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Abstract

As elite athletes demonstrate through the Olympic motto ‘Citius, Altius, Fortius‐

Communiter’, new performance records are driven forward by favourable skeletal

muscle bioenergetics, cardiorespiratory, and endocrine system adaptations. At a

recreational level, regular physical activity is an effective nonpharmacological ther-

apy in the treatment of many endocrine conditions. However, the impact of physical

exercise on endocrine function and how best to incorporate exercise therapy into

clinical care are not well understood. Beyond the pursuit of an Olympic medal, elite

athletes may therefore serve as role models for showcasing how exercise can help in

the management of endocrine disorders and improve metabolic dysfunction. This

review summarizes research evidence for clinicians who wish to understand endo-

crine changes in athletes who already perform high levels of activity as well as to

encourage patients to exercise more safely. Herein, we detail the upper limits of

athleticism to showcase the adaptability of human endocrine‐metabolic‐physiological

systems. Then, we describe the growing research base that advocates the im-

portance of understanding maladaptation to physical training and nutrition in males

and females; especially the young. Finally, we explore the impact of physical

activity in improving some endocrine disorders with guidance on how lessons can

be taken from athletes training and incorporated into strategies to move more

people more often.
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1 | INTRODUCTION

One enduring characteristic of a post‐COVID pandemic is the

recognition of the role of physical activity for health and well‐

being. With the gradual return of fans to events such as theTokyo

2021 Olympics, elite athletic endeavours will be witnessed by

millions and the legacy of new records will inspire more people to

partake in sports and exercise. Viewers of high‐performance

athletes often marvel at the best of human performance. For

example, the current world records for the men and women's
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100 m track sprint are 9.58 and 10.49 s, respectively. The 26.2‐

mile marathon world record (officially) is 2:01.39, (unofficially

1:59.40) for men and 2:14.04 for women. In the winter games, the

world record for the farthest ski jump is 253.5 m for men and

200 m for women. Such remarkable feats of human endeavours

are made possible by rapid skeletal muscle adenosine tripho-

sphate degradation for energy provision and resynthesis of

adenosine triphosphate by co‐ordinated metabolic, endocrine,

and cardiovascular adjustment.

The endocrine system plays an important role in adaptation

to acute and chronic exercise. Hormonal secretion in response to

different forms of exercise are essential in mobilizing appropriate

metabolic substrates for fuel supply, adjusting cardiovascular

function, and managing water and electrolyte balance. Against a

background of genetic potential, years of hard training result in

cardiovascular, metabolic, and neuroendocrine adaptations cap-

able of pushing the human being to new levels of sports

performance.1

On the other hand, maladaptation to chronic exercise training

stress can lead to endocrine system dysfunction resulting in over-

training that negatively influences athletic performance through

premature fatigue. Unfortunately, both male and female young

athletes are susceptible to energy imbalances with consequences on

exercise performance and long‐term clinical complications such as

female triad, or male gonadal axis system dysfunction. Relative

energy deficiency in sport (RED‐S) is increasingly recognized in

young and adult male and female athletes and its early diagnosis is

an important marker in understanding causes of under‐

performance, late puberty, and growth failure. Though the impact of

menstrual cycle phase on exercise performance in eumenorrheic

women is unclear,2 menstrual cycle dysfunction is an important

indicator of hormone imbalance that is commonly seen in female

athletes.

What can the elite athlete teach the general population about

the value of physical exercise? In line with governmental guidelines,

with an array of different sports and exercise patterns that can be

performed alone or in social groups, the recreational exerciser can

benefit from a healthier lifestyle with increased longevity and re-

duced incidence of many noncommunicable diseases (NCDs). Indeed,

many can benefit from structuring their training in alignment with the

very same principles that athletes use to safely allow their bodies to

adapt to many hundreds of hours of training a year. Importantly,

many of the endocrine, metabolic, and cardiovascular benefits of

regular exercise are beneficial for cohorts with endocrine disorders

and may attenuate the risk of various long‐term cardiometabolic

complications.

Thus, it seems timely to detail in this review the role of ex-

ercise that is of clinical relevance for the management of some

endocrine disorders. Athletes can be great role models and their

achievements inspire the wider population to ‘move more, and

more often’. The purpose of this review is to help provide greater

confidence to clinicians that physical exercise can be pro-

moted more.

2 | ENERGY METABOLISM IN ATHLETES
AND THE ENDOCRINE RESPONSE TO
ACUTE EXERCISE

An athletes' ability to push the boundaries of modern sporting per-

formance limits is dependent on their ability to optimize physiological

adaptations from rigorous, chronic progressive training. Increased

muscular energy fuel demand at the onset of, and during, exercise

elicits important neuroendocrine responses, regardless of training

status. The provision of different fuels for exercise (i.e., phospho-

creatine, carbohydrate, and lipids) are fine‐tuned by the interactions

of several endocrine hormones viz, insulin, glucagon, catecholamines,

growth hormone (GH), and cortisol.3 Volitional muscle contraction

initiates parasympathetic withdrawal and sympathoadrenal activity

which releases adrenaline and noradrenaline from the adrenal me-

dulla, inhibiting pancreatic insulin secretion to below basal levels.4

Concurrently, catecholamines and glucagon (and later GH and corti-

sol) increase hepatic glucose output via glycogenolysis and gluco-

neogenesis, in addition to facilitating lipid mobilization from adipose

tissue by adrenaline‐mediated increases in hormone‐sensitive lipase

activity.

Catecholamines stimulate hepatic and skeletal muscle glycogen

phosphorylase activity towards glycogenolytic reactions, opposing

insulin‐driven glycogenesis. As a result of chronic exercise training,

endurance athletes possess greater intramuscular glycogen stores

(see Hearris et al.5) which are relatively distributed towards in-

tramyofibrillar regions (in type 1 ‘endurance’ muscle fibres) compared

with nonathlete individuals.6,7 Similarly, intramuscular lipids are dis-

tributed as smaller droplets and are more concentrated in the in-

tramyofibrillar compartment in endurance athletes compared with

subsarcolemmal spaces in untrained individuals which are further from

muscle contractile proteins.8 Furthermore, the droplets are in closer

proximity to mitochondria, which themselves have a higher volume

density after training.9 Accordingly a greater capacity for energy pro-

duction is enabled and a shift in metabolic fuel preference applies a

greater reliance on fat, rather than carbohydrate, metabolism.9 This is

favourable in the avoidance of glycogen depletion and subsequent

fatigue‐induced reduction in force output.10

Several factors can influence the neuroendocrine system re-

sponse to an acute bout of exercise including, but not limited to,

manipulations to acute programme variables (e.g., exercise intensity,

duration, and volume), environmental factors (e.g., temperature and

altitude), and individual demographics (e.g., age, gender, and training

history).11 During acute exercise, blood catecholamine concentra-

tions can increase in an intensity‐dependent manner to over tenfold

basal concentrations (e.g., adrenaline >5 nmol.L−1 and noradrenaline

>20 nmol.L−1 after repeated sprints) in well‐trained athletes, resulting

in augmented hepatic glycogenolysis and raised blood glucose.12,13

Significant resistance exercise also induces a rise in catechola-

mines, as well as raised testosterone, GH, and insulin‐like growth

factor‐1 (IGF‐1) (‘anabolic’ hormones) concentrations, creating a

milieu for maximizing strength and muscle mass gains.14 Conversely,

exercise programmes that elicit the greatest acute GH response also
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elicit the greatest cortisol response—the primary protein ‘catabolic’

hormone.15,16 This reflects the dual process of tissue remodelling,

consisting of an initial phase of breakdown before a period of growth

and repair.17

3 | ENDOCRINOLOGICAL ADAPTATIONS
IN ATHLETES

Structured and planned regular training can be thought of as re-

peated exposure to acute exercise ‘stress’. As part of an adaptive

process, long‐term adherence to exercise training potentiates al-

terations in several neuroendocrine responses to subsequent stres-

sors (exercise or otherwise).11,18 Many endocrine hormones are

essential in initiating and regulating the training‐induced adaptations

that occur in various organs and readers are directed to some ex-

cellent early references for detailed appraisals (SeeGalbo and

Bunt19,20).

Exercise training typically attenuates the magnitude of the

plasma hormonal response to any given submaximal absolute work-

load; resulting in lower plasma hormone concentrations in trained

compared with untrained individuals (Table 1). The influence of

training status on the exercise‐stimulated release of gonadotropins,

prolactin, and gonadal hormones is ambiguous within literature and

discussed in detail elsewhere.19,21 Trained athletes may present with

lower secretion of aldosterone and vasopressin (hormones involved

in the maintenance of body fluid and electrolyte balance) during

exercise,22 possibly reflecting the influence of training on plasma

volume shifts (i.e., hypervolaemia): an important early adaptation to

endurance training.23 In pancreatic hormones, trained individuals

experience a lesser decline in plasma insulin levels during exercise

(resulting in higher relative circulating concentrations than in those

who are untrained) while the glucagon response is attenuated.24

This athletic hormonal milieu reflects a greater sensitivity of the

target tissue to the hormonal stimulus and the degree of increase in

neural, humoral, and hormonal factors that influence the respon-

siveness of various endocrine glands being lower.25 This training

adaptation has significant metabolic consequences such as lowered

adrenaline‐mediated hepatic glycogen breakdown. The exception to

this general rule is maximal or supramaximal exercise, for which

trained athletes may present with augmented sympathoadrenal

system responses compared with untrained subjects. This is due to

the higher absolute workloads necessary to elicit a maximum re-

sponse and/or possible training‐induced glandular adaptations (i.e.,

adrenal medulla hypertrophy) that increase its hormonal secretory

capacity.25

Trained sportspeople can present with decreased resting basal

glucagon concentrations as well as lower fasted and stimulated

insulin concentrations.26,27 The influence of training status on

resting levels of basal levels of hormones related to the

hypothalamic–pituitary–gonadal axis in men and women is some-

what equivocal in literature and detailed explorations of the topic

have been reviewed elsewhere.28

Ultimately, endocrine adaptations to exercise training translate

as an improved ability to maintain energy homoeostasis in the face of

subsequent physiological or metabolic stressors. These hormonal

changes are paralleled with metabolic and/or morphological adapta-

tions in several organs with wider health benefits. This underscores

the potential value of physical exercise as a therapeutic tool for the

management of many NCDs. However, exposure to intense training

regimes with inadequate rest and recovery can result in ‘Overtraining

Syndrome’.29 In such instances, imbalances within endocrine

function become apparent, with possible downregulation of the

hypothalamic–pituitary–gonadal axis.

4 | RELATIVE ENERGY DEFICIENCY
SYNDROME

Despite the name, RED‐S is not restricted to athletes participating in

competitive sport. RED‐S can occur in exercisers of all levels, wher-

ever an imbalance in exercise and nutritional behaviours occurs,

resulting in low energy availability (LEA).30

The clinical consequences of LEA were first described in the

female athlete triad.31 The triad covers a clinical spectrum from

normal eating patterns, bone health, and menstrual function through

to eating disorders, osteoporosis, and amenorrhoea. Furthermore, the

clinical consequences of LEA are far reaching, reflecting widespread

dysregulation of endocrine networks (Figure 1) negatively impacting

health and exercise performance, as adaptive responses to exercise

are driven by a fully functioning endocrine system.

This multisystem clinical syndrome, RED‐S was first described in

2014 in the International Olympic Committee consensus state-

ment 32 and subsequently updated in 2018.33 The aetiology of RED‐S

is LEA. Energy availability is the residual energy available from energy

intake, once the energy demands of exercise have been covered and

can be quantified in terms of kcal/kg lean body mass. LEA can arise

intentionally, or unintentionally where there is a mismatch of energy

intake and energy expenditure through exercise.34 For this reason,

RED‐S can occur in nonelite athletes, male, or female of any age.

Considering the endocrine effects of LEA, metabolic and external

stressors are processed by the hypothalamic neuroendocrine gate-

keeper. This results in downregulation of many hypothalamic–pituitary

axes. For the reproductive axis, this functional suppression will be

demonstrated by low end range luteinising hormone and oestradiol

(females) or testosterone (males) in the presence of normal prolactin. This

may manifest as functional hypothalamic amenorrhoea in females and

symptoms of low testosterone such as reduced libido or erectile dys-

function in males. Hypothalamic–pituitary downregulation of the thyroid

axis will be shown by low range thyroid stimulating hormone, thyroxine

(T4), and triiodothyronine (T3) (and possible increase in reverseT3) which

results in lowering of metabolic rate in an attempt to ‘conserve’ energy.

Clinically this may explain why those in cumulative LEA will not ne-

cessarily be losing weight, or below normal body mass index. There is a

concomitant increase in GH and decrease inIGF‐1, possibly due to an

increase in binding proteins. The hypothalamic–pituitary–adrenal axis is
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activated, with cortisol levels consistently raised, lacking diurnal variation.

This characteristic endocrine profile of RED‐S 35 is linked with clinical

consequences, in particular poor bone health36 and bone stress

injuries.37

In a patient presenting with suspected RED‐S on clinical history,

checking baseline endocrine static function excludes most underlying

medical conditions such as prolactinoma and so confirm functional

endocrine downregulation due to LEA. Management can then be

directed towards addressing behaviours around food and exercise.38

This would include reduction in intensity of exercise and consistency

of carbohydrate intake. In functional hypothalamic amenorrhoea,

temporizing treatment with hormone replacement therapy to offer

bone protection in the form of transdermal oestradiol and cyclic

progesterone is indicated where Z score of the lumbar spine <1 or in

presence of 2 or more stress fractures. Treatment with combined oral

contraceptive pill is not advised by the Endocrine Society in func-

tional hypothalamic amenorrhoea.39 RED‐S is a functional endocrine

dysregulation occurring in exercisers of all levels. Static hormone

testing is essential in confirming RED‐S as a diagnosis of exclusion.

Management of a patient with RED‐S will require a multidisciplinary

team approach to provide medical, dietetic, and psychological input

as clinically indicated.40

TABLE 1 The endocrine response to
acute and chronic endurance and
resistance exercise in healthy individuals

Endocrine gland
(Hormone secreted)

Endurance Resistance

Duration Intensity Training
Acute resistance
exercise Training

Adrenal cortex

Cortisol ↑ ↑ ↓ ↑ ↓

Adrenal medulla

Epinephrine ↑ ↑ ↓ ↑ ↓

Norepinephrine ↑ ↑ ↓ ↑ ↓

Pancreas

Glucagon ↑ ↑ ↓ ↑ ↓

Insulin ↓ ↓ ↑ ↓ ↑

Pituitary

ACTH ↑ ↑ ↓ ↑ ↓

GH ↑ ↑ ↓ ↑ ↓

LH ↔↓ ↔↓ ↔ ↔ ↔

FSH ↔ ↔ ↔ ↔ ↔

Testes/Ovaries/Adrenal cortex

Oestradiol ↑ ↑ ↓ ↑ ↓

Testosterone ↔↑↓ ↔↑ ↔ ↑ ↓

Thyroid

T3 ↔↑ ↔↑ ↔↓ ↔↑ ↔↓

T4 ↔↑ ↔↑ ↔↓ ↔↑ ↔↓

Note: Hormonal responses to exercise differ based on specific exercise protocols, individual responses,
and other factors (e.g., time of day and feeding status).

In nontraining columns:

↓ denotes lower plasma concentrations with increased exercise characteristic (column title).

↑ denotes higher plasma concentrations with increased exercise characteristic (column title).

↔ denotes no change in plasma concentrations with increased exercise characteristic (column title).

In training column (independent of changes in background concentrations):

↓ denotes lower plasma concentrations relative to concentrations at the same (absolute) workload

before training.

↑ denotes higher plasma concentrations relative to concentrations at the same (absolute) workload

before training.

↔ denotes no change in plasma concentrations relative to concentrations at the same (absolute)
workload before training.

Abbreviations: ACTH, adrenocorticotropic hormone; GH, growth hormone; LH, luteinizing hormone;
T3, triiodothyronine; T4, thyroxine.
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5 | THE FEMALE ATHLETE

Regular menstrual periods are the barometer of a healthy hormonal

milieu for all women of reproductive age. This is normal physiology,

regardless of how much physical activity is being taken. Given that a

responsive, healthy endocrine network is essential for driving bene-

ficial adaptative changes to exercise, then regular fluctuation in

menstrual cycle hormones is essential not only for health but also for

exercise performance (Figure 2). Note that the average age of me-

nopause is 45–55 years.

Yet, there is surprisingly limited research assessing the impact of

the menstrual cycle on exercise performance, and female athletes are

sometimes uncertain of effective strategies to put in place to opti-

mize performance throughout the menstrual cycle.41 Although the

ovarian hormones follow a well‐documented variation through the

follicular and luteal phases, there are individual differences in timing,

hormone concentrations, and tissue responses. This uncertainty in

assessing the exact phase of the cycle for an individual was the un-

derlying reason why a recent review concluded that no significant

impact of menstrual cycle phase on performance was found.2

Nevertheless, marginal gains in sport can be important for the po-

dium. This has led to recommendations on standardizing assessment

of menstrual cycle timing when conducting research in this field.42

Machine learning in healthcare could also be of value in endocrine

networks where feedback loops and biochronometers render math-

ematical modelling of these biological systems possible.43 This ap-

proach could also be of value for nonathlete females where female

hormones are usually measured on Day 3 of the cycle and so gives

time‐limited information on menstrual cycle female hormone health.

Even though menstrual periods are a clinical indicator of female

hormone health, there are some instances of an erroneous view that

oligomenorrhoea and amenorrhoea is a ‘normal’ state. Periods are a

very sensitive and personalized training metric for an athlete. Men-

strual dysfunction can be a warning sign that athlete behaviours in

terms of training load, nutrition, and recovery are not optimally

periodized (See Section 4 on RED‐S). Any woman presenting with

menstrual disruption requires investigation to exclude any underlying

medical condition. Specifically, for secondary amenorrhoea, having

excluded pregnancy, investigations in line with classification from the

World Health Organisation will distinguish a hypothalamic–pituitary

cause, from ovarian causes, based on follicle‐stimulating hormone

and luteinising hormone.44 Low range follicle‐stimulating hormone,

luteinising hormone and oestradiol found in the presence of normal

prolactin, would be indicative of functional hypothalamic amenor-

rhoea. Furthermore, the underling aetiology of LEA would be sup-

ported by low range thyroid function tests and clinical history.

It is a personal choice as to the form of contraception an athlete

may wish to use. While hormonal contraception can help manage

certain medical conditions associated with menstrual disturbance,

such as dysmenorrhoea, menorrhagia, or polycystic ovary syndrome,

there are some further specific considerations for female athletes.

Prescribing hormonal contraception for young female athletes with

menstrual disruption can adversely affect bone health45 and mask

any underlying functional hypothalamic amenorrhoea.46 Hormonal

contraception also switches off the personalized training metric of

menses, which barrier methods of contraception do not do. Hor-

monal contraception use varies across sports disciplines.

F IGURE 1 The impact of low energy
availability on hormone networks. FSH,
follicle‐stimulating hormone; GH, growth
hormone; LH, luteinising hormone; IGF‐1,
insulin‐like growth factor‐1; T3, triiodothyronine;
T4, thyroxine; TSH, thyroid stimulating hormone

F IGURE 2 Differential diagnosis of amenorrhoea. FHA,
functional hypothalamic amenorrhoea; FSH, follicle‐stimulating
hormone; LH, luteinising hormone; PCOS, polycystic ovary syndrome;
POI, premature ovarian insufficiency
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Regular exercise is well‐established to be beneficial for female

hormone health, when combined with other positive behaviours.

Thus, research exploring female health in successful athletes can be

beneficial for the wider female population.

6 | ENDOCRINOLOGICAL ISSUES IN
PAEDIATRIC ATHLETES

In many sports, the pursuit of elite status starts early, such that by the

time a child reaches their teens they already have undertaken several

years' worth of intense training and competition accompanied by the

considerable bodily demands these events entail. Despite the con-

sensus beneficial effects of exercise on a child's health overall,47,48

there are inherent physical, psychological, dietetic, and physiological

concerns associated with intense, long‐term training that should be

considered when dealing with paediatric athletes.

The ‘female athlete triad’ is a common disorder among young

female athletes49 who often encounter disruption to normal men-

strual function (i.e., delayed menarche, oligomenorrhea, and ame-

norrhoea).50 Exercise‐related reproductive dysfunction may

compromise growth velocity and peak bone mass acquisition with an

accelerated risk of developing osteoporosis in later life.51 LEA can

detrimentally alter a variety of regulatory metabolic hormones known

to support linear growth, for example, insulin, cortisol, GH, IGF‐1,

ghrelin, and leptin. In clinical practice, screening for signs of the fe-

male athlete triad in adolescent athletes may allow early intervention

that circumvents long‐term complications. Ensuring energy balance

should be the primary point of call for those overseeing the care of

young female athletes.

The male gonadal axis is also vulnerable to energy deprivation,

but may not be recognized by men who lack observable hypogonadal

features such as amenorrhoea.52 Calorie‐deficient diets and overload

training programmes may result in hormonal abnormalities of IGF‐1,

testosterone, and luteinizing hormone concentrations appearing be-

low the reference ranges.52 This can present adverse symptoms of

depression, lowered libido, and low energy in some male adolescent

athletes.53

In weight category sports such as boxing, judo, and wrestling,

deliberate under‐eating is an employed strategy to lose weight before

competition, leading to reductions in IGF‐1 and GH binding pro-

tein.54,55 In young male high‐level gymnasts, IGF‐1:cortisol ratio re-

duces during the strength and conditioning, and routine

development, phases of the season.56 Paradoxical to competing in a

lower weight category, improper nutrition during the competitive

season and its recovery phases can lead to adverse effects on sub-

sequent performance. Collection of baseline and training/

competition‐related hormonal changes may provide good markers

of the athlete's general condition during the competitive season,

though may not always be used to indicate performance.54

Proper care of the paediatric athlete is essential in ensuring a

child's normal growth, timely pubertal development, and psycholo-

gical well‐being both within and outside of an exercising

environment. Failure to do so may manifest in acute and chronic

endocrine disruptions that implicate health status leading into and

throughout adulthood. Considering the relative sparsity of literature

examining endocrinological issues in male compared with female

child/adolescent athletes, future research may benefit from long-

itudinal (more than one season) studies in this area with examination

of nutritional intake and intensity and volume of the training.

7 | LESSONS TO BE LEARNED FROM
ATHLETES FOR POPULATION HEALTH

Irrespective of nationality or sport, Olympic‐level medal winners live

on average 2.8 years longer than the general population.57 What

makes this possible? Though genetic potential plays a role, elite

athletes undertake years of deliberate practice and adherence to

rigorous training regimes in the pursuit of sporting success. Interna-

tional level athletes often train in excess of 500−1000 h per year,

performed as 400−800 individual training sessions within a struc-

tured periodization protocol.58 The bodily adaptations associated

with such enduring efforts typify the physiology underpinning an

athlete. Yet, beyond the pursuit of sporting success in athletic co-

horts, many of these exercise‐induced adaptations harness powerful

health‐related outcomes that can be gleaned through much smaller

‘doses’ of exercise regardless of training status. There are then les-

sons to be learned from the routines of elite athletes as we look to

encourage physical activity in the wider population in clinical practice.

But how do we prescribe exercise to those unfamiliar or unable?

This brief synopsis introduces the main factors but for a more thor-

ough discussion the reader is directed to endurance59,60 and

strength 21,61,62 training references. Athletes understand the princi-

ple that adaptation will occur if the training load is frequently above

their habitual level of activity. Figure 3 details the key factors for

specific physical training adaptation through progressive overload.

Endurance training leads to cardiovascular and musculoskeletal

adaptations (e.g., mitochondrial biogenesis, respiratory capacity, and

capillarization) that enhance the body's ability to deliver and utilize

oxygen to generate energy. Conventional endurance training meth-

ods include: (1) long duration, moderate intensity; commonly referred

to as ‘long, slow distance’ or ‘base’ training (2) moderate‐duration,

high‐intensity; ‘pace/tempo’ training and (3) short‐duration, high‐

intensity ‘interval’ training.

Resistance exercise training leads to an increase in muscle

strength and power because of neuromuscular adaptations, increases

in muscle cross‐section area, and alterations in connective tissue

stiffness. Programmes can be tailored to develop muscular endurance

(high volume, low loads, and short rest), hypertrophy (moderate‐high

volume, moderate loads, short‐moderate rest periods), strength

(moderate volume, high loads, and moderate‐long rest periods), and

dynamic power (explosive and/or ballistic movements, low volume,

heavy loads, and long rest periods).62 Deliberate manipulation of

acute programme variables determines the specific training outcome

by modifying the acute hormonal responses. Programmes that are
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higher in volume with shorter rest periods produce the greatest

elevations in circulating concentrations of anabolic (testosterone, GH,

and IGF‐1) and catabolic (cortisol) hormones and are therefore most

likely to maximize hypertrophy.21

It is essential that training programmes incorporate adequate

periods of rest within each stage of the training phase (micro‐,

meso‐, and macro‐cycles). Failure to do so may result in over-

reaching and/or overtraining, both of which compromise exercise

performance and neuroendocrine health.63 Thus, another lesson

from athletes is to structure training appropriately and avoiding

under‐ or over‐training.

The dedication required to attain the physical adaptations from

chronic training is the product of an athlete's psychology. Strategies

employed by athletes to maintain motivation and positive thinking

during training include short and long‐term goal setting, close

management of progress, and focusing on internal reasons of why

they are competing in the sport. Practically speaking, athletes create

attainable goals, set up methods to track progress, and continue to

exercise on the basis of their own intrinsic reasons.64 These principles

can be applied to stimulate behavioural change in nonathletes and

promote goal attainment for increasing physical activity levels.65

8 | IMPACT OF REGULAR PHYSICAL
ACTIVITY ON ENDOCRINE DISORDERS

How can we take the lessons learned from elite athletes and use

them in clinical practice? The point of this review is not to encourage

the prescription of Olympic level exercise programming for in-

dividuals we routinely see in clinical practice. Rather it is to

F IGURE 3 Panel A: Important characteristics of exercise prescription. Panel B: Example workload format of different exercise modalities.
Note: figures in panel B are used for graphical purposes only. Definitions: Acute Programme Variables: (i) Frequency: How often the activity is
performed. (ii) Intensity: How hard the individual is working. (iii) Duration: How long the activity is sustained for. (iv) Mode: The specific type of
activity. Rest: Rest within and between different sessions. Physical adaptations occur during the recovery and nonactive period of training
session. Key Training Principles: (i) Overload: Judicious application of work through acute programme variables to enhance metabolic and
physiological capacity. (ii) Specificity: Training must be relevant to the individual and their activity to deliver adaptations in metabolic or
physiological systems. (iii) Progression: Training should gradually become more difficult. Once the body has adapted, the performer should make
further demands on physiological and metabolic systems. However, increases must be gradual so that the athlete avoids a plateau in
performance, overtraining, or injury. (iv) Individualization: Recognition that a given stimulus does not affect all individuals equally. (v) Adaptation:
The process of the body getting accustomed to a particular exercise or training programme through repeated exposure. All training is aimed at
creating long‐term physical changes in the body systems. (vi) Maintenance/Reversibility: Physiological and metabolic systems will revert to
pretrained state unless training is continued, and performance will decrease. Also known as ‘use it or lose it’. Specific Training Outcomes are
usually directed to the development of either endurance or strength power and capacity. Optimizing programme design and identifying the
specific training outcome can lead to improvement in exercise performance (e.g., power, speed, or time) and functional outcome, for example,
ease of completion of daily tasks and improved quality of life [Color figure can be viewed at wileyonlinelibrary.com]
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emphasize the potential value of exercise, even in minor amounts, in

alleviating or averting the progression of numerous NCDs.66 Beyond

the local adaptations that occur within skeletal muscle, exercise in-

duces positive adaptions in several other tissues. Though these

adaptive processes undoubtedly serve to benefit the elite athlete

from a sports performance perspective, they also lead to various

health‐related outcomes that reduce the risk of disease onset or

progression (Figure 4).66

8.1 | The evidence

Epidemiological data from large prospective cohort studies indicate

that 150min/week of moderate‐to‐vigorous intensity exercise can

considerably reduce the incidence of type 2 diabetes (T2D) in high‐

risk individuals.67,68 When included as part of a lifestyle modification

intervention, exercise training (moderate intensity for at least

150min/week) is considered the most effective means of reducing

the risk of T2D, out‐performing a drug only treatment approach.67

The benefit of exercise for weight management goes beyond its

immediate effects on increasing energy expenditure (and hence aid-

ing the attainment of a caloric deficit). Indeed, there is unequivocal

evidence to support the positive cardiometabolic effects (i.e., ↓ hy-

perlipidaemia, ↓hypertension, ↓body mass index, ↓insulin resistance,

↓fasting blood glucose, ↓HbA1c) of regular exercise in people with

T2D,69,70 polycystic ovary syndrome,71 metabolic syndrome,72 non-

alcoholic fatty liver disease,73 and/or those who are overweight or

obese.74 Given that cardiovascular disease (CVD) prevails as the

leading cause of mortality in many NCDs, the benefits of exercise in

mitigating its risk are noteworthy.75

Physical inactivity is emerging as an independent risk for NCDs,

causing an estimated 9% of premature all‐cause mortality, 6% of

CVD, and 7% of T2D.74 The associated economic costs are astro-

nomical, equating to £39 billion/year worldwide (2013)76 and £1

billion/year to the UK National Health Service (2006–7).77 It is rea-

sonable to suggest that physical activity promotion should be a public

health priority.

8.2 | Putting it into practice

Individuals with NCDs that are routinely seen in clinical practice may

be among those most unlikely to exercise. Hence, primary health‐care

providers are well placed to communicate the benefits of regular

exercise to those who may stand to benefit most.78,79 Advocation of

regular exercise in clinical practice could be a simple, cost‐effective

strategy that yields impactful results.80 The ideal training regimen

should include a variety of exercise activities (namely those the pa-

tient most enjoys, and is therefore most likely to sustain) that con-

tribute to some form of daily movement in alignment with

governmental guidelines (i.e., The UK's Chief Medical Officers

Guidelines for Physical Activity81). The ‘FITT’ (i.e., exercise Fre-

quency, Intensity, Time, and Type) mnemonic is commonly used as a

guidance source for exercise prescription guidelines and could be

implemented alongside achievable goal setting (Figure 5).

Clearly not everyone is able to exercise intensely or indeed has

the resources available to undertake bespoke exercise regimes with

qualified professionals. However, many community‐based projects

and online guidance material are free. Not to forget, walking is a

practical, free, and user‐friendly means of contributing to physical

F IGURE 4 The effects of exercise regular exercise training on key endocrine tissues involved in the regulation of energy homoeostasis. The
multisystemic effects of exercise training have direct relevance for the management of patients with energy imbalance, metabolic (glucose and
lipid) dysregulation, insulin resistance, chronic inflammation, and hypertension; pathogenic features of many endocrine disorders. CNS, central
nervous system; HR, heart rate; NAFLD, nonalcoholic fatty liver disease; PCOS, polycystic ovary syndrome [Color figure can be viewed at
wileyonlinelibrary.com]
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activity guidelines. Indeed, just 30min a day, 5 days per week can

significantly reduce CVD risk82; Taking small steps can have big

impact.

Undoubtedly primary health‐care providers have a valuable

role to play in exercise promotion at the population level. How-

ever, many report time constraints, inadequate resources, and a

lack of confidence/knowledge as leading barriers to exercise pre-

scription.79 Unfortunately, not all countries offer referral schemes

to a sports and exercise medicine specialist. Ongoing efforts are

needed to address these concerns to optimize patient adherence

and outcomes.

8.3 | Next steps

Recent texts have given appraisals of exercise prescription in primary

health care (See Khan and Seth78,79) with resource direction and

practical implementation points. Some prudent next steps could be:

• Administer a physical activity questionnaire (i.e., the UK general

practice physical activity questionnaire83) to establish baseline

activity levels.

• Prescribe a periodized exercise plan according to acute pro-

gramme variables and training principles for the patient (Figure 3).

Align these with governmental guidelines if appropriate.

• Establish a plan that is both feasible and effective for the patient.

Set small, achievable goals to build confidence.

• Provide a recorded exercise prescription plan that states the

agreed upon goals. Free resource material can be found in the

‘exercise is medicine’ initiate co‐created by the American College

of Sports Medicine and the American Medical Association (www.

exerciseismedicine.com).

• Know your local resources for physical activity and communicate

these to the patient.

• Follow‐up with the patient to assess progress, identify problems,

fine tune the ‘dose’ and reset the goals.

• Remember ‘no size fits all’ and potential health risk's need con-

sideration. If uncertain about the appropriate advice to give, reach

out to exercise professionals for help.

9 | CONCLUSIONS

Many positive adaptations occur in athletes in a training‐dependent

manner. Structuring training in a periodized fashion helps avoid ma-

ladaptation to physical training, an especially important factor for

consideration in paediatric athletes. Great feats of exercise perfor-

mance begin with small amounts of physical activity that are pro-

gressively increased and many of the principles of fitness can be

employed to improve several endocrine disorders. Taken collectively,

it is clear to see the reason behind the ‘exercise is medicine’ mantra

with recognition of its value as a nonpharmacological therapy option

for the treatment of many NCDs. Though not everyone can become

an Olympian or professional athlete, adopting a healthy lifestyle can

bring great health benefits to many, including people with endocrine

disorders.
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