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Abstract 

Ovarian cancer has the highest mortality rate of all gynaecologic cancers and is the fifth 

most common cancer in UK women.  It has been dubbed “the silent killer” because of 

its non-specific symptoms. Amongst various imaging modalities, ultrasound is 

considered the main modality for ovarian cancer triage.  Like other imaging modalities, 

the main issue is that the interpretation of the images is subjective and observer 

dependent.  In order to overcome this problem, texture analysis was considered for this 

study. Advances in medical imaging, computer technology and image processing have 

collectively ramped up the interest of many researchers in texture analysis. While there 

have been a number of successful uses of texture analysis technique reported, to my 

knowledge, until recently it has yet to be applied to characterise an ovarian lesion from 

a B-mode image.  The concept of applying texture analysis in the medical field would 

not replace the conventional method of interpreting images but is simply intended to aid 

clinicians in making their diagnoses.  

Five categories of textural features were considered in this study: grey-level co-

occurrence matrix (GLCM), Run Length Matrix (RLM), gradient, auto-regressive (AR) 

and wavelet. Prior to the image classification, the robustness or how well a specific 

textural feature can tolerate variation arises from the image acquisition and texture 

extraction process was first evaluated. This includes random variation caused by the 

ultrasound system and the operator during image acquisition.  Other factors include the 

influence of region of interest (ROI) size, ROI depth, scanner gain setting, and „calliper 

line‟.  Evaluation of scanning reliability was carried out using a tissue-equivalent 

phantom as well as evaluations of a clinical environment.  
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Additionally, the reliability of the ROI delineation procedure for clinical images was 

also evaluated.  An image enhancement technique and semi-automatic segmentation 

tool were employed in order to improve the ROI delineation procedure.  The results of 

the study indicated that two out of five textural features, GLCM and wavelet, were 

robust. Hence, these two features were then used for image classification purposes.   

To extract textural features from the clinical images, two ROI delineation approaches 

were introduced: (i) the textural features were extracted from the whole area of the 

tissue of interest, and (ii) the anechoic area within the normal and malignant tissues was 

excluded from features extraction. The results revealed that the second approach 

outperformed the first approach: there is a significant difference in the GLCM and 

wavelet features between the three groups: normal tissue, cysts, and malignant.   

Receiver operating characteristic (ROC) curve analysis was carried out to determine the 

discriminatory ability of textural features, which was found to be satisfactory.  

The principal conclusion was that GLCM and wavelet features can potentially be used 

as computer aided diagnosis (CAD) tools to help clinicians in the diagnosis of ovarian 

cancer. 
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Glossary 

Amplitude The maximal distance a particle moves away from its 

original position.

Area of interest The area in the image that encompasses the area of the 

tissue to be characterised.

Computer-aided 

diagnosis (CAD)

A diagnostic aid that takes into account equally the role of 

the physician and the benefits of the computer system.

Dynamic range The range of echoes processed and display by the system, 

from strongest to weakest.

Frequency A number of times a vibrating particle goes through its 

original position within one second.

Gain The degree of amplification applied to all returning signals.

Lead zirconate titanate 

(PZT)

The material from which the piezoelectric plate of many 

transducers is constructed.

Region of interest (ROI) A region used to extract texture features.

Repeatability The closeness of the agreement between successive

measurements of the object carried out under the same 

conditions of measurement.

Reproducibility The closeness of the agreement between measurements of 

the object carried out under changed conditions of 

measurement.

ROI depth Vertical position of the centre of ROI drawn in the image.

ROI size The area of the drawn region for textural features 

derivation, measured in pixels. 

Sensitivity Proportion of true positives correctly identified as such.

Specificity Proportion of true negatives correctly identified as such.

Time gain 

compensation (TGC)

Use to compensate for the effects of attenuation by 

progressively increasing the amount of amplification 

applied to signals with depth, to produce an image of 

uniform brightness from top to bottom.

Wavelength The distance between the two adjacent wave peaks.
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Chapter 1 
Introduction 

1.1 Overview 

Ovarian cancer has the highest mortality rate of all gynaecologic cancers (Jeong et al.

2000; Fishman et al., 2001; Chan and Selman 2006; ACS, 2007; Cancer Research UK, 

2010(a)) and has been dubbed “the silent killer” because of its non-specific symptoms 

(Chan and Selman, 2006). In the United Kingdom, nearly 7,000 new ovarian cancer 

cases are diagnosed every year (Cancer Research UK, 2009(a)), which is the fifth 

most common cancer in females and the second most common gynaecological cancer 

after uterus (Cancer Research UK, 2010(a)). It has been reported that worldwide, 

around 140,000 women died of ovarian cancer in 2008 (Cancer Research UK, 

2010(a)). Its incidence has been steadily increasing over the past ten years, with an 

overall lifetime risk of 1.8% (Fishman et al., 2001).  

Discriminating benign from malignant cases is important, not only to ensure 

appropriate management for malignant cases (Valentin et al., 2006), but also to avoid 

unnecessary diagnostic procedures, including surgery, for the non-malignant cases 

(AHRQ, 2006).  

According to Kinkel et al. (2000), ultrasound is the primary imaging modality in the 

evaluation of ovarian masses and is the main triage method prior to treatment. Even 

though it cannot necessarily prevent the surgery, it helps to narrow down the 

differential diagnosis and determining the degree of suspicion for malignancy, usually 

together with the serum CA-125 level (Togashi, 2003). However, the accuracy of 
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ultrasound imaging based on the morphology assessment is limited due to the 

significant number of false-positive results (Kupesic and Plavsic, 2006) and raises the 

issue of how to correctly interpret the images (Gramellini et al., 2008). It has been 

reported that the suboptimal specificity of grey-scale scoring systems can result in 

many unnecessary operations when an asymptomatic population is screened for 

ovarian cancer (Fishmen et al., 2001). This is not surprising because, according to 

Chan and McCarty (1990), to visually identify a specific tissue is not an easy task and 

there is always a possibility of human error. Furthermore, according to Giger et al. 

(2008), limitations in the human eye-brain visual system, reader fatigue, distraction, 

and the presence of overlapping structures that camouflage disease in images may 

cause detection and interpretation errors. For instance, according to Doi (2007), a 

radiologist has difficulties in the detection of lung nodules due to the overlap of the 

normal anatomic structures with nodules. Moreover, since interpreting an ultrasound 

image with the human eye is always subjective (White et al., 1997), the interpretation 

of the images is highly dependent on the ability and experience of the observer (Wang 

et al., 2002; Shung, 2006; Huang et al., 2008; Rocha et al., 2011). This raises the 

issue of accuracy and reproducibility.   

In recent years, objective methods have been proposed to reduce the subjectivity and 

operator-dependence, but there is no reliable technique available at present. Hence, a 

new objective method is required to address the above mentioned issues which will 

contribute to the patients‟ management.
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Texture analysis, a technique for evaluating the position and intensity of the pixels, 

provides an objective measure to quantify the image properties.   

„Texture analysis of medical images is a sophisticated 

computer-assisted technique that allows detection of 

mathematical patterns in the grey-level distribution of the 

pixels of digital images, thus providing an objective 

description of the signal behaviour of anatomic structures or 

pathological processes‟ (Mayerhoefer et al., 2008).

According to Tuceryan and Jain (1998), texture analysis has played a major role in 

some domain such as remote sensing, while in the medical domain, comprehensive 

research has been carried out, especially over the past two decades (Doi et al., 1999; 

Giger et al., 2008).  

Results from the image texture analysis technique can be used as an input for 

computer-aided diagnosis (CAD).  According to Dhawan (2003), image analysis 

techniques have been explored for CAD to improve the sensitivity and specificity of 

radiological tests. Lack of reproducibility due to subjective interpretation can be 

reduced by using a computer method (Smyth et al., 1997). According to Giger et al.

(2008), the potential use of computers has been considered for the analysis of 

radiographic images since the 1950s.   
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In texture analysis, the variation in intensity reflects some physical variation in the 

underlying scene (Davis, 1980).  According to Szczypinski et al. (2009), image 

texture of medical images describes internal structure of human tissues or organs.  It 

also describes pathological changes (Mayerhoefer et al., 2008; Xian, 2010).  The 

texture analysis of ultrasound images relies on the principles that, if disease processes 

affect the structure of the tissue, the tissue should reflect an altered ultrasound signal, 

which will in turn yield texture feature values different to the normal tissue (Morris, 

1988(b)).  

There has been a significant advance in medical imaging in the last two decades due 

to the collective contributions from many areas of medicine, engineering, and basic 

sciences (Dhawan, 2003). Diagnostic ultrasound image quality in particular has 

greatly improved. For instance, developments in transducer design have resulted in 

transducers with greater sensitivity (Averkiou et al., 1997) while broadband 

transducers lead to improvements in axial resolution (Browne et al., 2004). In 

addition, the introduction of new techniques such as tissue harmonic imaging 

(Claudon et al., 2002) and advances in computer technology (Strub, 2005) have also 

improved the quality of B-mode images.
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1.2 Research Hypothesis 

Based on current developments in ultrasound imaging, computer technology, image 

processing, and extensive research works on texture analysis involving medical 

images, it is hypothesized that the texture analysis technique can be used to 

characterise and quantify ovarian tissue based on B-mode image texture. 

The motivation for this technique is clear: since the output of texture analysis of an 

image can be expressed numerically, it provides a quantitative means of image 

description, which in turn, may be able to eliminate the subjectivity. This technique 

would also solve the reproducibility issue encountered by the conventional image 

interpretation method. A combination of knowledge, the cognitive capability of 

humans, and results from a computer is expected to improve the overall diagnosis. 
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1.3 Aim and Objectives  

The aim of this study was to develop an objective method to be used in an ultrasound-

based assessment of ovarian tumours, using texture analysis techniques on grey-scale 

transvaginal (TSV) ultrasound images, with a view to providing a tool that is able to 

assist the clinician in their diagnosis of ovarian cancer.   

In texture analysis, it is important to ensure that the differences in extracted textural 

features are due to the differences in the acoustic properties of reflecting material and 

not due to the deterioration of the system or process component. Similarly, a series of 

scans from the same object must be reproducible. Therefore, the variations in the 

textural features computed due to image acquisition and features‟ extraction processes 

need to be assessed. Hence, in achieving the above aim, the following objectives have 

been set:  

• To evaluate factors that may influence the extracted texture 

features. 

• To evaluate the effects of ultrasound settings/parameters on 

textural features. 

• To assess the ability of the ultrasound system and the operator 

in producing consistent images, using a tissue equivalent 

phantom. 

• To assess the reliability of the B-mode textural features of 

clinical images. 

• To quantify the textural features value for normal tissue, cysts, 

and malignant tissue. 

• To determine the discriminatory ability of the textural features 

used in this study. 
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 1.4 Thesis Structure 
This study is divided into two phases. The first phase mainly examines the factors that 

may potentially influence the image texture, which will in turn affect the accuracy of 

the texture analysis techniques. This phase can further be divided into two parts: (i) 

phantom studies and (ii) assessment of clinical images. The second phase mainly 

determines the ability of the texture features to discriminate B-mode ovarian images.  

Figure 1.1 illustrates the approach used to achieve the objectives outlined in Section 

1.3.   

This thesis is structured into eight chapters which closely follow the flow of the 

methodology:  

Chapter 1: This chapter gives an overview of the whole thesis. 

Chapter 2:  This chapter critically evaluates current techniques used to 

diagnose ovarian cancer and related issues. The alternative 

techniques are also reviewed in this chapter. 

Chapter 3:  This chapter provides the basic concepts of B-mode 

ultrasound and texture analysis.  The common methodology 

and statistical measures employed in Chapter 4, Chapter 5, 

Chapter 6 and Chapter 7 are also outlined in this chapter.  

Chapter 4:  This chapter assesses the factors that may affect the extracted 

texture features. 

Chapter 5: This chapter assesses the reliability of the B-mode image due 

to the ultrasound system as well as human factors. 

Chapter 6: This chapter assesses the reliability of the B-mode clinical 

image and the ROI segmentation process. 

Chapter 7: This chapter determines the discriminatory ability of the 

selected textural features. 

Chapter 8:  This chapter provides a summary of the whole thesis and 

presents the conclusion of this study. 
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Figure 1.1: Methodology diagram.
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• Intra-operator 
• Inter-operator 

Phase 1 (Part 1): Chapter 4

Assessment of Influencing Factors
(Phantom Studies)

• ROI Size
• ROI Depth
• Gain Setting

Selected Features

Phase 2: Chapter 7

Image Characterisation and Classification
Classification of Ovarian Tissue
Performance Analysis
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Chapter 2 
Literature Review 

This chapter gives an overview of several key topics related to this thesis, and critically 

evaluates current techniques used to diagnose ovarian cancer and related issues. It is 

broken down into several sections. Section 2.1 briefly gives an introduction to ovarian 

cancer and quantitative image characterisation techniques. Section 2.2 provides an 

overview of ovarian cancer and current techniques used to diagnose ovarian cancer. 

Section 2.3 discusses the objective characterisation methods available, with an emphasis 

on texture analysis technique.  Section 2.4 provides a review of the texture analysis 

techniques applied on medical images. Finally, section 2.5 summarises this chapter. 

2.1 Background 

Ovarian cancer is the fifth most common cancer in UK women and is the leading cause 

of death from gynaecologic malignancies (Cancer Research UK, 2010(a)).  It is also the 

most frequent cause of death from gynaecologic malignancies in western world (Kurjak 

et al., 2002).  Early diagnosis is a crucial factor for the prognosis.  To diagnose ovarian 

cancer, results from tumour marker analysis are normally used in conjunction with the 

findings from imaging modalities such as ultrasound, Magnetic Resonance Imaging 

(MRI) and Computed Tomography (CT).  Although ultrasound is considered the main 

imaging modality for ovarian cancer triage (Kinkel et al., 2000), there is concern about 

the reproducibility of the diagnosis mainly due to the subjective nature of the 

interpretation of the images.  
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Several techniques such as radio-frequency (RF) data analysis and image texture 

analysis are able to quantitatively characterise the radiology data: thus, they avoid 

subjectivity.  Of the two, image texture analysis has attracted more interest from 

researchers, and has been employed on various imaging modalities to characterise and 

discriminate normal tissue from diseased tissue of various organs. 

2.2 Ovarian cancer 

2.2.1 Overview of ovarian cancer 

Cells normally grow and divide to form new cells.  Cancer occurs due to the 

uncontrolled and abnormal growth and division of the cells.  These extra cells will form 

a mass of tissue called tumour which can be benign (non-cancerous) or malignant 

(cancerous). Benign tumours do not invade the tissues around them and do not spread to 

other parts of the body (metastasis).  Unlike benign tumours, malignant tumours 

however, have the ability to invade and destroy the tissues around them. Cancer cells 

are able to metastasis via the blood stream or the lymph system and spread to other parts 

of the body.  They also able to metastasis via transcoelomic spread (peritoneal seeding 

across the abdominal cavity). According to Tan et al. (2006), after direct extension, 

transcoelomic spread is the most common route of metastasis in epithelial ovarian 

cancer. 

Ovarian cancer refers to the cancer of the ovaries (the women‟s reproductive system).  

The ovaries are a pair of oval-shaped organs measuring 2-4 cm in diameter and are 

located in the pelvis, one on each side of the uterus (figure 2.1).  Two distinct functions 
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of the ovaries are: (i) to produce the eggs, and (ii) to produce the female hormones 

(estrogen and progesterone).  

In general, ovarian cancer can develop at any age, but is most likely to occur in older 

women between the ages of 40 to 65 years (Crum, 2004).  Examples of benign ovarian 

tumours are serous adenomas, mucinous adenomas, and Brenner tumours.  Examples of 

malignant ovarian tumours are serous adenocarcinomas and mucinous adenocarcinomas, 

which originated from epithelial cells.  Epithelial cell origin tumour accounts for 85% 

of overall ovarian cancer cases (Jeong et al., 2000).  According to Russell (1994), most 

epithelial tumours occur in peri-menopausal and post-menopausal age group with the 

mean age of 55 years.  

Ovarian cancer is the leading cause of death from gynaecologic malignancies (Jeong et 

al. 2000; Fishman et al., 2001; Chan and Selman 2006; ACS, 2007; Cancer Research 

UK, 2010(a)) with nearly 7,000 new cases diagnosed every year (Cancer Research UK, 

2009(a)).  For instance, 6,720 ovarian cancer incidences were diagnosed in the UK in 

2007 (Cancer Research UK, 2010(a)).  It has been reported that in 2008, around 4,370 

women died of ovarian cancer in the UK, 29,000 in Europe and 140,000 worldwide 

(Cancer Research UK,  2010(a)). 

Figure 2.1: The ovaries

Uterus

Vagina

Fallopian tubes

Ovaries
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2.2.2 Ovarian Cancer:  Risk factors 

Although extensive research has been carried out, the real causes of ovarian cancer are 

unknown.  Nevertheless, the two most influential factors associated with the risk of 

developing ovarian cancer are the increase in age and the presence of certain gene 

mutations.  Other factors that may affect the risks of developing ovarian cancer are 

briefly explained below.  

Parity - The risk is lower in women that have had children, compared to 

women who have no children.  

Breastfeeding – The risk is reduced in parous women who have ever 

breastfed, compared to those who have never breastfed. 

Infertility - Nulligravid women who have been attempting pregnancy for 

more than five years have an increased odds ratio compared to women 

who have been trying to conceive for less than a year. 

Oral contraceptives - The use of oral contraceptives reduces the risk.  

Tubal ligation - Tubal ligation has a protective effect on ovarian cancer 

with an estimated reduced risk of between 18% and 70%. Hysterectomy 

may also reduce the risk.  

Hormone replacement therapy (HRT) - Use of hormone replacement 

therapy (HRT) is associated with an increase in risk of ovarian cancer. 

The risk is not increased, however, in women using HRT for less than 

five years.  The risk reduces once a woman stops taking HRT. 

Body mass index (BMI) - Study showed an increased risk of ovarian 

cancer in a mixed group of pre and post-menopausal women in relation 

to higher BMI.  

Family and previous cancers history - On average, women with a mother 

or sister diagnosed with ovarian cancer have a higher risk of developing 

ovarian cancer. Similarly, women with a previous breast cancer have 

double the risk of ovarian cancer, and the risk is almost four-fold for 

women diagnosed with breast cancer before the age of 40.  

http://info.cancerresearchuk.org/cancerstats/types/ovary/riskfactors/#page
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More detailed information on ovarian cancer risk factors is available online at:  

http://info.cancerresearchuk.org/cancerstats/types/ovary/riskfactors/.  

2.2.3 Ovarian Cancer:  Symptoms 

According to Chan and Selman (2006), the symptoms of ovarian cancer are non-specific.  

Nevertheless, according to Flam et al. (1988), Goff et al. (2000), Olson et al. (2001) and 

Vine et al. (2003) as quoted by Cancer Research UK (2009(b)), the more common 

symptoms of ovarian cancer include abdominal pain and bloating, fatigue, weight loss, 

urinary symptoms, and occasionally abnormal vaginal bleeding.   

Apart from that, loss of appetite, nausea, lower back pain, and shortness of breath may 

also be an indication of ovarian cancer. Nevertheless, it is important to note that these 

symptoms could also be due to other diseases. 

2.2.4 Ovarian Cancer: Types, Staging and Grading 

2.2.4.1    Ovarian Cancer: Types 

Ovarian cancer is grouped into three major types according to the tissue of the ovary it 

originated from: (i) epithelial, (ii) germ cell, and (iii) sex cord-stromal cell.  Epithelial 

tumours are the most common with 85% of cases (Jeong et al., 2000).  Epithelial 

tumours are rare before puberty. Their prevalence increases with age and peaks in the 

6th and 7th decades of life (Jeong et al., 2000). Germ cell tumours account for 5%-10% 

of total cases. Unlike epithelial tumours which usually affect middle aged and older 

women, germ cell tumours tend to be found in younger women where the peak 

incidence is in the early 20s. Sex cord-stromal tumours begin in the connective cells. 
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These connective cells hold the ovaries together and produce female hormones.  Sex 

cord-stromal tumours can affect all age groups and account for less than 5% of the total 

cases.   

2.2.4.2     Ovarian Cancer: Staging 

Staging relates to how far the cancer has spread into other part of the body. Since it 

indicates the size and extent of the spread of the tumour, accurate cancer staging is an 

important factor in predicting the survival rate. Since cancer at different stages are 

managed and treated differently, staging should also help determine the appropriate 

management and treatment such as surgical and chemotherapeutic planning (Kurtz, 

1999).  

Staging is based on a 1-4 system, called the FIGO system after its originators. The 

document that details out the FIGO ovarian cancer staging is available online   

(http://www.figo.org/files/figo-corp/docs/staging_booklet.pdf).  In brief, the four stages 

of ovarian cancer are as follows and the illustrations are given in figure 2.2(a) to figure 

2.2(d): 

Stage 1:  The cancer is confined to one or both ovaries and has not yet 

spread to other areas.  

Stage 2:  The cancer can be found outside of the ovary or ovaries, but 

has spread no further than the pelvic region (uterus, bladder, 

lower intestine).  

Stage 3:  The cancer is limited to the peritoneal cavity.  

Stage 4:  The cancer has spread beyond the abdomen such as the liver, 

lungs and brain. 
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Figures 2.2(a) to 2.2(d) illustrate the extent of the spread for stage 1 to stage 4 of ovarian 
cancer (adopted from: http://www.cancerhelp.org.uk/type/ovarian-
cancer/treatment/stages-of-ovarian-cancer).

(b)

(d) (c)

(a)
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2.2.4.3 Ovarian Cancer: Grading 

The grade indicates how much the tumour resembles normal tissue in appearance and 

the likelihood of the cancer to spread. The term used is differentiation, with the well 

differentiated tumours appearing more like the normal tissue counterpart compared to 

the poorly differentiated ones. Grading is divided into four: Grade 0, grade 1, grade 2, 

and grade 3.  

Grade 0:  Tumours of low malignant potential, also known as 
borderline tumours are the most well-differentiated, and least 
aggressive.  

Grade 1:  Low grade well-differentiated tumours. 

Grade 2:  Moderately differentiated. 

Grade 3:  Poorly differentiated: least normal, generally the most 
aggressive. 

More detailed information on ovarian cancer grading is available online at:  

http://www.ovarian.org.uk/ovariancancer/isitovariancancer/staging.asp. 

2.2.5 Ovarian cancer:  Diagnosis and Treatment 

Ovarian cancer is diagnosed at an advanced stage in most patients due to the non-

specific signs and symptoms of this disease.  Diagnosis of ovarian cancer may involve 

the following methods: physical examination, blood test (CA-125), abdominal fluid 

aspiration, imaging procedure (ultrasound / CT / MRI), laparoscopy, and laparotomy. 

The only way to confirm a diagnosis is to remove  a tissue from the suspicious area and 

examine it under a microscope (ACS, 2001; Marshall, 2008).  This procedure is called a 

biopsy.  

Before ultrasound became widely available, the finding of a pelvic mass or a palpable 

ovary in a postmenopausal woman was considered an indication for surgery (Valentin, 
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1999). It is obvious that imaging of suspected ovarian malignancy requires not only a 

high sensitivity, but also reliable characterisation of the lesions to allow accurate and 

consistent diagnosis.   This is particularly important since the symptoms of ovarian 

cancer are non-specific, and the patient management and treatment are tumour stage 

dependent.

2.2.5.1     Tumour Markers 

The most extensively investigated ovarian cancer associated tumour marker (antigen) is 

CA-125 (Jeong et al., 2000; Luo et al., 2003).  The concept of using tumour markers 

either for screening or diagnostic tests of ovarian cancer is dependent upon identifying 

an abnormal level of a particular marker in serum, reflecting a systemic effect of disease 

in the ovary. According to Agency for Healthcare Research and Quality (AHRQ) report 

(2006), as quoted by The Royal College of Obstetricians and Gynaecologists (RCOG) 

in their document “Guideline No: 34 Ovarian Cysts in Postmenopausal Women”,

elevated levels of CA-125 are detected in approximately 80% of ovarian cancer at the 

time of diagnosis. CA-125 however, is raised in only 50% of stage 1 cases (Skates et 

al., 2000; RCOG, 2003). It is important to note, elevated CA-125 serum levels have also 

been reported in a variety of benign conditions which could potentially affect the 

specificity, particularly for diagnosis of early-stage disease (Luo et al., 2003).  

According to Chan and Selman (2006), the use of CA-125 alone for early diagnosis is 

unhelpful, where tests carried out by Moss et al. (2005) discovered that only 20% (39 

out of 195) of the abnormal results were due to ovarian cancer.  Nevertheless, CA-125 

remains the most useful tumour marker clinically (Chan and Selman, 2006) and has 

been recommended by RCOG to be used together with transvaginal B-mode ultrasound 
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for the assessment of ovarian cysts (RCOG, 2003).  It is the most widely used tumour 

marker for monitoring  of disease to determine if second-look surgery is required 

(Skates et. al, 2000). 

Other tumour markers include carcinoembryonic antigen (CEA) for epithelial tumours; 

alpha-fetoprotein (AFP) and beta-human chorionic antigen (β-HCG) for germ cell 

tumours; and inhibin B for granulosa cell tumours (Turkington and Edelson, 2005).  
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2.2.5.2    Ultrasound-based Ovarian Cancer Diagnosis  

Ultrasound has been used in medical imaging for over half a century (Hangiandreau, 

2003), and is commonly regarded as the preferred imaging modality in the study of the 

female pelvis (Derchi et al., 2001).  Improvements in technology have been followed by 

widespread acceptance and use of ultrasound in medical diagnosis.  The introduction of 

transvaginal transducer for example, has improved visualisation of normal ovarian 

function and ovarian tumours (Twickler and Moschos, 2010).  According to Halliwell 

(2010), currently, ultrasound is responsible for 20% of all diagnostic images.  

Applications have progressed from simple measurements of anatomical dimensions to 

detailed screening for fetal abnormalities, detection of subtle changes in tissue texture, 

and detailed study of blood flow in arteries (Martin, 2010).  Ultrasound is currently one 

of the most significant, widely used, and versatile imaging modalities in medicine 

(Hangiandreau, 2003).   

Analysis of ultrasound images can assist in differentiating between benign and 

malignant lesions. It is the imaging modality of choice in the evaluation of suspected 

adnexal masses (Togashi, 2003) as well as ovarian masses (Kinkel et al., 2000).  

According to   Kinkel et al. (2000), ultrasound is the main triage method for ovarian 

cancer prior to treatment. Ultrasound-based assessment for ovarian mass 

characterisations can be summarised under the following techniques:  (i) morphologic 

information which is based on B-mode images, and (ii) blood flow information which is 

based on Doppler imaging.   

A wide range of performance of ultrasound examination in ovarian cancer diagnosis has 

been reported.  Based on their review, Kinkel et al. (2000) reported that accuracy of 
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ultrasound is 65%–94% for B-mode ultrasound, 35%–88% for colour Doppler flow 

imaging, and 48%–99% for Doppler arterial resistance measurements.  The Royal 

College of Obstetricians and Gynaecologists (RCOG), however, in its document 

“Guideline No: 34 Ovarian Cysts in Postmenopausal Women” quotes DePriest et al.

(1994) for ultrasound performance as having sensitivity of 89% and specificity of 73% 

when using a morphology index.  

Despite vast studies and reviews being carried by many researchers, which ultrasound 

technique and diagnostic criteria provide the best ovarian lesion characterisation, 

however, remains inconclusive (Kinkel et al., 2000).  Nevertheless, ultrasound 

techniques that combine gray-scale ultrasound morphologic assessments with tumour 

vascularity imaging information (colour Doppler flow imaging) in a diagnostic system, 

are significantly better in ovarian lesion characterisation compared to using Doppler 

arterial resistance measurements, colour Doppler flow imaging, or gray-scale ultrasound 

morphologic alone (Kinkel et al., 2000; Togashi, 2003).

(i) B-mode (Brightness-mode) Ultrasound 

The diagnosis of ovarian cancer from B-mode ultrasound is based on morphological 

features. The features include the cystic and solid tumour composition, the presence and 

type of septations, and papillarities.  According to Aletti et al. (2007), features highly 

suggestive of ovarian cancer include the presence of a complex ovarian mass, with both 

solid and cystic components, sometimes with internal echoes and/or septations.  The 

large size of an ovarian mass also has been found to be a significant factor in predicting 

ovarian cancer (Twickler and Moschos, 2010). Figure 2.3(a) and 2.3(b) are examples of 

B-mode images of an ovarian tumour. 
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Although evaluation of ultrasound findings is an excellent method for discriminating 

between benign and malignant adnexal tumours (Ameye et al., 2009), it is highly 

dependent on the operator‟s experience (Wang et al., 2002; Shung, 2006; Huang et al., 

2008; Rocha et al., 2011).  Hence, the lack of standardised terms and procedures in the 

interpretation of gynaecological ultrasound is a general cause of concern (Timmerman, 

2000).  In order to provide a more standardised terminology and procedure, a group of 

researchers from the International Ovarian Tumor Analysis (IOTA) group has produced 

a document entitled “Terms, Definitions and Measurements to Describe The 

Sonographic Features of Adnexal Tumors: A Consensus Opinion From The 

International Ovarian Tumor Analysis (IOTA) Group” (Timmerman et al., 2000).    

Several scoring systems for morphological features have also been introduced to 

increase the test performance. Table 2.1(a) – (c) summarise the criteria used for the 

scoring system published by several groups.  

Figure 2.3 (a) Very large, complex 
solid-cystic mass (adopted from 
Twickler and Moschos, 2010). 
 

Figure 2.3 (b) Cystic mass with 
internal echoes and multiple 
papillaries (adopted from Twickler 
and Moschos, 2010). 
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Table 2.1(a):  Detailed description of ultrasound scoring systems by Sassone et al., 
1991.

Criteria Score
Morphology 1 2 3 4 5
Inner wall
structure

Smooth Irregularities 
≤ 3 mm

Papillarities 
>3 mm

Not 
applicable,
mostly solid

-

Wall 
thickness
(mm)

Thin (≤ 3) Thick (> 3) Not 
applicable,
mostly solid

- -

Septa (mm) None Thin (≤ 3) Thick (> 3) - -
Echogenicity Sonolucent Low

echogenicity
Low
echogenicity
with 
echogenic
core

Mixed
echogenicity

High
echogenicity

Minimum total score for suggestive of malignancy: > 9

Table 2.1(b):  Detailed description of ultrasound scoring systems by DePriest et al., 
1993.  

Criteria Score
Morphology 1 2 3 4 5
Cystic wall
Structure
(thickness)

Smooth
(< 3 mm)

Smooth 
(≥ 3 mm)

Papillary
projection 
(< 3 mm)

Papillary
projection 
(≥ 3 mm)

Predominately
solid

Volume 
(cm3) <10 10-50 >50 – 200 >200-500 >500

Septum
structure

No septa Thin septa 
(< 3 mm)

Thick septa 
(3 mm to 1 
cm)

Solid area 
(≥ 1 cm)

Predominately
Solid

Minimum total score for suggestive of malignancy: ≥ 5
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Table 2.1(c):  Detailed description of ultrasound scoring systems by Lerner et al., 
1994.

Criteria Score

Morphology 1 2 3 4 5
Wall 
structure

Smooth or
small
irregularities 
< 3 mm

- Solid or not
applicable

Papillarities 
≥ 3 mm

-

Shadowing Yes No - - -
Septa None or thin 

(< 3 mm)
Thick 
(≥ 3 mm)

- - -

Echogenicity Sonolucent 
or
low-level 
echo
or 
echogenic
core

- - Mixed or 
high

-

Minimum total score for suggestive of malignancy: ≥ 3

Although the use of a scoring system helps to improve the test performance, according 

to Gramellini et al. (2008), the existence of multiple scoring systems may pose 

problems in clinical practice mainly for two reasons: (i) there are so many of them and, 

(ii) the parameters to be considered are often considerably complex.  Moreover, there is 

a lack of consistency because of the variables used and their relative importance was 

arbitrarily defined (Timmerman et al., 2008). They quoted an example that there was no 

general agreement as to when a solid protrusion from a cyst wall projects sufficiently 

into the cyst cavity for it to be termed a solid papillary projection. 
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Risk of malignancy index (RMI) 

The risk of malignancy index (RMI) has been developed to guide clinicians to identify 

those patients with pelvic masses who are likely to have ovarian cancer. It is an 

effective way of triaging women into those who are at low, moderate, or high risk of 

malignancy (RCOG, 2003). To date, various versions of the risk of malignancy index 

have been published.  According to Chan and Selman (2006), the most commonly used 

version in the United Kingdom is that published by the Royal College of Obstetricians 

and Gynaecologists in October 2003 (RCOG, 2003).   

The formula for calculating the risk is:   

RMI = U x M x CA-125      Equation (1)  

where U is the ultrasound score and M is the menopausal status.  

One point is scored for each of the following ultrasound characteristics:  

multi-loculated cyst, evidence of solid areas, evidence of metastases, 

presence of ascites, and bilateral lesions. U  = 0 (for ultrasound score of 0); 

U  = 1 (for ultrasound score of 1); U  = 3 (for ultrasound score of 2-5); and 

M = 3 for all postmenopausal women. 

The risk is considered high (75%) if the RMI exceeds 250.  It is worth noting that, one 

of the issues of RMI is that, it is dependent on serum CA-125, which is a non-specific 

marker that leads to unnecessary surgical intervention (Ortashi et al., 2008).   

In an attempt to improve the diagnostic accuracy, a team at the Doppler Ultrasound 

Department in the University Hospital of Wales has introduced a scoring system named 

Cardiff Malignancy Index (CMI). CMI is independent of CA-125.  Instead, it combines 
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the finding of B-mode ultrasound with Doppler ultrasound. Even though the initial 

results showed good sensitivity and specificity, Ortashi et al. (2008) stated that larger 

numbers and inter-observer studies were required to validate their findings. 

(ii) Doppler Ultrasound  

The Doppler effect enables ultrasound to be used to detect the motion of blood 

(Horskins, 2010). Doppler ultrasound has been available to clinicians for nearly 40 

years (Boote, 2003). It has been used mainly for discriminating between benign and 

malignant lesions (Alcazar, 2006).  Doppler ultrasound is used to measure blood 

velocity by means of the Doppler frequency shift of the echoes received from red blood 

cells (Rubin, 1994) and allows the assessment of tumour vascularity.  The basis is that, 

malignant neoplasms have active blood vessel creation (angiogenesis) compared to 

normal or benign neoplasms.  

In colour Doppler imaging technique, the flow detection within a mass is an indication 

of malignancy (Kinkel et al., 2000). While acknowledging that the amount and 

appearance of intra-tumoral blood vessels give clues to the nature of the tumour, 

Timmerman (2000) raised two issues about the colour Doppler ultrasound: (i) the 

assessments are subjective, and (ii) the assessments depend on the quality of the 

equipment and the settings. 

In Doppler arterial resistance technique (Doppler signals analysis), a threshold value is 

used to characterise the mass. Parameters such as pulsatility index (PI), resistive index 

(RI), and peak systolic velocity (PSV) have been used. In 15 data sets reviewed by 

Kinkel et al. (2000), in which a PI was used, a threshold value of 1.0 was used in 67% 
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of the studies; other threshold values were 0.62-1.50. For the RI, out of 16 data sets 

reviewed, the authors reported that a large range of threshold values were used: 0.4 - 0.8.   

The major limitation of RI, PI, and  PSV is that, the range observed in malignant masses 

overlaps with that observed in benign masses (Kurjak et al., 2003; AHRQ, 2006), 

making this approach impractical from clinical point of view (Valentin et al., 1994). 

This argument is supported by Laban et al. (2007) when the authors concluded that RI 

measurement cannot be used alone for the detection of malignant ovarian tumours, 

because there is too much overlap between RI of benign and malignant ovarian tumours.  

The overlap in the range value between benign and malignant masses limits the 

effectiveness of the application of threshold value; that is what cut-off value is to be 

used. Consequently, according to Kurjak and Kupesic (2003), the attitudes concerning 

the usefulness of Doppler ultrasound for the assessment of ovarian vascularity in the 

detection of adnexal malignancies have been equally divided.  

A new technique of Doppler ultrasound provides three-dimensional (3D) imaging. 

Three-dimensional (3D) ultrasound was first demonstrated in 1970s while the first 

commercial 3D ultrasound became available in 1989 (Prager et al., 2010). Three-

dimensional ultrasound exploits the real-time capability of ultrasound to build a volume 

that can then be explored using increasingly affordable high-performance workstations 

(Nelson, 2006).   

According to Benacerraf (2008), to date, there is not enough information available to 

determine whether 3D imaging of the adnexa adds significant information that is not 

available from standard two-dimensional (2D) scanning.  Even though there are studies 

reporting that 3D ultrasound may be useful for differentiating benign from malignant 
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ovarian tumours (Kurjak et al., 2002; Alcazar and Castillo, 2005; Testa et al., 2005), 

other studies either suggest the need for further research (Rieck et al., 2006; Alcazar, 

2006) or is to be used as an adjunct to morphologic assessment (Wilson et al., 2006).  

While Fishman et al. (2001) states that the clinical value of 3D ultrasound for the early 

detection of ovarian carcinoma has yet to be determined, Dai et al. (2008) concluded 

that it did not improve the diagnostic accuracy for the prediction of malignancy in 

adnexal masses and further emphasise that 2-D transvaginal sonography may still 

remain an important modality for the prediction of adnexal malignancy. In addition to 

that, Jokubkiene et al. (2007) concluded that objective quantification of the colour 

content of the tumour scan using 3D ultrasound did not seem to add more to B-mode 

imaging, compared to the subjective quantification using 2D power Doppler ultrasound. 

In a recent review by Alcazar and Jurado (2011), they concluded that further studies are 

needed to establish the role of 3D ultrasound in clinical practice in gynaecological 

oncology. 
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2.2.5.3 Other Imaging Modalities  

Computed tomography (CT) and magnetic resonance imaging (MRI) may be used to 

help in the diagnosis at presentation, to assess the extent of disease, to assess the 

residual disease, to assess the response to treatment, and to assess the recurrence of the 

disease (Jeong et al., 2000; Sohaib and Reznek, 2002).   

Computed tomography (CT) has been used primarily in patients with ovarian 

malignancies, either to assess disease extent prior to surgery, or as a substitute for 

second-look laparotomy (Jeong et al., 2000). Computed tomography (CT) imaging of 

the abdomen or pelvis allows comprehensive evaluation of all potential sites of 

peritoneal implants or lymphadenopathy as well as of the primary tumour site. 

According to Kurtz et al. (1999), CT was superior in the diagnosis of malignancy; 

however, ultrasound performed equally well with CT in detection of masses.  Compared 

to ultrasound, besides being more expensive, another major disadvantage of CT imaging 

is that, it involves ionising radiation (Togashi, 2003).  

Comparison studies of ultrasound and MRI have shown MRI to be better in 

differentiation of benign from malignant masses (Kurtz et al., 1999). The accuracy of 

MR imaging in the diagnosis of mature cystic teratomas, endometriomas, and 

leiomyomas is well established, particularly due to its superb contrast resolution (Jeong 

et al., 2000). Agency for Healthcare Research and Quality (AHRQ) however, in its 

report on Management of Adnexal Mass (2006) stated that, in pooled analysis, the 

combination of ultrasound morphology and Doppler blood flow is comparable to MRI. 

Nevertheless, the major limitations of MRI are its limited availability and long scanning 

times (Forstner et al., 1995). Jeong et al. (2000) suggests that MRI is better reserved for 
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problem solving when ultrasound findings are non-diagnostic.  The reason is that, 

although MRI is more accurate for diagnosis, it is also more expensive. 

It is important to note that, compared to the CT and MRI, ultrasound is relatively in-

expensive, portable, and widely available. Furthermore, ultrasound does not cause any 

known risk to the patient. According to RCOG (2003), there is no routine role yet for 

Doppler, MRI, CT or PET, because the relative expense and limited availability of these 

modalities, which can cause the delay in the referral and treatment.  
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2.2.5.4   Laparoscopy and Laparotomy

The definitive diagnosis of ovarian cancer is by performing surgery (laparoscopy or 

laparotomy) and biopsy (removal of tissue for examination under a microscope).  

Laparoscopy is the insertion of a thin, lighted tube (called a laparoscope) through the 

abdominal wall to inspect the inside of the abdomen and remove tissue samples, while 

laparotomy is a surgical incision made in the wall of the abdomen (NCI, 2006).The 

choice of surgery depends on the probability of malignancy (Kinkel et al., 2000). 

Laparotomy is performed if the suspicion is strong for malignancy (Benedet et al., 

2000).  According to Jeong et al. (2000), since the delay in performing definitive 

staging laparotomy may be associated with a worse prognosis, laparoscopy on the other 

hand, is reserved for patients with masses that are non-suspicious based on imaging 

findings.

Clinical judgment is a major factor in surgical decision-making and pertinent in the 

approach to a pelvic mass in the young woman of reproductive age (Benedet et al., 

2000). In many young patients with non-malignant ovarian lesions such as 

endometriosis and benign cysts, treatment with laparoscopy can avoid laparotomy 

procedure (Jeong et al., 2000). 

In a postmenopausal woman who is not suitable for conservative management, RCOG 

has recommended an oophorectomy procedure even when the risk of malignancy is low 

(RCOG, 2003).  Exploratory laparotomy is necessary in all cases of suspected ovarian 

cancer to confirm the diagnosis, to determine the extent of the disease (by staging), and 

to resect the tumour (Jeong et al., 2000). 
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2.2.6 Ovarian Cancer: Prognosis 

The most important determinant of survival for ovarian cancer is the stage (extent of 

spread) of disease at diagnosis (Cancer Research UK, 2010(c)). The prognosis is 

considerably changed by the extent of spread. According to Kurtz et al. (1999), the 5-

year survival rate is 85% if the cancer is confined to the ovaries (stage 1), 55% if the 

cancer has spread into pelvis (stage 2), 14% if the cancer has spread to the abdominal 

(stage 3), and 4% if the cancer has spread beyond the abdomen (stage 4).   However, 

there was a slight difference in the survival rate recorded in the Thames Cancer Registry 

area, from 1992 to 1996 as published by Cancer Research UK (Cancer Research UK , 

2010(c)) in their website (Table 2.2): 

Table 2.2: Five-year relative survival for ovarian cancer patients diagnosed in the 
Thames Cancer Registry Area, 1992-1996

Stage Proportion of 
women diagnosed

Five- year 
relative survival 95% CI

Local 20% 73% 70.6-75.9

Direct extension 8% 34% 30.7-38.2
Regional lymph nodes 
involved 1% 27% 16.4-37.8

Distant metastases 40% 16% 14.7-17.8

Stage unknown 31% 39% 36.2-42.1
(adopted from http://info.cancerresearchuk.org/cancerstats/types/ovary/survival/ )
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2.3 Objective Characterisation of Medical Images 

Over the last few decades, a considerable number of research studies have applied a 

variety of quantitative analysis methods in order to improve the differentiation of tissues. 

Because each individual perceives grey-scale images differently, it leads to the 

variability in image interpretation (Pierson and Adams, 1995).  Quantitative analysis 

methods on the other hand, are able to eliminate the subjective interpretation of the 

image (Jaqaman and Danuser, 2009).  

There are two quantitative approaches that have been explored extensively: (i) analysis 

of the radio-frequency (RF) data, and (ii) texture analysis of the greyscale image.  

Texture analysis, however, gains more attention from researchers for several reasons:    

(i) Texture analysis is generally easier to implement compared to 

using the RF data (Morris, 1988(b)). 

(ii) RF data analysis requires specialised equipment not normally 

available in clinical settings (Mass, 1994). 

(iii) Equipment to obtain the RF data from the scanner is not readily 

available in most ultrasound centres (Coleman, 2007). 

(iv) Commercial ultrasound typically provides B-mode images only 

and not the RF data (Noble, 2010). 

(v) The RF data must be sampled at a very high rate and requires a 

large storage space (Alqahtani, 2010). 

2.3.1 Analysis of RF Data 

The use of RF ultrasonic data for objective quantification started in as early as late 70s 

when Lerski et al. (1979) applied this technique to study alcohol induced diffuse liver 

disease.  In 1981, Lerski et al. extended their work by differentiating between normal 
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and several diffuse alcoholic liver disease aetiologies: alcoholic liver disease, primary 

biliary cirrhosis, haemochromatosis and chronic active hepatitis. Both studies gave 

encouraging results. In 1980, Roman used RF data (ultrasound attenuation coefficient) 

to characterise liver pathology while in 1995, Chan analysed RF data to quantitatively 

characterise plaque, blood and vessel wall of carotid atheroma, and reported a 

substantial improvement in the characterisation.

Recently, Advanced Medical Diagnostics (AMD) has developed a technique called 

HistoScanning, to quantitatively characterise prostate tissue based on the analysis of RF 

data (AMD, 2010(a)).  On the assessment of this technique which involved 29 men, 

Braeckman et al. (2007) concluded that this technique has the potential to identify and 

characterise prostate cancer.  In their further study of this technique, on relatively small 

prostate cancer lesions, the authors reported that their results showed that the lesions 

can be accurately detected, but stated that verification in a larger group was needed 

(Braeckman et al., 2008).   

Using the same technique developed by AMD, Spethmann et al. (2010) carried out a 

study to predict the chance of neuro-vascular bundle (NVB) preservation in prostate 

cancer and reported that the results encouraged further investigation. With regards to the 

use of this technique on ovary, although Lucidarme et al. (2010) reported that the 

analysis of RF data from ultrasound using HistoScanning technique is highly sensitive 

for the diagnosis of malignant ovarian masses, the company (AMD) deems its 

application on ovarian cancer as still in the development stage (AMD,  2010(b)). 



34  

2.3.2 Image Texture Analysis  

Image texture is defined as a function of the spatial variation in pixel intensities 

(Tuceryan and Jain, 1998) while the analysis of image texture refers to the branch of 

imaging science that describes the image properties by textural features (Nailon, 2010).  

Image texture may carry substantial information about the structure of physical objects.  

Since the output of texture analysis is numerical, the ambiguity in recognition as well as 

discrimination of the lesion may be avoided (Chan and McCarty, 1990).  According to 

Tourassi (1999), image texture analysis is currently undergoing great development and 

utilization within the field of medical imaging.  Texture analysis concepts and methods 

are described later in this thesis (Chapter 3).  

Texture analysis has been utilized in a variety of application domains such as surface 

inspection, document processing, and medical imaging. It has played a major role in 

some mature domains, such as remote sensing (Tuceryan and Jain, 1998). In the 

medical domain, although interesting results were reported, early attempts of texture 

analysis application were not successful due to several main obstacles such as 

computers were not sufficiently powerful (Doi, 2007; Giger et al., 2008), advanced 

image-processing techniques were not available (Doi, 2007), limited quality of the 

image (Giger et al., 2008), and digital images were not easily accessible (Doi, 2007).   

Several factors, namely the development of physical sciences, engineering, computer 

technology and image processing, however, have collectively contributed to further 

development of texture analysis.  For instance, the developments in transducer design 

for ultrasound equipment have resulted in transducers with greater band width 

(Averkiou et al., 1997). The broadband transducers improve the axial resolution of the 
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images (Browne et al., 2004).  Since texture analysis deals with the pixel intensity and 

its relationships with neighbouring pixels, resolution is one of the factors that may 

influence the performance.  In addition, the advancement in engineering has improved 

the contrast and reduced the image noise (Bridal et al., 2003).  

The potential use of computers for analysis of medical images has been considered 

since 1950s with a tremendous growth over the past 20 years (Doi et al., 1999;  Giger et 

al., 2008).  This can be seen in a significant increase of publication in the literature.  For 

example, in Medical Physics journal alone, more than 20 articles were published in 

2008 compared to only 5 articles published in 1990 (Giger et al., 2008).   

Early studies utilising texture analysis used first-order statistics, such as the grey level 

mean and variance (Chan, 1998). Although these parameters have the advantage that 

they can be calculated quickly, they are unsophisticated assessors of textural pattern.  

According to Thijssen (1992), as computational speed of computer improved, many 

ultrasound tissue characterisation studies applied second-order statistics, such as the 

grey level co-occurrence matrix (GLCM) and grey level run length matrix (RLM). 
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2.4 Application of Texture Analysis on Medical Images 

Texture analysis was first used for satellite image analysis (Herlidou et al., 1999) and is 

increasingly used to evaluate the texture properties in order to improve interpretation of 

medical images (Dhawan, 2003).  Image texture of medical images describes internal 

structure of human tissues or organs (Szczypinski et al., 2009) as well as pathological 

changes (Mayerhoefer et al, 2008; Xian, 2010).  Many studies have demonstrated the 

value of texture analysis in medical applications.  The choice of texture analysis rests on 

its ability to quantitatively describe the image. 

According to Doi (2007), early studies on texture analysis techniques on medical 

images were reported in the 1960s. It has been applied on various types of tissues and 

organs. For instance, it has been applied on carotid artery (Coleman et al., 2005), breast 

(Alacam et al., 2003), heart (Vince et al., 2000), prostate (Basset et al., 1993), pancreas 

(Lefebvre et al., 1998), and liver (Smutek et al., 2006).  

Texture analysis has also been applied across a various types of imaging modalities 

such as ultrasound, magnetic resonance imaging (MRI), computer tomography (CT), 

conventional x-ray, mammogram, optical coherence tomography (OCT) and capsule 

endoscopy (CE).  According to Tsai and Kojima (2005), the employment of texture 

analysis in medical imaging has been proved to be valuable, particularly for MRI, CT, 

and ultrasound.  Most of the previous works in texture analysis involves MRI images 

because of the great amount of detail provided by this technique (Castellano et al., 

2004). Nevertheless, texture analysis of all sorts of images is possible and has been 

performed.   
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The following sections provide review of texture analysis applications on medical 

images and are summarised according to the type of the imaging modalities: ultrasound, 

conventional x-ray, CT, MRI and mammography. 

 2.4.1  Texture Analysis on Ultrasound Images 

Many studies have been carried out to quantitatively characterise the echo-texture of B-

Mode images.  Texture analysis of ultrasound images lies on the principles that, if 

disease processes affect the structure of the tissue, the tissue should reflect an altered 

ultrasound signal, which will in turn give in texture features value different to the 

normal tissue (Morris, 1988(b)). The transformation of cancerous tissue for example, 

will result in the changes in the tissue characteristics such as density and elasticity.  

Based on this principle, it is expected that textural features derived from cancerous 

tissue and normal tissue will differ. 

Morris (1988(b)) demonstrated that grey level co-occurrence matrix (GLCM) features 

derived from ultrasound images have a significant difference between the placenta of 

smoker and non-smokers.  Similarly, using GLCM feature, Tsai and Kojima (2005) 

extracted textural features from ultrasound images to classify heart disease.   From their 

findings, the authors concluded that texture analysis of ultrasound images has the 

potential to become clinically useful for computer-aided diagnosis of cardiomyopathy.   

Texture analysis of endoscopic ultrasound (EUS) images has also received much 

attention. In a recent study by Das et al. (2008), they reported that their initial attempt to 

characterise pancreatic cancer from EUS images was encouraging.  The authors 
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discovered that texture analysis was able to differentiate pancreatic cancer from chronic 

inflammation and normal tissue, and reported the area under the ROC curve of 0.93. 

Texture analysis of EUS images has previously been applied by Norton et al. (2001) to 

differentiate between pancreatic malignancy and pancreatitis; and by Loren et al. (2002) 

for analysis of lymph node metastasis in patients with oesophageal carcinoma.  Both 

studies reported promising results. 

Texture analysis has also been applied extensively on liver related diseases.  In one of 

the most recent studies, Xian (2010) reported that textural information extracted from 

B-Mode sonography is an efficient feature for distinguishing liver diseases.  This is 

supported by many promising previously reported results. For instance, Fellingham and 

Sommer (1984) uses texture analysis to characterise the in vivo tissue structure of the 

human liver and spleen. Promising results also have been reported by Kadah et al.

(1996) in their work to quantitatively characterise the tissue of diffuse liver disease.  

Later, based on their experiment findings, Mojsilovic et al. (1998) suggested that 

wavelet-transform features could be a reliable method for a texture characterisation of 

B-mode liver images.  In a more recent study, Yeh et al. (2003) used GLCM and 

wavelet features to classify six grades of liver fibrosis. Their results revealed that the 

best classification accuracy of two, three, four and six classes were 91%, 85%, 81% and 

72%, respectively. Texture analysis also has been implemented on liver related diseases 

by many other researchers (Layer et al., 1990; Wang et al., 2002; Lee et al., 2003;  

Ribeiro and  Sanches, 2009). 

Besides liver, texture analysis of ultrasound images has also been applied on thyroid 

gland. A promising result was reported by Smutek et al.(2003): their results showed that 
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chronic inflamed thyroid tissue could be differentiated from healthy thyroid gland tissue 

and reported a classification success rate of 100%.   

Texture analysis technique has also been extensively applied on ultrasound images to 

characterise carotid plaques (Elatrozy et al., 1998; Rakebrandt et al., 2000; 

Christodoulou et al., 2003; Coleman et al., 2005; Stoitsis et al., 2006(a); Kakkos et al., 

2007), breast (Murmis et al., 1988; Lefebvre et al., 2000; Huber et al., 2000; Alvarenga 

et al., 2007; Sivaramakrishna et al., 2002; Liu et al., 2010) , and prostate (Huynen et al., 

1994; Sheppard and Shih, 2005; Han et al., 2008; Llobet et al., 2007). 

2.4.2  Texture Analysis on Other Imaging Modalities Images 

Besides ultrasound, the application of texture analysis also has been studied across the 

various imaging modalities such as X-ray, CT, MRI, and optical coherence tomography, 

with promising results reported.  The following sections provide brief review of texture 

analysis application on these modalities. 

2.4.2.1 Texture Analysis on Conventional X-Ray Images 

One of the early texture analysis applications on X-ray images was reported by Chien 

and Fu on chest X-ray images in 1974. Van Ginneken et al. (2002) also applied this 

technique on chest radiograph to produce abnormality score for the images collected 

from a TB mass chest screening program. Besides chest images, texture analysis also 

has been widely applied on bone tissue. For instance, Bocchi et al. (1997) revealed that 

their experimental results indicate a good performance of texture analysis in 

characterisation of bone tissue (between normal and altered tissue) with accuracy and 
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sensitivity of over 90%, and specificity of 81%.  Similarly, based on X-ray image, 

Materka et al. (1999) concluded that texture analysis indicates potential usefulness as an 

aid to the diagnosis of skeletal diseases.  In a more recent study, Guggenbuhl et al.

(2006) reported that, X-ray texture analysis appeared to be a suitable method for bone 

micro-architecture assessment.   

The application of texture analysis techniques on X-ray images is not only confined to 

human but also to animal images. These techniques have been used for the 

characterisation of bovine ovarian follicles (Singh et al., 1998), for the study of the 

endometrial texture of cows (Schmauder et al., 2008), and for the examination of 

cyclical changes (Herzog et al., 2008) in bovines luteal. 

2.4.2.2 Texture Analysis on CT Images 

Texture analysis has been demonstrated to be useful in improving the interpretation of 

CT images.  Many texture analysis studies have been applied on two-dimensional (2D) 

CT images. For instance, Gletsos et al. (2003) uses GLCM features to characterize four 

groups of liver tissue: normal liver, hepatic cysts, haemangioma, and hepatocellular 

carcinomas.  In 2006, the feasibility of this technique on CT images was investigated by 

Xu et al. for the detection of interstitial lung diseases.  They reported the sensitivity was 

between 73%-93% and the specificity was between 90%-98%. In a recently published 

study carried out by Kumar and Moni (2010) to characterise the liver tumour by CT, 

their experiment reveals encouraging results. They have suggested that the technique 

used could be extended for diagnosis of other types of liver diseases.  Chen et al.

(2010), using texture analysis features as an input, reported a promising intracranial 
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pressure (ICP) prediction model.   They also suggested that their approach could 

potentially be extended for analysis of other body regions.   

Apart from 2D CT images, texture analysis has also been applied on 3D CT images. For 

instance, Tesar et al. (2008) investigated three-dimensional CT scans of the abdominal 

area.  Similar to Chen et al. (2010), Tesar et al. (2008) suggested the potential 

application of texture analysis to be extended to the other organs. 

2.4.2.3 Texture Analysis on MRI Images 

According to Herlidou et al. (2003), texture analysis was first implemented on MRI 

images at the beginning of the eighties.  Its applications in medical fields have slowly 

increased over the last ten years with a large number of publications now in the 

literature (Lerski, 2006). Similar to the previously reviewed texture analysis 

applications, findings from a review of the texture analysis on MRI images are also 

encouraging.   

Texture analysis on MRI images has been applied on multiple sclerosis (MS) related 

studies.  For instance, in discriminating MS from cerebral microangiopathy (CM) 

lesions, Theocharakis et al. (2009) reported the best overall accuracy (88.46%) was 

attained.  In a recent study on MS related disease, Harrison et al. (2010), on the 

classification of white matter and multiple sclerosis lesions, reported that texture 

parameters provide an excellent distinction: an accuracy between 96%-100% was 

achieved. 
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In another recent study on MRI images, Holli et al. (2010) reported significant changes 

in texture parameters of cerebral tissue between hemispheres and corpus callosum (CC) 

segments in traumatic brain injury (TBI) patients. The authors suggested that this 

technique may serve as a novel additional tool for detecting the conventionally invisible 

changes in cerebral tissue in mild TBI, which may help clinicians to make an early 

diagnosis.  

2.4.2.4 Texture Analysis on Mammography Images 

Texture analysis has also been applied on mammography-based images.  For example, 

in 1992, Miller and Astley applied texture analysis on mammography images to 

discriminate between glandular and fatty regions.  Out of 40 images used, they achieved 

a correct classification rate of 80%.  A higher accuracy rate (89%) was reported by 

Karahaliou et al. (2007) when they investigate the feasibility of texture analysis in 

discriminating malignant from benign breast tissue. 

Besides ultrasound, conventional x-ray, CT, MRI, and mammography, texture analysis 

techniques have also been implemented on other imaging modalities such as on optical 

coherence tomography (Gossage et al., 2003; Baroni et al., 2007) and on capsule 

endoscopy (CE) images (Li and Meng, 2009).  
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2.5 Summary 

Ovarian cancer is one of the most common cancers in women and is the leading cause 

of death from gynaecologic malignancies.  Symptoms of ovarian cancer include 

abdominal pain and bloating, fatigue, weight loss, urinary symptoms, and occasionally 

abnormal vaginal bleeding.  Two most influential factors associated with the risk of 

developing ovarian cancer are the increase in age and the presence of certain gene 

mutations.   

Ovarian cancer is grouped according to the area of the ovary it originated from. Staging 

which relates to how far the cancer has spread into other part of the body is an important 

factor in predicting the survival rate.  Ovarian cancer staging is based on a system called 

the FIGO system. Another important characteristic of the cancer is the grade. It 

indicates how much the tumour resembles normal tissue in appearance and the 

likelihood of the cancer to spread. 

To diagnose ovarian cancer, results from tumour marker analysis are normally used in 

conjunction with the findings from imaging modalities such as ultrasound, MRI, and CT. 

Among these three modalities, ultrasound is considered the main modality for ovarian 

cancer triage.  B-mode ultrasound is the main ultrasound technique for ovarian cancer 

diagnosis.  There is no routine role yet for Doppler ultrasound, MRI, or CT. 

The interpretation of the ultrasound image however,   is highly dependent on operator‟s 

experience, and several scoring systems for morphological features have been 

introduced to increase the test performance.  The risk of malignancy index (RMI), 
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which incorporates the results from the scoring system, has been developed to guide 

clinicians to identify the likelihood of having ovarian cancer.  

Several techniques such as radio-frequency (RF) data analysis and texture analysis able 

to quantitatively characterise the radiology data.  Although RF data analysis is more 

appealing compared to B-mode image analysis from the theoretical point of view, in 

practice however, the added computational cost of working large volume of RF data is 

at odds with the practical considerations that few ultrasound scanners today  offer 

access to the RF signal.  Consequently, texture analysis is more widely applied to 

characterise ultrasound images.   

Texture analysis has been applied on various types of tissues and organ such as carotid 

artery, breast, heart, prostate, pancreas, and liver.  It has also been applied across a 

various types of imaging modalities such as ultrasound, MRI, CT, conventional X-Ray, 

and mammogram.  

Despite a large study that has been carried out in the application of texture analysis on 

medical images, to our knowledge, texture analysis of B-mode images has yet to be 

applied on the characterisation of ovarian cancer.  Hence, the aim of this study was to 

investigate the feasibility of applying texture analysis to characterise ovarian lesions 

based on B-mode images. 
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Chapter 3 
Texture Analysis and Phantom Image Acquisition 

The aim of this chapter is to describe the key topics related to this study. This includes 

B-mode ultrasound principles, endo-cavity transducer, texture analysis concepts, and 

phantom image acquisition processes.  Texture analysis software (MaZda 4.6, Institute 

of Electronics, Technical University of Lodz, Poland), image processing software 

(Adobe Photoshop 6.0, Adobe System Incorporated), and statistical tests used in this 

study are also briefly discussed. Specific details of the methodologies and statistical 

analysis are given in the respective chapters. 

Section 3.1 gives an overview of the equipment, software, and statistical tests used in 

this study. It also describes the main processes involved in texture analysis.  In Section 

3.2, the physical principles related to B-mode image formation are briefly outlined 

while Section 3.3 briefly introduces the endo-cavity transducer. In Section 3.4, the 

texture analysis concepts are briefly described which includes texture analysis 

approaches and methods, with emphasis given to the methods employed in this study.  

Section 3.5 describes the ultrasound scanner, the transducers and the test object used for 

phantom studies.  Section 3.6 briefly describes the texture analysis software while 

Section 3.7 briefly describes the image processing software, used in this study. Section 

3.8 outlines the statistical tests employed.  Finally, Section 3.9 summarises the key 

topics discussed in this chapter.   

Throughout this chapter, the term „texture analysis‟ refers to the „texture analysis of the 

digital image‟. 
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3.1 Background 

In this study, a two-dimensional (2D) transvaginal (TSV) transducer was used to 

acquire B-mode images for phantom studies, using a Toshiba Xario ultrasound scanner. 

The clinical images used for the classification of normal tissue, cyst and malignant 

tissue, which were obtained from the achieved images, also were acquired using 2D 

TSV transducer.  

As discussed in Chapter 2, texture analysis techniques, which offer objective 

characterisation of the images and has gained great interest among researchers, was 

employed in this study.  In general, texture analysis can be broken down into three 

major steps:  

(i) Image acquisition  

- The acquisition of the image by means of a suitable scanner 

and stored in digital format. 

(ii) Image analysis  

- The computation of a characteristic descriptor of numerical 

parameters for a defined region of interest (ROI), which is 

able to numerically describe its texture properties.  

(iii) Texture / image classification 

- The determination, to which classes (such as normal and 

abnormal tissue) a texture of defined ROI belongs to. 

Figure 3.1 illustrates, in block-diagram form, the texture analysis pathways employed in 

this study which includes information about the equipment and software used.  Prior to 

features extraction, the original image was first enhanced to improve the visualisation 

using Adobe Photoshop 6.0.  Magnetic lasso tool was used to aid in the ROI delineation, 

and   MaZda 4.6 (dedicated software for texture analysis) was used for features 

extraction. 
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Figure 3.1: Block diagram of the texture analysis pathways employed in the 
study.
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3.2 Basic Principles of B-mode Ultrasound 

The use of ultrasound as a diagnostic modality came after Langevin made use of a 

pulse-echo technique called SONAR (Sound Navigation and Ranging) in 1916. Some of 

the major advantages of ultrasound, in comparison to other imaging modalities, are due 

to it being non-invasive, readily available and inexpensive.  Real-time B-mode 

scanning, a most widely used ultrasound technique, did not become widely established 

until the late 1970s (Whittingham, 2000).  According to Barnett (2000), simple B-mode 

imaging is not capable of producing harmful temperature increases in tissue. 

Diagnostic ultrasound is performed by using a pulse-echo approach. A small, spatially 

localized pulse of ultrasound is produced by a device called a transducer and is 

transmitted into the adjacent tissue.   All transducer elements have the same basics 

components: a piezoelectric plate, a matching layer and a backing layer, as shown in 

Figure 3.2.  

Figure 3.2: The basic component elements in an
ultrasound transducer (adopted from Whittingham, 
2007)
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When a voltage is applied to the crystal, it causes it to vibrate and produces the 

ultrasound pulse, i.e. the transducer converts electrical energy into the transmitted sound 

waves. In medical diagnostic applications, the frequency range used are between 1-20 

MHz (Duck, 2000), which is greater than the upper limit of human hearing.  

Nevertheless, frequencies up to 40 MHz may be used in special applications and in 

research (Martin and Ramnarine, 2010).   

The ultrasound pulse traverses a straight path and is often referred to as an ultrasound 

beam. The speed of propagation of a sound wave is determined by the medium it is 

travelling.  The properties of the medium which determine the speed of sound are 

density and stiffness (Martin and Ramnarine, 2010).  Density, ρ (rho), is a measure of 

the mass, for a given volume.  It is measured in units of kg m-3.  Stiffness is a measure 

of how well a material resists being deformed when it is squeezed.  Stiffness, k, is 

measured in units of Pascal (Pa). Mathematically, the speed of sound is expressed by 

the following equation: 

Speed of sound (c) = Sqrt(k/ρ)     Equation (2)   

Hence, low density and high stiffness lead to high speed of sound.  On the other hand, 

high density and low stiffness lead to low speed of sound.  It should be noted, although 

gasses have low density (which means higher speed is expected in gasses), they have 

very low stiffness (high compressibility), leading to relatively low speed of sound 

compared to liquids and solids.  Ultrasound pulses travel through biological tissues with 

an average velocity of about 1,540 m/s.  Examples of the speed of sound in some human 

tissues are given in Table 3.1.   
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When an ultrasound wave propagates through soft tissue, the energy associated with the 

wave is gradually lost – an effect known as attenuation (Martin and Ramnarine, 2010).  

An ultrasound wave can be attenuated by several mechanisms: absorption, scattering, 

and divergence of the beam.  The rate at which the intensity is attenuated is referred to 

as the attenuation coefficient. It is measured in units of dBcm-1.  Examples of the 

attenuation of sound in some human tissues and liquid are given in Table 3.2. 

Table 3.2: Attenuation of sound in some human tissues 
and liquid (adopted from Martin and Ramnarine, 2010). 

Tissue / organ Attenuation
(dB cm-1 MHz-1)

Liver 0.399
Brain 0.435
Muscle 0.57
Blood 0.15
Water 0.02*
Bone 22.00
* proportional to f2

Table 3.1: Speed of sound in some human tissues 
and liquids (adopted from Duck, 1990). 

Tissue / organ Speed (m s-1)

Liver 1,578

Kidney 1,560

Amniotic fluid 1,534

Fat 1,430

Water 1,480

Bone 3,190-3,406

Air 333
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Another important concept in ultrasound image formation is the acoustic impedance. 

The acoustic impedance of a medium (z) is a measure of the response of the particles of 

the medium in terms of their velocity (v) to a wave of a given pressure (p) (Martin and 

Ramnarine, 2010). It is analogous to electrical impedance (or resistance, R). 

Mathematically, the acoustic impedance is expressed by the following equation: 

Acoustic impedance (z) = p/v     Equation (3)   

Similar to the speed of sound, the acoustic impedance of a medium is determined by its 

density (ρ) and stiffness (k). Mathematically, it is expressed by the following equation: 

Acoustic impedance (z) = Sqrt(ρk)     Equation (4)   

By combining equation 2 and equation 4, acoustic impedance (z) can be rewrite as: 

Acoustic impedance, z, = ρc  Equation (5)   

When a sound wave travelling through one medium meets an interface with a second 

medium of different acoustic impedance, some of the wave is transmitted into the 

second medium, some is reflected back, and some is scattered.  Ultrasound waves are 

reflected at large interface and scattered by small target.  

As the pulse travels deeper into the body, there will be a long train of echoes en route 

back toward the transducer. In B-mode imaging, the proportion of the wave reflected 

(echoed) by various tissue interfaces is received by the transducer, converted into 

electrical energy, amplified and finally displayed as a grey-scale image on a video 

screen.  Pulses for successive beam lines will be transmitted after all of the echoes from 

the previous beam line have been detected by the transducer. After all of the echoes 

from the entire beam lines have been detected and processed, these signals are mapped 
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to the proper locations in the image pixel matrix, and the complete B-mode image is 

displayed.  

An ultrasound image is composed of an array of pixels of different intensity.   Each 

pixel represents a discreet intensity and it relates to the reflection of the ultrasound 

beams.   The different reflectivity of various structures encountered by the pulse cause a 

corresponding variation of the detected echo strength. Thousands of pixels collectively 

form the image. It is represented by one of 256 (0 to 255) shades of grey ranging from 

black (represented as „0‟) to white (represented as „255‟).  Figure 3.3 depicts the basic 

component / process involved in ultrasound imaging. 

Figure 3.3: Block diagram of a typical B-mode imaging system (adopted from Martin, 2010).
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In B-mode images, more reflective structures appear brighter than less reflective 

structures. Liquid structures (e.g., ovarian follicles) do not reflect sound waves and 

appear black on the viewing screen. Dense tissues (e.g., bone) reflect most of the waves 

and appear white. Other tissues (e.g., ovarian stroma) are seen in shades of grey 

depending on its acoustic impedance. Figure 3.4 shows example of B-mode ovarian 

image obtained using transvaginal (TSV) transducer. 

Figure 3.4: Example of B-mode image of the ovary.



54  

3.3 Endo-cavity Transducers 

There are several types of endo-cavity transducer: curvilinear, „end-fire‟ curvilinear-

array, bi-plane trans-rectal, and trans-oesophageal.  They are intended for insertion into 

a natural body cavity or through a surgical opening.  Endo-cavity transducer allows the 

transducer to be placed close to the target organ or mass. Examples of endo-cavity 

transducers are given in figures 3.5(a) to 3.5(d).  In this study, a curvilinear transvaginal 

transducer (Toshiba PVT-661) was used for phantom study (see section 3.5.2).  The 

Royal College of Obstetricians and Gynaecologists  has suggested that the ovarian cysts 

should normally be assessed using transvaginal ultrasound, as this appears to provide 

better quality (more detail) than the transabdominal method (RCOG, 2003).  

Figure 3.5(a)-3.5(d): Examples of endo-cavity transducers: (a) Curvilinear 
transducer for trans-vaginal  scanning; (b) „End-fire‟ curvilinear-array 
transducer for trans-rectal and trans-vaginal scanning; (c) Bi-plane trans-rectal 
transducer - allowing both transverse and longitudinal scans of the prostate; 
(d) Trans-oesophageal transducer with two phased arrays set at  right angles 
(adopted from Whittingham and Martin, 2010).
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The quality of ultrasound image is correlated to its capability to represent the real 

anatomy of the structures being examined as closely as possible (Lagalla and Midiri, 

1998). This capability among others depends on the axial spatial resolution, the lateral 

spatial resolution, and the contrast resolution.   

The axial spatial resolution refers to its capability to represent separately two objects 

which are arranged in series along the axis of the beam. This parameter is closely 

dependent on the transducer frequency: the higher the frequency, the better the axial 

resolution. An increase in frequency is, however, traded off by a decrease in the depth 

of beam penetration.  

The lateral spatial resolution refers to its capability to discriminate between two objects 

situated at the same depth on a line perpendicular to the ultrasound beam. This 

parameter is closely dependent on the dimensions of the ultrasound beam. It can be 

improved using a narrow beam being at an optimum in the focal zone (Lagalla and 

Midiri, 1998). 

The contrast resolution refers to its capability to distinguish echogenicity differences 

between neighbouring tissue regions.  This parameter is closely dependent on the spatial 

resolution and the image noise. 

Like other types of endo-cavity transducer, the advantage of the transvaginal transducer 

is that it can be placed close to the target organ or mass.  This means, there is less 

attenuation from intervening tissue, which in turn, a higher frequency may be used, 

providing a superior axial resolution.   The image distortions, and artefacts due to any 
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tissue heterogeneity or strongly reflecting/refracting interfaces between the transducer 

and the target, are also reduced (Whittingam and Martin, 2010).  Transducer 

miniaturization continues to increase the capabilities of intra-cavitary, intra-urethral or 

intra-vascular ultrasound investigation (Bridal et al., 2003).   

3.4 Texture Analysis 

In this project, texture analysis technique was employed to objectively quantify the 

ovarian images.  Hence, a brief review of texture analysis concept is given in this 

section.  More details on texture analysis concept can be found in the articles by 

Haralick et al. (1973), Haralick (1979), Tuceryan and Jain (1998), Materka and 

Strzelecki (1998), Kociołek et al. (2001), Castellano et al. (2004), and Srinivasan and 

Shobha (2008). 

3.4.1  What Is Image Texture 

In general term, texture is regarded as a property that represents the surface and the 

structure of an object (Srinivasan and Shobha, 2008). It can be divided into two 

categories: tactile and visual. A tactile texture refers to the immediate tangible feel of a 

surface, and is associated with the properties such as smooth, rough, and coarse. Visual 

texture, which contains variations of intensities (Partio et al., 2002), on the other hand, 

are characterised by the tonal (intensities of image pixels) and the structural (spatial 

distribution of pixel intensities) properties (Michail et al., 2007).  Visual texture is an 

important characteristic for the analysis of many types of images (Haralick, 1979; 

Rangayyan, 2005). According to Kurani et al. (2004), texture is one of the most 

common features used to analyse and interpret medical images. Tactile texture is not of 
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interest in this study.  Hence, the overview given below focuses only on the visual 

texture. 

According to Haralick (1979) and Bharati et al. (2004), however, there is no formal or 

complete definition of texture. It has been described using various definitions by many 

researchers. For instance, Bharati et al. (2004) quoted the definition of texture given by 

Russ (1999), which defines texture as a descriptor of local brightness variation from 

pixel to pixel in a small neighbourhood through an image. In IEEE Standard 610.4-

1990, texture in image processing is defined as an attribute representing the spatial 

arrangement of the grey levels of the pixels in a region.   Put simply, in the context of 

this thesis, texture is defined as the spatial distribution of pixel grey value (intensity) of 

B-mode images. 

3.4.2 What Is Texture Analysis 

Texture analysis is the term used for methods developed to quantify image texture 

(Mathias et al., 1999). It is a branch of imaging science that is concerned with the 

description of image properties by textural features (Nailon, 2010).  The purpose of 

performing texture analysis is to define a set of texture features that will identify the 

relevant properties of a texture for a defined ROI (Smutek et al., 2003). Texture analysis 

of medical images is an ongoing field of research, with applications ranging from the 

segmentation of specific anatomical structures, the detection of lesions, to the 

differentiation between pathological and healthy tissue (Castellano et al. 2004). 
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There exists a variety of different ways (methods) to compute texture features.  These 

methods can be classified according to the approach used to evaluate the inter-

relationships of the pixels.   

3.4.3 Texture Analysis Approach 

Many textural features approach classification have been given by various authors. 

Nevertheless, the most comprehensive classification of texture analysis approach were 

given by Materka and Strzelecki (1998), Castellano et al. (2004), Bharati et al. (2004), 

and Materka (2006(a)).  According to them, based on the method employed to evaluate 

the inter-relationships of the pixels, texture analysis can be summarised under the 

following four approaches: statistical-, model-, structural-, and transform- based.  

3.4.3.1 Statistical-based  

The use of statistical-based texture features is one of the early methods proposed in the 

machine vision literature (Tuceryan and Jain, 1998) and is considered to be the most 

widely used method in medical image analysis (Holli et. al., 2010).  According to Chan 

(1998), this approach has been commonly applied in the characterisation of ultrasound 

images.  

Statistical approach can be further sub-divided into three: first order description 

statistics, second-order description statistics, and higher-order description statistics. 

(a)  First-order description statistics:  First-order description statistics deals with 

the intensity of the pixels and measure the likelihood of observing a grey value 

at a randomly chosen location in the image. In other words, the occurrence 

probability of intensity in an image (the image histogram) is the property used 
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to calculate the texture features (Nailon et al., 1996). It does not take into 

account the relationship between pixels. These depend only on individual pixel 

values and not on the interaction or co-occurrence of neighbouring pixel 

values. Example of the first-order description statistics features is the average 

intensity in an image.  

The main advantage of this approach is its simplicity through the use of 

standard descriptors (e.g. mean and variance) to characterise the texture. 

Because it does not consider the spatial relationship and the interaction 

between pixels, however, the power of this method for discriminating between 

unique textures in certain applications is limited (Nailon, 2010). Huynen et al. 

(1994) reported that first-order description statistics did not seem to give any 

additional information for the classification of prostate images. In addition, it 

is also depth dependent due to attenuation of the beam (Alqahtani, 2010). 

Hence, first-order description statistics was not employed in this study. 

(b)   Second-order description statistics:  Unlike first-order description statistics 

which deals only with the intensity of the pixels, second-order description 

statistics takes into account both the intensity of the pixels and the interaction 

with the neighbouring pixels.  Second-order description statistics is defined as 

the likelihood of observing a pair of grey values occurring at the two endpoints 

of a dipole of random length placed in the image at a random location and 

orientation (Tuceryan and Jain, 1998). These are properties of pairs of pixel 

values.  In other words, in second-order statistical texture analysis, information 
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on texture is based on the probability of finding a pair of grey-levels at random 

distances and orientations over an entire image (Nailon, 2010).  

Three second-order description statistics methods are employed in this thesis: 

grey level co-occurrence matrix (GLCM), run length matrix (RLM), and 

gradient. These features are briefly explained in section 3.4.4.1, section 

3.4.4.2, and section 3.4.4.3 respectively. 

(c)   Higher-order description statistics:  Higher-order description statistics deals 

with the relationship between three or more pixels.  Higher-order description 

statistics was not employed in this thesis. 

3.4.3.2 Model-based  

Model-based approach generates an empirical model of each pixel in the image, based 

on a weighted average of the pixel intensities in its neighbourhood. These estimated 

parameters of the image models are used as textural feature descriptors. One of the 

disadvantages of this approach is the computational complexity involved in the 

estimation of its parameters (Castellano et al., 2004).  However, with modern computer 

technology, these parameters are now much more easily computed. 

Examples of model-based texture analysis approach are autoregressive (AR) models, 

Markov random fields (MRF), and fractal models.  AR features are employed in this 

thesis and are briefly explained in section 3.4.4.4. 
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3.4.3.3 Transform-based  

Texture properties of the image may be analysed in a different domain.  Transform-

based (also known as signal processing) methods apply texture filtering for extracting 

features either in spatial domain or in frequency domain (Li and Meng, 2009). It 

converts the image into a new form using the spatial and frequency properties of the 

pixel intensity variations (Bharati et al., 2004).  

Examples of model-based texture analysis approach are Fourier, Gabor and wavelet 

transforms. Wavelet features are employed in this thesis. Wavelet features are briefly 

explained in section 3.4.4.5. 

3.4.3.4 Structural-based  

The structural approach assumes that textures are composed of well-defined texture 

primitives (texture elements) ((Tuceryan and Jain, 1998); (Castellano et al., 2004)). The 

properties and placement rules of these texture primitives define the image texture 

(Bharati et al., 2004).  For example, a repetitive arrangement of square and triangular 

shapes can produce a specific texture (Dhawan, 2003). 

The advantage of the structural approach is that it provides a good symbolic description 

of the image; however, this approach is more useful for synthesis than analysis tasks 

(Castellano et al. 2004; Materka, 2006(a)). The disadvantage of this approach is that it 

is limited in power unless one is dealing with very regular texture (Tuceryan and Jain, 

1998). Because of that, structural approach methods appear to be limited in practicality 

(Gonzalez cited by Bharati et al., 2004).   
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According to Castellano et al. (2004), they did not find any example of structural 

approach method applied to medical image analysis.  Hence, structural approach was 

not employed in this study. 

3.4.4 Texture Analysis Methods  

This section discusses the methods employed in this thesis: GLCM, RLM, Gradient, 

AR-model, and wavelet methods. 

3.4.4.1 Grey Level Co-occurrence Matrix (GLCM)   

The GLCM method was first introduced by Haralick for the classification of aerial 

photographs and satellite images (Haralick et al.  1973). It is one of the earliest texture 

analysers. GLCM has become one of the most well-known and widely used texture 

features in texture classification (Tuceryan and Jain, 1998).  

The GLCM features are computed from intensities of pairs (spatial relationship) of 

pixels. The spatial relationship is defined in terms of distance (d) and angle (θ) (Sharma 

and Singh, 2001). It is computed by defining pairs of pixels (i,j) separated by this 

distance (d), computed across the defined direction (θ). A count is then made of the 

number of pairs of pixels that possess a given distribution of grey level values. Each 

entry of the matrix thus corresponds to one such grey-level distribution.  

Four matrices can be generated by examining all possible image pixel pairs separated at 

a certain inter-sample distance (d) in four different directions (θ): 00, 450, 900, and 1350. 

MaZda software calculates 11 of 14 textural features as proposed by Haralick at 5 
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different distance (d = 1-, 2-, 3-, 4- and 5-pixel) giving a total of 220 features.  Figure 

3.6(a), 3.6(b), 3.7(a), and 3.7(b) illustrates the derivation of GLCM matrices.  
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Figure 3.6: Example demonstrating the formation of a co-occurrence 
matrix from an image. (a) A 4X4 image with four unique grey-level 
values (ranging from 0 to 3); and (b) Numerical representation of the 
image (adopted from Coleman, 2007).

Figure 3.7: An example demonstrating the formation of a co-occurrence matrix
from the image. (a) GLCM in the horizontal direction; and (b) GLCM in the 450

direction (adopted from Coleman, 2007).
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3.4.4.2 Run-Length Matrix 

The run-length matrix is a way of searching the image, across a given direction, for runs 

of pixels (length) that have the same grey-level value (Castellano et al., 2004). In 

simpler words, it is a set of linearly adjacent pixels having the same grey level value 

(Conners and Harlow, 1980). Grey level runs can be characterized by the grey tone of 

the run, the length of the run (r), and the direction of the run (θ) (Haralick, 1979).  

The run-length matrix describes how many times there are „j‟ consecutive pixels with 

the same grey-level value in a given direction (θ).  The length of the run (j) is the 

number of picture points in the run, and ranges from 2 to n, where n depends on the 

image size and the direction of measurement. For example, n=5 in horizontal direction 

for an image with 5X5 pixels. The element r'(i,j|θ) of the grey level run length matrix 

specifies the estimated number of times an image contains a run of length  (j), for a grey 

level (i), in the angle θ direction.  Figure 3.8(a), 3.8(b), 3.9(a), and 3.9(b) illustrates the 

derivation of RLM matrices. 
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Fig. 3.8: An example demonstrating the formation of a run length
matrix from an image. (a) A 5X5 image with eight unique grey-level 
values (ranging from 0 to 7); and (b) Numerical representation of the 
image (adopted from Castellano et al., 2004).
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Figure 3.9: An example demonstrating the formation of a RLM matrix from the 
image. (a) RLM in the horizontal direction, and (b) RLM in the 450 direction 
(adopted from Castellano et al., 2004).
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In practice, 4 matrices are computed (horizontal, vertical, and two diagonal directions) 

(Das et al., 2008) and MaZda software computes run-length matrices for these four 

directions (Szczypinski et al., 2009). For each of the matrix, five run-length matrix-

based features will be computed giving a total of 20 RLM features. The RLM texture 

analysis approach characterises coarse textures as having many pixels in a constant grey 

level run; whereas fine textures is characterised as having few pixels in such a run 

(Galloway, 1975). 
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3.4.4.3      Gradient 

Another statistical description method is based on the gradient magnitude map of the 

image. The gradient of an image measures the spatial variation of grey-level values 

across the image (Castellano et al., 2004; Das et al., 2008).  

For the gradient feature calculation, the following neighbourhood for image pixel x(i,j)

is defined (Materka, 2006(a)):  

G H I

L x(i,j) N

Q R S
Figure 3.10: Illustration for gradient feature calculation.
(adopted from Materka, 2006(a)). 

The absolute gradient value (ABSV(i,j)) is calculated for each 3X3 pixel neighbourhood 

(figure 3.10): 

  (ABSV (i,j)) = Sqrt((R-H)2 + (N-L)2)     Equation (6)   

Based on the histogram of the image gradient, a similar feature set to the histogram 

features, the gradient features are calculated for the image intensity distribution: 

absolute gradient mean, absolute gradient variance, absolute gradient skewness, 

absolute gradient kurtosis, and percentage of pixels with non-zero gradient. 

If, at a point in the image, the grey level varies abruptly from black to white, the 

gradient texture analysis approach characterises  it as having a high-gradient value at 

that point; whereas, if it varies smoothly from a dark grey to a slightly lighter grey it is 
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characterised as having a low-gradient value at that point (Castellano et al., 2004; Das 

et al., 2008). The gradient may be positive or negative, depending on whether the grey 

level varies from dark to light or from light to dark. In general, however, because what 

is of interest is whether we have an abrupt or a smooth grey level variation, the absolute 

gradient is used (the sign is not taken into consideration) (Castellano et al., 2004). 

3.4.4.4 Auto-Regressive (AR) Model 

The auto-regressive (AR) model uses linear estimates of grey level in texture pixels for 

texture feature description. It assumes a local interaction between an image pixel and its 

neighbouring pixels.  The assumption made is that every pixel in the image has its grey-

level value characterised by the grey-level values of the surrounding pixels: a weighted 

sum of the grey-level values of the surrounding pixels (Materka, 2006(a)). In other 

words, it is a way of describing shapes within the image, by finding relations between 

groups of neighbouring pixels (Castellano et al., 2004).  

If the grey-level value of a two-dimensional image varies fast, that is, if there are many 

variations within a small piece of the image, then we associate a high spatial frequency 

to this part of the image (Castellano et al., 2004). On the other hand, if the grey level 

value varies slowly, then the region has a low spatial frequency. 
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3.4.4.5 Wavelet 

The transform method of texture analysis implemented in MaZda is based on wavelet 

transform.  Wavelet transform is a tool that separates data into different frequency 

components (Materka, 2006(b)). Wavelet transform is computed with a cascade of 

filtering: high- ,H,  and low- ,L, pass filters.  For two-dimensional images, the transform 

is performed firstly for all image rows, and then for all image columns (Kocoilek et al., 

2001).  This yields four different sub-bands: L-L, L-H, H-L, and H-H (figure 3.11).   

 For a given image, MaZda calculates up to a maximum of 8 scales. It is calculated only 

if output sub-bands have dimensions at least 8 by 8 points. This results in a set of 

wavelet coefficients that correspond to different scales. 

The Wavelet transform has been used for image segmentation and classification 

(Bharati et al., 2004), and widely found in the analysis of medical images (Livens et al., 
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Figure 3.11: Sub-band image
(adopted from Kociolek et al., 2001). 
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1997).  According to Bharati et al. (2004), this method has been preferred recently in 

image texture analysis due to its space-frequency decomposition abilities.  Wavelet 

feature was employed in this study. 
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3.5 Phantom Image Acquisition  

3.5.1 Ultrasound Scanner 

It was not until the late 1960s that the first commercial ultrasound scanner became 

available for clinical use, and its role as a diagnostic imaging tool is increasingly 

important (Board of the Faculty of Clinical Radiology, 2005). In this study, a Toshiba 

Xario (Toshiba Medical System, Europe) (Figure 3.12) was used to acquire the images 

for phantom study.  The specifications of this scanner are given in Appendix A. 

Figure 3.12: Toshiba Xario Scanner.
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3.5.2 Transvaginal Transducer  

As discussed in section 3.3, one of the advantages of transvaginal transducer is that it 

can be place close to the target organ or mass and is widely used for ovarian cancer 

diagnosis.  In this study, a 6.0 MHz Toshiba transvaginal transducer model PVT-661VT 

(figure 3.13) was used to acquire the images for phantom study.  

3.5.3  Test Object 

The phantom study was performed using the Gammex-RMI model 403GS LE 

(Gammex-RMI Ltd., Nottingham) general purpose test object (figure 3.14).   The tissue-

equivalent material used in the phantom is an evaporated-milk-based gel, which is 

ultrasonically similar to human tissue and allows the use of normal scanner control 

settings (RMI 403LE GS manual). The use of tissue-equivalent test phantom gives the 

measurement results that are consistent with clinical performance (Browne et al., 2003). 

The RMI model 403GS LE phantom provides the measurement up to 16 cm 

depths.  The acoustic properties of this phantom are given in table 3.3. 

Figure 3.13: Toshiba PVT-
661VT transducer.
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Table 3.3: Acoustic data of the RMI 403LE GS test phantom tissue-
equivalent material.

Tissue-equivalent 
material

Speed of sound 
(m/s)

Attenuation
coefficient

(dB/cm-MHz)

Evaporated milk gel
Model 403GS LE 1540 @ 2–18 MHz 0.7 @ 2–18 MHz

Figure 3.14: Gammex-RMI 
model 403GS LE phantom.
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3.6  MaZda Software 

In this study, MaZda 4.6 (Institute of Electronics, Technical University of Lodz, 

Poland) was used to extract the textural features.  Brief explanations for this software 

are given in this section. More details about this software are available on-line at 

http://www.eletel.p.lodz.pl/mazda/. 

3.6.1 Background 

MaZda is an acronym derived from „Macierz Zdarzen‟ which means co-occurrence 

matrix in Polish.  It was developed in 1998 specifically for the analysis of image 

textures (Szczypinski et al., 2007).  The package includes two executable files: (i)  

MaZda (image processing and computation of textural features), and (ii) B11 (for data 

visualisation, classification and segmentation).  Initially, it was aimed at analysis of 

MRI images. However, it has also been widely used for other types of images such as x-

ray, CT, and ultrasound images.   

In general, MaZda loads images in the form of Windows Bitmap files, DICOM files, 

and unformatted grey-scale image files (raw images) with pixel intensity encoded with 

8 or 16 bits. The software has been used for many different purposes such as for MRI 

measurement protocol optimisation, for texture analysis of medical images, for food 

quality studies, and for other purposes (Szczypinski et al., 2009).   

MaZda software has been widely used for texture analysis in medical domain. This 

involves various types of diseases and imaging modalities.  Table 3.4 summarises some 

of previous studies that employed MaZda software to extract the textural features.  
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Table 3.4: Example of the medical domain studies that used MaZda software for 
features extraction.

Author / Year Area of study 

Harrison et al. (2010)
Classification of white matter and multiple 

sclerosis lesions.

Mayerhoefer et al. (2010) Assessment of biochemical changes in 

meniscal tissue.

Alqahtani et al. (2010)

To investigate the effect of varying the gain 

and the dynamic range setting on the texture 

features in-vivo using a 3D ultrasound 

probe

Abella et al. (2009)
The quantification of cellular infiltrate in 

lung tissue images in an allergic asthma.

Zhang et al. (2008)

To discriminate between multiple sclerosis 

(MS) lesions, normal appearing white 

matter (NAWM) and normal white matter 

(NWM).

Mescam et al. (2007)

To study the relationship between 

physiological parameters and textural 

parameters of the liver.

Hajek et al. (2006) To distinguish brain tumours.

Hollingsworth and Lomas (2005)
To discriminate between cirrhotic and 

healthy livers tissue.

Chen et al. (2005)
For the evaluation of anti-vascular therapy 

of mammary carcinomas in mice.

Lerouxel et al. (2004)
For osteoporosis detection based on bone 

images.

Bonilha et al. (2003)
For the detection and quantification of

hipocampal sclerosis.

Jirak et al. (2002)
Discrimination of healthy and cirrhotic 

livers.
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3.6.2 Image Normalisation 

Before the texture features are computed / derived for the co-occurrence matrices, the 

run length matrices, and the image gradient features, the image fragments inside the 

ROIs are first normalised.  The purpose of performing normalisation is to reduce the 

variation in the image due to difference in scanner settings (Chan and McCarty, 1990).  

MaZda provides three options for image normalisation: (i) default (analysis is made for 

original image); (ii) ±3σ (image mean value, µ, and standard deviation, σ, is computed, 

then analysis is performed for grey scale range between µ -3σ and µ +3σ); and (iii) 1%-

99% (grey-scale range between 1% and 99% of cumulated image histogram is taken 

into consideration during analysis).   

Collewet et al. (2004) have carried out a study to compare the influence of several 

normalisations of grey level methods on the discriminatory power of texture analysis. 

They found that „±3σ‟ method gives the best results, whereby it is able to enhance the 

differences between the two sample groups tested. This method of normalisation („±3σ‟)

has been used by Harrison et al. (2008) in the texture analysis of non-Hodgkin 

lymphoma. Hence, the image grey-level normalisation method, which normalises image 

intensities in the range (µ − 3σ, µ + 3σ), was used in this study. 
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3.6.3 Region of Interest (ROI) Selection 

To analyse image properties in a selected area and not in the surrounding tissue, the 

image segment corresponding to the organ must be defined as the ROI for the analysis.  

Region of interest (ROI) is a set of pixels in 2D images selected to be analysed. The 

MaZda software allows the ROI to be drawn of arbitrary shape.  In this study, in order 

to improve the ROI delineation process, the ROI was drawn based on the temporary 

segmented image, which was outlined using magnetic lasso tool (see section 3.7). 

3.6.4 Features Extraction 

Texture features, i.e. the outputs of texture analysis, are mathematical parameters 

(numerical) computed from the distribution of pixels, which characterise the texture 

type, and thus, the underlying structure of the objects shown in the image (Castellano et 

al., 2004). 

MaZda software computes six types of textural features: Histogram-based (first-order 

statistics), GLCM, RLM, Gradient, AR, and Wavelet.  Histogram-based features 

however, were not included in this study (see section 3.4.3.1(a)).  Findings from Bader 

et al. (2000) showed that grey level histogram-based texture features extracted from 

ultrasound images were not able to distinguish benign tumours from carcinomas.  

Similarly, in the study on thyroid gland, Catherine et al. (2006) reported that first-order 

description statistics did not prove to be representative of the image characteristics.  

Moreover, first-order description statistics also found to be depth dependent (Alqahtani, 

2010). 
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3.7  Adobe Photoshop Software 

In this study, Adobe Photoshop 6.0 (Adobe System Incorporated) was used to enhance 

the image, particularly to aid in the ROI delineation for the clinical images.  Brief 

explanations of this software are given in this section. 

In scientific research, images fall broadly into two categories: the original image and the 

corrected image.  The corrected image is often referred to as „enhanced‟.  Post-

processing is required because of limitation in imaging devices and associated 

instrumentation (Sedgewick, 2008). This limitation includes, among others, image 

blurring and image noise.  Post-processing, which results in enhanced images, is often 

used to improve the visualisation of the details in the image. The purpose of performing 

image enhancement using Adobe Photoshop 6.0 in this study was to produce an image, 

in which the area of interest is adequately visualised and separated from the background 

during ROI delineation step.  

Besides being used to improve the visualisation, Adobe Photoshop 6.0 also was 

employed in this study to aid in the outlining the ROI (using magnetic lasso tool).  

According to Park et al. (2005), the use of magnetic lasso tool is appropriate for 

semiautomatic segmentation of the anatomical structures in the MRIs, CTs, and other 

medical images, and is expected to be widely used on the personal computer.   

The use of this software for image enhancement and ROI delineation is given in more 

detail in the respective sections in chapter 6 and chapter 7. 



79  

 3.8 Statistical Analysis  

There are several statistical tests used to evaluate the results in this study, depending on 

the intention of the analysis being carried out. For example, statistical test is used to 

quantify the agreement between two operators, to measure the reliability of the image 

texture produced, to compare the mean between the two groups, and to assess the 

influence of one variable to the other.  This section explains in brief those statistical 

tests. Bland-Altman plot, a graphical approach that plots differences against means, is 

also briefed.  

In this study, statistical analysis was performed using SPSS 16.0 for Windows (SPSS 

Inc, Chicago, Illinois, USA).  

3.8.1 Coefficient of Variation (CoV) 

Coefficient of variation (CoV) is the standard deviation (SD) divided by the mean, often 

multiplied by 100 to give percentage (Bland, 2000). It is used to measure the 

consistency of the data (the uniformity in the values of the data from the mean). The 

advantage of CoV is that it is independent of the units of observation (Kirkwood and 

Sterne, 2003). A distribution with smaller CoV is taken as more consistent than that 

with larger CoV. The coefficient of variation (CoV) is widely used to measure random 

error (Dudley, 2010).  

In this study, CoV was used to determine the variation (consistency) in the derived 

texture features: ultrasound system repeatability, intra-operator repeatability, inter-

operator reproducibility, clinical image repeatability, influence of ROI size on the 
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variance of the mean, and ROI delineation repeatability (see chapter 4, chapter 5, and 

chapter 6).

3.8.2  T-Test and Wilcoxon-Mann-Whitney (WMW) Test 

Two-sample t-test is used to compare the mean value between two groups for the 

normally distributed data while Wilcoxon-Mann-Whitney- test (also called the Mann–

Whitney U test or Wilcoxon rank-sum test) is used for the non-normally distributed data 

(Jones, 2009; Kirkwood and Sterne, 2003). A p-value of <0.05 is considered as 

significant difference.  A Q-Q plot is used to assess the normality of a distribution.  For 

a normal distribution, the plot should show a linear relationship (Leeds Metropolitan 

University, 2009). 

In this study, t-test and WMW test was used to assess the influence of the „ultrasound 

calliper line‟ as well as for comparing the texture features values between different 

ovarian tissue types (see chapter 6 and chapter 7). 

3.8.3 Correlation Coefficient 

The goal of a correlation analysis is to see whether two measurement variables co-vary 

(McDonald, 2009). It is useful to measure the strength of relationship (how one changes 

with the other) between two variables (Bland, 2000) and provides the direction of the 

relationship (Jones, 2009).  If the slope is significantly different from zero, there is a 

significant relationship between the two variables: as the values of one variable increase, 

the values of the other variable either tend to increase (positive correlation) or tend to 

decrease (negative correlation) (McDonald, 2009). 
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In this study, correlation test was used to determine whether there is a significant 

relationship between the derived features and the three possible influence factors: gain 

setting, ROI size, and ROI depth (see chapter 4). 

3.8.4 Receiver Operating Characteristics (ROC) Curve Analysis 

ROC curves assess the value of a diagnostic test by providing a standard measure of the 

ability of a test to correctly classify subjects (Morrison, 2005). It has been used 

extensively in the biomedical field to assess the efficacy of diagnostic tests in 

discriminating between healthy and diseased individuals (Morrison et al., 2003), and is 

particularly useful when comparing two or more measures (Altman and Bland, 1994). 

An area under the curve (AUC) close to 1 indicates a strong discriminatory power / 

ability of the indicator variable while AUC close to 0.5 indicates that the variable has 

little discriminatory power (Morrison, 2005). Simon (2008) divides the ability of the 

discriminator into five categories, based on the area under the ROC curve: excellent, 

very good, good, fair, and poor for the area value of >0.97, 0.92 to 0.97, 0.75 to 0.92, 

0.50 to 0.75, and <0.50 respectively.  

In this study, ROC curve analysis was used to determine the discriminatory ability of 

the tested textural features in discriminating the three groups: normal ovary, cysts, and 

malignant tissue (see chapter 7). 
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3.8.5 Bland-Altman Plot  

Bland-Altman plot is a scatter plot of variable means, plotted on the horizontal axis and 

the differences plotted on the vertical axis, which shows the amount of disagreement 

between the two measures (via the differences). The graphical approach that plots 

differences against means is the most informative approach (Bassani et al., 2007). The 

presentation of the 95% limits of agreement is for visual judgement of how well two 

methods of measurement agree: the smaller the range between these two limits the 

better the agreement is (Myels and Cui, 2007). This plot is also useful for evaluating 

whether there is any systematic difference between the methods or whether the degree 

of random variation changes with the mean value (Laugsand et al., 2010).   

In this study, Bland-Altman plot was used to show the amount of disagreement between 

the two operators (see chapter 5). 
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3.9 Summary 

Texture analysis technique was employed in this study to provide an objective 

interpretation of the B-mode image.  To achieve that, MaZda 4.6 software was used for 

features extraction.  A Toshiba Xario ultrasound scanner was used to acquire B-mode 

images for phantom studies, using a transvaginal transducer (Toshiba PVT-661VT).  

For the clinical image study, Adobe Photoshop 6.0 was used to improve the 

visualisation of the area of interest by applying gradient-filter to the original image. 

Adobe Photoshop 6.0 was also used to aid in the ROI delineation utilising another 

feature called magnetic lasso tool.  

Texture analysis characterises a defined region in an image by its texture content. In 

general, texture analysis process can be broken down into three major steps namely 

image acquisition, image analysis, and texture / image classification.  Texture analysis 

is classified according to the approach used to evaluate the inter-relationships of the 

pixels. The most comprehensive classification of texture analysis summarises it into 

four groups: statistical-, structural-, model-, and transform- based. These approaches 

can be further sub-divided into several methods.   

Five texture analysis methods were employed in this study.  This includes GLCM, RLM, 

gradient, AR, and wavelet.  GLCM, RLM, and gradient belong to the statistical-based 

approach, while AR and wavelet belong to the model-based and transform-based 

approach, respectively. 

Several statistical tests were employed to evaluate the results in this study.  This 

includes coefficient of variation (CoV), t-test and Mann-Whitney-Wilcoxon (WMW) 
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test, correlation analysis, and receiver operating characteristics (ROC) analysis. Apart 

from that, Bland-Altman plot was also used for visual interpretation of the inter-

operator reproducibility assessment. 
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Chapter 4 
Influence of ROI Size, ROI Depth, 

and Gain Settings on Image Texture 

The objective of this chapter is to assess factors that potentially affect the extracted 

texture features, namely the ROI size, the ROI depth and the gain setting. Section 4.1 

reviews the influence of those three factors on the extracted features.  The methodology 

and statistical analysis are explained in Section 4.2. Section 4.3 presents the results, and 

these are discussed in Section 4.4.  Finally, Section 4.5 summarises this chapter. 

4.1 Background  

It was reported that besides the variations in the imaged tissue itself, the extracted 

texture features may also vary due to other factors. Castellano et al. (2004) pointed out 

that the effect of external factors on some texture parameters must be taken into 

consideration before using texture analysis techniques. If this is not addressed then, 

according to Chan and McCarty (1990), the value obtained may not reflect the actual 

texture of the tissue, which may in turn influence the performance of the texture 

analysis technique when applied for classification.   

In previous work carried out by He et al. (2004) on a tissue-equivalent phantom, they 

reported some texture features exhibit a dependency on the size of the area they were 

extracted from.  This dependency can be divided into two: (i) The variance of the 

extracted features - most features exhibited larger variance when small ROIs were used; 

and (ii) The mean of the extracted features - some features exhibit a monotonically 

increase as a function of ROI size.  
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Similarly, the influence of the ROI size has been reported in clinical image studies. 

Using co-occurrence matrix features to discriminate prostatic tissue from ultrasound 

images, Basset et al. (1993) reported that the results from using a smaller ROI were not 

as good as results using larger ROI, which shows that the size of ROI will affect the 

performance of texture analysis technique. According to He et al. (2004), since the 

pathological area may vary, and the size of the tumour is normally larger than the size 

of the normal area, there is a need to determine the appropriate ROI size before 

extracting the features for image classification purposes. 

Besides the ROI size, another factor that needs to be considered during feature 

extraction is the depth of the ROI. A study carried out by Morris (1988(a)) revealed that 

some texture features (such as mean grey level and contrast) are dependent on the ROI 

depth.  Although some studies extracted the texture features from a fixed ROI depth, 

this approach limits the flexibility of the technique because in real-life scenarios the 

lesions may appear at various depths.  

It should be noted that the texture analysis technique is also sensitive to the acquisition 

condition (Collewet et al., 2004).  According to Chan and McCarty (1990), the value of 

the extracted features may change drastically under different scanner settings, even if 

the same tissue is being imaged. Examples of such factors are gain and dynamic range 

(DR).  In this study, however, we only looked at the influence of gain setting on the B-

mode image texture. Assessment of the influence of DR was excluded from this study 

because this setting is normally set and very rarely adjusted when doing an examination. 

Moreover, a study carried out by Alqahtani et al. (2010) showed that varying the DR 
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yielded a small variation on all texture features tested (gray-level histogram, GLCM, 

RLM, gradient, AR, and wavelet) and concluded  that changing the dynamic range has 

no significant effect on texture features.   

4.2 Methodology and Statistical Analysis 

4.2.1 Influence of ROI Size 

The objective of this section is to evaluate the influence of the ROI size on the texture 

features, particularly on the variance and the mean of the extracted features. 

Ten images were acquired using a Toshiba Xario scanner with a 6.0 MHz transvaginal 

transducer (model PVT-661VT).  An RMI model 403 GS LE was used as a test object. 

To acquire the image, the following procedure was used:  a stand was used to hold the 

transducer throughout the image acquisition period. The machine settings were kept 

constant by using manufacturer‟s pre-defined settings, Endo-Vaginal-Gynae.  Finally,

the images were transferred to the personal computer (PC) in .bmp format for further 

analysis.  Figure 4.1 illustrates the experimental setup and the texture analysis process 

flow.  Texture analysis software, MaZda version 4.6, was used to extract the texture 

features from the images. Five texture features (GLCM, RLM, gradient, AR, and 

wavelet) were extracted from ten square ROIs (10x10, 20X20, ..., 100X100 pixels), 

which were placed in the centre of the image as shown in Figure 4.2. 
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Figure 4.2: Ten square ROIs were placed in the 
centre of the image for ROI size assessment.

Figure 4.1: Block diagram of ROI size, ROI depth and gain setting assessment.

IMAGE 
ANALYSIS
(MaZda 4.6)

RMI model 403GS LE 
test object

Toshiba Xario 
Scanner

PVT-661VT (6.0MHz) 
Transducer
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A coefficient of variation (CoV) (see Section 3.8.1) was calculated for each texture 

feature to determine and compare the variation (consistency) of the features extracted 

from a particular ROI size.  The CoV is a useful statistical measure to quantify the 

dispersion (variance) of data relative to the mean. Correlation analysis (see Section 

3.8.3) was performed to determine the relationship between the ROI size and the mean

of the extracted texture features, and to see whether there is a significant increase (for 

the positive correlation case) or decrease (for the negative correlation case) in the mean, 

as the ROI size increases. 
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4.2.2 Influence of ROI Depth 

The objective of this section is to evaluate the influence of the ROI depth on the 

extracted texture features; i.e. whether as the depth of the ROI increases, the value of 

the extracted texture features tends to increase/decrease as well. 

The procedures carried out for the image acquisition were similar to the ROI size 

assessment (see Section 4.2.1).    The images were acquired for three scanner focus 

settings (4, 6, and 8 cm). The texture features were then extracted at six different depths 

(1, 2, 3, 4, 5, and 6 cm) for each focus. An example of ROI placement is shown in 

Figure 4.3. 

Correlation analysis (see Section 3.8.3) was performed to determine the relationship 

between the ROI depth and the extracted texture features, i.e. whether there is a 

significant increase (for the positive correlation case) or decrease (for the negative 

correlation case) as the ROI depth increases.        

Figure 4.3: Example of ROI placement for 
depth influence assessment.
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4.2.3 Influence of Gain Setting 

The objective of this section is to evaluate the influence of the scanner gain setting on 

the texture features, i.e. whether as the value of the gain setting increases, the value of 

the texture features tends to increase/decrease as well. 

The images were acquired using a Toshiba Xario scanner with a 6.0 MHz transvaginal 

transducer (model PVT-661VT).  An RMI model 403 GS LE was used as a test object. 

To acquire the image, the following procedure was used.  A stand was used to hold the 

transducer throughout image acquisition period. All other machine settings (except the 

gain) were kept constant across the image acquisition process. The setting was set to the 

manufacturer‟s pre-defined Endo-vaginal-Gynae settings.  The images were acquired at 

five different gain settings: 80, 85, 90, 95, and 100 dB. The images were transferred to 

the PC in .bmp format for further analysis. Please refer to Figure 4.1 for the 

experimental setup and the process flow illustration.  A square ROI (50X50 pixels) was 

drawn in the centre of the image for features extraction using MaZda version 4.6 (figure 

4.4). 

Figure 4.4: A square (50X50 pixels) ROI was 
placed in the centre of the image for features 
extraction assessment of the influence of gain 
setting.



92  

Correlation analysis (see Section 3.8.3) was performed to determine the relationship 

between the scanner gain  setting and the extracted texture features, i.e. whether there is 

a significant increase (for positive correlation case) or decrease (for negative correlation 

case), as the gain increases. 
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4.3 Results 

4.3.1 Influence of ROI size 

ROI size may influence on the extracted texture features in two ways: (i) the variance of 

the extracted texture features (within the same ROI size), and (ii) the mean of the 

extracted texture features (between different ROI sizes).  The COV, which was used to 

evaluate the variance of the texture features extracted from various ROI sizes are 

summarised in Table 4.1.  The mean and the standard deviation results are presented in 

Appendix B. Generally, all features exhibit relatively low variations. The results show 

that GLCM, RLM, AR and wavelet features yield more consistent values, while the 

gradient feature was most sensitive to the ROI size, particularly for an ROI size of less 

than 900 pixels. For an ROI size of more than 900 pixels, the extracted values for all 

features are relatively consistent. The CoVs as a function of ROI size for all the features 

evaluated are shown in Figure 4.5. 

Table 4.1: Summary of the results for the influence of ROI size on the variance of the 
extracted features.

Coefficient of Variations (%)
ROI Size 
(pixels) 100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000

GLCM 4.50 3.20 1.72 1.67 1.57 2.14 2.43 1.84 1.53 1.49
RLM 6.21 4.17 2.31 2.31 2.47 3.09 3.04 2.64 2.88 2.57
Gradient 15.51 12.84 8.04 5.16 3.56 4.14 3.15 3.79 3.75 3.69
AR 8.22 2.47 1.86 1.77 0.82 0.63 0.65 0.54 0.51 0.44
Wavelet 8.29 2.55 3.71 0.98 2.59 1.43 1.31 1.44 1.99 0.92
* 1cm = 48 pixels
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Figure 4.5 shows that the variance of the extracted features for all features exhibits a 

clear dependency on the ROI size for a size of less than 900 pixels.  However, the 

variance is relatively small and consistent when the ROI is greater than 900 pixels. 

Figure 4.6 shows an example of the distribution of the texture feature (GLCM) which is 

not significantly correlated with the ROI size. A similar pattern was also observed for 

Gradient and Wavelet features.  Figure 4.7 shows an example of the texture feature 

(RLM), which is significantly correlated to the ROI size.  The figure clearly shows that 

RLM feature increases monotonically as the ROI size increases. A similar pattern was 

also observed for the AR feature.  The correlation test results of all five texture features 

extracted from various ROI size are summarised in Table 4.2, while the mean and 

standard deviation results are presented in Appendix B.  The results given in Table 4.2 
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Figure 4.5: The CoVs for ROI size influence on the variance of the extracted features.
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show that two of them (RLM, and AR) have a significant correlation with the ROI size, 

i.e. they vary linearly as the ROI size increases.   

Table 4.2: Summary of the correlation test for the influence of the ROI 
size on the mean of the extracted features.

Correlation 
coefficient (r) p-value Significantly 

correlated?
GLCM -0.13 0.26 No
RLM 0.99 <0.01 Yes
Gradient 0.05 0.68 No
AR 0.44 <0.01 Yes
Wavelet 0.20 0.08 No
*ROI size tested between 900 to 10,000 pixels

Figure 4.6: Example of scatter 
plot showing the distribution of 
the extracted feature (GLCM), 
which does not has a significant 
correlation with the ROI size.

(r=-0.13, p-value=0.26) (r=0.99, p-value<0.01)

Figure 4.7: Example of scatter 
plot showing the distribution of 
the extracted feature (RLM), 
which has a significant correlation
with the ROI size.
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4.3.2 Influence of ROI Depth 

Figure 4.8 shows an example of the distribution of a texture feature (GLCM) that is not 

significantly correlated with ROI depth. A similar pattern was also observed for wavelet 

feature.  Figure 4.9 shows an example of a feature (AR) that shows significant 

correlation between the ROI depth and the extracted feature, showing a clear 

relationship between the extracted features and the ROI depth.  A similar pattern was 

also observed for RLM and gradient features.  Each texture feature exhibits a similar 

pattern for all three focus settings tested (4, 6, and 8 cm). 

The correlation test results of the texture features extracted from various ROI depths are 

summarised in Table 4.3, while the mean and standard deviation results are presented in 

Appendix C.  The results given in Table 4.3 show that three of them (RLM, Gradient, 

and AR) have a significant correlation with the ROI depth (vary linearly as the ROI 

depth increases).   

(r=0.01, p=0.96)

Figure 4.8: Example of scatter plot 
showing the distribution of the
extracted feature (GLCM), which 
does not have a significant 
correlation with the ROI depth.

(r=-0.93, p<0.01)

Figure 4.9: Example of scatter plot 
showing the distribution of the
extracted feature (AR), which has a 
significant correlation with the ROI 
depth.

(r=-0.93, p<0.01)
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4.3.3 Influence of Gain Setting 

Figure 4.10 shows an example of the distribution of a texture feature (GLCM) which is 

not significantly correlated. Figure 4.11 gives an example of a feature (RLM) that 

shows significant correlation with the gain setting and the extracted feature.  A similar 

pattern was also observed for gradient, AR and wavelet features.   

The correlation test results of the texture features and various gain settings are 

summarised in Table 4.4, while the mean and standard deviation results are presented in 

Appendix D.  The results in the Table 4.4 show that for gain settings ranging from 80 

dB to 100 dB, only the GLCM feature does not significantly correlate with the gain 

setting.  The other four (RLM, Gradient, AR, and wavelet) have a significant correlation 

with the gain setting (vary linearly as the gain increases).   

Table 4.3: Summary of the correlation test for the influence of the ROI depth on 
the extracted features.

Focus = 4 cm Focus = 6 cm Focus = 8 cm
‘r’ /

p-value
Sig. 

corr?
‘r’ /

p-value
Sig. 

corr?
‘r’ /

p-value
Sig. 

corr?
GLCM 0.01/0.96 No -0.14/0.24 No -0.07/0.57 No
RLM -0.83/<0.01 Yes -0.82/<0.01 Yes -0.81/<0.01 Yes
Gradient -0.44/<0.01 Yes -0.58/<0.01 Yes -.051/<0.01 Yes
AR -0.93/<0.01 Yes -0.91/<0.01 Yes -0.90/<0.01 Yes
Wavelet -0.17/0.19 No -0.29/0.12 No 0.11/0.36 No
„r‟=correlation coefficient; Sig. corr=Significantly correlated.
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However, when the correlation test was confined to changing the gain from 90 dB to 

100 dB, four of the evaluated features (GLCM, Gradient, AR, and wavelet) did not 

significantly correlate with the gain.  Only the RLM feature shows a significant 

correlation with this gain setting. 

Table 4.4: Summary of the correlation test for the influence of the gain on the 
extracted features.

Gain (dB): 80,85,90,95,100 Gain (dB): 90,95,100
‘r’ p-value Sig. corr? ‘r’ p-value Sig. corr?

GLCM -.035 0.09 No -0.08 0.78 No
RLM 0.97 <0.01 Yes 0.96 <0.01 Yes
Gradient -0.73 <0.01 Yes 0.09 0.76 No
AR -0.72 <0.01 Yes -0.31 0.26 No
Wavelet 0.82 <0.01 Yes 0.36 0.18 No
„r‟=correlation coefficient; Sig. corr=Significantly correlated.

(r=0.35, p-value=0.09)

Figure 4.10: Example of scatter 
plot showing the distribution of an
extracted feature (GLCM), which
does not have a significant 
correlation with the gain setting.

(r=0.97, p<0.01) 
 

Figure 4.11: Example of scatter 
plot showing the distribution of an
extracted feature (RLM), which has 
a significant correlation with the
gain setting.
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4.4 Discussion 

The success of applying the texture analysis technique is subject, among other factors, 

to the reliability of the extracted features.  Three factors associated with the reliability 

were considered in this chapter: (i) ROI size, (ii) ROI depth, and (iii) gain setting.  

In this study, the smallest ROI investigated was 100 pixels. According to Lerski (2006), 

most methods of texture analysis cannot produce useful representative data extracted 

from ROI of fewer than 100 pixels due to statistical factors, because matrices of count 

numbers can be under-populated (or sparse) and, thus, texture features extracted from 

them are unstable.  In other words, small ROIs would have insufficient numbers of 

pixels to reliably compute the texture parameters. As different lesions may have 

different sizes, a minimum size that ensures the texture variation in each ROI is 

captured needs to be established. 

Results for ROI size influence on the variance of the extracted feature show that the 

size of the ROI does affect the level of variation. The variation is inversely proportional 

to the size of ROI up to 900 pixels.  This can be clearly seen in the case of the gradient 

feature. For a size of ROI larger than 900 pixels, however, the variation is relatively 

small and consistent for all features. As such, for any application of texture analysis 

technique to characterise biological tissue, a minimum ROI size has to be determined to 

ensure the extracted features are reliable.  Due to the nature of variance, when it is used 

for classification, texture features extracted from a very small ROI size will affect the 

accuracy of the method.   
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The results for ROI size influence on the mean of the extracted feature demonstrated a 

clear monotonic increase in the extracted value for the RLM feature as the ROI size 

increases, indicating that this feature is ROI-size dependent.  This finding is in 

agreement with the findings by Chan and McCarty (1990).  In their study, they reported 

that two RLM parameters (grey level non-uniformity and run length non-uniformity) 

vary linearly with the size of the ROI. It is important to note that a standard ROI size 

should be used for any particular study using RLM feature to avoid misleading results 

due to the difference in the ROI size.  This feature, however, was excluded from our 

image classification study. 

ROI depth is another determinant of the extracted features value. According to 

Oosterveled et al. (1991), the ultrasound beam causes a depth dependence of the B-

mode image texture.  This can be explained by the fact that the intensity progressively 

decreases as the beam advances through tissues because of scattering, refraction and 

absorption phenomena (Lagalla and Midiri, 1998). Time gain compensation (TGC) is 

typically used to amplify the amplitude of echoes in order to compensate for signal 

attenuation on the travel path. This compensation method, however,  is position-

dependent, which means that different tissues in the same TGC time-range (or 

corresponding depth range) will be compensated by the same amount without taking 

into account the non-uniform beam attenuation within the body (Xiao et al., 2002) 

which can be caused by the different intervening tissue layer (Wilhjelm et al., 1998). 

The attenuation on the ultrasound signal as it passes through the tissue is one of the 

underlying factors that affect the B-mode image texture. Morris (1988(a)) stated that 

correction of this variation in the raw image is not straightforward and, indeed, may not 
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even be possible.  To overcome this problem, according to Oosterveled et al. (1991), 

some studies have confined the ROI position to a fixed depth to avoid the depth 

dependency. For instance, Nicholas et al. (1986) set the regions selected to be within 45 

to 120 mm from the transducer/skin interface while Bader et al. (2000) reported that in 

the study, all tumours were located at a depth of between 2 cm and 3 cm. A fixed ROI 

depth approach, however, will limit the flexibility of the texture analysis technique.   

Since the position of the lesion may vary, it is crucial to use texture features which are 

resistant to depth variation.  We have evaluated the five texture features employed in 

this study for their robustness to ROI depth variation.  The results in Table 4.3 show 

that GLCM and wavelet features do not exhibit a significant relationship with the ROI 

depth, while the other three features (RLM, gradient and AR) do exhibit a significant 

relationship with the ROI depth.   

Based on the findings from this chapter, RLM, gradient, and AR features, which all 

have a significant relationship with at least one of the parameters tested (ROI size, ROI 

depth, and gain), were excluded for the image classification study (Chapter 7).  In 

addition, the ROI size was kept above 900 pixels for all assessments (except in the ROI 

size dependency). Nevertheless, it should be noted that these parameters can still be 

used by making the necessary corrections to the extracted features.  For this purpose, for 

example, the linear regression line can be used as a standard curve to correct the 

extracted feature. However, this approach means the extracted features are not readily 

useable, hence it was not considered in this study. 
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4.5 Summary 

The experimental evaluation of five texture features presented in this chapter aims to 

determine the robustness of a specific texture analysis method. A tissue-equivalent 

phantom was used as a test object. Several key factors that may affect the performance 

of texture analysis were considered, namely ROI size, ROI depth, and scanner gain 

setting.  The susceptibility of these methods to ROI size was investigated in two ways: 

the variance and the mean of the extracted texture features. The first was evaluated 

using CoV while the second was evaluated using correlation coefficient.  Susceptibility 

to the ROI depth and the scanner gain setting were also evaluated using correlation 

coefficient.  The ROI depth dependency was evaluated at three different scanner focuses. 

Out of the five texture features studied, GLCM and wavelet were found not to be 

significantly affected by the factors studied and were considered for image classification 

(see Chapter 7).  This would allow more flexibility of the texture analysis technique 

employed.   On the other hand, RLM is affected by ROI size, ROI depth and gain; 

gradient is affected by ROI depth and ROI sizes of smaller than 900 pixels; and AR is 

affected by ROI size and ROI depth. Texture features which are affected by at least one 

of the factors evaluated were not used for the image classification study (Chapter 7).  
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Chapter 5 
Repeatability and Reproducibility – Phantom Studies 

The objective of this chapter is to determine the variability and reliability of image 

texture caused by random variation during image acquisition, which will affect the 

reliability of the texture analysis technique. This has been broken down into 3 parts, 

which are to determine: 

(i)  The repeatability (consistency) of the images produced due to the random 

variation caused by the ultrasound system. 

(ii)  The repeatability (consistency) of the images produced due to the random 

variation caused by the operator. 

(iii) The reproducibility (agreement) of the images acquired by two operators under 

identical condition: by how much are the two likely to differ. 

Section 5.1 reviews the importance of repeatability and reproducibility of the image 

texture and possible contributing factors.  The methodology and statistical analysis are 

explained in Section 5.2. Section 5.3 presents the results, and these are discussed in 

Section 5.4.  Finally, Section 5.5 summarises this chapter. The study was carried out 

using a tissue-equivalent phantom.  

5.1 Background  

The textures of the acquired images are subject to random variations. There are two 

factors that may contribute to these variations during image acquisition were considered 

in this study: the ultrasound system and the operator. 

In this study, repeatability refers to the reliability of the instrument (ultrasound) and the 

operator in producing a consistent image (in terms of its texture) when repeated within a 
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short period of time and under identical condition, while reproducibility refers to the 

agreement between two operators performing a similar scan. 

Reliability, which refers to the repeatability and reproducibility of the measurement 

when repeated on the same subject, determines the sensitivity and the specificity when 

used for classifications or predictions (Lachin, 2004). According to Li et al. (2004(a)) 

the reliability of a measurement technique may affect the accuracy of a diagnosis.  In 

addition, according to Bailey et al. (2007), it is essential to show that a single operator 

can obtain the same results when repeated measurements are made using the same 

method under identical conditions.  Since ultrasound is an operator-dependent modality 

(Collinger et al., 2009), the degree of variation caused by the operator (intra-operator) 

also needs to be established to ensure that the application of a texture analysis technique 

on ultrasound images is reliable.  In addition, the inter-operator reproducibility is 

equally important.  According to Karanicolas et al. (2009), instruments that are useful in 

clinical or research practice will, when the object of measurement is stable, yield similar 

results when applied by different operators. The agreement between two measurements 

is particularly important when there may be underlying natural variation (Kirkwood and 

Sterne, 2003). In this particular case, the variation in the image acquired occurs due to 

the randomness in scanning carried out by the operator.  Since texture analysis is able to 

quantify information which may not be perceived visually (Bocchi et al., 1997), it is 

important to note that two images which look similar visually may not necessarily be 

texturally similar.  

Shen et al. (1997) emphasised the importance of reliability of the measurement in 

quantitative methods. More specifically, for B-mode ultrasound, Chambless et al.
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(1996) stressed on the importance of thoroughly assessing the amount of total variation 

and its source.  Therefore, low variations in the image produced (due to the randomness 

in the scanner and the operator) are crucial in texture analysis to ensure that differences 

in the derived textural features are due to the differences in the acoustic properties of the 

reflecting material, not due to the deterioration of the system or process component.   

5.2 Methodology and Statistical Analysis 

The basis used for the experimental setup for the repeatability test was the document 

“Measurement Good Practice Guide No. 52” by the National Physical Laboratory 

(2005).  

“The repeatability of the measurement can be quantified in either of 2 ways:

(i)  Set the equipment to perform a number of consecutive tests 

(e.g. 10) using identical conditions and without removing the 

specimen between measurements.  In this case, the only 

variables are those relating to the performance of the 

measurement system and the associated statistical (random) 

effects in data capturing and analysis by the software. For 

simplicity, this will be referred to as „instrument-only 

repeatability‟. 

(ii)  As above, but with the specimen removed completely in 

between measurements.  In this case, effects due to variability 

in the test set-up are introduced. These will include resetting 

the device and the precision of repositioning the sample. This 

will be referred as the „instrument-operator repeatability‟.”
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5.2.1 Repeatability of Ultrasound System  

The objective of this section is to assess the reliability (consistency) of the images 

produced due to the random variations caused by the ultrasound system.   

Ten images were acquired using a Toshiba Xario scanner with a 6.0 MHz transvaginal 

transducer (model PVT-661VT).  An RMI phantom model 403 GS LE was used as a 

test object. A stand was used to hold the probe during the image acquisition. The 

machine setting was kept constant across image acquisition process, set to the 

manufacturer‟s pre-defined setting, Endo-Vaginal-Gynae.  The images were transferred 

to the PC in .bmp format for further analysis. Please refer to Figure 4.1 (Chapter 4) for 

an illustration of the experimental setup and the analysis process flow.  A square ROI 

(50X50 pixels) (see Figure 4.2 in Chapter 4) was drawn in the centre of the image for 

features extraction using the MaZda version 4.6 texture analysis software. 

A coefficient of variation (CoV) (see section 3.8.1) was calculated for each texture 

feature.  The ultrasound repeatability COV reflects the variability of the images due to 

random variations in the ultrasound system. The lower the CoV, the smaller the 

variation between the repeats: thus, the higher the repeatability (Bailey et al., 2007). 
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5.2.2 Repeatability of Intra-operator  

The objective of this section is to assess the reliability (consistency) of the images 

acquired in terms of the random variations caused by the operator. 

Two operators acquired a series of B-mode images (10 scans for each operator) from 

the test-object (RMI-403 GS LE).  The transducer was removed from the test object in 

between scans. The images were acquired using a Toshiba Xario scanner with a 6.0 

MHz transvaginal transducer (model PVT-661VT).  The machine setting was kept 

constant across the scanning process for both operators. As in the ultrasound system 

repeatability method, the settings were set to the manufacturer‟s pre-defined setting, 

Endo-Vaginal-Gynae.  Figure 5.1 illustrates the image acquisition and the process flow 

of the intra-operator repeatability assessment.  A square ROI (50X50 pixels) was drawn 

in the centre of the image for features extraction using MaZda version 4.6. 

A coefficient of variation (CoV) (see section 3.8.1) was calculated for each texture 

feature. Intra-operator CoV reflects the variability of the images due to random 

variations in the scans caused by the operator.  

Figure 5.1: Block diagram of intra-operator repeatability assessment.

IMAGE 
ANALYSISImage Acquisition

RMI model 403GS 
LE test object
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5.2.3 Reproducibility of Inter-operator  

The objective of this section is to assess the degree of the difference (which reflects the 

agreement) of the images produced by two operators on the same object under identical 

circumstances.   

Using the same images obtained from the intra-operator study, texture features derived 

from the images obtained by the two operators were evaluated visually using a Bland-

Altman plot (Bland and Altman, 1986).  To draw this plot, the difference between the 

two operators was calculated for each image pair. The differences in the results from the 

two operators were then plotted against the mean value. The Bland-Altman plot allows 

the relationship between the variance/difference and the mean of the measured value to 

be investigated visually (see section 3.8.5).  In this way, it is possible to evaluate 

whether the two operators agree sufficiently.  Besides using Bland-Altman Plot, CoV 

(see section 3.8.1) was also calculated to objectively measure the inter-operator 

reproducibility.   
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5.3 Results 

5.3.1 Repeatability of Ultrasound System  

Ten consecutive images were acquired from the test object. The CoVs for the five 

derived textural features range from 0.26% to 2.56%, with the AR feature showing the 

smallest variation (0.26%) and the Gradient feature showing the largest variation 

(2.56%).  Table 5.1 summarises the mean, the standard deviation (SD), and the CoV for 

all the textural features evaluated in this study.  The CoV is also presented visually in 

Figure 5.2. 

Table 5.1: Ultrasound scanner repeatability.
Textural Features Mean SD CoV (%)

GLCM 984 8 0.84
RLM 387 1 0.36

Gradient 253 6 2.56
AR-model 0.28925 0.00074 0.26
Wavelet 3,794 57 1.51

Figure 5.2: Coefficient of variation (CoV) for ultrasound system repeatability. 
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5.3.2 Repeatability of Intra-operator  

The value of the intra-operator CoV, which demonstrates the consistency of the 

repeatedly acquired images, ranges from 1.04% to 5.32% for operator 1 while for 

operator 2, the CoV ranges from 1.21% to 5.98%; with gradient features  exhibiting the 

largest variation for both operators.  Table 5.2 summarises the CoVs for all five textural 

features evaluated in this study.  The mean CoV is illustrated in Figure 5.3. 

Table 5.2: Intra-operator repeatability.
Features (CoV (%))

Operator GLCM RLM Gradient AR-model Wavelet

Operator1 1.80 4.44 5.32 1.04 1.67
Operator2 1.21 5.46 5.98 1.42 2.06
Mean CoV 1.51 4.95 5.65 1.23 1.87

Figure 5.3: The mean CoV for intra-operator repeatability. 
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5.3.3 Reproducibility of Inter-operator  

The inter-observer mean differences +/- SD between paired images for five textural 

features tested are presented in Table 5.3.  Bland-Altman plots were drawn for the five 

features for graphical evaluation of the agreement between the textural features derived 

from the images obtained by the two operators. Figures 5.4(a) and 5.4(b) are examples 

of Bland-Altman plots showing the distribution of the GLCM feature and RLM feature 

respectively.  All five features show similar patterns, i.e. a random variation in the 

difference between the two operators.  The differences in the paired derived textural 

features between the two operators do not exhibit any systematic pattern, as the mean 

value increases for all textural features. In other words, the difference between the two 

operators does not increase (or decrease) systematically as the mean value increases.   

The mean CoV for inter-operator repeatability ranges from 1.20% to 7.95%, with the 

GLCM feature and the RLM feature demonstrating the lowest and highest CoVs 

respectively.   Three features (GLCM, AR and Wavelet) show very low variation, with 

values below 2%, while the other two features (RLM and Gradient) have values of 

approximately 8%.  The mean CoVs for all five features are presented in Table 5.4.  

Table 5.3: Inter-operator mean difference and standard deviation.
GLCM RLM Gradient AR Wavelet

Mean Diff. -12 32 -34 0.00107 33
Std. Dev. 18 24 27 0.00607 120
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Table 5.4: Coefficient of variation for inter-operator reproducibility.
Mean Coefficient of Variation (CoV (%)

GLCM RLM Gradient AR Wavelet
1.20 7.95 7.68 1.27 1.88

Figure 5.4(a): Example of Bland-Altman plot 
showing the random distribution of the difference 
between the two operators (GLCM feature).

Figure 5.4(b): Example of Bland-Altman plot 
showing the random distribution of the difference 
between the two operators (RLM feature).
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5.4 Discussion 

Repeated measurements are likely to vary (Swinscow, 1997).  The degree of the 

variation will determine the reliability of the measurements made.  Reliability refers to 

the consistency or repeatability of such measurements, and is usually performed to 

assess the instrument‟s and the operator‟s performances (Bruton et al., 2000).  

According to de Vet et al. (2006), reliability is an essential requirement for measuring 

outcomes in medical science, such as the assessment of radiographs.  

In this chapter, a set of experiments were carried out to evaluate the reliability of B-

mode images, particularly in the random variations inherited from the ultrasound system 

and from the operator. Since the reliability of the measurement (image acquisition) 

determines the sensitivity and the specificity when used for classifications or predictions, 

it is important to establish the degree of these variations.  The scatter (variation) in the 

extracted texture features was evaluated as a measure to determine reliability of the image 

texture.  According to Fry (2002), the scatter in the data is a useful measure for quantifying 

the effect each parameter has on the accuracy of the measurement.  The variation due to 

image acquisition procedure can be further divided into the ultrasound system and the 

operator. 

Generally, all the textural features evaluated demonstrated good repeatability for the 

ultrasound system, with all features showing less than 5% of variance from the mean. These 

variations, among others, may come from the electronic circuit and the element (crystal) 

of the transducer.  The results indicate that ultrasound scanners are able to produce 

reliable B-mode images.  A similar study by Guggenbuhl et al. (2008) on Computed-
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Tomography (CT) scanner images reported that the COV for GLCM parameters ranged 

from 0.03% to 3.32%, which is consistent with our findings for ultrasound scanners.  

In this chapter, we also assessed the intra- and inter-operator reliability in image 

acquisition.  It was observed that the relative variations among those five features evaluated 

for ultrasound system and intra-operator exhibit a relatively consistent pattern: the AR 

feature has the smallest variation while the gradient feature has the largest variation.  The 

reproducibility of both operators for all features is comparable. It was also observed for all 

features that their intra-operator CoVs are higher than the ultrasound system CoVs.  This 

can be explained by the fact that the variations in the scanning process are a combination of 

both the ultrasound system and the operator.  Nielson et al. (2000) carried out a 

repeatability assessment of the first-order descriptive statistics parameters which were 

extracted from B-mode image.  They reported that intra-operator CoV repeatability ranges 

from 5% to 35%, which is higher than our findings.  One of the possible reasons for this is 

that first-order descriptive statistics only take into account the intensity, and not the 

relationship between pixels, which makes this technique more susceptible to random 

variations. 

For inter-operator reproducibility, the Bland-Altman plots clearly show that the 

differences between the two operators did not appear to increase as the mean value of 

extracted GLCM feature increases.  The same pattern was observed for the four other 

features: RLM, AR, Gradient and Wavelet features. In other words, there is no obvious 

relationship noted between the differences of the two operators and their means for all 

five features evaluated.  This indicates that increases in the derived feature values do not 

affect the difference between the two operators.  According to Bland and Altman (2010), 

if the differences are proportional to the mean, a logarithmic transformation of the data 
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has to be performed before analysis is carried out.  The CoV calculated to measure the 

consistency of the image produced by two different operators shows relatively small 

variations (good agreement).   

From the results, it can be concluded that the ultrasound system is able to produce 

consistent images. Good agreement between two operators, due to randomness in the 

scanning process, is also achievable. Since the results show that scanning using a 

phantom is able to produce consistent images, it is worth continuing to an assessment of 

scanning repeatability in a clinical environment, which is relatively more complex.  

This is addressed in the next chapter (Chapter 6). 
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5.5 Summary 

The consistency of the image texture is an important factor in texture analysis. The 

repeatability and reproducibility issues have therefore been assessed to determine the 

consistency in the image texture, which could be contributed to by random variations 

inherent in the ultrasound scanner and the scanning process. A tissue-equivalent 

phantom was used for this purpose. This chapter also evaluated the agreement in the 

images produced by two different operators.  The results for the ultrasound system 

repeatability show low variation in the images produced under identical conditions. The 

intra-operator repeatability also demonstrated relatively low variations and good 

agreement was found in the images obtained by two different operators for all textural 

features. 

Based on the findings from this chapter, it can be concluded that ultrasound systems are 

able to produce consistent images.  This chapter has also established that intra-operator 

repeatability and good agreement between two operators are achievable.  Therefore, it is 

worth continuing to a similar assessment in a clinical setting, which involves more 

complex scanning processes (Chapter 6). 
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Chapter 6 
Reliability of ROI Segmentation 
and Clinical Image Acquisition 

The objective of this chapter is to assess the factors related to clinical images that might 

potentially affect the reliability of the extracted texture features, namely ROI 

segmentation, clinical image acquisition, and „calliper line‟. Section 6.1 reviews the 

influence of those three factors on the extracted features.  The methodology and 

statistical analysis are explained in Section 6.2. Section 6.3 presents the results, and 

these are discussed in Section 6.4. Finally, Section 6.5 summarises this chapter. 

6.1 Background 

According to Menke et al. (2009), the reliability of any diagnostic test is important for 

diagnostic precision. In particular, the reproducibility of B-mode images is important if 

the images are to be used for texture analysis.  In order to assess the reliability of 

clinical images, we first need to assess the reliability of the ROI segmentation, i.e. the 

process of delineating the boundaries of the structure of interest. 

Segmentation is an important step in ultrasound B-mode image analysis (Xiao et al., 

2002).  To ensure the reliability of the extracted features, it is necessary to accurately 

identify and segment the area of interest, and the segmentation procedure should be 

repeatable. Image noise and distortions that occur in ultrasound images, however, pose a 

challenge in the ROI segmentation of ultrasound images (Booth et al., 2006), potentially 

resulting in missing boundaries (Noble & Boukerroui, 2006). For instance, Coleman et 

al. (2005) reported that the delineation of the boundaries of the region of interest is 

more difficult in vivo images than in vitro images.  
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As discussed in Chapter 5, this variability will influence the accuracy of the 

classification process.  Although the repeatability of B-mode images was established in 

Chapter 5, it is important to note that the process of obtaining a B-mode image from a 

phantom is relatively easier than from an actual scanning process in a clinical 

environment.  Therefore, the reliability (repeatability) of B-mode image acquisition in a 

clinical setting also needs to be established.  

As mentioned earlier, to establish the reliability of clinical images, the reliability of the 

ROI segmentation must first be assessed. The purpose of image segmentation is to 

divide an image into regions which are meaningful for a particular task (Dougherty, 

2009).  According to Nailon (2010), a significant inter- and intra-clinician variability 

has been reported in the segmenting of tumours of the lung, prostate, brain and 

oesophagus, and this variability has been shown to be correlated with the digital 

imaging modality used.  Ultrasound images are arguably the most difficult among 

various imaging modalities to perform segmentation upon (Noble, 2010).   

There are many studies that have applied automatic segmentation for quantitative 

analysis (for example, Lugt et al., 1998; Boukerroui et al., 1998; Rusko et al., 2009; 

Kakar and Olsen, 2009).  However, it is important to note that ultrasound image 

segmentation is strongly influenced by the quality of the image (Noble & Boukerroui, 

2006).  According to Rocha et al. (2011), ultrasound images are noisy and large parts of 

the edges may be missing, producing gaps in organ boundaries which pose a great 

challenge to automatic segmentation. Similarly, Liu et al. (2010) stated that 

segmentation of breast ultrasound image is very difficult due to blurry boundaries. 
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Two steps can be applied to improve the ROI segmentation reliability: (i) by 

introducing image enhancement, and (ii) by applying a semi-automatic segmentation 

technique.  Image enhancement is the processing of images to improve their appearance 

to human vision (Dougherty, 2009; Cheng et al., 2010), in terms of better contrast and 

visibility of features of interest (Dougherty, 2009), while semi-automatic segmentation, 

which involves manual segmentation using dedicated tools such as magnetic lasso tool, 

will aid in the outlining step.  The use of magnetic lasso tool for the segmentation of 

medical images has been proposed by Park et al. (2005). 

Another issue that needs to be considered, particularly with clinical B-mode images, is 

the „calliper line‟.  The images used for classification in this study were obtained from 

an existing database.  Since the images were not originally acquired for texture analysis 

purposes, there is a „calliper line‟ in the image, which is a line that is used to measure 

the size of the lesion under „conventional‟ methods of interpreting B-mode images.  

Using a texture feature that is not affected by the „calliper line‟ means the method is 

more flexible to be applied to B-mode images. 

6.2 Methodology and Statistical Analysis 

To assess ROI segmentation and clinical image reliability, Adobe Photoshop 6.0 

(Adobe Photoshop 6.0, Adobe System Incorporated) and MaZda 4.6 (Institute of 

Electronics, Technical University of Lodz, Poland) were used.  For both studies, the 

process involved can be divided into two main steps: (i) ROI segmentation using Adobe 
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Photoshop 6.0, and (ii) features extraction using MaZda 4.6.  These steps are illustrated 

in Figure 6.1. 

Image Enhancement

Adobe
Photoshop 6.0

MaZda 4.6

Figure 6.1: Flow-chart of ROI segmentation and 
clinical image repeatability assessment.
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6.2.1  Repeatability of ROI Segmentation  

The objective of this section is to establish the repeatability of the ROI segmentation 

procedure.   

In order to assess the repeatability of the ROI segmentation procedure, ten historically 

representative images were used.  The images were transferred into personal computer 

(PC) for analysis, i.e. the analysis was performed off-line.  The original images were 

first pre-processed prior to image segmentation to enhance the image. According to 

Drukker et al. (2003), image enhancement is an important step before segmentation is 

carried out as medical ultrasound images include such considerable noise that 

segmentation becomes difficult.  Image enhancement helps in segmentation by 

suppressing image noise, and enhances the contrast between the lesion area and the 

tissue background (Shi et al., 2010).

The lesion contour was first outlined by an ultrasonologist for ROI segmentation.  The 

ROI was chosen to be as large as possible in order to cover the whole lesion (see Figure 

6.2(c)).  Using Adobe Photoshop, contrast enhancement was performed by applying a 

gradient-filter to the original image (Figure 6.2(a)).  The enhanced image clearly shows 

an image with better contrast and sharper edges (Figure 6.2(b)).  Based on the contour 

drawn by the ultrasonologist, the area of interest was manually segmented using the 

magnetic lasso tool (Figure 6.2(c)) which yields a temporary segmented image (Figure 

6.2(d)). The use of the magnetic lasso tool has been suggested by Park et al. (2005) for 

the segmentation of the anatomical structures in medical images on a personal computer.  

Based on the temporary segmented image, MaZda version 4.6 was the used to outline 

the ROI (Figure 6.2(e)) which results in the selected ROI (Figure 6.2(f)). Finally, the 
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original image was loaded (Figure 6.2(g)) followed by the features extraction. Each 

image was delineated 10 times. The delineation was performed for each image once 

before being repeated for the subsequent delineation. Figure 6.2 illustrates the clinical 

image segmentation assessment.   

To assess the level of ROI segmentation repeatability, i.e. the variation in the values of 

the extracted features due to the ROI segmentation procedure, CoV (see Section 3.8.1) 

was calculated for each image set. The CoVs were then averaged for the ten image sets 

to reflect the overall repeatability.  This CoV reflects the repeatability of the ROI 

segmentation procedure. 
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Figure 6.2: Clinical image segmentation assessment diagram.
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6.2.2 Repeatability of Clinical Image Acquisition  

The objective of this section is to assess the reliability (consistency) of the clinical 

images acquired (in terms of texture) due to the random variations caused by the 

operator during image acquisition. 

In order to assess the repeatability of the B-mode image acquisition in clinical practice, 

particularly for ovarian images, five sets of images were used in this study.  Each image 

set consisted of ten images acquired by a trained operator.  The features extraction 

procedures for clinical image repeatability assessment are similar to the procedures for 

ROI delineations repeatability assessment (see Section 6.2.1) except that each image 

was only delineated once. Figures 6.3(a) and 6.3(b) are examples of two clinical images 

belonging to the same image set (group). 

To assess the level of the clinical image acquisition repeatability, i.e. the variation in the 

clinical image texture due to the scanning process, CoV (see Section 3.8.1) was 

calculated for each set of images. The CoVs were averaged from all five sets of images 

to reflect the overall repeatability.  This mean COV reflects the reliability of the image 

acquisition procedure in a clinical environment. 

(a) (b)
Figure 6.3: Example of two images acquired from the same subject.
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6.2.3 Influence of Calliper Line 

The objective of this section is to determine the effect of a calliper line (which is 

normally used in clinical images) on the extracted texture features. 

In order to assess the influence of calliper line, ten images were used.  The original 

image (Figure 6.4(a)) was first opened using Adobe Photoshop.  This image was then 

saved to a new file without imposing any changes (Figure 6.4(b)).  The simulated 

calliper line was then drawn in the middle of the image and saved to another new file 

(Figure 6.4(c)).  To ensure that the colour of the simulated calliper line was identical to 

the actual calliper line, a feature in Adobe Photoshop called „colour picker‟ was used. 

The same procedures were carried out on all the images.  Finally, texture features were 

extracted from these two new sets of images. 

Figure 6.4: Illustration of calliper line assessment: (a) Original 
image; (b) Image saved using Adobe Photoshop (group1); and (c) 
Image with simulated „calliper line‟ (group2).

(c)

Simulated
calliper line

(a) (b)
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A Q-Q plot was used to determine the normality of the data. For a normal distribution, 

the plot should show a linear relationship.  Figure 6.5 shows an example of the normally 

distributed data (RLM feature of Group 1) while Figure 6.6 shows an example of the 

non-normally distributed data (GLCM feature of Group 1). The two-sample t-test (for 

the normally distributed data) and the Wilcoxon-Mann-Whitney- test (for the non-

normally distributed data) were used to determine the difference in the texture features 

values extracted from the two groups, i.e. the images with and without simulated 

calliper lines. The statistical analysis was performed using SPSS version 16.0 for 

Windows (SPSS Inc., Chicago, Illinois, USA). 

Figure 6.5 – Example of Q-Q plot for normally 
distributed data (RLM feature of Group1).
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Figure 6.6 - Example of Q-Q plot for non-normally 
distributed data (GLCM feature of Group1).
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6.3 Results 

6.3.1 ROI Segmentation Repeatability 

For ROI segmentation repeatability, the CoV range for GLCM was 0.40% to 1.95%; for 

RLM it was 0.60% to 4.62%; for gradient, 0.39% to 2.50%; for AR, 0.02% to 0.44%; 

and for wavelet, 0.02% to 1.60%. The mean CoV for all features evaluated ranged from 

0.17% to 1.90% with AR exhibiting the smallest variation (0.17%) and RLM  exhibiting 

the highest variation (1.90%). The CoV for all image sets and their means and are 

shown in Table 6.1.  The mean CoV for all five features are graphically shown in Figure 

6.7. 

Table 6.1: Coefficient of variation (CoV) for ROI segmentation repeatability.
Coefficient of Variation (%)

Image GLCM RLM Gradient AR Wavelet
1 1.93 1.16 2.50 0.44 1.25
2 1.95 0.60 2.29 0.31 1.14
3 0.76 4.62 2.26 0.16 1.08
4 0.95 2.87 1.94 0.30 1.23
5 0.47 1.56 1.39 0.18 0.55
6 0.65 1.16 1.12 0.12 0.75
7 0.73 2.10 0.89 0.06 1.42
8 0.50 2.20 0.77 0.08 1.60
9 0.66 1.43 0.60 0.04 0.34

10 0.40 1.27 0.39 0.02 0.02
Mean CoV (%) 0.90 1.90 1.42 0.17 0.98
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6.3.2 Clinical Image Repeatability 

For clinical image repeatability, the CoV values which reflect the variability of the 

extracted features for GLCM ranged from 0.69% to 3.35%; for RLM, 1.33% to 5.24%; 

for gradient, 4.61% to 11.83%; for AR, 0.27% to 0.64%; and for wavelet, 0.84% to 

1.99%. The mean CoV for all five features evaluated ranged from 0.50% to 7.77%, with 

AR having the smallest variations and gradient having the largest variations. The CoV 

for all images and their means and are shown in Table 6.2.  Figure 6.8 shows the mean 

CoV for all five features included in this study.

Figure 6.7: Graph showing the mean CoV for the ROI segmentation repeatability.
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Table 6.2: Coefficient of variation (CoV) for clinical image repeatability.
Coefficient of Variations (%)

Image GLCM RLM Gradient AR Wavelet

Set 1 1.52 1.33 5.49 0.64 1.99
Set 2 0.69 3.89 11.83 0.27 1.28
Set 3 3.35 3.37 4.61 0.42 0.84
Set 4 1.97 3.78 6.14 0.60 1.49
Set 5 3.20 5.24 10.80 0.56 1.01

Mean CoV (%) 2.15 3.52 7.77 0.50 1.32

Figure 6.8: Graph showing the mean CoV for the clinical image repeatability.
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6.3.3 Influence of Calliper Line   

The results show that three features do not have a significant difference between images 

with and without calliper line.  Those features are GLCM (p=0.29), RLM (p=0.71), and 

wavelet (p=0.43).  The other two features, (gradient and AR), however, show a 

significant difference with p-values of less than 0.01.  The mean, median, standard error 

of the mean (s.e.), and p-value for all features are summarised in Table 6.3.   

Table 6.3: Summary results of the calliper line assessment.

Texture 
Features Image Mean Median S.E. p-value

GLCM
Group1 843 882 28

0.29
Group2 858 868 10

RLM
Group1 376 389 15

0.71
Group2 384 398 16

Gradient
Group1 151 134 16

<0.01
Group2 60 62 5

AR
Group1 0.24756 0.24285 0.00484

<0.01
Group2 0.22034 0.22001 0.00083

Wavelet
Group1 4406 4,484 66

0.43
Group2 4478 4,529 50

Group1=Images without calliper line; Group2=Images with calliper line.
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6.4  Discussion 

Any texture analysis requires segmentation of the area of interest.  The purpose of 

segmentation is to divide an image into regions that are meaningful for a particular task 

(Dougherty, 2009). It should be noted that the performance of ultrasound tissue 

characterisation is related to the ultrasound image segmentation problem (Noble, 2010).  

According to Coleman (2007), to determine whether a system would be useful, the 

segmentation of the tissue of interest from the surrounding tissue has to be demonstrated.  

Nonetheless, medical image segmentation remains a common problem for all medical 

imaging applications (Olabarriaga and Smeulders, 2001; Zhu et al., 2006; Jiang et al., 

2010).  Ultrasound image segmentation, for example, is strongly influenced by the 

quality of the image (Noble and Boukerroui, 2006). There are several factors that can 

degrade image quality,  for instance, non-uniform beam attenuation in the body can 

cause variations in the intensities in-homogeneities of B-mode images, which in turn 

may impair the segmentation process (Wilhjelm et al., 1998; Xiao et al., 2002).  

Therefore, to assess clinical image reliability, the ROI segmentation repeatability must 

first be established. 

Munzenmayer et al. (2009) has applied image processing technique to remove the 

artifacts from the images before texture features are extracted.  In this study, an image 

processing technique (gradient-filter) was first applied to the original images to enhance 

the contrast and to sharpen the edges of the lesion before the segmentation process was 

carried out manually using the magnetic lasso tool.  The underlying principle of the 

enhancement is to enlarge the intensity difference between objects and surroundings 

(Shi et al., 2010).  Although there are automatic segmentation techniques available, as 

discussed in Section 6.1, these techniques are not recommended for application on 
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ultrasound images.  Speckle, echo shadows, attenuation, and low contrast are among the 

factors that affect the B-mode image quality (Rocha et al., 2011).  In fact, Park et al.

(2005) stated that it is not possible to automatically perform segmentation because most 

anatomical structures in medical images can not be identified by a computer; which can 

only be identified by medical experts.  For instance, in a study on thyroid glands by 

Catherine et al. (2006), they used a rectangular ROI enclosing the thyroid because 

automatic segmentation of the whole gland was too complex. Although a rectangular 

ROI is easy to draw, it also has the disadvantage that it may not cover the whole lesion.  

The results of this study demonstrate that the use of the magnetic lasso tool for semi-

automatic segmentation was able to produce good segmentation repeatability. 

According to Hwang et al. (2005), using Adobe Photoshop means any anatomical 

structures, including pathological lesions in various types of medical images, can be 

segmented without difficulty.  Park et al. (2005) predicted that the use of the magnetic 

lasso tool will be widely used for the segmentation of anatomical structures in various 

medical images.  Besides improvement in the repeatability, the use of semi-automatic 

segmentation tools will also reduce the time required to outline the area of interest.  

For clinical image acquisition assessment, it was observed for all features that there are 

variations in CoV values between different subjects. For instance, the CoV for GLCM 

features ranges from 0.69% to 3.02%. These variations are due to the different types of 

lesion.  In other words, the „complexity‟ of the lesion will determine the level of 

repeatability in each subject. The more complex a structure is, the higher the variation 

will be.  It was also observed that the results for clinical image repeatability exhibit a 

similar pattern compared to the results for the phantom study (see Section 5.3.2):  the 
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AR feature has the smallest variations while the gradient feature has the highest 

variations.  The level of variation for all features is comparable between phantom and 

clinical studies. Although we previously mentioned that the scanning process in a 

clinical environment is complex, which means higher variations are expected in clinical 

image acquisition, it should be noted that the images for the clinical image repeatability 

assessment were acquired by an experienced operator. In fact, the results of this study 

prove that low variation in clinical image texture is achievable. 

This chapter also assessed the influence of the calliper line which may be found on 

clinical images.  The results show that there is no significant difference between the two 

groups for three of the features (GLCM, RLM, and wavelet) while the other two 

features (gradient and AR) were found to be affected by the calliper line. 

Although all features have good ROI segmentation and clinical image acquisition 

repeatability, the gradient and AR features are affected by the calliper line. Therefore, 

the gradient and AR features were excluded from the image classification study 

(Chapter 7).    
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6.5 Summary 

The consistency of image texture in clinical images is an important factor that 

determines the accuracy of texture analysis technique in medical image classification. In 

addition, the reliability of ROI segmentation is equally important because it has a direct 

effect on the extracted features. Therefore, the repeatability of B-mode images and the 

ROI segmentation of ovarian tissue have been evaluated in this chapter. Since the ROI 

segmentation will determine the reliability of the extracted features, an assessment has 

to be carried out before analysis of clinical image repeatability can be performed.  In 

this study, the ROI was semi-automatically segmented using the magnetic lasso tool in 

Adobe Photoshop. The results proved that the magnetic lasso tool is a useful aid in ROI 

segmentation and good repeatability was achieved for all five features evaluated.  

Similarly, the B-mode clinical image repeatability also found to be satisfactory.  

This chapter also evaluated the influence of the calliper line. The results show that the 

extracted texture features from images with and without calliper line are significantly 

different for gradient and AR features. Therefore, these features were not used for the 

image classification study (Chapter 7).  
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Chapter 7 
Image Characterisation and Classification 

The objective of this chapter is to investigate the ability of GLCM and Wavelet features 

to characterise and discriminate three types of ovarian tissue: normal tissue, cysts, and 

malignant tissue. Section 7.1 briefly describes the quantitative image analysis and the 

ROI delineation approaches employed in this chapter. The methodology and statistical 

analysis are explained in section 7.2. Section 7.3 presents the results, which are 

discussed in section 7.4.  Finally, section 7.5 summarises this chapter.  

7.1 Background 

Ovarian masses are mainly discovered or first explored with transvaginal ultrasound 

(Lucidarme et al., 2010). The goals of the ultrasound examination, amongst others, are 

the early detection of ovarian carcinoma and the differentiation of ovarian masses with 

regards to their clinical significance (Merz, 2007). According to Zimmer et al. (2003), a 

prompt diagnosis of ovarian malignancies is important due to the high mortality rate and 

the difficulty to detect a tumour in its early stages.   

In spite of improvements to the ultrasound equipment, such as improvements in 

resolution, the interpretation of ultrasound images is still subjective and dependent on 

the operator experience (Shung, 2006; Huang et al., 2008; Rocha et al., 2011). As a 

result, a wide range of B-mode ultrasound performance in ovarian cancer diagnosis has 

been reported. For instance, Kinkel et al. (2000) reported the accuracy of B-mode 

ultrasound ranging from 65%-94%. 
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In order to eliminate the operator dependency and improve the diagnostic accuracy, 

computer-aided diagnosis (CAD) has been extensively explored. Chan et al. (1995) 

raised an important point regarding CAD, i.e. the use of a computer in the radiological 

image interpretation: 

„Although a computer program may never be able to achieve the level 

of knowledge and cognitive capability of a radiologist, a trained 

computer program can perform certain tasks reproducibly and 

consistently without the inter-observer and intra-observer variations 

that are commonly observed among human observers. The ability of a 

CAD scheme can therefore be complementary to that of a radiologist‟. 

A B-mode image diagnosis is based on a visual interpretation of the morphological 

features of the lesions. According to Stoitsis et al. (2006(b)), interpretation of medical 

images is often limited due to the non-systematic search patterns of human. Moreover,  

the human eye has limitations and is not able to distinguish between more than 15-20 

shades of grey levels in an ultrasound image (Lagalla & Midiri, 1998). In addition, the 

prevalence of malignancy may differ between women with symptomatic and 

asymptomatic masses, which may in turn affect the positive and negative predictive 

value of a test, and, potentially, sensitivity and specificity as well (AHRQ, 2006). 

On the other hand, texture analysis is more sensitive than visual analysis as it is based 

on the smallest element of the image (Herlidou et al., 1999). Consequently, it is able to 

provide information that cannot be easily detected by the human eye (Herlidou et al., 

1999).  In the medical domain, texture analysis has been explored to improve the 

performance of radiological tests (Van Ginneken et al., 2002; Li et al., 2004(b); 

Gruszauskas et al., 2008). As discussed in chapter 2, this technique has been applied to 

characterise various types of tissues and diseases and promising results were reported. 
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The ultimate goal of texture analysis is to capture distinctive texture features that will 

maximise the discrimination of the analysed images. In order to achieve this, two main 

objectives were set in this chapter. The first objective is to characterise the distribution 

of texture features values for each tissue type, while the second objective is to determine 

their discriminatory power/ability. 

In order to improve the discriminatory capabilities of the texture features, several 

factors that might potentially affect the reliability of the extracted values have to be 

considered. This is to ensure that the variations in the captured extracted features are 

due to the difference in the tissue structure while the variations due to other factors are 

kept to a minimum. The influence of these factors has been discussed in detailed and 

has been investigated in chapter 4, chapter 5, and chapter 6 accordingly. 

Out of the five texture features included in this study (GLCM, RLM, gradient, AR, and 

wavelet), two features (GLCM and wavelet) were found to be robust to the variations of 

the ROI size, ROI depth, and gain setting. These two features also demonstrate good 

instrument and operator repeatability/reproducibility. Additionally, they are not 

influenced by the calliper line. Therefore, these two features were considered for the 

characterisation of the ovarian B-mode images in this study. The other three texture 

features (RLM, gradient, and AR), which were found to be affected by at least one of 

the factors evaluated, have been excluded. 

In this chapter, we investigate the ability of these two features to characterise and 

discriminate three types of ovarian tissue and lesions; namely, normal tissue, cysts, and 
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malignant tissue. Examples of B-mode images of the normal tissue, cysts, and 

malignant tissue are shown in Figures 7.1, 7.2, and 7.3 respectively.  

Two approaches of ROI delineation were employed. For the first approach, the whole 

area of the tissue of interest was included. For the second approach, the anechoic area 

within the normal and malignant tissues was excluded.  

Figure 7.1: Example of 
normal ovary.

Figure 7.2: Example of cysts.

Figure 7.3: Example of 
malignant tissue.



140  

Results from texture analysis technique can be combined with a decision-making 

algorithm to form a computer-aided diagnosis (CAD) system (Tourassi, 1999; Doi, 

2007; Giger et al., 2008) to improve the overall performance of radiological diagnosis. 

According to Tourasi (1999), study findings showed that CAD can enhance the 

diagnostic performance of a radiologist when used as a second opinion.  
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7.2 Methodology and Statistical Analysis 

Thirty historical images consisting of normal tissue (10 images), cysts (9 images), and 

malignant tissue (11 images) were used in this study.  The images were transferred to a 

personal computer (PC) for analysis, i.e. the analysis was performed off-line. 

Two texture features (GLCM and wavelet) were extracted from each image. These 

features have been proved to be robust and reproducible, and were deemed to be 

suitable for B-mode quantitative image analysis. The procedures for the features 

extraction employed in this chapter were similar to the procedures used for the ROI 

segmentation and clinical image repeatability (see section 6.2.1 and section 6.2.2 for the 

details). In brief, Adobe Photoshop 6.0 (Adobe System Incorporated) was used to 

enhance the image and aid the segmentation procedure, while Mazda 4.6 (Institute of 

Electronics, Technical University of Lodz, Poland) was used for features extraction.  

The statistical analysis (Q-Q plot, t-test, Wilcoxon-Mann-Whitney (WMW) test, and 

ROC curve analysis) was performed using SPSS 16.0 for Windows (SPSS Inc, Chicago, 

Illinois, USA).  

(i) Comparing Group Means 

The extracted features were categorised into three groups according to the type of 

lesion: normal tissue, cysts, and malignant tissue. A Q-Q plot was used to determine the 

normality of the data. For normally distributed data, the plot should show a linear 

relationship. Figure 7.4 shows an example of a normally distributed data (GLCM 

feature of normal tissue - Approach 1) while Figure 7.5 shows an example of a non-

normally distributed data (wavelet feature of malignant tissue - Approach 1). 
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Figure 7.4: Example of Q-Q plot for a normally distributed 
data (GLCM feature of normal tissue - Approach 1).

Figure 7.5: Example of Q-Q plot for a non-normally distributed
data (wavelet feature of malignant tissue -Approach 1).
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The two-sample t-test (for the normally distributed data) and the WMW test (for the 

non-normally distributed data) were used (see section 3.8.2) to determine the difference 

in the texture features values extracted from the three groups, i.e. to see whether or not 

there is a significant difference between them. The values were compared in pairs: 

normal tissue and cyst; normal tissue and malignant tissue; and cyst and malignant 

tissue. All different group pairs and ROI delineation approaches were evaluated in this 

manner. 

(ii)  Performance Assessment 

A receiver operating characteristic (ROC) curve analysis (see section 3.8.4) was carried 

out to evaluate the ability of the texture features to discriminate between the three 

groups. This analysis was carried out for the group pairs that have a significant 

difference (p-value less than 0.05). The ROC curve analysis provides the selection of 

the cut-off value and accounts for the inter-dependence between sensitivity and 

specificity. The higher the ROC curve area value, the better the discriminatory ability. 

Visual inspection of the ROC curve allows us to draw an arbitrary cut-off value, which 

is a trade-off between sensitivity and specificity.  
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7.2.1  Approach 1 - Anechoic Area Included 

The contour of the tissue of interest was first outlined by an ultrasonologist. Based on 

the contour drawn by the ultrasonologist, the ROI for features extraction was then 

manually segmented. The ROI was chosen to be as large as possible in order to cover 

the whole area of the tissue of interest.  

For this approach, the anechoic area (see Figure 7.6(a)) that occurs within the ROI was 

also included (see Figure 7.6(b)). The texture features were then extracted using Mazda 

version 4.6 (Institute of Electronics, Technical University of Lodz, Poland). 

Figure 7.6: (a) Example of original image; (b) Example of selected ROI 
which comprises of whole area of interest. 

(a) (b)

Area of the 
tissue of interest Selected ROIAnechoic area
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7.2.2  Approach 2 - Anechoic Area Excluded 

The procedures of outlining the ROI were similar to the procedures employed in section 

7.2.1. The contour of the tissue of interest was first outlined by an ultrasonologist. 

Based on the contour drawn by the ultrasonologist, the ROI for features extraction was 

then manually segmented. The ROI was chosen to be as large as possible in order to 

cover the whole area of the tissue of interest  

However, for this approach, the anechoic area within the normal and malignant tissues 

was excluded. Figure 7.7(a) and 7.7(b) illustrate the ROI determination, i.e. the texture 

features were only extracted from the solid area of the tissue of interest (see Figure 

7.7(b)).  

Figure 7.7: (a) Example of original image; (b) Example of selected ROI 
which excludes the black area occurring within the area of interest. 

(b)

Selected ROI
Anechoic area was 

excluded from analysis

(a)

Anechoic area
Area of the 

tissue of interest
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7.3 Results  

7.3.1  ROI Delineation - Approach 1 (Anechoic Area Included) 

For each group (normal tissue, cysts, and malignant tissue), the mean, median, standard 

deviation, and standard error of the mean (s.e.) of the extracted texture features were 

calculated and are summarised in Table 7.1.  The mean values for the GLCM and 

wavelet features are visually presented in Figure 7.8 and Figure 7.9, respectively. 

Table 7.1: Summary of the mean, median, standard deviation, and std. error 
of mean of the extracted features (ROI delineation - approach 1).

Texture 
Feature Tissue Type Mean Median SD S.E. 

GLCM
Normal 703 731 130 43
Cysts 435 421 163 51

Malignant 782 782 64 19

Wavelet

Normal 4,481 4,500 191 63

Cysts 4,705 4,622 316 100

Malignant 4,427 4,470 293 88

Figure 7.8: Graph showing mean values of GLCM feature 
for normal tissue, cysts, and malignant tissue (ROI 
delineation - approach 1).
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Of the three groups, the malignant tissue exhibits the highest GLCM features mean 

value (782) while cysts exhibits the lowest GLCM mean value (435).  The mean value 

for normal tissue is 703.  On the other hand, cysts exhibit the highest wavelet features 

mean value (4,705) while the mean values for the normal and malignant tissues are 

virtually similar: 4,481 and 4,427 respectively.  

 The values of the extracted texture features were compared in pairs: normal tissue and 

cysts; normal tissue and malignant tissue; and cysts and malignant tissue. The results for 

the GLCM feature show that two group pairs were statistically significant: the p-value 

between normal tissue and cysts, and between cysts and malignant tissue, are less than 

0.01.  However, the mean values between normal tissue and malignant tissue were not 

statistically significant (p=0.12).   

Figure 7.9: Graph showing mean values of wavelet feature 
for normal tissue, cysts, and malignant tissue (ROI 
delineation - approach 1).
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The results for the wavelet feature, however, show that for all three group pairs 

compared (normal-cysts, normal-malignant, cysts-malignant), the difference was not 

statistically significant: the p-value between normal tissue and cysts is 0.08, between 

normal tissue and malignant tissue is 0.97, and between cysts and malignant tissue is 

0.07.  The results for both, GLCM and wavelet features, are summarised in Table 7.2. 

Table 7.2: Summary results of the significance test (ROI delineation -
approach 1).

Texture Feature Group
Pair p-value Significantly

different?

GLCM

Normal-Cysts < 0.01 Yes

Normal-Malignant 0.12 No
Cysts-Malignant <0.01 Yes

Wavelet
Normal-Cysts 0.08 No

Normal-Malignant 0.97 No
Cyst-Malignant 0.07 No
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Receiver operating curve (ROC) analysis was performed to determine the ability of the 

GLCM features in discriminating between normal tissue and cyst, and between cysts 

and malignant tissue (i.e. for those group pairs that demonstrate a statistically 

significant difference (p-value < 0.05)).  The corresponding ROC curves are shown in 

Figure 7.10 (between normal tissue and cysts) and Figure 7.11 (between cysts and 

malignant tissue). As mentioned in Section 3.8.4, an AUC close to 1 indicates a strong 

discriminatory power/ability of the indicator variable while the AUC close to 0.5 

indicates that the variable has little discriminatory power.   

Figure 7.11: ROC curve for GLCM feature to discriminate 
between cysts and malignant tissue (ROI delineation - approach 1).

AUC=0.945

Figure 7.10: ROC curve for GLCM feature to discriminate 
between normal tissue and cysts (ROI delineation - approach 1).

AUC=0.900
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Table 7.3 presents the area under the curve (AUC) which reflects the ability of the 

GLCM feature in discriminating between the three groups, for the ROI delineation 

which includes the anechoic area that occurs within the normal and the malignant 

tissues (approach 1). 

To evaluate the ability of the indicator variable (as in this study, the texture feature) to 

correctly classify images, a sensitivity of 100% and a moderately high sensitivity have 

been for comparison.   For instance, in discriminating between normal tissue and cysts, 

use of 511 as a threshold value led to an estimated sensitivity of 100% and specificity of 

80%.  However, if the threshold value is set to 563, the sensitivity will drop to 78% 

while the specificity will increase to 90%.  Table 7.4 presents examples of the threshold 

value, the sensitivity and the specificity associated with the GLCM in discriminating 

ovarian tissue using approach 1. 

Table 7.3: The area under the curve (AUC) associated with GLCM 
feature (ROI delineation - approach 1).

Texture 
Feature

Group
Pair AUC Discriminatory 

ability*

GLCM
Normal-Cysts 0.900 Good

Cysts-Malignant 0.945 Very Good
*Based on the classification by Simon (2008)

Table 7.4: Sensitivity and specificity associated with GLCM features (ROI 
delineation - approach 1). 
Texture 
Features

Group
Pair

Threshold
Value

Sensitivity 
(%)

Specificity 
(%)

GLCM

Normal –Cysts 511 100 80

563 78 90

Cysts-Malignant 623 100 90
713 82 90



151  

7.3.2  ROI Delineation - Approach 2 (Anechoic Area Excluded) 

Similar to section 7.3.1, the mean, median, standard deviation, and standard error of the 

mean (s.e.) of the extracted texture features were calculated for each group (normal 

tissue, cysts, and malignant tissue) and are summarised in Table 7.5. The mean values 

for the GLCM and wavelet features are visually presented in Figure 7.12 and Figure 

7.13, respectively. It is worth noting that the ROI used for cyst images in this approach 

(approach 2) is identical to the earlier approach (approach 1); the anechoic area of the 

cysts is included in the analysis. As such, the mean and SD values for these two 

approaches are also similar. 

Table 7.5: Summary of the mean, median, standard deviation, and std. error 
of the mean of the extracted features (ROI delineation - approach 2).

Texture 
Feature Tissue Type Mean Median SD S.E. 

GLCM
Normal 678 661 111 37
Cysts 435 421 163 51

Malignant 818 840 53 16

Wavelet

Normal 4,292 4,289 328 109

Cysts 4,705 4,622 316 100

Malignant 3,776 3,745 269 81
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Figure 7.12: Graph showing mean values of GLCM 
feature for normal tissue, cysts, and malignant tissue
(ROI delineation - approach 2). 

Figure 7.13: Graph showing mean values of wavelet 
feature for normal tissue, cysts, and malignant tissue
(ROI delineation - approach 2).
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Of the three groups, the malignant tissue exhibits the highest mean value for GLCM 

features (818) while cysts exhibits the lowest (435).  The mean value for normal tissue 

is 678.  On the other hand, regarding the wavelet feature, cysts exhibit the highest mean 

value (4,705) while malignant tissue exhibits the lowest mean value (3,776). The mean 

value for normal tissue is 4,292. 

The statistical analysis results show that the mean difference for both, the GLCM and 

the wavelet feature, were statistically different for all three group pairs compared 

(normal-cyst, normal-malignant, cyst-malignant).  As for the GLCM features, the p-

value ranged from less than 0.001 up to 0.005, while for the wavelet feature, the p-value 

ranged from less than 0.001 up to 0.013.  The results are summarised in Table 7.6. 

Table 7.6: Summary results of the significance test (ROI delineation -
approach 2)

Texture Features Group
Pair p-value Significantly

different?

GLCM
Normal-Cysts 0.001 Yes

Normal-Malignant 0.005 Yes

Cysts-Malignant <0.001 Yes

Wavelet

Normal-Cysts 0.013 Yes

Normal-Malignant 0.002 Yes

Cysts-Malignant <0.001 Yes
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The receiver operating curve (ROC) analysis was performed for all group pairs that 

demonstrate a significant difference (p-value < 0.05), to determine the ability of the 

GLCM and wavelet features in discriminating between the three groups. The 

corresponding ROC curves for the GLCM feature are shown in Figure 7.14, Figure 7.15 

and Figure 7.16, while the corresponding ROC curves for the wavelet feature are shown 

in Figure 7.17, Figure 7.18 and Figure 7.19. The AUCs for the GLCM and wavelet 

features for all group pairs tested for the ROI delineation that excludes the anechoic 

area that occurs within the normal and the malignant tissues (approach 2) are presented 

in Table 7.7.   
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AUC=0.848

Figure 7.15: ROC curve showing the ability of GLCM 
feature to discriminate between normal and malignant 
tissues (ROI delineation - approach 2)

AUC=0.889

Figure 7.14: ROC curve showing the ability of GLCM 
feature to discriminate between normal tissue and cysts (ROI 
delineation - approach 2)

AUC=0.973

Figure 7.16: ROC curve showing the ability of GLCM 
feature to discriminate between cysts and malignant 
tissue (ROI delineation - approach 2).
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AUC=0.811

Figure 7.17: ROC curve showing the ability of wavelet 
feature to discriminate between normal tissue and cysts 
(ROI delineation - approach 2).

AUC=0.879

Figure 7.18: ROC curve showing the ability of wavelet 
feature to discriminate between normal and malignant 
tissues (ROI delineation - approach 2).

AUC=0.991

Figure 7.19: ROC curve showing the ability of wavelet 
feature to discriminate between cysts and malignant 
tissue (ROI delineation - approach 2).
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To evaluate the ability of the GLCM and wavelet features to correctly classify images, 

similar to Section 7.3.1, a sensitivity of 100% and a moderately high sensitivity were 

chosen for comparison.   For instance, in discriminating between normal and malignant 

tissues using the GLCM feature, use of 737 as a threshold value led to an estimated 

sensitivity of 91% and specificity of 78%. As for the wavelet feature, use of 4,054 as a 

threshold value led to an estimated sensitivity of 91% and specificity of 89%. Table 7.8 

presents examples of the sensitivity and the specificity for various group pairs 

associated with the GLCM and wavelet features using approach 2. 

Table 7.7: The area under the curve (AUC) associated with GLCM and wavelet 
features ( ROI delineation - approach 2)

Texture Features Group
Pair AUC Discriminatory 

Ability*

GLCM

Normal-Cysts 0.889 Good

Normal-Malignant 0.848 Good

Cysts-Malignant 0.973 Excellent

Wavelet

Normal-Cysts 0.811 Good

Normal-Malignant 0.879 Good
Cysts-Malignant 0.991 Excellent

*Based on the classification by Simon (2008)
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Table 7.8: Sensitivity and specificity associated with GLCM and wavelet features 
(ROI delineation - approach 2).

Texture 
Features

Group
Pair

Threshold
Value

Sensitivity 
(%)

Specificity 
(%)

GLCM

Normal –Cysts 520 100 80

569 78 90

Normal-Malignant 691 100 56

737 91 78

Cysts-Malignant 637 100 90

731 91 90

Wavelet

Normal –Cysts 4,313 100 56

4,473 80 67

Normal-Malignant 3,627 100 44
4,054 89 91

Cysts-Malignant 4,188 100 90

4,362 90 90
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7.4 Discussion 

Ovarian cancer remains a leading cause of death from gynaecologic malignancies. The 

malignancy of suspicious lesions, however, has to be confirmed by a biopsy which is 

invasive in nature. Ultrasound imaging, on the other hand, is a non-invasive method and 

is widely used for ovarian cancer diagnosis. Improvements in the diagnostic accuracy of 

ultrasound based diagnoses will reduce the number of unnecessary biopsies.   

Ultrasonic tissue characterisation describes the micro structure of a tissue either by its 

physical properties (such as speed and attenuation of sound) or by its echo texture 

(Valcx & Thijssen, 1997). It can be used in conjunction with a visual interpretation of 

an ultrasound image to improve the diagnosis. Nevertheless, as discussed in previous 

chapters, the texture analysis of ultrasound images has some disadvantages such as the 

dependency on the ROI size, ROI depth and gain settings. However, the statistical 

summary approach (i.e. mean) that we adopted in this study was able to produce texture 

descriptors which are robust to those possible influencing factors, as demonstrated in 

chapter 3, chapter 4, chapter 5, and chapter 6. 

The aim of this chapter was to determine the ability of GLCM and wavelet features in 

characterising ovarian tissues. In particular, we investigated the appropriateness of these 

features in discriminating normal tissue, cysts, and malignant tissue.   

There were variations observed in the texture features value extracted from the same 

tissue type. For example, the SD of the extracted values for GLCM feature for normal 

tissue was 130 for approach 1 and 111 for approach 2. Similarly, the SD for wavelet 

features was 191 and 328 for approach 1 and approach 2 respectively. Besides the 
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variations caused by the ultrasound system and the scanning process, another possible 

factor that may contribute to this variation is the difference in the tissue layer between 

different patients (Coleman, 2007), which in turn caused the level of attenuation to vary 

from patient to patient (Wilhjelm et al., 1998; Xiao et al., 2002). 

In this study, two ROI selection approaches were adopted. It can be seen from the plots 

that omitting the anechoic area that occurs within the normal and the malignant tissues 

has improved the separation in the extracted texture features between different groups. 

This is confirmed by the significance test results whereby for approach 2, all three 

group pairs (normal tissue-cysts, normal tissue-malignant tissue, and cysts-malignant 

tissue) were significantly different for both texture features, compared to only two 

group pairs (normal tissue-cysts and cysts-malignant tissue) of the GLCM feature which 

were significantly different for approach 1, indicating that the anechoic area within the 

area of interest may affect the texture analysis technique.  

For wavelet features, there was no statistically significant difference (p=0.97) between 

normal and malignant tissues when the whole area was included for features extraction. 

On the other hand, a significant difference was observed (p-value = 0.002) when the 

anechoic area was excluded from the normal and malignant tissues. The results indicate 

that the determination of the area in which texture features are extracted will affect the 

characterisation ability.   

According to Diamond et al. (2004), texture analysis is more appropriate for the 

characterisation of regions exhibiting greater homogeneity in their structure. This 

suggests that for any texture analysis application meant for biological tissue 
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characterisation, the anechoic area should be treated with care. Failure to do so may 

results in false classification and affects the overall classification performance. This is 

particularly important when the anechoic area is very likely to be part of the structure 

studied, such as the ovarian follicle in the case of an ovary. 

In this study, the ROC curve analysis has been used to evaluate the ability of the GLCM 

and wavelet features in classifying the B-mode ovarian images. The AUC, which is 

obtained from the ROC curve analysis, is useful parameter for evaluating the overall 

ability of the indicator variable (as in this study, the texture feature) to correctly classify 

subjects (Morrison et al., 2003). Generally, the results of this study demonstrate that the 

classification ability of the GLCM and wavelet features was good with the AUC 

ranging from 0.811 to 0.991. These findings are comparable to the results reported by 

van Ginneken et al. (2002) and Huang et al. (2008).   

In their study to discriminate the radiological images for the chest screening against 

tuberculosis, van Ginneken et al. (2002) reported that the area under the ROC curve was 

0.820 and concluded that the technique used may be helpful to radiologists for reading 

mass chest screening images.  Similarly, in their study to classify breast lesions on 

ultrasound, Huang et al. (2008) reported that the area under the ROC curves was 0.91 

and concluded that the proposed method provides a clinically useful second opinion.   

AHRQ (2006) reported that for morphologic appearance on ultrasound, pooled 

sensitivities for specific scoring systems ranged from 0.82 to 0.91, and specificities 

ranged from 0.68 to 0.81.  In discriminating between normal and malignant tissues, the 

results of this study show that for the GLCM feature, use of 737 as a threshold value led 
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to an estimated sensitivity of 91% and specificity of 78%, while for the wavelet feature, 

use of 4,054 as a threshold value led to an estimated sensitivity of 89% and specificity 

of 91%.  To improve the performance of texture analysis, these two features can be 

applied simultaneously. According to Singh and Singh (2002), a selection of features 

from a combined set of textural features categories yields a better performance 

compared to using features from a single category, while AMD, in their document „A 

New Technique (HistoScanningTM) for the Non-Invasive Detection of Cancers of Solid 

Organs‟, reported that an improvement in the specificity was achieved when three 

algorithms were applied simultaneously compared with using each algorithm separately. 

Results from texture analysis techniques can also be combined with the results from 

other objective image analysis techniques (such as automated morphological features 

analysis) as an input to the CAD system to further improve the diagnostic accuracy. 

Apart from that, Doi (2007) suggested two measures in order to improve the 

performance of CAD: (i) disregard obvious computer false-positive cases that can be 

identified by a physician easily, and (ii) incorporate the results of the computer output 

for subtle lesions which might be difficult for a physician to detect.  

According to Materka (2004) and Tesar et al. (2008), the GLCM feature is commonly 

used in the 2D texture analysis of medical images. The results from this study 

demonstrated that in general, the GLCM feature has a better characterisation ability 

compared to the wavelet feature. This is in accordance with the statement by Tuceryan 

and Jain (1998): the GLCM features generally outperform other features. Likewise, 

Garra et al. (1993) in their study on breast lesions reported that GLCM is the most 

useful feature while Lam (1996) stated that GLCM has long been a powerful tool for 
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texture analysis.  In terrain classification, Weszka et al. (1976) compared the 

performance of several texture features and concluded that GLCM features were the 

best among the texture features studied. 

The performances of the texture analysis methods are determined by how they 

formulate the relationship between image elements (Al-Kadi, 2009). Since how a 

texture analysis method calculates the image texture was not the primary objective of 

this study, we did not investigate what the underlying factors are that cause the 

difference in the performance of the GLCM and wavelet features. Furthermore, 

according to Lerski (2006), the whole relationship of texture and its measurement to 

tissue structure is a very complex issue which is not fully understood.  

It is important to note the difference between the automated computer diagnosis and the 

computer-aided diagnosis (CAD) concept. The main difference between the two 

concepts is the way in which the results of the computer output are utilised for the 

diagnosis. In an automated computer diagnosis, the diagnosis is based completely on the 

results of the computer output (Doi, 2007; Giger et al., 2008). On the other hand, for 

CAD, the computer output is used as an aid to the physician in interpreting the images. 

Doi et al. (1999) defined CAD as a diagnosis made by a physician who takes into 

account the results of the computer output as a “second opinion”, while Chen and Hsiao 

(2008) defined CAD as a diagnostic aid that takes into account equally the role of the 

physician and the benefits of the computer system.  

According to Huynen et al. (1994), texture analysis may improve diagnostic accuracy 

by providing a more reproducible result and information that is difficult for humans to 
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perceive. In a study on breast lesions, Garra et al. (1993) stated that the texture analysis 

of ultrasound images markedly reduces the number of benign lesion biopsies without 

missing additional malignancies. This study demonstrated that texture analysis methods, 

GLCM and wavelet features in particular, are potentially able to discriminate between 

normal and pathologic ovarian tissue. It is worth noting that the threshold value should 

be obtained by performing an ROC curve analysis on a larger sample size that is 

represented by the groups studied before any threshold value can be set for clinical 

studies. 

According to Doi (2007), in CAD, the computer output could be utilized by radiologists, 

but would not replace them. Similarly, Bader et al. (2000) concluded that a computer 

texture analysis system is able to improve the subjective assessment of ultrasound 

images of the breast but cannot replace it. Therefore, the results from this chapter 

suggest that GLCM and wavelet could potentially be used as an input for a CAD system 

to aid ovarian cancer diagnosis.  
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7.5 Summary 

Many studies have demonstrated the ability of texture analysis techniques to 

characterise between normal and diseased tissues. In this chapter, the feasibility of the 

GLCM and wavelet features to characterise ovarian images has been investigated. 

Based on the findings from previous chapters, these two features are deemed to be 

robust and demonstrate good repeatability. Two ROI segmentation approaches were 

adopted in this study: (i) the whole area of the tissue of interest was included; and (ii) 

the anechoic area within the normal and malignant tissues was excluded.  

Images were classified into three groups: normal ovary, cysts, and malignant tissue. The 

Q-Q plot was used to determine the normality of the data distribution.  For the statistical 

analysis, the t-test and WMW test was used to compare the mean, i.e. to determine 

whether the mean value is different between the groups compared. The results 

demonstrated the feasibility of texture analysis in characterising ovarian tissue.  The 

results also demonstrated that the anechoic area within the structure studied is likely to 

have an impact on the classification performance of the texture analysis techniques: the 

performance of the texture analysis was improved when the anechoic area within the 

normal and malignant tissues was excluded from features extraction. Consequently, care 

should be taken with the anechoic area inside the ROI in order to improve the 

discriminatory capability of the derived features. 

Overall, this study demonstrated that there is a significant difference in the GLCM 

values between normal, cysts, and malignant tissues. Besides GLCM, the wavelet 

feature was also able to discriminate the three groups when the anechoic area was 

excluded in the features extraction. Ultimately, these texture features are anticipated to 
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be feasible to be used for a quantitative image analysis of ovarian images. Results from 

the texture analysis technique can be combined with a decision-making algorithm to 

form a CAD system. The output of this technique can serve as a second opinion for a 

physician, particularly for ambiguous cases, and in turn, is able to improve the overall 

diagnosis.
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Chapter 8 
Summary and Conclusions 

8.1 Summary  

Accurate and early diagnosis is among the crucial factors in the management of ovarian 

cancer as it will determine type of treatment as well as prognosis.  A blood test (CA-

125) is normally used in conjunction with radiological findings for the prediction of 

malignancy.  Among the various type of imaging modalities, ultrasound, B-mode 

imaging in particular, is considered the main imaging procedure for the triage of ovarian 

cancer.  Despite its proven usefulness, the main issue is that it is operator-dependent, 

and thus the accuracy and reproducibility of the diagnosis very much subject to the 

experience of the operator.   

In order to reduce the operator-dependency, texture analysis, which is able to 

quantitatively characterise tissue through texture content, has been considered in this 

study.  Image texture analysis has been applied in many imaging techniques, from 

satellite photography to document processing.  In the medical domain, extensive 

research works have been carried out to investigate the use of the texture analysis 

technique in the characterisation and discrimination of biological tissue, such as liver, 

breast, thyroid, prostate, carotid plaques and many others, and has been proved to be 

valuable. 

As mentioned in chapter 1, the aim of this study was to develop an objective method to 

be used in ultrasound-based assessment for ovarian tumours, using a texture analysis 

technique on a greyscale (B-mode) ultrasound image, with a view to providing a tool 

that is able to assist clinicians in their diagnosis of ovarian cancer.   
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It is important to note that it is necessary to establish the reliability of the extracted 

features in order to ensure the accuracy of texture analysis techniques when used for 

image classification.  The reliability of the extracted features might be influenced by, 

among other factors, the ultrasound system, the operator, and the features extraction 

procedure. 

Any instrument will have a random variation in its measurement.  A series of images 

acquired under identical conditions will therefore vary due to these random variations in 

the ultrasound system. As well as the ultrasound system, the operator is another source 

of variation in the acquired images.  It is therefore important to establish the reliability 

of B-mode images.  Additionally, the repeatability of ROI segmentation during features 

extraction will also influence the reliability of the extracted features.  

For these reasons, before texture features were selected for classification, ROI size, ROI 

depth, scanner gain setting, scanner repeatability, operator repeatability, and ROI 

segmentation repeatability were first considered.  In addition, the influence of the 

„calliper line‟, a line that is used to measure the size of the lesion under „conventional‟ 

methods of interpreting B-mode images, was also assessed.  These issues were 

addressed in Chapters 4, 5 and 6 respectively.  The results are summarised in Table 8.1.  

Based on the results obtained, it is concluded that technical aspects of image acquisition 

and features extraction are adequate to allow further investigation of the ability of 

texture analysis technique to characterise ovarian tissue.   
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Table 8.1: Summary of the assessment of the B-mode image texture reliability.
Textural Features

Type of Assessment GLCM RLM Gradient AR Wavelet

1) (a) ROI Size – Intra-ROI   > 900 pixels  

1) (b) ROI Size – Inter-ROI     

2) (a) Depth: 4cm focus     

2) (b) Depth: 6cm focus     

2) (c) Depth: 8cm focus     

3) (a) Gain: 80 to 100     

3) (b) Gain: 90 to 100     

4) Ultrasound system reliability     

5) Intra-operator repeatability     

6) Inter-operator reproducibility     

7) ROI segmentation repeatability     

8) Clinical image acquisition     

9) Calliper-line     

* „’= Not affected,    „’= Affected  
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Then, in Chapter 7, the feasibility of texture analysis technique was investigated. The 

texture value of three types of ovarian tissue (normal, cysts, and malignant) were 

compared. Two ROI segmentation approaches were adopted: (i) with the whole area of 

the tissue of interest included; and (ii) with the anechoic area within the area of the 

tissue of interest excluded.  

The results revealed that the anechoic area within the structure studied is likely to have 

an impact on the classification performance.  The results demonstrated that there was a 

significant difference in the GLCM and wavelet features between those groups when 

the anechoic area was excluded from the normal and malignant tissues.  However, when 

the whole area of the tissue of interest was included for features extraction, there was no 

significant difference between normal and malignant tissue in the GLCM and wavelet 

features. Similarly, there was no significant difference in the wavelet feature for all the 

three groups compared. 

It is well documented that B-mode images contain a significant level of image noise and 

distortions.  Therefore, in this study, an image enhancement technique using Adobe 

Photoshop was employed to prepare the clinical images prior to the ROI segmentation 

and features extraction.  In addition, semi-automatic segmentation (magnetic lasso tool) 

was employed to facilitate the segmentation process. 
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8.2 Conclusions 

This study has shown that quantitative texture analysis of B-mode images using the 

statistical summary approach (i.e. the mean of all statistical values generated by an 

algorithm) demonstrates a significant difference between normal tissue, cysts, and 

malignant tissue for GLCM and wavelet features.  Therefore, it is possible to conclude 

that the development of CAD using GLCM and wavelet features has the potential to 

differentiate objectively the ovarian lesion and this warrants further study on a larger 

scale of data. It is expected that this method would ultimately improve the diagnosis of 

medical imaging in general and ovarian cancer in particular.  

This study has also demonstrated that some texture features are dependent on the ROI 

size, the ROI depth, and the gain setting.  As for the B-mode image reliability, the 

phantom study results proved that ultrasound systems are able to produce consistent 

images and so good intra- and inter-operator reliability is achievable.  Assessment of 

clinical image acquisition also demonstrated that a low variation in clinical image 

acquisition is achievable. 

The results of this study also demonstrate that the use of the magnetic lasso tool

facilitates the reproducibility of ROI segmentation procedure of B-mode images. 
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8.3 Contributions 

A novel approach of using summary statistics of extracted texture features has been 

presented and successfully applied to ovarian images.  According to Tuceryan and Jain 

(1998), one of the drawbacks of GLCM is that there is no well-established method of 

selecting the displacement vector (d), and computing co-occurrence matrices for all 

possible different „d‟ values is not feasible.  Apart from that, according to Livens et al.

(1997), although a large number of features may carry more information, it can also 

cause the classification to become more complex. They further emphasise that although 

there are feature reduction methods available, a fundamental problem with them is that 

the predominant feature that will carry the most useful information can differ from one 

texture to another. The approach introduced in this study is able to overcome these 

problems.  

This study has conducted a thorough assessment on the possible influencing factors / 

conditions that may affect the extracted features.  This included an assessment of factors 

associated with the ultrasound system, operator, and the feature extraction process. The 

results of this study can be used for similar studies in the future.  Furthermore, the 

assessment methods applied in this study can be used to carry out similar assessments 

on other texture analysis methods not included in this study. 

To my knowledge, there is no single study that combines both the use of the gradient 

filters (for image enhancement) and the magnetic lasso tool (for ROI delineation) prior 

to features extraction. This study demonstrated that the combination of these two 

techniques helps in providing good ROI segmentation reproducibility, one of the key 

factors that will determine the success of texture analysis in the medical domain. 
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8.4 Future works 

Five texture features (GLCM, RLM, gradient, AR, and wavelet) were considered in this 

study. Out of these five features, only two (GLCM and wavelet) were found to be robust 

and reproducible, and deemed to be suitable for image classification. This study also 

demonstrated that there were significant differences between the groups compared for 

both GLCM and wavelet features.   

However, there are some areas in which the study and the developed methods could be 

further improved or explored.  This includes the following: 

(i) A larger number of images are required in order to get more 

representative results and to confirm the clinical value of this 

method.  

(ii) Ovarian cancer is classified into four stages based on the FIGO 

system. Future work may involve the classification of malignant 

tissues at different stages. 

(iii) It would be of interest to explore other types of two-dimensional 

(2D) texture analysis methods as well as three dimensional (3D) 

texture analysis methods in discriminating ovarian tissue. 

(iv) Wall thickness and septa are among the morphological features 

used in the scoring system to diagnose ovarian cancer from B-

mode ultrasound images. The image enhancement techniques and 

magnetic lasso tool employed in this study could be applied to aid 

in the evaluation of the thickness of the wall and the septa. 
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-Appendix A- 

Toshiba Xario - Specifications 
Item Specifications

Power Line voltage 230 VAC +/-10% (for Europe)
110 to 120 VAC +/-10% (for Other 1)
220 to 240 VAC +/-10% (for Other 2)

Line frequency 50 Hz to 60 Hz +/-1Hz
Power consumption Maximum 1.5 kVA

Operating 
environmental 
conditions

Ambient temperature 100C to 300C
Relative humidity 35% to 80% (no condensation)
Atmospheric pressure 700 hPa to 1060 hPa

Storage and 
transportation 
conditions

Ambient temperature -100C to 500C
Relative humidity 30% to 80% (no condensation)

50% or less if ambient temperature 
exceeds 400C

Atmospheric pressure 700 hPa to 1060 hPa
External dimensions 
(not including optional 
units)

For system with CRT 
monitor

540 +/-20 mm (width) x 1455 +/-30 to 
1500 +/-50 mm (height) x 814 +/-30 
mm (depth)

For system with LCD 
monitor

540 +/-20 mm (width) x 1360 +/-30 to 
1595 +/-50 mm (height) x 814 +/-30 
mm (depth)

Mass (not including 
optional units)

For system with CRT 
monitor

150 kg or less

For system with LCD 
monitor

140 kg or less
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-Appendix B- 

Summary of the results for the influence of the ROI size
on the extracted textural features.

Pixel size GLCM RLM Gradient AR Wavelet
Mean 969 18 311 0.27237 3762

100 pixels Std Dev 44 1 48 0.02238 312
CoV 4.50 6.21 15.51 8.22 8.29
Mean 982 65 302 0.27780 4007

400 pixels Std Dev 31 3 39 0.00687 102
CoV 3.20 4.17 12.84 2.47 2.55
Mean 982 144 291 0.28012 3962

900 pixels Std Dev 17 3 23 0.00521 147
CoV 1.72 2.31 8.04 1.86 3.71
Mean 986 250 298 0.27977 3871

1,600 pixels Std Dev 16 6 15 0.00494 38
CoV 1.67 2.31 5.16 1.77 0.98
Mean 977 382 292 0.27957 3852

2,500 pixels Std Dev 15 9 10 0.00231 100
CoV 1.57 2.47 3.56 0.82 2.59
Mean 971 527 285 0.28032 3978

3,600 pixels Std Dev 21 16 12 0.00175 57
CoV 2.14 3.09 4.14 0.63 1.43
Mean 971 682 283 0.28144 3832

4,900 pixels Std Dev 24 21 9 0.00183 50
CoV 2.43 3.04 3.15 0.65 1.31
Mean 976 842 284 0.28251 3966

6,400 pixels Std Dev 18 22 11 0.00151 57
CoV 1.84 2.64 3.79 0.54 1.44
Mean 983 999 292 0.28307 3974

8,100 pixels Std Dev 15 29 11 0.00145 79
CoV 1.53 2.88 3.75 0.51 1.99
Mean 971 1164 299 0.28342 3944

10,000 pixels Std Dev 15 30 11 0.00124 36
CoV 1.49 2.57 3.69 0.44 0.92
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-Appendix C- 

Summary of the results for the influence of the ROI depth 
on the extracted textural features.

Mean
(SD)

Focus
(cm)

ROI 
Depth
(cm)

GLCM RLM Gradient AR Wavelet

4

1 924
(34)

116
(1)

255
(35)

0.29320
(0.00411)

4,274
(264)

2 933
(19)

116
(1)

273
(21)

0.28284
(0.00348)

4,130
(158)

3 921
(27)

115
(1)

225
(23)

0.26702
(0.00552)

4,272
(137)

4 933
(17)

113
(2)

246
(24)

0.26297
(0.00475)

4,297
(185)

5 942
(32)

110
(3)

259
(50)

0.25742
(0.00810)

4,046
(162)

6 916
(43)

103
(3)

265
(67)

0.24142
(0.00845)

4,179
(181)

6

1 913
(43)

116
(1)

249
(28)

0.27767
(0.00336)

4,281
(251)

2 953
(33)

116
(1)

255
(38)

0.27598
(0.00443)

3,944
(80)

3 939
(25)

115
(2)

248
(12)

0.26537
(0.00475)

4,058
(82)

4 895
(34)

112
(1)

237
(24)

0.25977
(0.00495)

4,281
(158)

5 928
(30)

109
(2)

219
(23)

0.25473
(0.00512)

4,298
(364)

6 869
(49)

103
(8)

133
(36)

0.23919
(0.01066)

4,024
(289)

8

1 939
(27)

116
(2)

261
(45)

0.28134
(0.00449)

4,362
(147)

2 928
(28)

115
(1)

252
(25)

0.28292
(0.00731)

4,228
(206)

3 942
(21)

116
(1)

270
(25)

0.27037
(0.00532)

4,029
(112)

4 897
(34)

112
(2)

221
(40)

0.26386
(0.00379)

4,623
(164)

5 936
(42)

109
(1)

235
(32)

0.26032
(0.00543)

4,314
(141)

6 953
(42)

98
(7)

195
(44)

0.25330
(0.00423)

4,182
(367)
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-Appendix D- 

Summary of the results for the influence of the gain setting 
on the extracted textural features.

Gain 
(dB)

Mean
(SD)

GLCM RLM Gradient AR Wavelet

80
980 429 260 0.28405 3,794

(17) (3) (3) (0.00058) (28)

85
922 441 241 0.27844 3,926
(18) (4) (3) (0.00092) (53)

90
943 446 236 0.27840 3,978

(11) (2) (6) (0.00069) (42)

95
944 453 233 0.27886 3,985
(11) (2) (3) (0.00077) (44)

100
942 462 237 0.27782 4,016

(7) (2) (5) (0.00065) (43)


