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a b s t r a c t 

EEG microstate analysis is an approach to study brain states and their fast transitions in healthy cognition and disease. A key limitation of conventional microstate 
analysis is that it must be performed at the sensor level, and therefore gives limited anatomical insight. Here, we generalise the microstate methodology to be 
applicable to source-reconstructed electrophysiological data. Using simulations of a neural-mass network model, we first established the validity and robustness 
of the proposed method. Using MEG resting-state data, we uncovered ten microstates with distinct spatial distributions of cortical activation. Multivariate pattern 
analysis demonstrated that source-level microstates were associated with distinct functional connectivity patterns. We further demonstrated that the occurrence 
probability of MEG microstates were altered by auditory stimuli, exhibiting a hyperactivity of the microstate including the auditory cortex. Our results support the 
use of source-level microstates as a method for investigating brain dynamic activity and connectivity at the millisecond scale. 
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. Introduction 

Whole-brain, non-invasive functional neuroimaging of the human
rain is a useful tool for uncovering the mechanisms underpinning cog-
itive functions and neurological disease ( Babiloni et al., 2016; Cohen,
018; Douw et al., 2011; Lee et al., 2019; Michel and Koenig, 2018;
an den Heuvel and Hulshoff Pol, 2010 ). In recent years, there has
een much evidence that even at rest the activity of the human brain
s highly dynamic, transitioning between a small number of functional
rain-states with specific patterns of activation or synchrony across the
ortex ( Baker et al., 2014; Khanna et al., 2015; Michel and Koenig, 2018;
’Neill et al., 2018; Smith et al., 2009; Taghia et al., 2018; Vidaurre
t al., 2018 ). These functional brain states have been associated with
 range of cognitive domains and levels of consciousness ( Britz et al.,
014; Brodbeck et al., 2012; Liégeois et al., 2019; Milz et al., 2016;
eitzman et al., 2017; Smith et al., 2009; Zappasodi et al., 2019; Zhou
t al., 2019 ), demonstrating that more advanced insight into the non-
tationarity of brain stats and their dynamics may be crucial to under-
tanding cognition and disease. 

In functional MRI (fMRI) data, techniques to study functional brain-
tates have included independent component analysis (ICA) ( Beckmann
t al., 2005; Smith et al., 2009 ) and sliding-window analysis ( Allen et al.,
014 ), uncovering a small number of reproducible networks known as
esting-state networks (RSNs) ( Smith et al., 2009 ). Temporal resolution
f fMRI is limited by the slow dynamics of the haemodynamic response
unction, meaning transitions between states on a sub-second scale are
ikely to be missed. ICA has also been used in EEG and MEG to recre-
te fMRI-RSNs ( Brookes et al., 2011; Liu et al., 2017 ), but to do so this
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s typically performed on a slower time scale matching those of fMRI
hrough analysis of downsampled power envelopes, losing the high tem-
oral resolution and oscillatory phase information gained from the use
f EEG/MEG. It follows that alternative methods are required to uncover
aster time-scale (on the order of milliseconds) dynamics in EEG/MEG
ata ( O’Neill et al., 2018 ), and it is currently unclear the extent to which
patiotemporal properties of millisecond scale non-stationarity reflect
hose of slower RSNs. 

Other methods for EEG/MEG analyses are available to examine to
apid changes in brain-state. One is to apply sliding window analysis
o the EEG/MEG time courses ( Brookes et al., 2014; de Pasquale et al.,
010; 2016; Lopes et al., 2020; O’Neill et al., 2015 ) and subsequently
luster functional networks across windows ( Allen et al., 2014; Hassan
t al., 2015; Mheich et al., 2015; O’Neill et al., 2015 ). This approach
as the limitation of the need for an arbitrary a priori selected win-
ow size: too short windows lead to results susceptible to noise, while
oo large windows result in non-stationarity at fast time scales being
issed ( O’Neill et al., 2018 ). Indeed, there is no consensus on optimal

liding window length and the literature has covered a wide range, from
5ms to 30s ( O’Neill et al., 2018 ). A number of alternative approaches
o sliding windows exist ( O’Neill et al., 2018 ), including Hidden Markov
odels (HMMs) ( Baker et al., 2014; Vidaurre et al., 2018 ). HMMs rely on

ssumptions about the underlying process of state transitions, both in a
etailed generative model and Markovian transitioning between states.
t is unclear whether these assumptions are always met by spontaneous
ransitions between brain states ( Gschwind et al., 2015 ). 

Another alternative approach to study dynamics of functional brain-
tates, the focus of the current study, is microstate analysis ( Khanna
ne (SMQB), University of Birmingham, Birmingham, UK. 
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Table 1 

The microstate pipeline, generalized for different recording 
modalities. Details and justification of these steps are given in 
Section 2.1 . 

Algorithm: Source-space microstate pipeline 

1 Source reconstruct sensor data, band-pass filter, and parcellate 
2 Extract activity patterns (maps) at GFP peaks 
3 Run 𝑘 -means clustering on transformed (absolute value) maps. 
4 Backfit cluster centroids to data 
5 Calculate microstate statistics. 
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t al., 2014; Michel and Koenig, 2018 ). Conventional EEG microstate
nalysis involves clustering the sensor-space spatial topographies using
lgorithms such as 𝑘 -means or hierarchical clustering ( Khanna et al.,
015; von Wegner et al., 2018 ). Microstate analysis therefore does not
equire an arbitrarily chosen window length, and has minimal assump-
ions about the underlying generative process. Resting-state EEG mi-
rostates are robust and highly reproducible ( Michel and Koenig, 2018 ),
nd have been associated with fMRI resting-state networks ( Abreu et al.,
020; Britz et al., 2010; Musso et al., 2010; Schumacher et al., 2019;
u et al., 2020; Yuan et al., 2012; Zoubi et al., 2020 ) and cognitive
omains ( Britz et al., 2014; Brodbeck et al., 2012; Milz et al., 2016;
eitzman et al., 2017; Zappasodi et al., 2019 ), earning EEG microstates
he nickname the ‘atoms of thought’ ( Lehmann, 1990 ). EEG microstates
ave also been demonstrated to be a potentially useful clinical tool for
nderstanding and diagnosing neurological diseases such as Alzheimer’s
isease and other dementias ( Musaeus et al., 2019; Nishida et al., 2013;
chumacher et al., 2019; Smailovic et al., 2019; Tait et al., 2020 ),
chizophrenia ( Andreou et al., 2014; Lehmann et al., 2005; Tomescu
t al., 2014 ), and a range of other disorders ( Khanna et al., 2014 ). 

However, a key limitation of sensor-space microstate analysis is
natomical interpretation. A number studies have attempted to recon-
truct the electrophysiological sources underpinning microstates maps
y combining sensor-space microstate analysis with subsequent source
econstruction ( Custo et al., 2017; 2014; Milz et al., 2016; 2017; Pascual-
arqui et al., 2014; Tait et al., 2020 ). However, this approach may be

imiting insight into functional brain states for a number of reasons.
irstly, since the inverse problem is not unique, it is possible that dif-
erent spatial patterns of brain activation may give rise to similar to-
ographical maps, and therefore each sensor-level microstate may be
ssociated with more than one active network. Secondly, due to the
patial blurring in EEG as a result of volume conduction through tis-
ues of different conductivities, EEG microstate topographies have low
patial resolution and potentially cannot differentiate between finer
ifferences between maps; indeed, EEG microstate topographies are
eliable with as few as eight electrodes ( Khanna et al., 2014 ), sug-
esting the topographies do not contain much spatial detail. Finally,
ince alpha band occipital sources dominate the sensor-space eyes-
losed resting-state EEG ( Kropotov, 2009 ) likely due to head shape and
he forward model resulting in high signal-to-noise ratio for these re-
ions ( Goldenholz et al., 2009 ), it is likely that these same sources pre-
ominantly determine the microstate topographies ( Milz et al., 2017 ),
herefore suggesting the sensor-space EEG microstate maps may be
nder-weighting the importance of non-occipital or non-alpha-band net-
orks. 

Instead of performing microstate analysis in sensor space and then
ubsequently projecting to source space, here we propose first projecting
/EEG data to source space and subsequently clustering the source dy-

amics. Unfortunately, some steps of the EEG microstate pipeline means
t is not directly applicable to source-reconstructed recordings, such as
elying the requirement to re-reference to average and being unable to
ccount (at the group level) for arbitrary source flipping. Here we adapt
ethodology and study microstates in MEG source space at rest and dur-

ng task. We hypothesise that each microstate is associated with distinct
atterns of functional connectivity across the cortex and use machine
earning to test this hypothesis. Finally, we demonstrate that source-
pace microstate features are dependent of cognitive state and examine
he microstate response to auditory stimuli. 

. Methods 

.1. A source-space microstate pipeline 

The source-space microstate segmentation pipeline used here is
ased upon the widely used EEG sensor-space 𝑘 -means pipeline pre-
ented by Pascual-Marqui et al. (1995) , Koenig et al. (1999) , and is
utlined in Table 1 . 
2 
However, there are a number of steps in the sensor-EEG microstate
ipeline which limit application to source-space data. One such limita-
ion is the requirement to re-reference to average; while the EEG data
tself does not necessarily have to be referenced to average, the pipeline
elies on metrics such as standard deviation of the signal across sensors
global-field power, GFP) and correlation between spatial topographies,
oth of which involve subtracting the mean of the map (i.e. common
verage re-referencing). The pipeline presented here is modified, treat-
ng a topographic map 𝐱 ∈ ℝ 

𝑁×1 (where 𝑁 is the number of ROIs) as
n 𝑁-dimensional vector and representing GFP, 𝜎( 𝑡 ) , as the length (i.e.
ector norm) of the vector: 

( 𝑡 ) = 

√ 

1 
𝑁 − 1 

‖𝐱( 𝑡 ) ‖ = 

√ √ √ √ 

1 
𝑁 − 1 

𝑁 ∑
𝑛 =1 

𝑥 𝑛 ( 𝑡 ) 2 (1)

nd map similarity of two maps 𝐱 and 𝐲 as the cosine of the angle be-
ween the vectors: 

 ( 𝐱 , 𝐲 ) = cos 𝜃( 𝐱 , 𝐲 ) = 

𝐱 𝑇 ⋅ 𝐲 √
𝐱 𝑇 ⋅ 𝐱 

√
𝐲 𝑇 ⋅ 𝐲 

. (2)

These metrics are equivalent to standard deviation and correlation
espectively in the case of zero mean data, and hence the methodology
resented here is a generalization of the sensor-EEG pipeline which may
e used on reference-free data such as source data or sensor MEG, while
xactly preserving the EEG-microstate pipeline is under the requirement
hat data is first re-referenced to common average. 

A second issue for source reconstructed data is that of source flipping.
t the voxel level, any dipole can arbitrarily be ‘flipped’ by changing

he sign of both the dipole orientation and time course. While in this
tudy we work on the level of ROIs as opposed to individual dipoles,
f parcellation is performed via a single voxel with maximal variance
ipole flipping is still an issue. Another common method of parcella-
ion (used in this study) is to take the first principal component of all
ipoles within an ROI, in which case the sign of both the time course
nd spatial topography of the first principal component may be flipped
o obtain an identical result. This source flipping is not problematic for
nalysis of a single M/EEG scan, but for group level analyses different
articipants may have different spatial patterns of source flipping. For

ROIs, source flipping can result in 2 𝑁−1 possible combinations. For
30 ROIs, used in this study, source flipping could result in a number of
ossible topographies of the order 10 68 for a single microstate. Therefore
pplying traditional EEG microstate analysis to source signals may result
n an overestimate of the true number of clusters in group level analy-
is. To confound this issue, one may use either the amplitude envelope
r take the (element-wise) absolute value of the samples. The former
equires a narrow band signal and rejects phase information, while the
atter can be applied to broadband data and mostly maintains phase
nformation (excluding phase differences of 𝜋). Recent work has high-
ighted that phase information is likely crucial for encoding microstate
equences ( von Wegner et al., 2021 ). For these reasons, and based on
he results of simulations ( Section 3.1 ), throughout this manuscript we
se the absolute value of source estimates during clustering and map
tting. 

A description of the source microstate pipeline are given in the
ollowing sections. While these sections give an overview the source-
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Table 2 

Outline of the 𝑘 -means algorithm. 

Algorithm: 𝑘 -means clustering 

1 Select 𝑘 maps as initial centroids 
While not converged: 

2 Calculate distance between maps and centroids 
3 Cluster each map based on nearest centroid 
4 Calculate new centroids from all maps in cluster 
5 Test for convergence (no change in clusters) 

end while 
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pace pipeline, mathematical details and a generalized description of
he pipeline for different modalities based appropriate modality-specific
patial transformation of the data (e.g. re-reference to average for
ensor-EEG, in which case the traditional sensor-EEG microstate pipeline
s recovered exactly) are given in Supplementary Text S1. 

.1.1. Source-reconstruction and parcellation 

The aim of this manuscript is to present a pipeline for source-
paced M/EEG microstate analysis. The first step of the pipeline is there-
ore source reconstruction of the M/EEG data. A range of methodolo-
ies for source reconstruction are currently available and the choice
f methodology chosen should be data specific ( Tait et al., 2021 ).
ere, eLORETA ( Pascual-Marqui, 2007; 2009 ) was used for source-

econstruction. Full details of the pipeline for source-reconstruction in
his study are given in Section 2.5.3 . Since distributed source recon-
truction methodologies typically reconstruct a large number of dipoles
several thousand), a key step following source reconstruction is spa-
ial downsampling to increase tractability for spatial clustering. This
as done through parcellation of source time courses into regions of

nterest. Here, the HCP230 atlas ( Tait et al., 2021 ), a version of the
uman Connectome Project’s multimodal parcellation ( Glasser et al.,
016 ) optimized for resting-state MEG, was chosen to reduce the source
ata from approximately 10,000 voxels to 230 ROI time courses. Source-
econstructed data was band-pass filtered 1–30 Hz in line with sensor-
EG microstate studies ( Michel and Koenig, 2018 ). 

.1.2. Extraction of GFP peaks 

Subsequently, samples with optimal signal-to-noise ratio (SNR) and
opographic stability were chosen for clustering. These samples corre-
pond to those with peaks in the global field power (GFP) (Supple-
entary Figure S4; Michel et al., 2009 ; Koenig and Brandeis, 2016 ).

n sensor-EEG microstate analysis, the GFP at a time sample 𝑡 is de-
ned as the standard deviation of the electric potential across sensors.
or source-reconstructed data, the GFP is given by the vector norm of
he signal across ROIs and hence is the total deviation from zero current
ource density (which is equivalent to the standard deviation in the case
f zero mean). 

Due to the 1–30 Hz bandpass fitler, the GFP time course is temporally
mooth, and hence local maxima of the GFP (i.e. GFP peaks) can be
ound using a peak-finding algorithm. Here, Matlab’s findpeaks function
as used to identify GFP peaks. 

For group level analysis in this study, we randomly sampled and
oncatenated 5000 GFP peaks per participant. For each condition
rest/task), two MEG scans were available for each participant ( 𝑛 = 30 )
ecorded on different dates (see Section 2.5 ), and here we only extracted
he 5000 GFP peaks from the first scan (allowing the second scan to be
sed for validation purposes). Hence, across participants we extracted
50,000 GFP peaks. Spatial maps at each GFP peak were submitted for
 -means clustering. 

.1.3. 𝑘 -means clustering 

The next step of the pipeline is to cluster the submitted maps. For
 given number of states, 𝑘 , the algorithm for 𝑘 -means clustering is
utlined in Table 2 , while a clear graphical representation is given in
oenig et al. (1999) , Michel et al. (2009) . 
3 
Firstly, 𝑘 maps are chosen as the initial cluster centroids. Here, the 𝑘 -
eans++ algorithm was used for selection of initial maps ( Arthur and
assilvitskii, 2007 ). In the 𝑘 -means algorithm, the distance between
ach submitted map and each centroid is calculated using the cosine
istance. In the case of zero mean (e.g. such as average re-referenced
EG instead of source data), the cosine distance is equal to one mi-
us correlation, which is the metric used in the sensor-EEG 𝑘 -means
lgorithm. Each map is subsequently labelled as belonging to the state
ith the closest centroid. In sensor-EEG, new cluster centroids are cal-

ulated as the first principal component of all maps within the clus-
er ( Pascual-Marqui et al., 1995 ). In source-space, new cluster centroids
re calculated as the eigenvector corresponding to the largest eigenvalue
f the matrix 𝐘 𝑗 ⋅ 𝐘 

𝑇 
𝑗 

, where rows of the matrix 𝐘 𝑗 are the maps within
luster 𝑗. This eigenvector is equal to the first principal component in
he case of zero mean. Using the new centroids, the procedure of cal-
ulating cluster labels and updating cluster centroids is iterated until
onvergence is reached. Due to random initial seeding, the 𝑘 -means al-
orithm was repeated 20 times and the repetition with highest global
xplained variance (GEV) ( Murray et al., 2008 ) was chosen for further
nalysis ( Koenig et al., 1999 ). 

The choice of number of states 𝑘 is a free parameter. In this study,
e used the kneedle algorithm ( Satopää et al., 2011 ) to determine the
ptimum number of states. As the number of clusters 𝑘 increases, so
oes the GEV. However, increasing 𝑘 above the true number of states
ill only give marginal increases to GEV, and therefore the plot of GEV
s 𝑘 has a characteristic ‘knee’ shape. The kneedle algorithm aims to
nd the number of clusters in the dataset by finding the value of 𝑘 for
hich this knee occurs. 

.1.4. Backfitting to source time courses 

After identifying the microstate maps from the sample of 150,000
FP peaks, each sample of the full scan was assigned a microstate la-
el. This backfitting was performed using previously described meth-
ds ( Koenig et al., 1999; Michel et al., 2009 ). Each GFP peak in the full
ataset was labelled as a state based on the microstate centroid map
ith minimum distance. All other samples were given the same state

abel as their nearest GFP peak. 
For each condition (rest/task), the microstate maps were extracted

nly from the first MEG scan, but were backfit to both scans to provide
alidation of microstate statistics across recording sesisons. 

.2. Microstate statistics 

We studied a number of spatiotemporal statistics of the resulting
ource MEG microstate sequences. Global statistics of the microstate
equences include GEV ( Murray et al., 2008 ), mean duration of mi-
rostates ( Koenig et al., 2002 ), Hurst exponent of the sequences ( Van De
ille et al., 2010 ), and microstate complexity ( Tait et al., 2020 ).
icrostate complexity values were normalized against its theoretical

symptotic upper bound ( Lempel and Ziv, 1976; Xiaoku et al., 2016;
hang et al., 2016 ), to result in a measure ∈ (0 , 1] . Class-specific statis-
ics included mean duration of the microstates within a particular
lass ( Koenig et al., 2002; Lehmann et al., 2005 ), coverage of a class
the percentage of time spent within a class) ( Lehmann et al., 2005 ),
nd occurrences of the class (number of times the state appears per sec-
nd) ( Lehmann et al., 2005 ). We also calculated the Markov and syn-
ax matrices (with and without self-transitions respectively) ( Lehmann
t al., 2005; Nishida et al., 2013; von Wegner et al., 2017 ), the
nformation-theoretical zeroth and first order Markov statistics and their
 -values ( von Wegner et al., 2017 ), and tested for non-random mi-
rostate syntax ( Lehmann et al., 2005; Nishida et al., 2013 ). Details
nd results of analysis to quantify non-stationary, i.e. by comparing mi-
rostate statistics against random fluctuations in a stationary process,
re given in Supplementary Text S2.2. 
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.3. Testing for associations between microstates and functional 

onnectivity 

To derive functional connectivity for a given microstate, we adapt
he EEG microstate segmented phase locking method of Hatz et al.
2015, 2016) . The method is described in detail in Supplementary Text
1.4, and a visual overview of the pipeline is given in Supplementary
igure S1. Microstate analysis was first performed on broadband (1–
0 Hz) data. We subsequently filtered the data into one of three nar-
ow bands (theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz), and calcu-
ated the Hilbert transform. For a given microstate, all samples of the
nalytic signal within this microstate class were concatenated. Under
he assumption that microstates are associated with specific patterns of
hase synchronization (i.e. the hypothesis we wish to test), we subse-
uently epoched these concatenated samples into non-overlapping win-
ows of 1280 samples (equivalent to 5-seconds), and calculated phase
ynchronization for each window using the weighted phase lag index
wPLI) ( Colclough et al., 2016; Vinck et al., 2011 ). wPLI was chosen
ecause it is invariant to instantaneous pairwise phase synchrony (al-
hough may still exhibit ghost interactions Palva et al., 2018 ). This is
dvantageous in our study for two reasons. Firstly, our networks will
ot be influenced by leakage in the inverse algorithm. Secondly, since
icrostate analysis involves topographic clustering of the instantaneous
atterns of activation, by studying only phase-lagged connectivity we
re not simply quantifying the same effect as microstate analysis using
 different method. This method was repeated for each microstate class,
o obtain functional connectivity patterns for each class. 

This methodology assumes that microstates are associated with a
nique pattern of phase synchronization, and therefore it is meaning-
ul to calculate a single functional network for all samples in a given
lass. However, validating or rejecting this assumption is not trivial,
ince phase synchronization (wPLI) studies lagged connectivity while
icrostates study instantaneous connectivity and hence are quantifying
ifferent phenomena ( Koenig and Valdés-Sosa, 2018 ). Hence, the aim
f this analysis is to test the hypothesis that there is a significant as-
ociation between microstates and functional connectivity. To test this
ypothesis, we applied multi-variate pattern analysis (MVPA) using the
VPA-Light toolbox ( Treder, 2020 ). Across all participants, resting-state

cans, 1280-sample segments, and microstate classes there were 5413
etworks per frequency, each associated with a single microstate class.
he weighted degree distributions were used as features in a multi-class
lassifier for microstate label. Results were 5-fold cross-validated. Sta-
istically significant classification accuracy (via permutation testing) is
trongly suggestive that microstates are associated with unique patterns
f phase synchronization, demonstrating that microstate class can be
redicted given functional connectivity derived from any 1280 samples
rom that microstate class. Details on classification are given in Supple-
entary Text S1.4. 

.4. Analysis of task microstates 

To compare microstates derived from resting-state and task condi-
ions, we separately performed microstate analysis on data recorded
rom each condition and aligned microstates across conditions using a
emplate matching algorithm. Microstate statistics were averaged over
ll data sets available within a condition for a participant. Microstate
tatistics between conditions were compared using paired Wilcoxon
ign-rank tests. 

To assess whether specific states were associated with auditory stim-
li, we calculated an expected probability of all states under the null
ypothesis of no association between state likelihood and stimuli by
alculating the coverage of each state over samples in the pre-stimulus
eriods (up to 100 ms prior to the stimuli) across all task scans and all
articipants. For a given latency in the range 0–350 ms following the
timulus, we calculated an observed count of states by calculating the
4 
umber of occurrences of each state over all stimuli and all participants.
 𝜒2 test was used to compare the observed count with the expected
ount (equal to expected probability multiplied by total number of stim-
li). To post-hoc test for deviations of the count of each microstate class
rom the expected count, we used the Pearson residual ( Agresti, 2012 ),
alculated as 

 𝑖 = 

( 𝑂 𝑖 − 𝐸 𝑖 ) √
𝐸 𝑖 

, (3)

here 𝑒 𝑖 are the residuals, and 𝑂 𝑖 and 𝐸 𝑖 and the observed and expected
ounts of microstate 𝑖 respectively. The normalization by 

√
𝐸 𝑖 standard-

zes these scores to be distributed as the standard normal distribution
nder the null hypothesis. The 𝜒2 statistics can be written as 𝜒2 = 

∑
𝑖 𝑒 

2 
𝑖 
,

nd hence microstates with large magnitude of 𝑒 𝑖 contribute to larger
alues of 𝜒2 . 

.5. Participants and data 

.5.1. Participants 

Thirty healthy participants (16 female, 9 male) were recruited from
ardiff University School of Psychology participant panel (age range 17–
8 years, median age 20 years). All participants had normal or corrected-
o-normal vision, and none reported a history of neurological or psychi-
tric illness. Written consent was obtained from all participants. The
tudy was approved by the Cardiff University School of Psychology Re-
earch Ethics Committee. 

.5.2. MEG Acquisition and preprocessing 

Whole-head MEG recordings were made using a 275-channel CTF
adial gradiometer system (CTF Systems, Canada) at a sampling rate of
200 Hz. An additional 29 reference channels were recorded for noise
ancellation purposes and the primary sensors were analysed as syn-
hetic third-order gradiometers ( Vrba and Robinson, 2001 ). One sensor
as turned off during recording due to excessive sensor noise (i.e., 𝑁 𝑥 =
74 gradiometers). Horizontal and vertical electro-oculograms (EOG)
ere recorded to monitor blinks and eye movements. The horizontal

lectrodes were placed on temples, and vertical ones, above and below
he eye. For MEG/MRI co-registration, the head shape with the posi-
ion of the coils was digitised using a Polhemus FASTRAK (Colchester,
ermont). 

MEG was recorded over two sessions, recorded on separate days (1–
4 days between sessions). In each session, eight minutes of continuous
esting-state was recorded, for which participants were instructed to sit
omfortably in the MEG chair while their head was supported with a
hin rest and with eyes open focus on a fixation point on a grey back-
round. Additionally, ten minutes of passive task activity was recorded
n each session, for which participants were instructed to watch an emo-
ionally neutral movie while periodic auditory stimuli (separated by
00 ms) were played through headphones. Half of the stimuli consisted
f standard tones, while the other half were a mixture of duration, gap,
irection, intensity, and frequency deviates. 

For preprocessing, MEG data was imported to Field-
rip ( Oostenveld et al., 2011 ), bandpass filtered at 1–100 Hz (4th
rder two-pass Butterworth filter), notch filtered at 50 and 100 Hz to
emove line noise, and downsampled to 256 Hz. Visual and cardiac
rtifacts were removed using ICA decomposition (aided by EOG record-
ngs), using the ‘fastica’ algorithm ( Hyvarinen, 1999 ). For both task
nd resting-state data, between 2 and 6 components were removed per
can (median 4 for rest, 3.5 for task). 

.5.3. Source reconstruction 

All participants also underwent a whole-brain MRI scan on a
iemens 3T Connectom MRI scanner and a 32-channel receiver head
oil (Siemens Medical Systems). We used a T1-weighted magnetization
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repared rapid gradient echo sequence (MPRAGE; echo time: 3.06 ms;
epetition time: 2250 ms sequence, flip angle: 9 ◦, field-of-view: = 256
256 mm, acquisition matrix: 256 × 256, voxel size: 1 × 1 × 1 mm). 
From the T1-weighted MRI image, extraction of the scalp, brain, and

ortical surfaces was performed with Freesurfer ( Dale et al., 1999 ). Ver-
ices of the cortical surface were labelled according to the HCP230 atlas
ptimized for MEG studies ( Tait et al., 2021 ). The scalp surface was
sed to align the structural data with the MEG digitizers. A single shell
olume conduction model ( Nolte, 2003 ) was constructed in Fieldtrip us-
ng the brain surface (downsampled to 500 vertices). The cortical mesh
as downsampled to approximately 10,000 vertices to generate a set of
ipole locations using the ‘iso2mesh’ software ( Fang and Boas, 2009 ),
nd dipoles were oriented normal to the cortical surface ( Dale et al.,
000; Hillebrand and Barnes, 2003 ). 

Source reconstruction used the eLORETA algorithm ( Pascual-
arqui, 2007; 2009 ) implemented in Fieldtrip. eLORETA was chosen

ased on a systematic evaluation of source-reconstruction of resting-
tate MEG demonstrating high performance in a range of metrics, par-
icularly in the case of parcellated data as in this study ( Tait et al.,
021 ). We note that beamformers such as the unit-noise-gain LCMV
eamformer also performed well in this evaluation, but was deemed
ess appropriate for microstate analysis than eLORETA due to the
ssumption of uncorrelated sources and suppression of correlated
ources ( Sekihara et al., 2002 ) and lower global spatial resolution re-
ulting in mislocalization of ROIs on a high-resolution atlas ( Tait et al.,
021 ). Source data was parcellated using the HCP230 atlas la-
els ( Tait et al., 2021 ) by taking the time course of the first principal
omponent of all voxels with an ROI. Source time courses were band-
ass filtered in the 1–30 Hz frequency band, and head localization coils
ere used for offline head motion correction ( Stolk et al., 2013 ). 

.6. Simulations 

Simulations were performed to test the ability of the microstate
ethodology to estimate a ground truth microstate sequence and spa-

ial maps. Details of the simulations are given in Supplementary Text
1.3. Artificial generative sequences were generated using a random
alk decision tree approach, detailed in Supplementary Text S1.3,
hich reverse engineers a method to transform microstates to random
alks ( Van De Ville et al., 2010; von Wegner et al., 2018; 2016 ). Neural
ynamics were then generated by assigning each microstate a Wilson-
owan neural mass model of resting-state dynamics ( Abeysuriya et al.,
018; Deco et al., 2009 ), and stimulating the oscillator associated to the
ctive state. Finally, the states were assigned spatial maps of the same
patial dimensionality as our data, i.e. 230 ROIs. The choice of spatial
ap is arbitrary, so to increase neurophysiological realism we used open

ccess resting-state networks derived from fMRI ( Smith et al., 2009 )
ligned to our brain atlas. ROI time series were generated as a combi-
ation of a linear projection of each microstate’s neural dynamics onto
he microstate maps and pink noise with SNR = 1. Twenty repetitions
f the simulations were performed, and simulations were repeated for
 = 4 and 𝑘 = 10 states. Four statistics were used to assess the quality of
he microstate estimation against the ground truth, namely GEV, map
imilarity, temporal mutual information (MI) the ground truth and es-
imated sequence, and the normalized mutual information only at the
FP peaks (MIg). 

It should be highlighted that these simulations do not aim to re-
roduce biophysical mechanisms of microstate generation as currently
hese mechanisms are not well understood. Due to this, some key prop-
rties of true microstate sequences such as spontaneous transitioning
nd associations between GFP and state stability ( Koenig and Bran-
eis, 2016 ) are not recreated by our model. However, this should not
rucially alter the outcome of our results, since the aim of the simula-
ions was to generate artificial data with few underlying model assump-
ions and known ground truth maps/sequences. 
5 
. Results 

.1. Simulations 

We used a neural-mass model to generate synthetic time courses of
lectrophysiological data with a known number of microstates. The sim-
lations were then used to test the source-space microstate algorithm
gainst the ground truth. Fig. 1 shows the simulation pipeline and results
f analysing the simulated datasets. Clustering in both amplitude enve-
ope and raw time courses were able to accurately reproduce ground
ruth maps and sequences ( Fig. 1 H-J). Amplitude envelope microstates
utperformed raw time-course microstates in terms of GEV ( Fig. 1 D).
owever, GEV is a purely data-driven approach of quantifying good-
ess of fit, so we subsequently compared estimated maps and sequences
o the ground-truth ( Fig. 1 E-G). When compared to the ground-truth,
aw time-course clustering was superior in terms of map similarity for
 states and mutual information for 4–10 states. Amplitude envelopes
arginally outperformed raw time-courses in terms of map similarity for
0 states. These results demonstrate that the source-microstate pipeline
an accurately reproduce known microstates, and validate our choice to
ocus on raw time-course data in subsequent analyses. 

.2. Resting-state microstate maps 

We source-reconstructed MEG resting-state data from 30 partici-
ants. Across all participants, microstates in resting-state data were cal-
ulated from a sample of 150,000 GFP peaks using the 𝑘 -means cluster-
ng algorithm. Figure 2 A shows the GEV across these 150,000 peaks as
 is varied from 2 to 40 states. The kneedle algorithm indicated that 10
tates were optimum, and hence we proceeded to back-fit the results of
he 10-state clustering to the full MEG scans. Fig. 2 B shows the GEV in
he full datasets. In the first set of scans, from which the GFP peaks were
ampled to estimate microstates, 10 states had a GEV of 63 . 97 ± 0 . 64% .
o ensure the states were generalizable and reproducible, we also back-
t the maps to a second independent scan from each participant, which
as performed on a separate day and not used in the clustering anal-
sis. There was a significant but small decrease in GEV in the second
can ( 62 . 13 ± 0 . 39% , 𝑝 = 0 . 0082 , Wilcoxon sign-rank test), as expected in
ross-validation. Furthermore, multiple runs of the algorithm demon-
trated high reproducibility (Supplementary Text S2.1). 

Figure 2 C shows the spatial map of each empirical MEG source-level
icrostate. Four bilateral maps were identified, including the frontal

ortices, the fronto-temporal network, the visual cortex, and the orbital
ortex. The remaining six maps could be grouped into three pairs of
ateralized networks including medial/superior parietal, temporal poles,
nd sensorimotor networks. 

.3. Statistics of resting-state microstate sequences 

We subsequently analysed the statistics of the estimated microstate
equences, reported in full in Supplementary Table S3. Microstates had
 mean duration (MD) across all classes of 59 . 86 ± 1 . 09 ms (Supplemen-
ary Table S3). This was significantly longer than could be explained
y random fluctuations in a stationary Gaussian process with the same
ower spectra, cross-spectra (and covariances), and distribution of data
Supplementary Text S2.2), suggestive of non-stationarity and the exis-
ence of stable microstates in empirical resting-state MEG. Durations of
ach state individually are shown in Fig. 3 . 

Of the 10 microstates, the frontal and frontotemporal states had the
ighest coverage and highest number of occurrences per second ( Fig. 3 ).
his can be observed in the group-level syntax matrix ( Fig. 3 A), in which
lmost all states tend to transition most predominantly to the frontotem-
oral state, which in turn is most likely to transition to the frontal state.
owever, random sampling of states with heterogeneous occurrences
er second is not sufficient to explain the syntax matrix, as the syntax
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Fig. 1. Simulating microstates . (A–C) Methodology for simulating microstates. Detailed description is given in Supplementary Text S1.3. (A) Generative sequences 
are simulated using a decision tree, the state at a given time is decided by a set of random-walks and a decision tree. The left branch is chosen if the walk is increasing, 
the right branch is chosen if the walk is decreasing. Each sample is assigned a state using this procedure. (B) Neural dynamics of microstates are simulated by assigning 
each state a neural mass model (NMM). The NMMs receive constant input ( 𝑃 ) at all times, and the NMM corresponding to the current active state receives additional 
input ( 𝑃 𝑚𝑠 ). The bottom shows simulated state time series, with background colour corresponding to active state. (C) Each state is assigned a spatial map and the 
time courses are linearly mixed according to this map to generate simulated MEG/EEG/source data. Pink noise is added to this data. (D-G) Assessment of microstate 
sequences estimated from simulated data vs ground truth. (D) GEV, (E) map similarity between estimated maps and ground truth maps, (F-G) mutual information 
between estimated sequences and ground truth sequences at all samples/GFP peaks respectively. (H–J) Results of analysing an example simulation. Estimated maps 
in source data (H) and amplitude data (I) are shown. (J) Shows ground truth and estimated sequences for the first 10s of simulated data. 
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ermutation test ( Lehmann et al., 2005 ) demonstrated significant dif-
erences between the group level matrix and the matrix expected due
o state probability ( 𝑝 = 4 × 10 −4 ). Similarly, when accounting for dura-
ion and coverage (i.e. including self transitions in the Markov matrix),
nformation theoretical analysis still demonstrated that the zero’th or-
er Markov ( 𝐺 0 ) property was, for all participants, far greater than ex-
ected under the null hypothesis of random sampling based on coverage
6 
f states (Supplementary Table S3). The transitioning matrix could also
ot be explained by a first order Markov process, as demonstrated by the
arkov 𝐺 1 information theoretical analysis (Supplementary Table S3).
ombined, these results suggest structured and non-Markovian transi-
ioning in the microstate sequence. 

The structured, non-stationary and non-Markovian nature of mi-
rostate transitions was additionally supported by global statistics. The
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Fig. 2. Resting-state microstates . (A) GEV vs number of states ( 𝑘 ) for resting-state data. Here, GEV is calculated across the 150,000 peaks used for clustering. 
The kneedle algorithm found that 𝑘 = 10 states was optimum, marked by a red ‘+’. (B) GEV across the full MEG scans, for 𝑘 = 10 . Distributions are shown across 
participants. Only GFP peaks from scan 1 for each participant were used for clustering, and hence scan 2 can be viewed as a replication/validation cohort. There is 
a small but significant decrease in GEV for scan 2. (C) Resting-state microstate maps derived from the 𝑘 -means clustering algorithm for 𝑘 = 10 states. 
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Table 3 

MVPA classification statistics for 

microstate-segmented connectiv- 

ity. Accuracy is given as a mean 
and standard error across five repe- 
titions. 

Band Accuracy 𝑝 -value 

Theta 0 . 2068 ± 0 . 0084 < 10 −3 

Alpha 0 . 3281 ± 0 . 0120 < 10 −3 

Beta 0 . 3083 ± 0 . 0112 < 10 −3 

c  

F
 

o  

g  

c  
urst exponent (H) was approximately 0 . 68 ± 0 . 01 , suggestive of long
ange temporal correlations. The normalized microstate complexity (C)
as 0 . 60 ± 0 . 01 , suggesting a complex sequence which strikes a balance
etween highly repetitive and ordered (C approaching zero) and random
ampling (C approaching one). These global statistics were significantly
ifferent than expected from random fluctuations in a stationary pro-
ess (Supplementary Text S2.2), further evidencing the non-stationary
ature of resting-state MEG. 

.4. Microstate-specific functional connectivity 

Our next aim was to test the hypothesis that different microstate
lasses are associated with distinct patterns of functional connectivity in
he brain, and reflect the rapid transitioning in dynamic phase synchro-
ization patterns. To do so, we used multi-class MVPA to test whether
icrostates could be predicted from microstate-segmented wPLI con-
ectivity matrices (see Section 2.3 ). Table 3 shows the classification ac-
7 
uracy and permutation testing 𝑝 -values for each frequency band, while
ig. 4 A shows the confusion matrices for this classification. 

The classification accuracy was significantly above the chance level
f 10% ( 𝑝 < 10 −3 , 1000 permutation tests from 1000 surrogates), sug-
esting distinct functional connectivity patterns among microstates. The
onfusion matrices demonstrate interesting patterns. In the alpha and
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Fig. 3. Syntax of resting-state microstates . (A) The average syntax matrix from resting-state data. (B-D) Coverage, duration, and occurrence of each of the ten 
resting-state microstate maps. 
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eta bands, the visual microstate is the one most accurately predicted
y the connectivity matrix, while in theta the temporal microstates were
ore accurate. Unsurprisingly because of their overlap, frontal, fron-

otemporal, and orbital networks had reasonable degrees of confusion
n all bands. In the alpha band, the frontal network was also sometimes
onfused with bilateral sensorimotor networks. 

Furthermore, lateralized microstates were regularly confused with
heir counterparts in the opposite hemisphere, suggesting that while ac-
ivation patterns in these states may be lateralized, the states are parts
f a larger interhemispherical network. Indeed, Fig. 4 B shows the alpha
and network structures, and it is clear that the functional connectivity
tructure for both lateralized parietal and temporal microstates demon-
trated many interhemispherical connections. 

.5. Microstate response to auditory stimulus 

Finally, we aimed to test whether source-level MEG microstates vary
etween rest and task. To do so, we re-ran the microstate clustering anal-
sis on MEG data during a passive auditory task. The optimum number
f microstates in the task data was 𝑘 = 9 . This was one fewer than at
est, yet there were no significant differences in the GEV between nine
tates in task and ten states at rest ( Fig. 5 A-B; 𝑝 = 0 . 9099 ). 

Maps for the nine states derived from the task data are shown in
ig. 5 C. The task-based states closely corresponded to those from rest.
he two lateralized medial parietal states in the resting-state data were
epresented by a single medial parietal state in the task data, explaining
he presence of one fewer state. The frontal and visual states demon-
trated differences between conditions, with the frontal state appearing
ore right lateralized and the visual state having greater spatial extent.
ll other states closely recreated their resting-state counterparts. There
ere no significant differences in global statistics of the microstate se-
uences between rest and task, including mean duration ( 𝑝 = 0 . 5170 ),
urst exponent ( 𝑝 = 0 . 2452 ), or complexity ( 𝑝 = 0 . 8774 ). Although mi-
rostate analysis was performed on rest and task data separately, the
imilarities between paradigms is to be expected, since microstate anal-
sis in both cases was performed on continuous (as opposed to trial
veraged) data. Hence, in the task data we have not ‘averaged out’ the
ackground (resting) activity or its associated microstates. 
8 
To uncover whether any states were time-locked to auditory stimuli,
e used 𝜒2 tests to compare pre-stimulus and post-stimulus coverage
f each state. The time evolution of 𝜒2 is shown in Fig. 6 A. There is
 significant difference in the observed and expected microstate counts
etween 70 and 280 ms following the stimulus, peaking at 113 ms. This
s in line with the auditory N100 evoked response. The differences in
icrostate count are largely driven by a significantly increased coverage

f the frontotemporal state, with resulting decreased coverage of several
ther microstates including a significantly decreased coverage of the
edial parietal state ( Fig. 6 B). Since the frontotemporal state includes

he auditory network ( Fig. 5 C), these results are in line with increased
ctivation of the auditory network as a response to an auditory stimulus.

. Discussion 

Understanding the mechanisms underpinning discrete brain state
eneration is currently a leading question in the field of neuro-
cience, which may aid with understanding behaviour and cogni-
ion ( Cohen, 2018 ) and neurological diseases ( Khanna et al., 2015 ). One
pproach to do this in sensor EEG is microstate analysis ( Michel and
oenig, 2018 ), but this approach cannot be directly applied to source
ata. In this study, we have presented a modified source-space mi-
rostate pipeline and demonstrated the validity and robustness of
ource-space MEG microstates. Using a 𝑘 -means clustering algorithm,
e showed that 10 microstates can be reliably estimated from resting-

tate MEG data, and their spatial distributions are similar to those quan-
ified from task-based data. Source-space MEG microstates vary in their
tatistics such as coverage and occurrence probabilities, and are associ-
ted with distinct functional connectivity signatures. These results sup-
ort the use of MEG microstates to understand dynamic functional con-
ectivity during rest and task. 

Interestingly, in resting-state data we observed the optimum num-
er of states to be 10, explaining approximately 63% of the variance of
he data. In resting-state sensor EEG, only four microstates have repeat-
dly been reproduced and observed to be the optimum, explaining ap-
roximate 60–85% of variance in the data ( Michel and Koenig, 2018 ).
here are a number of potential explanations for the differences be-
ween these results. One possible explanation is that EEG usually has
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Fig. 4. Microstates are associated with specific patterns of phase synchronization . (A) Confusion matrices for the MVPA analysis, for three frequency bands 
used for functional connectivity calculation. Cell 𝑖, 𝑗 corresponds to the probability the classifier would predict class 𝑗 given a microstate label 𝑖 . (B) Functional 
connectivity patterns. Node colours show degree distributions (used for classification in the MVPA analysis), while edges show the top 1% of edges that deviate from 

static background connectivity (see Supplementary Text S1.4 for details). 
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ower spatial resolution than MEG, due to (typically) fewer sensors and
 blurring of the electric field by the skull tissue. In a study with high-
ensity EEG (204 electrodes), seven maps were optimum ( Custo et al.,
017 ), supporting the hypothesis of higher spatial resolution potentially
ncreasing the optimum number of maps. Another possible explana-
ion is the criterion used for selecting the optimum number of maps, as
any criteria are available in the literature ( Michel and Koenig, 2018 ).
iscussion of this point, including motivation for our choice of cri-

erion, are given in Supplementary Text S1.2. The larger number of
tates in this study may also be due to performing clustering in source
pace as opposed to sensor space. There is a non-uniform distribution
f signal-to-noise ratio (SNR) in the forward projection of the source
ynamics to sensor space, and hence it is possible that states originat-
ng from low-SNR areas of the cortex or may be under-represented in
he sensor space maps. Additionally, due to finite spatial sampling of
/EEG sensors, multiple source topographies may result in non-unique
aps, and therefore multiple source-space states may appear similar

t the sensor level. Both of these effects potentially result in under-

stimation of the number of states at the sensor level. In HMM studies s  

9 
f source-reconstructed resting-state MEG, Baker et al. (2014) studied
ight states while Vidaurre et al. (2018) found twelve to be optimum,
hile fMRI results have suggested ten reproducible resting-state net-
orks ( Smith et al., 2009 ) or 7–8 states based on 𝑘 -means clustering
f dynamic resting-state functional connectivity patterns ( Allen et al.,
014 ), in line with our results demonstrating greater than four states at
he cortical level. 

The ten resting-state microstates included four bilateral networks
nd three pairs of symmetric lateralized networks ( Fig. 2 ). The cognitive
elevance of these microstates should be a focus of future work. One ap-
roach to uncover the associations between microstates and cognition is
o quantitatively compare microstate statistics between cognitive states.
uch approaches have widely been performed in the sensor-space EEG
icrostate literature to gain insight into the functional significance of

rain microstates ( Britz et al., 2014; Brodbeck et al., 2012; Milz et al.,
016; Seitzman et al., 2017; Zappasodi et al., 2019 ), and the work pre-
ented here opens new pathways to gain deeper anatomical insight at
he cortical level. Here, we demonstrated that statistics of our source-
pace cortical microstates differed between rest and a passive auditory
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Fig. 5. Auditory task microstates . (A) GEV vs number of states ( 𝑘 ) for resting-state data. Here, GEV is calculated across the 150,000 peaks used for clustering. 
The kneedle algorithm found that 𝑘 = 10 states was optimum, marked by a red ‘+’. (B) GEV across the full MEG scans, for 𝑘 = 10 . Distributions are shown across 
participants. Only GFP peaks from scan 1 for each participant were used for clustering, and hence scan 2 can be viewed as a replication/validation cohort. There is 
a small but significant decrease in GEV for scan 2. (C) Resting-state microstate maps derived from the 𝑘 -means clustering algorithm for 𝑘 = 10 states. 
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ismatch paradigm ( Fig. 5 - 6 ). We found hyperactivity of the frontotem-
oral microstate, which includes the auditory cortex, approximately
00ms following an auditory stimulus. Interestingly, the well-studied
uditory evoked response has been localized to the auditory cortex and
rst peaks around 100ms following the stimulus ( Picton, 2010 ), known
s the N100 response, in line with our microstate results. An alterna-
ive approach to study states associated with a stimulus in greater tem-
oral detail involves averaging over trials and performing microstate
nalysis on the grand average evoked response ( Murray et al., 2008 ),
n approach which is possible in source-space using our generalized mi-
rostate algorithm ( Tait and Zhang, 2021 ). The states derived in such an
pproach would, by definition, be associated with the response elicited
rom the stimulus and allow for plotting a group-level time course of
tates along the evoked response, but would likely represent very differ-
10 
nt states to those from resting-state activity. Hence, such an approach
s useful for segmenting the evoked response into stable segments and
otentially give insight into phenomena such as mismatch negativity
 Tait and Zhang, 2021 ), while the approach presented here is useful for
nderstanding how resting microstates vary with cognitive state. Future
ork should build upon these approaches to examine the functional sig-
ificance of these states. 

A complementary approach is to uncover associations between mi-
rostates and the well studied resting-state networks (RSNs) widely stud-
ed in fMRI, which have been associated with cognitive domains in large
ohort studies ( Smith et al., 2009 ). In sensor-space EEG, studies have
emonstrated associations between microstates and fMRI-RSNS through
onvolution of the microstate time courses with a haemodynamic re-
ponse function and general linear modelling ( Abreu et al., 2020; Britz
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Fig. 6. Microstate response to auditory stimuli . (A) 𝜒2 distance (top) and Pearson residuals (bottom) between observed and expected counts of each microstate 
vs time after stimulus. The peak response was 113 ms after the stimulus. In the top panel, the shaded regions for samples with Bonferroni corrected 𝑝 < 0 . 05 (above 
the dotted red line) represent the state with largest Pearson residual (i.e. most active in comparison to pre-stimulus periods). (B) Pearson residuals for each state. 
For large sample sizes, under the null hypothesis the Pearson residual is approximately normally distributed. Here, Pearson residuals are averaged across all samples 
around the peak with a value of 𝜒2 greater than one-half the peak value. For both plots, dotted red lines show the Bonferroni corrected 95% significance level. Hence, 
these results suggest that between 70–280 ms following the stimulus the microstate response is significantly different that expected, due to a significantly increased 
likelihood of the frontotemporal state (inlaid, demonstrating activation of auditory cortex) and decreased likelihood of the parietal state. 
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t al., 2010; Musso et al., 2010; Van De Ville et al., 2010; Xu et al., 2020;
uan et al., 2012; Zoubi et al., 2020 ), or through correlations between
SNs and microstate statistics ( Schumacher et al., 2019 ). An advantage
f working in source space for this purpose is that spatial patterns of
icrostate activations can be associated with RSNs when directly com-
arable brain atlases are used for parcellation of the brain dynamics in
he M/EEG and fMRI data. 

While the activation patterns of our microstates did not directly cor-
espond to the well known resting-state networks (RSNs) often reported
n fMRI studies ( Smith et al., 2009 ), interesting insight into this rela-
ionship could be gained by studying spatial patterns of synchrony as-
ociated with each microstate. Through the use of machine learning -
pecifically MVPA ( Treder, 2020 ) - we found a significant association
etween active microstate class and cortical patterns of phase synchro-
ization ( Fig. 4, Table 3 ). The spatial patterns of synchrony did not di-
ectly reflect the associated microstate maps, and the functional con-
ectivity patterns identified here may give insight into the relationship
etween microstates and RSNs. A key example is the default mode net-
ork, which contains the medial/orbital frontal, medial parietal, and

ateral parietal regions ( Smith et al., 2009 ). No single microstate had an
ctivation pattern containing all of these ROIs, yet phase-locking pat-
erns indicted microstates demonstraing medial/orbital frontal to me-
ial parietal connectivity and medial parietal to lateral parietal connec-
ivity ( Fig. 4 B). Future work should involve simultaneous high-density
ource-reconstructed EEG and fMRI to study the relationship between
ource-space microstates and RSNs. 

A typical approach for dynamic functional connectivity in the cur-
ent literature is the use of a sliding window ( Brookes et al., 2014;
e Pasquale et al., 2010; 2016; Lopes et al., 2020; O’Neill et al., 2015 ),
ollowed by clustering of networks ( Allen et al., 2014; Hassan et al.,
015; Mheich et al., 2015; O’Neill et al., 2015 ) or recurrence analy-
is ( Lopes et al., 2020; Tewarie et al., 2019 ). These approaches are lim-
ted by the arbitrary choice of window size - short windows (or even
nstantaneous measures of connectivity Tewarie et al., 2019 ) will be pre-
ominantly driven by noise, while long windows may operate at a time
cale slower than brain state transitions - meaning development of novel
11 
ethods beyond the sliding window are crucial ( O’Neill et al., 2018 ).
ur MVPA analysis indicated that windowing via microstate labelling
nd concatenation of samples within a state (i.e. microstate-segmented
unctional connectivity Hatz et al., 2015; Hatz et al., 2016 ) is a pow-
rful option for the study of dynamic functional connectivity states at
 fast time scale without setting an a priori window length. However,
his approach differs in interpretation. Clustering sliding window net-
orks will define brain states based on functional connectivity structure,
nd each state will have a unique pattern of functional connectivity.
n contrast, microstate analysis defines brain states based on instanta-
eous co-activation, and each state will have unique patterns of activa-
ion. One can subsequently calculate the connectivity associated with a
iven microstate, but the existence of these ‘microstate-segmented net-
orks’ is not trivial ( Koenig and Valdés-Sosa, 2018 ) and may not be
nique. For example, while our MVPA classification was significant for
ll frequency bands, accuracy was not perfect and there may be overlaps
etween functional connectivity patterns of lateralized states ( Fig. 4 ).
ence, when studying microstate-segmented dynamic networks, one

hould always test for significant associations using methods such as
VPA ( Treder, 2020 ) and be aware that states are not defined in terms

f network structure. 
In recent years several alternative methodologies have been pro-

osed which may be applied to source-space brain state estimation,
uch as Hidden Markov Models (HMMs) ( Baker et al., 2014; Gärtner
t al., 2015; Taghia et al., 2018; Vidaurre et al., 2018; 2016 ) or com-
onent analysis such as independent or principal component analysis
 von Wegner et al., 2018 ). Here, we briefly discuss differences between
hese methods and source-space microstates. Microstates are defined in
erms of patterns of instantaneous activation across the cortex and are
stimated using 𝑘 -means clustering (or other methods such as hierar-
hical clustering), with resulting state time-courses mutually exclusive
cross the estimated states. PCA and ICA are similarly defined in terms
f patterns of instantaneous activation, but are estimated via a linear
ixing (outer product) model which results in state mixing, i.e. state ac-

ivations are not mutually exclusive. Discrete state time-courses can be
chieved through a winner-takes-all approach. HMMs, when applied to
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/EEG, are typically defined in terms of cross-region interactions in the
orm of a covariance matrix (amplitude envelopes, Baker et al., 2014 )
r time-delay embeddings which additionally provide access to state-
pecific spectral information (raw time-courses, Vidaurre et al., 2018 ).
MMs are estimated using parameter optimization techniques such as
ariational Bayes, resulting in a probability of state membership for each
ime point which is typically decoded to a discrete time-course of mu-
ually exclusive states. 

In our simulated data ( Fig. 1 ) - in which states were mutually ex-
lusive and defined in terms of instantaneous co-activation of maps -
he overall ranking in terms of performance of the algorithms was mi-
rostates performing best, followed by PCA and ICA techniques, while
MMs performed very poorly (Supplementary Text S2.3). This is un-

urprising, since the assumptions of the model most strongly matched
hose of the microstate model, and least closely matched those of the
MMs. Furthermore, the added complexity of HMMs typically means
ore data is required for accurate state estimation and HMMs are usu-

lly applied to several minutes of data at the group level, while our sim-
lations were performed on individual 60s trials. In an additional set
f simulations (Supplementary Text S1.3.2) in which states had iden-
ical spatial patterns of activation but different spectra and coherence
tructures and states were estimated at the group-level over 20 trials
f 5 min, microstates, PCA, and ICA were all unable to recreate state
ime courses while HMMs performed well (Supplementary Text S2.3).
ence, different methods contain complementary information, and re-

ulting states using different pipelines must be interpreted differently.
uture work should include simulations under a range of models and as-
umptions and a deeper analysis of various real task-related data sets in
rder to perform a more detailed comparison between state estimation
pproaches and identify the circumstances under which each approach
s most appropriate, as well as validation of robustness of approaches in
 large cohort. 

.1. Conclusions 

We have presented a source-space microstate pipeline for estimating
lectrophysiological brain states. We uncovered ten resting microstates
hich were associated with distinct patterns of activation and phase

ynchrony across the cortex, and demonstrated these microstates were
he result of stable non-stationary states arising as opposed to random
uctuations in a stationary process. The microstates were associated
ith cognitive state; in particular the resulting microstate probabilities
ere altered as a response to auditory stimulus, driven by hyperactiv-

ty of the frontotemporal microstate. Our results suggest the method-
logy presented here is a powerful tool for studying anatomically in-
erpretable brain states and dynamic functional connectivity at the mil-
isecond scale. 
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