality; thus,
on completion of MCM, if R′ does not contain n + 1 edges then there are too few
edges in R′ to form an alternating Hamiltonian cycle with the edges in B (Hawa, 2020).
Consequently, no feasible solution can exist for the given instance M of the COP, and
computation can terminate. On the other hand, if |R′| = n+1 then MCM has successfully
produced a perfect matching, and the spanning subgraph G′ = (V,B ∪ R′) will be a 2-
regular graph consisting of cyclic components C1, C2, . . . , Cz, where every vertex vi ∈ V
is adjacent to its partner p(vi) via a blue edge in B and its match m(vi) via a red edge in
R′. Clearly, if z = 1 then G′ is an alternating Hamiltonian cycle and a solution has been
found; otherwise, G′ comprises multiple cycles and AHC must find a way of connecting
these components together to form a single alternating Hamiltonian cycle. Fig. 5 shows
the subgraph G′ formed using the matching R′ procured by MCM. In Fig. 5b we also
see the pattern of the red edges in R′, connecting the lowest-weighted vertices to the
highest-weighted vertices. By depicting G′ in planar form as in Fig. 5c, it is clear that
G′ comprises z = 4 cyclic components.

10

v1(4)v17(70)
v18(70)

v2(9)

v8(32)
v9(35)

v3(13)

v7(29)

v4(17)

v5(21)

v12(44)

v15(57)

v6(26)

v10(39)

v11(41)

v13(48)

v14(53)

v16(61)

(a) G = (V,B ∪R)

v1(4)v17(70)
v18(70)

v2(9)

v8(32)
v9(35)

v3(13)

v7(29)

v4(17)

v5(21)

v12(44)

v15(57)

v6(26)

v10(39)

v11(41)

v13(48)

v14(53)

v16(61)

(b) G′ = (V,B ∪R′)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(c) G′ = (V,B ∪R′)

Figure 5: (a) The graph G modelling an example instance M; (b) the subgraph G′ = (V,B ∪ R′) with
the perfect matching R′ ⊆ R found by MCM; and (c) a planar embedding of G′ showing z = 4 cyclic
components.

2.2.2. Modifying the matching R′ ⊆ R
To merge the components of G′ into a single alternating Hamiltonian cycle, we need to
remove edges from each cyclic component of G′ and replace these edges with different
edges that join the components together. Edges in B cannot be removed from G′ as
all edges in B must be in the final cycle; we therefore need to modify the matching
R′. This task involves (a) deciding which edges to remove from R′ that break apart the
cyclic components of G′, leaving vertices that are only incident to their partners via a
blue edge in B, and then (b) determining which edges from R\R′ to add to R′ that can
connect the vertices of different components together.

The second subprocedure of AHC is the Bridge-Cover Recognition (BCR) algorithm,
based on a method by Becker (2010). BCR seeks to identify a collection R′′ of distinct
subsets of edges in different components of G′ that will be removed from R′. These edge
subsets will also be used to identify the new edges from R\R′ to be added to R′ that
will act as bridges, connecting those components into a single component. Here, if an
edge from a component Cj of G′ is in a subset in the collection R′′, then R′′ is said to
cover the component Cj . Clearly, to connect all components of G′ together, at least one
edge must be removed from each component. BCR aims to produce a collection R′′ that
covers all z components of G′.

To begin, the edges in R′ are sorted into a list L such that the lower-weighted vertices
of the edges are in ascending order (see Fig. 6a). Then, in each iteration, BCR searches
from the beginning of L to find two or more successive edges that meet the following
conditions:

(i) the lower-weighted vertex of each edge is adjacent to the higher-weighted vertex
of the next edge via an edge in R\R′;

(ii) each edge is in a different component of G′; and

(iii) only one edge is in a component already covered by R′′; all other edges are in
components not yet covered by R′′.

11

These edges form a subset R′′i , which BCR adds to R′′ before continuing the search for
another subset of edges.2 Once the penultimate edge in L has been assessed, edges in
R′′ are removed from L and the next iteration begins. BCR ends the search successfully
once R′′ covers all z components of G′. However, if no new subsets are created during
an iteration, or if fewer than two edges remain in L after an iteration and R′′ does
not cover all z components, then no more subsets exist and it can be concluded with
certainty that no feasible solution exists for the given instance of the COP (Hawa,
2020). Fig. 6 shows the BCR process on our example instance, where the subsets R′′1 =
{{v2, v17}, {v3, v16}, {v4, v15}} and R′′2 = {{v7, v12}, {v8, v11}} have been formed. As
R′′ = {R′′1 , R′′2} covers all four components of G′, no more subsets are required.

If BCR has been able to acquire a feasible collection R′′ covering all z components of
G′, then there exists an alternating Hamiltonian cycle in G. The subsets in R′′ contain
the edges to be removed from R′, and also indicate the new edges from R\R′ to add
to R′ that will connect the components together. BCR uses each subset R′′i ⊂ R′′ to
procure the replacement edges from R\R′ as follows: for each edge in R′′i in turn, the
edge from R\R′ connecting the lower-weighted vertex of the edge to the higher-weighted
vertex of the next edge is added to R′. These edges form bridges between vertices of
different components (as shown in Fig. 6b). The edges in R′′ are then removed from
R′, so that R′ remains a perfect matching of cardinality n + 1. The resulting graph
G′ = (V,B ∪ R′) depicted in Fig. 6c using the modified matching R′ is an alternating
Hamiltonian cycle. Removing the universal vertices yields an alternating path which
corresponds to a feasible solution T (Fig. 6d).
In the first incarnation of this algorithm (Becker, 2010), a procedure was proposed that
searches through L just once to find edge subsets for the collection R′′. However, for
some instances, although R′′ covers all components of G′, these components cannot be
connected into a single alternating Hamiltonian cycle. This issue stems from the require-
ments for edges to form a subset, where this previous procedure allowed edges to be in
multiple components already covered by R′′. Therefore, we introduce Condition (iii),
which permits only one edge in a new subset R′′i to be in a component covered by R′′.
This prevents unnecessary additional edges from being included in R′, ensuring that the
components are linked to produce a single cycle. Fig. 7 shows the formation of R′′ us-
ing the original procedure, where the subset R′′2 contains edges in two components that
R′′ already covers. Although R′′ = {R′′1 , R′′2} covers all components of G′, the bridges
obtained from these subsets link C2 and C3 twice, thus connecting the four components
into two different components. Therefore, we replaced the initially proposed procedure
with BCR, which rectifies the issue and operates in a more efficient manner.

This concludes the Alternating Hamiltonian Construction (AHC) algorithm. The
pseudocode for the entire procedure is provided in Algorithm 2 which returns, for any
graph G modelling an instance M of the COP (as described at the beginning of this
section), an alternating Hamiltonian cycle in G if one exists.

2When searching for edges to produce the first subset, R′′1 , only Conditions (i) and (ii) are required
since R′′ = ∅.

12

v18 v17 v16 v15 v14 v13 v12 v11 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C1 C2 C3 C1 C2 C3 C4 C4

R′′1 R′′2

R′′1 : C1 C2 C3

R′′2 : C3 C4

v17 v16 v15

v2 v3 v4

v12 v11

v7 v8

v18 v16 v15 v17 v14 v13 v11 v12 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(b)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

(c)

v1 v5 v14 v2 v16 v13 v6 v3 v15 v12 v8 v10 v9 v11 v7 v4

4 21 53 9 61 48 26 13 57 44 32 39 35 41 29 17, , , , , , , ,() () () () () () () ()〈 〉T =

(d)

Figure 6: BCR creates a collection R′′ = {R′′1 , R′′2} of subsets containing edges in R′ that when re-
placed by edges from R\R′ connects the components of G′ into a single alternating Hamiltonian cycle.
Dashed green edges and dotted orange edges are the bridges from R′′1 and R′′2 respectively. The resulting
alternating path corresponds to a solution T . Note that (c) is the same cycle shown in Fig. 4b.

v18 v17 v16 v15 v14 v13 v12 v11 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C1 C2 C3 C1 C2 C3 C4 C4

R′′1 R′′2

R′′1 : C1 C2 C3

R′′2 : C2 C3 C4

v17 v16 v15

v2 v3 v4

v13 v12 v11

v6 v7 v8

v18 v16 v15 v17 v14 v12 v11 v13 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(b)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2

(c)

Figure 7: The procedure proposed by Becker (2010) creates subsets in R′′ each containing edges in both
C2 and C3, resulting in two cyclic components in G′ as opposed to a single alternating Hamiltonian
cycle.

For any instanceM of the COP, our AHC algorithm is able to determine the existence
of a solution and produce a solution, if one exists, in quadratic time as stated in the
following theorem:

13

Theorem 1. Let G = (V,B∪R) be a graph modelled from an instance M of cardinality
n of the COP. Then, AHC terminates in at most O(n2) time.

Proof. The first subprocedure, MCM, produces an initial matching R′ ⊆ R in at most
O(n2) time. Sorting the n+1 edges of R′ into a list L for the second subprocedure, BCR,
requires O(n log n) time. As G′ comprises a maximum of

⌊
n+1
2

⌋
components and each

subset R′′i created in BCR must contain at least two edges from R′, it follows that the
number of subsets in R′′ required to cover all components of G′ is bounded by

⌊
n+1
2

⌋
−1.

At least one new subset R′′i is created in each iteration of BCR, and removing edges from
L can be performed in constant time, meaning that the task of producing the collection
of subsets R′′ is of quadratic complexity O(n2). Up to n+1 edges in R′ may be replaced
with edges from R\R′, which can be executed in O(n) time. Consequently, AHC has an
overall worst case complexity of O(n2).

Algorithm 2 AHC (G = (V,B ∪R))

1: R′ ← MCM(G = (V,B ∪R))
2: if |R′| < n+ 1 then
3: not enough edges to form an alternating Hamiltonian cycle
4: infeasible, end

5: G′ = (V,B ∪R′) comprises z cyclic components
6: if z = 1 then
7: G′ is an alternating Hamiltonian cycle
8: feasible, end

9: R′′ ← BCR(G′ = (V,B ∪R′))
10: if R′′ covers all z components of G′ then
11: edges in R′′ are removed from R′ and replaced with edges from R\R′
12: G′ is an alternating Hamiltonian cycle
13: feasible, end
14: else
15: no suitable subset of edges R′ ⊆ R exists that can connect the components
16: infeasible, end

17: return either alternating Hamiltonian cycle or statement of infeasibility

As the AHC algorithm can solve instances of the COP, it follows that this polynomial-
time exact algorithm can also solve all instances of the sub-SCPP. That is, given any set
of items, we are able to find a feasible arrangement (if one exists) using AHC and pack
the items in the correct order and orientation into a bin.

3. Heuristics for the Score-Constrained Packing Problem

We now consider the multi-bin version of the sub-SCPP, the Score-Constrained Packing
Problem (SCPP) described in Section 1, in which a set I of n items are to be partitioned
into a set of bins S = {S1, S2, . . . , Sk} according to Constraints (1a)–(1c). Recall here
that a bin Sj ∈ F if and only if the total width of items in the bin, A(Sj) =

∑
i∈Sj

wi,

14

does not exceed the bin’s capacity W and the vicinal sum constraint (2) is fulfilled.
An optimal solution for the SCPP is a solution comprising the fewest number of bins
required to feasibly pack all items in I. The aim is to therefore minimise the number of
bins k.

The BPP is known to be NP-hard (Garey & Johnson, 1979), and since the SCPP gen-
eralises the BPP it follows that the SCPP is also NP-hard. Assuming P6=NP, we therefore
cannot hope to find an optimal solution for all instances of the SCPP in polynomial-
time. A well-known heuristic for the BPP is First-Fit (FF), a greedy algorithm that
packs each item one by one in some given order into the lowest-indexed bin such that
the capacity of the bin is not exceeded. It is known that there always exists at least
one ordering of the items such that FF produces an optimal solution, though identifying
such an ordering is itself NP-hard (Lewis, 2009). An improvement on FF is the First-Fit
Decreasing (FFD) heuristic, where items are considered in non-increasing order of size.
It has been proven that the worst case for FFD is 11

9 k + 6
9 , and that this bound is tight

(Dósa, 2007). Similar heuristics include Best-Fit (BF), in which each item is packed into
the fullest bin that can accommodate the item without being overfilled, and its offline
counterpart Best-Fit Decreasing (BFD). A comprehensive overview of these heuristics
and related methods can be seen in Coffman et al. (1984). More advanced heuristics
for the BPP have also been developed, such as the Minimum Bin Slack (MBS) heuristic
(Gupta & Ho, 1999), which focuses on packing each bin in turn rather than each item,
and modifications of MBS such as the Perturbation-MBS’ heuristic of Fleszar & Hindi
(2002).

For the BPP, a basic lower bound for k is the theoretical minimum, t = d
∑n

i=1wi/W e
(Martello & Toth, 1990). Note, however, that t will not perform as accurately for the
SCPP as it fails to account for the vicinal sum constraint. For example, given a set of n
items in which the largest score width bi < τ/2, it is clear that no pairs of score widths
can fulfil the vicinal sum constraint, meaning that any feasible solution will feature n
bins.

The vicinal sum constraint also introduces further differences between the BPP and
SCPP. The obvious disparity is that of the ordering and orientation of the items in the
bins: unimportant in the BPP, but vital for the feasibility of a solution for the SCPP.
Another distinction arises when attempting to modify solutions. In the BPP, a bin
remains feasible when an item is removed or a new item is added (provided the bin can
accommodate the item), whereas for the SCPP this may render a bin infeasible as the
new set of score widths may not abide by the vicinal sum constraint. Consequently,
heuristics for the BPP will need to be adapted in order to produce feasible solutions for
the SCPP.

It is worthwhile mentioning that other lower bounds exists in the literature for the
BPP (see, for example, Martello & Toth (1990) and Chan et al. (1998)); however, due
to the novelty of the SCPP we opted to analyse solutions to the problem using the basic
lower bound t for the BPP, as currently there does not exist a lower bound specifically
for the SCPP. Note that using a different lower bound would not alter the interpretation
of the strengths and weaknesses of different algorithms for the SCPP.

15

As the SCPP is a relatively new problem, few methods have been seen in literature.
Some basic heuristics were introduced by Hawa et al. (2018), two of which are based
on the FFD heuristic for the BPP. The Modified First-Fit Decreasing (MFFD) heuristic
performs in the same fashion as FFD with the additional step that an item i can only
be packed into a bin Sj if the score width on the end of Sj and one of i’s score widths,
ai or bi, meet the vicinal sum constraint. An advancement of this heuristic is MFFD+,
which incorporates the entire AHC algorithm. Rather than attempting to pack an item
i into the ends of a bin Sj , MFFD+ calls upon AHC to find a feasible ordering of all
items in Sj together with item i, i.e. AHC is used to determine the membership of F .
Clearly, MFFD+ is the superior of the two, as the application of AHC guarantees that
a feasible configuration of items in a bin will be found if it exists. To demonstrate this,
Fig. 8 compares solutions produced using MFFD and MFFD+ for the same instance of
the SCPP. Note that in this case MFFD+ has formed an optimal solution as it comprises
t = 6 bins.

631 359

48 68 26 37

615 336

4 54 43 47

561 328

48 63 16 31

525 327

3 42 44 17

321 305 207 150

13 47 51 12 69 48 22 8

211 192

23 33 68 22

200

14 18

(a) MFFD

48 68 26 37

359 631

26 37 68 48

615 336

4 54 47 43

328 561

16 31 63 48

525 327

3 42 44 17

305 211 321

12 51 23 33 47 13

150 192 207 200

8 22 68 22 48 69 18 14

(b) MFFD+

Figure 8: Solutions formed using the MFFD and MFFD+ heuristics. Here, |I| = 15, W = 1000, and
τ = 70. As the theoretical minimum t = 6 in this case, MFFD+ has produced an optimal solution.

4. An Evolutionary Algorithm for the Score-Constrained Packing Problem

In this section we introduce an evolutionary algorithm (EA) for the SCPP in order to
improve on the heuristics discussed in the previous section. An EA is a metaheuristic
algorithm inspired by evolution via natural selection. A set of candidate solutions to the
problem forms the initial population, and procedures emulating selection, reproduction,
recombination and mutation are then used to create new “offspring” solutions.

Clearly, in this problem the set of feasible packings F will be too large to enumerate
in all but the most trivial of instances. EAs are a suitable alternative to enumeration
and have been found to produce good results for a variety of grouping problems (Lewis &
Holborn, 2017; Falkenauer, 1996; Quiroz-Castellanos et al., 2015). Here, we investigate
three different group-based recombination operators within an EA framework which in-
cludes a local search procedure inspired by Martello & Toth (1990). The AHC algorithm

16

described in Section 2 is also integrated into the EA to solve instances of the sub-SCPP
as and when they occur.

4.1. Representation

In EAs, solutions to the problem are often represented or “encoded” using strings of
characters, integers, or binary values referred to as chromosomes, with the genes of each
chromosome relating to the individual components of the solution. The most obvious
encoding for grouping problems consists in assigning one gene per element: for exam-
ple, the chromosome (1,3,4,1,2,4) would represent a solution where the first and fourth
elements are in group 1, the fifth element is in group 2, the second element is in group 3
and the third and sixth elements are in group 4. However, this type of solution encoding
contradicts the Principle of Minimal Redundancy (Radcliffe et al., 1991) whereby each
possible feasible solution to the given problem instance should be represented by the
fewest number of distinct chromosomes so that the overall size of the search space is
reduced. It can be seen that the solution represented by the above chromosome can be
encoded using another entirely different chromosome by relabelling the groups, for exam-
ple (3,4,2,3,1,2). It then follows that, using this encoding scheme, a solution containing
k groups can be represented by k! distinct chromosomes.

Although there are various other encoding schemes for grouping problems (see, for
example, Falkenauer (1993)), in the SCPP it is crucial to know the ordering and orien-
tation of the individual items within each bin of a solution. Consequently, in our EA
framework we continue using the description of a solution S for an instance I of the
SCPP (see Section 3). Similar approaches have been used by Galinier & Hao (1999) and
Lewis & Holborn (2017).

4.2. Recombination

Recombination is used in EAs to generate new solutions by taking existing parent so-
lutions and combining parts of them to create offspring solutions. A recombination
operator determines which elements from each parent should be inherited by the off-
spring. The operators implemented in our EA start with a single offspring S = ∅, and
use two parent solutions, S1 and S2, to build the offspring solution. These operators
are designed to ensure all bins in the offspring are feasible, though they may result in a
partial offspring solution. In such cases, a repair procedure (described below) is used to
re-establish a full solution S.

Our first operator is based on the grouping genetic algorithm (GGA) of Falkenauer
& Delchambre (1992). First, the bins of the second parent solution S2 are permuted,
and two bins Si and Sj are selected randomly (where 1 ≤ i < j ≤ |S2|). All bins between
and including Si and Sj are then copied into the offspring S. Finally, GGA adds to the
offspring all bins from S1 that do not contain any items already present in the offspring.

The second operator we implemented is the alternating grouping crossover (AGX),
which is similar to that of Quiroz-Castellanos et al. (2015) proposed for the BPP. Start-
ing with the parent solution containing the fullest bin (breaking ties randomly), AGX
copies this bin into the offspring S. Then, bins containing any items in S are removed

17

from both S1 and S2. The operator then proceeds by copying the fullest bin from the
other parent solution into S, and bins are removed from both parents as before. AGX
continues to alternate between parents, selecting the fullest bin from each one until at
most min(|S1|, |S2|)− 1 bins have been added to the offspring solution.

Our final operator, AGX′, behaves in a similar manner to AGX; however rather than
choosing the fullest bin to copy into the offspring, AGX′ selects bins containing the most
items. Both AGX and AGX′ are based on the observation that in high quality solutions,
many of the bins will be well-filled. Thus, by selecting bins which are fuller or contain
more items from parents to copy into the offspring S, there is the potential to reduce
the number of bins in S, as fewer additional bins will be required to pack the remaining
items during the repair procedure.

As explained in the previous section, removing an item from a bin in a solution
for the SCPP may result in a violation of the vicinal sum constraint. Therefore, in
order to maintain feasibility of each bin, the operators need to disregard entire bins in
the parent solutions that contain items already in the offspring, rather than removing
individual items. These excluded bins, however, may also hold items that are not yet
present in the offspring S. Consequently, on completion of the recombination, S will be
a partial solution. To rectify this, the following repair procedure is implemented: first,
the MFFD+ heuristic described in Section 3 is applied using just the missing items to
form a second partial solution S ′. Then, both S and S ′ are used as input into a local
search procedure, which produces a full feasible offspring solution. Fig. 9 shows the
partial offspring S produced from two parent solutions using each of the recombination
operators, along with the individual items missing from each offspring.

359 631

26 37 68 48

615 336

4 54 47 43

328 561

16 31 63 48

525 327

3 42 44 17

305 211 321

12 51 23 33 47 13

150 192 207 200

8 22 68 22 48 69 18 14

S1

327 336 211

17 4 43 47 33 23

200 615

14 18 54 4

150 631 207

8 22 68 48 48 69

328 561

16 31 48 63

305 192 321

12 51 22 68 47 13

525 359

3 42 37 26

S2

4.3. Local Search

As previously mentioned, our local search method takes two partial solutions S and S ′
containing bins that, together, form a full solution containing all items in I. The aim of
this procedure is to strategically shuffle items between the bins of each partial solution.
Specifically, we seek to increase the fullness A(Sj) of bins Sj ∈ S while maintaining or
decreasing the number of items in these bins. As a result, items moved into S ′ will be
smaller and therefore easier to repack into bins in S later. The procedure begins by
permuting the bins in S and S ′, before attempting to exchange items in four stages:

(1) swapping a pair of items from a bin in S with a pair of items from a bin in S ′;

18

200 615

14 18 54 4

150 631 207

8 22 68 48 48 69

328 561

16 31 48 63

525 327

3 42 44 17

305 211 321

12 51 23 33 47 13

359

26 37

192

22 68

336

43 47

(a) GGA

359 631

26 37 68 48

328 561

16 31 48 63

615 336

4 54 47 43

305 192 321

12 51 22 68 47 13

525 327

3 42 44 17

150

8 22

211

23 33

200

26 37

207

48 69

(b) AGX

26 37 68 48

150 192 207 200

8 22 68 22 48 69 18 14

327 336 211

17 4 43 47 33 23

359 631

26 37 68 48

328 561

16 31 48 63

321

13 47

525

3 42

615

4 54

305

12 51

(c) AGX′

Figure 9: Partial offspring solutions and missing items created from parent solutions S1 and S2 using our
different recombination operators. In (a) GGA has copied bins S2, S3 and S4 from S2 to the offspring,
and in (b) and (c) S1 is the initial parent for both AGX and AGX′ as it contains both the fullest bin
and the bin with the most items.

(2) swapping a pair of items from a bin in S with an individual item from a bin in S ′;
(3) swapping individual items from bins in S and S ′; and

(4) moving an item from a bin in S ′ to a bin in S.

Note that during Stages (1)–(3), the width of the item(s) from S ′ must exceed the
width of the item(s) from S. In each stage, AHC is executed on the modified groups
of items in each bin, and the items are permanently moved only if AHC finds feasible
packings for both bins; thus, this local search procedure uses hill-climbing to improve
solutions. Other techniques such as simulated annealing and tabu search could also be
implemented, however the advantage our using our local search procedure is the quick
termination at a local optimum. Once an exchange occurs, the procedure immediately
proceeds to the next stage. This process is repeated until all four stages have been
conducted in succession with no changes to S or S ′. At this point, the MFFD+ heuristic
is applied to any items remaining in S ′, generating a new feasible partial solution S ′′.
Finally, the bins in S ′′ are moved into S, resulting in a full solution.

This method is based on the dominance criterion of Martello & Toth (1990) for the
BPP. Variations of this method can be seen in Falkenauer (1996), Levine & Ducatelle
(2004), Lewis (2009), and Lewis & Holborn (2017); however the addition of the vicinal
sum constraint will often result in fewer changes than seen in these previous implemen-
tations.

4.4. The Evolutionary Algorithm Framework

Our EA for the SCPP begins by producing an initial population, with one solution
created using MFFD+ and the rest using MFFR+ (where items are packed in random
order). Each solution is then mutated and inserted into the population. The mutation
of a solution S consists of permuting the bins, moving 1 < r < |S| randomly selected

19

bins from S into a set S ′, and then executing local search on these two partial solutions
to produce a full feasible solution S. Each iteration of the EA involves selecting two
parent solutions S1 and S2 from the population at random, applying a recombination
operator to produce an offspring solution S, then finally mutating S before replacing
the least fit of the two parents in the population.

As with other BPP algorithms, we use the following function introduced by Falke-
nauer & Delchambre (1992) to calculate the fitness of a solution S:

f(S) =

∑
Sj∈S(A(Sj)/W)2

|S|
. (3)

In general, this function assigns higher values to solutions using fewer bins; however,
there are exceptions. For the BPP it can be shown that, in all cases, if |S1| < |S2| then
f(S1) > f(S2). Hence a global optimum for f(S) corresponds to a solution using the
minimum number of bins. However, this rule is dependent on solutions not having more
than one bin that is less than half-full (Falkenauer, 1998). This is easy to ensure with
the BPP, but is not always the case with the SCPP due to the vicinal sum constraint.
In our case it is therefore necessary to use f(S) only as a tie-breaker between solutions
using the same number of bins.

4.5. Experimental Results - EA

Our EA was executed on a set of problem instances for the SCPP created using a prob-
lem instance generator. The set contains two types of problem instances: “artificial”,
in which the items are strongly heterogeneous; and “real”, where items are weakly het-
ergeneous. Each type contains three subsets of 1000 instances for 100, 500, and 1000
items, giving a total of 6000 problem instances. All items have widths wi ∈ [150, 1000]
and score widths ai, bi ∈ [1, 70] selected uniform randomly, and equal height H = 1. For
the real instances, the number of item types was chosen uniform randomly between 10
and 30, and the number of items within each group also assigned uniform randomly.
All problem instances used in our experiments and the problem instance generator are
available online (Hawa, 2019b).

Two different bin sizes, W = 2500 and 5000 (also of height H = 1) were used in the
experiments in order to alter the number of items per bin, and the minimum scoring
distance τ was set to 70mm – the industry standard. After preliminary experiments, we
settled for an initial population containing 25 candidate solutions. Across all instances,
the EA was granted a fixed time limit of 600 seconds. The MFFD+ heuristic described
in Section 3 was also executed on the same set of problem instances to provide com-
parative results. Table 2 displays the results obtained from the experiments using the
different recombination operators and bin sizes. A full breakdown of these results can
be found online along with all of our source code (Hawa, 2019a).3 Note that there are

3All experiments were implemented in C++ and executed on Windows machines with Intel Core
i5-6500 3.20GHz processors and 8GB of RAM.

20

no benchmark instances available for the SCPP, and so we compare our results with the
lower bound t provided in Section 3.

Table 2: Best solutions obtained from the EA using the GGA, AGX, and AGX′ recombination operators,
and from the MFFD+ heuristic. Figures in bold indicate the best results for each instance class. Asterisks
indicate statistical significance at ≤ 0.05(∗) and ≤ 0.01(∗∗) levels according to a two-tailed paired t-test
and two-tailed McNemar’s test for the |S| and %t columns respectively. Note that the statistical tests
were only performed on the recombination operators.

GGA AGX AGX′ MFFD+

Type, W |I| ta |S|b %tc |S| %t |S| %t |S| %t

a, 2500 100 23.32 23.36± 4.6 97.4 ∗∗23.34± 4.5 ∗∗98.6 23.36± 4.5 97.2 28.46± 10.4 2.6
500 114.94 116.36± 2.2 33.4 116.67± 2.2 27.4 ∗∗116.28± 2.2 35.0 132.65± 4.9 0.0

1000 229.44 233.93± 1.6 1.5 234.58± 1.6 1.3 ∗∗233.73± 1.6 2.3 258.39± 3.5 0.0

a, 5000 100 11.92 ∗∗12.27± 10.0 ∗∗84.5 12.31± 10.2 82.7 12.32± 10.2 82.0 19.88± 18.3 0.7
500 57.72 ∗∗61.91± 4.9 6.0 62.44± 5.1 4.5 62.50± 5.0 4.9 89.54± 9.3 0.0

1000 114.97 ∗∗126.37± 4.0 0.0 126.85± 3.9 0.0 127.08± 4.0 0.0 172.61± 7.1 0.0

r, 2500 100 23.47 25.99± 21.3 57.3 26.07± 21.5 57.0 ∗25.95± 21.1 57.0 35.42± 23.1 1.6
500 115.24 133.94± 21.3 4.7 134.25± 21.5 5.9 133.99± 21.2 4.1 177.25± 21.2 0.0

1000 229.95 269.99± 21.6 0.1 270.17± 21.7 0.4 270.03± 21.6 0.1 355.04± 21.2 0.0

r, 5000 100 11.98 17.51± 47.5 ∗48.0 17.54± 47.3 46.8 17.54± 47.2 46.2 29.61± 32.7 0.5
500 57.87 ∗∗93.59± 43.0 8.7 94.18± 43.0 8.6 93.97± 42.9 8.0 153.42± 28.9 0.0

1000 115.23 ∗∗192.38± 42.7 3.1 192.92± 42.8 2.6 192.79± 42.7 3.0 308.64± 28.7 0.0

a t = d
∑n

i=1 wi/We (mean from 1000 instances).
b Number of bins per solution (mean from 1000 instances plus or minus the coefficient of variation (%)).
c Percentage of instances in which the solution comprises the theoretical minimum of t bins.

It is immediately evident that all EA versions outperform the MFFD+ heuristic, with
superior averages in all cases. As |I| and W are increased, the local search procedure
takes longer as the rise in both the number of bins in solutions and the number of
items per bins results in many more applications of AHC; fewer iterations of the EA are
performed. For example, the average number of iterations ranged from 360,000 to 1200
when W = 2500 for artificial instances using 100 and 1000 items respectively, whilst the
corresponding figures for real instances using W = 5000 were 55,000 and 65 iterations.
Consequently, we see that the difference between |S| and the theoretical minimum t also
increases as the number of items increases, more so for the larger bin size. The reduction
in the number of EA iterations means that the evolution of the population is restricted
which prevents better solutions from being achieved, suggesting that the algorithm is
less accurate.

We also observe that the coefficient of variation is considerably higher for real in-
stances than for artificial instances. It is clear that t will be less accurate for real
instances due to the lack of item diversity and so, unlike with artificial instances, for
each individual real problem instance the number of bins in the final solution may differ
drastically from one another, resulting in a higher coefficient of variation.

The different recombination operators also seem to perform well with different types
of problem instance. GGA consistently produces the best results for both artificial and
real instances using the larger bin size, where high quality solutions contain approxi-
mately 8.6 items per bin on average. Here, it seems that the lack of bias in choice of bins
to inherit allows more of the solution space to be explored, resulting in better solutions

21

being found. AGX′ also appears to perform well when W = 2500, where the best solu-
tions average 4.3 items per bin. With regards to the average number of bins |S|, AGX′

produces the best solutions for three of the six instance classes using the smaller bin
size. For the remaining three classes, the result from AGX′ uses at most 0.05 bins more
than the best result found. By selecting bins containing the most items, AGX′ aims to
build solutions comprising fewer yet fuller bins, thus AGX′ is focused on higher quality
individual bins as opposed to entire solutions.

On the whole, AGX generates the least favourable results, particularly for real in-
stances where it is outperformed by GGA and AGX′ in all six instance classes with
regards to the average number of bins per solution |S|. Selecting bins based on fullness
may mean choosing bins containing fewer items, thus requiring extra bins to pack all
items. However, note that AGX yields the highest number of solutions comprising t bins
in three of the instance classes, suggesting a high variance in the quality of solutions
produced.

It was also observed that instances in classes where solutions comprise a smaller
number of items per bin on average (i.e. when W = 2500) converged early in runs,
whereas classes with a higher number of items per bin take much longer to converge;
some may even benefit from extended run times.

5. Conclusion and Further Work

This paper addressed the Score-Constrained Packing Problem (SCPP), a one-dimensional
packing problem which involves packing items into a minimal number of bins such that
the order and orientation of items within each bin satisfies the vicinal sum constraint.
We began by describing the Alternating Hamiltonian Construction (AHC) algorithm for
the sub-SCPP, an exact polynomial-time algorithm that can identify a feasible packing
of items in a single bin. We then presented an evolutionary algorithm (EA) framework
for the SCPP comprising a local search procedure and three distinct recombination
operators. Experimental analysis comparing the recombination operators showed that
selecting bins randomly (GGA) and selecting bins containing a higher number of items
(AGX′) is preferable over simply chooding bins based on the overall capacity (AGX), as
GGA encourages a wider search of the solution space, whilst AGX′ prioritises bins where
the vicinal sum constraint is fulfilled between as many items as possible. Although AGX
is an obvious choice for the classical BPP, its poor results show the importance of the
vicinal sum constraint, which is a focal point of the SCPP.

One possible extension of the work in this paper is to use the EA to produce a pool of
high quality solutions or bins, which could then be used to solve the Minimum Cardinality
Exact Cover Problem (see Hawa (2020)) and find a superior solution using a commercial
solver. Another beneficial avenue involves seeking a more accurate lower bound t for the
SCPP which takes into account the proportion of score widths that satisfy the vicinal
sum constraint with respect to the minimum scoring distance τ . Finally, it would be
interesting to study the effects of combining or alternating the use of the GGA and AGX′

recombination operators within the EA, and identifying which operator should be used
in each iteration depending on the parent solutions selected.

22

References

Aardal, K. I., Van Hoesel, S. P., Koster, A. M., Mannino, C., & Sassano, A. (2007). Mod-
els and solution techniques for frequency assignment problems. Annals of Operations
Research, 153 , 79–129.

Becker, K. H. (2010). Twin-Constrained Hamiltonian Paths on Threshold Graphs – An
Approach to the Minimum Score Separation Problem. PhD Thesis London School of
Economics.

Becker, K. H., & Appa, G. (2015). A Heuristic for the Minimum Score Separation Prob-
lem, a Combinatorial Problem Associated with the Cutting Stock Problem. Journal
of the Operational Research Society , 66 , 1297–1311.

Belov, G., & Scheithauer, G. (2002). A cutting plane algorithm for the one-dimensional
cutting stock problem with multiple stock lengths. European Journal of Operational
Research, 141 , 274–294.

Bennell, J. A., Cabo, M., & Martinez-Sykora, A. (2018). A beam search approach to
solve the convex irregular bin packing problem with guillotine cuts. European Journal
of Operational Research, 270 , 89–102.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: Algorithmic
strategies and applications. Journal of the Operational Research Society , 47 , 373–383.

Chan, L. M. A., Simchi-Levi, D., & Bramel, J. (1998). Worst-case analyses, linear
programming and the bin-packing problem. Mathematical Programming , 83 , 213–
227.

Coelho, K. R., Cherri, A. C., Baptista, E. C., Jabbour, C. J. C., & Soler, E. M. (2017).
Sustainable operations: The cutting stock problem with usable leftovers from a sus-
tainable perspective. Journal of cleaner production, 167 , 545–552.

Coffman, E. G., Garey, M. R., & Johnson, D. S. (1984). Approximation Algorithms for
Bin-Packing – An Updated Survey. In Algorithm Design for Computer System Design
(pp. 49–106). Springer.

Csirik, J., & Totik, V. (1988). Online algorithms for a dual version of bin packing.
Discrete Applied Mathematics, 21 , 163–167.

Cui, Y., Song, X., Chen, Y., & Cui, Y.-P. (2017). New model and heuristic solution
approach for one-dimensional cutting stock problem with usable leftovers. Journal of
the Operational Research Society , 68 , 269–280.

Cui, Y., Yang, L., & Chen, Q. (2013). Heuristic for the rectangular strip packing problem
with rotation of items. Computers & Operations Research, 40 , 1094–1099.

23

Dósa, G. (2007). The tight bound of first fit decreasing bin-packing algorithm is
FFD(I) ≤ 11/9OPT (I) + 6/9. In International Symposium on Combinatorics, Algo-
rithms, Probabilistic and Experimental Methodologies (pp. 1–11). Springer.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17 ,
449–467.

Falkenauer, E. (1993). The grouping genetic algorithms: widening the scope of the GA’s.
JORBEL-Belgian Journal of Operations Research, Statistics, and Computer Science,
33 , 79–102.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics, 2 , 5–30.

Falkenauer, E. (1998). Genetic algorithms and grouping problems. John Wiley & Sons,
Inc.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin packing and line
balancing. In International Conference on Robotics and Automation (pp. 1186–1192).
IEEE.

Fleszar, K., & Hindi, K. S. (2002). New heuristics for one-dimensional bin-packing.
Computers & Operations research, 29 , 821–839.

Galinier, P., & Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3 , 379–397.

Garey, M. R., Graham, R. L., & Ullman, J. D. (1972). Worst-case analysis of memory
allocation algorithms. In Proceedings of the fourth annual ACM symposium on Theory
of computing (pp. 143–150). ACM.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. WH Freeman Co., San Francisco.

Garraffa, M., Salassa, F., Vancroonenburg, W., Vanden Berghe, G., & Wauters, T.
(2016). The one-dimensional cutting stock problem with sequence-dependent cut
losses. International Transactions in Operational Research, 23 , 5–24.

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-
stock problem. Operations research, 9 , 849–859.

Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the cutting
stock problem—part ii. Operations research, 11 , 863–888.

Goulimis, C. (2004). Minimum Score Separation - an open combinatorial problem asso-
ciated with the cutting stock problem. Journal of the Operational Research Society ,
55 , 1367–1368.

24

Gupta, J. N., & Ho, J. C. (1999). A new heuristic algorithm for the one-dimensional
bin-packing problem. Production planning & control , 10 , 598–603.

Häggkvist, R. (1977). On F-Hamiltonian graphs. University of Ume̊a, Department of
Mathematics.

Haouari, M., & Serairi, M. (2009). Heuristics for the variable sized bin-packing problem.
Computers & Operations Research, 36 , 2877–2884.

Hawa, A. L. (2019a). Evolutionary Algorithm (EA) source code and results for the article
“Exact and Approximate Methods for the Score-Constrained Packing Problem”. URL:
https://doi.org/10.5281/zenodo.3374418. doi:10.5281/zenodo.3374418.

Hawa, A. L. (2019b). Problem instance generator for the Score-Constrained Packing
Problem. URL: https://doi.org/10.5281/zenodo.2599621. doi:10.5281/zenodo.
2599621.

Hawa, A. L. (2020). Exact and Evolutionary Algorithms for the Score-Constrained Pack-
ing Problem. PhD Thesis Cardiff University.

Hawa, A. L., Lewis, R., & Thompson, J. M. (2018). Heuristics for the Score-Constrained
Strip-Packing Problem. In International Conference on Combinatorial Optimization
and Applications (pp. 449–462). Springer.

He, K., Jin, Y., & Huang, W. (2013). Heuristics for two-dimensional strip packing
problem with 90◦ rotations. Expert Systems with Applications, 40 , 5542–5550.

He, K., Tole, K., Ni, F., Yuan, Y., & Liao, L. (2021). Adaptive large neighborhood
search for solving the circle bin packing problem. Computers & Operations Research,
127 , 105140.

Hifi, M. (1998). Exact algorithms for the guillotine strip cutting/packing problem. Com-
puters & Operations Research, 25 , 925–940.

Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations (pp. 85–103). Springer.

Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., & Nagamochi, H. (2009). Exact
algorithms for the two-dimensional strip packing problem with and without rotations.
European Journal of Operational Research, 198 , 73–83.

Kröger, B. (1995). Guillotineable bin packing: A genetic approach. European Journal
of Operational Research, 84 , 645–661.

Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search for bin
packing and cutting stock problems. Journal of the Operational Research Society , 55 ,
705–716.

25

https://doi.org/10.5281/zenodo.3374418
http://dx.doi.org/10.5281/zenodo.3374418
https://doi.org/10.5281/zenodo.2599621
http://dx.doi.org/10.5281/zenodo.2599621
http://dx.doi.org/10.5281/zenodo.2599621

Lewis, R. (2009). A general-purpose hill-climbing method for order independent mini-
mum grouping problems: A case study in graph colouring and bin packing. Computers
& Operations Research, 36 , 2295–2310.

Lewis, R. (2015). A guide to graph colouring . Springer.

Lewis, R., & Holborn, P. (2017). How to Pack Trapezoids: Exact and Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 21 , 463–476.

Lewis, R., Song, X., Dowsland, K., & Thompson, J. (2011). An investigation into two
bin packing problems with ordering and orientation implications. European Journal
of Operational Research, 213 , 52–65.

Liu, Q., Cheng, H., Tian, T., Wang, Y., Leng, J., Zhao, R., Zhang, H., & Wei, L. (2021).
Algorithms for the variable-sized bin packing problem with time windows. Computers
& Industrial Engineering , 155 , 107175.

Lodi, A., Martello, S., & Vigo, D. (1999). Approximation algorithms for the oriented
two-dimensional bin packing problem. European Journal of Operational Research,
112 , 158–166.

Ma, N., Liu, Y., & Zhou, Z. (2019). Two heuristics for the capacitated multi-period
cutting stock problem with pattern setup cost. Computers & Operations Research,
109 , 218–229.

Mahadev, N. V., & Peled, U. N. (1994). Longest cycles in threshold graphs. Discrete
Mathematics, 135 , 169–176.

Malaguti, E., Monaci, M., & Toth, P. (2008). A metaheuristic approach for the vertex
coloring problem. INFORMS Journal on Computing , 20 , 302–316.

Martello, S., & Toth, P. (1990). Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28 , 59–70.

do Nascimento, D., de Araujo, S., & Cherri, A. (2020). Integrated lot-sizing and one-
dimensional cutting stock problem with usable leftovers. Annals of Operations Re-
search, (pp. 1–19).

Ntene, N., & van Vuuren, J. H. (2008). A survey and comparison of heuristics for the
2D oriented on-line strip packing problem. ORiON , 24 , 157–183.

Poldi, K. C., & Arenales, M. N. (2009). Heuristics for the one-dimensional cutting stock
problem with limited multiple stock lengths. Computers & operations research, 36 ,
2074–2081.

Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C., Huacuja, H.
J. F., & Alvim, A. C. (2015). A grouping genetic algorithm with controlled gene
transmission for the bin packing problem. Computers & Operations Research, 55 ,
52–64.

26

Radcliffe, N. J. et al. (1991). Forma analysis and random respectful recombination. In
ICGA (pp. 222–229). volume 91.

Rekiek, B., De Lit, P., Pellichero, F., Falkenauer, E., & Delchambre, A. (1999). Applying
the equal piles problem to balance assembly lines. In International Symposium on
Assembly and Task Planning (pp. 399–404). IEEE.

da Silveira, J. L., Miyazawa, F. K., & Xavier, E. C. (2013). Heuristics for the strip
packing problem with unloading constraints. Computers & Operations Research, 40 ,
991–1003.

Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based
examination timetabling system. Computers & Operations Research, 25 , 637–648.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183 , 1109–1130.

Wu, D., & Yan, C. (2016). A balance approach for the one-dimensional multiple stock
size cutting stock problem with setup cost. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 230 , 2182–2189.

Xavier, E., & Miyazawa, F. K. (2008). A one-dimensional bin packing problem with
shelf divisions. Discrete Applied Mathematics, 156 , 1083–1096.

Yuan, Y., Tole, K., Ni, F., He, K., Xiong, Z., & Liu, J. (2021). Adaptive simulated
annealing with greedy search for the circle bin packing problem. arXiv preprint
arXiv:2108.03203 , .

Zhou, C., Wu, C., & Feng, Y. (2009). An exact algorithm for the type-constrained and
variable sized bin packing problem. Annals of Operations Research, 172 , 193.

27

	Introduction
	Problem Definitions

	Solving the Score-Constrained Packing Sub-Problem
	Modelling the Constrained Ordering Problem
	The Alternating Hamiltonian Construction Algorithm
	Finding a matching R' R
	Modifying the matching R' R

	Heuristics for the Score-Constrained Packing Problem
	An Evolutionary Algorithm for the Score-Constrained Packing Problem
	Representation
	Recombination
	Local Search
	The Evolutionary Algorithm Framework
	Experimental Results - EA

	Conclusion and Further Work

