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A B S T R A C T

The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this
review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design
to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues.
First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated
using a model and which acquisition protocol needs to be implemented to make the estimation possible. The
model performance should necessarily be tested in realistic numerical simulations and in experimental data –
adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary
techniques, when/if available. Secondly, the model performance and validity should be explored in pathological
conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from
tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation
and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a
microstructural ground truth, the validation of model parameters which cannot be accessed with complementary
techniques, the development of a generalized standard model for any brain region and pathology, and the
seamless communication between different parties involved in the development and application of biophysical
models of diffusion.

1. Introduction

The development of various microscopy tools has undoubtedly re-
volutionized our understanding of brain tissue in terms of its micro-
structure (i.e. the structure at the micron scale), composition and al-
terations with physiological and pathological processes. However, most
of microscopy methods, such as light, x-ray or electron microscopy, can
only be deployed on a small volume of ex vivo, chemically prepared
tissue. Two-photon microscopy has the advantage of being usable in
vivo, but remains very invasive and with shallow penetration, often
limited to the inspection of rodent cortex. None of the existing micro-
scopy tools are therefore eligible as in vivo non-invasive methods,
usable on human living subjects. Yet there would be tremendous value
and potential in the ability to characterize the microstructure of human
brain tissue over the course of development, aging and disease.

Magnetic resonance imaging (MRI) is an exquisite radiological tool
to examine the human brain, but its spatial resolution is on the order of
the millimeter, too coarse for any microscopy ambition. However,

diffusion MRI (dMRI) has emerged in the recent years as a highly
promising “super-resolution” technique which can provide sub-pixel
information about tissue microstructure. In an MRI experiment, water
molecules in the brain have time to diffuse over a few microns and their
path is mainly influenced by cellular membranes and other features of
tissue architecture encountered over that distance. Therefore, the dif-
fusion-weighted signal encodes information about microstructure fea-
tures on the order of the micron, much smaller than the actual MR
image resolution, and that we otherwise cannot spatially resolve in vivo
and non-invasively.

The main challenge in the field of Microstructural dMRI (Alexander
et al., 2019; Novikov et al., 2018a, 2019) is to decode the information
contained in the diffusion-weighted signal to retrieve these specific
features of tissue microstructure, by developing quantitative techniques
that combine astute dMRI protocols with biophysical modeling. The
ultimate goal is to bring MRI to the level of a non-invasive in vivo
microscope, which would open entire new avenues for studying pro-
cesses of development, aging, disease, injury and response to treatment.
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The MRI signal as a function of diffusion weighting (b-value) can be
described using mathematical formulae that are independent of the
underlying medium in which diffusion is taking place, i.e. the tissue.
The most iconic examples of such “signal representations” are Diffusion
Tensor Imaging (DTI) (Basser et al., 1994) and Diffusion Kurtosis
Imaging (DKI) (Jensen et al., 2005).

Biophysical models on the contrary assume a given simplified geo-
metry – a “sketch” – of the underlying tissue, and rely on the analytical
expression or numerical estimation of the diffusion signal in such an
environment (Fig. 1).

The first implication of this is that there is no single biophysical
model of microstructure, but multiple biophysical models, each devel-
oped to describe the microstructure of a specific type of tissue. It is also
important to bear in mind that we are aiming to develop biophysical
models of diffusion in a given tissue. Indeed, everything is not about the
geometry of the tissue, but also about the diffusion process given this
geometry – diffusivity values and diffusion regimes are very important.

The bedrock of biophysical models of diffusion is water compart-
mentalization, which implies that “tissue compartments” can be char-
acterized individually in terms of geometry, relative size and diffusion
properties (Beaulieu and Allen, 1994) (Fig. 2). We note however that
compartment-free frameworks also exist, such as effective medium
theory which relies on statistical approaches to characterize tissue
heterogeneity and characteristic lengths instead (Novikov and Kiselev,
2010). Using biophysical models, we can thus access more meaningful
and specific parameters of the tissue microstructure than signal re-
presentations, provided the chosen model accurately captures all of the
relevant features of the tissue. Taking the example of a white matter
(WM) bundle, demyelination, axonal loss or edema would all result in
an increase in radial diffusivity (i.e. the diffusivity perpendicular to the
axons) estimated from DTI but the latter cannot disentangle further
between these different tissue alterations. Using biophysical modeling,
estimates of axonal and free water compartment sizes and of the tor-
tuosity of the extra-axonal compartment have better potential to inform
specifically about axonal loss, edema or demyelination, respectively

(Chiang et al., 2014; Hoy et al., 2014; Jelescu et al., 2016a).
Increased specificity through biophysical modeling comes however

at an additional cost: a) a given biophysical model cannot be applied to
reliably analyze any dMRI dataset, both from the perspective of the
tissue of interest and the acquisition protocol, b) the acquisition pro-
tocol is essential and must support model assumptions, c) because of
points a) and b), some features of tissue microstructure are at the mo-
ment inaccessible using clinical scanners – we will come back to this.

Mathematical models are used everywhere in science and are ex-
tremely powerful tools for transforming an infinitely complex problem
into one that we better know how to solve. The reason they are asso-
ciated with several important challenges is that resorting to models is
inherently tricky. We can never be certain that our model is similar
enough to the tissue we want to characterize in the ways that really
matter. Capturing all the relevant features of the tissue, i.e., those that
impact the measured diffusion signal significantly, is perhaps the first
major challenge of developing a valuable model. Once the sketch is
optimally drawn – neither too simple nor too complex – remain out-
standing challenges of: accuracy and precision of estimated model
parameters, robustness, maintained validity in the face of pathological
tissue changes and clinical translation. The main objective of this re-
view is to propose a roadmap towards identifying these challenges,
addressing them when/if possible, and ultimately developing a reliable
and valuable biophysical model of diffusion for a given tissue. Our al-
ternative title could have been “The assault course for valuable mi-
crostructure models of diffusion”.

Thus, this review takes a scenic drive across the “challenges in
biophysical modeling” landscape (Fig. 3), highlighting potential road-
blocks along the way. All the while emphasizing that the process is
constantly iterating and improving upon itself in a possibly roundabout
way. We first discuss the challenges associated with parameter esti-
mation and validation (Section 2) related to identifying tissue features
we intend to model, investigating performance in simulations, various
fitting strategies, and ending with a review of lessons learned when
validating these modeling strategies. Second, the manuscript then calls

Fig. 1. Biophysical models are sketches of reality which aim at selecting the most meaningful features and disregarding the rest, according to our current knowledge
of tissue microstructure (mostly deriving from microscopy). For example, when modelling a white matter bundle, we could identify only a few relevant features, such
as the axonal radius R, intra- and extra-axonal diffusivities Da,||, De,|| and De,⊥, as well as the relative volume fraction of intra- and extra-axonal space. In micro-
structure imaging, these features are estimated for each voxel of the acquired diffusion-sensitized images by voxel-wise model fitting. As a result, maps of model
parameters estimates can be obtained and linked to the relevant feature of the tissue microstructure.
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attention to the applications, and most importantly the limitations, of
these models

in pathology (Section 3). We end with a set of proposed keys to
success for the translation of these models into the clinic (Section 4)
with the ultimate objective to enable useful biomarkers to ultimately
inform the prevention, detection, diagnosis, and treatment of disease
and disability.

2. Parameter estimation & validation

2.1. A simplified picture

Because it is a simplified sketch of reality, every biophysical model
can account for only a few, relevant, features of the tissue it is designed
to model. What is relevant in this context is defined by the micro-
structure features that affect the signal beyond the noise and the ap-
propriateness of the experimental design to access them. Hence, ex-
perimental design is crucial in biophysical modelling to define a
sensible model and to guide model assumptions. It is essential to design
each experiment (i.e. pulse sequence, protocol parameters, etc.) ac-
cording to what is sought to be estimated using the model.

For example, a simple model of parallel cylinders of given radius R
could be used to characterize highly coherent WM bundles and applied
to dMRI data to estimate axonal radius R (i.e. the relevant features
captured by the model). However, in order to reliably access this fea-
ture without being biased by other tissue properties that are not in-
cluded in the model, such as non-parallel axons, extra-axonal water,
water exchange across the cell membrane, etc., the experiment has to
be designed as follows: short diffusion time (to make exchange

negligible), ultra-strong diffusion weighting (to gain sensitivity to small
axons ∼1 μm and minimize the contribution from extra-axonal water
signal) and a large number of diffusion gradient directions (to factor out
imperfect axon orientation coherence, i.e. dispersion, after direction-
averaging, or to factor in dispersion, after redefining the model ac-
cordingly). Only under these experimental conditions, such a simple
model can estimate the relevant microstructural features of the tissue in
a reliable way. It is of course possible to apply such a simple model of
WM to any dMRI dataset, but the estimates of axonal radius would be
increasingly biased and unreliable as each of the model assumptions is
inconsistent with the experimental design. A good model fit to the data
does not guarantee that the estimated model parameters have a sensible
physiological meaning. Similarly, a “nice looking map” of quantitative
indices also does not guarantee physiologically meaningful parameter
estimates. As we will see in the next section, this is just one example of
many possible models that have been proposed for WM microstructure
quantification over the last decade, each with their own assumptions
and experimental regime of validity.

2.1.1. White matter
Biophysical models of diffusion in WM have gained a lot of traction

because the myelin sheath around axons is thought to ensure com-
partment “impermeability” over a broad range of timescales, i.e. inter-
compartment exchange can be safely neglected. The current “standard
model” for diffusion in WM considers two or three non-exchanging
compartments (typically intra-axonal, extra-axonal and cerebrospinal
fluid (CSF)) defined by their intra-compartment diffusivities and re-
lative sizes (Fig. 1). For acquisition parameters achievable on clinical
scanners – diffusion time td> 20ms and diffusion weighting

Fig. 2. Biophysical models of diffusion in biological tissue rely on the water compartmentalization assumption: the overall measured dMRI signal can be described as
weighted sum of signals generated by water diffusing in different compartments. Each compartment corresponds to a specific portion of tissue (e.g., intra-cellular
space) and is characterized by a given geometry (e.g., cylinder), diffusion properties (e.g., isotropic “ball” diffusivity), a characteristic size (or distribution of sizes)
and orientation distribution. For the simple geometries shown in figure (adapted from (Fick et al., 2019), with permission), analytical expressions exist to link the
compartment features to the corresponding dMRI signal, providing great control and flexibility to build any compartmental model, with arbitrary degree of com-
plexity. Such compartment models are at the core of popular microstructure imaging techniques such as CHARMED (Assaf and Basser, 2005), AxCaliber (Assaf et al.,
2008), WMTI (Fieremans et al., 2011) and NODDI (Zhang et al., 2012). Multi-compartment model figures adapted from (Fick et al., 2019) and white matter electron
microscopy reconstruction adapted from (Lee et al., 2019b), with permission.
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b<10ms/μm2, the axons can effectively be modeled as sticks, i.e.
cylinders with zero radius (Veraart et al., 2019). Using advanced
hardware with very strong field gradients – such as animal scanners or
Connectom scanners (Jones et al., 2018) – some sensitivity to axon
diameter can be retrieved (De Santis et al., 2016; Duval et al., 2015;
Veraart et al., 2020). The orientations of the collection of axons within
a voxel is characterized by their Orientation Distribution Function
(ODF). The ODF can be parametrized to whatever level of complexity,
from perfectly aligned cylinders (Alexander et al., 2010; Fieremans
et al., 2010) to complex distributions requiring coefficients representing
basis functions over a sphere (i.e., spherical harmonic coefficients)
(Jespersen et al., 2010), bearing in mind that a large number of para-
meters may make the fit less stable and degrade the precision of
parameter estimation (Fig. 2).

Building on this standard model, a constellation of implementations
has been proposed, each with its own acronym and its own – valid or
invalid – simplifying assumptions (Assaf et al., 2008; Fieremans et al.,
2011; Zhang et al., 2012; Alexander et al., 2010; Jespersen et al., 2010;
Assaf et al., 2004; Jespersen et al., 2018; Kaden et al., 2016; McKinnon
et al., 2018; Novikov et al., 2018b; Reisert et al., 2017; Scherrer et al.,
2016; Wang et al., 2011). It is however critical to validate model as-
sumptions because they have a direct impact on the accuracy and
specificity of derived microstructure features.

The validation of assumptions in WM models has been a long
winding road for the dMRI community – these efforts will be covered in
the following sections – but we are now at a time when a solid foun-
dation has been laid and this standard model can be used more con-
fidently.

2.1.2. Gray matter
In order to provide a fully comprehensive “in vivo brain micro-

scope”, research efforts should also tackle biophysical modeling of

cortical and deep gray matter (GM) structures, e.g. thalamus and basal
ganglia, which are a complex mixture of WM and GM. As for WM, DTI
and other MR contrasts such as T2* mapping or magnetization transfer
have so far been used to describe cortical and subcortical micro-
structure (Duyn, 2018; Edwards et al., 2018; Lehéricy et al., 2012; Sled,
2018), but they are all again unspecific, with various types of micro-
structural changes potentially leading to the same effect in terms of
these MRI metrics.

The main challenge that has stalled biophysical modeling of diffu-
sion in GM so far is arguably accounting for an overall more complex
tissue composition and for water exchange across the cell membrane
(Fig. 2). Cortical GM is roughly constituted of 15–30% extra-cellular
space, 10–40% cell bodies (soma), 40–75% neurites (thin cylindrical
extensions of the cell that form numerous connections to other neurons)
and 1–5% vasculature (Bondareff and Pysh, 1968; Motta et al., 2019;
Spocter et al., 2012). Furthermore, the functional form of the powder-
averaged diffusion signal at high b-values is different in GM than in
WM, with a clear deviation from the impermeable stick behavior of

∝
√

S b( )
b

1 , which suggests non-negligible water exchange between
neurites and extra-cellular space and/or soma (Veraart et al., 2020,
2018a; Jelescu and Novikov, 2020). The exchange between neurites
and other compartments is plausible over typical diffusion times of MRI
experiments (20–100ms), especially since most neurites are un-
myelinated. Modeling and estimating water exchange across the cell
membrane will be covered in a dedicated section. On the up-side,
neurites in GM can be assumed to be randomly oriented and described
by a uniform ODF, which simplifies the model.

One approach to circumvent exchange is to be in a short diffusion
time regime, where it can still be neglected even for unmyelinated cell
membranes. The former route has been recently taken by Palombo and
colleagues who proposed a GM model of three non-exchanging com-
partments (neurites, soma and extracellular space), dubbed SANDI for

Fig. 3. Roadmap of the challenges of microstructure biophysical modeling. The main objective of this review is to propose a roadmap for development of a reliable
biophysical model of diffusion in a given tissue. Discrete steps along this course are shown above, although the entire process is very much a continuous and iterative
process of validation, adaptation, and application.
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Soma And Neurite Density Imaging (Palombo et al., 2020). However,
the SANDI model is currently only applicable to data acquired on
human Connectom scanners and animal scanners: very high b-values
need to be reached (b=10ms/μm2) within very short diffusion times
(td< 20ms) to keep the assumption of impermeable compartments –
presumably – valid.

Another approach consists in explicitly modeling the inter-com-
partment exchange, which increases the fit complexity substantially.
GM models that account for exchange are work in progress (Veraart
et al., 2020; Jelescu and Novikov, 2020; Lee et al., 2020).

While deep brain structures such as the thalamus or striatum are
already a complex mixture of white and GM, for which neither of the
white or gray matter models above applies straightforwardly, patho-
logical processes can also affect the tissue to an extent that may require
adapting the underlying picture. Challenges specific to modeling pa-
thology will be discussed in a dedicated Section 3.

Once a simplified picture is drawn and desired protocol developed,
the next stop along the modeling roadmap is to evaluate the perfor-
mance of estimating model parameters in numerical simulations and
optimize the acquisition protocol. This is followed by testing on “real”
experimentally acquired data to assess parameter range, reproduci-
bility, and reliability, and next by biological validation in order to en-
sure biological specificity and agreement with gold measures.

2.2. Model performance in simulations

2.2.1. Numerical simulators for diffusion MRI
Both physical and numerical phantoms are essential tools for the

validation of biophysical models of diffusion in brain tissue. Here we
provide a brief review of the most recent strategies for validating bio-
physical models using numerical simulations. For a more exhaustive
review of numerical simulations for modelling of dMRI, we recommend
(Fieremans and Lee, 2018).

Numerical phantoms (Fig. 4) are complementary to physical phan-
toms, as they offer a controlled and flexible tool to simulate the effect of
different mechanisms such as diffusion, exchange, relaxation and
magnetic susceptibility variations on the MR signal in a given micro-
structural geometry, known by design.

Concerning the simulation of the diffusion process, the most widely
used approaches can be divided into three major classes: matrix form-
alism; Monte Carlo (MC) methods and Finite Element/Difference
methods. There are several open-source tools freely available that im-
plement each of these methods for dMRI simulations. For instance,
MISST (http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST) (Ianus
et al., 2016) based on matrix formalism; CAMINO (http://camino.cs.
ucl.ac.uk) (Cook et al., 2006), DW-MRI Random Walk Simulator (www.
NITRC.org: project name: “DW-MRI Random Walk Simulator”)
(Landman et al., 2010), DIFSIM (http://csci.ucsd.edu/software/difsim.
html) (Balls and Frank, 2009), and Diffusion Microscopist Simulator
(Yeh et al., 2013) based on MC; SPINDOCTOR (https://github.com/
jingrebeccali/SpinDoctor) (Li et al., 2019) based on Finite Element/
Difference methods.

We focus here on MC simulations, because of their simplicity,
flexibility and power in terms of simulating different MR contrasts in
disparate realistic microgeometries. In MC simulations, many particles
(corresponding, for instance, to water protons) are initiated in a mi-
croscopic geometry (namely digital substrate) and the diffusion process
is simulated as random walk of these particles in space. The walkers can
randomly hop on a pre-defined lattice (the simplest possible im-
plementation) or in a continuous space with a fixed or dynamic step
size. The dMRI signal is then calculated by accumulating the resulting
phase changes from the random walkers’ trajectories and the chosen
diffusion gradient sequence.

2.2.2. Monte-Carlo simulations for model validation
It is important to underline that MC simulations rely on the

approximation of the diffusion process as a random walk (Einstein and
Fürth, 1956), i.e. a sum of many fully independent steps. As a con-
sequence, it is worthwhile to note that processes such as chemical-
physical interactions are considered negligible at the time scales of the
simulation (typically from μs to s). Moreover, MC simulations use the
ensemble average of numerous particles' trajectories to estimate sta-
tistically meaningful parameters. Therefore, to achieve an accurate
parameter estimation of the ensemble average, a large number of steps
and a large number of particles are required. Hence, it is necessary to
properly setup the simulations to avoid undesired biases. For example,
the number of particles and the step size have to be carefully chosen to
avoid spurious biases or artifacts in the dMRI simulation. For a com-
plete list of criteria and recommendations on how to setup and proof
check MC simulations we refer the reader to (Hall and Alexander, 2009;
Fieremans and Lee, 2018; Rafael-Patino et al., 2020). Once properly
setup and proof checked, an MC simulator can be used to assess the
performance of a specific biophysical model and investigate the regime
of validity of its assumptions.

MC simulations have been widely used to validate microstructural
modeling of neural tissues particular for diffusion. For WM micro-
structure, MC simulations of diffusion have been used to investigate the
performance of biophysical models to reliably estimate relevant axonal
features such as inner axon diameter and intra-axonal volume fraction
(Alexander et al., 2010; Lee et al., 2019c), as well as to evaluate bias
due to unaccounted orientation dispersion (Ginsburger et al., 2019;
Callaghan et al., 2020, 2019) and crossing-fiber resolution (Ramirez-
Manzanares et al., 2011). Furthermore, MC simulations have been used
to explore how physiological and pathological changes of neurite
morphology can be potentially detected by dMRI, e.g., neurite beading
(Budde and Frank, 2010), nodes of Ranvier (Ginsburger et al., 2018),
undulation (Nilsson et al., 2012; Brabec et al., 2020), dendritic spines
(Palombo et al., 2017a) and branching (Palombo et al., 2016; Vincent
et al., 2020). Furthermore, diffusion simulations have been shown
particularly useful to assess the effect of varying axonal water fraction
on diffusion metrics such as fractional anisotropy (Stikov et al., 2011)
and to disentangle demyelination from axonal loss (Fieremans et al.,
2008). Several works also used simulations of water exchange to in-
vestigate its impact on biophysical modeling (Fieremans et al., 2010;
Nilsson et al., 2010; Brusini et al., 2019), e.g., the regime of applic-
ability of the Kärger model (Fieremans et al., 2010; Nilsson et al.,
2010).

2.2.3. Limitations and challenges
Despite so many successful and useful applications, numerical

phantoms have been strongly limited by a poor level of realism (Fig. 4).
In order to be indeed useful validation tools, numerical phantoms have
to mirror the complexity of real tissue microarchitecture as close as
possible. In practice, this is still an unmet need and an active area of
research. So far, the majority of the validation works based on nu-
merical simulations have been focusing on WM because WM micro-
structure is – to some extent – simpler than GM one. However, the most
used numerical phantoms for WM are still over-simplifications of the
reality: axons are often modelled as densely packed cylinders of dif-
ferent radii, straight or undulating, and with or without planar dis-
persion. However, microscopy techniques such as 3D EM have clearly
shown that axonal morphology in WM is significantly more complex
than simple packed cylinders (Kleinnijenhuis et al., 2020; Lee et al.,
2019c) (Fig. 4).

To address this limitation, a lot of effort has been recently invested
by the dMRI community to design more realistic numerical phantoms.
Two main strategies have been developed: one uses directly the real
structure of brain tissue from 3D EM reconstructions as digital substrate
MC simulations (Lee et al., 2019b; Panagiotaki et al., 2010; Berry et al.,
2018) (Fig. 4, second row); the other uses generative models of digital
tissues based on our current knowledge derived from microscopy
(Ginsburger et al., 2019; Callaghan et al., 2020; Palombo et al., 2016,
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2019; Callaghan et al., 2019) (Fig. 4, first row).While the first approach
can provide ultra-realistic digital substrates, it lacks flexibility and is
unable to reproduce large volumes of tissue. On the contrary, gen-
erative models are very flexible and can be scaled to reproduce large
volumes of digital tissues, but they can inevitably represent only sim-
pler architecture. Both these approaches still mainly focus on increasing
the realism of WM digital phantoms, although some encouraging de-
velopments for GM digital phantoms have also been recently proposed
(Palombo et al., 2016; Palombo et al., 2019) (Fig. 4, third row). Perhaps
the most immediate challenge to be addressed is running numerical
simulations of diffusion (e.g. using Monte Carlo approaches) on a more
realistic substrate, for instance based on electron microscopy (EM)
segmentation. “Simple” analytical models can then be tested for their
ability to render the main microstructure features of that tissue. This
approach is however very challenging, mainly due to the difficulty of
obtaining a reliable segmentation of a significant volume of EM imaged
tissue, transposing the segmentation into a numerical substrate, the
time-consuming nature of MC simulations in such a substrate and the
final amount of data to store and process.

Overall, there are several “big challenges” in numerical simulations
for validation of diffusion modelling for dMRI that are still open. We
could summarize them in: how to build a) ultra-realistic computational
models of brain architecture at the micron scale, that are b) highly

flexible, c) very well characterized (to provide full control on a solid
ground-truth) and at the same time d) can scale up to reproduce large
volumes (on the order the cubed millimeter, the typical MRI voxel size).

The recent developments in microscopy technologies and machine
learning are opening encouraging and exciting perspectives towards
possible solutions to these challenges. New innovative techniques for
ultra-resolved microscopy (Motta et al., 2019) are driving our ever-
expanding knowledge on the finest details of brain microarchitecture,
providing precious databases from which to learn how exactly an ultra-
realistic numerical phantom of brain tissue should look like. This may
offer a well characterized ground-truth that can be used to inform the
design of ultra-realistic digital substrates. Memory burden and com-
putational cost, the current major bottleneck for the flexibility and
scalability of more realistic numerical phantoms, may be mitigated by
the recent developments in deep learning and computational hardware.
We are living exciting times, that carry great potential to open the way
towards the next-generation numerical phantoms for virtual experi-
ments that can really represent the ultimate tool for the validation of
microstructure models. Fitting strategies are also greatly evolving to
overcome issues related to parameter estimation.

Fig. 4. Numerical phantoms of brain microstructure have been an active area of research for decades. Considerable effort has been invested in improving the realism
of numerical phantoms (from left to right), by either developing generative models of realistic microstructure (first row) or refining the three-dimensional re-
constructions from microscopy data of real tissue (second row). While challenges concerning white matter has been tackled first, recent developments carry great
promise for gray matter too (third row). Note that realism and complexity of phantoms generally increase from left to right. In addition to more intricate geometries,
features of exchange and detailed morphology are new developments. Illustrations adapted from (Hall and Alexander, 2009; Budde and Frank, 2010; Nilsson et al.,
2012; Ginsburger et al., 2018, 2019; Callaghan et al., 2020; Chin et al., 2004; Panagiotaki et al., 2009; Kleinnijenhuis et al., 2020; Lee et al., 2019a; Hansen et al.,
2013; Palombo et al., 2016; Van Nguyen et al., 2015; Palombo et al., 2019a), with permission.
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2.3. Fitting strategies

On the front of parameter estimation, most models rely on non-
linear fitting, which is strongly affected by noise and local minima
(Harms et al., 2017; Jelescu et al., 2016b). In general, non-linear fitting
is computationally expensive and the quality, accuracy and precision of
the fit is often uncertain. To tackle these challenges, each of the popular
models comes with its own constraints, optimization algorithm, noise
model and initialization strategy to estimate its parameter maps. This
creates challenges to comparability and generalization of results from
diffusion microstructure models.

A novel strategy, that bypass non-linear fitting, relies on the explicit
derivation of model parameters from the signal moments or cumulants
(e.g. starting from a DKI fit) (Fieremans et al., 2011; Jespersen et al.,
2018; Novikov et al., 2018b; Jensen et al., 2017) which has two sub-
stantial advantages: a) the problem is largely linearized, b) the acqui-
sition protocol is more easily compatible with clinical scanners (bmax ≤
2.5 ms/μm2) and with a reasonable acquisition time. The downside of
this approach is however the fundamental difficulty in obtaining ac-
curate and precise estimates of cumulants (Chuhutin et al., 2017).
Within this family of model implementations, Jespersen and colleagues
have recently derived the analytical correspondence between signal
cumulants and model parameters for the standard model with a Watson
distribution of axons: “WMTI-Watson” (Jespersen et al., 2018). This
ODF, characterized by a single concentration parameter κ, assumes
axial symmetry of the WM bundle but otherwise allows any config-
uration from perfectly aligned (〈 〉 ≡ = ⇔ = ∞ψ c κ(cos ) 12

2 ) to fully
isotropic (〈 〉 ≡ = ⇔ =ψ c κ(cos ) 1/3 02

2 ) axons (Zhang et al., 2012;
Jespersen et al., 2018).

Since non-linear fitting is still the most used approach for model’s
parameters estimation, here we briefly discuss challenges and per-
spectives involving non-linear fitting approaches.

2.3.1. Model degeneracy
Several works have investigated strategies to make non-linear fitting

robust, reproducible and fast, e.g. (Novikov et al., 2019; Harms et al.,
2017; Alexander, 2009; Veraart et al., 2013; Panagiotaki et al., 2012;
Harms and Roebroeck, 2018). The main challenge for robustness and
reproducibility (in terms of precision) is how to resolve, mitigate or
characterize any existing degeneracies. By degeneracy we mean the
existence of multiple sets of model parameters values that all explain
the measured dMRI signal equally well (Novikov et al., 2018b; Jelescu
et al., 2016b). This behavior is due to the existence of multiple local
minima in the fitting landscape, and/or to the flatness/shallowness of
the landscape around each minimum (Fig. 5). The global minimum is
barely identifiable based on goodness-of-fit criteria and the fit output
becomes very sensitive to noise and initialization. Noise in particular
can make numerous sets of solutions equally probable, if the global
minimum is not “deep” or marked enough. Therefore, in the presence of
degeneracy, it is impossible to choose a unique set of model parameters
values, without relying on some priors or constraints. This unresolved
ambiguity leads to poor generalizability and reproducibility of model
based dMRI technique for microstructure imaging. As a consequence,
our confidence in biophysical models’ predictions, especially in pa-
thological conditions, is low, hampering the use of this class of tech-
niques in clinical practice.

The degeneracy is mostly due to the incapacity of the acquired dMRI
data to support the model complexity, that is the number of free
parameters to be estimated from the data. In fact, dMRI data normally
carry only a limited amount of information and support the estimation
of just a few model parameters (Novikov et al., 2019). In some cases,
multi-modal approaches such as combined diffusion-relaxation acqui-
sitions (Lampinen et al., 2020) or generalized gradient waveform
techniques (Reymbaut et al., 2020; Lampinen et al., 2019, 2017) can
increase the amount of information in the measured data and remove
the degeneracy for some models. However, this often comes at the cost

of unconventional sequence implementation (meaning sequences that
are not provided by the scanner manufacturer) and lengthy acquisi-
tions.

2.3.2. Model constraints
To mitigate the degeneracy using more conventional and clinically

feasible dMRI acquisitions, some of the current model based dMRI
techniques use hard constraints (i.e. fixing some of the model para-
meters to arbitrarily chosen values) during the non-linear fitting pro-
cedure. This approach may sound sensible – or at least “appealing” for
practical purposes, but it has to be used with caution. Indeed, priors on
model parameters that can be reasonable and also validated for some
cases (e.g. healthy brain or a particular brain disease) do not necessarily
generalize (e.g. to a different brain disease). For example, in NODDI
(Zhang et al., 2012), a widely used dMRI technique for Neurite Or-
ientation Dispersion and Density Imaging, the intra-neurite axial dif-
fusivity (i.e. the apparent diffusion coefficient along the neurite axis of
water restricted within neurites) is fixed to a pre-defined value of 1.7
μm2/ms and the extra-neurite axial and radial diffusivities are linked to
the neurite signal fraction and the intra-neurite axial diffusivity by a
tortuosity model proposed by Szafer et al. (1995). This approach based
on constraining the model fitting provides more precise estimation of
the model parameters also with minimum dataset and produces rea-
sonable parametric maps of good quality, but it may provide biased and
inaccurate estimates of the model parameters, especially in pathological
scenarios, where the model assumptions and the fitting constraints may
not be sensible choices anymore. For instance, Wen et al. (2015) cau-
tioned against interpreting their finding of a neurite density contrast
within gliomas as actually due to neurites. More recently, Lampinen
et al. (2019), 2017 have shown that different sets of constraints in the
NODDI fit result in different estimated values for the neurite signal
fraction in the human brain, proving a non-negligible bias due to the
arbitrary priors on the model parameters constraints. As bottom line,
hard constraints in non-linear fitting can be a viable solution to mitigate
degeneracy and stabilize the fitting only if coupled with rigorous vali-
dation, clear understanding and acknowledgement of the limits of va-
lidity of the model constraints and caution with results interpretation.

A simple way to assess how important the degeneracy is and how
the chosen constraints bias the model parameters estimation is by
computing the normalized residual variance (NRV), given a specific
model, the dMRI data and the standard deviation of the experimental
noise (Lampinen et al., 2020):
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Where the average is across I realizations of Gaussian noise with
standard deviation σnoise, Sn is the noised signal, Sn is the fitted signal, N
is the protocol’s number of measurements and M is the number of free
model parameters.

Plotting the NRV against one of the model parameters p, fixed in the
fitting to a different value p* each time, illustrates how precisely this
parameter p can be determined given the specific acquisition protocol
(Fig. 5). In the presence of degeneracy, the curve NRV(p*) is very wide,
with a global minimum spanning different values of p* all providing
similar goodness-of-fit. Imposing a specific hard constraint to the fit
results in narrowing and sharpening the minimum in the NRV(p*)
landscape. This minimum corresponds to the estimated value for the
parameter p that necessarily depends on the chosen constraint itself. If
there is such dependence, then the hard constraint is biasing the esti-
mation of the parameter p. In cases where the “true value” of the
parameter p is known, the constraint can be chosen in a reasonable
way. For example, if p is the neurite density, in an ex-vivo experiment
with healthy mouse brain, its “ground truth” value can be estimated by
histological analysis and the fitting constraint can be accordingly
chosen to improve model fitting performance. However, such constraint
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would be valid only for that specific situation (experimental setup,
acquisition protocol, etc) and any further generalization should be
taken with extreme care.

2.3.3. Optimization algorithms
Fitting an analytical model to some experimental data is an opti-

mization problem. In the case of dMRI data, models are optimized by
finding the set of free parameter values p that minimize the objective
function of the modeling errors [Smeasured – Smodel(p)], with Smeasured the
observed data and Smodel(p) the model signal prediction. In general, the
objective function is formulated as the negative log likelihood function
which embeds a noise model for the data (Alexander, 2009; Panagiotaki
et al., 2012; Alexander, 2008). How to model the noise in dMRI images
and how to incorporate it in the fitting procedure is still an open pro-
blem. Some of the most popular approaches and their performances are
described and compared for instance in (Veraart et al., 2013).

Commonly used optimization algorithms can be divided into two
classes: gradient free algorithms, such as Nelder-Mead Simplex (Nelder
and Mead, 1965) and Powell's conjugate-direction (Powell, 1964), and
gradient-based algorithms, such as Levenberg-Marquardt (1963), trust
region (Steihaug, 1983) and active-set (Nocedal and Wright, 2006), for
which the gradients can either be given analytically or approximated

numerically. The accuracy of the solution and the quality of the fit
depend on the algorithm chosen. Therefore, it is always a good practice
to try different optimization algorithms on simulated data to determine
which one performs the best for the specific model fitting task. For
example, a comprehensive analysis of three of the above-mentioned
algorithms (Nelder-Mead Simplex, Powell's conjugate-direction and
Levenberg-Marquardt) by Harms et al. (2017) showed that the gradient-
free Powell conjugate-direction algorithm was found to outperform
other common algorithms in terms of run time, fit, accuracy and pre-
cision for the common biophysical models like NODDI (Zhang et al.,
2012) and CHARMED (Assaf and Basser, 2005). Moreover, different
parameter initialization approaches were found to be relevant espe-
cially for more complex models, such as those involving several fiber
orientations per voxel.

The parameter initialization is another very important aspect of all
these optimization procedures. It defines the initial point (i.e. initial
guess) from which the chosen optimization algorithm starts looking for
the global minimum of the objective function. When the objective
function is particularly complex, and/or the impact of the noise parti-
cularly strong, spurious local minima may occur. In this case, different
parameter initializations may lead to different final estimates, corre-
sponding to the closest local minima, rather than the global minimum.

Fig. 5. Parameter estimation in multi-compartment models of diffusion is challenging due to the existence of multiple local minima and an overall “flat” fitting
landscape which makes a large ensemble of solution equally probable in the presence of noise. A: A two-compartment model (e.g. intra- and extra-axonal water)
described by 5 free parameters (f, Da, ∥De, , ⊥De, and κ the concentration parameter of the Watson distribution) displays two disconnected minima (left: true minimum,
right: spurious minimum). In the presence of noise, a “pipe” ensemble of solutions around each minimum displays a low objective function value, and the fit may end
anywhere along this pipe. B: Projections of the objective function values along a single parameter, here f, showcasing the flat landscape around the minima and the
wide range of plausible values. C: Using more advanced acquisition schemes including linear and spherical tensor encoding as well as multiple TE’s, the degeneracy
can be lifted and the minimization landscape becomes much steeper around the true minimum, improving the fit accuracy and precision considerably. Illustrations
adapted from (Jelescu et al., 2016b) (A and B) and (Lampinen et al., 2020) (C), with permission.
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To mitigate this problem, a typical approach is the automatic definition
of the parameter initial values by using exhaustive grid-search algo-
rithms or initializing subsets of parameters of complex models with
results from earlier simpler model optimizations. However, these so-
lutions increase considerably the computational time of the overall
fitting procedure and they do not guarantee general immunity to local
minima. Nevertheless, they have been successfully used to fit complex
models in a wide range of applications (Alexander et al., 2010; Harms
et al., 2017; Panagiotaki et al., 2012; Huang et al., 2015, 2019).

Finally, a different optimization approach worth mentioning here is
the Bayesian optimization (Shahriari et al., 2015) which does not re-
quire a simple closed form of the objective function (and does not need
it to be the negative log likelihood function either). In Bayesian opti-
mization, any objective function f is treated as a black-box that can be
evaluated at any arbitrary query point x in its domain of existence.
Basically, we assume that we can only observe the function f through
unbiased noisy point-wise observations y. To find the best estimates for
a given model’s parameters set, we consider a sequential search algo-
rithm which, at every iteration n, selects a set of values xn+1 at which to
query f and observe yn+1. After N queries, the algorithm makes a final
recommendation xN, which represents the algorithm’s best estimate of
the model’s parameters set that optimize f. Although not required for
Bayesian optimization, when gradients of f are available, they can be
incorporated in the algorithm as well. Bayesian optimization has been
impacting a wide range of areas, including robotics (Wolfram et al.,
2008) information extraction (Wang et al., 2014a), automatic machine
learning (Swersky et al., 2013), adaptive Monte Carlo (Mahendran
et al., 2012) and more. We will see in the next section how machine
learning methods based on Bayesian optimization have been used for
brain microstructure imaging, and we will discuss the pros and cons.

2.3.4. Strategies for accelerated fitting
There are several possible solutions to accelerate data fitting of

complex non-linear models: parallel computing, dictionary matching/
learning and machine learning.

2.3.4.1. Parallel computing. One possibility is to use the parallel power
of Graphical Processing Units (GPUs) to speed up the optimization.
Nowadays, there are some GPU-based model fitting toolboxes for dMRI
modeling freely available, such as the Maastricht Diffusion Toolbox
(MDT) (Harms et al., 2017) at https://github.com/cbclab/MDT and the
CUDA Diffusion Modelling Toolbox (cuDIMOT) (Hernandez-Fernandez
et al., 2019) at https://users.fmrib.ox.ac.uk/∼moisesf/cudimot/
DesignModel.html. Another useful toolbox for accelerated biophysical
model fitting is the Diffusion Microstructure Imaging in Python
(Dmipy) (Fick et al., 2019) https://github.com/AthenaEPI/dmipy/,
but it uses multi-core CPUs rather than GPUs, so it is (at the moment)
slower than MDT or cuDIMOT for non-linear fitting.

2.3.4.2. Dictionary matching/learning. Another approach to accelerate
non-linear fitting consists of using methods based on dictionary
matching/learning. The main idea behind these methods is to exploit
the sparse property of a well-designed dictionary based on the desired
biophysical model, in order to recover the diffusion signal and estimate
the model parameters. A popular example of such approach is AMICO
(Accelerated Microstructure Imaging via Convex Optimization)
(Daducci et al., 2015) available at https://github.com/daducci/
AMICO/. In AMICO, the strategy is to re-formulate non-linear
biophysical models as convenient linear systems and use dictionary
matching/learning for the fast and efficient solution. An advantage of
these dictionary-based approaches is that the biophysical model chosen
to represent the dMRI signal can be described by mathematical
expressions (e.g. as in Daducci et al., 2015) or by computational
models (e.g. as in (Rensonnet et al., 2019)). The latter uses numerical
simulations (often MC based) to create a dictionary of dMRI signals,
corresponding to specific tissue features used to generate the synthetic

substrate (see Section 2.2). A dictionary matching/learning method is
then used to estimate the tissue features from real dMRI signal in a
regularized fashion (110). The advantages of these methods are several:
they are first of all very fast, enabling on-the-flight processing of large
volumes of data (once the dictionaries have been previously built and
stored); they can more easily account for noise and incorporate spatial
regularization, resulting in higher precision of the estimated parameters
values and in parametric maps of better quality. However, this comes
with some downsides: they provide less accurate estimate of the model
parameters (109); they do not generalize, meaning that for a new
application (different acquisition protocol, different biophysical model,
different tissue etc.) a new dictionary has to be built; therefore the
dictionary generation require careful design and tuning that is often
different from one application to another; because of all the above-
mentioned reasons, the reproducibility of the results is not always
guaranteed.

2.3.4.3. Machine learning. More recent approaches, based on modern
machine learning, have been proposed to overcome some of the
limitations of dictionary-based approaches and to speed up
biophysical model fitting. Following (Ravi et al., 2019), we can
divide them into three main categories, according to the method
used: Random Forest (RF) regression; Bayesian Modeling or inference
(BM) and Deep Learning (DL). RF are an ensemble learning method and
a type of supervised learning algorithm which can be also used for
regression tasks. It works by constructing a number of decision trees
(forest) during training, one to each bootstrap sample drawn from the
full set of training data. Once trained, the model typically outputs the
mean value of the predictions over the full set of trees in the forest. RF
has been successfully employed for microstructural parameter mapping
task. For example, Nedjati-Gilani et al. (2014), 2017 proposed a RF
approach to map axonal permeability in the healthy and Multiple
Sclerosis diseased human brain, Hill et al. (2019) validated this
approach in mouse model of demyelination induced by cuprizone
intoxication and a similar approach is presented in (Fick et al., 2017)
to map axon diameter from dMRI with a RF trained on matching
histological data. Although powerful for fast biophysical model fitting,
RF regressor has a main limitation in its poor generalizability outside
the training set. Differently, BM relies on Bayes' theorem for updating
the probability of a hypothesis as more evidence is obtained. Bayesian
modeling is especially useful when data is limited, avoids overfitting
and can model uncertainty on parameters estimates (Park et al., 2010).
For example, Reisert et al. (2017) have proposed a supervised machine
learning approach based on a Bayesian estimator to disentangle the
microscopic cell properties of the human brain from the effects of the
mesoscopic structure. The model is both simple to implement and has
the ability to handle noise. The main limitation of BM approaches is the
requirement of priors, which can sometimes be very difficult to
formulate, and they can be very computationally expensive,
especially for more complex models with a large number of
parameters. Finally, in dMRI, DL has been successfully used for ultra-
fast biophysical model parameter prediction. The basic unit of every DL
model is an artificial neural network: an ensemble of perceptrons,
where a perceptron is defined by a non-linear transfer function f and by
two set of parameters: W (the weights) and b (the bias). The output of
each neuron is the linear combination of the input x with the W added
to the bias b, followed by the application of the transfer function (e.g.
sigmoid or hyperbolic tangent function). One of the most popular
artificial neural networks are the Multi-Layered Perceptrons that
organize the neurons in many different layers. When many hidden
layers can be added to an artificial neural network, we refer to it as a
deep neural network or DL model. DL networks are usually trained
through different steps, where at each step a new input sample or batch
of samples are presented to the network. In this process, the weights are
adjusted using a delta rule and a back-propagation function. Initially,
random values are usually assigned to the network parameters and
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through this iterative training process, the parameters are updated to
minimize the difference between the network predictions and the
desired outputs. However, training a DL model is not always trivial,
mainly due to possible numerical instabilities that could make the
updated weights negligible (vanishing gradient problem), and adequate
training countermeasures must be considered to avoid these issues. As
successful applications in dMRI, we can for example mention a Multi-
Layered Perceptron model used for a voxel-wise parameter estimation
of the combined intravoxel incoherent motion and kurtosis model in
(Bertleff et al., 2017); Golkov et al. (2016) proposed a method called q-
space deep learning which allows mapping scalar parameters, such as
diffusion kurtosis or orientation dispersion from significantly reduced
acquisitions and detecting abnormalities without the intermediate steps
of diffusion models; Ye et al. (2020) compare different DL models for
the estimation of complex biophysical model parameters (e.g., NODDI)
and propose an improved model which additionally provides an
estimate of the error and the uncertainty associated with the model
prediction. For a more exhaustive review of DL in MRI applications we
refer the reader to dedicated reviews, such as (Litjens et al., 2017).

While the fitting performance can be improved in terms of speed
and precision, the accuracy of parameter estimates with respect to the
biological ground truth should also be estimated. Indeed, since bio-
physical models promised specificity, then it is critical to ensure that
what the model labels as a “neurite fraction” for example is indeed a
reliable estimate of the neurite fraction. This validation part is best
achieved by comparing dMRI model estimates to those from other
modalities or complementary techniques.

2.4. Validation against other modalities and complementary techniques

After choosing model features and their parameterization based on
simplified sketches of the tissue, designing a suitable acquisition pro-
tocol for a given application, and optimizing the acquisition and fitting
strategies, the next step is to validate results against complementary
techniques (Fig. 3). Because classical histological analysis of tissue
specimens provides exquisite anatomical detail, it is often considered
the gold standard against which models are compared (Fig. 6). How-
ever, validation is not limited to comparisons against histology and can
involve any information from orthogonal (independent) techniques,
including additional simulations to investigate potential biases, acqui-
sition across populations or conditions to assess parameter ranges and
reproducibility, additional diffusion or non-diffusion sequences with
contrasts sensitive to similar features, or simple experimentally ac-
quired data in order to test well-defined hypothesis or in order to va-
lidate theory.

In the sections that follow, we describe several techniques and
strategies that have been utilized to validate various features of bio-
physical models of diffusion, and describe both limitations and suc-
cesses, as well as lessons learned throughout.

2.4.1. Compartment fractions
The relative sizes of the different water pools can readily provide

information about the physical sizes of the underlying compartments.
However, this information is intrinsically an indirect one as several
aspects preclude the direct estimation of physical compartment sizes
from dMRI.

First of all, each compartment weight fest should in fact be under-

stood as a relative signal fraction −f ecomp

TE
T comp2, , where the physical

compartment fractions are most heavily weighted by the compartment
T2’s (although the compartment fractions are also weighted by T1 and
proton density, the T1-weighting is minimal because the TR is typically
quite long for diffusion MRI, and we do not expect different proton
densities between the compartments, although this has not been thor-
oughly investigated in the literature). As it is still unclear whether intra-
and extra-cellular T2 are similar or substantially different, this can

potentially affect the estimate significantly. The most extreme case is
that of myelin water, whose T2 is so short (∼10ms) it is typically “MR-
invisible” in diffusion-weighted scans where the echo time is relatively
long due to the spin-echo design. One increasingly popular approach to
deal with this limitation is to estimate compartment diffusion and re-
laxation properties jointly (Lampinen et al., 2019; Benjamini and
Basser, 2017; Veraart et al., 2018b). In an effort to make up for the
missing myelin compartment and estimate the axon g-ratio (i.e. the
ratio of axon inner to outer diameter), combined dMRI and quantitative
magnetization transfer have also been explored (Campbell et al., 2018).
While the idea is interesting, its implementation requires reliable and
thoroughly validated models on both ends (i.e. both diffusion and
magnetization transfer).

In principle, compartment sizes estimated from dMRI models can be
cross-validated against histology and EM. However, there are intrinsic
differences between these techniques and MRI that preclude a one-to-
one correspondence and the use of ex vivo microscopy as a “gold
standard”. Most often, the dMRI measurement is done in vivo, and the
microscopy slides are on ex vivo fixed tissue. Chemical fixation is known
to alter tissue properties, in particular by preferentially shrinking the
extra-cellular space versus the intra-cellular. There are alternative
tissue preparation techniques for EM based on cryofixation that pre-
serve in vivo proportions more faithfully (Mobius et al., 2016; Ohno
et al., 2007), and these should definitely be favored in any validation
study. However, even so, the volume of tissue that can be characterized
and quantified with EM is usually much smaller than the MRI voxel
size. Then remains the question whether the small EM sample is re-
presentative of the entire structure encompassed by the MRI voxel.

Lastly, the compartment fractions can be dramatically affected by
inter-compartment exchange, if the latter is de facto substantial but not
accounted for in the model. For instance, studies of microscopic ani-
sotropy using diffusion tensor encoding techniques have shown that the
“neurite fraction” typically mirrors myelinated neurites and axons, and
not unmyelinated ones (Lampinen et al., 2017). But to conclude on an
optimistic note, intra-axonal fraction estimated from dMRI models in
WM usually agrees reasonably well and correlates strongly with the
matching metric derived from light and electron microscopy (Jelescu
et al., 2016a; Jespersen et al., 2010; Duval et al., 2017; Grussu et al.,
2015; Jespersen et al., 2007; Stikov et al., 2015).

2.4.2. Orientations
A fundamental aspect of nearly all biophysical models is the de-

scription of the tissue orientation distribution. In the WM, this function
would capture the direction(s) and dispersion of the different fascicles
within a voxel and is often referred to in the literature as the fiber
orientation distribution (FOD), or fiber orientation distribution function
(fODF). This structure is often represented in the spherical harmonic
basis, which are a set of basis functions defined over a sphere.
Alternatively, many models are based on functional descriptions of
orientation, for example Watson or Bingham distributions representing
discrete fiber populations and their dispersion.

By far, the most common application of the FOD is in providing
voxel-wise estimates of WM directionality for diffusion fiber tracto-
graphy, a process which seeks to map the structural connections of the
brain (Mori et al., 1999; Basser et al., 2000; Behrens et al., 2003).
Tractography has been widely used to investigate brain development,
cognition, and (dys)function, and shows promise in revealing clinically
relevant structural information during neurosurgical procedures. Be-
cause the FOD forms the basis of nearly all tractography algorithms,
validating the ability to accurately characterize structural geometry and
orientation is a necessity for anatomically accurate tractography. For
this reason, validation efforts have focused on applications to tracto-
graphy, although the accurate estimation of orientation and directional
heterogeneity is relevant not only as a potential biomarker, but also to
fully disentangle macroscopic orientation information from the scalar
tissue microstructural features (compartment sizes, diffusivities, etc.).
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Fig. 6. Comparison of histology and biophysical diffusion modeling organized by tissue features of interest. Biophysical modeling ultimately aims to enable a “virtual
biopsy” by allowing non-invasive, non-destructive, repeatable measure of tissue microstructure, over a large field of view with fast data acquisition and processing.
Shown are imaging indices of neurite density (A-D) (Zhang et al., 2012; Jespersen et al., 2010; Lampinen et al., 2017), orientation and dispersion (E-G) (Kaden et al.,
2016; Leergaard et al., 2010; Tournier et al., 2004), axon diameter (H-L) (Duval et al., 2015; Alexander et al., 2010; Barazany et al., 2009; Ong and Wehrli, 2010), cell
shape and heterogeneity (M-P) (Szczepankiewicz et al., 2015; Shemesh et al., 2012; Lawrenz and Finsterbusch, 2013), and myelination (Q-T) (Laule et al., 2008;
Deoni et al., 2011; Whittall et al., 1997). Please refer to original illustration by Alexander et al. (2019), for detailed descriptions of models used. Figure adapted from
Alexander et al. (2019), with permission.

Fig. 7. Validating fiber orientation distributions through simulations, physical phantoms, and biological phantoms. Fields of simulated fiber orientations (left)
(Daducci et al., 2014) can be used to asses model performance in estimating the correct number and orientation of fiber populations in each voxel. Simulations offer
the ability to assess a great number of physical and experimental conditions but are often overly simplistic and rely on a given model in order to generate the diffusion
signal. Physical phantoms can also be used to investigate the effects of reconstruction and acquisition strategies (middle) (Tournier et al., 2007, Tournier et al.,
20082008). These phantoms are well characterized and offer the realism of both acquisition (and associated artifacts) and a signal based on real diffusion processes,
however, these are often overly simplistic and may not truly represent the geometric complexity and sizes scales of real tissue. Finally, fiber reconstruction techniques
can be compared against histological analysis (right) (Leergaard et al., 2010). This method inherently contains the microstructural and geometric complexity
associated with the tissue, but may face challenges associated with limited fields of view, characterizing relevant tissue features on histological sections, and inability
to modify acquisition or analysis after sectioning.
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2.4.2.1. Validating fiber orientation distribution. The validation
framework of choice for a majority of orientation reconstruction
algorithms has been through simulations (Fig. 7). Major limitations of
many algorithms are first identified using these methods. For example,
several studies utilized synthetic data to highlight the failure of DTI to
characterize intra-voxel orientation when more than a single fiber
population is present (Alexander, 2005), a challenge which came to be
known as the crossing fiber problem and is known to affect a majority of
voxels in the brain (Schilling et al., 2017; Jeurissen et al., 2013). A large
number of models have since been developed to solve this problem,
many of which are first validated through simulations (Descoteaux
et al., 2007; Aganj et al., 2010; Ozarslan et al., 2006; Tournier et al.,
2007; Tuch et al., 2002; Yeh et al., 2010), typically by optimizing
selection of algorithmic and acquisition parameters.

Simulations further offer the ability to compare the performance of
different algorithms under varying physical conditions. For example,
using multi-Gaussian test functions across a range of crossing fiber
angles, fiber volume fractions, and noise levels has given insight into
the successes and limitations of competing approaches (Alexander and
Barker, 2005), or the effects of algorithmic choices and modeling as-
sumptions (Canales-Rodriguez et al., 2018), in identifying the minimum
resolvable crossing angle, angular error in identifying fiber orientation,
and ability to identify volume fractions of multiple fiber compartments.
Notably, a recent community challenge, the “HARDI Reconstruction
Challenge” (Daducci et al., 2014) used fields of simulated Gaussian
functions to compare the behavior of a large number of models for
recovering orientations, evaluating the correct assessment of the
number of fiber populations in each voxel and the angular accuracy in
their orientation. The main conclusions are that the relationship be-
tween the signal and fiber orientation is fairly well understood, and
despite the large number of modeling strategies in literature, they
generally well reflect the underlying fiber orientation distributions in
each voxel. There still exist differences in resolvable crossing angles,
angular accuracy, and successes in identifying fiber populations, but
there was no “optimal” method for a given acquisition, none out-
performed others in every evaluation criteria (Daducci et al., 2014).

While computer simulations are useful for comparative studies over
a range of fiber geometries and in ensuring a new method behaves as
intended, they are likely an over-simplification of both the geometric
complexity of brain tissue and the diffusion process within this tissue.
Towards this end, analysis of post-mortem histology has become a va-
luable validation resource which inherently contains the complex
structural characteristics of the central nervous system. Using light
microscopy of stained tissue sections, techniques such as manual tra-
cing of fibers (Leergaard et al., 2010), filter matching (Choe et al.,
2012), or structure tensor analysis (Budde and Frank, 2012) have been
used to quantify the histological, or ground-truth FOD. Studies in both
human and primate tissue have investigated the accuracy of the DTI
primary eigenvector, and the relationship between fiber density,
spread, and anisotropy with the error in orientation estimates (Choe
et al., 2012; Seehaus et al., 2015). Models able to resolve crossing fibers
have been investigated by comparisons against myelin-stained sections
in the mouse brain (Leergaard et al., 2010), concluding that the FOD
obtained from high-angular resolution diffusion data provides accurate
representations of the myeloarchitecture in regions of crossing fibers.

Typically, histological specimens have been limited to 2D analysis,
restricting the analysis to fibers oriented in the plane of tissue slice.
Recently, validation techniques have since been extended to 3D histo-
logical acquisitions. For example, two-photon microscopy (Kamagata
et al., 2016), optical coherence tomography (Wang et al., 2015), con-
focal microscopy (Schilling et al., 2016; Khan et al., 2015), and polar-
ized light imaging (Axer et al., 2016) have allowed visualization of
continuous 3D images of tissue sections, and quantification of 3D or-
ientations, with results in agreement with the primary fiber orientations
estimated with DTI (Khan et al., 2015), and even used to perform his-
tological fiber tractography (Wang et al., 2015). Comparing histological

FODs to those estimated from a number of modelling approaches,
confirms simulation results that there is no model that consistently
outperforms others in every quality criteria and that all methods de-
scribe the overall structure of the FOD quite well (Schilling et al.,
2018). However, while the overall shape of the fiber distribution is well-
described by existing modelling approaches, histological evaluation
highlights limitations in extracting discrete measures from the FOD
(number of peaks and primary orientation) as well as the inability to
resolve fiber populations that cross at sharp angles. Importantly, these
histological analyses highlight that real brains have rich geometries,
with orientation dispersions, undulations, fanning, and bending geo-
metries, and emphasize the importance of considering multiple fiber
populations with varying partial volumes and varying anisotropies
within a voxel.

In addition to limitations associated with the 2D nature of most light
microscopy, and the difficulty in characterizing and analyzing large,
high resolution datasets, another complication of histological validation
is accurate alignment of histology with MRI data, which is a require-
ment for comparison of directionality on a voxel-by-voxel basis. This
alignment is often facilitated through an intermediate imaging mod-
ality, typically a digital photograph of the tissue blockface during serial
sectioning, that allows registration of slices to a volumetric stack of
blockface images, followed by a registration of from this space to that of
MRI. These techniques have been applied successfully in rodent and
primate models (Choe et al., 2011) and recently in whole human
hemispheres (Mancini et al., 2020). Several optical techniques are now
able to image the blockface directly, for example two-photon micro-
scopy (Kamagata et al., 2016) and optical coherence tomography
(Wang et al., 2015; Jones et al., 2020), which directly reduces distor-
tions and should facilitate direction comparisons with dMRI.

While tailored towards tractography, these FOD validation studies
provide valuable insights into modeling. There are currently very few
models that consider multiple fiber populations AND can reliably esti-
mate them (Assaf and Basser, 2005; Scherrer et al., 2016; Wang et al.,
2011; Farooq et al., 2016) – almost all utilizing very strong constraints
to stabilize the fit, for example imposing too strict of assumptions on
FOD shape, or factoring out an assumed shape to estimate micro-
structure parameters, or vice versa. This means that most current
models are not representative of the majority of voxels in the brain, and
those that are may be too restrictive in either the features of orientation
or features of diffusivities and volume fractions. It appears as if there
are a crossroads between capturing a complex orientation at the same
time as a complex number of microstructural properties and the in-
trinsic degeneracy in parameter estimation. Alternative strategies, for
example model-fitting strategies (Henriques et al., 2019) or utilizing
tractography to inform microstructure (in contrast to the reverse: mi-
crostructure-informed tractography (Girard et al., 2017) which has
greatly regularized connectome construction) may be necessary to both
capture orientation complexity and the range of biophysical measures
expected in tissue.

2.4.2.2. Validating orientation dispersion. Rather than assessing the
number and directionality of fiber populations, it is also important to
evaluate the directional coherence, or alternatively the dispersion, of
the fiber geometries within a voxel. It has been well demonstrated with
histology that WM tracts are not composed of perfectly parallel sets of
myelinated fibers, but rather a dispersion or undulation of between
15–25 degrees is present in WM of rodents (Leergaard et al., 2010),
primates (Schilling et al., 2016, 2018), and human samples (Ronen
et al., 2014; Jonas et al., 1990; Lontis et al., 2009), which if not
appropriately modelled can affect subsequent microstructural measures
(Brabec et al., 2020). In the GM, there was strong agreement between a
standard two compartment model of cylindrical elements with a
Watson distribution and histological staining (Jespersen et al., 2012).
As a form of validation against prior knowledge, it has been shown that
the NODDI model with a Bingham orientation distribution is able to
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capture the cortical fibers adjacent to and within the cortex that are
known to exhibit fanning and bending distributions throughout the
neocortex (Tariq et al., 2014). In the spinal cord WM, the NODDI-
derived dispersion index agreed well with histological dispersion in
both healthy and lesioned post-mortem spinal cords (Grussu et al.,
2017), suggesting a potentially specific biomarker of spinal cord
pathology. In agreement, recent work in the brain WM also revealed
strong correlation between the dispersion index derived from NODDI
and that from 3D confocal z-stacks (Schilling et al., 2018). However, the
same study also showed a systematic bias of the true histology-based
dispersion, as well as evidence that the tissue dispersion influenced and
biased estimation of other model parameters.

Overall, evidence suggests that both representations of the FOD in
the spherical harmonic basis, as well as functional forms of orientation
adequately capture fiber orientation and orientation dispersion, and are
able to resolve multiple fiber populations in a voxel – with results de-
pendent on acquisition parameters, data quality, and chosen modelling
approach and reconstruction method.

2.4.3. Sizes and shapes
As opposed to estimating tissue directionality, which emphasizes

sampling the signal along many orientations, models for estimating cell
sizes and shapes usually require orthogonal diffusion information –
typically multiple diffusion times, or diffusion encoding shapes.

2.4.3.1. Axon diameters. Axon diameters have been estimated by
varying diffusion times or diffusion weightings and modeling the time
dependence or diffusion-weighted dependence of diffusion within
axons. The first challenge in estimating diameters, or sizes of
structures in general, is determining the relationship between that
characteristic scale and its effects on the diffusion-weighted signal in
q–t space, where q is the phase warp imparted to the particles and t is
the diffusion time (b = q2t). Early studies showed optimistic results,
with axons diameters of the optic and sciatic nerves (which have larger
diameters than axons of the cerebrum) agreeing well in animal models
both ex vivo and in vivo (Assaf et al., 2008; Barazany et al., 2009).
Unfortunately, this agreement was lost when translating to clinical
scanners on the human brain, with diameters overestimated by as much
as an order of magnitude (Alexander et al., 2010). The first obstacle
here lies in the resolution limit of estimating diameters imposed by the
hardware – typically clinical gradient strengths (60mT/m – 80mT/m)
do not support estimation of diameters below 4–8 μm, while axons in
the human brain WM are typically 1–2 μm (Nilsson et al., 2017). The
silver lining is that recent progress in technology with dedicated
gradient coils allows more accurate estimation of diameters in the
living human brain (Veraart et al., 2020). Two important regimes have
also been identified more clearly: a “weak” diffusion weighting regime
where the diffusion time-dependence is dominated by extra-axonal
water and which gives access to axon outer diameters (De Santis et al.,
2016; Burcaw et al., 2015; Fieremans et al., 2016; Lee et al., 2018) and
a “strong” diffusion weighting regime – not accessible on clinical
scanners – where the diffusion time-dependence is dominated by
intra-axonal water and which gives access to axon inner diameters
(Duval et al., 2015; Veraart et al., 2020). The earlier models that
yielded axon diameter estimates off by an order of magnitude were in
the former case yet incorrectly modeled the extra-axonal compartment
as Gaussian anisotropic, attributing all the experimental time-
dependence to the intra-axonal compartment, where this time-
dependence was in fact very weak given the diffusion weightings
achieved.

The second challenge in diameter estimation is related to tissue
complexity. An underlying assumption of most models is that axons are
straight impermeable cylinders, however, an increasing body of evi-
dence points to the need to take into account variation of diameters
along the length of axons (Lee et al., 2019a) or an axonal “beading”
(Budde and Frank, 2010), and an undulation or sinusoidal trajectory of

axons (Nilsson et al., 2012). Specifically, by simulating a substrate from
a 3D EM volume of tissue in the mouse corpus callosum, Lee et al.
(2019a) first highlight that different methods of calculating axon dia-
meter may bias comparisons across studies (i.e., short axis length, long
axis length, equivalent circle diameter, etc.) and that the assumption of
a Gamma distribution of diameters may be overly simplistic in tissue
(Lee et al., 2019a). They further show that significant along-axon var-
iation of diameters exists, and contribute to non-trivial time depen-
dence of MRI-derived axon diameters suggesting that perfectly cylind-
rical axons are overly simplistic models. These local enlargement and
constrictions of axons along their length (i.e., axonal “beading”) and
sinusoidal undulations of axons - have been observed in histological
slides in both humans and non-human samples (Brabec et al., 2020;
Schilling et al., 2018; Lontis et al., 2009; Lee et al., 2019a). By simu-
lating these environments, studies have shown that beading effects can
affect the measured diffusivity in both intracellular and extracellular
compartments. In a beading geometry, a reduced intracellular diffu-
sivity in the direction parallel to the fibers was observed by Budde &
Frank (Budde and Frank, 2010), offering a potential mechanism for
reduced apparent diffusion coefficient (ADC) after stroke. Additionally,
beading resulted in a linear change of the extra-axonal perpendicular
diffusivity with diffusion time (Ginsburger et al., 2018). Finally, un-
dulating geometries have been shown to increase perpendicular diffu-
sivity measures (Nilsson et al., 2012) and also give rise to time de-
pendence substantially different from that expected from straight
cylinders. In combination with insights from diffusion time dependence
and diffusion regimes, these geometric effects may lead to an over-
estimation by an amount proportional to the undulation amplitude, an
effect most prominent at longer diffusion times (Brabec et al., 2020).
Together, these highlight that non-straight and non-uniform geometries
of axons should not be overlooked when decoding the diffusion signal,
and emphasize the importance of considering these geometries when
validating the successes and limitations of new models. On a highly
positive note, the typical distance between axon irregularities along
their axis can also be estimated using time-dependent diffusion and
appropriate models, and can be highly informative of microstructure
feature such as boutons, nodes of Ranvier, beading, or distance between
mitochondria (Fieremans et al., 2016). A summary of the challenges
facing axon diameter estimation is shown in Fig. 8.

2.4.3.2. Cell sizes. Cell size estimation can also be done through
varying diffusion times and acquisition strategies. Many models of
cell size have been thoroughly investigated, particularly with
application to tumor models. Most commonly, the tumor environment
has been modelled as impermeable spheres of a given radius within an
extracellular space, with acquisitions requiring multiple PGSE (Pulsed
Gradient Spin Echo) diffusion times or a combination of PGSE+OGSE
(Oscillating Gradient Spin Echo) measurements to probe several time
domains. OGSE acquisitions give access to much shorter diffusion times,
but strong diffusion weighting is not achievable. One method, Imaging
Microstructural Parameters Using Limited Spectrally Edited Diffusion
(IMPULSED) (Jiang et al., 2017) utilizes a single PGSE acquisition at
long diffusion times and OGSE with multiple frequencies for shorter
times to probe cell size and density. Both mean axon diameter (Xu et al.,
2014) and cell size estimates correlated strongly with histological
measurements in vitro and in vivo (Jiang et al., 2017) in a colorectal
cancer xenograft model (r= 0.81) analyzed using light microscopy.
Further investigations into the effects of water exchange (which isn’t
explicitly modelled) and the effects of fixing diffusivity parameters have
been performed using simulations, with results suggesting that with
sufficient signal-to-noise ratio (SNR), estimates of cell size are robust
against both simplifying assumptions (Li et al., 2017). Another model,
the Pulsed and Oscillating gradient MRI for Assessment of Cell size and
Extracellular space (POMACE) (Reynaud et al., 2016) uses high
frequency OGSE to estimate measures of restriction (surface-to-
volume ratios) and free diffusivity, and uses these as fixed values
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when fitting low-frequency OGSE and multiple long-time PGSE to
model impermeable spherical geometries. When introducing the
model, the authors validated uncertainty in parameters estimates due
to noise, and also potential biases introduced in estimating diffusivity
parameters (specifically, assuming a constant extracellular space
diffusivity over a given range of times and frequencies). Results show
that the model, the assumptions, and fit procedure are robust to
parameter degeneracy, and in vivo and ex vivo estimates of cell radii
in mice glioma models were in good agreement with those from EM
images, suggesting the use of this method for noninvasive cell size
estimation (Reynaud et al., 2016). Finally, the Vascular, Extracellular,
and Restricted Diffusion for Cytometry in Tumors (VERDICT)
(Panagiotaki et al., 2014) model estimates cell size and intra/extra
cellular components, in addition to an anisotropic vascular
compartment, and can be utilized with PGSE (or combination of
PGSE and OGSE) at multiple diffusion times. In its original
implementation in the prostate, this model was validated in two ways
(Panagiotaki et al., 2014). First, by evaluating two human colorectal
carcinoma cell lines with known tissue pathology, VERDICT was able to
accurately characterize densely packed, less perfused, and smaller cell
sizes of the LS174 T cell line (presented as low extra-cellular volume
fraction, low perfusion fraction, and lower cell size) against the higher
perfusion of the SW1222 line. Second, cell apoptosis due to the effect of
chemotoxic agents was observed as changes in volume fractions and
confirmed by flow cytometry. Direct comparisons of cell size against
light microscopy indicated a slight overestimation (12%) of size, which
was attributed to shrinkage during tissue preparation. Improvements in
fitting and linearization (see Section 2.3) have led to an AMICO-
VERDICT framework (Bonet-Carne et al., 2019) which has since been
applied in human glioma patients (Zaccagna et al., 2019). Optimistic
results suggest that the linearized VERDICT is able to distinguish high-
grade from low-grade glioma (smaller larger intracellular component
and smaller vascular component) in agreement with histology, with a
good agreement with histological cell size, and again a slight
overestimation compared to histological sections (Zaccagna et al.,
2019). Overall, these modeling strategies emphasize the benefit of
incorporating alternative information in the form of acquisition and/or
diffusion times in the modeling approach.

2.4.3.3. Multiple diffusion encodings. One important and trending
approach is that of diffusion-encoding schemes complementary to
single pulsed field gradient pairs (PFG, often combined with a spin-
echo acquisition), that have unique potential to disentangle
microstructural shapes and sizes from their orientation distribution
within the voxel in an unambiguous way that does not rely on
modeling. We refer the reader to (Topgaard, 2017) for a dedicated

review. The first large family of non-PFG methods is that of double, or
more generally, multiple PFG that originated from solid-state NMR
spectroscopy and the estimation of pore sizes in porous media (Cheng
and Cory, 1999; Mitra, 1995) but quickly found applications to
biological tissue and even demonstrated feasibility on human clinical
systems (Lawrenz and Finsterbusch, 2013; Avram et al., 2013; Koch and
Finsterbusch, 2011; Lawrenz and Finsterbusch, 2019). The most
widespread implementation is the double PFG, or double diffusion
encoding (DDE) – see (Shemesh et al., 2016) for a review and
nomenclature disambiguation – which exploits the dependence of the
signal on the angle between the first and second pair of PFG’s. Briefly,
at long diffusion times, short mixing times between the two gradient
pairs provide information on elementary feature (“pore”) sizes, while
long mixing times provide information on the so-called microscopic
anisotropy (μFA), i.e. microstructural anisotropy of the elementary
features, independently of their orientation distribution within the
voxel. For example, it is possible to distinguish a voxel of spherical cell
bodies from a voxel of randomly oriented neurites, although both
scenarios would yield similar diffusion signatures in single diffusion-
encoding methods. Rotationally-invariant acquisition schemes for DDE
have also been proposed to alleviate any prior knowledge of the
underlying tissue symmetries with respect to the applied gradients
(Jespersen et al., 2013; Lawrenz et al., 2010). DDE experiments have
demonstrated clear added value with respect to single diffusion-
encoding in terms of lifting degeneracy in model parameter
estimation (Coelho et al., 2019; Reisert et al., 2019) and in removing
crossing-fiber confounds by exhibiting sustained high μFA in WM
regions of low FA (Lawrenz and Finsterbusch, 2013). Applications
already include improved delineation of multiple sclerosis lesions (Yang
et al., 2018a) and characterization of tumor microstructure (Duchêne
et al., 2020). Remarkably, DDE characterization of μFA revealed lower
values for GM than WM (Lawrenz and Finsterbusch, 2019), which
suggests a prominent role of spherical cell bodies and of water exchange
between compartments in GM modeling. On the down side, DDE is
associated with long acquisition times, in spite of recent efforts to
propose minimal designs compatible with clinical settings (Yang et al.,
2018a; Kerkelä et al., 2020).

The second main approach is the so-called q-space trajectory ima-
ging, or diffusion tensor (b-tensor) encoding (DTE), which consists in
using time-varying diffusion gradients instead of pulsed blips to probe a
variety of orientations at once, rather than just one diffusion direction
(Topgaard, 2017; Westin et al., 2016). This technique is conceptually
close to that of multiple PFG in the sense that free gradient waveforms
can be generated to produce planar tensor encoding similarly to DDE,
or spherical tensor encoding similarly to TDE (triple diffusion en-
coding). However, these particular b-tensor geometries (planar and

Fig. 8. Challenges in biophysical modeling of axon diameter. First, histology may not be a perfect “gold standard” for model comparisons due to tissue processing
effects and limitations associated with 2D quantification (see Section 2.4.1) (Lee et al., 2018b; Dyrby et al., 2018). Second, axons are not perfect cylinders and exhibit
both variation of diameters along their lengths (B) (Lee et al., 2018b) as well as an undulation pattern (C) (Nilsson et al., 2012). Third, the diffusion signal may show
a decreased sensitivity (smaller signal change) to smaller displacements associated with small diameters and there are theoretical prediction limits set by gradient
amplitude and gradient waveforms (D) (Nilsson et al., 2017). However, improved understanding of the diffusion signal (for example it’s time dependence (E)) (De
Santis et al., 2016) may lead to improved estimates of axon diameter, as well as improved creation and availability of complex simulated substrates (Ginsburger et al.,
2019) that will complement future validation studies. Figure modified and adapted from (Nilsson et al., 2012; Ginsburger et al., 2019; Lee et al., 2019b; Nilsson et al.,
2017; Burcaw et al., 2015) with permission.
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spherical encoding) are only special cases of DTE, which can in prin-
ciple be used to design any q-space trajectory. Furthermore, free gra-
dient waveforms are less demanding in terms of gradient amplitude and
slew rate than multiple PFG design, for the same resulting b-tensor.
However, unlike multiple PFG, the diffusion time is ill-defined in DTE
which may be problematic or a source of confounds given the well-
known diffusion time-dependence in biological tissue (de Swiet and
Mitra, 1996; Jespersen et al., 2019). Notwithstanding, DTE has de-
monstrated outstanding potential in support of biophysical modeling
and microstructure characterization. Applications range from the dis-
crimination between various types of tumors characterized by different
cell geometries (Szczepankiewicz et al., 2015; Nilsson et al., 2020;
Szczepankiewicz et al., 2016), probing the relevance of a “dot” com-
partment (i.e. immobile water) in biophysical models of brain tissue
(Tax et al., 2020) to assessing kidney microstructure (Nery et al., 2019).
Furthermore, DTE techniques have also shown to be instrumental in
lifting degeneracies of models estimated from single tensor encoding
alone, as detailed in Section 2.3 on Fitting Strategies, and Sections 2.4.1
and 2.4.4 on validating compartment fractions and diffusivities.

2.4.4. Diffusivities
Diffusivities are arguably the model parameters most difficult to

cross-validate, because there are no alternative methods to NMR for
measuring the self-diffusion coefficient of water. Yet diffusivities carry
highly relevant information about the microstructure medium (e.g.
cytosol viscosity, molecular crowding, etc.), and a biophysical model of
diffusion should not be reduced to its sheer geometry while diffusivities
are fixed to ad hoc values.

The initial drive for measuring compartment-specific diffusivities
was to better understand the origin of the dramatic drop in apparent
diffusion coefficient following ischemic stroke. Using compartment-
specific exogenous tracers based on X-nuclei, such as cesium, sodium
and fluorine, it has been suggested that the apparent diffusivities in the
intra- and extracellular environments for molecules of these sizes are
approximately similar to one another (Duong et al., 2001, 1998;
Goodman et al., 2008, 2005). The limitation of these probes is that they
have different sizes and affinity to charged surfaces than water, as well
as possibly different exchange dynamics across the cell membrane, and
their diffusion behavior cannot be immediately translated to that of
water molecules. However, a similar experiment using extra-cellular
gadolinium as a way of selectively suppressing the extra-cellular water
signal reported the same trend of comparable diffusivities between
intra- and extra-cellular compartments (Silva et al., 2002). These
measurements were all performed in rat GM where neurite orientations
are random and averaged out, and their result should therefore be in-
terpreted as diffusion tensors in each compartment having similar
traces (or mean diffusivity).

Endogenous compartment-specific probes such as brain metabolites
have also been used to determine compartment diffusivities, again with
the same limitation associated to the consideration of a molecule dif-
ferent from water. Note that the interpretation of brain metabolites’
diffusion-weighted signal is challenging because brain metabolites are
molecules heavily involved in brain metabolism, active transport and
other physico-chemical processes. However, numerous studies, per-
formed with different techniques in different species (rodents, monkeys
and human), have shown strong evidences that the diffusion of some
brain metabolites (such as N-acetyl aspartate (NAA), Glutamate,
Choline and Myoinositol) can be interpreted and modeled in terms of
cell microstructure/geometry, as also usually done for water diffusion
(Cao and Wu, 2017; Ronen and Valette, 2015; Palombo et al., 2018).
Furthermore, a few studies have investigated the correlation between
relaxation and diffusion of these metabolites, showing small or negli-
gible effects (Ligneul et al., 2016), supporting the interpretation and
modeling of metabolite diffusion primarily based on geometry, irre-
spective of relaxation properties. Studies of diffusion-weighted MR
spectroscopy overall reported an intra-axonal diffusivity for NAA –

which is overwhelmingly present in neurons – of 50–70% of aqueous
NAA (Ronen et al., 2014; Ellegood et al., 2007; Kroenke et al., 2004;
Palombo et al., 2017b). To measure metabolite intra-cellular diffusivity
at very short time-scales and access information about cytoplasm
viscosity (by also ruling out contribution from active transport) (Valette
et al., 2018), experiments were performed in the rat (Marchadour et al.,
2012) and mouse brain (Ligneul and Valette, 2017) using oscillating
gradients with frequencies up to ∼250 Hz, corresponding to diffusion
times down to ∼0.5–1ms. They showed that metabolites apparent
diffusivity increased by∼50% when the frequency increased from∼20
to 250 Hz for NAA, Choline, and Creatine (also for Myoinositol and
Taurine in the mouse brain), approaching diffusivity values of
∼0.2–0.30 μm2/ms (corresponding∼25–40% of the free NAA diffusion
in aqueous solution at body temperature (Kan et al., 2012)) at the
highest frequency. More quantitatively, modeling metabolites diffu-
sivities acquired in the rodent brain with oscillating gradients
(Marchadour et al., 2012; Ligneul and Valette, 2017) using frequency-
domain formalism for diffusion in cylinders or spherical pores
(Stepisnik, 1981; Callaghan and Stepisnik, 1995) yielded typical
asymptotic intracellular diffusivities to be ∼0.5–0.6 μm2/ms, i.e.,
corresponding to a low-viscosity cytosol, less than twice the viscosity of
pure water. This is in good agreement with fluorescence-based esti-
mates of fluid-phase cytoplasm viscosity being quite similar to bulk
water (Fushimi and Verkman, 1991; Luby-Phelps et al., 1993). These
results were also recently confirmed by studies in human brain (even
though at lower frequencies) (Doring and Kreis, 2019) and using very
high b values (Lundell et al., 2020). Finally, studies of acetate diffusion
suggested extra-cellular diffusivity of this metabolite to be faster than
the intra-cellular one (Dehghani et al., 2017; Palombo et al., 2017c). In
contrast to NAA, Acetate is present in both intra- and extra-cellular
compartments. Bi-exponential analysis of the Acetate diffusion signal
suggested that ∼45% of Acetate diffuses in the extra-cellular space
(Dehghani et al., 2017; Palombo et al., 2017c). Using biophysical
modeling of Acetate diffusion, Palombo et al. (2017c) reported pre-
liminary results of Acetate diffusivity being ∼20–35% faster in the
extra- than the intra-cellular space, suggesting that the viscosity/tor-
tuosity may be lower in the extra-cellular space. These results are again
consistent with viscosity estimations based on the diffusivity of fluor-
escent particles captured with two-photon microscopy techniques,
which suggest that the extra-cellular viscosity is lower than the intra-
cellular, but also point to variable viscosity in soma cytosol, nucleus,
dendritic branches, actin cytoskeleton, etc. (Xiang et al., 2020; Zheng
et al., 2017) (Fig. 9). We stress however that fluorescence measure-
ments typically yield diffusivity averaged over all directions and probe
short diffusion distances – yielding actual viscosity – compared to
clinical dMRI – where the apparent diffusivity is a combination of
viscosity and μm-scale restrictions.

The renewed drive across the community to characterize compart-
ment-specific diffusivities was recently fueled by the finding that the
simple two-compartment model of diffusion in WM (intra- and extra-
axonal water) had two mathematical solutions, neither of which could
be easily discarded based on goodness-of-fit criteria or biological
plausibility (Novikov et al., 2018b; Jelescu et al., 2016b). These works
further showed that the two solutions consisted in opposing inequalities
between the intra- and extra-axonal parallel diffusivities ∥Da, and ∥De, :
either <∥ ∥D Da e, , or the other way around. As a by-product, this result
questioned the WM models published thus far – including the very
popular NODDI – that set intra- and extra-axonal diffusivities equal to
each other, and even fixed to a given value (Zhang et al., 2012;
Alexander et al., 2010; Kaden et al., 2016).

Pointing to serious issues of models is valuable, but proposing so-
lutions to address the issues is better. The puzzle of which parallel
diffusivity was faster, the intra- or the extra-axonal, triggered a wave of
research efforts across the community and fostered great creativity in
solving the problem. Remarkably, nearly all approaches came to the
same conclusion: that >∥ ∥D Da e, , was the biologically-valid solution.
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These approaches included: comparing compartment tensor traces
using isotropic diffusion weighting (Szczepankiewicz et al., 2015;
Dhital et al., 2018), performing selective suppression of the extra-ax-
onal signal using either gadolinium (Kunz et al., 2018) or double-dif-
fusion encoding planar filter (Dhital et al., 2019; Skinner et al., 2017),
assessing functional forms of compartment time-dependent diffusivities
(Jespersen et al., 2018) and fitting diffusivities jointly with T2 (Veraart
et al., 2018b) (Fig. 9). Additional works have also shown that the de-
generacy of solutions can be lifted by considering the 6th order mo-
ments of the signal (Novikov et al., 2018b), or combining linear and
planar diffusion encodings (Reisert et al., 2019). It is noteworthy that
the >∥ ∥D Da e, , solution in WM also yields similar tensor traces for both

compartments: ≈ˆ ˆD DTr( ) Tr( )a e (since =⊥D 0a, and >⊥D 0e, in the long-
time limit), which is consistent with reports of negligible isotropic
kurtosis in WM (Szczepankiewicz et al., 2015). Very recently however,
a study that combined linear and spherical tensor encoding schemes
showed that the degeneracy could also be lifted by such an acquisition
protocol with a very well-defined minimum across the fitting landscape,
and that the retained “solution” verified the <∥ ∥D Da e, , inequality ra-
ther than the other way around, though the mean squared residuals for
that fit were highest in WM (Lampinen et al., 2020). These regular
twists in findings show that biophysical modeling of diffusion in tissue
is an active “re-search” field, constantly questioning itself.

Another conflict between geometry and diffusivity was the wide-
spread use of the “tortuosity model” as a simplifying assumption (Zhang
et al., 2012; Alexander et al., 2010; Kaden et al., 2016). In WM, the
latter links the extra-cellular perpendicular diffusivity ⊥De, to the
neurite water fraction f completely: = −⊥ ∥D f D(1 )e e, , . However, this
relationship has been shown to break for tight packings – which is the
regime of WM bundles (Novikov and Fieremans, 2012). Its enforcement
has been shown to produce significant discrepancies between estimate
neurite water fraction and measurements of microscopic anisotropy
using diffusion tensor encoding (Lampinen et al., 2017) and to simply
not be verified when the assumption is released (Lampinen et al.,
2020). Furthermore, it has been shown on the contrary that f and ⊥De,
can bring genuinely complementary information about the micro-
structure, with f being most sensitive to patchy demyelination or
myelinated axon loss and correlate best with axonal water fraction

derived from EM, while ⊥De, was most sensitive to widespread demye-
lination and correlate best with the g-ratio derived from EM (Jelescu
et al., 2016a).

Validating these various aspects of the biophysical model of diffu-
sion in WM has required widespread efforts across the community but
we have certainly gained confidence in its value and in the specificity of
microstructure estimates during this process. Hopefully, this knowledge
can now be transferred to the benefit of GM models – e.g. expected fast
diffusivity along neurites – such that we can focus on validating aspects
specific to GM, such as compartment exchange or the presence of a
soma compartment.

2.4.5. Compartment exchange
As mentioned, water transport across the cell membrane is poten-

tially an important feature for GM models. Water molecules can travel
from one compartment to another across the cell membrane as a result
of diffusion, permeation through aquaporins and transport via ion
channels and active carriers. Permeation through the lipid bilayer and
aquaporins are thought to dominate this process (Reuss, 2012). Here,
we refer to the combined contribution of all four mechanisms indis-
tinctively as “membrane permeability”. The exchange time is then the
characteristic time of water exchange between two different compart-
ments and the residence time is the characteristic time a water molecule
spends in a given compartment before moving into a different com-
partment.

Most neurites are unmyelinated and, it is often speculated that in
the absence of a myelin sheath, water inter-compartment exchange is
non-negligible over typical diffusion times of MRI experiments
(20–100ms). Neurites refer to either axons or dendrites, thin cylindrical
extensions of the cell that form numerous connections to other neurons,
but glial cell processes that have a similar thin cylindrical geometry
likely also contribute to the same “compartment” in diffusion MRI
models. A “simple” illustration of the relevance of exchange in GM is
that non-exchanging compartment models applied to the whole brain
typically yield much higher neurite compartment fractions in WM than
in GM (Zhang et al., 2012; Jespersen et al., 2010; Lampinen et al., 2020,
2017) while histology analyses point to a large 40–75% neurite fraction
in cortical GM (Bondareff and Pysh, 1968; Spocter et al., 2012; Motta
et al., 2019). When exchange is not accounted for, part of the “neurite

Fig. 9. Approaches for estimating compartment-specific diffusivities in neurons. A: Using a planar filter of increasing strength to suppress extra-cellular water
contribution in highly aligned white matter bundles exhibits an asymptotic behavior of axial diffusivity which towards intra-axonal diffusivity ≈D μm ms2.4 /a

2 . B:
Measurement of diffusion coefficient of fluorescent particles using two-photon microscopy techniques (here: TR-FAIM: Time-Resolved Fluorescence Anisotropy
Imaging) shows however that on ex vivo brain slices the viscosity of the intra-cellular space is higher than that of the extra-cellular space, and that there is substantial
heterogeneity in diffusion in the intra-cellular space between soma, dendritic branches and thorny excrescences (TE). Remarkably, mean diffusivity in dendritic
branches estimated to be 30% of free tracer diffusivity is compatible with axial diffusivity inside axons at 80% of free water diffusivity (i.e. ≈D μm ms2.4 /a

2 ,
assuming ≈⊥D 0a, ). Illustrations adapted from (Dhital et al., 2019) (A) and (Zheng et al., 2017) (B), with permission.
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water” is assimilated to extracellular space – or large soma – because its
diffusion behavior is indeed no longer restricted to a closed cylinder.

Dedicated sequence designs such as FEXI (Filter-Exchange Imaging)
have however estimated exchange times ranging 0.63–1.25 s in human
WM, where the longer times were associated with higher myelination
(Nilsson et al., 2013), as also hypothesized in WM modeling. The same
study reported shorter exchange times of 350ms in meningiomas, also
showing that pathology can significantly affect microstructure para-
meters.

For GM, several methods have also been devised to estimate water
exchange time across the cell membrane, which have so far yielded
diverse results. In vivo studies of human and rat GM (Jelescu and
Novikov, 2020; Veraart et al., 2018a) using the Kärger model of two
exchanging compartments (Kärger, 1985) yielded consistent estimates
of 10–30ms. Using the DEXSY (Diffusion Exchange Spectroscopy)
method (Benjamini and Basser, 2017), exchange time in perfused
mouse spinal cords was also estimated at 10–30ms between water
pools “far from and close to membranes”, without a specific compart-
ment attribution (Williamson et al., 2019). It is noteworthy that the
neonatal mouse spinal cord is far from fully myelinated, whereby these
estimates are much shorter than estimates for exchange time in human
WM. Experiments exploiting compartment-specific R1 relaxation rates
and extracellular signal suppression using contrast agents in living rat
brain (Quirk et al., 2003) and rat cortical cultures (Bai et al., 2018) or
using rapid flow in astrocyte and neuron cultures (Yang et al., 2018b)
yielded longer estimates spanning 100–150ms. The common ground
between all these studies however is that exchange time in GM, though
it broadly spans 10–150ms with considerably uncertainty, is much
shorter than in WM and the non-exchanging compartment hypothesis
would hold only for very short diffusion times (td< 20ms). In case of
longer diffusion times, exchange should be explicitly accounted for.

3. Pathology: how do models hold in disease?

Multi-compartment diffusion modeling in the diseased central ner-
vous system shows potential as a key biomedical tool in both research
and clinical domains, unlocking insight into the biological basis of a
disease, or facilitating and increasing specificity of diagnosis or treat-
ment monitoring. However, the key hurdle in this domain is variability.
This includes biological variability introduced by the disease, varia-
bility across differing anatomies and pathologies, and variability in-
troduced in modeling.

As described above (Section 2.3.1), the degeneracy in parameter
estimation is observed when measured data is equally well fit by mul-
tiple combinations of model parameters (Jelescu et al., 2016b), and is
typically tackled by constraining or fixing parameters or introducing
functional dependencies between them. An obvious risk with this ap-
proach is that bias in parameters estimates will results whenever these
constraints are invalid. While we are beginning to understand the subtle
effects of these choices in healthy tissue (Jelescu et al., 2016b;
Lampinen et al., 2017; Novikov and Fieremans, 2012; Jelescu et al.,
2015; Hutchinson et al., 2017) (in particular, WM), the consequences in
pathological tissue are still poorly understood. A given disease or injury
is expected to greatly increase the biological variability within tissue,
potentially altering the number and diffusivities of modeled compart-
ments, violating the modeling assumptions and consequently introdu-
cing bias.

This becomes an even greater obstacle due to the second source of
variability – the differences in pathologies across different diseases or
across time. While one disease may be expected to alter compartment
fractions and/or numbers, another may affect shape, size, and scale (or
compartment exchange, diffusivities, heterogeneity, etc.). Even the
same disease may produce different alterations at different stages. The
range of possible pathologies is possibly too large to be adequately
described by a single model, and any constraints imposed are almost
certainly violated in different disease mechanisms.

Finally, it is critical to not only disentangle, but to understand, the
relative variability in the underlying biology versus the inherent
variability of the model (Novikov et al., 2018a). The biological varia-
bility, in both health and disease, is the quantity that we ultimately
want to quantify and understand, but it can be confounded and ob-
scured by variability in the acquisition (scanner, protocol, and artifact
effects) (Tax et al., 2019), in the reconstruction (fitting effects) (Harms
et al., 2017), and in the model itself (range of validity, SNR, and con-
straints effects) (Hutchinson et al., 2017). To fully understand these
effects, and ideally to minimize modeling effects, validating the beha-
vior of the model in a number of settings becomes critical, particularly
in disease. This is particularly true for multi-center studies or compar-
isons between studies/sites (Cetin Karayumak et al., 2019; Mirzaalian
et al., 2016, 2018).

When it comes to model validation applied to pathology, one of the
main concerns with biophysical models is their claim of greater
sensitivity when comparing their metrics to DTI. However, the main
promise of biophysical models is specificity and not sensitivity. Greater
sensitivity than DTI likely comes from going beyond the Gaussian ap-
proximation, as most of these models rely on multi-shell data. A fairer
comparison would be to DKI, which relies on two shells and is expected
to be sensitive but not specific.

To date, application of biophysical diffusion models to disease has
been predominantly in tumors, in demyelinating diseases, and cerebral
ischemia. In all cases, DTI and DKI form the majority of studies applied
to disease, but below we focus only on the applications of biophysical
models in each, and their successes and limitations.

3.1. Tumors

The characterization of tumors definitely needs to rely on dedicated
models (Fig. 10), as the tissue becomes extremely different from healthy
brain (Jiang et al., 2017; Reynaud et al., 2016; Panagiotaki et al.,
2014). The tumor microenvironment might consist of a heterogeneous
population of cancer cells, host cells, secreted factors and extracellular
matrix proteins. The main features of most tumor models are im-
permeable spheres with a given radius, or radius distribution, sur-
rounded by an extracellular space, although standard multi-compart-
ment models of healthy WM have also been applied in these regions.
The assumptions and validity of these models are reviewed in detail in
(Reynaud, 2017). Using combined linear and spherical tensor encoding
has also demonstrated great potential for characterizing tumor micro-
structure based on cell shape (Nilsson et al., 2018) and for example
discriminating between glioma and meningioma (Szczepankiewicz
et al., 2016). While realistic geometry is a first important modeling
step, membrane permeability could also play an important role in tu-
mors. The FEXI method showed for instance that it was possible to
differentiate between viable and necrotic parts (Nilsson et al., 2013),
and between astrocytoma and meningioma (Lampinen et al., 2017)
based on permeability. Time-dependent diffusion in the extracellular
space should also be carefully considered and not neglected a priori. In
addition to the models estimating cell size and shape (Section 2.4.3),
other multi-compartment models have been applied in tumor models,
for example NODDI provided unique contrast not seen in FA/ADC maps
(or anatomical images) within human glioma lesions (Wen et al., 2015).
However, contrast should not be interpreted as reflecting biological
reality, for example neurite density has been shown to be artificially
high even in the known absence of neurites (Lampinen et al., 2017),
another example of the challenge of achieving high specificity. In this
case, there are limitations of separating anisotropy from cell density
variations using standard diffusion encoding sequences alone, with
potential solutions including alternative encodings or diffusion times.

3.2. Ischemia

The most common clinical application of dMRI to date is in the
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detection of acute cerebral ischemia (Moseley et al., 1990a). Within
minutes of symptom onset, diffusion within the extent of the stroke is
reduced by nearly one half – due to mechanisms hypothesized to be
related to ionic imbalance and consequent cell swelling and cytotoxic
edema. Subsequently, inflammatory factors are released, affecting the
integrity of the blood-brain barrier and consequent vasogenic edema
and extracellular fluid accumulation. Clearly, multiple overlapping
pathological changes to compartments fractions, sizes, permeability,
and diffusivities are occurring, and biophysical modeling may shed
light on these processes. In fact, as a biomarker, dMRI (in combination
with a T2-weighted or FLAIR sequence) has become the standard of care
in stroke imaging as it is the most sensitive sequence for diagnosis to
detect abnormality, and in dating the stroke for prognosis and treat-
ment planning. However, these clinical applications have not been in
the form of biophysical models, and involve only a single (or sometimes
three) DWI with a computed trace map.

Despite this, biophysical modeling may represent a critical tool to
probe the mechanisms of decreased diffusivity (Fig. 11). Decreases in
intracellular diffusivity are consistent with hypotheses related to neu-
ronal beading (Budde and Frank, 2010; Baron et al., 2015), while de-
creases in extracellular diffusivity would be consistent with a reduction
in extracellular space due to axonal swelling (Hall and Alexander, 2009;
Latour et al., 1994). Validation with compartment specific tracers in-
dicate that both mechanisms contribute to the decreased diffusivity
(Duong et al., 2001, 1998; Goodman et al., 2008, 2005; Silva et al.,
2002; Le Bihan et al., 2012; Moseley et al., 1990b), with some studies
suggesting a much greater intracellular diffusivity decrease with a

somewhat lesser extracellular decrease (Benveniste et al., 1992).
Probing multiple time scales with combinations of OGSE and PGSE in
animal models has shown a smaller reduction of diffusivity as shorter
time scales (Schachter et al., 2000; Does et al., 2003; Wu et al., 2014),
providing evidence that diffusivity decreases during ischemia are due to
structural rather than permeability or viscosity changes (Does et al.,
2003; Novikov et al., 2014), specifically, structural changes on the
length scales typical of cell sizes (∼2–4 μm) (Does et al., 2003). OGSE
has also been applied to human stroke patients (Baron et al., 2015),
with a shorter diffusion time resulting in dramatically reduced diffusion
contrast between normal and ischemic tissue (Baron et al., 2015), again
implicating structural changes of beading and/or swelling in ischemic
tissue. Multi-compartment models have also been applied to acute
human stroke, with quite distinct results. WMTI demonstrates a large
reduction in intracellular (axonal) parallel diffusivity, and smaller re-
duction in extracellular parallel diffusivity (Hui et al., 2012) (although
assuming <∥ ∥D Da e, , , which may lead to mis-interpretation of com-
partments, see Section 2.4.4) consistent with tracer studies. Alter-
natively, NODDI demonstrates significant increases in orientation dis-
persion and increase in neurite density (Adluru et al., 2014).
Multiphoton imaging of animal models of ischemia may be consistent
with the loss of structural organization, depending on time after onset
and location of damage (Murphy et al., 2008), although not consistent
with the increase in neurite/dendritic density. These are likely caused
by models fixed diffusivities leading to misleading interpretations when
these assumptions are violated.

Fig. 10. Dedicated modeling for tumor microstructure. A: Electron microscopy (EM) images of glioma guide the modeling as uncrowded spheres and the derivation of
time-dependent diffusivity in this geometry. B: Estimates of extra-cellular space (ECS) in glioma using the POMACE model and correspondence to light microscopy
slides. C: Discriminating between meningioma and glioma based on tumor cell shape (sticks for the former, spheres for the latter) using combined linear and spherical
tensor encoding. Illustrations adapted from Reynaud, Front. Physics (A) (Reynaud, 2017), Reynaud et al., NMR in Biomed 2016 (Reynaud et al., 2016) (B) and
Szczepankiewicz et al., NeuroImage 2016 (Szczepankiewicz et al., 2016) (C), with permission.

Fig. 11. Modeling microstructure changes in ischemia. A: Beading of axons/neurites is sufficient to cause a dramatic drop in ADC. B: Going beyond the Gaussian
approximation with DKI provides even more sensitive markers of tissue change than ADC and using a white matter biophysical model helps untangle the contribution
from each compartment. C: Time-dependent diffusion in the cortex is dominated by one-dimensional structural disorder (along neurites), which increases with global
ischemia. Illustrations adapted from (Budde and Frank, 2010) (A), (Hui et al., 2012) (B) and (Novikov et al., 2014) (C), with permission.
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3.3. Demyelination

At this point, the challenges of modeling in disease are clear: mul-
tiple concurrent pathologies that may affect the environment (and
diffusion properties of the environment) in diverse ways.
Demyelinating diseases represent perhaps the most complex of the
models. These disorders are often associated with inflammation, gliosis,
and axonal loss/injury, in addition to being inherently defined by de-
myelination – thus exhibiting multiple confounding factors that present
challenges to biophysical models that aim to achieve high specificity.

To date, a mouse model of demyelination induced through cupri-
zone toxicity has been the model of choice to validate diffusion-based
measures against histological variables. In a study of the temporal
evolution of diffusion metrics, Guglielmetti et al. (2016), show that
while DTI and DKI metrics are able to differentiate between control and
cuprizone-treated groups, the biophysical WMTI model was best able to
distinguish the different stages of the disease (Fig. 12A). Specifically,
intra-axonal diffusivity decreased during the acute inflammatory de-
myelinating phase (again hypothesized to be related to both axon
swelling and/or beading) whereas the axonal water fraction was de-
creased and able to discern long-lasting changes associated with the

remyelination period. Further, two independent histological validation
studies showed strong correlations between WMTI axonal water frac-
tion and the EM-derived axonal fraction, with no significant correlation
to other histology measures (Jelescu et al., 2016a; Kelm et al., 2016) –
indicating both high sensitivity and specificity (Fig. 12B). Additionally,
a measure of extracellular perpendicular diffusivity strongly correlated
to the g-ratio (Jelescu et al., 2016a), a measure of myelination, and no
correlation with other histology measure, together suggesting these as
promising candidates to distinguish myelin changes from axonal loss.
Another series of histological validation studies used DBSI modeling
and demonstrated strong correlations between radial diffusivity and
number of myelinated axons, and between a cellularity ratio measure
and histological cell counts in cuprizone treated mice (Wang et al.,
2011), in experimental autoimmune encephalomyelitis (Wang et al.,
2014b), and optic neuritis (Chiang et al., 2014) mice models.

In the human, multiple sclerosis (MS) has received the most atten-
tion to date, with biophysical modeling in both the brain and spinal
cord. Grussu et al. (2015), showed the feasibility of multi-compartment
modeling in the healthy spinal cord, showing that quality of fit is in-
creased in the NODDI model over DTI (as assessed by Bayesian in-
formation criteria which maximizes likelihood and penalizes free

Fig. 12. Biophysical models in demyelination. (A) In a study of cuprizone induced demyelination, Guglielmetti et al. (2016) show that while both DTI measures (MD)
and DKI measures (MK) are sensitive and able to detect white matter alterations, they are confounded by multiple co-occurring processes. Measures from the WMTI
model provide increase specificity – with intrinsic diffusivity decreased during acute inflammatory demyelination and AWF indicating a long-lasting decrease even
after recovery. (B) (Jelescu et al. (2016a)) further emphasize the improved specificity of biophysical modeling over signal representations (DTI RD), with AWF and
extra-axonal diffusivity parameters indicating different degrees and patterns of demyelination, with further validation against electron microscopy. (C) In human
multiple sclerosis, T2 lesions and chronic black holes are modeled using SMT and show significant differences in axonal volume fractions and axial diffusivities
(Bagnato et al., 2019), suggesting sensitivity to pathological changes in in vivo tissue. Figures adapted from Jelescu et al. (2016a); Guglielmetti et al. (2016); Bagnato
et al. (2019) with permission.
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parameters) Grussu et al. (2015). Again, while quality of fit is an in-
dicator that a model is capturing expected trends in the signal, sensi-
tivity and specificity remain critical. In light of this, subsequent studies
of both NODDI (Schneider et al., 2017) and Spherical Mean Technique
(SMT) (By et al., 2018) in the MS cord showed the high sensitivity of
these models to provide both lesion contrast (as and decreased neurite
density/volume fraction, decreased dispersion, increased isotropic vo-
lume fraction) in normal appearing WM in the MS cord. Of particular
importance, the neurite dispersion parameter has been shown to be
particularly sensitive to histological measures of neurofilament, astro-
cytic, myelin, and microglia dispersion as measured in the ex vivo spinal
cord, at the same time providing the greatest contrast between lesion
and non-lesioned WM (Grussu et al., 2017). Despite tremendous sen-
sitivity, specificity is still not assured, even in the healthy spinal cord. In
a comparison of multi-compartment models to a histological spinal cord
atlas, a number of parameters were revealed to be sensitive to measures
of axon diameter, density, and volume fraction, myelination, and
number of axons, however very few parameters are highly specific to
the one metric they intend to uncover – for example dispersion indices
are sensitive to a number of histology measures (Schilling et al., 2019),
however it should be pointed out that due to its location, size, and
movement, the in vivo cord may represent a worse-case scenario of
partial volume effects, motion, susceptibility distortions, and signal-to-
noise and acquisition limitations. In the brain, biophysical models
(SMT) have again shown great ability to distinguish not only tissue
from lesion, but also types of lesions (Bagnato et al., 2019). MS lesions
typically show as hyper-intense signal in T2w images, however those
that also present as hypo-intense on T1w sequences have been termed
chronic black holes, and are known through histopathologic studies to
represent advanced disease pathology and significant axonal loss, and
are semi-quantitative biomarkers of axonal integrity. Despite this, re-
laxometry remains poorly specific to pathology. SMT showed the ability
to distinguish T2-lesions from normal appearing WM (lower axonal
volume fraction) and more importantly the ability to identify chronic
black holes from T2 lesions (significantly lower axonal volume fraction
and higher axonal diffusivity) (Bagnato et al., 2019) (Fig. 12C). These
results were optimistically interpreted as a first step towards specific
characterization of in vivo pathology.

4. Clinical translation and added value

The final major challenge of a biophysical model of diffusion is
certainly its successful translation to clinical studies and its added value
in terms of characterizing physiological and pathological processes in
the human brain on a routine basis, informing on progression and re-
sponse to treatment, and perhaps even inspiring new therapeutic stra-
tegies. While the measurement of the ADC has revolutionized the fast
diagnosis of stroke (Moseley et al., 1990a, b), microstructure models
proposed since 1997 (Stanisz et al., 1997) have so far failed to reach
that “game-changer” level, with DTI still being the default protocol and
analysis in most studies, and neuroradiologists still mainly looking at
the “trace” image, i.e. the mean diffusivity calculated from DTI.

4.1. Clinically-acceptable scan time & acquisition protocol

The first hurdle to clinical translation is the advanced acquisition
protocol typically required for biophysical model fitting: multi-shell
data, high b-values and large number of directions sampled. First, these
protocols are synonymous with long acquisition times, which can be
incompatible with clinical studies. Clinicians can afford to add at most a
10-minute scan, with 20 minutes already being the exception and only
suitable for very dedicated studies. Second, implementing these pro-
tocols on clinical scanners can result in poor data quality, given the
more limited hardware performance compared to animal scanners or
human research scanners such as Connectom. Indeed, with limited
gradient performance, high b-values can only be achieved by increasing

the diffusion time significantly and thereby also the echo time, which
results in a e−TE/T2 attenuation from the start, on top of which sub-
stantial diffusion attenuation is added (high b-values). These two me-
chanisms combined will lead to low SNR in the images. Moreover,
clinical dMRI data is almost exclusively acquired using an echo-planar
imaging read-out, for which long echo times introduce significant
geometric distortions in regions of strong field inhomogeneity (such as
orbitofrontal lobe, ear and eye cavities etc.) and further degrade image
quality. Long scan times also increase the chances of subject motion.
Finally, protocol requirements for some models (e.g. short diffusion
time and ultra-high b-values) are simply not feasible on clinical systems
yet.

However, there has been tremendous progress made on all these
fronts in recent years, which are slowly but surely bridging the gap
between research and clinical settings. Acquisition acceleration tech-
niques such as GRAPPA (Bhagat et al., 2007; Griswold et al., 2002) can
help reduce the echo time and thereby improve image quality, while
the simultaneous multi-slice (Setsompop et al., 2012) and 3D multislab
(Chang et al., 2015a) techniques reduce the scan time without com-
promising on brain coverage. Compressed sensing can be used to under-
sample both k-space and q-space (Lustig et al., 2007; Mani et al., 2015;
Paquette et al., 2015; Welsh et al., 2013; Menzel et al., 2011;
Michailovich and Rathi, 2010), also resulting in a dramatic gain in scan
time.

So far, dMRI acquisitions had compromised on spatial resolution to
mitigate long scan time and low SNR issues. The clinical standard is
2mm isotropic or above. However, coarse spatial resolution has an
important impact on microstructure mapping by introducing unwanted
mixture of tissues in a voxel, which over-complicates or confounds the
modeling problem. In particular, brain structures that are thin and with
an intricate geometry, such as the cortex, typically suffer from partial
volume effects with neighboring CSF and WM. Here also, super-re-
solution techniques have been proposed to boost the spatial resolution
(Ning et al., 2016; Poot et al., 2013; Scherrer et al., 2012; Setsompop
et al., 2018; Van Steenkiste et al., 2016). Most recently, an extension of
the generalized slice-dithered enhanced resolution (gSlider)
(Setsompop et al., 2018) to undersample in both radiofrequency en-
coding space and q-space (gSlider-SR) has demonstrated feasibility of a
HARDI-like acquisition (64 directions at b=2ms/μm2) at 860 μm
isotropic resolution in ten minutes on a clinical scanner equipped with
80mT/m gradients (Ramos-Llordén et al., 2020).

On the topic of field gradient capabilities, several vendors now offer
systems with 80mT/m gradients, which is double the clinical standards
of a few years ago and contribute to increasing the achievable diffusion
weighting (b-value) as well as shortening the echo time. Although
human Connectom scanners with 300mT/m gradient capabilities are
only a handful across the world, it is probably only a matter of time
until this technology becomes more widespread.

Finally, valuable pre-processing tools have been developed to im-
prove data quality, ranging from thermal noise reduction based on
Marchenko-Pastur random matrix theory (Veraart et al., 2016), Gibbs
ringing correction to avoid mixture of WM and CSF signals in particular
(Kellner et al., 2016), and eddy current, motion and distortion correc-
tions (Andersson et al., 2003). The high performance of this processing
pipeline has been recently demonstrated and is freely available online
(Ades-Aron et al., 2018).

4.2. Added clinical value

The potential for added clinical value of biophysical models of dif-
fusion over typical analyses such as DTI is enormous, although in
practice the clinical translation has so far not been very successful in
most cases. There are several reasons for this overall unpopularity.

One of the main reasons could be the perpetual questioning and
reconsideration of biophysical models for a given tissue, which is a
natural process for research, but understandably not very reassuring for
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clinicians. For example, there is recent overwhelming evidence that in
WM intra-axonal diffusivity is faster than extra-axonal diffusivity
(Jespersen et al., 2018; McKinnon et al., 2018; Kunz et al., 2018; Dhital
et al., 2019), which invalidates the assumptions of models such as
NODDI (which assumes = =∥D D 1.7 ms/μma e,

2) (Zhang et al., 2012)
and WMTI (which assumes ≤ ∥D Da e, ) (Fieremans et al., 2011). Un-
fortunately, NODDI is probably the model that has so far been the most
successful in drawing the interest of clinicians, while the specificity and
reliability of its estimates has been questioned on multiple levels
(Jelescu et al., 2016a, b; Lampinen et al., 2020, 2017).

Encouragingly, numerous reports nevertheless highlighted the
added value of biophysical models over DTI, both in terms of sensitivity
and specificity, in a variety of applications including human brain de-
velopment (Jelescu et al., 2015; Huber et al., 2019; Nemanich et al.,
2019), aging (Benitez et al., 2018; Chang et al., 2015b; Toschi et al.,
2020; Fan et al., 2019), dementia (Dong et al., 2020; Fieremans et al.,
2013; Vogt et al., 2019), multiple sclerosis (Bagnato et al., 2019;
Cercignani and Gandini Wheeler-Kingshott, 2019; de Kouchkovsky
et al., 2016), concussion (Churchill et al., 2017), inflammation (Chiang
et al., 2014) and spinal cord characterization (Grussu et al., 2015). The
key advantage of biophysical models is going beyond the Gaussian
approximation regime, where really interesting and subtle features of
microstructure become manifest. The devil’s advocate would argue that
DKI is also going beyond the Gaussian approximation and is applicable
to any tissue type (signal representation). For the future, we re-
commend the performance of biophysical models be compared to that
of DKI rather than DTI – the added value of modeling vs model-free
approaches such as DKI should lie in the specificity of the micro-
structure characterization – which remains to be demonstrated for most
models.

With the proven sensitivity to a range of cellular level biophysical
parameters, and the promise of increased specificity through biophy-
sical modelling, dMRI at first seems capable of providing a great
number of imaging biomarkers – defined as a quantifiable characteristic
of a biological process that can be used to distinguish normal or ab-
normal processes, of conditions or diseases, or to measure response to
treatment for a disease or condition (Kessler et al., 2015). In addition to
the continual fluctuation (and hopefully, improvement) in modeling,
and improper and invalid assumptions mentioned above, the process
from biomarker invention to its use as a reliable tool for medical science
requires a number of translational gaps (Nilsson et al., 2018) including
[1] technical validation, [2] biological validation, [3] and clinical va-
lidation – in effect, critically evaluating whether the biomarker has both
validity and relevance.

Technical and biological validation assess several levels of bio-
marker validity. Technical validation asks whether the proposed bio-
marker is capable of being measured objectively, and with high re-
peatability, reproducibility, and reliability. The aim is to identify the
variability that exists under identical imaging conditions (repeat-
ability), the variability that exists under different imaging conditions
(reproducibility), and that across a population (reliability) –
Importantly, understanding this will help to disentangle the variability
across tissues and pathologies. These validations are commonly seen in
biophysical models, and we would argue are a bare minimum re-
quirement for introduction of a possible model to the community.
Repeatability can be done with test-retest scans of the same subject and
same scanner, assessing effects of noise, while reproducibility is most
often accomplished with traveling subjects on different scanners
(Bagnato et al., 2019; Szczepankiewicz et al., 2019), with many data-
sets acquired and tailored specifically for these studies (Tax et al., 2019;
Froeling et al., 2017; Nath et al., 2020). These validation steps can
additionally be done on simulated data or physical phantoms to in-
vestigate effects of noise, artifacts, or fitting procedures.

Second, biological validation takes the process a step past precision
and reproducibility and assesses accuracy, typically ensuring that an
imaging biomarker correlates strongly with a property of interest. This

has been performed with a number of estimated features as described
throughout this manuscript – the property of interest can for example
be fiber orientations or volume fractions, relevant pathological features
of cellularity or tissue heterogeneity, or dose-response relationships
between treatment variables and biomarker changes.

This is what many would consider “validating” a biomarker, how-
ever a strong correlation is again not enough; if a biomarker “passes”
biological validation it does not necessarily mean the biophysical model
is validated, per se (notwithstanding open-ended questions regarding
how strong a correlation is required). Rather, the validation is limited
to a specific conclusion under well-defined circumstances, and the
model may not generalize across acquisitions populations or varying
acquisition domains. For example, if a model (or component of a
model) is proposed as correlative with axon diameter as a function of
development in healthy aging, and independent evidence supports this
proposal, then the biomarker is validated in this case; however, that
does not mean that this index is validated as a biomarker in an aging
population with Alzheimer’s disease, for example. It is clear that mul-
tiple, orthogonal biological validations are necessary, in addition to
technical validation, to ensure model validity.

Finally, clinical validation requires relevance. The key here is asking
whether the model or index can provide medically useful information
for an intended purpose, be it diagnosis, prognosis, prediction,
screening, monitoring, or disease confirmation. An index may be a
perfect estimator (biologically unbiased and technically precise) of
axonal volume fraction for example but may not be a clinically meaning
endpoint or differentiator of health and disease. Thus, the final hurdle
facing modeling is a quote often repeated both in the diffusion field as
well as in multitude of self-help books: we have to make what’s im-
portant measurable, rather than make what’s measurable important.
While diffusion-weighted images, or trace-images, in stroke are the
prime example clinical relevance – both diagnosis and prognosis with
high sensitivity, specificity, and tremendous effect size – other models
are beginning to realize relevance in tumor grading and differentiation,
infection and inflammatory conditions, and neurodegenerative dis-
orders.

4.3. Keys to success for clinical translation

Clinicians recognize that conventional, non-quantitative MRI tech-
niques are sensitive but not specific to pathology, a factor that often
precludes a timely diagnosis and outcome prognostication (Bagnato
et al., 2020). Over the last decades, a number of quantitative MRI
methods have been developed; however, with the exception of DWI for
acute ischemic stroke, Creutzfeldt-Jakob disease and prolonged seizure
(Koksel et al., 2018) or MR spectroscopy for a limited number of brain
tumors and metabolic disorders, none of them has witnessed a suc-
cessful clinical translation (Sitter et al., 2019).

To be considered viable biomarkers and make it to clinical trans-
lation, imaging metrics must be validated against histopathology, cor-
relate with clinical status and be predictive of outcome. There are at
least four different stages any given promising imaging tool must pass
to become a biometric of disease. One must differentiate among these
four stages during which goals and challenges may differ.

A first important step is the histopathologic validation. Diffusion
models are particularly difficult to be validated on human samples,
postmortem, as most of the diffusivity properties are lost in a fixed
tissue. Thus, effort must be devoted toward studies based on biopsy
samples and animal models of diseases. Several methods fail clinical
translation due to lack of histopathologic validations, which discourage
pursing its use further.

The second stage is the immediate clinical-research application.
Here a small number of patients may be studied to test specific biolo-
gical hypothesis on disease mechanisms and disability accretion. At this
stage, it is fundamental that images allow a clear demarcation of ana-
tomical structures and an as accurate as possible characterization of
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pathology. Resolution and precision are more important than pragma-
tism. Different open source codes of easy and immediate access to the
scientific community are also key. This phase of translation is funda-
mental as it allows performing small but numerous studies across dif-
ferent centers. Investigations of this nature prove consistency of the
methods across scanners and different post-processing methods, across
clinical conditions subtended by similar pathobiological processes.
Ultimately, this phase of translation provides opportunities to the in-
ventors and to developers to refine and advance the model.

Consistency across studies and ability to reflect clinical impairments
in small but numerus studies, may encourage the application of ad-
vanced diffusion methods in the setting of phase II and phase III clinical
trials. In this third stage, quantitative MRI techniques may inform on
mechanisms of action of novel biological compounds, reveal novel
treatment targets and deliver innovative biomarkers. For example,
there is an urgent need to develop a biomarker of neurodegeneration
and repair of the central nervous system, for proof-of-concept clinical
trials testing molecules with neuroprotective effects (Bagnato et al.,
2020).

In this clinical-research setting, one can still likely afford a relatively
long scan time and a relatively elaborated post-processing algorithm.
However, it is important to note that not all clinical centers may be
equipped with state-of-the art scanners. Thus, for this translational
stage it is essential that the newly proposed methodologies can be easily
adapted to less advanced platforms. An analytical algorithm must also
be of easy access and execution.

Once these technical barriers have been addressed, it will be im-
portant to consider that any given metric must be dynamic and sensitive
to small changes occurring in a short time window. Indeed, to be
proven effective, medications need to act upon a short time window and
on visible and measurable biotargets.

The final stage is the day-to-day clinical routine. Here, MRI scans
are performed for diagnostic and prognostic purposes, as well as to
assess intervention outcome. In this setting, scans are acquired in hos-
pitals or outpatient facilities for which short acquisition and evaluation
times are imperative. One reason is that the facility needs to deliver the
highest number of scans achievable in the shortest time possible. With
longer acquisition times one must also expect a high degree of motion
artifacts due to inability of patients to remain still inside a magnet.
Thus, the incorporation of a post-processing tool that correct motion
artefacts automatically is key for a successful translation.

At the evaluation site, qualitative rather than quantitative metrics
are more likely to be adopted by clinical radiologists because they are
deemed to be more practical and more reproducible across different
readers.

All in all, clinical translation of newly developed imaging metrics
spans across different stages characterized by different barriers. It is
unfortunate that: 1) many promising and innovative methods do not
pass the first stage due to insufficient efforts to transition from one stage
to the other, 2) the significance of several imaging biometrics is often in
time overestimated by clinicians who may not be trained to appreciate
the technical limitations of the method. Strengthening collaborations
between inventors and clinicians is certainly a key factor. It is likely
that once developed, advanced diffusion methods need to undergo
several refinements to make it to the final stage.

Ultimately, advancing imaging metrics from bench to bedside will
require several years of dedicated collaborative effort between in-
ventors and clinicians.

5. Conclusion

Biophysical modeling of diffusion in brain tissue is certainly a
challenging field that has slowly come to maturity over the past 25
years by overcoming already a large number of hurdles at the levels of
parameter estimation, validation and developing solutions for both
healthy and diseased tissue. To conclude, we would like to emphasize

what we consider to be the next roadblocks in the field, i.e. the re-
maining challenges that should give impetus to our future endeavors as
a research community.

• In order to inform the simplified pictures of tissue, a better under-
standing of the microscopic organization of brain tissue is needed,
ideally in all regions of the rodent and human brain. As an example,
histological measurements of axon diameters are typically available
in the corpus callosum only. More importantly, while individual
building blocks of compartment models have been fairly well
characterized using complementary microscopy techniques, how
these elementary structures are de facto assembled in brain in vivo
remains poorly understood. Therefore, different fields of microscopy
could work conjunctly with the MRI field to bridge the gap between
whole brain in vivo estimates of microstructure and electron mi-
croscopy images of ex vivo thin tissue slices. Differences between the
two techniques lie in tissue condition (in vivo vs ex vivo, non-line-
arly shrunk and distorted), spatial coverage (whole brain vs stacked
thin slices of a small volume) and temporal fluctuations (in vivo
microstructure undergoes dynamic changes on the order of the
second or even shorter).

• The past years have witnessed the development of a variety of
models suited for specific types of tissue, e.g. single white matter
bundle, cortex, glioblastoma, etc. There is great interest in devel-
oping a unified model of microstructure that could be expected to be
applicable to any brain region, including complex mixtures of white
and gray matter such as thalamus and striatum. The successful im-
plementation of such a model can be expected to rely on very rich
datasets, characterized by multiple shells up to high b-values, mul-
tiple diffusion times and combinations of different diffusion tensor
encoding schemes. From the perspective of clinical translation and
utility, such a generalized standard model could be narrowed back
down to different minimal models focused on given pathologies or
applications.

• Compartment diffusivities and inter-compartment exchange times
remain the most challenging features to validate as they do not
benefit from a microscopy counterpart and are only accessible via
NMR methods. While compartment viscosity can perhaps be suc-
cessfully inferred from the diffusion of fluorescent particles, the
transport of molecules across the cell membrane is largely molecule-
specific such that water exchange times can currently only be vali-
dated by targeting specific channels such as aquaporins.

• Finally, improving communication and transparency between the
different parties involved in biophysical modeling and its applica-
tions is critical for exploiting the full potential of this field, which
ultimately benefits patients. Two simple examples of messages
which, in our opinion, have not come across sufficiently yet are the
following:
o Models should only be applied to the tissue, acquisition protocol,
and diffusion regime, for which they were designed, even if they
fit the data “perfectly” in other cases too. In other words, quality
of fit is not a determining criterion for the performance of a
model. If a model is used outside of its realm of applicability, the
estimated parameters are no longer specific of any microstructural
features and it is best to rely on signal representations in this case;

o The main argument for using biophysical models is specificity and
not sensitivity. Greater sensitivity than DTI likely comes from
going beyond the Gaussian approximation, as most of these
models rely on multi-shell data, but this can also be achieved with
DKI or other higher-order signal representations. On the devel-
opers’ side, this implies that the performance of models should be
tested against a fair signal-representation counterpart (e.g. higher-
order cumulants, and not DTI). On the clinicians’ side, if they are
in search of a binary or qualitative tissue assessment, then other
diffusion metrics are likely better suited for this purpose than
microstructure estimates from biophysical models.
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