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The Spatial Distributions of Mineralisation. 1 

Bruce E. Hobbs, Alison Ord and Thomas Blenkinsop. 2 

 3 

Abstract. 4 

The concept of fractal spatial distributions of mineralisation has been widely proposed since 5 

Mandelbrot (1965) who emphasised the stable Pareto-Lévy distribution as the relevant 6 

distribution. The concept of a fractal is used as a basis for estimating endowment and for 7 

erecting exploration models based on self-organised criticality. This paper explores the 8 

proposition that the growth kinetics for a mineralising system are reflected in the probability 9 

distributions that describe the spatial patterns of mineralisation. We revisit the data sets and 10 

ask the question: What are the best fit probability distributions for the spatial distribution of 11 

mineralisation? The answer is: members of the Extreme Value Distribution family (Gumbel-, 12 

Fréchet- and Weibull- distributions) and not the Pareto distribution. Thus, the spatial 13 

distribution of mineralisation is not a fractal although the tails of the distributions can be or 14 

resemble power-laws. The standard box counting procedure for a spatial point distribution 15 

establishes a nearest neighbour distribution and hence, by definition, the resulting distribution 16 

is Weibull and not Pareto. The mass distributions are Fréchet and not Pareto. The extreme 17 

end members are Gumbel. We discuss the implications of these distributions for models that 18 

generate mineralisation sites within a system and for the underlying thermodynamics.  19 

Keywords: Fractals, Generalised Extreme Value (GEV) distributions, Fréchet-, Weibull-, 20 

Gumbel-distributions, box counting, nearest neighbour-distributions, mineralisation growth 21 

models. 22 

1. Introduction. 23 

This paper concerns process probability distributions based on the processes that 24 

generate mineralisation and that characterise the spatial distribution of mineralisation at the 25 

regional scale. The emphasis is on orogenic gold deposits. The spatial distribution at all 26 

length scales is intrinsically heterogeneous and there are a number of ways of characterising 27 

such heterogeneity. One way is to use correlation functions of various kinds (Kroner, 1971; 28 

Torquato, 2002; Kalidindi, 2015); this commonly employs Fourier transforms to establish n-29 

point correlation functions (Kalidindi, 2015). A second way is to use wavelet transforms 30 

(Arneodo et al., 1995) in association with Hurst exponents (Ord et al., 2016; Munro et al., 31 

2018; Doutre et al., 2015; Doutre, 2018) to establish spatial patterns, correlations and multi-32 

fractal spectra. A third way is to establish the recurrence patterns and associated quantitative 33 

measures for the system (Ord et al., 2018; Hobbs and Ord., 2021). Another is to establish the 34 

probability functions that characterise the heterogeneity. This paper concentrates on the latter. 35 

Although all four methods have a thermodynamic underpinning (Beck and Schlögl, 1995; 36 

Arneodo et al., 1995), the statistical functions are directly related to the thermodynamics of 37 

the system (Lavenda, 1995) and hence place important constraints on models for the 38 

formation of the mineralisation. In fact all four approaches are related through the attractor 39 

for the system. The attractor is the N-dimensional topological surface (which can be fractal) 40 

that describes the geometry of physical and chemical states that the system can occupy 41 

(Sprott, 2003). N is the number of independent degrees of freedom for the system. Nonlinear 42 
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systems involving similar physical and chemical processes evolve with time towards similar 43 

attractors for a large range of initial conditions. The attractor is characterised by many 44 

quantitative measures: The large number of (in principle, indefinite) states on the attractor of 45 

a nonlinear system gives rise to the multifractal nature of the system (Beck and Schlögl, 46 

1995) together with the observed probability distributions (Lucarini et al., 2016). Recurrence 47 

arises from the system repeatedly visiting neighbouring states on the attractor (Marwan et al., 48 

2007). The correlations measure how the states on the attractor for the system are inter-49 

related (Sethna, 2006, Chapter 10). The probability distributions are measures of the 50 

geometry of the attractor (Lucarini et al., 2016; Bodai, 2016). 51 

A quote from Savageau (1979) illustrates the concept explored in this paper: Any 52 

system that grows into a stable mature form has a growth curve that is a legitimate 53 

cumulative probability distribution. Hence the observed probability distributions not only 54 

contain information on the geometry of the attractor resulting from the nonlinear dynamics of 55 

a mineralising system but have the potential to constrain the growth kinetics of the 56 

mineralising system. 57 

Traditionally, two empirical probability distributions have been used to characterise 58 

mineralisation patterns. These are the log-normal (Singer, 2013; Singer and Menzie, 2010) 59 

and the power-law (Mandelbrot, 1965) distributions although only the latter are commonly 60 

used for spatial patterns of mineralisation. The power-law distribution is written: 61 

                                       DN r Ar                                          (1) 62 

where N(r) is the number of boxes or spheres with dimension, r, occupied by mineralisation 63 

sites in a region of interest, A is a constant and D is a characteristic power law exponent, 64 

commonly referred to as the fractal dimension. Although power law behaviour is implied 65 

explicitly by many authors, such behaviour can commonly be demonstrated over only a 66 

limited range in r (Kruhl, 2013) and commonly is an approximate fit to the data (Corral and 67 

Gonzalez, 2019). (1) is known as a power-law distribution (physics), a  Pareto distribution 68 

(finance), a hyperbolic distribution (social sciences) and as a stable1 Pareto-Lévy distribution 69 

(Mandelbrot, 1960, 1961, 1963). These distributions have been popular because they have 70 

simple mathematical expressions and have heavy right hand tails so that considerable 71 

departures from the sample mean can be accommodated. In particular the Pareto-Lévy 72 

distribution was favoured by Mandelbrot (see Appendix 1) because he showed it was able to 73 

characterise considerable volatility (departures from the mean) in commodity and financial 74 

markets. Both he and Fama (1963, 1965) identified the Pareto distribution as a best fit for the 75 

data, capable of accommodating skewness and the slowly decaying tails of the empirical 76 

distributions. It is clear though that Fama (1965) was aware of the Generalised Extreme 77 

Value (GEV) distributions studied by Tippet (1925), Gnedenko and Kolmogorov (1968) and 78 

Gumbel (1954). Mandelbrot (1956) refers to the work of Gnedenko and Kolmogorov (1968) 79 

but does not follow up on the extreme distributions. The GEV distributions are the topic of 80 

this paper. 81 

                                                           
1 A probability distribution is said to be stable if linear combinations of that distribution add together to produce 

the same kind of distribution. The stable distributions are the Gaussian, Cauchy, Lévy, Gumbel, Weibull and 

Fréchet distributions (Nair et al., 2021). 
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We note that although both the log-normal and power law distributions have heavy 82 

right handed tails only the log-normal distribution has a well-defined mean and variance so 83 

that the mean of the (logarithm of) observations tends to the mean of the distribution with 84 

increasing numbers of observations as defined by the Law of Large Numbers (Dekking, 85 

2005, p181 - 190). In contrast, the power-law distribution lacks a mean or variance and the 86 

sample arithmetic mean diverges as the number of observations increases. 87 

In this paper we show that the GEV distributions characterise the spatial distribution 88 

of mineralisation far better than the Lévy-Pareto distribution. Moreover, not only do the GEV 89 

distributions arise directly from the Generalised Central Limit Theorem, they have a strong 90 

foundation in thermodynamics and arise directly both from realistic growth laws for 91 

mineralising systems and from the nonlinear dynamics of these systems. 92 

The structure of this paper is as follows. In Section 2, we examine the statistical basis 93 

for and the overall characteristics of the GEV distributions. In Section 3 we give examples of 94 

spatial distributions for mineralisation that have formerly been interpreted as fractal (or bi-95 

fractal) distributions and show that they are better represented as GEV distributions rather 96 

than the traditional Pareto distributions. In Section 4 we consider the thermodynamic basis 97 

for GEV distributions and indicate the significance for mineralising systems. Basically the 98 

generation of GEV distributions for a mineralising system is an expression of the partitioning 99 

of energy that has been input to the open system. We also show that realistic growth models 100 

for mineralising systems lead to GEV distributions for the spatial arrangement of 101 

mineralising sites within a system. We also indicate some directions for future work and 102 

point to alternative distributions that may characterise mineralised systems other than 103 

orogenic gold deposits. Finally we draw some conclusions in Section 5. 104 

2. Probability distributions for mineralising systems. 105 

We would like an understanding of the statistics that result from the various processes 106 

that operate in mineralising systems with the perhaps optimistic view that the measured 107 

statistics of such systems may improve predictability, discovery and extractability, and 108 

provide constraints on the processes that operated to form these systems. To this end we seek 109 

an understanding of the observed probability distributions in terms of physical and chemical 110 

processes and if possible of thermodynamics rather than pragmatic statements regarding the 111 

class of probability distribution displayed, such as log-normal or Pareto, with no associated 112 

physical, chemical or geological insight. Interestingly, we find that log-normal and fractal 113 

(Pareto Type I; See https:// reference.wolfram.com/language/ref/ParetoDistribution.html for 114 

usage.) distributions play only subsidiary roles in this framework despite the wide emphasis 115 

on such distributions in the literature. In order to progress and understand any relationship to 116 

the processes involved in mineralisation we need to look at the physical basis for many of the 117 

distributions used in the literature. 118 

In advance, we present in Table 1 Appendix 2 some of the probability distributions of 119 

interest with respect to spatial distributions along with their associated physical processes and 120 

constraints that result in the distribution maximising entropy.  For details see Frank (2009, 121 

2019). 122 

2.1.Closed systems at equilibrium. 123 

Jo
urn

al 
Pre-

pro
of



4 
 

In closed systems at equilibrium the entropy is maximised (Gibbs, 1875-1878; Callen, 124 

1960). Thus the governing principle for such systems is that the processes that lead to 125 

equilibrium produce probability distributions that maximise the entropy. Other constraints 126 

also maximise the entropy for other distributions. There is a zoo of statistical functions (see: 127 

https://en.wikipedia.org/wiki/Relationships_among_probability_distributions and 128 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm). The classical approach 129 

has been to select the simplest of these, namely the Gaussian distribution, the log-normal 130 

distribution or the power-law and to regard any other kind of distribution as something 131 

pathological. See Appendix 3 for further details. 132 

2.2.Open systems far from equilibrium. 133 

There is of course an enormous range of distributions other than those considered 134 

above and in Appendix 2 but few have any thermodynamic basis or seem capable of 135 

reflecting the processes that operate during the formation of the systems involved. It is 136 

important to note that the Gaussian, log-normal and Boltzmann distributions are relevant to 137 

isolated systems or closed systems in contact with a heat bath; all such systems are at 138 

equilibrium. However, mineralising systems, while they operate, are far from equilibrium and 139 

are open systems (Ord et al., 2012). It seems logical that the distributions in Section 2.1 may 140 

not be relevant to open systems far from equilibrium and we ask: what statistical 141 

distributions might be relevant to far from equilibrium systems where variables are not 142 

independent of each other and both long and short range interactions and correlations exist? 143 

Such systems are commonly characterised by long, fat tails where the mean of the 144 

distribution diverges as the sample size increases and the variance may be infinite. Some of 145 

these distributions are classified in Figure 1 which distinguishes distributions according to the 146 

nature of the tails of the distributions. If the tails approach a power law for large populations 147 

they are said to be regularly varying. There are many distributions in this category other than 148 

the Pareto distribution which is distinguished by being also scale invariant.                                                            149 

2.3. Spatial point distributions. 150 

The traditional box counting procedure in two dimensions for an array of points 151 

consists of scanning the array with a series of “boxes” (circles or squares) with varying 152 

dimension, r, and counting the number, N(r), of boxes that contain at least one point for each 153 

value of r. If N(r) is related to r by (1) then N(r) follows a power law and fractal geometry is 154 

implied with a fractal dimension, D. The normal procedure is to plot log N(r) against log r 155 

and if a straight line ensues the geometry of the point array is implied to be fractal. The 156 

following argument follows Blenkinsop and Sanderson (1999). If the sampling of points is a 157 

Poisson process so that n boxes are distributed randomly over the space then the probability 158 

of a box containing x points is 159 

                             exp
!

( )
x

x
P x


  160 

where is the mean number of points per box. 161 

The probability of a box containing at least one point is (remembering that 0! = 1) 162 

                                   1 1 0 1 expP x P        163 

If we take 2nr   (Blenkinsop and Sanderson, 1999) then 164 
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                               2( ) 1 exp nrP x                                             (1) 165 

which is the equation for a cumulative Weibull distribution with = 0.5. The corresponding 166 

probability density distribution is 167 

                                          2( ) 2 expG x nx nx                                           (2) 168 

This distribution is illustrated in Figure 2 for the number of mineralised sites, n = 1000, and a 169 

square sample area 1000 km across. The result is a curve that could be fitted by two linear 170 

regions representing two fractal dimensions, one at spatial scales below 100km and the other 171 

at larger spatial scales. This is the kind of interpretation made by Raines (2008) with respect 172 

to the data of Agterberg et al. (1993, Table 1).                                                                           .                                                                             173 

The traditional box counting procedure for a two dimensional array of points is in fact 174 

a means of calculating a nearest neighbour distribution (Cressie, 1993, his Figure 8.9) which 175 

is known to be a Weibull distribution (Chandrasekhar, 1943; Lavenda, 1995, pp 164, 182; 176 

Carpena and Coronado, 2019). This distribution closely resembles a Pareto distribution for 177 

small values of  but for large values of  might be interpreted as a bifractal distribution 178 

(Figure 2) as does Blenkinsop (1994), Carlson (1991) and many others for their data sets.  179 

Hodkiewicz et al. (2005) document fractal distributions of damage in the Yilgarn of WA. 180 

Fractal dimensions vary between 1.5 and 1.9. It would be interesting to test if this is an 181 

expression of a Weibull nearest neighbour distribution as predicted by theory. 182 

Carpena and Coronado (2019) show that if the probability distribution of spacings, s, 183 

between consecutive members of a point set is P(s) [this is the nearest neighbour distribution] 184 

then the box counting dimension, Dbox, is related to P(s) by 185 

                                                           𝑃(𝑠) ∼ 𝑠−(1+𝐷𝑏𝑜𝑥)  (3) 186 

 so that                                               
 log

1
log

box

P s
D

s

 
   

 
                         (4) 187 

Thus Dbox is a constant only if log P(s) is a linear function of log s otherwise the spatial 188 

distribution is not a fractal 189 

This means that if the nearest neighbour distribution is a power law (albeit perhaps 190 

only over a limited range) then the data are fractal (over that range) and Dbox can be defined. 191 

Otherwise the data are not fractal. It is possible then to define a fractal dimension at each 192 

point in the distribution; this is called a local fractal dimension.  Further discussion in some 193 

detail is in Carpena and Coronado (2019, p 02205-3). 194 

3. Examples of mineralised systems. 195 

In this section we take the data from three well documented examples (Agterberg, 196 

2013; Blenkinsop and Sanderson, 1999 and Blenkinsop, 2014) that have been discussed in 197 

terms of fractal (or power-law) distributions and reconsider them in terms of best fit 198 

probability distributions: in all cases these turn out to be extreme value distributions. 199 

3.1. Example from Kirkland Lake, Canada. 200 

The first example is from Agterberg (2013, his Figure 4) and is a reprocessed version 201 

of data given in Raines (2008) where the interpretation was that the data are bi-fractal. 202 

Agterberg considers that the nonlinear distribution is a roll-off effect and fits a line with 203 
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slope 1.528 to these data in a log-log plot (Figure 3a). These same data on a linear-linear plot 204 

are shown in Figure 3(b) with a power-law fit shown. One sees that the entire data set can be 205 

represented with a power-law exponent of 1.206 whereas Agterberg (2014) fits eight data 206 

points to a power law with exponent 1.528. As indicated, Raines (2008) proposed a bi-fractal 207 

fit to these data. An attempt to fit two Pareto distributions to the data of Figure 3(a) using 208 

Mathematica (Wolfram Research 2020) failed. Results for a single Pareto fit are moderately 209 

good as suggested by Figure 3(b) and are given in Figure 4. 210 

These same data are shown in Figure 3(c) as a log-log plot where a good parabolic fit 211 

is shown. Figure 3(d) shows the local box-counting dimension calculated from (4). One sees 212 

that values close to that proposed by Agterberg for Dbox are obtained only for the last two data 213 

points. Most values are greater than two and hence are physically unrealistic. The conclusion 214 

is that for this example, the nearest neighbour distribution, P(s), is not fitted well by a power 215 

law (although Figure 3b looks good to the eye) and the data set is not a fractal. In fact the 216 

data set is well fitted by a Weibull distribution (Figures 3 e, f) as is expected of a nearest 217 

neighbour distribution.  218 

From a purely pragmatic view of the Agterberg data set, another distribution (the 219 

gamma distribution) is just as likely as the Weibull distribution. In order of fit, Mathematica 220 

(Wolfram Research 2020)  identifies and ranks the distributions in Table 1 where a value of 221 

1.0 is a perfect fit and zero means Mathematica cannot find a fit. The fit for a gamma 222 

distribution is shown in Figure 5 for comparison with Figures 3 (e and f). The fit for a single 223 

Pareto distribution (Figure 4) is moderate. Notice that the distribution in Figure 4 is a Pareto 224 

Type II distribution and not the power-law Pareto Type 1 distribution.                  225 

3.2.Spatial data from Zimbabwe. 226 

The second example is from Blenkinsop and Sanderson (1999) and consists of spatial 227 

distribution data from the Zimbabwe craton. Log-log plots of N(r) against r are nonlinear 228 

(Figure 6) similar to the Agterberg data in Figure 3 (a, c). This nonlinearity reduces the 229 

estimated fractal dimension and is interpreted by Blenkinsop and Sanderson (1999) as a roll-230 

off effect. 231 

In Figure 7 we show best fit distributions to the Blenkinsop and Sanderson spatial 232 

data. Mathematica (Wolfram Research 2020) chooses a Weibull distribution as best fit for 233 

most situations. The exception is the Shamva data set where the best fit is a Gumbel 234 

distribution.   235 

3.3. Mass data from Zimbabwe. 236 

The third example (from Blenkinsop, 2014, his Figure 7) consists of mass 237 

distributions (Figure 8) as well as probability distributions (Figures 9 and 10) for some of the 238 

Zimbabwe examples given above in example 2.                     239 

4. Discussion. 240 

4.1. Growth and probability distributions. 241 

Section 3 has considered spatial-point and spatial-mass data sets from two different 242 

locations. In each case the spatial data sets conform to a Weibull distribution rather than a 243 

Pareto. This is to be expected since the standard box counting procedure for spatial data 244 

points is a way of determining a nearest neighbour distribution which is by definition a 245 

Weibull distribution. The spatial-mass distributions are Fréchet or Weibull distributions. 246 
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Analysis, using Carpena and Coronado (2019), shows that the underlying spatial distributions 247 

are not fractal-like. In this section we attempt a rationalisation of these observations in terms 248 

of the probability distributions to be expected from the growth of a mineralising system. 249 

Consider a deforming segment of the Earth’s lithosphere that is subjected to energy 250 

and mass input in the form of hot reactive fluids bearing dissolved metals (Figure 11). We 251 

suppose the deformation takes place by brittle processes that generate increased permeability. 252 

At these sites energy is further dissipated by the initiation of mineral reactions that result in 253 

alteration and mineralisation. The question is: What controls the spatial distribution of 254 

mineralising sites which in this context we identify with sites where the energy input to the 255 

system is dissipated? 256 

Both heterogeneity and anisotropy have important influences on the development of 257 

models for point patterns (Moller and Toftaker, 2014) but as far as we are aware such effects 258 

have not been considered in the geological literature. We consider only the published data on 259 

the distribution of mineralisation; anisotropy and heterogeneity are issues to be considered in 260 
the future. 261 

In classical statistical thermodynamics, Boltzmann statistics describes the energy 262 

partitioning in an isolated system and for a system in contact with a heat bath. This arises 263 

because the partition of an isolated thermodynamic system into a number of components at 264 

equilibrium leads to sharing of the system’s energy in such a way that the most probable 265 

value of the energy of any component is the mean value of the energy. The result is a 266 

Boltzmann distribution in three dimensions or a Rayleigh distribution in two dimensions. 267 

However for an open system far from equilibrium the internal entropy decrease associated 268 

with the ordering represented by the spatial patterning of energy leads to stable extreme 269 

distributions where there is an overwhelming probability for one component to take a much 270 

larger share of the energy than all others. The distribution of energy now follows an arcsine 271 

distribution (Mandelbrot, 1956; Lavenda and Florio, 1992; Lavenda, 1995, pp 11 -15, 80 - 272 

83) and can also be described by one of the Extreme Value probability distributions. The 273 

distribution represented in any particular situation is a function of the growth mechanisms 274 

associated with energy dissipation. For instance, if there is some kind of cut off with respect 275 

to the stress required for fracture propagation (as there is in the classical Griffith theory of 276 

fracture; Lavenda, 1965, p 180) a Weibull distribution is expected for stress sites and a 277 

Fréchet distribution for fracture length (Lavenda, 1965, p 180). We explore such concepts 278 

below in terms of the growth of a mineralising system from the initial input of energy to the 279 

dissipation of this energy by the formation of alteration and mineralising sites to the final 280 

extinction of the system due to a lack of supply of energy (heat or fluid) to the system or 281 

depletion in reactive components.                 282 

The following discussion is motivated by the observations of Savageau (1979, 1980), 283 

Frank (2009, 2019) and Rocha and Aleixo (2013) that the cumulative probability distribution 284 

for a quantity, X, reflects aspects of the curve that characterises the growth kinetics of X. In 285 

addition, Nair et al. (2021, Chapter 5) show that non-equilibrium conditions (“external 286 

influences”) are necessary to generate members of the generalised extreme value family. 287 

Savageau (1979, 1980) show that for interacting nonlinear systems, a general equation can be 288 

derived that describes the generation of a quantity of interest, X, and competition with other 289 

processes to produce a generalised growth law for X. This equation includes many of the 290 
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common growth laws (logarithmic, power law, Weibull, stochastic, Gompertz and Lotka-291 

Volterra) as special cases. His analysis emphasises that although a large number of processes 292 

may operate to produce the growth of a system, an overall simple pattern of growth may 293 

result. 294 

A process oriented discussion of the significance of the three stable extreme 295 

distributions is given by Rocha and Aleixo (2013).  That paper (although directed at the 296 

growth of tumours) provides a model for the growth of a mineralising system or any other 297 

system growth that comprises nucleation, growth and extinction phases. The model is 298 

relevant at all scales so we expect it to be applicable to the regional scale for the distribution 299 

of metal endowment and at smaller scales where one is concerned with the distribution of 300 

alteration assemblages or of ore grade in a single deposit or for the spatial distribution of 301 

mineralisation. 302 

Rocha and Aleixo (2013) explore a generalised growth model that describes the 303 

progressive evolution of a system where growth nucleates, and subsequent growth follows a 304 

symmetrical or asymmetrical sigmoidal curve to ultimate extinction. This is the Gompertz 305 

law:  306 

                                      1 1

, , (1 )p q

r q pf x rx x    307 

which is a generalisation of the simple logistic equation, widely used in population dynamics, 308 

for which q = p = 2. The logistic equation was used as an empirical fit by Hubbert (1962) to 309 

the rates of discovery and production of oil resources and thus to predict peak oil; this 310 

concept has since been extended to other resources including gold (e.g. Bardi and Lavacchi, 311 

2009). The Gompertz law describes the competition between an accelerating growing process 312 

and processes that tend to inhibit growth; it is attractive from a process point of view since it 313 

is used in various forms in material science (in the form of Kolmogorov–Avrami kinetics for 314 

recrystallisation; Martyushev and Axelrod, 2003) and as a form of kinetics for non-315 

equilibrium chemical systems with coupling to both heat and fluid supply (Ord et al., 2012; 316 

Hobbs and Ord, 2018). It is also one member of the more general growth laws discussed by 317 

Savageau (1979, 1980) 318 

     With the approximation, ln( ) (1 )x x    for 0 2x  , and t a normalised time, 319 

Rocha and Aleixo show that the Gompertz law can be expressed as 320 

                                
 

    
11

ln
qpN

N N

df t
bf t f t

dt


   321 

With p = 2 and 1 < q < 2, this equation leads to Weibull distributions. If p = 2 and q >2 then 322 

Fréchet distributions result. For b =1, the Weibull distributions are of the form 323 

                                          exp ( )Nf t t     with 
1

0 1


   324 

The Fréchet distributions are of the form  325 

                                          exp ( )Nf t t    with 
1

0

  326 

Plots of these distributions are shown in Figure 12. 327 

 328 

 The Weibull type models describe mineralising site growths (at all scales) in which the 329 

initial growth phase is long. After the initial growth phase, the period of time of the 330 
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mineralising site development until death is very short. During this short growth time the 331 

maximum number of growth sites appears. Martyushev and Axelrod (2003) propose that 332 

these kinetics are associated with the shortest time for system development and maximum 333 

entropy production. 334 

 The Fréchet type models represent mineralising site growths (at all scales) in which the 335 

initial growth phase is short. During this short growth time the maximum number of 336 

growth sites appears. The period of the mineralising site development to the death is 337 

highly variable, i.e., the mineralising growth can stabilize near reaching the maximum 338 

capacity or can take a long time to reach this value.    339 

As we have indicated, for spatial distributions of mineralisation the Weibull fit is a 340 

direct arithmetic outcome of the fact that when one does a classical box count for point 341 

distributions then one is automatically carrying out a nearest neighbour analysis (as is proved 342 

implicitly in Blenkinsop and Sanderson, 1999). A nearest neighbour distribution is a special 343 

case of a Weibull distribution so it is inescapable that a Weibull distribution will result from a 344 

box-counting exercise; it does not necessarily have any physical significance. However some 345 

Weibull distributions (those with small ) are close to a power-law as (it turns out) is the 346 

situation for the Agterberg data set. 347 

What is of fundamental importance is the answer to the question: What is the 348 

underlying statistical distribution that describes the spatial distribution of mineralised sites? 349 

This is not obvious from the nearest neighbour analysis although such relations are 350 

considered by Sakhr and Nieminen (2018) and Carpena and Coronado (2019). 351 

In order to understand what the spatial probability distribution might be one needs a 352 

relation between fracture or shear zone spacing and stress or some other parameter (assuming 353 

fractures and/or shear zones are the sites for mineralisation). Veveakis and Regenauer-Lieb 354 

(2015) and Alevizos et al. (2016) derive an expression for the spacing, h, of fractures and 355 

shear zones in a deforming fluid saturated material with a capped yield surface. The fractures 356 

result from stress singularities whose spacing is controlled by the fluid diffusivity; this means 357 

the fracture spacing is controlled by heterogeneities in the permeability in many instances. 358 

The argument is very general and includes opening/shear and compaction/shear bands as well 359 

as opening mode fractures both parallel and normal to (compressive) 1, together with pure 360 

compaction bands normal to 1. The overall behaviour of the system is governed by a 361 

dimensionless parameter, , defined as   362 

               2fluidmechanical diffusivity
L

fluid diffusivity kp


  


                         363 

where 
fluid is the fluid viscosity,   is the strain rate, p/ is the mean stress and k is the 364 

permeability. L is the length of the system parallel to 1. 365 

An informative view is to express the fracture spacing, h, in terms of  (Alevizos et 366 

al. 2016, Figure 13): 367 

                   
0.26 fluid

H kp
h



 
  
 

    (5) 368 

Localisation of fractures does not occur until  reaches a value of 13 (see Figure 13). 369 

This means that there is a lower cut off for  below which fractures do not occur. This is the 370 
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type of behaviour for  to be expected (Lavenda, 1965) of Weibull statistics and hence h 371 

(which is inversely proportional to 
1/2

) is expected to have Fréchet statistics, This is 372 

identical to the classical distribution of fracture lengths derived from Weibull theory where 373 

the distribution of stress is Weibull but the distribution of fracture lengths is Fréchet 374 

(Lavenda, 1995, p180). The relation for Griffith cracks is y

C

Y l
   where C is the fracture 375 

toughness, Y is a constant that depends on the crack shape and the stress/strain field and l is 376 

the fracture length. y is the stress required to initiate fracture. There is a minimum stress 377 

below which fractures do not initiate. Thus the relation between y and l for Griffith crack 378 

length is the same form as the relation between fracture spacing, h, and  for generalised 379 

fracture development and the prediction is Fréchet distributions for crack length and crack 380 

spacing respectively.                                   381 

We conclude that we expect the underlying statistical distribution for mineralised sites 382 

to be a Generalised Extreme Value distribution and its precise form depends on whether the 383 

distribution of  is a Fréchet or a Weibull distribution. From (5) the distribution of 384 

mineralised sites is Fréchet if the distribution of strain rate is Weibull. The distribution of 385 

mineralised sites is Weibull if the distribution of permeability is Weibull. This conclusion is 386 

based on some physical arguments and is independent of the fact that the box counting 387 

algorithm always gives a nearest neighbour or Weibull distribution by definition. This is 388 

supported by the observed Fréchet and Weibull mass distributions from Zimbabwe. Further 389 

exploration of mineralising processes based on this approach may be found also in Ord and 390 

Hobbs (2021) and Ord et al. (2021). 391 

4.2. Future work. 392 

In order to establish the true spatial probability distributions for mineralised sites one 393 

approach is to employ n-point correlation functions (Kroner, 1971; Torquato, 2002; 394 

Kalidindi, 2015). Although such methods are widespread in the astronomy, materials and 395 

microstructure literature (and especially in the petroleum industry) we know of no 396 

applications in the characterisation of mineralisation. Such methods enable fractal or 397 

departures from fractal geometry to be quantified (Peebles, 1989, 1980; Jones et al., 2004) 398 

and should be pursued with vigour. 399 

This paper has examined only data from orogenic gold deposits which (at least for 400 

vein-hosted deposits) we envisage as undergoing a nucleation-growth-death evolutionary 401 

history. For deposits where replacement processes or reaction-diffusion reactions dominate as 402 

in Pb-Zn deposits, or in gold deposits where gold/iron oxide replacement reactions or growth 403 

involving incorporation of gold in arseno-pyrite predominates, probability distributions other 404 

than GEV distributions are likely to be involved. These include Gamma and InverseGaussian 405 

distributions. Work in this regard is in progress. 406 

5. Conclusions. 407 

The spatial distributions of mineralisation (at least for the examples examined in this paper) 408 

are not fractal but belong to members of the Generalised Extreme Value (GEV) family of 409 

distributions. These members include the Weibull, Gumbel and Fréchet distributions. For 410 

some ranges of parameters some of these distributions can approximate scale invariant 411 
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power-laws. The classical box counting method for spatial distributions of points is a method 412 

for calculating the nearest neighbour distribution which is a Weibull distribution. Hence all 413 

box counting methods produce a Weibull distribution;  this may sometimes appear to be a 414 

bifractal but such an appearance does not have any physical significance. Many authors, 415 

having postulated a bifractal distribution, propose that different mechanisms must operate at 416 

small and large spatial scales. No physical explanation is given as to why this is so. The box 417 

counting procedure only gives a fractal dimension if the underlying distribution is a pure 418 

fractal. Otherwise the procedure gives a local fractal dimension which generally is spurious. 419 

Most examples examined here are best represented by Weibull distributions with a single 420 

Gumbel distribution. The underlying probability distribution is not a pure fractal. The best 421 

way of characterising the underlying probability distribution is to establish the mass 422 

distribution. For the examples examined this can be a Fréchet or Weibull distribution. Both 423 

these distributions are to be expected from current theories of fracture spacing. The 424 

cumulative distributions to be expected for spatial distributions are direct reflections of the 425 

growth kinetics of the mineralising system; nonlinear growth kinetics for nucleation-growth-426 

extinction systems frequently lead to GEV probability distributions. 427 
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 587 

Figure Captions 588 

 589 

Figure 1. Classification of the heavy tailed distributions of interest. The regularly varying 590 

distributions are those that behave close to power laws as the population size increases. For 591 

details of this diagram and of the distributions within it see Nair et al. (2021). The  quoted 592 

for the Weibull distribution in Appendix 2 is the extreme value index of (A4.1) in Appendix 593 

4 and Figure A4.1. 594 

Figure 2.  The nearest neighbour density distribution, (2), as a log-log plot with n = 1000 and 595 

a square sample area 1000 km across. This is a Weibull density distribution with in (A4.1) 596 

equal to 0.5. The two red lines are attempts to define two linear regions with different “fractal 597 

dimensions”.  598 

Figure 3. Analysis of data from Figure 4 of Agterberg (2013). (a) Reproduction of Figure 4 599 

from Agterberg (2013) with his box count fit of Dbox = 1.528 shown. (b) The data of Figure 4 600 

shown on a linear-linear plot with a power law fit, N() = 309.2 -1.206 shown. (c) Figure 4 of 601 

Agterberg (2013) reproduced showing that the data define a continuous parabolic curve. (d) 602 

Dbox calculated from (c) using (4). (e) Weibull2 fit to data of Figure 4 using Mathematica 603 
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(Wolfram Research 2020). (f) Probability plot showing departures of data of Agterberg’s 604 

Figure 4 from the Weibull2 fit. Weibull2 implies a two parameter Weibull distribution. 605 

Figure 4. Mathematica (Wolfram Research 2020) fits to Agterberg data. (a) Single Pareto 606 

Type II fit. (b) Probability plot for single Pareto Type II fit. 607 

Figure 5. Gamma distribution fit to Agterberg (2013, his Figure 4) data. Mathematica 608 

(Wolfram Research 2020)  identifies this as a slightly better fit to the data than Weibull2. 609 

Figure 6. Reproduction of Figure 7 from Blenkinsop and Sanderson (1999).  610 

Figure 7. Best fit distributions for the data sets shown in Figure 6. (a and b) Craton; Weibull. 611 

(c and d) Bulawayo; Weibull. (e and f) Harare; Weibull. (g and h) Mashava; Weibull. (i and j) 612 

Shamva; Weibull. (k and l) Shamva; Gumbel). The location and relevant distribution is 613 

shown on each figure. For each location the probability distribution is shown followed by the 614 

probability plot which shows how good the fit is. The plots for Shamva data (i, j, k, l) show 615 

that a Gumbel distribution is a better fit than a Weibull distribution. The probability plots 616 

have data as the horizontal axis and modelled as the vertical axis. 617 

Figure 8. Reproduction of Figure 7 from Blenkinsop (2014). 618 

Figure 9. Best fit probability distribution for green data (crosses) in Figure 10. (a and b) 619 

Craton+production. This is a Fréchet3 distribution although there is departure from Fréchet3 620 

at high mass values, The probability distribution for the red data (triangles; Craton, no 621 

production) in Figure 10 is almost identical to the distribution shown here for the green data. 622 

Fréchet3 implies a three parameter Fréchet distribution. 623 

Figure 10. Best fit probability distribution for data from the Masvingo area (the black, 624 

straight line, data in Figure 8). This is a Weibull2 distribution with some departure at low 625 

mass levels. 626 

Figure 11. A crustal scale mineral system where energy and mass are added from the lower 627 

crust or mantle. Some sites are places of energy dissipation and others are not. We identify 628 

the dissipation sites with mineralised sites. We want to know the spatial distribution of these 629 

energy dissipation sites. After Blenkinsop (2014). 630 

Figure 12. Normalised sigmoidal curves: Weibull (blue), Gompertz (green) and Fréchet (red) 631 

with = b = 1.3, 1.5, 1.9, 2, 4, 6. The normalised Weibull curves are for ( ) exp( ( ) )Nf t t     632 

and have inflection points (black dots) for
1

( )Nf t
e

 . The inflection point measures the 633 

number of mineralising sites developed at the peak of growth rate. The normalised Gompertz 634 

curves are for ( ) exp( exp( ))Nf t bt    and there is just one inflection point for the family at635 
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1
( )Nf t

e
 . The normalised Fréchet curves are for ( ) exp( )Nf t t    and have inflection 636 

points for
1

( )Nf t
e

 .  From Rocha and Aleixo (2013).   637 

Figure 13. Plots of localised effective stress against normalised distance, / L , for various 638 

values of . Below no localisation occurs so there is a lower limit for  where 639 

fractures do not form suggesting Weibull statistics for l. For 13  , the spacing follows the 640 

relation  / 0.26h L  . Weibull statistics for  results in Fréchet statistics for the spacing. 641 

  642 
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Appendix A1. Some background 643 

Mandelbrot (1997) credits Fréchet (1941) with the first observation that the spatial 644 

distribution of some natural features follows the hyperbolic relation, (1). Mandelbrot realised 645 

that many natural phenomena are characterised by statistical distributions where the variance 646 

is infinite. To represent such phenomena he emphasised the power-law or Pareto distribution 647 

which became identified with the concept of fractals; the Pareto distribution has infinite mean 648 

and variance and has a fat tail so that it can represent extreme events. However he was aware 649 

of other fat tailed distributions such as those arising from Lévy stochastic processes 650 

(Mandelbrot, 1963). Even though the stable extreme distributions had been identified many 651 

years earlier (Fisher and Tippett, 1928; Gnedenko, 1943; Gnedenko and Kolmogorov, 1949 652 

1968; 1949 in Russian), Mandelbrot did not use these distributions and his excursions into the 653 

statistics of extremes ended with some Lévy distributions capable of accommodating 654 

skewness and the sub-exponential decaying tails of observed distributions, in contrast to the 655 

thin and rapidly decaying tails of the normal distribution. 656 

Authors in the geological literature became infatuated with the concept of fractals, 657 

encouraged by the book by Mandelbrot (1982) and influential works by Mandelbrot (1965), 658 

Barton and Scholtz (1965), La Pointe (1995) and Turcotte (1986, 1989). The result is that the 659 

Pareto distribution has become the heavy tailed distribution of choice in the geological 660 

literature especially if the distribution is power-law like in appearance. Moreover, the 661 

concepts of nonlinear behaviour, critical behaviour and fractal geometry have become widely 662 

inter-linked with the implication that any nonlinear behaviour automatically leads to power-663 

law probability distributions for variants produced by such behaviour. This is especially 664 

emphasised in the notion that fractal geometries and power-law distributions arise from self-665 

organised criticality (Hronsky and Groves, 2008; McCuaig and Hronsky, 2014). This 666 

association of Pareto distributions with nonlinear systems has not proved correct and the 667 

literature on GEV distributions arising from nonlinear dynamical systems is now immense 668 

(see Lucarini et al., 2016 for examples). It is the Generalised Extreme Value family of 669 

probability functions that characterise nonlinear systems rather than Pareto distributions 670 

(Nicolis et al., 2006; Lucarini et al., 2012, 2014, 2016). In saying this one should also 671 

appreciate that the extremes of the GEV distributions are commonly (see Lucarini et al., 2016 672 

as an example) represented by Generalised Pareto Distributions (GPD) which include the 673 

exponential distribution (as the tail of a Gumbel distribution) and the Pareto distribution (as 674 

the tail of a Fréchet distribution). A system at criticality (that is, a system that has evolved to 675 

be scale free) is by definition characterised by a Pareto distribution. 676 

In summary, Mandelbrot (1963) and Fama (1965) proposed the Lévy stable 677 

distribution to represent skewed heavy tailed distributions as an alternative to the Gaussian 678 

distribution to characterise commodity and financial systems. Although there are many 679 

heavy-tailed (see Figure 1) alternatives to the Gaussian distribution (see Nair et al., 2021), the 680 

fundamental reason for selecting Lévy stable distributions is that they arise from the 681 

Generalized Central Limit Theorem, which states that stable laws are the only possible limit 682 

distributions for properly normalized and centred sums of independent, identically distributed 683 

random variables. An important further outcome of this theorem extended to distributions 684 

that lack a mean or variance is that there are just three extreme stable distributions that are 685 
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members of the Generalised Extreme Value (GEV) distribution family. These are the 686 

Gumbel, Weibull and Fréchet distributions. 687 
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Table A2.1. Some probability distributions pertinent to spatial distributions. In this table,  is the shape 735 

factor,  is the scale factor,  is the position factor, m is the mean and 2 is the variance. <a> denotes the 736 
average of the quantity, a. 737 
 738 

Distribution Probability Distribution Function, y (x). Physical 

significance 

Maximum 

entropy 

constraints 

             Graphical density distributions 

Generalised 

Extreme 

Value 

   1

1

1
; , , ( ) exp ( )

 ( )= 1+     0

                =exp     0

y f x t x t x

x
where t x if α

x
if α=





  















  

  
  

  

 
 
 

 

If  = 0 this is a Gumbel distribution. If  > 0 

this is a Fréchet distribution. If < 0 this is a 

Weibull distribution. 

A family of 

extreme value 

stable 

distributions. 

The Gumbel 

(Type I), 

Fréchet (Type 

II) and Weibull 

(Type III) as 

specific 

examples.  

Types I, II 

and III arise 

from two 

constraints. 

One 

constraint 

sets the 

average 

location; the 

other is a 

measure of 

the average 

tail 

weighting. 

 

Gumbel 
     

1
; , exp expy f x z z 


    

 

where x
z








 

Tail of distribution is an exponential 

distribution 

Corresponds to 

systems that 

nucleate, grow 
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power law    1
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  A Pareto 

distribution 
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the last few 

percentiles of a 

log normal 

distribution. 

A special 
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log normal 

distribution 
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variable in 
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distributions 
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to diffusion 

processes 

(Crescenzo and 

Paraggio, 

2019). 

Maximises 

entropy for 
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systems at 
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If a system is 

controlled by 
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probability 

distribution is 
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Many 

distributions 
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normal 

distributions 
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parameters 
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above 

diagrams 
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Appendix A3. Closed systems at equilibrium. 750 

 751 

One of the simplest statistical distributions after the uniform distribution is the 752 

Gaussian distribution which results from stochastic processes operating with no correlation 753 

between events. The underlying thermodynamic constraint for this distribution is that 754 

differential entropy is maximized for a given variance. A Gaussian random variable has the 755 

largest entropy amongst all random variables of equal variance, or, alternatively, the 756 

maximum entropy distribution under constraints of mean and variance is the Gaussian. This 757 

distribution follows directly from the Law of Large Numbers (which states that for data with 758 

a well-defined mean and variance the mean of the distribution will approach that of the 759 

sample as the sample size increases) and the Central Limit Theorem which states that 760 

independent and identically distributed (i.i.d.) random variables with finite non-zero 761 

variances will tend to a  Gaussian distribution as the number of variables grows. Thus the 762 

Gaussian distribution is precisely defined by the Central Limit Theorem with a mean 763 

specified by the Law of Large Numbers and a variance that maximises the differential 764 

entropy. It is a thin tailed distribution. The Gaussian distribution results from processes where 765 

there are strong physical, chemical or genetic controls that limit the variation around a mean 766 

value such as in the probability distribution for the heights of adult humans. 767 

The log-normal distribution is defined in a similar manner to the Gaussian 768 

distribution; the Central Limit Theorem now applies to the logarithms of the variates rather 769 

than to the variates themselves. The log-normal distribution is the maximum entropy 770 

probability distribution  for a random variate, X, for which both the mean and variance 771 

of  ln(X) are specified. The log-normal distribution is fat tailed and so is used to model some 772 

fat tailed distributions. As indicated, since both the Gaussian and log-normal distributions 773 

maximise the entropy they are relevant to closed systems at equilibrium. 774 

A distribution that defines the distribution or partitioning of energy in an isolated 775 

system is the classical Boltzmann distribution which proposes that the probability, pi, that a 776 

given state, i, should have an energy, Ei, is given in terms of the fraction of states, iN

N
, that 777 

have an energy, Ei, as 778 

                                         
 exp /ii

i

E kTN
p

N Z


                  (A3.1) 779 

where Ni is he number of states that have energy, Ei, N is the total number of states, k is 780 

Boltzmann’s constant and T is the absolute temperature. Z (the canonical partition function) 781 

is present to ensure all accessible states add up to 1 and is given by 782 
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Z E kT
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The Boltzmann distribution, (A3.1), maximises the entropy of the system,
1

log
M

i i

i

S p p


  , 784 

subject to the constraint that the mean energy of the system is i ip E . The Boltzmann 785 
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distribution is the basis of classical statistical thermodynamics and hence has particular 786 

relevance to the discussion of equilibrium states in isolated thermodynamic systems.  787 

Of course there are many other distributions that maximise entropy for various 788 

constraints (Dawson and Wragg, 1973; Frank, 2009) but many are relevant to systems at 789 

equilibrium. The relevant distribution for a system at equilibrium depends on the scale of the 790 

distribution, the number of ways in which the events can occur, and the moments of the 791 

distribution (Lienhard and Myer, 1967). 792 

For spatial systems at equilibrium, similar statements hold. For instance (McFadden, 793 

1965) the point distribution that corresponds to maximum entropy for a given density is the 794 

Poisson distribution. As we have indicated, natural examples are commonly proposed to be 795 

the fractal random fields represented by a fractal dimension (Carlson, 1991; Blenkinsop, 796 

1994, 1995, 2014; Hodkiewicz et al., 2005). Methods (other than box counting) of 797 

establishing the fractal dimension of random spatial fields with scale invariance are given by 798 

Biermé (2017). 799 
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Appendix A4. Open systems far from equilibrium. 825 

A generalisation of the Central Limit Theorem by Gnedenko and Kolmogorov 826 

(1968) states that the sum of a number of random variables with symmetric distributions 827 

having infinite variance, will tend to a stable distribution as the population increases. The 828 

family of distributions corresponding to this limit are the Generalised Extreme Value 829 

(GEV) distributions. The important concept here is that the extreme values of an initial 830 

distribution (namely, those in the tail of the initial distribution, Figure A4.2a) have their 831 

own probability distributions known as extreme value distributions. The initial 832 

distributions for relatively small populations are asymptotic to the extreme distributions 833 

as the population increases. These asymptotic distributions are said to be attractors for 834 

the initial distribution. The only stable distributions that correspond to the tails of other 835 

distributions (those that belong to the family of generalised extreme value (GEV) 836 

distributions) and that have a formal mathematical expression are the Weibull, Gumbel 837 

and Fréchet distributions (Figure A4.1). 838 

The generalised extreme value distributions are given by 839 

                              

1

exp 1
x

H x









        
    

                             (A4.1)          840 

The family of extreme value distributions (EVD) is given by 841 

                                
1

exp 1H x x 
 





   
  

 if 0  2                          (A4.2) 842 

                                exp exp xH x

     if  = 0                                    (A4.3) 843 

where  H x  is the cumulative distribution function of the Extreme Value Distribution of 844 

the random variable, x, with 
1




  the extreme-value index. For a detailed discussion of 845 

these distributions see Nair et al. (2021). 846 

                                                           
2 The symbol (y)+  means that the quantity inside the brackets takes the maximum value between 0 and y. 
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                    847 

 848 

Figure A4.1. Probability distributions for members of the extreme value 849 

distributions with values of the extreme value index,  indicated. (a) Density distribution 850 

functions. (b) Cumulative distribution functions. 851 

Depending on the sign of γ, three maximum domains of attraction are defined 852 

(Figure A4.1): 853 

If γ > 0, H(x) belongs to the Fréchet maximum domain of attraction. This domain 854 

of attraction includes distributions with heavy tails, i.e. their initial distribution functions 855 

decrease as a power function or more slowly. 856 

 If γ = 0, H(x) belongs to the Gumbel maximum domain of attraction. This domain 857 

of attraction includes distributions with light tails, i.e. their initial distribution functions 858 

decrease as an exponential function.  859 

If γ < 0, H(x) belongs to the Weibull maximum domain of attraction. This domain 860 

of attraction includes distributions with short tails, i.e. they have a finite endpoint. 861 

Although the Weibull distribution is short tailed it can be either heavy-tailed or light-862 

tailed. 863 

                864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 
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 873 

 874 

Figure A4.2 . Asymptotic distributions. (a) An initial distribution shown as the full line. This 875 

could for instance represent the probability distribution of all fractures in an area. The 876 

distribution of fractures activated by a new stress field is shown in gray. Griffith theory 877 

predicts there is a critical length below which reactivation does not occur. The probability 878 

distribution of activated fracture is Fréchet (although the distribution  of stress sites is 879 

Weibull; Lavenda, 1995, p180). In this case the Fréchet distribution is the domain of 880 

attraction of the initial distribution. (b) Common initial distributions and their domains of 881 

attraction. After Embrechts et al. (1997, Chapter 3) and Quinn and Quinn (2010). 882 

The following relations exist between the three stable extreme distributions: 883 

If X has a Fréchet distribution (commonly written  ), then -1/X has the Weibull distribution 884 

(commonly written  ) and log(X) has a Gumbel distribution (commonly written,  ). 885 

Lavenda (1995, pp 6, 78 - 79) presents a thermodynamic explanation for the stable                                                                                                                                                                                                                                                                                                                        886 

distributions. For a closed system the entropy must always increase as the system evolves to 887 

maximum entropy at equilibrium. However an open system can exchange entropy with its 888 

environment. So that although the total entropy, S, of the system plus its environment must 889 

always increase towards equilibrium to satisfy the second law of thermodynamics, the 890 

internal entropy can decrease as long as the decrease in internal entropy, Sinternal, is 891 

compensated by an increase in entropy of the environment, Sexternal. Thus the generation of 892 

ordered structures and patterns in systems far from equilibrium is associated with an internal 893 

entropy reduction, Sinternal (Kondepudi and Prigogine, 1998). 894 

Lavenda shows that  895 

                             
1

( ) (1 )internalS x
x






 
     

 
 896 

where is a constant 0 <  < 1. This has the form of a Fréchet distribution: 897 
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The Fréchet distribution can be considered as the generalisation for extreme value 899 

distributions of the Boltzmann principle (Lavenda , 1995, pp 6, 49-51, 149; Lavenda and 900 

Florio, 1992). Hence in an open system far from equilibrium we expect the energy to be 901 

partitioned so as to follow a Fréchet distribution just as in a closed system at equilibrium 902 

the equipartition of energy follows a Boltzmann distribution as discussed in Appendix 903 

A3. 904 

For a Weibull distribution Lavenda (1995, pp79) shows that 905 

                                       
1

( ) ( 1)internal

x
S x








 
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 906 
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Table 1. Ranking of probability distribution fits for Agterberg data. 

                       Gamma                    0.92 

                       Weibull22                 0.89              

           Log-normal              0.76 

                       Weibull 3                 0.49 

                       Pareto 3                    0.49 

                       Fréchet 3                  0.49 

                       Fréchet 2                  0.43 

                       Inverse Gaussian      0.40 

                       Gumbel                    0.20 

 

 

                                                           
2  Weibull2, Weibull3 refer to two and three parameter distributions respectively. A 2-parameter representation 

involves only the scale and shape factors in Table 1; the 3-parameter representation involves the position factor 

in addition. The same notation applies to the other distributions. 
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Highlights 

 

 Mineralising systems are not fractal but Generalised Extreme Value 

distributions. 

 

 Cumulative distributions are direct reflections of mineralising growth kinetics. 

 

 Nucleation-growth-extinction systems may lead to GEV probability 

distributions. 
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