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Abstract

To perform efficient simulation of the integrated gas and energy system’s operation and
explore the interaction between natural gas and electric power, an energy flow analysis tool
with high accuracy and computational efficiency is needed. The commonly used steady-
state analysis method is not applicable in computing the pipeline dynamics of natural gas
networks, and it is computationally expensive for most transient analysis methods to obtain
high-resolution solutions. In addition, conventional methods generate energy flow profiles
at pre-set time intervals, which are not compatible with continuous-time applications. To
bridge these gaps, this paper proposes a dynamic energy flow analysis method applied in in-
tegrated gas and electricity systems using the holomorphic embedding method. The system’s
state equations are formulated using ordinary differential equations based on a simplified
natural gas network model and are reconstructed by time-embedded holomorphic function-
s. By solving these functions, the continuous-time profiles of the energy flow of the whole
system can be readily generated with a moderate computational burden, and the pipeline
dynamics can be addressed. The simulation results of the case studies validate the improved
computational performance of the proposed method over that of a conventional ordinary d-
ifference equation solver. In both small-scale and large-scale cases, the proposed method can
capture the transient process in every state variable in response to disturbances accurately
and efficiently.

Keywords: Energy flow analysis, Holomorphic embedding method, Integrated gas and
electricity system, Pipeline dynamics

1. Introduction

With the increasing demand for flexibility caused by the growing proportion of intermit-
tent renewable energy, natural gas (NG) in the power supply sector has been increasingly
important for decades. In the UK, natural gas has been pivotal to electricity generation,
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providing approximately 30 percent of fuel in 2020 [1]. In the United States, natural gas
has represented more than 25 percent of all primary energy consumption during the past
decade [2]. This trend has propelled the integration of NG facilities into power systems, from
gas-fired generators to power-to-gas equipment, resulting in the development of integrated
gas and electricity systems (IGESs) in terms of both scale and complexity. To keep the
operation of an IGES secure and economical, it is necessary to perform a comprehensive,
accurate and efficient energy flow analysis (EFA) for the entire system.

The EFA lays a foundation for other applications, including planning [3, 4], optimal
operation [5, 6], and reliability assessment [7, 8]. The objective of an EFA is to obtain the
operating states of an IGES based on the known network configurations and demand/supply
data. It provides the system operators with comprehensive knowledge of the gas flow rates,
nodal pressures and nodal voltages of the IGES, and reflects the evolution of the system’s
states in response to changes in operating conditions. Many studies on IGESs employ steady-
state natural gas network (NGN) models to reduce the modelling complexity [9, 10, 11].
However, the steady-state models do not consider the pipeline dynamics and cannot de-
pict the IGES’s evolution when a disturbance occurs. Especially when the system is faced
with abrupt changes, operating states are likely to oscillate in a short time period. Failure
to capture this intermediate transient process might cause obvious computation deviation-
s, which may lead to inappropriate actions taken by the system operators. Therefore, a
continuous-time EFA method that precisely describes pipeline dynamics should be adopted
in the EFA.

In recent years, more advanced models have been adopted instead, i.e., steady-state mod-
els considering linepack [12], quasi-dynamic models [13] and transient models [14, 15]. In
pursuit of higher fidelity, transient models are drawing increasing attention. For the transient
analysis of NG sectors in IGESs, the gas propagation along each pipeline is depicted using
a one-dimensional isothermal model, which is represented by partial differential equations
(PDEs) [16], and various methods have been utilized to solve PDEs. Numerical methods are
commonly used, including the method of characteristics [17], the finite element method [18],
the finite difference method (FDM) [19, 20] and the finite volume method [16]. There are
some advanced methods that have been recently proposed, including the improved FDM [21]
and also some intelligent algorithms [22] using training data obtained by FDM. However, the
accuracy of these methods depends on the resolution of spatial and temporal discretization,
and sometimes the pursuit of higher fidelity may cause a heavy computational burden. As
an alternative, the Laplace transform method [23] has difficulties handling nonlinear items
in NGN equations. Converting PDEs into ordinary differential equations (ODEs) is used
as well [24, 25]. In the electric analogy method, a set of first-order ODEs are generated
based on the analogous model of resistance and capacitance in electric circuit theory [26].
There are also other ODE-based models of NGN [27][28] that have accuracy comparable to
the PDE model, but are mainly used in the optimization problems (i.e., the optimal control
of gas compressors and the economic dispatch of IGESs). A linepack depletion model for
NGNs is developed based on three alternative ODE simulations, effectively characterizing
the survival time of NGNs under contingencies [29]. The outputs of most current dynamic
simulation methods are still discrete-time profiles of system operation at pre-set time inter-
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vals rather than continuous-time depictions. When fine-resolution profiles of energy flow are
required, these methods need to either estimate the energy flow using interpolation or per-
form computation frequently. When a transient model of NGNs is adopted, the increasing
computational complexity makes it challenging to balance accuracy and efficiency.

Recently, the holomorphic embedding method (HEM) has been developed to perform
fast computation with better convergence and competent accuracy [30, 31]. In addition
to power flow analysis [32, 33], voltage stability assessment [34] and network equivalents
[35], the HEM has been explored in applications including the dynamic simulation of power
systems. In [36], a holomorphic embedding formulation of an induction motor model in the
time domain is developed and applied in power systems to perform voltage stability analysis.
In [37], the HEM-based approach is extended to the dynamic simulation of power systems
under faults involving a set of differential algebraic equations (DAEs). The application of
HEM has been extended into the optimization of integrated distribution energy systems
[38] and the steady-state analysis of IGES [39]. However, the possibility of employing this
method in the dynamic EFA of the NG sectors has not been explored yet. HEMs have
great potential in solving ODE or DAE problems of power systems and have been proved
applicable in steady-state NGN computation, which may shed some light on the transient
analysis of pipeline networks such as NGNs.

In this paper, a novel EFA method for IGESs with transient NGN models is developed
based on the idea of the HEM, which will help obtain detailed dynamic process of IGES.
First, the IGES model consisting of the steady-state electric power system (EPS) model, the
transient NGN model and coupling units is formulated by incorporating the ODEs into the
NGN model. Then, the IGES energy flow equations are reformulated by embedding a set
of time-dependent holomorphic functions. A recursive procedure for solving the unknown
coefficients of holomorphic functions and a multistage computation scheme for dynamic
simulation are developed. The proposed method is tested in two IGES cases with different
operating conditions and analysed in terms of accuracy and speed. The contributions of this
paper are summarized as follows:

1. An IGES model is reformulated using holomorphic functions based on the idea of
holomorphic embedding. Compared with our previous work [39], this paper adopts
an ODE-based transient NGN model considering the dynamics of NG pipelines, and
time-dependent holomorphic functions are used to reflect the time-varying operating
states of an IGES.

2. A dynamic gas flow analysis method is developed, incorporating a recursive solving
procedure and a multistage computation scheme. To the best of our knowledge, this
is the first attempt to extend the HEM to the solution of dynamic energy flow anal-
ysis of NGNs. Compared with other recently-proposed methods, this method avoids
the temporal discretization and only needs to solve algebraic equations during the
whole calculation, producing accurate results while maintaining a low computational
complexity.

3. A combined dynamic energy flow analysis algorithm for IGESs is proposed and tested
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under different operating conditions. This method yields an accurate continuous-
time profiling of IGES energy flow, reflecting the transient process after a disturbance
occurs.

The remainder of this paper is organized as follows: Section II formulates the IGES model
for transient NGN models. Section III develops the HEM formulations and solution proce-
dures for IGESs. Case studies are performed in Section IV to evaluate the computational
capability of the proposed method. Finally, conclusions are given in Section V.

2. Modelling of Integrated Gas and Electricity Systems

An IGES consists of EPSs, NGNs, and the coupling units connecting these two sectors
(as shown in Fig. 1). In an NGN, natural gas is supplied by gas wells or storage facilities,
transported via pipelines and delivered to consumers. In an EPS, power is generated by
generation units and delivered to consumers through transmission lines. The power and gas
sectors are interconnected by coupling units such as gas-fired generators, power-consuming
compressors, and power-to-gas equipment.

Figure 1: The configuration of an IGES

2.1. Dynamic Modelling of Natural Gas Networks

In this section, descriptions of single-pipe gas flow equations and multi-pipe network
constraints are presented to build a comprehensive NGN model.

2.1.1. Single-Pipe Equations

The gas flow inside a pipe can be described by isothermal Euler equations. Assuming that
the environmental temperature is fixed and the pipeline is horizontal, the mass conservation
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and momentum balance equations can be written as:

∂p

∂t
= −c

2

A

∂M

∂x
, (1)

∂M

∂t
= −A∂p

∂x
− λc2

2AD

M2

p
, (2)

where p and M represent the gas pressure and gas flow rate along this pipe, respectively,
and both variables are functions of time t and length x; D, A, λ and c represent the pipe
diameter, pipe cross-sectional area, pipe roughness and sound velocity in gas, respectively.

The boundary conditions are set on the basis of p(t, 0) = p0(t), M(t, 0) = M0(t), p(t, L) =
pL(t) or M(t, L) = ML(t) (the subscripts 0 and L represent the inlet and outlet of the pipe)
based on the actual operation setting [27].

Using spatial discretization, we divide a pipeline of length L into N segments with the
length of each segment being ln = L/N (as shown in Fig. 2). The gas flow rates at the
inlet and outlet of each segment (for example, segment b) are denoted as M in

b and Mout
b ,

respectively. The pressures on the inlet and outlet of each segment are denoted as pinb and
poutb .

Figure 2: The configuration of the gas pipeline’s spatial discretization

By integrating the partial differential terms p and M with respect to the distance l using
the trapezoid rule, (1) and (2) can be converted into an ODE form, with derivatives of time t
only [29]. The equations for an individual segment of the pipeline can be written as follows:

1

2

(
dpinb
dt

+
dpoutb

dt

)
=

c2

Ablb

(
M in

b −Mout
b

)
, (3)

1

2

(
dM in

b

dt
+

dMout
b

dt

)
=
Ab

lb

(
pinb − poutb

)
− λc2

4AbDb

(
M in

b +Mout
b

)2
pinb + poutb

. (4)

2.1.2. Multi-pipe Network Modelling

A multi-pipe NGN model is constructed from pipelines, nodes and compressors. Natural
gas is supplied at source nodes (by gas wells or gas storage stations) and transported via
pipelines to local gas consumers. Considering the long distances between nodes in some
large-scale NGNs, compressors are commonly installed to compensate for the pressure loss
due to the friction inside the pipelines.
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For each node, the gas flow balance of inflowing and outflowing pipelines should be
maintained. With the gas demand at each node written as MD

i,t and the gas supply at each
node written as MS

i,t, the flow balance equation can be written as:∑
Ain

i,bM
in
b,t +

∑
Aout

i,b M
out
b,t = MS

i,t −MD
i,t, ∀i ∈ INGN,∀b ∈ PNGN,∀t ∈ T , (5)

where MS
i,t and MD

i,t are the supply and demand on Node i at time t; Ain
i,b and Aout

i,b are the
nodal-line incidence matrix elements for inflowing and outflowing pipelines, respectively;
INGN and PNGN are the index collections of nodes and pipelines in NGNs, respectively; and
T is the index collection of time periods.

For modelling pipelines installed with compressors, two nodes are added at the inlet and
outlet of the compressor, dividing the original pipeline into three segments. As shown in Fig.
3, Pipe b3 is a virtual pipeline with no actual length, while the other two segments, Pipe b1
and Pipe b2, replace the original pipeline and maintain the same gas dynamic characteristics.
The pressure at the outlet of a compressor is proportional to the pressure at the inlet of the
compressor, described as:

pk1,t = RC
b,tpk2,t, ∀t ∈ T ,∀b ∈ PNGN-COMP, (6)

where k1 and k2 are the node indices of the inlet and outlet of the compressor on Pipe
b, respectively; pk1,t and pk2,t are the inlet pressure and outlet pressure of the compressor,
respectively; RC

b,t is the compression ratio; and PNGN-COMP is the index collection of pipelines
equipped with compressor in NGNs.

(a) Original pipeline (b) Newly-discretized pipeline

Figure 3: The modelling of a compressor-equipped pipeline in the natural gas network

For networks with more than one source, there is at least one node with multiple inflowing
pipelines (denoted as the “infuse” node). In such a case, an additional constraint is needed
to enable gas flow analysis. The outlet pressure for each pipe that flows into the same

“infuse” node should remain the same. With
dpoutb

dt
= 2c2

Ablb

(
M in

b −Mout
b

)
− dpinb

dt
from (3), the

constraint for an “infuse” node with two inflowing pipes (b1 and b2) can be written as:

2c2

Ab1lb1

(
M in

b1
−Mout

b1

)
−

dpinb1
dt

=
2c2

Ab2lb2

(
M in

b2
−Mout

b2

)
−

dpinb2
dt

. (7)

Combined with boundary conditions for the ODE-form equations ((3), (4) and (7)) and
the algebraic equations ((5) and (6)) for the NGN constraints, the multi-pipe model can be
depicted as a set of DAEs.
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2.2. Steady-State Modelling of Electric Power Systems
The time scale of an EPS is small due to the fast transmission of electromagnetic and

mechanical-electrical disturbances, making the transient process of electric power systems
much shorter than that of NGNs [40]. Hence, a steady-state power flow model is capable of
depicting the operation state of an EPS in the combined analysis of IGESs. The steady-state
model of an EPS is represented by the following equations:

Vi
∑

j∈IEPS

Vj(Gij cos θij +Bij sin θij) = PG
i − P L

i , ∀i ∈ IEPS, (8)

Vi
∑

j∈IEPS

Vj(Gij sin θij −Bij cos θij) = QG
i −QL

i , ∀i ∈ IEPS, (9)

where PG
i and P L

i represent the active power generation and consumption, respectively; QG
i

and QL
i represent the reactive power generation and consumption at Bus i, respectively; Gij

and Bij are the elements in the conductance matrix and susceptance matrix, respectively;
and IEPS is the index collection of buses in the EPS.

2.3. Coupling Units
The connection between the NG sector and the EP sector is usually made by electricity-

consuming compressors, gas-fired turbines and power-to-methane equipment.
Assumed that the power consumed by the compressor on Pipe b is supplied by Bus i,

then the power consumption can be calculated using the equation :

PC
i,t = CC

b,tM
C
b,t, ∀t ∈ T , (10)

where CC
b,t is a constant representing the composition of the supercompressibility factor,

compressor parasitic efficiency, nodal temperature, specific heat ratio of natural gas, com-
pression process efficiency, etc.; MC

k,t is the gas flow rate through the pipe equipped with
compressor k.

For a gas-fired turbine at Node k that supplies the generator at Bus i in the EPS, its
gas consumption can be calculated using the equation below:

MGT
k,t = αi

(
PGT
i,t

)2
+ βiP

GT
i,t + γi, ∀t ∈ T , (11)

where MGT
k,t and PGT

k,t are the turbine’s gas consumption and power output; α, β and γ are
the coefficients of the gas consumption.

For a power-to-methane equipment supplied by Bus i, the methane output is proportional
to the power consumption, which can be calculated using the equation below:

MP2M
i,t = CP2M

i,t PP2M
i,t , ∀t ∈ T , (12)

where MP2M
i,t and PP2M

i,t are methane output and power consumption; CP2M
i,t is the transfer

ratio.
Incorporating the DAEs representing the natural gas sector, Equations (8) and (9) for

the electric power sector, and Equations (10) to (12) for the coupling units, the IGES model
that covers the transient analysis of the NGN and the steady-state analysis of the EPS can
be described by a DAE system.
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3. Holomorphic Embedding Solution for Integrated Gas and Electricity Systems

The idea of an HEM is to embed the original problem into a larger problem and to
calculate the unknown variables by solving the larger problem. The HEM-based method
includes the following three steps for solving energy flow equations:

1. Constructing the larger problem: reformulating the energy flow equations by replacing
the unknown variables with holomorphic functions of the time variable t.

2. Solving the larger problem: calculating the unknown coefficients in the holomorphic
functions in the larger problem and obtaining a known holomorphic polynomial func-
tion of t.

3. Evaluating the states: putting t into the known holomorphic functions to evaluate the
unknown variables.

The details of the aforementioned three steps are given in the next sub-sections.

3.1. HE Formulation and Solution of the NGN

3.1.1. HE Reformulation of the NGN Equations

To construct the larger problem, the original NGN equations are reformulated by sub-
stituting the time-dependent variables M and p with holomorphic functions of time t rep-
resented by M in

b (t), Mout
b (t), pinb (t) and poutb (t). The holomorphic functions can be replaced

by their Tayplor series when t is within a certain neighbouthood [41], hence are written in
the following forms:

M in
b (t) =

∞∑
n=0

M in
b [n]tn, (13)

Mout
b (t) =

∞∑
n=0

Mout
b [n]tn, (14)

pinb (t) =
∞∑
n=0

pinb [n]tn, (15)

poutb (t) =
∞∑
n=0

poutb [n]tn, (16)

where M in
b [n], Mout

b [n], pinb [n], and poutb [n] are the coefficients of the tn terms in the holo-
morphic functions. The HEM-form gas flow equations are reformulated by embedding them
into the original NGN equations (Equations (3) to (7)).

Equation (4) is further rewritten in the form below:

dM in
b (t)

dt
+

dMout
b (t)

dt
=

2Ab

lb

(
pinb (t)− poutb (t)

)
− λc2

2AbDb

(
M in

b (t)
)2
rb(t), ∀b ∈ PNGN, (17)
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where rb(t) is the inverse of
(
pinb (t) + poutb (t)

)
: rb(t) = 1

pinb (t)+poutb (t)
(the nodal pressures are

non-zero variables). rb(t) is represented by the Taylor series expansion of t as well: rb(t) =∑∞
n=0 rb [n] tn.
The derivatives of M in

b (t), Mout
b (t), pinb (t) and poutb (t) with respect to t are expressed by:

dM in
b

dt
=
∞∑
n=1

(
n ·M in

b [n] tn−1
)
, (18)

dMout
b

dt
=
∞∑
n=1

(
n ·Mout

b [n] tn−1
)
, (19)

dpinb
dt

=
∞∑
n=1

(
n · pinb [n] tn−1

)
, (20)

dpoutb

dt
=
∞∑
n=1

(
n · poutb [n] tn−1

)
. (21)

For the germ solution of the reformulated NGN equations, M in
b [0], Mout

b [0], pinb [0] and
poutb [0] are set according to the boundary conditions. rb[0] is calculated by the following
equation:

rb[0] = − 1

pinb [0] + poutb [0]
. (22)

3.1.2. Recursive Procedure for Solving Holomorphic Functions in NGNs

The reformulated NGN equations are built from the holomorphic polynomials of t and
therefore contain coefficients corresponding to the tn terms of different orders. To calculate
the unknown coefficients in the holomorphic functions, a recursive procedure is adopted in
this section.

Compare the coefficients for all tk terms, and a set of equations containing M in
b [n],

Mout
b [n], pinb [n], poutb [n] and rb[n] (n ≤ k) are obtained:

pinb [k] + poutb [k] =
2c2

kAblb

(
M in

b ([k − 1]−Mout
b [k − 1]

)
, ∀b ∈ PNGN, (23)

M in
b [k] +Mout

b [k] =
2Ab

klb

(
pinb [k]− poutb [k]

)
− λc2

2kAbDb

k−1∑
x=0

{(
M in

b [x]
) k−x−1∑

y=0

((
M in

b [y]
)
rb[k − x− y − 1]

)}
, ∀i ∈ I inb ,∀j ∈ Ioutb ,∀b ∈ PNGN,

(24)

∑
Ain

i,bM
in
b,t[k] +

∑
Aout

i,b M
out
b,t [k] = δ(k,1)(M

S
i −MD

i −M0
i ), ∀i ∈ INGN,∀b ∈ PNGN, (25)
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pj[k] = RC
b pi[k], ∀i ∈ INGN-C,in

b , j ∈ INGN-C,out
b , (26)

2c2

kAb1lb1

(
M in

b1
[k − 1]−Mout

b1
[k − 1]

)
− pinb1 [k] =

2c2

kAb2lb2

(
M in

b2
[k − 1]−Mout

b2
[k − 1]

)
− pinb2 [k],

b1, b2 ∈ PNGN-infuse
i , i ∈ INGN-infuse, (27)

rb[k] = −
∑k−1

x=0

(
rb[x]

(
pinb [k − x] + poutb [k − x]

))
pinb [0] + poutb [0]

, ∀b ∈ PNGN, (28)

where δ(k,k′) (δ(k,0) and δ(k,1)) is a binary parameter, δ(k,k′) = 1 only when k = k′; M0 is

the initial gas injection at Node i, and M0
i =

∑
Ain

i,bMb,t[0] +
∑
Aout

i,b Mb,t[0]; INGN-C,in
b and

INGN-C,out
b are the index collections of inlet and outlet nodes of Compressor b, respectively;
PNGN-infuse

i is the index collection of pipes that flow into Node i; and INGN-infuse is the index
collection of infuse nodes.

When the coefficients for the t, t2, · · · and tk−1 terms are already known, equations (23)
through (28) are a set of linear equations of unknown coefficients M in

b [k], Mout
b [k], pinb [k],

poutb [k] and rb[k]. By solving these linear equations, the coefficients of the tk terms in all
holomorphic functions can be obtained.

When it is reformulated as a set of holomorphic embedded equations, Equation (27)
makes the left-hand side matrix of the linear equations singular. To address this problem,
for the inflowing pipes of an infuse node, we set the flow rate on the inlet equal to the

outlet flow rate in the same pipe (
dpoutb

dt
=

dpinb
dt

). Therefore, Equation (7) can be written as
2c2

Ab1
lb1

(
M in

b1
−Mout

b1

)
= 2c2

Ab2
lb2

(
M in

b2
−Mout

b2

)
. Equation (27) becomes:

2c2

Ab1lb1

(
Mb1 [k]in −Mb1 [k]out

)
=

2c2

Ab2lb2

(
Mb2 [k]in −Mb2 [k]out

)
, i ∈ INGN-infuse. (29)

The recursive solution procedure starts from the calculation of M in
b [1], Mout

b [1], pinb [1],
poutb [1] and rb[1]. Based on the germ solution (M in

b [0], Mout
b [0], pinb [0], poutb [0] and rb[0]), the

coefficients for the t terms can be calculated by solving Equations (23) to (26), 28) and (29).
Similarly, the coefficients of t2, t3, t4, · · · in the holomorphic polynomials can be calculated
by solving linear equations based on the lower-order coefficients. The unknown coefficients
in the holomorphic polynomials are therefore solved order by order in the recursive paradigm
below.

pinb [0]→ pinb [1]→ pinb [2]→ pinb [3] · · · → pinb [n], (30)

poutb [0]→ poutb [1]→ poutb [2]→ poutb [3] · · · → poutb [n], (31)

M in
b [0]→M in

b [1]→M in
b [2]→M in

b [3] · · · →M in
b [n], (32)
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Mout
b [0]→Mout

b [1]→Mout
b [2]→Mout

b [3] · · · →Mout
b [n], (33)

rb[0]→ rb[1]→ rb[2]→ rb[3] · · · → rb[n]. (34)

Given the value of t, the numerical solutions of all state variables can be obtained by the
solved holomorphic functions M in(t), Mout(t), pin(t) and pout(t).

3.1.3. HEM Computation Scheme for NGNs

A holomorphic function of time t has a limited radius of convergence, implying that when
t exceeds a certain value, the holomorphic function will diverge and no longer be valid. To
address this problem, a multi-stage computation scheme [36] is adopted to guarantee the
validity of the HEM-based method in performing ODE-based gas flow analysis. In this
computation scheme, the state variables and the imbalance of energy flow equations are
evaluated at regular time intervals. The main steps of this computation scheme are listed
in Algorithm 1.

Algorithm 1 HEM computation scheme for NGNs

Input: germ solutions of pin(t), pout(t), M in(t), Mout(t); pre-set criteria ε for the imbalance
check; time span for dynamic simulation [0, tend] and a pre-set time interval ∆tHEM.

1: Set t∗ = 0.
2: while t∗ ≤ tend do
3: Reformulate Equations (3) to (7) using pin (t∗), pout(t∗), M in(t∗), Mout(t∗).
4: Calculate the unknown coefficients of the holomorphic functions recursively using

Equations (23) to (26), (28) and (29).
5: while E(t∗) ≤ ε do
6: Set t∗ = t∗ + ∆tHEM.
7: Evaluate state variables pin(t∗), pout(t∗), M in(t∗), Mout(t∗).
8: Put the state variables into Equations (23) to (26), (28) and (29), and evaluate

the imbalance E(t∗) between the left side and right side.
9: end while

10: end while
Output: the values of the state variables at the pre-set time interval; the coefficients of the

holomorphic functions during the whole time span.

3.2. HE Formulation and Solution of the EPS

Although the EPS is described by a steady-state model, the operating state of EPS varies
with time during a long-duration simulation. In this paper, the nodal voltage is represented
by a holomorphic function (V (t) =

∑∞
n=0 V [n]tn) to show its relationship to time. The

power flow equations embedding the holomorphic functions of voltage are written as follows:

V ∗i (t∗)
∑
k

YikVk(t) = S∗i − PC
i (t)− Schange

i (t), i ∈ IPQ, (35)
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Vi(t)V
∗
i (t∗) = |Vi,sp|2 , i ∈ IGEN, (36)

V ∗i (t∗)
∑
k

YikVk(t) + Vi(t)
∑
k

Y ∗ikV
∗
k (t∗) = 2

(
Pi − PC

i − P
change
i (t)

)
, i ∈ IPV, (37)

where PC
i (t) is the power supplied to the power-consuming compressors at Bus i; Schange

i (t)
represents the change of energy injection in Bus i; and IPQ, IGEN and IPV are the index
collections of PQ buses, generation buses and PV buses in the EPS, respectively.

By comparing the coefficients of the tn terms with the same order, a set of linear equations
containing the nth-order coefficients and lower-order coefficients is obtained (the detailed
procedures are given in [31]). The coefficients of the holomorphic functions for nodal voltage
can be calculated recursively, similar to the method in Section 3.1.2. The values of the
voltage magnitude and voltage angle can be obtained by putting the time variable t into
these holomorphic functions.

3.3. Computation Scheme for HEMs in IGESs

The detailed procedures of the computation scheme for IGESs are given in Algorithm 2.
Similar to Algorithm 1, the HEM-based method applied in IGESs includes the reformulation
of energy flow equations, a recursive solution procedure for holomorphic functions and a
multi-stage computation scheme based on regular checks of energy flow equation imbalances.
First, the IGES state variables are replaced by time-embedded holomorphic functions and
are calculated by solving these holomorphic functions. Then, the holomorphic functions
in the NGN and EPS are calculated alternately until convergence, adopting the solution
procedures introduced in Sections 3.1 and 3.2. The state variables and the imbalance of the
IGES equations are evaluated in the multi-stage computation scheme to perform continuous-
time profiling of the IGES. The IGES computation scheme is shown in Fig. 4.

During the calculation, the holomorphic functions are expressed in the form of truncated
Tayler series expansion. When the system is faced with abrupt changes or the system con-
figuration is complicated, the convergence radius of the holomorhpic function tends to be
smaller, which could cause larger errors in computation results. To guarantee the computa-
tion quality, Tayler series expansions with higher-order terms are sometimes used to reach
a better approximation result. The time interval for imbalance check could be shortened
to keep the computation deviation in a low level. However, this might result in greater
computation burden and longer computation time. The accuracy and speed needs to be
balanced in practical use.

3.4. Discussion

The most important feature of the proposed HEM method is that all the state variables
are represented by time-embedded holomorphic functions, implying that the values of these
variables at any time t can be obtained easily by putting t into the holomorphic functions.

12



Algorithm 2 HEM computation scheme for an IGES

Input: germ solutions of pin(t), pout(t), M in(t), Mout(t) and V (t); pre-set criteria ε for
the imbalance check; time span for the dynamic simulation [0, tend] and a pre-set time
interval ∆tHEM.

1: Set t∗ = 0.
2: while t∗ ≤ tend do
3: Reformulate the IGES equations (Equations (3) to (7), (8) and (9)) using pin (t∗),
pout(t∗), M in(t∗), Mout(t∗) and V (t∗)

4: Calculate the unknown coefficients of the holomorphic functions in the NGN and
EPS alternately until the result of the EFA at time t∗ is convergent.

5: while E(t∗) < ε do
6: Set t∗ = t∗ + ∆tHEM.
7: Calculate pin(t∗), pout(t∗), M in(t∗), Mout(t∗) and V (t∗).
8: Evaluate E(t∗) in Equations (23) to (26), (28), (29), (35) and (37).
9: end while

10: end while
Output: the values of the state variables at the pre-set time interval; the coefficients of the

holomorphic functions during the whole time span.

As shown in Fig. 5, the method that is normally adopted (e.g., the ODE-NR method
mentioned in this paper) for EFA in IGESs is to solve the NGN’s equations using the
MATLAB ODE solver Runge-Kutta method with fixed time steps and the EPS equations
using the Newton-Raphson method. This method can only provide energy flow data at a
pre-set time interval, such as t0, t0 + ∆tODE, t0 + 2∆tODE, · · · , t0 + (n+ 1)∆tODE, which is
still a discrete-time profiling of the whole system even when using higher resolution in the
computation. The value of the operating state at other times (e.g., t0+0.5∆tODE) is normally
obtained via interpolation techniques or simply by running the calculation procedures again,
which often brings an additional computational burden.

In contrast, the HEM adopting the multi-stage computation scheme provides a continuous-
time profile by utilizing time-embedded holomorphic functions. The operating states of the
IGES at any time (whether at the pre-set time interval or not) can be calculated directly by
the holomorphic functions that are readily obtained, which cover all moments in the whole
time span. This method checks the imbalance regularly (at times t0 + ∆tHEM, t0 + 2∆tHEM,
· · · ) to determine whether to stay in the current stage or start a new one, and the same set
of holomorphic functions is used throughout the whole stage (e.g., t0 to ∆tHEM-STEP

1 ). Holo-
morphic functions must be calculated only at the beginning or when the imbalance in the
energy flow equations is higher than the standard, which saves considerable computational
effort.
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4. Case Studies

Test runs are carried out in one NGN case and two IGES cases under different operating
scenarios. All tests are performed on a computer with eight processors running at 3.1 GHz
and 4 GB of RAM with MATLAB R2018b.

4.1. Single-pipe NGN Test Case

Before taking test runs in IGES cases, the proposed HEM method is first verified in a
single-pipe NGN test case (Case I) by comparing its capability of depicting pipeline dynamics
with other commonly-used methods. This case contains a source node and a load node,
connected by a 2 km pipeline (as shown in Fig. 6), and different operating conditions are
set during the whole simulation period to test the proposed method. The system begins with
a stable operation state (no changes in supply or demand) for 100 s, then a sharp drop in
demand (lasting 50 s) followed by a stable operation state for 200 s, after which the system
experiences a steady increase in demand (lasting 200 s) before finally returning to the stable
operation state.

Figure 6: The configuration of the single-pipe NGN test case

Following the HEM computation scheme in Section 3.1.3, the values of IGES variables
at a certain moment can be calculated by solving the unknown coefficients of holomorphic
functions and then plugging time into the holomorphic functions. Taking the calculation of
inlet flow rate and output pressure at 120 s as an example, the solved holomorphic functions
for inlet flow rate and outlet pressure are:

M in(t) = 58.9584− 0.3954t− 0.0134t2 + 7.3660× 10−4t3 + 1.3601× 10−5t4 + · · · , (38)

pout(t) = 5.9910× 106 + 307.0329t− 11.7275t2 − 0.5342t3 + 0.0221t4 + · · · . (39)

During the multi-stage computation, the HEM starts a new stage at 120 s. At 120 s, the
values of M in and pout are equal to M in(0) and pout(0), respectively. At 121 s, the values of
M in and pout are calculated using the same set of holomorphic functions by plugging t = 1
into the holomorphic functions. By repeating the steps in Algorithm 1, the values of the
state variable during the whole simulation period are obtained and the system’s evolution
in response to disturbance can therefore be displayed.

The result of the HEM is compared with the results from the finite difference method
and the ODE-NR method. The curves of the gas flow rate at the source node obtained by
the finite difference method (denoted as ”PDE”), the ODE-NR method (denoted as ”ODE”)
and the HEM method (denoted as ”HEM”) are shown in Fig. 7 (the different operating
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condistions are separated by the blue dash lines in the plot). The curve of HEM almost
overlaps the curves of the two other methods, with only slight difference compared with
the finite difference method. This shows that the proposed HEM method could achieve
the similar computation results as other commonly-used methods do. Noted that in IGES
cases or NGN cases, it usually takes a relatively long time for the finite difference method
to perform a long-duration dynamic simulation with small time steps. The ODE-based
method, which has been used in solving transient gas flow equations in recent years, could
achieve similar performance in the dynamic simulation as the finite difference method [29].
As an alternative, the benchmark in the IGES test cases are obtained using the ODE-NR
method.
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Figure 7: Simulation result comparison in Case I

4.2. Small IGES Test Case

To show the HEM’s performance in IGES simulation, a test run is first carried out in
a small-scale IGES case (Case II) using the proposed method. The results of the dynamic
simulation are given and compared with the benchmark to show the HEM’s capability of
continuous-time profiling.

This case consists of an IEEE 14-bus system and a seven-node NGN. For the seven-node
NGN case, there are seven nodes, six lines, two gas source nodes and one compressor. The
coupling from the gas side to the power side is the power-consuming compressor on Pipe
2, which is regarded as a power load at Bus 5; the coupling from the power side to the
gas side is a gas-fired generator unit at Bus 2, supported by the NGN from Node 3. The
configuration of this IGES case is given in Fig. 8.

The tolerance for ODE imbalance is set to 10 for Equation (3) and 1×10−4 for Equation
(4), and the tolerance for EPS equation mismatch is set to 1×10−5. The dynamic simulation
is performed under three operation scenarios:

I) an increase in the gas load at Node 1 (50% increase from 100 s to 150 s);
II) an increase in the gas load at Node 1 (20% increase from 100 s to 200 s) with an

instant change in the power load at Bus 9 (30% increase at 100 s);
III) a steady increase in the power output of the gas-fired generator at Bus 2 (10 MW

increase from 100 s to 200 s), which causes a simultaneous growth in the gas consumption
connected to Node 3 in the NGN.
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4.2.1. Accuracy Analysis

To show that the HEM can provide accurate EFA outputs, the results of the HEM
dynamic simulation under the three operating scenarios are shown in Figs. 9 to 11, with the
benchmark data for comparison. The benchmark data are calculated using the ODE-NR
method mentioned in Section 3.3, denoted as “ODE” in the legend, while the HEM result is
denoted as “HEM”. Each scenario can be divided into three testing stages: a steady-state
stage at the beginning (the “pre-change stage”, lasting 100 s), then a stage for the change
in operating states in the NGN or EPS (the “interim-change stage”, lasting 50 s or 100 s),
and the third stage, called the “post-change stage”.

In Scenario I, the fast increase in the gas load results in an obvious fluctuation in the nodal
pressures and gas flow rates of all pipelines in the IGES, and it takes hundreds of seconds
for the IGES to re-enter a steady state in the post-change stage. The power consumption
of the compressor increases due to the sharp rise in the gas flow rate in Pipe 2, resulting in
the load variation at Bus 5 in the EPS that leads to minor changes in the voltage profile of
the EPS.

In Scenario II, the gas load variation is less abrupt than that in Scenario I, making all
pipelines reach a new steady state in a steadier and faster way, while the EPS instantly
adjusts to the power load change at Bus 9.

In Scenario III, the increasing power output of the gas-fired generators brings slightly
increasing gas consumption in Node 3 and steady changes in the voltage angles, which are
all reflected in the HEM results.

When the operating condition changes, the whole IGES is influenced. Even with only
one gas load change in the IGES, the pressures and gas flow rates in all pipelines vary, and
the variation in operating conditions in one energy sector can be transferred to the other via
coupling units. During the post-change period, it takes tens to hundreds of seconds for the
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Table 1: Computation Time Comparison in Case II

ODE-NR HEM

∆t ∆tODE = 0.5 s ∆tHEM = 2 s ∆tHEM = 1 s

Scenario I 3.276 1.294 1.568

Scenario II 3.129 1.616 1.918

Scenario III 2.723 1.197 1.360

IGES to reach a new steady state, the transient process during which needs to be depicted
using the transient model rather than the steady-state model.

In all plots, the red lines and the black lines representing the HEM results and the ODE-
NR results overlap almost all the time. Even when there are abrupt changes in the state
variables, which means smaller radius of convergence in the holomorphic functions, the gaps
between HEM result and ODE-NR result always remain low. The maximum computation
deviations of nodal pressures, inlet/outlet flow rates, voltage magnitude and voltage angles
stay within the range of 0.01%, 2.34%, 6×10−4% and 4×10−3%, respectively. This shows
that the proposed method can almost provide the same output in the dynamic simulation
of the IGES.

4.2.2. Computational Efficiency Analysis

To show the computational efficiency of the proposed method, the computation time of
ODE-NR method and the HEM is compared. The ODE-NR method outputs discrete-time
profiling of the system status every 0.5 s. The HEM method carries out a continuous-time
simulation, while the imbalance of energy flow equations is checked at a certain time step (2s
and 1s). To compare these two methods clearly, the HEM is required to output a discrete-
time profiling which contains the values of state variables every 0.5 s during the simulation
(the same output as ODE-NR when ∆tODE = 0.5 s). The computation time of each method
is given in Tab. 1.

It takes the HEM method 1.197 s to 1.616 s to finish computation when ∆tHEM = 2 s.
When ∆tHEM = 1 s, the computation time slightly increases. For the ODE-NR method, the
computation time almost doubles compared to HEM (∆tHEM = 1 s). In this case, the HEM
method owns a seemingly advantage in computation speed. In addition, IGES’s operating
states at other moments can be obtained easily using HEM’s results, which further confirms
HEM’s high computation efficiency.

4.3. Large IGES Test Case

To validate the applicability of the proposed method in larger-scale systems, test runs are
carried out in a larger case (Case III). This case consists of an IEEE 118-bus system with a
20-node NGN. The 20-node NGN case contains 20 nodes, 19 lines, six gas source nodes and
one compressor [42]. The coupling relationship is built by a power-consuming compressor
at Node 7 which is supported by the EPS at Bus 45, two gas-fired generator units at Buses
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54 and 103 which are supported by the NGN at Nodes 16 and 15, and a power-to-methane
equipment which is supported by the EPS at Bus 62.

During the computation, the tolerance for ODE function imbalance is set to 10 for
Equation (3) and 1× 10−4 for Equation (4), and the tolerance for EPS equation mismatch
is set to 1× 10−5. The proposed method is tested under three operation scenarios:

I) an increase in the gas load at Node 16 (a total increase of 30 kg/s from 100 s to 200
s);

II) changes in multiple gas loads (increases of 5 kg/s and 10 kg/s at Nodes 20 and 16
from 100 s to 200 s; a decrease of -20 kg/s at Node 15 from 100 s to 200 s);

III) changes in multiple gas loads (a decrease of 5 kg/s at Node 7 and an increase of 6
kg/s at Node 10 from 100 s to 200 s) and changes in the power output of gas-fired generators
(a decrease of 10 MW for the generator at Bus 54 and an increase of 15 MW for the generator
at Bus 103 from 100 s to 200 s).

4.3.1. Accuracy Analysis

To analyze the accuracy of the HEM, the simulation results are compared with the ODE-
NR benchmark results, and the maximum and mean deviations of the proposed method
during the whole time span are shown in Fig. 12. During the interim-change stage (100 s to
200 s), the deviations are obviously larger due to the change in operating conditions. This is
because the abrupt changes in operating conditions hinder the holomorphic functions in the
proposed method in obtaining an accurate approximation of the IGES state variables. After
the load/supply variation stops, the deviations gradually decrease as the IGES approaches
the new steady state.

For all scenarios, the maximum deviations of the nodal pressures, gas flow rates and
voltage magnitudes are 0.0032%, 3.3202% and 0.0024%, which show that the HEM results
are similar to the ODE-NR results. This validates that the HEM could reliably generate
simulation results in larger case.

4.3.2. Computational Efficiency Analysis

The computation time of the HEM method and the ODE-NR method is given in Tab.
2. The ODE-NR method generates discrete-time profilings at different time intervals (2 s, 1
s, and 0.5 s) and the HEM method output continuous-time profiling with regular imbalance
check at different time intervels (2 s and 1 s). For both methods, the computation time
grows when a smaller time interval is used. It takes the HEM method 7.871 s to 8.190 s
to finish computation when ∆tHEM = 2 s, and the figures almost double when ∆tHEM = 1
s. For the ODE-NR method, the computation time is approximately 6.6 s for Scenarios
I and II and 8.5 s for Scenario III. The computation speeds for both methods are slowed
down by smaller ∆t. When the time resolution of the simulation result is no higher than 1
s, the HEM costs around 8 s (using ∆tHEM = 2 s) while the ODE-NR method costs more
than 10 s. This is mainly because the HEM is less affected in computation speed since the
additional computation time is only spent on plugging more time into holomorphic functions,
rather than repeatedly solving DAEs and nonlinear algebraic equations. Though the speed
advantage of the HEM in larger IGES case is not as obvious as Case II, the proposed method
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Figure 12: Computation Error in Case III
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Table 2: Computation Time Comparison in Case III

ODE-NR method HEM method

∆t (s) 2 1 0.5 2 1

Scenario I 6.5748 13.0913 22.5898 8.1902 16.3073

Scenario II 6.6606 13.1397 22.6229 7.8705 15.4137

Scenario III 8.5744 14.4625 24.8917 7.9911 15.1081

is still more flexible and efficient in computational performance considering its capability of
providing energy flow solution at any time t.

5. Conclusion

This paper proposes a dynamic energy flow analysis method for IGESs based on the
holomorphic embedding method. An NGN model in the form of DAEs is adopted to depict
the pipeline dynamics. The original energy flow equations in the IGES are reconstructed us-
ing holomorphic functions and the time variable t. Then, an HEM-based analysis algorithm
is developed based on a novel solution method of the DAE system using holomorphic em-
bedding and a multi-stage computation scheme. The proposed energy flow analysis method
can be used in the dynamic simulation of IGESs, especially under potential disturbances
from the load/supplier side, providing continuous-time profiling of the system operating s-
tates in an accurate and efficient way. The results of the case studies demonstrate that the
proposed method can generate similar energy flow solutions as the normally used method.
The proposed method is also more flexible and efficient in energy flow computation when
the computation time interval is smaller or energy flow profiles at other times are needed.
Considering the HEM’s capability in reflecting time-varying state variables, its future work
should include further exploitation of the proposed method, such as a reliability study of
IGESs based on the holomorphic embedding method, and its wider application in other sys-
tems, such as district heating/cooling networks. Further improvement in the comptutational
performance should be studied as well.
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Appendix A. Nomenclature

See Tables 3 - 6.

Table 3: Abbreviations

Acronym Full form

DAE Differential algebraic equation

EFA Energy flow analysis

EPS Electric power system

HEM Holomorphic embedding method

IGES Integrated gas and electricity system

NG Natural gas

NGN Natural gas network

ODE Ordinary differential equation

PDE Partial differential equation
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Table 4: Indice collections

Notation Definition

IEPS Index collection of buses in EPS

IGEN Index collection of generation buses

INGN Index collection of nodes in NGN

INGN-C,in
b Index collection of inlet nodes of Compressor b in NGN

INGN-C,out
b Index collection of outlet nodes of Compressor b in NGN

INGN-infuse Index collection of infuse nodes

IPQ Index collection of PQ buses

IPV Index collection of PV buses

PNGN Index collection of pipelines in NGN

PNGN-COMP Index collection of pipes installed with compressor in NGN

PNGN-infuse
i Index collection of pipes that flow into Node i

T Index collection of time periods

Table 5: Parameters

Parameter Definition

Ab pipe cross-sectional area of Pipe b (m2)

Ain The nodal-line incidence matrix for inflowing pipelines in NGN

Aout The nodal-line incidence matrix for outlowing pipelines in NGN

B The susceptance matrix in EPS (S)

c sound velocity in gas (m/s)

CC
b,t Coefficient of compressor’s power consumption of Pipe b at time t (kg/MWs)

CP2M
i,t Coefficient of power to methane ratio of Bus i at time t (kg/MWs)

Db Pipe diameter of Pipe b at time t (m)

G The conductance matrix in EPS (S)

lb Length of Segment/Pipe b (m)

RC
b,t Compression ratio of the compresor on Pipe b at time t (kg/Pa)

αi Coefficient of the gas consumtion of the ith gas turbine (kg/MW2s)

βi Coefficient of the gas consumtion of the ith gas turbine (kg/MWs)

γi Coefficient of the gas consumtion of the ith gas turbine (kg/s)

δ(k,k′) Binary parameter determined by k and k′

λb Coefficient of pipe roughness of Pipe b
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Table 6: Variables

Variable Definition

M Gas flow rate (kg/s)

MC
k,t gas flow rate through the pipe equipped with Compressor k at time t (kg/s)

MD
i,t Gas demand of Node i at time t (kg/s)

MGT
k,t Gas consumption of Turbine k at time t (kg/s)

M in
b The gas flow rates at the inlet of Segment/Pipe b (kg/s)

M in
b [n] Coefficient of the tn term in holomorphic function pinb (t)

Mout
b The gas flow rates at the outlet of Segment/Pipe b (kg/s)

Mout
b [n] Coefficient of the tn term in holomorphic function Mout

b (t)

MP2M
i,t The methane output of power-to-methane equipment of But i at time t (kg/s)

MS
i,t Gas supply of Node i at time t (kg/s)

M0
i Initial gas injection of Node i (kg/s)

p Gas pressure (Pa)

PC
i,t Power comsumption of the compressor supplied by Bus i at time t (MW)

PG
i Active power generation of Bus i (MW)

pinb Pressure on the inlet Segment/Pipe b (Pa)

pinb [n] Coefficient of the tn term in holomorphic function pinb (t)

poutb Pressure on the outlet Segment/Pipe b (Pa)

poutb [n] Coefficient of the tn term in holomorphic function poutb (t) (Pa)

PL
i Active power consumption of Bus i (MW)

PGT
k,t Power output of Turbine k at time t (MW)

PP2M
i,t Power consumption of power-to-methane equipment of Bus i at time t (MW)

QG
i Reactive power generation of Bus i (MW)

QL
i Reactive power consumption of Bus i (MW)

rb [n] Coefficient of the tn term in holomorphic function rb(t)

t Time (s)

Vi Voltage of Bus i (p.u.)

θi Voltage angle of Bus i (rad)
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