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Abstract: The split property of a pure state for a certain cut of a quantum spin systemcan
be understood as the entanglement between the two subsystems being weak. From this
point of view, we may say that if it is not possible to transform a state ω via sufficiently
local automorphisms (in a sense that we will make precise) into a state satisfying the
split property, then the state ω has a long-range entanglement. It is well known that in
1D, gapped ground states have the split property with respect to cutting the system into
left and right half-chains. In 2D, however, the split property fails to hold for interesting
models such asKitaev’s toric code.Herewe show that this failure is the reason that anyons
can exist in that model. There is a folklore saying that the existence of anyons, like in
the toric code model, implies long-range entanglement of the state. In this paper, we
prove this folklore in an infinite dimensional setting. More precisely, we show that long-
range entanglement, in a way that we will define precisely, is a necessary condition to
have non-trivial superselection sectors. Anyons in particular give rise to such non-trivial
sectors. States with the split property for cones, on the other hand, do not admit non-
trivial sectors. A key technical ingredient of our proof is that under suitable assumptions
on locality, the automorphisms generated by local interactions can be “approximately
factorized.” That is, they can bewritten as the tensor product of automorphisms localized
in a cone and its complement respectively, followed by an automorphism acting near
the “boundary” of �, and conjugation with a unitary. This result may be of independent
interest. This technique also allows us to prove that the approximate split property, a
weaker version of the split property that is satisfied in e.g. the toric code, is stable under
applying such automorphisms.

1. Introduction

A pair (N , M) of commuting von Neumann algebras is called split if there is a Type I
factor F such that N ⊂ F ⊂ M ′ [DL84]. In applications to physics typically N and
M are generated by local observables located in two disjoint (or, in relativistic theories,
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spacelike separated) regions �1 and �2. The split property then can be interpreted
as a type of statistical independence between regions. More precisely, one can locally
prepare a normal state ϕ such that restricted to measurements in �i we have ϕ(AB) =
ϕ1(A)ϕ2(B), for given normal statesϕi on the algebra generated by observables localized
in�i [Wer87]. In particular, it means that there is no entanglement between the two parts.
Alternatively, the Type I factor allows us to find a tensor product decomposition of the
Hilbert space,with the algebras N andM acting on distinct factors. Such a decomposition
is far from obvious in systems with infinitely many degrees of freedom and may even
not exist for a given bipartition of the system. Early applications have been in algebraic
quantum field theory [BW86], for example in the study of entanglement properties of
the vacuum [SW88].

More recently the split property has found applications in the classification of phases
of 1D gapped quantum spin systems. Under quite general conditions one can show that
the split property holds in ground state representations. In particular, Matsui [Mat13]
showed that if ω is a pure ground state of a gapped local Hamiltonian (on the chain), it
satisfies the split property in the sense that ω is quasi-equivalent to ωL ⊗ ωR . Here ωL
(resp. ωR) is the ground state restricted to the left (resp. right) half-chain AL (AR). In
this case this is equivalent to saying that the inclusion πω(AL)′′ ⊂ πω(AR)′ is split in
the sense above, where πω is a GNS representation for ω [Mat01] (see also [Oga21a,
Remark 1.5]).

The split property can thenbeused to define a H2(G,U (1))-index for a uniquegapped
ground state on a quantum spin chain with finite group on-site symmetry [Oga20], as
well as Z2-valued index for reflection symmetry, generalizing a construction by Poll-
mann et al. [PTBO10] for matrix product states. The index was used to prove a general
Lieb–Schultz–Mattis type theorem in [OTT21].

For fermionic chains, the split property for a unique gapped ground state is proven in
[Mat20]. Bourne and Schulz-Baldes and independently Matsui introduced a Z2-index
for fermionic chains without symmetry [BS20,Mat20]. A classification of SPT-phases
with on-site symmetry in 1D fermionic chain based on the split property was carried out
in [BO21]. There, a Z2 × H1(G,Z2) × H2(G,U (1)p)-valued index was found using
the split property.

The split property is essential in all these constructions: it allows one to factor the
Hilbert space into a tensor product with the left half-chain acting on one factor, and the
right half-chain on the other. The Type I factor F is such that F � B(HL) ⊗ I with
respect to this decomposition. This can then be used to extend a symmetry βL of the
spin chain to an automorphism of F , which by Wigner’s theorem can be implemented
by a (anti-)unitary. This in turn can be used to define an index.

In higher dimensions the situation is much more complicated, and the split property
fails to hold in interesting models. For example, consider Kitaev’s toric code model
[Kit03]. Then one can consider a cone-like region (extending to infinity) � and its
complement, as an analogue of the two half-chains in 1D. It turns out that the translation
invariant ground state ω of the toric code is not split with respect to this bipartition
[Naa12,FN15], in contrast with the 1D case discussed above. In fact, one of the goals
of the present work is to argue that the failure of the split property to hold is in fact
necessary to get anyonic excitations. More precisely, the failure of the split property to
hold is because the state is long-range entangled. Thus, our work confirms the folklore
statement that long-range entanglement is a necessary condition for anyonic excitations.

It turns out that at least for abelian quantum double models a weaker version of the
split property is true. That is, if one considers a pair of cones�1 ⊂ �2 whose boundaries
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are sufficiently far apart, there is a Type I factor F such thatπω(A�1)
′′ ⊂ F ⊂ πω(A�c

2
)′

[FN15]. “Sufficiently far” depends on the model: in the abelian quantum double models,
it is enough that the distance between their boundaries is greater than one. In general,
and in this paper as well, we need in addition that�2 has a wider opening angle than�1.

This should be compared with the setting in relativistic quantum field theory mentioned
earlier, where the split property fails if the intersection of the closures of the two regions
has non-empty intersection, but holds when they are spacelike separated. This property
is sometimes called the distal or approximate split property to distinguish it from the
situation in e.g. 1D systems. Despite being weaker than the split property, it still has
important applications. For example, in two dimensional systems the approximate split
property is one of the assumptions used in relating the total quantum dimension (a
property of the superselection sectors) to the index of a certain subfactor [Naa13]. This
result can be used to show one has found all superselection sectors of a given model. A
variant also plays a role in the discussion of “approximately localized” superselection
sectors [CNN20].

The interest of this paper is in these split and approximate split properties in 2D
quantum spin systems. Althoughmost of our results can be straightforwardly generalised
to higher dimensions, we restrict to 2D. The reason is that we are particularly interested
in applying our results to study anyons, and in higher dimensions the cone-localized
sectors we consider automatically have bosonic or fermionic statistics (cf. [BF82]). We
regard a state with the split property as having small entanglement with respect to the
given cut. From this point of view, a state which cannot be transformed into a split state
via quasi-local automorphisms has long-range entanglement. Or to be more precise,
we consider a slightly more restrictive class of automorphisms which we call quasi-
factorizable. (See Sect. 2.3 for the definition of quasi-local automorphisms and their
importance in the theory of gapped ground state phases.) Anyons, if they exist, can be
identified with superselection sectors of the model (see Sect. 2.2 for an introduction).
We show that the existence of a non-trivial superselection sector of a state ω implies
that the state ω is long-range entangled. That is, long-range entanglement is a necessary
condition to have non-trivial anyons. Moreover, this is stable under applying “quasi-
factorizable” automorphisms, defined below. For a class of Hamiltonians consisting of
local commuting projectors, Haah [Haa16] introduced an ingenious index such that it
having a non-trivial value implies that one needs a quantum circuit with depth on the
order of the system size to transform into product states. Our result is in accordance with
these results. In general, the split property itself in 2D is not stable under quasi-local
automorphisms. We show, however, the approximate split property is stable under it.

The key technical ingredient for the proof is a factorization property of quasi-local
automorphisms αs . This result may be of independent interest. More precisely, we show
that under mild assumptions, αs is quasi-factorizable in the following sense. In the
definition below, � is the set of all sites of the system, and for any subset � ⊆ �,A� is
the corresponding quasi-local C∗-algebra of observables localized in � (see below).

Definition 1.1. Let α be an automorphism of A� and consider an inclusion of cones

�′
1 ⊂ � ⊂ �′

2 ⊂ �.

We say that α is quasi-factorizable with respect to this inclusion if there is a unitary
u ∈ A and automorphisms α� and α�c of A� and A�c respectively, such that

α = Ad(u) ◦ ˜	 ◦ (α� ⊗ α�c ),

where ˜	 is an automorphism on �′
2 \ �′

1 and �c := � \ �.
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The key advantage is that one can replace the “exponential tails” ofαs by strict locality, up
to conjugation with a unitary inA� . In for example the sector theory, such strict locality
is very useful, and one is only interested in representations up to unitary equivalence.

This factorization property was first used in [Oga20], in proving the stability of the
index of 1D SPT. Following this idea, in [Moo19] the stability of split property in 1Dwas
shown. Its 2-dimensional version is essential here, but an extra complication is that in
2D or higher, the boundary between the regions we will consider is infinite. This makes
locality estimates much more subtle. Coincidentally, this more complicated geometry is
also a key reason why Matsui’s result on the split property for 1D spin chains [Mat13]
does not generalize to higher dimensions. A special case of the 2D-version (with respect
to cone like regions with common apex) of the factorization property is also used in
[Oga21b], to define a H3(G,U (1))-valued index and to show its stability.

In Sect. 2 we fix notation and recall some basic facts about Lieb–Robinson bounds
and quasi-local maps, and give a brief overview of the relation between anyons and
superselection sectors. Then, in Sect. 3, we prove the factorization property of quasi-
local automorphisms in a general setting. In Sect. 4 we consider states in 2D which are
quasi-equivalent to a product state, and hence satisfy the strict split property. In particular,
we show that the states in this gapped quantumphase have trivial superselection structure.
Finally, in Sect. 5 we show that our main technical result applies to a natural class of
quasi-local automorphisms, and use this to show that the approximate split property is
stable in such models.

2. Preliminaries

We first fix the setting and introduce the main definitions. A key part is played by quasi-
local maps and Lieb–Robinson bounds. For a state-of-the-art overview of the topic see
[NSY19]; for our purpose the most relevant facts will be recalled here. We largely
adopt the notation of [NSY19]. We assume basic familiarity with the operator algebraic
formulation of quantum spin systems (see e.g. [BR87,BR97]).

Let (�, d) be a countable metric space which is ν-regular i.e.,

sup
x∈�

|bx (n)| ≤ κnν, 1 ≤ n ∈ N, (2.1)

for some constant κ > 0. Here, we used the notation

bx (n) := {y ∈ � | d(x, y) ≤ n} . (2.2)

In concrete applications we typically consider � = Z
ν (or its edges) with the usual

metric, but for now we keep the discussion as general as possible.
Let P0(�) be the set of all finite subsets of �. For � ∈ P0(�) we set

A� :=
⊗

x∈�

B(Hx ), (2.3)

whereHx arefinite dimensionalHilbert spaceswhosedimensions are uniformlybounded:

sup
x∈�

dimHx < ∞. (2.4)

If �1 ⊂ �2 there is a natural inclusion of algebras, and hence we can write

Aloc
� :=

⋃

�∈P0(�)

A� (2.5)
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for the algebra of local observables. To get theC∗-algebraA� of quasi-local observables
we take the norm closure of Aloc

� . In general, if � ⊂ � is any subset of �, A� is the
norm closure of

⋃

�0⊂�,�0∈P0(�) A�0 . We denote by U (A�) the set of all unitaries in
A� .

For any subset X of�, we denote by�X the conditional expectation ontoAX given by
the tracial state onAXc . These maps will be used to approximate quasi-local observables
by local ones. For any m ∈ N ∪ {0} and X ⊂ �, we set

X (m) := {x ∈ � | d(x, X) ≤ m} . (2.6)

Furthermore, we define

X (m) := �X (m) − �X (m−1), m ∈ N, X ⊂ �. (2.7)

Note that we have
∥

∥X (m) (A)
∥

∥ ≤ 2 ‖A‖ , A ∈ A�, (2.8)

since � is a projection.

2.1. Split property. We will be interested in the split property with respect to different
regions of �, leading to the following definition.

Definition 2.1. Let �1 ⊂ �2 ⊂ � and ω a pure state of A� . Then we say that ω is split
with respect to the inclusion �1 ⊂ �2 if there is a Type I factor F such that

π(A�1)
′′ ⊂ F ⊂ π(A�2)

′′, (2.9)

where π is a GNS representation for ω.

Conjugating with a unitary does not affect the split property. Furthermore, one would
expect that automorphisms ofA�1 andA�c

2
have no effect on the existence of the Type I

factor F .We can even allow for a non-trivial automorphismon a “widening” of the region
�2 \ �1, at the expense of shrinking (resp. growing) the two regions in the definition of
the split property. This is the idea behind the next proposition.

Proposition 2.2. Let �0 ⊂ �1 ⊂ �2 ⊂ �3 be a sequence of subsets in �. Let ω be
a pure state on A� and suppose that it is split with respect to �1 ⊂ �2. Let α be an
automorphism of A� . Let α�c

2
, α�2\�1 , α�1 be automorphisms of A�c

2
, A�2\�1 , A�1

respectively. Define an automorphism α̃ of A� by

α̃ := α�c
2
⊗ α�2\�1 ⊗ α�1 . (2.10)

Supposemoreover that there is an automorphism β�3\�0 ofA�3\�0 and a unitary u ∈ A�

such that

α = Ad(u) ◦ α̃ ◦
(

β̃�3\�0

)

, (2.11)

where β̃�3\�0 = β�3\�0 ⊗id(�3\�0)c . Thenω◦α is split for the inclusion�0 ⊂ �3. In fact,
if (H, π,�) is a GNS triple of ω and F the interpolating factor from Def. 2.1, we can
choose F̃ = Ad(π(u))(F) as the interpolating Type I factor in the GNS representation
π ◦ α for the state ω ◦ α.
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Proof. We have

π ◦ α̃
(A�0

)′′ = π ◦ α�1

(A�0

)′′ ⊂ π
(A�1

)′′ ⊂ F. (2.12)

We also have α̃−1(A�2) = A�2 ⊂ A�3 , and hence π
(A�2

) ⊂ π ◦ α̃
(A�3

)

. Therefore
we have

π ◦ α̃(A�3)
′ ⊂ π(A�2)

′ ⊂ F ′, (2.13)

and by taking commutants F ⊂ π ◦ α̃(A�3)
′′. Hence we obtain

π ◦ α̃
(A�0

)′′ ⊂ F ⊂ π ◦ α̃(A�3)
′′. (2.14)

Note that by assumption and the fact that β̃�3\�0 acts trivially on A�0 ,

α
(A�0

) = Ad(u) ◦ α̃ ◦ β̃�3\�0

(A�0

) = Ad(u) ◦ α̃ ◦ (A�0

)

, (2.15)

and similar with A�0 replaced by A�3 . Hence we have

(

π ◦ α
(A�0

))′′ = Ad (π(u))
(

π ◦ α̃
(A�0

)′′) ⊂ Ad (π(u)) (F)

⊂ Ad (π(u))
(

(

π ◦ α̃
(A�3

))′′) = (

π ◦ α
(A�3

))′′
.

(2.16)

This completes the proof. ��
Note that the condition on α implies that α−1 is quasi-factorizable for the inclusion

�0 ⊂ �2 ⊂ �3 in the sense of Definition 1.1. The main technical contribution of the
paper consists in proving that the quasi-local automorphisms αs admit a decomposition
as in (2.11) of the proposition.

2.2. Sector theory. The present work is at least partlymotivated by superselection sector
theory, in the sense of Doplicher, Haag and Roberts (DHR). See [Ara99,Haa92] for an
introduction. In two dimensional systems with long-range topological order, there is
the possibility of quasi-particles with braided exchange statistics. Typical examples of
such models are Kitaev’s quantum double models [Kit03] and the Levin–Wen string-net
models [LW05]. Mathematically, the algebraic properties of the anyons are described
by a braided tensor category [Wan10]. Thus, the question is how one can extract this
tensor category from first principles.

Typical methods to extract the braided tensor category from a ground state rely quite
heavily on certain properties (e.g. symmetries) of the underlyingmodel, and are therefore
less suitable for a general analysis. In fact, in finite systems it is not always clear how to
even define a single anyonic excitation, in particular once one loses strict locality as a
result of perturbations. We therefore take a different approach, motivated by DHR sector
theory in algebraic quantum field theory [Haa92], in which one in principle can recover
the full anyon structure from a few general and physically motivated principles. The idea
of a superselection sector stems from the observation that it appears to be impossible
to make coherent superpositions between certain states, in particular when they carry
a different ‘charge’ or ‘anyon type’. Mathematically this phenomenon is related to the
existence of non-equivalent representations of the algebra of observables. One way to
interpret this is to think of charge conservation: with local operations it is not possible
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to change the total charge of the system. In particular, say we create a conjugate pair
of anyons (thus preserving the total charge) from the ground state, and move one far
away. Then acting locally the total charge in that region cannot be changed. Or, to give
an example, it is impossible to create a vector state describing a single charged anyon
in the ground state representation of a topologically ordered model, using quasi-local
observables only. Equivalently, it is not possible to create coherent superpositions of
disjoint states (cf. [Ara99, Thm. 6.1]).

The C∗-algebraA� has many inequivalent representations, but most of them are not
physically relevant. Hence we need a selection criterion to select the relevant representa-
tions that correspond to charged states (that is, states describing single anyon excitations).
It is perhaps helpful to illustrate how this works in the prototypical example of the toric
code [Kit03]. We refer to [Naa11,FN15] for details on the following discussion. In the
thermodynamic limit, one can show that there is a translation invariant ground state,
uniquely characterised by the condition that ω0(As) = ω0(Bp) = 1. Here As and Bp
are the ‘star’ and ‘plaquette’ operators appearing in the Hamiltonian for the toric code.
It is well-known that one can define ‘string operators’ Fξ that create a pair of excitations
(anyons) when acting on the ground state of the toric code. Note that the excitations at
the end of the path ξ are conjugate to each other, so that the total charge of the anyons
created by this operator is trivial. Thus A �→ ω0(Fξ AF∗

ξ ) is a state describing a pair of
anyons. To get a state describing a single anyon, one can take the limit where one end
of the path is sent off to infinity. This converges, and one can show that the resulting
state is inequivalent to ω0. Moreover, by construction, this state can be interpreted as
describing a single anyon, located at the endpoint that was kept fixed.

The corresponding GNS representation π has additional properties, reminiscent of
the topological charges in algebraic quantum field theory [BF82]. For example, suppose
that the paths ξ in the construction above all lie in some cone �. Then it is easy to show
that outside of the cone the GNS representation forω is unitarily equivalent to the ground
state representation π0. This means that the anyon is localized in the cone �. What is
less obvious is that if we choose a path going off to infinity in a different direction, the
corresponding GNS representation is unitarily equivalent to π . The same is true if we
choose a different endpoint for the path ξ . This property ultimately boils down to the
property of the toric code that the state ω0(Fξ AF∗

ξ ) only depends on the endpoints of
the path ξ , and not on the path itself. To summarise, the single anyon representation π

is irreducible, and satisfies

π0|A�c ∼= π |A�c , (2.17)

for any cone �.1 Here π0 is the (reference) ground state representation, and ∼= denotes
unitary equivalence of the representation restricted to A�c , the observables localized
outside of the cone�. Since the criterion is required to hold for any cone, the localization
region can be moved around. This is called transportability of the charges, and we say
that the charge is transportable (see e.g. [Haa92, Section IV.2]). For the toric code, it is
straightforward to construct four different inequivalent representations that satisfy this
property, corresponding to the four anyon types of the model.

For general topologically ordered models, one expects the charges to have the same
localization properties (for example based on the string operators that are typical for such

1 The choice of cones as localization region is merely a convenient one, motivated by space-like cones in
algebraic QFT [BF82]. What is more important is that it extends to infinity. This allows us to send one of the
ends of a “string operator” creating a pair of anyons in e.g. the toric code to infinity. For technical reasons, we
need the region to “widen” towards infinity, so that any finite region can be transported into it, and that the
region has no holes. An advantage of cones is that they are easy to parametrise, cf. [Oga22].
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models). Thus, in general, a reasonable approach is to take a ground state representation
π0, and identify irreducible representations π satisfying (2.17) with the charges (or,
anyons) of the theory. A sector is then a (unitary) equivalence class of representations π

satisfying the selection criterion. The trivial sector is the equivalence class containing
the reference representation π0. Later wewill slightly relax the criterion (2.17) to require
only quasi-equivalence.

It is perhaps surprising that by just imposing this single selection criterion, we obtain
a very rich structure. In fact, based on the DHR program and using a technical property
called Haag duality, one can show that the set of representations satisfying this crite-
rion has the structure of a braided tensor category [BF82,Naa11,Oga22]. In addition, in
concrete models such as the toric code there are natural candidates to construct repre-
sentations π satisfying the criterion, even without resorting to Haag duality, as outlined
above. Moreover, one can prove that these representations are the only ones satisfying
the selection criterion (2.17), and it follows that the category is equivalent to the rep-
resentation of the quantum double of the group G = Z2, as expected [Naa13]. This
result can be generalised to abelian quantum double models [FN15]. Thus, we take the
viewpoint that each type of anyon gives rise to an equivalence class of representations
π satisfying (2.17).

The split property enters the analysis in variousways.Wefirst note that the topological
phenomena in our systems of interest, in particular the existence of anyons, are believed
to be due to the presence of long-range entanglement [CGW10]. Product states exhibit no
entanglement, and hence should be in the trivial phase without any anyons. A state with
long-range entanglement is then roughly speaking a state that cannot be transformed into
a product state by applying a finite sequence of local unitaries throughout the system.
Consider the case where we have a pure state ω = ω� ⊗ ω�c that is a product state
with respect to a cone � and its complement. It is easy to see (see Sect. 4) that in this
case πω(A�)′′ is a Type I factor and the inclusion πω(A�)′′ ⊂ πω(A�c)′ therefore is
split. In Sect. 4 we show that in this case the sector theory is trivial: any representation
π satisfying (2.17) is a direct sum of copies of the reference representation π0. That is,
we only have the trivial charge or anyon. This corroborates the notion that the sector
theory is a good invariant for topological phases by proving that indeed states without
long-range entanglement have a trivial sector structure. Indeed, we will prove that this
still is the case for pure states ω such that ω ◦ α is quasi-equivalent to a product state.
Here, α is a quasi-factorizable automorphism, which can be seen as a generalization of
finite-depth quantum circuits to infinite systems. This result also explains why in models
such as the toric code, which do have a non-trivial sector theory, we only have a weaker
form of the split property, where we have to consider an inclusion �1 ⊂ �2 of cones
whose boundaries are sufficiently far apart [Naa12].

This weaker form of the split property also plays a role in the analysis in [Naa13],
where the index of a certain subfactor is shown to be related to the total quantum
dimension of the sectors. This result can be used to show that a given list of sectors
is complete. It also is necessary in showing that approximately localized sectors, a
generalisation of the notion of a sector discussed above, is stable under applying a path
of quasi-local automorphisms [CNN20]. In either case, the split property for an inclusion
�1 ⊂ �2 allows us to obtain a tensor product decomposition of the ground state Hilbert
space such that observables in A�1 and those in A�c

2
act on the distinct factors. In

contrast to finite systems such a decomposition need not exist if the split property fails to
hold. This decomposition can then be used to approximately localize endomorphisms or
observables [CNN20]. This plays a crucial role in the proof of stability of superselection
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sectors. Although the proof only requires a variant of the split property to hold at one
point along the path of gapped Hamiltonians, it is nevertheless important to understand
the stability of the split property itself.

2.3. Quasi-local maps. In the classification problem of gapped ground state phases, we
say that two states are in the same phase if they can be realized as ground states of gapped
Hamiltonians that can be connected via a continuous (or, for technical reasons,C1) path,
in such a way that the energy gap does not close along the path. Using the spectral flow
[BMNS12], an adaptation of Hastings and Wen’s quasi-adiabatic continuation [HW05]
to the thermodynamic limit, one obtains a path of automorphisms s �→ αs relating
the ground states along the path of gapped Hamiltonians. Its infinite system version,
where a uniform gap for the local Hamiltonians can be replaced by the spectral gap
of the bulk Hamiltonian in the GNS representation was shown in [MO20]. Quasi-local
automorphisms are essential transformation in the theory of gapped ground state phases.

A quasi-local map onA� is a map that maps strictly localized observables to observ-
ables that can still be approximately localized in a slightly larger region,with error bounds
satisfying a Lieb–Robinson type of estimate. Our discussion draws heavily on [NSY19],
which in turn incorporates decades of advancements in Lieb–Robinson bounds.

Typically the quasi-local maps are obtained as the dynamics generated by some
sufficiently local interaction. The notion of “sufficiently local” is made precise in the
following definitions.

Definition 2.3. An F-function F on (�, d) is a non-increasing function F : [0,∞) →
(0,∞) such that

(i) ‖F‖ := supx∈�

(

∑

y∈� F (d(x, y))
)

< ∞, and

(ii) CF := supx,y∈�

(

∑

z∈�
F(d(x,z))F(d(z,y))

F(d(x,y))

)

< ∞.

These are called uniform integrability and the convolution identity, respectively.

For an F-function F on (�, d), define a function GF on [0,∞) by

GF (t) := sup
x∈�

⎛

⎝

∑

y∈�,d(x,y)≥t

F (d(x, y))

⎞

⎠ , t ≥ 0. (2.18)

Note that by uniform integrability the supremum is finite for all t .
Our goal is to interpolate continuously between two local interactions. Hence we will

mainly be considering paths of local interactions, in the following sense:

Definition 2.4. A norm-continuous interaction on A� defined on an interval [0, 1] is a
map � : P0(�) × [0, 1] → Aloc

� such that

(i) for any t ∈ [0, 1], �(·; t) : P0(�) → Aloc
� is an interaction, and

(ii) for any Z ∈ P0(�), the map �(Z; ·) : [0, 1] → AZ is norm-continuous.

To ensure that the interactions induce quasi-local automorphisms we need to impose
sufficient decay properties on the interaction strength.
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Definition 2.5. Let F be an F-function on (�, d). We denote by BF ([0, 1]) the set of all
norm continuous interactions on A� defined on an interval [0, 1] such that the function
‖�‖ : [0, 1] → R defined by

‖�‖ (t) := sup
x,y∈�

1

F (d(x, y))

∑

Z∈P0(�),Z�x,y
‖�(Z; t)‖ , t ∈ [0, 1], (2.19)

is uniformly bounded, i.e., supt∈[0,1] ‖�‖ (t) < ∞. It follows that t �→ ‖�‖ (t) is
integrable, and we set

I (�) := I1,0(�) := CF

∫ 1

0
dt ‖�‖ (t). (2.20)

We will need some more notation. For � ∈ BF ([0, 1]) and 0 ≤ m ∈ R, we introduce a
path of interactions �m by

�m (X; t) := |X |m�(X; t) , X ∈ P0(�), t ∈ [0, 1]. (2.21)

Next we recall that an interaction gives rise to local (and here, time-dependent) Hamil-
tonians, via

H�,�(t) :=
∑

Z⊂�

�(Z; t), t ∈ [0, 1]. (2.22)

We denote by U�,�(t; s), the solution of

d

dt
U�,�(t; s) = −i H�,�(t)U�,�(t; s), t ∈ [0, 1] (2.23)

U�,�(s; s) = I. (2.24)

We define corresponding automorphisms τ
(�),�
t,s , τ̂

(�),�
t,s on A� by

τ
(�),�
t,s (A) := U�,�(t; s)∗AU�,�(t; s), (2.25)

τ̂
(�),�
t,s (A) := U�,�(t; s)AU�,�(t; s)∗, (2.26)

with A ∈ A� . Note that

τ̂
(�),�
t,s = τ

(�),�
s,t , (2.27)

by the uniqueness of the solution of the differential equation. Using standard techniques
one can prove locality estimates for time-evolved local observables in the form of Lieb–
Robinson bounds, which in turn can be used to show that the local dynamics τ

(�),�
t,s

induce global dynamics. Since we will make use of these facts repeatedly we recall the
main points here.

Theorem 2.6. [NSY19]Let (�, d)bea countablemetric space, and let F bea F-function
on (�, d). Suppose that � ∈ BF ([0, 1]). The following holds:
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(i) The limit

τ�
t,s(A) := lim

�↗�
τ

(�),�
t,s (A), A ∈ A�, t, s ∈ [0, 1] (2.28)

exists and defines a strongly continuous family of automorphisms on A� such that

τ�
t,s ◦ τ�

s,u = τ�
t,u, τ�

t,t = idA�
, t, s, u ∈ [0, 1]. (2.29)

(ii) For any X,Y ∈ P0(�) with X ∩ Y = ∅, and A ∈ AX , B ∈ AY we have

∥

∥

[

τ�
t,s(A), B

]∥

∥ ≤ 2 ‖A‖ ‖B‖
CF

(

e2I (�) − 1
)

|X |GF (d(X,Y )) . (2.30)

If � ∈ P0(�) and X ∪ Y ⊂ �, a similar bound holds for τ
(�),�
t,s .

(iii) For any X ∈ P0(�) we have

∥

∥X (m)

(

τ�
t,s(A)

)∥

∥ ≤ 4 ‖A‖
CF

(

e2I (�) − 1
)

|X |GF (m) , (2.31)

for all � ∈ P0(�) and A ∈ AX . A similar bound holds for τ
(�),�
t,s .

(iv) For any X,� ∈ P0(�) with X ⊂ �, and A ∈ AX we have

∥

∥

∥τ
(�),�
t,s (A) − τ�

t,s(A)

∥

∥

∥ ≤ 2

CF
‖A‖ e2I (�) I (�) |X |GF (d (X, � \ �)) . (2.32)

Proof. Item (i) is Theorem 3.5 of [NSY19], while (ii) and (iv) follow from Corollary 3.6
of the same paper by a straightforward bounding of D(X,Y ) and the summation in
q. (3.80) of [NSY19] respectively. Finally, (iii) can be obtained using (ii) and [NSY19,
Cor. 4.4] (see also the proof of Lemma 5.1 in the same paper). ��

Consider the same notation and assumptions as in Theorem 2.6. To continue we need
to make additional assumptions on the function F . In particular, we assume that there
is an α ∈ (0, 1) such that

∞
∑

n=0

(1 + n)2ν+1GF (n)α < ∞, (2.33)

where GF is as defined in (2.18). Furthermore, we assume that there is an F-function
F̃ on (�, d) such that

max

⎧

⎨

⎩

F
(r

3

)

,

∞
∑

n=[ r3 ]
(1 + n)2ν+1GF (n)α

⎫

⎬

⎭

≤ F̃(r). (2.34)

With these additional assumptions we can distill the following result. It gives us a way to
apply a quasi-local automorphism to a given dynamics. The result will generally not be
an interaction, since the interaction terms will not localized in finite regions any more.
Nevertheless, the theorem shows that we can define a proper interaction that gives the
correct local Hamiltonians.
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Theorem 2.7. Let (�, d) be a countable ν-regular metric space and F be an F-function
on (�, d) such that there are α and F̃ satisfying (2.33) and (2.34). Let� ∈ BF ([0, 1]) be
a path of interactions such that �1 ∈ BF ([0, 1]), where �1 is defined in (2.21). Finally,
choose an increasing sequence �n ∈ P0(�) such that �n ↗ �, and let τ�

t,s and τ
(�n),�
t,s

be as in Theorem 2.6.
Then, with s ∈ [0, 1], the right hand side of the following sum

�(s) (Z , t) :=
∑

m≥0

∑

X⊂Z , X (m)=Z

X (m)

(

τ�
t,s (� (X; t))) (2.35)

defines an interaction �(s) ∈ BF̃ ([0, 1]). Furthermore, the formula

�(n)(s) (Z , t) :=
∑

m≥0

∑

X⊂Z ,X (m)∩�n=Z

X (m)

(

τ
(�n ,�)
t,s (� (X; t))

)

(2.36)

defines �(n)(s) ∈ BF̃ ([0, 1]) such that �(n) (Z , t) = 0 unless Z ⊂ �n, and satisfies

τ
(�n),�
t,s

(

H�n ,�(t)
) = H�n ,�(n) (t). (2.37)

For any t, u ∈ [0, 1], we have
lim
n→∞

∥

∥

∥τ
�(n)(s)

t,u (A) − τ�(s)

t,u (A)

∥

∥

∥ = 0, A ∈ A�. (2.38)

Proof. If Z is a finite set, we see that the right-hand side of (2.35) contains only finitely
many terms and hence is well-defined. Moreover, because of the X (m), it follows that
�(s)(Z , t) ∈ AZ . Since τt,s is in automorphism we see that �(s)(Z , t) is self-adjoint,
and hence defines an interaction. That this interaction is in BF̃ ([0, 1]) follows then
from Theorem 5.17(i) of [NSY19]. The conditions of this theorem can be verified using
Theorem 2.6, where in the notation of [NSY19] we have p = 0 and q = r = 1.

Similarly, Eq. (2.36) defines an interaction, and (2.37) can be verified by an explicit
calculation, if we note that τ (�n),�

t,s (�(X; t)) is inA�n . By part (ii) of Theorem 5.17 of
[NSY19] it follows that �(n)(s) ∈ BF̃ ([0, 1]), and moreover that �(n)(s) converges to
�(s) in F-norm with respect to F̃ . Theorem 5.13 of [NSY19] implies

sup
n

∫ 1

0

∥

∥

∥�
(n)(s)

∥

∥

∥

F̃
(t)dt < ∞, (2.39)

see also [NSY19, eq. (5.101)]. Therefore, from Theorem 3.8 of [NSY19], we ob-
tain (2.38). ��

3. Factorization of Quasi-Local Automorphisms

In this section we give our main technical result. In particular, we study conditions under
which a quasi-local automorphism τ�

1,0 “factorizes” as in Proposition 2.2, in particular
Eq. (2.11). In the next theorem we give a sufficient condition in terms of the regions
involved and the F-function for �.

Before we state the full conditions and prove the result, let us briefly outline the
main steps. The idea behind the proof is to compare the full dynamics generated by the
interaction�with the “decoupled” dynamics�(0). The latter simply omits all interaction
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terms of � crossing the boundary of �2 \�1. The first step is to show that the difference

between the dynamics, τ�
1,0 ◦

(

τ�(0)

1,0

)−1
is quasi-local, and generated by an interaction as

in Theorem2.7. In the second stepwe show that this interaction can bewell approximated
by interaction terms localized in �′

2 \�′
1, with �′

1 ⊂ �1 ⊂ �2 ⊂ �′
2, in the sense that the

contributions outside this region sum up to a bounded operator in A� . In Step 3 this is
then used to show that the difference of the full and decoupled dynamics can be written
as an automorphism of A�′

2\�′
1
followed by conjugation with a unitary. This ultimately

allows us to write the interaction in form that allows us to apply Proposition 2.2, and
provide natural examples of quasi-factorizable automorphisms.

Theorem 3.1. Let (�, d) be a countable ν-regular metric space with constant κ as
in (2.1). Let F be an F-function on (�, d) such that the function GF defined by (2.18)
satisfies (2.33) for some α ∈ (0, 1). Suppose that there is an F-function F̃ satisfying
(2.34) for this F. Let A� be a quantum spin system given by (2.3) and (2.4).

Let � ∈ BF ([0, 1]) be a path of interactions satisfying �1 ∈ BF ([0, 1]). (Recall
from definition (2.21) that this means that X �→ |X |�(X; t) is in BF ([0, 1])). Let

�′
1 ⊂ �1 ⊂ �2 ⊂ �′

2 ⊂ �. (3.1)

For m ∈ N ∪ {0}, x, y ∈ �, set

f (m, x, y) :=
∑

X�x,y;d((�′
2\�′

1)
c
,X)≤m

|X | sup
t∈[0,1]

‖�(X, t)‖ . (3.2)

We assume that
⎛

⎝

∑

x∈�1

∑

y∈�c
2

+
∑

x∈�2\�1

∑

y∈(�2\�1)
c

⎞

⎠

∞
∑

m=0

GF (m) f (m, x, y) < ∞ (3.3)

Define �(0) ∈ BF ([0, 1]) by

�(0) (X; t) :=
{

�(X; t) , if X ⊂ �1 or X ⊂ �2 \ �1 or X ⊂ �c
2

0, otherwise
, (3.4)

for each X ∈ P0(�), t ∈ [0, 1]. Then there is an automorphism β�′
2\�′

1
on A�′

2\�′
1
and

a unitary u ∈ A� such that

τ�
1,0 = Ad(u) ◦ τ�(0)

1,0 ◦
(

β̃�′
2\�′

1

)

. (3.5)

Proof. Step 1. First we would like to represent τ�
1,0 ◦

(

τ�(0)

1,0

)−1
as some quasi-local

automorphism, applying Theorem 2.7. Let {�n}∞n=1 ⊂ P0 (�) be an increasing sequence
�n ↗ �. We also define �(1) ∈ BF ([0, 1]) by

�(1) (X; t) := �(0) (X; t) − �(X; t) , (3.6)

for each X ∈ P0(�), t ∈ [0, 1].
Let t, s ∈ [0, 1]. We apply Theorem 2.7 to �(1). Hence we set

�(s) (Z , t) :=
∑

m≥0

∑

X⊂Z , X (m)=Z

X (m)

(

τ�
t,s

(

�(1) (X; t)
))

(3.7)
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and

�(n)(s) (Z , t) :=
∑

m≥0

∑

X⊂Z ,X (m)∩�n=Z

X (m)

(

τ
(�n)�
t,s

(

�(1) (X; t)
))

. (3.8)

Corresponding to (2.37), we obtain

τ
(�n),�
t,s

(

H�n ,�(1)

) = H�n ,�(n)(s) (t). (3.9)

Applying Theorem 2.7, we have �(n)(s), �(s) ∈ BF̃ ([0, 1]), and

lim
n→∞

∥

∥

∥τ
�(n)(s)

t,u (A) − τ�(s)

t,u (A)

∥

∥

∥ = 0, A ∈ A�, t, u ∈ [0, 1] (3.10)

holds. Note that

d

dt
τ̂

(�n),�
(n)(s)

t,s (A) = −i
[

H�n ,�(n)(s) (t), τ̂ (�n),�
(n)(s)

t,s (A)
]

= −i
[

τ
(�n),�
t,s

(

H�n ,�(1)

)

, τ̂
(�n),�

(n)(s)

t,s (A)
]

.

(3.11)

On the other hand, we have

d

dt
τ

(�n),�
t,s ◦

(

τ
(�n),�

(0)

t,s

)−1
(A)

= τ
(�n),�
t,s

(

i

[

H�n ,�(t) − H�n ,�(0) (t),
(

τ
(�n),�

(0)

t,s

)−1
(A)

])

= −i

[

τ
(�n),�
t,s

(

H�n ,�(1)

)

, τ
(�n),�
t,s ◦

(

τ
(�n),�

(0)

t,s

)−1
(A)

]

.

(3.12)

Hence τ̂
(�n),�

(n)(s)

t,s (A) and τ
(�n),�
t,s ◦

(

τ
(�n),�

(0)

t,s

)−1
(A) satisfy the same differential

equation with the τ̂
(�n),�

(n)(s)

s,s (A) = τ
(�n),�
s,s ◦

(

τ
(�n),�

(0)

s,s

)−1
(A) = A. Therefore we

obtain

τ̂
(�n),�

(n)(s)

t,s (A) = τ
(�n),�
t,s ◦

(

τ
(�n),�

(0)

t,s

)−1
(A), t ∈ [0, 1], A ∈ A�. (3.13)

From the fact that τ̂�(n)(s)

t,u = τ̂
(�n),�

(n)(s)

t,u = τ
(�n),�

(n)(s)

u,t = τ�(n)(s)

u,t converges strongly to

an automorphism τ�(s)

u,t on A� (3.10), we have

lim
n→∞

∥

∥

∥τ̂
�(n)(s)

t,s (A) − τ�(s)

s,t (A)

∥

∥

∥ = 0, A ∈ A�. (3.14)

On the other hand, by Theorem 2.6, we have for t ∈ [0, 1] and A ∈ A�

lim
n→∞

∥

∥

∥

∥

τ
(�n),�
t,s ◦

(

τ
(�n),�

(0)

t,s

)−1
(A) − τ�

t,s ◦
(

τ�(0)

t,s

)−1
(A)

∥

∥

∥

∥

= 0. (3.15)

Therefore, taking n → ∞ limit in (3.13), we obtain

τ�(s)

s,t (A) = τ�
t,s ◦

(

τ�(0)

t,s

)−1
(A), t, s ∈ [0, 1], A ∈ A�. (3.16)
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Hence we have

τ�
s,t = (

τ�
t,s

)−1 =
(

τ�(0)

t,s

)−1 (

τ�(s)

s,t

)−1 = τ�(0)

s,t τ�(s)

t,s (3.17)

In particular, we get

τ�
1,0 = τ�(0)

1,0 τ�(1)

0,1 . (3.18)

Step 2. We show that the summation

V (t) :=
∑

Z∈P0(�)

(

id−��′
2\�′

1

) (

�(1) (Z , t)
)

∈ A� (3.19)

converges absolutely in the norm topology, and uniformly in t ∈ [0, 1]. Set

Vn(t) :=
∑

Z∈P0(�), Z⊂�n

(

id−��′
2\�′

1

) (

�(1) (Z , t)
)

∈ A�n , n ∈ N. (3.20)

From the convergence of (3.19) uniform in t , we get

lim
n→∞ sup

t∈[0,1]
‖Vn(t) − V (t)‖ = 0. (3.21)

To prove the convergence of (3.19), it suffices to prove

lim
n→∞ sup

t∈[0,1]

∑

Z∈P0(�), Z∩�c
n �=∅

∥

∥

∥

(

id−��′
2\�′

1

) (

�(1) (z, t)
)∥

∥

∥ = 0. (3.22)

To prove this, we introduce the following functions. For m ∈ N ∪ {0}, n ∈ N, and
x, y ∈ �, set

fn(m, x, y) :=
∑

X�x,y, d(X,�c
n)≤m d((�′

2\�′
1)

c
,X)≤m

|X | sup
t∈[0,1]

‖�(X, t)‖ . (3.23)

Note that fn(m, x, y) is bounded by f point-wise (by definition) and converges to zero
point-wise, by (3.3). Hence by (3.3) and Lebesgue’s dominated convergence theorem,
we obtain

lim
n→∞

⎛

⎝

⎛

⎝

∑

x∈�1

∑

y∈�c
2

+
∑

x∈�2\�1

∑

y∈(�2\�1)
c

⎞

⎠

∞
∑

m=0

GF (m) fn(m, x, y)

⎞

⎠ = 0. (3.24)

We have

sup
t∈[0,1]

∑

Z∈P0(�), Z∩�c
n �=∅

∥

∥

∥

(

id−��′
2\�′

1

) (

�(1) (Z , t)
)∥

∥

∥ (3.25)

≤
∑

Z∈P0(�), Z∩�c
n �=∅

∑

m≥0

∑

X⊂Z , X (m)=Z
[

sup
t∈[0,1]

∥

∥

∥

(

id−��′
2\�′

1

)

X (m)

(

τ�
t,1

(

�(1) (X; t)
))∥

∥

∥

]

(3.26)
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≤
∑

m≥0

∑

X∈P0(�) X (m)∩�c
n �=∅

sup
t∈[0,1]

∥

∥

∥

(

id−��′
2\�′

1

)

X (m)

(

τ�
t,1

(

�(1) (X; t)
))∥

∥

∥

(3.27)

≤ 2
∑

m≥0

∑

X∈P0(�) X (m)∩�c
n �=∅,X (m)∩(�′

2\�′
1)

c �=∅
sup

t∈[0,1]

∥

∥

∥X (m)

(

τ�
t,1

(

�(1) (X; t)
))∥

∥

∥

(3.28)

≤ 2
∑

m≥0

∑

X∈P0(�) X (m)∩�c
n �=∅,X (m)∩(�′

2\�′
1)

c �=∅
[

sup
t∈[0,1]

4
∥

∥�(1) (X; t)∥∥
CF

(

e2I (�) − 1
)

|X |GF (m)

]

(3.29)

= 8

CF

(

e2I (�) − 1
)
∑

m≥0

∑

X∈P0(�) X (m)∩�c
n �=∅,X (m)∩(�′

2\�′
1)

c �=∅
[

sup
t∈[0,1]

(∥

∥

∥�
(1) (X; t)

∥

∥

∥

)

|X |GF (m)

]

(3.30)

For the fourth inequality, we used Theorem 2.6 (iii). From the definition of �(1), we
have �(1) (X; t) = 0, unless X has a non-empty intersection with at least two of �1,
�c
2, �2 \ �1. In particular, we have �(1) (X; t) = 0, unless X ∩ �1 �= ∅, X ∩ �c

2 �= ∅ or
X ∩ (�2 \ �1) �= ∅, X ∩ (�2 \ �1)

c �= ∅. Therefore, if �(1) (X; t) �= 0, there should be
x ∈ �1, y ∈ �c

2 with X � x, y or x ∈ �2 \ �1 y ∈ (�2 \ �1)
c with X � x, y. We also

note that if X (m) ∩ �c
n �= ∅ and X (m) ∩ (�′

2 \ �′
1

)c, then we have d(X,�c
n) ≤ m and

d(X,
(

�′
2 \ �′

1

)c
) ≤ m. Therefore we have

(3.30) ≤ 8

CF

(

e2I (�) − 1
)

⎛

⎝

∑

x∈�1

∑

y∈�c
2

+
∑

x∈�2\�1

∑

y∈(�2\�1)
c

⎞

⎠ (3.31)

∑

m≥0

∑

X∈P0(�) d(X,�c
n)≤m, d(X,(�′

2\�′
1)

c
)≤m, X�x,y

sup
t∈[0,1]

(∥

∥

∥�
(1) (X; t)

∥

∥

∥

)

|X |GF (m)

(3.32)

= 8

CF

(

e2I (�) − 1
)

⎛

⎝

∑

x∈�1

∑

y∈�c
2

+
∑

x∈�2\�1

∑

y∈(�2\�1)
c

⎞

⎠

∑

m≥0

fn(m, x, y)GF (m) .

(3.33)

The last part converges to 0 as n → ∞ because of (3.24). This proves (3.22), and hence
that (3.19) converges.
Step 3. Next we decompose �(1) into a �′

2 \ �′
1-part

�̃(Z , t) := ��′
2\�′

1

(

�(1)(Z , t)
)

(3.34)

and the rest. Clearly, we have �̃ ∈ BF̃ ([0, 1]). Note that
H�n ,�̃

(t) + Vn(t) = H�n ,�(1) (t). (3.35)
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As a uniform limit of [0, 1] � t �→ Vn(t) ∈ A� , [0, 1] � t �→ V (t) ∈ A� is
norm-continuous. Because of �̃ ∈ BF̃ ([0, 1]), [0, 1] � t �→ τ �̃

t,s (V (t)) ∈ A� is also
norm-continuous, for each s ∈ [0, 1]. Therefore, for each s ∈ [0, 1], there is a unique
norm-differentiable map from [0, 1] to U (A�) such that

d

dt
W (s)(t) = −iτ �̃

t,s (V (t))W (s)(t), W (s)(s) = I. (3.36)

The solution is given by

W (s)(t) :=
∞
∑

k=0

(−i)k
∫ t

s
ds1

∫ s1

s
ds2 · · ·

∫ sk−1

s
dskτ

�̃
s1,s (V (s1)) · · · τ �̃

sk ,s (V (sk)) .

(3.37)

Analogously, for each s ∈ [0, 1] and n ∈ N, we define a unique norm-differentiable map
from [0, 1] to U (A�) such that

d

dt
W (s)

n (t) = −iτ (�n)�̃
t,s (Vn(t))W

(s)
n (t), W (s)

n (s) = I. (3.38)

This differential equation can be solved similarly as in Eq. (3.37). By the uniform
convergence (3.21), we then have

lim
n

sup
t∈[0,1]

∥

∥

∥W (s)
n (t) − W (s)(t)

∥

∥

∥ = 0. (3.39)

From this and Theorem 2.6 (iv) for �(1), �̃ ∈ BF̃ ([0, 1]), we have

lim
n→∞ τ

(�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A) = τ �̃
s,t ◦ Ad

(

W (s)(t)
)

(A), (3.40)

lim
n→∞ τ

(�n),�
(1)

s,t (A) = τ�(1)

s,t (A), (3.41)

for any A ∈ A� .
Note that for any A ∈ A�

d

dt
τ

(�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A) (3.42)

= −i
[

H�n ,�̃
(t), τ (�n),�̃

s,t ◦ Ad
(

W (s)
n (t)

)

(A)
]

− iτ (�n),�̃
s,t

([

τ
(�n),�̃
t,s (Vn(t)) ,Ad

(

W (s)
n (t)

)

(A)
])

(3.43)

= −i
[

H�n ,�̃
(t) + Vn(t), τ

(�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A)
]

= −i
[

H�n ,�(1) (t), τ (�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A)
]

. (3.44)

We used (2.27) for the second equality and (3.35) for the third equality. On the other
hand, for any A ∈ A� , we have

d

dt
τ

(�n),�
(1)

s,t (A) = −i
[

H�n ,�(1) (t), τ (�n),�
(1)

s,t (A)
]

. (3.45)
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Therefore, τ
(�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A) and τ
(�n),�

(1)

s,t (A) satisfy the same differential

equation. Also note that we have

τ (�n),�̃
s,s ◦ Ad

(

W (s)
n (s)

)

(A) = τ (�n),�
(1)

s,s (A) = A.

Therefore, we get

τ
(�n),�̃
s,t ◦ Ad

(

W (s)
n (t)

)

(A) = τ
(�n),�

(1)

s,t (A). (3.46)

By (3.40), we obtain

τ �̃
s,t ◦ Ad

(

W (s)(t)
)

(A) = τ�(1)

s,t (A), A ∈ A�, t, s ∈ [0, 1]. (3.47)

Taking inverse, we get

Ad
(

W (s)∗(t)
)

◦ τ �̃
t,s = τ�(1)

t,s , t, s ∈ [0, 1]. (3.48)

Step 4. Combining (3.18) and (3.48) we have

τ�
1,0 = τ�(0)

1,0 τ�(1)

0,1 = τ�(0)

1,0 ◦ Ad
((

W (1)(0)
)∗) ◦ τ �̃

0,1. (3.49)

Setting

β�′
2\�′

1
:= τ �̃

0,1, u := τ�(0)

1,0

((

W (1)(0)
)∗)

(3.50)

completes the proof. ��

4. Long-Range Entanglement

An interesting problem is to find conditions that lead to a trivial superselection structure.
Topological order is associated to “long-range entanglement” that cannot be removed by
local operations. This should be contrasted with product states, which are not entangled
at all. Hence one is interested in states that cannot be transformed into product states by
such local operations. The product states are said to be in the topologically trivial phase
[CGW10].

The goal of this section is to show that such a topologically trivial state indeed leads
to a trivial superselection structure, at least when we restrict to strictly localized sectors
as in Eq. (2.17). To make this precise, we recall that the equivalence relation defined in
terms of finite depth quantum circuits is somewhat too restrictive in the thermodynamic
limit, and one has to look at limits of such automorphisms as well. In addition, we will
only require to be able to “decouple” a cone-like region. Because of transportability of
the anyons that is assumed, the choice of cone is not important. We therefore adopt the
following definition.

Definition 4.1. LetA� be the quasi-local algebra of a quantum spin systemwith� = Z
ν .

We say that a pure state ω has long-range entanglement (LRE) if there is no quasi-
factorizable automorphism α ∈ Aut(A�) such that ω ◦ α is a product state with respect
to some cone �. Here we say that a state is a product state for a cone � if it is of the
form ω = ω� ⊗ ω�c , with ω� a state on A�, and similarly for ω�c .
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Remark 4.2. Since the idea is to capture the trivial phase, the set of allowed automor-
phisms is dictated by the equivalence relation one puts on the ground states. Our proofs
depend on α being quasi-factorizable, which is why we choose this class of automor-
phisms in our definition of long-range entanglement. As we show in Sect. 5, the no-
tion of quasi-factorizable automorphisms includes natural examples of gapped paths of
uniformly bounded finite range interactions. As we show below, any state that is not
long-range entangled has a trivial sector structure. In fact, the sector structure for states
in other phases is also preserved under applying quasi-factorizable automorphisms, if
one makes the additional assumption of approximate Haag duality [Oga22].

The condition that � = Z
ν is not essential. However, in the general case one should

define the appropriate analogue of a cone. This depends on the localization properties
of the excitations one would want to consider, but for the definition to be non-trivial a
cone should at least have infinitely many sites.

Note that for a state to be not long-range entangled, we only require the condition
to hold for a single cone �. That is, a state is not long-range entangled if we can
disentangle the cone � from its complement. Typically the states we are interested in
have a large degree of ‘homogeneity’, for example because they will be translation
invariant. Moreover, we will be interested in transportable charges, in the sense that
we can move a charge localized in a specific cone to any with a unitary operator. Thus
typically one expects that if it is possible to decouple a single cone in this situation, one
can do it for more cones. Since we will not actually need that, we restrict to this simpler
definition.

In the following we first consider the situation where the pure reference state ω0 is a
product state with respect to a fixed cone �, i.e., ω0 = ω� ⊗ ω�c for some states ω�

and ω�c on A� and A�c respectively. Below we consider general pure states without
long-range entanglement.

We first recall the following Lemma (compare with e.g. [Mat01,Mat10]).

Lemma 4.3. Let ϕ be a pure state onA� and suppose that there is a cone � such that ϕ
is quasi-equivalent to ϕ� ⊗ϕ�c , where ϕ� := ϕ|A�. ThenR� := πϕ(A�)′′ is a factor
of Type I, and so isR�c . Moreover, Haag duality holds: R� = R′

�c .

Proof. Write (πϕ,Hϕ,�ϕ) for theGNS representation ofϕ. Becauseϕ is pure,πϕ(A�)′′
is a Type I factor. Note that R� ∨ R�c = B(Hϕ). Here R� ∨ R�c is the smallest von
Neumann algebra containing bothR� andR�c . Taking the commutant of this equation,
and noting that by locality we have that R� ⊂ R′

�c , one obtains

R′
� ∩ R� ⊂ R′

� ∩ R′
�c = CI.

Hence R� is a factor, and so isR�c .
Since ϕ is quasi-equivalent to ϕ� ⊗ϕ�c it follows that there is a normal isomorphism

τ : πϕ(A�)′′ → πϕ�(A�)′′ ⊗ πϕ�c (A�c )′′. The notation N⊗M denotes the von
Neumann-algebraic tensor product, which by definition is the smallest von Neumann
algebra containing the algebraic tensor productN �M. Because the tensor product of
two von Neumann algebras is Type I if and only if both factors are Type I, it follows that
πϕ�(A�)′′ must be Type I, and similarly for πϕ�c (A�c)′′. Finally, sinceR� is a factor,
every subrepresentation of π� := πϕ |A� is quasi-equivalent to π� itself. This is true in
particular for πϕ� , and hence R� must be of Type I as well. The same is true for R�c .

Finally, since R� is of Type I, there are Hilbert spaces H1 and H2 and a unitary
U : Hϕ → H1 ⊗ H2, with

UR�U
∗ = B(H1) ⊗ I, and UR�cU∗ ⊂ I ⊗ B(H2).
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The inclusion follows because R�c ⊂ R′
� by locality, and because (B(H1)⊗I )′ =

I ⊗ B(H2). Because R� and R�c generate B(Hϕ), it follows that in fact it must be an
equality. Therefore R� = R′

�c . ��
Remark 4.4. As is shown in the references cited above, the factors being Type I implies
that ϕ is quasi-equivalent to a product state. However, Haag duality does not necessarily
imply the split property.

This allows us to prove that if the reference is a product state with respect to a cone,
there are no non-trivial representations that are both strictly localizable and transportable.
In other words, the superselection structure is trivial. We will in fact slightly relax the
superselection criterion, and only assume that the representations π of interest are quasi-
equivalent to π0. More precisely, we will be interested in representation π such that

π0|A�c ∼q.e. π |A�c , (4.1)

for all cones �. This is true in particular when π is unitarily equivalent to n · π0 when
restricted to observables outside a cone. Here n ·π0 is the direct sum of n copies of π0, as
usual. The reason to allow this relaxation is that such representations can be constructed
naturally when considering non-abelian models [SV93,Naa15]. Note that the condition
that (4.1) should hold for every cone � is very strong, and as we argued above, captures
precisely the localization properties one expects from anyons in 2D. The fact that it holds
for every cone � often allows us to draw conclusions about all cones from a result for a
single, fixed cone (up to quasi-equivalence).

The following proof is inspired by Proposition 4.2 of [Müg99].

Theorem 4.5. Let ω0 be a pure state such that its GNS representation π0 is quasi-
equivalent to π� ⊗ π�c , with π� and π�c irreducible representations of A� and A�c

respectively. Consider ω0 to be the reference state in the superselection criterion. Then
the corresponding sector theory is trivial, in the sense that each representation π satisfy-
ing the selection criterion (4.1) is quasi-equivalent toπ0. In particular, ifπ is irreducible,
then π and π0 are equivalent.

Proof. Because π |A�c is quasi-equivalent to π0|A�c , which is quasi-equivalent to π�c ,
and π�c is irreducible, there is a Hilbert spaceK and a unitaryW : H → H�c ⊗K such
that

Wπ(B)W ∗ = π�c(B) ⊗ IK, B ∈ A�c . (4.2)

Because π�c(A�c )′′ is a Type I factor, it follows that

(π�c (A�c) ⊗ IK)′ = IH�c
⊗ B(K).

By the commutativity of A� and A�c , it follows that for all A ∈ A�, we have that
Wπ(A)W ∗ ∈ (π�c (A�c) ⊗ IK)′. Thus we see that there is a representation ρ ofA� on
K such that

Wπ(A)W ∗ = IH�c ⊗ ρ(A), A ∈ A�. (4.3)

Consider a cone �′ such that � ⊂ (�′)c. Then, by applying the superselection criterion
and restricting to the cone �, it follows that the representation π |A�

is quasi-equivalent
to π0|A�

, which in turn is quasi-equivalent to the irreducible representation π�. On the
other hand, from Eq. (4.3), ρ is quasi-equivalent to π |A�

. Hence ρ is quasi-equivalent
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to the irreducible π�. Therefore, there are a Hilbert space K1 and a unitary V : K →
H� ⊗ K1 such that

Vρ(A)V ∗ = π�(A) ⊗ IK1 , A ∈ A�. (4.4)

Hence we get

(I�c ⊗ V )Wπ(AB)W ∗ (I�c ⊗ V )∗ = π�c (B) ⊗ π�(A) ⊗ IK1 (4.5)

for all A ∈ A� and B ∈ A�c . As the right hand side is quasi-equivalent to π0, π is
quasi-equivalent to π0. ��
Remark 4.6. Note that the assumption in the theorem is a 2D analogue of the split
property for 1D spin chains. It should be noted that it does not hold for models such
as the toric code, which have non-trivial excitations (or sectors) localized in cones. The
reason is that the ground state has long-range entanglement and cannot be converted
into a product state with local operations. However, as we already mentioned in the
introduction, we still have the approximate or distal split property: a Type I factor
R�1 ⊂ F ⊂ R′

�c
2
exists if the boundaries of the cones �1 ⊂ �2 are sufficiently

distant [FN15]. What is “sufficiently distant” depends on the model, as mentioned in the
introduction. In general, for example if we perturb with a quasi-local automorphismwith
a non-zero Lieb–Robinson bound, we need to have that the cone�2 has a wider opening
angle than �1 as well. In any case, if the (strict) split property does not hold, it is no
longer possible to decompose the representation as a tensor product of representations
of A� and A�c .

The theorem says that, as expected, the product state does not have any non-trivial
superselection sectors. For a general state without long range entanglement, we can try
use the quasi-local automorphism α from Definition 4.1 to relate the sectors of ω ◦ α

with those of ω. In general there is no reason why ω should be quasi-equivalent to ω ◦α,
so it does not follow directly that ω ◦ α has trivial sectors. However if α comes from
quasi-local dynamics satisfying Theorem 3.1, we can relate the sectors of πω and πω ◦α.
The key point is that we can almost “factorize” the automorphism α into automorphisms
acting on a cone � and its complement, up to conjugation with a unitary in A� and an
automorphism acting non-trivially only near the border of �. More precisely, we will
consider α that are quasi-factorizable in the sense of Definition 1.1. In Sect. 5 we will
show how such automorphisms can be obtained using Theorem 3.1.

Theorem 4.7. Let (H0, π0) be a representation. Let α be a quasi-local automorphism
such that for every cone �, we can find an inclusion of cones �1 ⊂ � ⊂ �2 such that
α is quasi-factorizable with repsect to this inclusion. Suppose that a representation π

satisfies the superselection criterion for π0 in the sense that for all cones � in Z
2, we

have

π |A�c ∼q.e. π0|A�c . (4.6)

Then π ◦ α satisfies the superselection criterion (4.1) for π0 ◦ α

Proof. Let � be a cone. We will show that

π ◦ α|A�c ∼q.e. π0 ◦ α|A�c . (4.7)
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By assumption we can factorize α as

α = Ad(u) ◦ ˜	 ◦ (α� ⊗ α�c ) , (4.8)

as in Definition 1.1. From this, for any A ∈ A�c , we have

π ◦ α(A) = π ◦ Ad(u) ◦ ˜	(α�c (A))

= Ad (π(u)) ◦ π ◦ ˜	(α�c (A))

= Ad (π(u)) ◦ π |A�c1
◦ ˜	(α�c (A)).

(4.9)

This implies

π ◦ α|A�c ∼q.e. π |A�c1
◦ ˜	 ◦ α�c |A�c . (4.10)

(In fact this is even a unitary equivalence). Similarly, we have

π0 ◦ α|A�c ∼q.e. π0|A�c1
◦ ˜	 ◦ α�c |A�c . (4.11)

Because we have π |A�c1
∼q.e. π0|A�c1

by virtue of the superselection criterion, we get

π |A�c1
◦ ˜	 ◦ α�c |A�c ∼q.e. π0|A�c1

◦ ˜	 ◦ α�c |A�c . (4.12)

Combining this with (4.10) and (4.11), we get

π ◦ α|A�c ∼q.e. π0 ◦ α|A�c . (4.13)

This proves the claim. ��
Combining the two theorems in this section then shows that short-range entangled

states indeed have a trivial sector structure.

Corollary 4.8. Let (H0, π0) be an irreducible representation which factorizes as π0 =
π� ⊗ π�c for some cone �, where (π�,H�), (π�c ,H�c ) are irreducible representa-
tions of A�, A�c respectively. Let α be a quasi-local automorphism which is quasi-
factorizable for all cones�. Suppose that a representation π satisfies the superselection
criterion for π0 ◦ α in the sense that for all cones ˜� in Z2, we have

π |A
˜�c ∼q.e. π0 ◦ α|A

˜�c . (4.14)

Then π is quasi-equivalent to π0 ◦ α. In particular, if π is irreducible, then π and π0
are equivalent.

Proof. If α is a quasi-local automorphism, the same is true for α−1, and it is quasi-
factorizable as well. Because π satisfies the superselection criterion for π0 ◦ α and α−1

is a quasi-local automorphism, by Theorem 4.7, π ◦ α−1 satisfies the superselection
criterion for π0 ◦ α ◦ α−1 = π0. Then by Theorem 4.5, π ◦ α−1 is quasi-equivalent to
π0. From this, it follows that π is quasi-equivalent to π0 ◦ α. ��

Note that this applies in particular to states which are not long-range entangled
according to Definition 4.1. Indeed, suppose that ω is a pure state, and α a quasi-
factorizable automorphism such that ω ◦ α = ω� ⊗ ω�c for some cone � and states
ω� of A� and ω�c of A�c . Then ω0 := ω� ⊗ ω�c is a pure state, and so must be ω�

and ω�c , as otherwise we could write ω0 as a non-trivial convex combination of two
distinct states. But then the GNS representation π0 of ω0 satisfies the assumptions of
Corollary 4.8. Since π0 ◦ α is a GNS representation for ω ◦ α, it follows that ω ◦ α has
no non-trivial sectors.
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Remark 4.9. We argued that a state that satisfies the strict split property for a given cone
is trivial in the sense that there are no anyonic excitations (superselection sectors). It is
however possible to further classify this trivial sector, for example if there is an on-site
symmetry G. In that case, it is natural to demand that two states are only in the same
gapped phase if they can be connected by a continuous path of gapped Hamiltonians
respecting the G-symmetry [CGW10]. In two dimensions, the set of states that are in
the trivial phase (i.e., containing the product state with respect to each site) can then
be classified by a cocycle in H3(G,U (1)) [Oga21b]. However, in our definition, the
absence of long-range entanglement does not necessarily imply that the state is such a
product of single-site states. It seems plausible that if we demand the split property to
hold for any cone, this would follow.

We conclude this section with a brief discussion. Here, we focussed on necessary
conditions for the existence of anyons. While we have showed that long-range entangle-
ment is a necessary condition, it remains an open problem to find sufficient conditions. In
particular, there is no guarantee that a state with long-range entanglement has any non-
trivial sectors at all (and in fact given the selection criterion (4.1) that should generally
not be expected if the reference state is far from homogeneous). In addition, even if non-
trivial sectors do exist, they are not necessarily anyons. In fact, in three or higher spatial
dimensions, cone-localized sectors have bosonic or fermionic statistics (cf. [BF82]), but
in 2D anyons are a possibility, as for example the abelian quantum double models show
[FN15]. Although there is a technical condition that implies the corresponding cate-
gory is modular (which in particular implies that all sectors are anyons), the physical
interpretation of this criterion is unclear [Naa13, Thm. 5.3].

We focussed on the trivial phase here, but one can show that if there are non-
trivial sectors, the full braided tensor category describing the sectors is invariant un-
der quasi-factorizable automorphisms [Oga22]. This requires that approximate Haag
duality holds, a weaker version of Haag duality that can be shown to be stable under
quasi-factorizable automorphisms. There is another natural generalization of the super-
selection criterion (2.17), which does not require Haag duality, but a variant of the split
property instead [CNN20]. Given that the spectral flow is quasi-local, it is natural to
look at representations that can be localized in cones up to some exponentially decay-
ing error. This leads to the notion of approximately localizable endomorphisms, and
one can develop the full sector theory (including e.g. braiding of charges) using them.
These properties are stable upon applying the quasi-local spectral flow. We should add
the caveat that this is a result about approximately localized sectors, i.e. localized up to
some exponentially decaying error, and we cannot rule out that despite the absence of
strictly localized sectors, there is a non-trivial approximately localized sector. In abelian
quantum double models, this can be ruled out by imposing an “energy criterion”, es-
sentially excluding any possible confined charges [CNN20]. We presently do not know
if the absence of such sectors can be proven from more fundamental assumptions. For
example, in the case of strict localization it is not necessary. The results in this section
and in [CNN20] strongly suggest that in a state with short-range entanglement, there are
no approximately localizable sectors either.

5. Approximate Split Property for Cone Algebras

We apply the results of Sect. 3 to two-dimensional models, and give natural examples of
quasi-factorizable automorphisms. In Sect. 4we have already discussed the split property
for a cone and its complement. As already mentioned, this strong version does not hold



P. Naaijkens, Y. Ogata

for, for example, abelian quantum double models, where only a weaker version is true
[FN15,Naa12]. This in turn is a key assumption in the stability of superselection sectors
analysis in [CNN20]. Although there we only need the approximate split property for
the “unperturbed” model, it is interesting to know if it is in fact a property of the whole
phase. Hence, in this section, we show that for suitable perturbations this is indeed the
case, and the perturbedmodel also satisfies the approximate split property. For simplicity
we restrict to 2D systems and finite range interactions, although we expect that with a
more careful analysis, the results extend to a wider class of interactions and to systems
in three or more spatial dimensions.

Let us recall that if F is an F-function, Fr (r) := e−r F(r) is also an F-function.
This is an example of a weighted F-function in the terminology of Ref. [NSY19]. Such
weighted F-functions have favorable decay properties, as can be seen in the following
Lemma.

Lemma 5.1. Let (�, d) be Z2 with the usual metric. Then there is a C > 0 such that we
have the following estimate for all m >

√
2:

GFr (m) ≤ CF(m − √
2)me−m, (5.1)

where GFr is as defined in Eq. (2.18).

Proof. By translation invariance of the metric and � we do not need the supremum in
Eq. (2.18). Hence we get

GFr (m) =
∑

|x |≥m

e−|x |F(|x |)

≤ 2π
∫ ∞

m
re−r+

√
2F(r − √

2) dr

≤ 2πe
√
2F(m − √

2)
∫ ∞

m
re−r dr

≤ 4πe
√
2F(m − √

2)me−m .

This can be seen by noting that
∫ x+1

x

∫ y+1

y
e−|(x,y)|+√

2F(|(x, y)|)dxdy ≥ e−|(x,y)|F(|(x, y)|) (5.2)

for x, y ≥ 0 (since F is positive and decreasing), and doing a coordinate transformation
to polar coordinates. ��

It is possible to generalize the lemma toother suitableweightings Fg(r) := e−g(r)F(r)
(see e.g. [CNN20]). This could be necessary because in applications one would need
to assume that interactions have finite interaction norm with respect to the weighted
F-function, instead of F itself. Since we will consider only bounded range interactions,
this is not an issue for us and we restrict to the easier case for simplicity.

Theorem 5.2. Let � = Z
2 with the usual metric d and consider the corresponding

quantum spin system A� , where the local dimension of the spins is uniformly bounded.
Let t �→ �(X; t) be a path of dynamics such that ‖�(X; t)‖ is uniformly bounded both
in X and t. Moreover assume that � is of bounded range, and let F be an F-function.
Then � ∈ BFr ([0, 1]), and it generates quasi-local dynamics τ�

t,s . Assume that �1 ⊂ �2
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Fig. 1. Cones as in Theorem 5.2

is an inclusion of cones such that their borders are sufficiently far away, in the sense that
the lines marking the boundaries of the cones are not parallel. Then there exist cones
�′
1 ⊂ �1 and �′

2 ⊃ �2 such that the conditions of Theorem 3.1 are satisfied.

Proof. Without loss of generality we may assume that the cones �1 and �2 have their
center line in the direction of the positive x-axis. We write α for the opening angle of
�2 and β for the opening angle �1 (see Fig. 1). The distance between their tips will be
denoted by d2. Let 0 < ε < β such that α + ε < π/2. We can then choose cones �′

1
and �′

2 as in the figure. Later in the proof we will provide convenient values for d1 and
d ′
2, but we note that with a little extra work is is possible to show that any positive value
will do.

We show that we can apply Theorem 3.1. First note that � is 2-regular, since the
number of points in a disk of radius r scales with the area. Because the interaction range
is uniformly bounded and because of 2-regularity, there are constantsC# and d� such that
�(X; t) = 0 whenever |X | > C# or diam(X) > d�. It follows that �1 ∈ BFr ([0, 1]).
With Lemma 5.1 it is also clear that Gα

Fr
has finite moments for α ∈ (0, 1] (in the sense

of Eq. (2.33)) and we can find a suitable F-function ˜F such that Eq. (2.34) is satisfied
for Fr .

It remains to be shown that Eq. (3.3) is satisfied. As a first step we study the function
f (m, x, y) of Eq. (3.2). Note that the summation in the definition is over certain subsets
of X such that x, y ∈ X . Hence if d(x, y) > d� we have �(X; t) = 0 and consequently
f (m, x, y) = 0. Similarly, the summation is only over X such that d(X, (�′

2\�′
1)

c) ≤ m.
Hence, it follows that f (m, x, y) = 0 unlessd(x, (�′

2\�′
1)

c) ≤ m+d�, or the same is true
for y. Or giving a rougher estimate, f (m, x, y) = 0 unless d(x, (�′

2 \�′
1)

c) ≤ m +2d�,
regardless of y.

Now consider the case where d(x, y) ≤ d� and m large enough such that d(x, (�′
2\

�′
1)

c) ≤ m + 2d�. In that case, we have

f (m, x, y) =
∑

x,y�X
|X | sup

t
‖�(X; t)‖ ≤ C#M2|b0(d�)|, (5.3)

where M := supX supt∈[0,1] ‖�(X; t)‖, which is finite by assumption. We also used
translation invariance of the metric (and �), and that by the finite range assumption any
contributing subset X must be contained in bx (d�). There are at most 2|b0(d�)| of such
subsets, leading to the claimed bound.
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Fig. 2. Definition of various distances

Next note that Lemma 5.1 gives us the following estimate:

∞
∑

m=k

GFr (m) ≤ CF(k − √
2)

∞
∑

m=k

me−m ≤ CF(0)
e−k+1((e − 1)k + 1)

(e − 1)2
(5.4)

whenever k ≥ 2. Note in particular the factor of e−k+1, which will be important to
guarantee convergence in our case.

We now return to Eq. (3.3). Note that d(�1, �
c
2) = d2 sin α. If this is greater than

d�, by the remarks above the first summation (over x ∈ �1 and y ∈ �c
2) vanishes. In

general, since the cone �2 has a wider opening angle than �1, we see that there are only
finitely many pairs x ∈ �1 and y ∈ �c

2 with d(x, y) ≤ d�, and hence only finitely many
contributions to the summation. Together with Eqs. (5.3) and (5.4) it can be seen that
this contribution is finite.

At this point we are left with estimating the following summation:

∑

x∈�2\�1

⎛

⎝

∑

y∈�c
2

+
∑

y∈�1

⎞

⎠

∞
∑

m=0

GFr (m) f (m, x, y), (5.5)

where we have split up the summation over (�2 \ �1)
c into two parts. We consider

the summation over �c
2, the other one can be handled in the same manner. Note that

d(�2, (�
′
2)

c) = d ′
2 sin(α + ε). Similarly, d(�2 ∩ b0(n)c, �′

2) = d ′
2 sin(α + ε) + n sin(ε).

Write d�1(n) for the distance between the tip of the cone �1 and the circle of radius n
based on the tip of �2, where we set d�1(n) = 0 if they do not intersect (see Fig. 2 for
an idea of the various distances we need to introduce). In case it is non-zero, we see that
in fact

d�1(n) =
√

n2 − d22 (1 − cos2 β) − d2 cosβ.

Let γ0 be the distance from the tip of �′
1 to the intersection of the line perpendicular to

the boundary of �′
1 and the boundary of �1. We write dγ0 for the distance of the tip of

�1 to this intersection. Then for large enough n the distance of the intersection of the
circle of radius n with the boundary of �1 and the boundary of �′

1 is given by

γ (n) = γ0 + (d�1(n) − dγ0) sin ε.
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From the geometric situation we see that d�1(n + k) − d�1(n) ≥ k, hence γ (n) grows at
least linearly in n.

Let n0 be the smallest integer such that

d0 := min{d ′
2 sin(α + ε) + n0 sin(ε), γ (n0)} > 2d�. (5.6)

Write Bk := (b0(d0 + (k + 1)/ sin(ε)) \ b0(d0 + k/ sin(ε))). We now rewrite the sum-
mation as

⎛

⎝

∑

x∈b0(d0)∩(�2\�1)

+
∞
∑

k=0

∑

x∈Bk∩(�2\�1)

⎞

⎠

∑

y∈�c
2

∞
∑

m=0

GFr (m) f (m, x, y).

For the first summation over all x ∈ �2 \ �1 in the ball around the origin we note that
there are only finitely many such x . We have already seen that for any given x , there are
only finitely many y (in fact, this number can be bounded from above independently of
x) such that f (m, x, y) is non-zero. Again by Eqs. (5.3) and (5.4) it follows that the first
summation is finite.

For the second summation, note that if x ∈ Bk∩(�2\�1), then d(x, (�′
2)

c) ≥ k+2d�

and d(x, �′
1) ≥ k + 2d�, and hence d(x, (�′

2 \ �′
1)

c)) ≥ k + 2d�. By what we have
seen earlier, this implies that f (m, x, y) = 0 if m < k for such x ∈ Bk ∩ (�2 \ �1).
Furthermore, because of the finite range assumption, contributing pairs x ∈ Bk and
y ∈ �c

2 must be within a “band” of width d� around each side of the boundary of
�2 \ �1. It follows that we can bound the number of pairs (x, y) ∈ (Bk ∩ �2 \ �1) × �c

2
by some constant Cp > 0 independent of k. Putting this together we can estimate the
second summation as follows.

∑∞
k=0

∑

x∈Bk∩(�2\�1)

∑

y∈�c
2

∑∞
m=0 GFr (m) f (m, x, y)

≤ ∑∞
k=0 CpC#2|b0(d�)|∑∞

m=k GFr (m)

≤ C ′∑∞
k=0 e

−k+1((e − 1)k + 1) < ∞ (5.7)

for some C ′ > 0. Here we again used the estimates (5.3) and (5.4). This completes the
proof. ��

We expect that with a more careful analysis one could allow for more general inter-
actions, as long as they decay sufficiently fast. It does however seem necessary that that
�′
2 has a bigger opening angle than �2, so that towards infinity the distance between

their respective boundaries grows. This is necessary to ensure that for x, y far from the
origin, f (m, x, y) is non-zero only for large m. Together with the decay properties of
GF of Lemma 5.1 this ensures that the sum converges.

The following now follows immediately from the theorem, by using Proposition 2.2.

Corollary 5.3. LetA� and t �→ �(X; t) be as in Theorem 5.2 and τ�
t,s the corresponding

quasi-local dynamics. Assume that �1 ⊂ �2 is an inclusion of cones such that their
borders are sufficiently far away and in the representation π of A� we have the split
property with respect to these cones. Then there exist cones �′

1 ⊂ �1 and �′
2 ⊃ �2 such

that π ◦ τ�
1,0 satisfies the split property with respect to �′

1 ⊂ �′
2.

Finally, it allows us to construct examples of quasi-factorizable automorphisms.
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Corollary 5.4. Let α = τ�
0,1, with � as in Theorem 5.2. Then, for every cone �, we can

find cones �′
1 ⊂ � ⊂ �′

2 such that α is quasi-factorizable with respect to this inclusion.

Proof. We will apply Theorem 3.1; we shall see later why the conditions are satisfied.
Suppose that the cone � has opening angle θ . Fix some cone �0 which has the same
apex and central axis as � but with a larger angle θ0 > θ , satisfying � ⊂ �0. Set
�1 := �, �2 := �0. Then, by Theorem 5.2, there are cones �′

1 ⊂ �1 and �′
2 ⊃ �2 such

that the conditions of Theorem 3.1 are satisfied. Recall that α = τ�
0,1. Then τ�(0)

0,1 , in the
notation of Theorem 3.1, decomposes as

τ�(0)

0,1 = α�1 ⊗ α�2\�1 ⊗ α�c
2

(5.8)

where α�1 ∈ Aut(A�1), and similar for the others. Moreover, by noting that u ∈ A�

and taking inverses on both sides of Eq. (3.5), we obtain from Theorem 3.1 that there is
ũ ∈ A such that

α = τ�
0,1 = Ad(ũ) ◦

(

˜β−1
�′
2\�′

1
◦ τ�(0)

0,1

)

= Ad(ũ) ◦
(

˜β−1
�′
2\�′

1
◦ α�2\�1

)

◦
(

α�1 ⊗ α�c
2

)

= Ad(̃u) ◦ ˜	 ◦ (α� ⊗ α�c ).

Here, 	 := ˜β−1
�′
2\�′

1
◦ α�2\�1 is an automorphism on A�′

2
= A�0 , α� := α�1 is

an automorphism on A� = A�1 , and α�c := α�c
2

⊗ id�\�2 is an automorphism on
A�c . ��
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