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Abstract

The rapid development in ubiquitous computing has enabled the use of microcontrollers as edge
devices. These devices are used to develop truly distributed IoT-based mechanisms where ma-
chine learning (ML) models are utilized. However, integrating ML models to edge devices re-
quires an understanding of various software tools such as programming languages and domain-
specific knowledge. Anomaly detection is one of the domains where a high level of expertise is
required to achieve promising results. In this work, we present AnoML which is an end-to-end
data science pipeline that allows the integration of multiple wireless communication protocols,
anomaly detection algorithms, deployment to the edge, fog, and cloud platforms with minimal
user interaction. We facilitate the development of IoT anomaly detection mechanisms by reduc-
ing the barriers that are formed due to the heterogeneity of an IoT environment. The proposed
pipeline supports four main phases: (i) data ingestion, (ii) model training, (iii) model deploy-
ment, (iv) inference and maintaining. We evaluate the pipeline with two anomaly detection
datasets while comparing the efficiency of several machine learning algorithms within different
nodes. We also provide the source code of the developed tools which are the main components
of the pipeline.

Keywords: Internet of Things, Data Science, Pipeline, Data Analytics, Multi-Protocol

1. Introduction1

Edge AI which is critical for resource-constrained environments that operates in the Internet2

of Things (IoT) domain where intelligent tasks are performed has started to become a hot topic3

with the arrival of Industry 4.0 [1]. It manages the interaction with the physical world that4

is provided by sensors and actuators. Management of such an environment requires series of5

tasks (e.g., data collection, anomaly detection) that are operated by microcontrollers running6

ML models. Data-related professions (e.g., data scientists, ML engineers) define rules/ranges7

and search for the best practices to increase the operability of edge mechanisms in their relevant8

scientific disciplines. Finding hidden information from big data can enhance the quality of living9

but it is not a straightforward task [2].10

While for data scientists, being an expert in edge-related infrastructures (e.g., programming11

languages, microcontrollers, sensors) is not expected, they should be able to utilize data science12

pipelines which are executable workflows of data-related tasks that automate the desired process.13

Thus, we developed a reconfigurable data science pipeline based on an IoT sensing infrastructure14

that utilizes open-source software to facilitate developing an interconnected anomaly detection15
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system that runs on edge, fog, and cloud platforms. We define the edge as the platform where the16

first interaction between the cyber and physical world happens. Hence, microcontrollers (e.g.,17

Raspberry Pi Pico) that gather physical data are edge devices. We define fog as the platform18

where several edge devices can be supervised. Hence, single-board computers (e.g., Raspberry19

Pi 4B) are fog devices that might act as edge devices as well. Cloud is the platform where real-20

world data gathered by the edge and fog devices are progressed. We implemented our system21

based on an example use case scenario to describe how to proposed system works while providing22

some results.23

The contributions of this paper are as follows:24

• We provide reconfigurable IoT sensing infrastructure that consists of two main open-25

source components: (i) The Edge to Cloud Code Generator (EECG) that generates ready-26

to-deploy codes to enable data circulation from edge to fog. (ii) The Node-RED package27

is hosted on Node-RED servers that enables accessing and processing to the edge data28

from anywhere that has access to Node-RED servers while offering visualization via the29

graphical user interface (GUI). We also provide one Python library and executable shell30

script that facilitate data training and inference phases.31

• We propose a data science pipeline that interconnects edge, fog and cloud devices/services32

to provide end-to-end anomaly detection system development. The pipeline contains four33

main stages: (i) the data collection which is provided by the components mentioned at the34

first contribution point, (ii) the anomaly detection model training, (iii) model deployment35

to the edge, fog, and cloud, (iv) inference, and maintaining the model based on the new36

data. We demonstrate how the proposed tools are utilized during these stages.37

• We provide a dataset that is generated via the utilization of proposed tool. We analyze38

the performance of Convolutional Neural Network (CNN) [3], Recurrent Neural Network39

(RNN) [4], Isolation Forest [5] and One-class Support Vector Machines (OC-SVM) [6]40

on the proposed dataset [7] and the WADI dataset [8]. We also evaluate them according41

to the platform (edge, for or cloud) where the anomaly detection model is deployed via42

the utilization of proposed pipeline. In the edge, we only evaluated CNN due to lack of43

application programming interface (API).44

Structure of the Paper: This section provides a high-level understanding of what we pro-45

posed. We outlined the previous commercial and academic works in section 2. Section 3 contains46

the architecture of an IoT anomaly detection pipeline infrastructure. Section 4 presents details47

about how the data circulated and progressed within the AnoML-IoT pipeline. We demonstrate48

our evaluations and results in section 5. Then, we discuss about the results in the section 6 and49

finally provide our conclusions in section 7.50

2. Related Work51

In this section, we introduce the data science pipelines that are offered either by academia52

or commercial entities, and anomaly detection techniques in time-series sensor data. We also53

analyze the capabilities of open-source platforms that facilitates data circulation.54
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Figure 1: Illustrates the utilized algorithms. TensorFlow also has an API [27] for decision trees, but due to having better
documentation we prefer using scikit-learn for implementing Isolation Forest.

2.1. Unsupervised Anomaly Detection in Time Series Sensor Data55

Anomaly detection is one of the fundamental fields that utilize the machine learning (ML)56

model as the main component. There is extensive research being done in this field [9, 10, 11].57

There are three types of anomalies: (i) point anomalies, (ii) contextual anomalies, (iii) collective58

anomalies. If the anomalies are contextual where the context is time, the time series anomaly59

detection models are applied. For example, in an environment where the weather temperature60

decreases at night if the temperature value generated by the sensor acts otherwise, there is a con-61

textual anomaly. While point anomalies are easier to detect, contextual and collective anomaly62

detection requires additional tasks to identify the normal behavior of the system.63

The nature of the input data is the core element that determines the efficiency of the ML64

model. The features of the data may depend on several complementary terms such as labels, con-65

text, and domain. For example, if the input data do not contain any labels that define normality,66

unsupervised algorithms [12] are applied, if the data is related to a certain context, context-aware67

[13] methods are selected, if the environment is industrial, because of the importance of detection68

time, faster models with reduced complexity [14] are preferred.69

In an interconnected domain such as IoT, cyber-physical systems [15] are utilized to supervise70

the environment. These systems observe the behavioral changes (e.g., change in the temperature71

or movement) in surroundings through modules that manage sensors [16]. They can also act as72

controllers if they contain actuators. In such environments, the anomaly might occur either by73

independent or dependent events. If the events are independent, univariate analysis [17] is ap-74

plied. For example, the behavioral changes in temperature, loudness, light density, and humidity75

can be detected via the related data only, hence require univariate analysis. However, changes in76

the angular momentum or acceleration are measured by sensors (e.g., accelerometer, gyroscope)77

that generate data per dimension. Hence, the relation between the data points should also be78

analyzed to detect anomalies. Then, the multivariate analysis [18] is applied.79

While academia keeps offering new anomaly detection algorithms [19, 20], most of the time80

these are based on the fundamental ones [21]. Hence, for this work, we selected the following81

algorithms as they are the most common ones that are utilized for the unsupervised anomaly82

detection in time series data and accessible via common ML programming libraries/frameworks83

(e.g., scikit-learn [22], TensorFlow [23]) : (i) convolutional neural networks (CNN) [24, 25], (ii)84

recurrent neural networks (RNN) [26], (iii) isolation forest (IF) [5], and (iv) one-class support85

vector machines (OC-SVM) [6]. Figure 1 demonstrates the used algorithms in this study.86
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2.2. Machine Learning Platforms and Data Science Pipelines87

Machine learning platforms.After showing promising results in a variety of tasks includ-88

ing speech recognition, image processing, anomaly detection, and medical diagnosis, ML has89

taken an interest in both academic and commercial entities, hence resulting in the creation of90

many open-source and proprietary ML platforms and pipelines. ML models can be generated via91

hand-coding, code generators, or interpreters. Hand coding. There are many machine learning92

libraries available [22, 23, 28] that allows user to create ML models or to deploy and evaluate ML93

algorithms. A person with the profession might prefer hand-coding as it offers high customiza-94

tion, allows the development and employment of novel algorithms, and is easy to maintain.95

However, hand-coding might be very resource-consuming, thus most of the time it is done by a96

group of programmers. Code generators. ML consists of many steps (e.g., data acquisition, data97

pre-processing, and fitting). Rather than hand-coding all these steps, code generators [29, 30]98

might be utilized to facilitate the process. Due to the variety of complicated tasks, most code99

generators provide a specific code for a specific task. Interpreters. One of the main challenges100

of ML is the portability of the generated model. Interpreters provide portability by generating a101

model file that can be run on other platforms with minimal coding. TensorFlow [23] is the most102

common one that offers model generation for resource-constrained platforms.103

Data science pipelines. Raw data are needed to be interpreted to be utilized within data104

science-related tasks. If the data science pipeline contains all the steps that are required to in-105

terpret the data from data gathering to deployment of a machine learning model, it is called106

end-to-end. These end-to-end pipelines can be either manual where the user provides many in-107

puts and sets parameters each time before a new model is generated or automated where little to108

no input is taken. Due to a variety of data types, automated pipelines put a certain set of rules109

(e.g., time format) for their system to accept the input data [31]. These pipelines can also be110

named according to the performed tasks (e.g., anomaly detection pipeline). Now we introduce111

pipelines that are presented by either industry or academia.112

Azure Machine Learning Pipeline [32]. Microsoft provides an ML pipeline based on run-113

ning Python scripts on the cloud while automatically handling resource usage. Each step of the114

pipeline can be independently customized hence offering scalability to the end-user. One of the115

practical features that Azure Machine Learning Pipeline offers is the automated dependency han-116

dling that allows the usage of a variety of hardware and software environments. Microsoft also117

provides Azure Cognitive Services [33] where you can utilize their ML pipeline and Anomaly118

Detector [34] service. They apply Graph Attention Network (GAN) [35] for multivariate analy-119

sis, apply SR-CNN [31] for the univariate analysis.120

Amazon Web Services (AWS) Machine Learning Pipeline [36]. Amazon provides an end-121

to-end ML pipeline as a service for detecting anomalies in real-time. Inside the pipeline, there122

are many different services (e.g., database, data formatting) that can be utilized for pipeline123

tasks. Amazon SageMaker [37] is the main service that provides anomaly detection for both124

univariate and multivariate data. It allows users to either use a built-in unsupervised anomaly125

detection algorithm based on Random Cut Forest (RCF) [38] or use a custom algorithm that can126

be deployed via a Docker image. Now we introduce the pipelines proposed by the academia.127

Prado et al. [39] propose an end-to-end modular AI pipeline that allows users with less ex-128

pertise to implement their AI applications such as keyword spotting, image classification, and129

object detection to systems that contain embedded devices. Their framework relies on Low130

Power Deep Neural Network (LPDNN) that contains an Inference Engine (LNE) that is compat-131

ible with Caffe [40]. LNE is a code generator that facilitates the deployment to the embedded132
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devices. The authors use FIWARE [41] for IoT hub integration and Kurento Media server [42]133

for media streaming which are required to run live inference. The authors define Raspberry Pi134

devices as edge and evaluate the efficiency of LPDNN compared TF Lite [43] on these devices135

by running benchmarks that are included in the TF Lite repository.136

Drori et al. [44] propose an automatic ML (AutoML) system that optimizes the ML pipeline137

according to the given dataset. Their pipeline utilizes LSTM-RNN as a base ML algorithm.138

Monte Carlo Tree Search (MCTS) [45] is applied to the predictions generated by the LSTM-RNN139

to evaluate the performance of the pipeline and decide on the better pipeline. They evaluate the140

proposed pipeline compared to baseline stochastic gradient descent (SGD) [46] estimators from141

scikit-learn [22]. They claim their pipeline provides faster run time according to its peers.142

Sutton et al. [47] propose an open-source ML pipeline that receives physiological data that143

is used to identify anomalous behaviors as an input in real-time. The authors try to detect Parox-144

ysmal atrial fibrillation (PAF) by applying Probabilistic Symbolic Pattern Recognition (PSPR)145

to the Electrocardiogram (ECG) signals. PSPR is used for online feature extraction while they146

apply random forest (RF) to classify ECG data. The proposed pipeline is based on Spark’s ML147

library (MLlib) [48], hence allows other anomaly detection techniques included within MLlib.148

Nitsche and Halbritter [49] propose a data science pipeline that is optimized for text classi-149

fication. The authors benchmark different GPUs to evaluate the performance of their hardware150

setup which consists of 10 NVIDIA Quadro P6000 and the effect of the number of GPUs on the151

image processing time. They apply the Naive Bayes classifier that is included in scikit-learn API152

and achieve above 90% accuracy on Deutsche Presse-Agentur (dpa) dataset.153

Shaikh et al. [50] focus the challenges of ensuring policy fairness within end-to-end ML154

pipelines. They claim the ML-based tasks are done by engineers that have a variety of professions155

including data creators and future engineers. Hence, each step of the ML pipeline might be156

subjected to a policy violation. The authors provide an end-to-end ML pipeline that is based157

on log management to prevent these violations as manually ensuring policy fairness is highly158

resource-consuming.159

Boovaraghavan et al. [51] propose an adaptive end-to-end ML system for IoT applications.160

Their pipeline is optimized for activity recognition-based tasks including object recognition. Au-161

thors claim that the main challenge regarding end-to-end pipeline is due to the heterogeneity of162

IoT applications. Authors evaluate their pipeline with various hardware platforms and datasets163

while comparing prediction time and accuracy per each machine learning technique they applied.164

Molinara et al. [52] propose an end-to-end ML-based indoor air monitoring system for con-165

taminant classification. Authors compare the performances of Multi Layer Perceptron (MLP) to166

CNN and LSTM based deep learning techniques while testing the performance of MLP and CNN167

on ESP32 MCU. They investigate the power consumption of the MCU regarding the utilized ML168

technique. They claim the proposed system is only lacked to classify alcohol and acetone due to169

their chemical similarities.170

Vinzamuri et al. [53] propose an end-to-end context-aware anomaly detection system that171

requires time-series data. The proposed system utilizes a semi-supervised algorithm with Sparse172

Gaussian Graphical Models. They benchmark the pipeline on several public datasets. The au-173

thors claim semantics can improve the Gaussian Graphical Models further beyond other anomaly174

detection techniques. Their ML comparison is based on F-Score as the authors mention that the175

proposed pipeline is promising for industrial IoT environments.176

Li et al. [54] develop an end-to-end automated anomaly detection system. They utilize177

Apache Spark backend server to run the query-based operations. After the user provides a178

dataset, the proposed system automatically selects the most appropriate algorithm then applies179
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Table 1: Comparison of AnoML-IoT with the Previous Works

Related Work Topic Environment Commercial Open-source End-to-End Time-series Data Adaptability

Azure Machine Learning Pipeline [32] General General X X X

AWS Machine Learning Pipeline [36] General General X X X X

Prado et al. [39] Classification IoT X X X

Sutton et al. [47] Anomaly Detection Medical X X

Nitsche and Halbritter [49] Classification Linguistics
Shaikh et al. [50] Policy General X X

Boovaraghavan et al. [51] Classification IoT X X

Molinara et al. [52] Classification IoT X

Vinzamuri et al. [53] Anomaly Detection IoT X X

Li et al. [54] Anomaly Detection General X X X

AnoML-IoT Anomaly Detection IoT X X X X

anomaly detection. Finally, the results are shown in figures within the pipeline. They benchmark180

the proposed system based on several datasets while applying quantification analysis.181

Our pipeline utilizes scikit-learn and TensorFlow for the anomaly detection while relying on182

TensorFlow Lite for the deployment on the fog, TensorFlow Lite Micro for the deployment on the183

edge devices. Hence, it allows the lightweight implementation of anomaly detection techniques184

while offering a variety of communication protocols (e.g., Bluetooth low energy (BLE)) and185

sensor types for the inference. The Table 1 compares our pipeline with the previous works based186

on significant features that determine the efficiency of the pipeline.187

3. The Architecture of the AnoML-IoT Pipeline188

In this part, we present the overall architecture of our pipeline by defining main components,189

describing the workflows that differ according to application scenario, and explaining how to190

automate these workflows to maintain the pipeline.191

3.1. AnoML-IoT Layers and Application Scenarios192

IoT infrastructures should provide semantic data exchange to be considered as completely193

ubiquitous. Current technologies that are utilized in IoT architectures are rapidly evolving to194

achieve semantic interoperability, hence causing the debate of what kind of infrastructure is195

needed for a certain task. Due to each technology has a variety of pros and cons per IoT en-196

vironment, extensive testing is required to decide on IoT elements (e.g., wireless technologies,197

edge/fog node types, sensors, and actuators). Building an IoT application from scratch to perform198

these tests requires intensive labor. Thus, reconfigurable IoT sensing architecture that allows the199

implementation of various ML-based application scenarios including anomaly detection with200

minimum user (e.g., data scientist) interaction is required. AnoML-IoT allows the implemen-201

tation of a variety of application scenarios where the scenarios are evolved around the platform202

that the anomaly detection is implemented. In this context, AnoML-IoT consists of three layers:203

• Edge Layer: The edge layer contains edge nodes that consist of microcontrollers, sensors,204

and actuators. These nodes are physically observing the IoT environment by gathering data205

via sensors while conducting physical operations via actuators (e.g., the fan stops working206

when a certain degree is reached).207

• Fog Layer: The fog layer contains fog nodes that get the data from edge nodes and process208

it according to the end user’s preferences. Usually, fog nodes offer more computing power209
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Figure 2: Overview of the data circulation and the pipeline application scenarios based on the location of anomaly
detection: (i) If the anomaly detection is done on the cloud, the edge and fog devices only forward data, (ii) if the
anomaly detection is done on the fog, the edge sends raw data to fog, then the fog might send processed data to the
cloud, (iii) if the anomaly detection is done on the edge, the processed data might be sent to fog and then to cloud. Each
scenario has its pros and cons that we introduce in section 5. Here processed data contains information to be used to
decide if the data is anomalous or not. Thus, it might be either binary (e.g., 0 for normal data, 1 for anomalous data) or
a decimal(float) as an anomaly score that varies in the range of -1 to 1. The model in the cloud will be updated with the
new normal data according to the predetermined intervals.

than edge nodes while allowing flexible deployment options. Even though fog computing210

may be considered as an alternative to cloud computing, fog nodes can also act as an IoT211

gateway between the edge nodes and the cloud. In this work, we utilize Raspberry Pi 4 as212

a fog device and present our results. We believe, similar Linux-based devices can be used213

as fog devices instead of the Raspberry Pi for the proposed pipeline.214

• Cloud Layer: The cloud layer provides services ranging from data management, storing,215

applying anomaly detection to developing multi-purpose frameworks. Even though, cloud216

computing offers many benefits (e.g., automatic service integration, and high accessibil-217

ity), edge/fog computing is preferred where time-critical or confidential applications (e.g.,218

industrial) are present to reduce reliance on cloud services. While the edge and fog layer219

might contain standalone nodes, the cloud layer requires interaction with other layers.220

Figure 2 summarizes the working principle of the machine learning pipeline. The anomaly221

detection can be done within the pipeline on edge, fog, or cloud. The edge and fog devices also222

can be utilized just to forward raw data to the platform at one upper level. The initial training223

requires prior data. Hence, if there is no dataset to be used for initial training, the edge and fog224

will send only raw data until the cloud can generate an efficient ML model. Then the model will225

be deployed to edge, fog, or cloud. According to the given intervals, the new model will replace226

the old model to keep the system up-to-date. Having an up-to-date ML model is significant to227

prevent a decrease in efficiency that depends on the dynamic context.228

3.2. The AnoML-IoT Open-Source Tools229

AnoML-IoT consists of three main tools: (i) Edge to Cloud Code Generator (ECCG), (ii)230

Node-RED package, (iii) python library. Now we introduce what these tools provide, what are231
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their functionalities, use cases, and roles within the AnoML-IoT pipeline. The source code of232

the tools is published in GitLab1.233

3.2.1. The Edge to Cloud Code Generator234

The ECCG is a web-based code generator that generates edge code to be either used for235

inference or to transmit data to the fog node. Currently, it is only compatible with Arduino IDE236

[55]. It has a user-friendly interface, where even the data scientist with minimal IoT knowledge237

can design a basic IoT application that contains several sensors where the sensor data can be238

transferred between layers. The characteristics of ECCG including the justification for design239

choices are given below:240

• Currently, five sensor types are available: temperature, humidity, air quality, light, loud-241

ness. The end-user can simultaneously select all sensors. Selected sensor data will be242

included within the pipeline. Justification. These five sensor types are among the most243

common sensors that are utilized in IoT applications. The generated code clearly describes244

how the sensor data is received, and processed, thus allowing the easy adaptation of the245

code for a similar type of sensor.246

• Four communication protocols are available: Wi-Fi [56], Bluetooth Classic [57], BLE [58],247

and Zigbee [59]. The end-user can only select one. The application also includes additional248

settings regarding communication protocols for advanced users. Justification. The selected249

four communication protocols occupy the vast majority of the IoT market and offer a250

variety of topologies (e.g., mesh, star, tree). Understanding the basics of how to establish251

these wireless technologies enables the implementation of high-range IoT applications.252

The generated code by ECCG defines how to handle the required network elements (e.g.,253

MAC address, personal area network (PAN) ID). An advanced user may conveniently254

adapt the generated code to be used with other IoT communication protocols that are out-255

of-scope of this project such as WirelessHART [60].256

• The data transfer rate determines the time between two data blocks. It is in milliseconds257

that ranges from 30000 to 300000. After copying to code the user can set the data transfer258

rate as desired. However, we do not recommend setting it below 30 seconds as it is the259

time that is required for the module to initialize. Justification. Data generating time differs260

per sensor module. Controlling the data transfer rate is necessary to ensure the integrity of261

transmitted data.262

• The sensor locations are determined by the end-user. Identification (ID) number starting263

from 00 is given per location. The application supports up to 99 locations. Justification.264

Data scientists work with comma-separated value (CSV) files, to handle the further pro-265

gressing of the data. The data in CSV files mostly in pairs as text-value where text is the266

identifier, and value is digital presentation of a physical quantity. To generate such files,267

data is transmitted in data-serialization formats (e.g., JavaScript Object Notation (JSON),268

Extensible Markup Language (XML)) supported by IoT application standards. Thus, the269

ECCG allows an end-user to define location. Then, it generates a unique location ID num-270

ber to be used in data transmission.271

1https://gitlab.com/IOTGarage/anoml-iot-analytics
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Figure 3: Illustrates the main input section of the ECCG. Each input is strictly controlled for the following reasons: (i) to
prevent cross-site scripting attacks, (ii) to prevent bugs that may occur in the code due to mistyping. Each text input has
a tooltip that clarifies what kind of information should be given. In addition, placeholders demonstrate an example input.

• Three microcontroller types are available: Arduino Nano 33 BLE Sense, Arduino Nano272

RP2040 Connect, and Raspberry Pi Pico. The end-user can select one of the microcon-273

trollers to obtain the edge node ID number to be used to identify the microcontroller types274

when needed. Justification. The ECCG supports the top three microcontrollers that are275

officially supported by TensorFlow Lite for Microcontrollers (TFLM) [61]. Supporting a276

variety of microcontrollers allows users to design a heterogeneous IoT application, where277

the environment benefits from different features of these devices (e.g., RAM, flash mem-278

ory).279

• The ECCG allows sending lowest, mean, or highest sensor data which are generated during280

the time interval determined by the user. Justification. In some cases, the normal range281

might just be determined by lower or upper limits. Hence, we allow the user to decide282

on the data to be sent. If the user selects mean, the mean of the number of data points283

generated by the sensor during the predetermined time interval will be sent.284

The user interface of the ECCG facilitates usability by navigating users via input controls.285

Figure 3 demonstrates the main input section of the code generator while the example inputs are286

given. Minimalist design is preferred to assist a data scientist with no prior IoT knowledge. Thus287

inputs are controlled, tooltips are included, and example inputs are given as placeholders.288

After the inputs are given, the final step is clicking on the ”Generate Code” button. The289

ECCG will output the followings: (i) the edge code that is ready to be deployed to the micro-290

controller via Arduino IDE, (ii) the Python3 script that should be run on the fog device, (iii) the291

Linux commands to be run via terminal, (iv) example Node-RED setup. The outputs differ ac-292

cording to the given inputs. For example, the Linux commands are only required if the Bluetooth293

Classic will be used within the pipeline. The Figure 4 illustrates how the generated code blocks294

are presented. Two main buttons are included for each code block: the first button generates the295

code shown in the pre-scrollable division to let a data scientist examine the codes before further296

progression, the second button copies the code without breaking the format to prevent possible297

errors. The user manually uploads the code into the microcontroller.298

We assume the following scenario: the edge node (micro-controller) gathers physically ob-299

served data via sensors and sends it to a fog node(a single-board computer (SBC)) where the data300

is either processed or forwarded to the cloud via Node-RED. Thus, the ECCG consists of three301

main sections: (i) the input field where the end-user determines the basic characteristics of the302

desired IoT application, (ii) the transmitter field where the edge node code is generated for a mi-303

crocontroller, and (iii) the receiver field where the fog node code is generated for a single-board304
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Figure 4: Illustrates the generated code block and the example Node-RED setup. In the example scenario, Raspberry Pi
Pico is selected as an edge node/transmitter. The generated transmitter code is written in C++ and should be deployed
via Arduino IDE. The Raspberry Pi 4B is acting as a fog node/receiver.

computer. Table 2 illustrates the specifications of the ECCG in detail.305

3.2.2. The Node-RED Package306

Node-RED [62] is an open-source browser-based workflow development tool that runs on307

Node.js [63] based runtime. We can develop workflows via utilizing drag-and-drop nodes on308

resource-constraint environments such as Raspberry Pi thanks to the non-blocking nature of309

Node.js. Hence, we use Node-RED on the fog device to develop and control the workflows310

within the AnoML-IoT pipeline. Even though Node-RED contains many open-source packages311

developed for the IoT networks, we could not find any up-to-date package that provides the devel-312

opment of Bluetooth Low Energy (BLE) modules while offering customization choices. Hence,313

we developed and published our package under the name of ”node-red-contrib-IoT-procotols”.314

The package contains the following nodes:315

• BLE Scanner. BLE devices can operate in four different roles: broadcaster, observer, cen-316

tral, and peripheral. The task of the BLE Scanner node is to scan for the advertising BLE317

peripherals. It can specifically search for a local name and output one of the followings:318

whole peripheral as an object, MAC address, and advertisement data. So, the user can use319
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Table 2: The Specifications of The Edge to Cloud Code Generator

Main Inputs

Sensor Types

Temperature
Humidity
Loudness
Light
Air Quality

Communication Protocols
Wi-Fi
Bluetooth Classic
BLE
Zigbee

Edge Node Types
Arduino Nano 33 BLE Sense
Arduino Nano RP2040 Connect
Raspberry Pi Pico

Edge Node Identifiers
Edge Node Location
Edge Node ID Number

Advanced Inputs

Wi-Fi

Service Set Identifier (SSID)
Password
Host IP Address
Host Port

Bluetooth & BLE
*MAC Address
Module Name
Module PIN

Zigbee
PAN ID
Destination Address High
Destination Address Low

Generated Outputs

Node-RED Example Setup
Node Settings
Workspace Design
Example Functions

Transmitter Code
Arduino Scripts
Python Scripts

Receiver Code
JavaScript Function Nodes
Python Scripts

* Among advanced inputs, only the MAC address is obligatory. The default options
that are included in the code are explained via comments in detail.

this node either to discover the MAC address of the target BLE peripheral or to get the320

advertisement data.321

• BLE Connect. This node establishes a BLE connection with the target peripheral device.322

While one peripheral device can only be connected to one central, central devices can323

manage multiple peripherals. Hence, our pipeline allows the deployment of multiple edge324

devices via BLE while the maximum number of peripherals that can be connected depends325

on the system-on-a-chip (SoC) of the microcontroller. For example, the Arduino Nano 33326

BLE Sense [64] SoC nRF52840 [65] supports up to 20 parallel connections.327

Figure 5 introduces nodes that offer the establishment of multiple network communication328

protocols in the Node-RED environment within the AnoML-IoT pipeline. Each communication329

protocol might have different pros and cons according to the application domain. Hence, it is330

important to offer multiple options to the end-user. We consider providing more choices in the331

future.332

3.2.3. The AnoML.py and SetupAnoML.sh333

AnoML.py. Library of functions in python which can support most of the tasks in developing334

ML models with various types of normalization and data points. Generating different models for335
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Figure 5: Illustrates the developed nodes to be used within to Node-RED environment hosted by the fog device.

the cloud, fog and edge platforms using various normalization methods and data points is a labor-336

intensive task. Evaluating different models for unsupervised ML when there is a small amount337

of anomalous data is also another challenge. Our Python library supports data preprocessing to338

generating ready to deploy ML models for the cloud, fog, and edge for unsupervised ML. It also339

provides performance visualization for each data point while including normalization techniques340

which helps to select the most efficient model. The proposed library provides data cleaning,341

normalization, reduction, scaler, and visualization functions before feeding into machine learning342

models. The library also provides various functions that allow training and testing. The inference343

part of the library provides functions to evaluate different machine learning models generated344

using our library at both fog and cloud platforms so the performance of the platforms can be345

compared.346

SetupAnoML.sh. It acts as an installer to prepare both fog and cloud platforms for action.347

It installs correct versions of necessary packages and libraries required to run inference. Once348

the prerequisites are handled, it can then download, install and configure packages such as Node-349

RED and TensorFlow runtime. Also, it sets our custom-developed services to listen on web ports350

to order to allow microcontrollers to interact with fog devices and fog devices to interact with351

the cloud platform. The script can be configured to download files and configurations either352

from Google Drive or a local/remote FTP Server. Users also can manually download, install and353

configure all prerequisite requirements and model files if it is desired.354

4. The Data Circulation355

The nature of the input data shapes the characteristics of the data science pipeline. Hence,356

gathering raw data is the first step in this kind of pipeline. In the IoT environment, the sensors357

generate a variety of data in various formats. While most of the temperature sensors generate data358

in floating-point numbers (floats) to provide more accuracy, the light sensors that measure light359

density usually provide data in integer. This is significant for two main reasons: (i) each data type360

occupies memory in different sizes, (ii) there might be different regulations [66, 67] according361

to the application domain for certain data types such as floats. Hence, the memory usage should362

be optimized for microcontrollers that have very limited memory. The memory usage might also363

differ according to the microcontroller architecture. For instance, while Arduino Uno [68] stores364

int values in two bytes, Arduino Due [69] stores int values in four bytes. The data circulation365

within the AnoML-IoT pipeline consist of four main steps: (i) data ingestion, (ii) data training,366

(iii) model deployment, (iv) inference and maintaining.367

4.1. Data Ingestion368

Data ingestion is the first step of all kinds of data science pipelines unless the user already369

has a ready-to-deploy ML model. In our pipeline, the ECCG is the main tool that utilizes the370
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data ingestion process. Figure 3 illustrates the choices offered by the ECCG. The user can se-371

lect among the offered choices to obtain a generated code. The generated code can be copied372

without disrupting the format. Multiple communication protocols and Node-RED example that373

demonstrates how to receive data via fog device are also provided.374

What the ECCG generates is an example edge code. Besides, in our setup, we use Grove375

sensors and shields [70] while utilizing Raspberry Pi 4B as a fog device. The IoT environment is376

very heterogeneous hence, the user might have or want to use different sensors, microcontrollers,377

or fog devices. The generated code by the ECCG should require minimal editing even when this378

is the case as we also provide instructions via comments for the exact lines within the code that379

might require editing due to individual preferences. If needed, the user can edit the generated380

code after copying it from the ECCG to Arduino IDE. Then, the code can be uploaded to a381

microcontroller. To complete these tasks the user needs a computer that can access the internet382

and run Arduino IDE. So, the tasks of copying the code and uploading it to a microcontroller are383

handled manually. Figure 6 demonstrates the data ingestion process.384

4.2. Model Training385

Model training can be done before ingestion if the user already has a training dataset. Oth-386

erwise, the user should follow the steps mentioned in the data ingestion phase. The AnoML.py387

library contains all the required functions that are needed to generate a ML model. Uploading388

the dataset to a cloud platform is handled manually. After uploading the dataset, the user should389

preprocess the data to convert to an appropriate format for the ML algorithms. Then, the ML390

models are generated based on the user preferences. User can generate multiple ML models at391

the same time. Here, we facilitate the model training by providing user a python library that is392

capable of preprocessing the time series data and generating multiple ML models based on given393

parameters with only a few line of codes. The required time depends on the capabilities of a394

cloud platform that is used during the training. The user should decide on the followings: (i) the395

size of the training dataset, (ii) the algorithm specific parameters(e.g., contamination factor for396

Isolation Forest). Figure 7 illustrates the model training phase.397

Edge to Cloud Code Generator

Generated Arduino Code

Copy / Paste

Inputs

Sensor Data

Communication Protocol

Others

Arduino IDE

Upload

Microcontroller

Raw Data

Fog Device

Raw / Preprocessed Data

Cloud

Figure 6: Illustrates data ingestion phase. The data preprocessing can be done on all platforms. However, due to the
limited computing power of edge and fog devices, we prefer to utilize the cloud. In addition, if more than one edge
device is connected to the fog device, data preprocessing can be done on the fog device to identify the edge devices.
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Figure 7: Demonstrates the model training phase. Currently, the built-in algorithms within the AnoML.py are RNN,
CNN, isolation forest, and One-class SVM. Multiple datasets can be utilized at the same. The storage place of these
models depends on the preferences of the user. During our evaluation we used Google Drive [71] to store our models as
it can be easily integrated into Google Colab [72]. Another option would be running an FTP server. The user also can
utilize both at the same time.

ML Model

AnoML.py

CLOUD

SetupAnoML.sh
Generate Fetch Deploy

Cloud

Manual
Automatic

Fog

OR / AND

Edge

HTTP

Figure 8: Illustrates the model deployment phase. SetupAnoML is an executable Linux shell script that does the fol-
lowings in order: (i) fetches generated ML models from Google Drive or FTP server, (ii) installs required libraries and
packages, (iii) deploys models over HTTP. The deployment to edge should be handled manually. We are considering to
provide automated edge ML deployment function via over-the-air (OTA) transmission in the future versions of AnoML-
IoT.

4.3. Model Deployment398

The next step after training the model is model deployment. Here we provide an executable399

shell script SetupAnoML.sh that facilitates the model deployment phase by automating several400

key tasks. The user should provide the following inputs to the script: (i) the platform (edge401

or cloud) where the anomaly detection technique will be deployed, (ii) the details of the place402

where the model is stored (e.g., server, username, password, and port names for an FTP server,403

Google Drive token or Google Drive). After these inputs are given, the script will automatically404

download, install, and configure all the required software packages (e.g., libraries, models, con-405

figurations). Then the script automatically will deploy the models to cloud, fog, or both cloud406

and fog platforms. The user can deploy multiple models at the same time to different platforms.407

Figure 8 demonstrates the model deployment process.408
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Figure 9: Illustrates the possible scenarios that can be generated within the AnoML-IoT pipeline. We allow the use of
various topologies, wireless communication protocols, and execution of use case scenarios shaped around the decision
of anomaly detection platform.

4.4. Inference and Maintaining409

Successful deployment results in inferring all models on each type of platform. We devel-410

oped an end-to-end pipeline which allows a user to generate ML models for anomaly detection411

from sensor data at all platforms. We developed a performance monitor which can present visu-412

alization of performance and accuracy of all type platforms, ML models, data-points and normal-413

ization/reduction techniques. Maintenance of data is a key aspect for evolution, we recommend414

that user should make it a practice to visualize performance comparison as a process of decision415

making in order to enhance performance and accuracy on all platforms.416

5. Evaluation417

In this section, we present the evaluations that are done to measure the efficiency of the418

pipeline with various configurations enabled. A data science pipeline evaluation is not a trivial419

task if the environment is heterogeneous such as IoT. Figure 9 demonstrates possible scenarios420

available within our pipeline where different sensors and wireless communication protocols are421

used.422

5.1. Wireless Protocol Comparison423

The decision on the wireless protocol selection depends on the application domain as each424

protocol has its benefits and disadvantages. There are several important features to be considered425
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Table 3: Wireless Protocol Comparison

Latency (ms)
Power Consumption Topology*

Edge to Edge Edge to Fog Fog to Fog Fog to Cloud
Wi-Fi 18.24 14.566 17.25 21.23 High Star
Bluetooth Classic 195.13 171.15 187.15 NA Medium Point-to-Point
BLE 11.23 13.45 13.21 NA Low Mesh
Zigbee 18.56 16.66 14.56 NA Low Mesh

NA: Not Applicable. ?: The most common topology is given.

when designing an anomaly detection pipeline for the IoT environments:426

• Latency. The time that takes for one network package to be transmitted from the transmit-427

ting endpoint to the receiving endpoint. Latency optimization is very significant to achieve428

near real-time processing and inference. It is one of the significant features that determine429

the anomaly detection time. Low latency is aimed for the applications (e.g., industrial)430

where the anomaly detection time is critical [73].431

• Power consumption. IoT is a resource-constraint environment, hence power consumption432

is one of the significant features to be considered.433

• Network Topology. The data circulation and the system design depend on the network434

topology. While there are many topologies (e.g., star, mesh, ring) offered by the current435

communication protocols, the mesh, and star networks are the most common ones that are436

established in IoT environments.437

Table 3 compares the wireless communication protocols utilized in the proposed pipeline438

based on the aforementioned features. We measured the latency by taking the mean of the passed439

time for the 1000 transmitted packages. Edge and fog devices were placed next to each other440

during the tests hence there was no physical barrier between the devices. No packet drop is441

observed. While we observed similar latency for the BLE, Wi-Fi, and Zigbee, the Bluetooth442

Classic had the highest latency. However, it is challenging to have a conclusion as many factors443

that might affect the latency. Hence, to get the most realistic results, the tests should run in a real444

environment where anomaly detection takes place.445

5.2. Dataset and Testbed446

Realistic datasets and testbeds are required to achieve the most promising results. To evaluate447

the efficiency of the pipeline, we built a testbed that contains components that are low-cost and448

accessible to most of the IoT community. When designing the IoT testbed, the sensor selection is449

the initial task that shapes the main futures of the testbed. In cyber-physical environments, there450

are several behaviors (e.g., temperature, noise, humidity) that can be considered as common.451

Hence, we observe these common behaviors via our testbed and generate a dataset. Table 4452

demonstrates the components utilized during the evaluation.453

We recorded the temperature, humidity, light, loudness, air quality data for around two days.454

We observed the data at the beginning to form an initial opinion about physical behavioral455

changes in the test environment. We realized the only temperature and humidity sensors are456

working as expected and let us creating anomalous behaviors. Hence, we only utilize these two457

data during the evaluation. Figure 10 provides visualization of the generated dataset. Arduino458
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Table 4: Testbed Components

Sensors

Grove - Temperature & Humidity Sensor (High-Accuracy & Mini) v1.0
Grove - Light Sensor
Grove - Loudness Sensor
Grove - Air Quality Sensor v1.3
Grove - UART Wifi V2
Digi XBee 3 Zigbee 3 RF Module

Microcontrollers
Arduino Nano 33 BLE Sense
Raspberry Pi Pico
Arduino Nano RP2040 Connect

Shields
Grove - Bee Socket
Grove Shield for Pi Pico V1.0
Arduino Tiny Machine Learning Shield

Single-board Computer Raspberry Pi 4 Model B

Software Tools

Putty
Raspberry Pi Imager
Node-RED
Arduino IDE 1.8.15
Visual Studio Code
Google Colab

Table 5: Comparison of Datasets

Features WADI [8] AnoML [7]

Amount of Data 122,543,744 45,906
Number of Rows 957,374 6,559
Number of Columns 129 7
Number of Sensors & Actuators 123 5
Time-Series X X

Labelled X X

File Size 588,906 KB 265 KB

Nano RP2040 Connect, Grove sensors, and Putty is used to generate the dataset which is pub-459

lished on Kaggle [7] where more details are also provided regarding the testing environment.460

In addition, we utilize the WADI [8] dataset during the evaluation to analyze how the key ML461

parameters such as accuracy, F1-score, and prediction time differ according to the ML platform.462

The dataset contains data from 123 sensors and actuators from a water distribution testbed that463

had non-stop run for 16 days while being attacked during the last two days. Table 5 demon-464

strates the differences between two utilized datasets. By using these datasets, we also evaluate465

the relationship between the power consumption and data volume.466

5.3. Anomaly Detection Methods467

We tested the anomaly detection algorithms mentioned in Section 2 on WADI and AnoML468

datasets, as well as edge, fog, and cloud platforms by applying several scaling/reduction tech-469

niques. During the evaluations, we only used the baseline version of anomaly detection algo-470

rithms, hence we did not tune the algorithms to get better results to demonstrate the performance471

17



Figure 10: Demonstrates the behaviour per data type. The controlled anomalies for temperature and humidity data are
identifiable. The anomalies in temperature and humidity are created via hair dryer. The air quality, light, and loudness
can be considered as faulty due to not responding to our anomaly creation attempts. There might be two reasons for the
occurrence of faulty data: (i) the sensors are cheap quality, (ii) these sensors are designed for the AVR[74] architecture.
However, during the evaluation we used ARM-based microcontrollers.

[75].

of baseline versions. We evaluate the following parameters as they are the core elements that de-472

termine the efficiency of an anomaly detection algorithm. Accuracy [76] determines the overall473

correct prediction ratio. Precision [77] defines how close the predictions are. Recall [77] demon-474

strates how the anomaly detection algorithm is successful at detecting normal data. F1-Score475

[76] is an evaluation metric that takes class distribution into considering. It might be preferred476

as the main metric when false detections matter (e.g., industrial environments). True positive477

(TP). The normal data is detected as normal. True negative (TN). The anomalous data is detected478

as anomalous. False positive (FP). The normal data is detected as anomalous. False negative479

(FN). The anomalous data is detected as normal. The following equations demonstrate how these480

parameters are calculated:481

Accuracy =
T P + T N

T P + T N + FP + FN
Precision =

T P
T P + FP

F1 − S core =
2 ∗ T P

2 ∗ T P + FP + FN
Recall =

T P
T P + FN

The TensorFlow has three different APIs. The main API (TensorFlow) contains all the avail-482

able methods and utilizes high-level API Keras [78] to build neural networks. TensorFlow Lite483

[43] which is the lightweight version of TensorFlow that is specifically designed for mobile/IoT484

devices is generated via the main TensorFlow API. TensorFlow Lite for Microcontrollers [79]485

only allows a subset of TensorFlow operations to be run on 32-bit microcontrollers. Hence, cur-486
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rently only CNN is supported. TensorFlow Lite models are converted into micro models via487

TensorFlow Lite converter Python API [80]. Then, inference is possible at the edge.488

Table 6 and Table 7 demonstrates the results of anomaly detection tests. We see that baseline489

CNN at the edge achieves 77% accuracy and 86% F1-score. We did not observe any significant490

differences regarding accuracy and F1-Score. We also see those reduction methods help to reduce491

the inference time. If we compare scikit-learn methods and TensorFlow methods, we see that492

scikit-learn performs better when there is more computing power, but TensorFlow might generate493

better results on fog rather than the cloud. If we use CNN-AE, we see that the accuracy is higher494

when the standard deviation is applied, but for one-class SVM, we see that skew performs better495

than the standard deviation. Also, we see that the TF Lite models are significantly less in size496

than TF models. During the evaluation of the Isolation Forest, the whole dataset must be fit at497

once, due to nature algorithm. The Raspberry Pi 4B with 4 GB RAM fails due to high RAM498

usage that occurs because of fitting the whole dataset at once. Hence, we utilized the 64-bit 8499

GB version of Raspberry Pi to evaluate the performance of Isolation Forest.500

6. Lessons Learned501

IoT infrastructures are expanding thanks to the benefits of ubiquitous computing. The rapid502

developments in lightweight edge mechanisms made them desirable for labor-intensive tasks503

such as anomaly detection. The increasing variety of 32-bit microcontrollers allows us to choose504

a specific device with desired features (e.g., relatively high RAM) that can run ML algorithms.505

In the edge environment where these microcontrollers are utilized, while ML-based tasks such506

as keyword spotting, natural language processing, image processing have proven to be promis-507

ing, anomaly detection is still in a very early phase [81]. Machine learning pipelines are the508

key elements that let us evaluate these edge ML algorithms. Thus, we develop an end-to-end509

ML pipeline that facilities developing anomaly detection systems where the detection can be510

done on different layers (edge, fog, and cloud). We make the following observations based511

on our findings: (i) lack of complete multi-protocol edge anomaly detection frameworks, (ii)512

the lack of control over converted ML models, (iii) there is a lack of sensor data terminology,513

(iv) manufacturers/developers provide platform-specific support, (vi) there is lack of support for514

multi-language/protocol development frameworks, (vii) automated is actually not automated.515

Lack of complete multi-protocol edge anomaly detection frameworks. The two tasks that516

are executed within anomaly detection pipelines are: (i) data gathering/ingestion, (ii) anomaly517

detection model development. While these tasks are different by nature, they are essential to518

implement a complete IoT anomaly detection mechanism. During the evaluations, we see that519

the required tools are very diverse and no ML framework offers a complete solution. For data520

ingestion, flexibility and scalability are the most desired features. Hence, microcontrollers are521

the primary elements that are deployed in IoT environments to gather data. Due to the resource522

constraints of these environments, we need low power-consuming communication protocols.523

This is one of the main reasons that why BLE [58] is invented. In the edge, during the evaluations524

we see that there are three conditions needed for data acquiring: (i) sensors should be compatible525

with the microcontroller, (ii) communication protocol libraries should be available to establish526

a network both for the edge and the fog, and (iii) configurable platform that provides visual527

assistance is needed. As no framework ensures all three conditions, we had to use tools that528

require different programming languages (e.g., Arduino, JavaScript, Python).529

The lack of control over converted ML models. TensorFlow allows us to convert the neural530

network models that are generated via the main API to more lightweight models that can be531

19



Table
6:E

valuation
R

esults
ofW

A
D

ID
ataset

M
odelD

etails
Inference

Tim
e

(m
s)

A
U

C
A

ccuracy
R

ecall
Precision

F1-Score
Scaling

/R
eduction

Tim
e

(s)
M

odelSize
(K

B
)

A
lgorithm

SR
A

PI
Fog

C
loud

Fog
C

loud
Fog

C
loud

Fog
C

loud
Fog

C
loud

Fog
C

loud
Fog

C
loud

Fog
C

loud

C
N

N
-A

E

A
verage

T
F

1.01413
23.3021

0.418136
0.418136

0.323962
0.323962

0.311666
0.311666

0.91451
0.91451

0.464895
0.464895

6.88913
1.416631

34.64844
291.4189

K
urtosis

T
F

0.995147
24.0796

0.519019
0.519019

0.728089
0.728089

0.755389
0.755389

0.945001
0.945001

0.839623
0.839623

67.18984
23.71106

34.60938
291.0166

M
A

D
T

F
1.025978

24.03
0.448848

0.448848
0.7072

0.7072
0.740935

0.740935
0.934799

0.934799
0.826653

0.826653
72.07326

21.63906
34.64844

291.4189

M
M

T
F

440.2933
96.6556

0.498538
0.498538

0.18035
0.18035

0.138802
0.138802

0.941108
0.941108

0.241923
0.241923

1.433161
0.481541

397203.7
1191798

N
S

T
F

440
103.3094

0.5
0.50022

0.059669
0.059669

0.002144
0.002144

0.942253
0.953552

0.004278
0.004278

N
A

N
A

397194.2
1191799

Skew
T

F
1.001088

24.6464
0.361076

0.361073
0.261203

0.261197
0.248162

0.248156
0.885031

0.885028
0.387632

0.387624
69.34095

34.05004
34.60938

291.0166

SS
T

F
440

106.2
0.699918

0.699918
0.758349

0.758349
0.765979

0.765979
0.971539

0.971539
0.856599

0.856599
0.814415

0.790764
397203.6

1191796

StD
ev

T
F

1.051563
25.3799

0.497397
0.497397

0.929901
0.929901

0.986375
0.986375

0.941966
0.941966

0.963659
0.963659

20.04371
3.039728

34.64844
291.4189

R
N

N

A
verage

T
F

8.164231
29.9278

0.431887
0.431887

0.174428
0.174428

0.140811
0.140811

0.892397
0.892397

0.243241
0.243241

6.911079
1.273132

797.8203
4045.537

K
urtosis

T
F

8.020618
30.07291

0.515931
0.515931

0.433345
0.433345

0.422561
0.422561

0.946374
0.946374

0.584251
0.584251

67.16076
22.99305

797.8047
4042.888

M
A

D
T

F
8.014902

29.02
0.421892

0.421892
0.69089

0.69089
0.726014

0.726014
0.930689

0.930689
0.815708

0.815708
71.88432

19.5469
797.8164

4044.854

Skew
T

F
7.621182

29.82979
0.448924

0.448965
0.544221

0.544209
0.556664

0.556646
0.932372

0.93238
0.697119

0.697107
69.21164

31.53431
797.8125

4044.202

StD
ev

T
F

8.09226
30.83805

0.420087
0.42009

0.436152
0.436158

0.43825
0.438256

0.922818
0.922819

0.594276
0.594282

20.04073
3.640271

797.8203
4045.537

R
N

N
-A

E
M

M
T

F
18.32667

40.9852
0.470241

0.470231
0.166829

0.166811
0.127211

0.127192
0.917464

0.917453
0.22344

0.223411
1.330966

0.328342
1414.535

10386.43

N
S

T
F

17.90922
41.1471

0.5
0.500252

0.942253
0.05964

1
0.002107

0.942253
0.955432

0.970268
0.004205

N
A

N
A

1410.465
10386.67

SS
T

F
18.08283

49.55683
0.699284

0.699284
0.671158

0.671158
0.667486

0.667486
0.975904

0.975904
0.792754

0.792754
3.304777

1.005414
1414.512

10378.48

O
C

-SV
M

A
verage

SK
0.894195

0.342938
0.491203

0.491203
0.7086

0.7086
0.801859

0.801859
0.84711

0.84711
0.823864

0.823864
6.88913

1.416631
56.62305

56.62305

K
urtosis

SK
0.855004

0.341614
0.481406

0.481406
0.8127

0.8127
0.954818

0.954818
0.84496

0.84496
0.896536

0.896536
67.18984

23.71106
50.1582

50.1582

M
A

D
SK

0.512389
0.207312

0.500747
0.500747

0.7141
0.7141

0.805624
0.805624

0.850137
0.850137

0.827282
0.827282

72.07326
21.63906

8.673828
8.673828

M
M

SK
0.687799

0.367881
0.5

0.5
0.1501

0.1501
0

0
1

1
0

0
1.433161

0.481541
407.5889

407.5889

N
S

SK
0.680684

0.335778
0.5

0.5
0.1501

0.1501
0

0
1

1
0

0
N

A
N

A
395.542

395.542

SS
SK

1.314422
0.576975

0.496702
0.496702

0.8028
0.8028

0.93411
0.93411

0.849
0.849

0.889524
0.889524

0.814415
0.790764

1442.616
1442.616

Skew
SK

0.545252
0.189985

0.493176
0.493176

0.8383
0.8383

0.986351
0.986351

0.848138
0.848138

0.912038
0.912038

69.34095
34.05004

10.2168
10.2168

StD
ev

SK
1.13791

0.469978
0.501338

0.501338
0.7897

0.7897
0.913402

0.913402
0.850274

0.850274
0.880708

0.880708
20.04371

3.039728
92.62793

92.62793

IF

A
verage

SK
0.1884

0.2868
0.5891

0.5891
0.7152

0.7152
0.7179

0.7179
0.9921

0.9921
0.8330

0.8330
6.88913

1.416631
962.10

962.10

K
urtosis

SK
0.1884

0.2868
0.6433

0.6433
0.7205

0.7205
0.7221

0.7221
0.9936

0.9936
0.8364

0.8364
67.18984

23.71106
775.20

775.20

M
A

D
SK

0.1884
0.2868

0.4325
0.4325

0.7123
0.7123

0.7183
0.7183

0.9876
0.9876

0.8317
0.8317

72.07326
21.63906

634.68
634.68

M
M

SK
0.1978

0.3081
0.7155

0.7155
0.8399

0.8399
0.8426

0.8426
0.9948

0.9948
0.9124

0.9124
1.433161

0.481541
952.58

952.58

N
S

SK
0.1884

0.2868
0.6951

0.6951
0.8444

0.8220
0.8247

0.8247
0.9944

0.9944
0.9016

0.9016
133.64

133.64
N

A
N

A

SS
SK

0.2119
0.3103

0.6951
0.6951

0.8444
0.8220

0.8247
0.8247

0.9944
0.9944

0.9016
0.9016

0.814415
0.790764

944.20
944.20

Skew
SK

0.1884
0.2868

0.6415
0.6415

0.7036
0.7036

0.7049
0.7049

0.9937
0.9937

0.8247
0.8247

69.34095
34.05004

761.20
761.20

StD
ev

SK
0.1884

0.2868
0.5519

0.5519
0.7034

0.7034
0.7066

0.7066
0.9910

0.9910
0.8250

0.8250
20.04371

3.039728
765.32

765.32

N
A

:N
otapplied.M

M
:M

inM
ax

scaler.N
S:N

o
scalerapplied.SS:Standard

Scaler.M
A

D
:M

edian
A

bsolute
D

eviation.StD
ev:Standard

D
eviation.IF:Isolation

Forest.A
E

:A
utoencoder.T

F:TensorFlow
.SK

:scikit-learn.

20



Table 7: Evaluation Results of AnoML Dataset

Model Details Inference Time (ms) Accuracy F1 Score AUC Recall Precision Scale Time (s) Model Size (KB)
Model SR API Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Fog Cloud Edge Fog Cloud

CNN

StDev TF 174.24 1.95 32.22 0.258 0.251 0.251 0.000 0 0 0.4991 0.485 0.485 0.000 0 0 0.000 0 0 0.716 0.12 19.62 3.172 80
Average TF 172.05 1.13 32.63 0.769 0.871 0.871 0.862 0.91 0.91 0.5738 0.867 0.867 0.979 0.876 0.876 0.770 0.946 0.946 0.241 0.04 19.50 3.152 80
Skew TF NA 8E-15 32.20 NA 0.475 0.475 NA 0.57 0.57 NA 0.474 0.474 NA 0.476 0.476 NA 0.72 0.72 2.487 0.8 19.52 3.156 80
Kurtosis TF NA 2E-07 32.04 NA 0.259 0.259 NA 0 0 NA 0.5 0.5 NA 0 0 NA 1 1 2.425 0.57 19.50 3.152 80
MAD TF NA 1.81 32.16 NA 0.576 0.576 NA 0.60 0.60 NA 0.702 0.702 NA 0.441 0.441 NA 0.972 0.972 2.558 0.88 19.52 3.156 80

NA: Not applied. MAD: Median Absolute Deviation. StDev: Standard Deviation. IF: Isolation Forest. TF: TensorFlow.

Table 8: Data Format

Categories Sensor Type Protocols Others
Features Temperature Humidity Air Quality Light Sound WiFi Bluetooth Classic BLE Zigbee Location ID Sensor ID Microcontroller ID
Identifiers TH HU AQ LI SO WF BC BL ZB Numbers Numbers Numbers
Example Data 24.45 44.31 75 255 644 NA NA NA NA 01 001 1

NA: Not Applicable.

deployed to edge and fog. However it offers zero control over the model conversion. During532

the evaluations, we realized that some lite models perform better than their main peers which533

were unexpected as there is a known trade-off between model accuracy and power consumption.534

Due to not having any control over this conversion, the only way to compare these models is535

by running inference. Also, scikit-learn models do not have a lite version. Pickle [82] library is536

used to pack and deploy the same model to another platform. Hence deploying these models to537

microcontrollers is currently not possible. This is why during the evaluations we did not observe538

any differences rather than inference time when running scikit-learn models.539

Lack of unified IoT sensor data terminology. In an IoT environment, the sensors generate data540

in a similar format. Showing such similarities might be confusing if the data are not identified541

with certain terms/identifiers especially where big data are present. Hence, we apply further pro-542

cessing to identify the data context. However, there is no sensor terminology that explicitly states543

the sensor data format. Thus, we designed ECCG in a way that it generates a code that provides544

all required information such as the location of the sensor, sensor type, and the microcontroller545

model. Also, another important point to consider regarding IoT sensor data terminology is the546

data with floating points. While WiFi, Zigbee, and Bluetooth Classic have no issues when send-547

ing floating-point data, BLE by nature designed to send buffer (byte array) as it provides power548

optimization. Hence, when sending data over BLE we might require further indicators such as549

”F” for floats or ”I” for integers to correctly identify the data. Table 8 presents the data for-550

mat that is generated via ECCG. We set the number IDs in different lengths to prevent possible551

confusion.552

We evaluated our AnoML pipeline with two datasets, WADI and AnoML. WADI dataset has553

data from 127 different sensors, which is not possible to be replayed on edge devices due to554

limited computing power. WADI dataset was only evaluated on fog and cloud. We used a pri-555

vate machine with NVidia Tesla GPU and TensorFlow-GPU library version 2.4.1 for ML model556

training. AnoML dataset has data from five environmental sensors but two of them (temperature557

and humidity) were used to build and evaluate models on edge, fog, and cloud. We used Google558

Colab with GPU support to build models for the AnoML dataset with TensorFlow-GPU library559

version 2.1.1. AnoML dataset was transformed using reduction techniques only, to convert it560

into univariate.561

In terms of accuracy, F1-score, precision, recall, and Area Under Curve (AUC), there was no562

significant difference recorded when comparing fog and cloud inferences in all types of models563

for the WADI Dataset. It was also observed that batch processing (all at once) in TensorFlow on564

the cloud does not affect the efficiency of the pipeline. Figure 11 shows the comparison of each565
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metric for all models for the WADI Dataset. Regarding fog and cloud, we observed a similar566

trend for the AnoML Dataset. However, we noticed that edge results were comparatively less567

efficient.568

We noticed that inference on fog takes distinctly less time as compared to inference on the569

cloud. But, we observed the opposite results for CNN-AE when doing multivariate analysis570

where we recorded that cloud inference was faster than fog. Figure 11a provides a visual com-571

parison between inference times of fog and cloud. We also experienced that when using batch572

prediction in the cloud (all rows at once), the average prediction time was extremely faster. But,573

this is not applicable in the real-world scenario where data is being streamed. Both scaling and574

reduction techniques were faster on cloud (using batch-prediction) when compared to fog as seen575

in Figure 11g. Inference time trends were also identical in ML models for the AnoML dataset576

as fog inference time was less than cloud inference. The fog was more than 10 times faster than577

cloud inference. Inference time on edge was extremely slow when compared to fog and cloud, it578

was more than 100 times slower than the fog and almost 5 times slower than the cloud.579

WADI Dataset is based on two sub-datasets recorded at different times, normal and attack,580

as we discussed that normal dataset was used for ML model training thus we used the attack581

dataset for testing. The attack dataset consists of 172800 rows which were then converted into582

time-series data. As a result, the dimension of the data became (172770, 30, 127) for scale-based583

and (172770, 30, 1) for reduction-based models. Reduction-based models took exceptionally584

less time for training because of the univariate nature of the data. The size-on-disk of CNN-AE585

scaled-based models is too big as compared to CNN-AE reduction-based models. For RNN-AE586

models, the size-on-disk of reduction-based models are not significantly different from scale-587

based RNN models. The main reason for this was that we used LSTM layers for RNN. The588

size-on-disk variation trend was identical in fog models as seen in Figure 11h. We also learned589

that scikit-learn models maintain consistency over fog and cloud. The time-related results in590

the fog were always slower due to the difference in computing power, but there was no change591

observed in accuracy-related metrics. The obvious reason was that there was no platform/format592

conversion done for scikit-learn models.593

Models for the AnoML dataset were lightweight but there was a notable difference for the594

fog models in cloud model size-on-disk. We also observed that the size of edge models was595

significantly greater than fog models, even though these models were converted from them. The596

reason was that edge models were in plain-text (hex-dump) as they were a C-array, but fog597

models were flat-buffered-binary format.598

7. Conclusion599

The proposed system offers support to a data scientist with minimal IoT knowledge to deploy600

a reconfigurable IoT anomaly detection infrastructure that utilizes a data science pipeline. The601

proposed framework contains: edge nodes consist of microcontrollers, fog nodes consist of single602

board computers and virtual cloud nodes. The communication between nodes is not limited603

to edge node types but limited with protocol specifications (e.g., Bluetooth only allows seven604

slaves/servers), hence allowing the implementation of different network topologies (e.g., bus,605

tree, and star). The system also explicitly supports the four major phases of data processing:606

gathering, training, deployment, and inference. We evaluated several combinations to measure607

the scalability that is offered by the proposed framework. We observed that the proposed anomaly608

detection pipeline reduces the required labor for building an IoT anomaly detection system. We609
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Figure 11: WADI Dataset Evaluation

(a) Inference Time (b) Accuracy

(c) AUC (d) F1-Score

(e) Precision (f) Recall

(g) Scaling Time (h) Model Size
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identified the drawbacks of the proposed system including the reasons behind them. We believe610

our work encourages the future studies that aim to build open-source ML-based pipelines.611

As future work, we are seeking to improve the ECCG web application by including more612

edge nodes, sensors, and protocol types. In addition, we envision converting required manual613

processes (e.g., deploying ML model to edge, uploading training data, deploying edge code)614

within the AnoML-IoT to automated.615
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