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Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue 
features by pairing mathematical modeling with tailored MRI protocols. This article 
reviews an emerging paradigm that has the potential to provide a more detailed assess-
ment of tissue microstructure—combined diffusion-relaxometry imaging. Combined 
diffusion-relaxometry acquisitions vary multiple MR contrast encodings—such as 
b-value, gradient direction, inversion time, and echo time—in a multidimensional 
acquisition space. When paired with suitable analysis techniques, this enables quan-
tification of correlations and coupling between multiple MR parameters—such as 
diffusivity, T

1
, T

2
, and T∗

2
. This opens the possibility of disentangling multiple tissue 

compartments (within voxels) that are indistinguishable with single-contrast scans, 
enabling a new generation of microstructural maps with improved biological sensitiv-
ity and specificity.
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1  |   INTRODUCTION

This article reviews the current capabilities and future po-
tential of an emerging paradigm in microstructure imaging: 
combined diffusion-relaxometry. Diffusion MRI (dMRI) in-
directly assesses tissue microstructure by measuring water 
diffusion.1 MR relaxometry, while also sensitive to small-
scale tissue structures,2 additionally offers information on 
the chemical composition of tissue3 through the estimation of 
transverse and longitudinal relaxation times. Conventionally, 
diffusion and relaxation properties are measured and analyzed 
independently. Combined diffusion-relaxometry techniques 
measure and analyze diffusion and relaxation properties 
jointly, based on scans that vary both diffusion (eg, b-value 
and gradient direction) and relaxation (eg, inversion time 
[TI], flip angle, repetition time [TR] and echo time [TE]) sen-
sitizing sequence parameters in multiple combinations. This 
yields images where contrast reflects both diffusion proper-
ties (eg, diffusivity and anisotropy) and relaxation times (eg, 
T1, T2, T

∗

2
). The opening up of a multidimensional acquisition 

space enables exploration of the correlations between these 
complementary MR contrasts. Analyzing such multidimen-
sional data with appropriate techniques can potentially reveal 
unique information on tissue microstructure. In particular, by 
identifying and disentangling the unique MR signatures of 
different components, we can precisely characterize multiple 
tissue environments within a single voxel.

In this article, we focus on imaging, but the concepts 
and approaches we discuss have a strong foundation in 
multidimensional NMR techniques developed in the con-
text of porous media analysis. Such experiments typically 
sample diffusion and relaxation sequence parameters in a 
multidimensional acquisition space, and hence estimate 
multidimensional correlation spectra (ie, multivariate dis-
tributions of NMR properties). First used to estimate T1-T2 

distributions (eg, Ref. [4]) they were later extended to cal-
culate T2-diffusivity distributions.5-7 The approach was fur-
ther enabled by development of efficient techniques8,9 for 
calculating multidimensional correlation spectra, allowing 
combined diffusion-relaxometry NMR to be deployed in a 
wide variety of applications, including geology10-12 and food 
science.13-15 The uptake of these techniques shows that com-
bining diffusion and relaxation information in multidimen-
sional scans can provide heightened sensitivity to chemical 
composition and microstructural features (see references16,17 
for in depth reviews of multidimensional correlation NMR in 
porous media). The new insights into porous media demon-
strated by these techniques motivated their translation to 
quantify microstructure in biological systems. Early work 
applied combined diffusion-relaxometry to ex-vivo biolog-
ical systems, such as frog sciatic nerve,18 rat brain,19 yeast 
cells,20 and muscle21; alongside in vivo studies exploring the 
interrelationship between diffusion and relaxation properties 
in human brain.22

There are two main strengths of combined diffusion-
relaxometry driving its expansion in the microstructure im-
aging field: (i) it accesses complementary measurements 
with the potential to separate and quantify multiple micro-
structural environments and (ii) it accounts for inherent bi-
ases in such measurements, which are present as relaxation 
properties of complex tissue environments in an MRI voxel 
influence the estimation of the corresponding diffusion prop-
erties. These biases stem from the intrinsic dependence of the 
diffusion MRI signal on sequence parameters, such as TE and 
TR, which hinders the separation and quantification of tis-
sue compartments with distinct chemical and microstructural 
properties. For example, if T1, T2, and/or T∗

2
 vary across tissue 

compartments, then volume fractions inferred from diffusion-
only scans will be additionally weighted by the corresponding 
relaxation times. This means that while it may be possible to 

the NIHR or the Department of Health. 
PJS was funded by the European Union’s 
Horizon 2020 research and innovation 
programme under grant agreement No. 
666992. MP was supported by EPSRC 
grant EP/N018702/1 and by UKRI Future 
Leaders Fellowship MR/T020296/1. CFW 
was funded by NIH grants P41EB015902 
and R01MH074794. FBL was funded by 
the Deutsche Forschungsgemeinschaft 
(DFG LA 2804/12-1). DK and JPH were 
funded by NIH grants R01NS074980 and 
R01MH116173. DB was supported by a 
grant from the U.S. Department of Defense, 
Program Project 308430 - Uniformed 
Services University of the Health 
Sciences. JH was supported by Wellcome 
Trust Sir Henry Wellcome Fellowship 
201374/Z/16/Z and UKRI Future Leaders 
Fellowship MR/T018119/1.



      |  2989SLATOR et al.

satisfactorily quantify some microstructural environments by 
measuring multiple MR contrasts in a series of independent 
1D acquisitions (ie, dots in Figure 1) other microstructural 
environments can only be comprehensively characterized 
by measuring multiple contrasts in combination, that is, by 
varying diffusion and relaxation encoding parameters in a 
2D (ie, planes in Figure 1) or higher acquisition space. We 
highlight this with a T2-diffusion example in Figure 2. Two 
tissue structures are shown in (A) and (B), comprising two 
and three distinct microstructural compartments respectively. 
These tissue structures cannot be distinguished with single 
contrast experiments that estimate T2 relaxation time and 
diffusivity separately. While there are numerous real-world 
examples, in T1,

23T2 
24, T∗

2

25 and diffusion1 domains, where 
tissue microenvironments can be distinguished with single-
contrast experiments, combined multicontrast experiments 
may be required to fully assess the tissue of interest. An ex-
ample is the proposed separation of intra- and extra-axonal 
compartments in the brain at clinically accessible diffusion 
weightings (b ≤ 3ms∕μm2), which is facilitated by combin-
ing both T2 and diffusivity measures 26; using only relaxation 
or diffusion data separately leads to possible failure of the 

model to represent reality and/or to very high uncertainty on 
the intra-axonal vs extra-axonal estimates.

This review provides an introduction to combined 
diffusion-relaxometry imaging with focus on three overarch-
ing themes: acquisition, analysis, and applications. Suitable 
acquisition techniques are crucial for diffusion-relaxometry, 
particularly to address the severe increase in scan time that 
moving from 1D to 2D (and higher dimensions) necessitates. 
The acquisition section reviews the additional contrast encod-
ing parameters that can be combined with diffusion to make a 
diffusion-relaxometry experiment, including TE in spin echo 
and gradient echo sequences, and TI in inversion recovery 
sequences. We also review additional diffusion-weighting 
parameters beyond b-values and gradient directions that 
can be combined with relaxometry, such as diffusion time, 
b-tensor shape, mixing time, and B0 field strength. Given 
these higher dimensional datasets, new analysis techniques 
that account for correlations between relaxation and diffu-
sion properties can offer exciting new perspectives on tissue 
microstructure. We discuss the range of modeling approaches 
in the analysis section, including continuum modeling meth-
ods that make minimal assumptions about tissue structure to 
calculate multidimensional correlation spectra, other signal 
representation approaches based on the cumulant expansion, 
and microstructure modeling approaches where a fixed num-
ber of water pools are assumed a priori. In line with the ulti-
mate goal of combined diffusion-relaxometry techniques that 
make biologically and clinically meaningful observations, in 
the final section we review application areas where diffusion-
relaxometry techniques have contributed novel insights.

2  |   ACQUISITION

We first review techniques suitable for acquiring combined 
diffusion-relaxometry data. The essential property of such 
techniques is that they sample a multidimensional param-
eter space including diffusion (eg, b-value) and relaxation 
(eg, TE, TI) encoding parameters. This section proceeds as 
follows. In “Background and Motivation,” we first explain 
a significant limitation of dMRI—the confounds that diffu-
sion preparations introduce into MRI acquisition sequences 
and the resulting intertwined relationship between dMRI and 
relaxation, then introduce some basic combined diffusion-
relaxometry acquisition strategies. We next introduce and 
discuss advanced acquisition techniques that seek to acquire 
more informative diffusion-relaxometry data with higher ef-
ficiency in “Advanced combined diffusion-relaxometry ac-
quisition.” We finish by introducing some advanced diffusion 
MRI and MR relaxometry techniques that are particularly 
relevant for combined diffusion-relaxometry in “Combined 
diffusion-relaxometry and complimentary advanced acquisi-
tion techniques.”

F I G U R E  1   The parameter space relevant for combined diffusion-
relaxometry experiments. Diffusion parameters, for example, b-value 
and gradient direction, are represented on the x-axis. The echo times 
(TE) are on the y-axis, and the inversion times (TI) on the z-axis. The 
green dots represent a conventional diffusion acquisition at fixed TE 
with multiple diffusion preparations. The red dots illustrate a scan 
sampling several TEs without diffusion weighting to achieve T

2
/T ∗

2
 

maps. The blue dots illustrate a scan sampling multiple TIs without 
diffusion weighting to achieve T

1
 maps. The transparent cyan, yellow 

and magenta planes depict the acquisition parameter space sampled in 
hypothethical T

1
-diffusion, T

2
-diffusion (equivalently T ∗

2
-diffusion), 

and T1-T2 experiments, respectively
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2.1  |  Background and motivation

2.1.1  |  Intrinsic relaxation in diffusion MRI 
experiments

The standard technique for dMRI is single-shot echo planar 
imaging (ssEPI). In ssEPI the diffusion preparation is fol-
lowed by an EPI read-out train as shown in Figure 3. In this 
illustrated example, the diffusion preparation, described by 
the gradient waveform, is a standard pulsed gradient experi-
ment (ie, pulsed gradient spin echo [PGSE]) with two gradi-
ent lobes of equal length �, equal polarity, and equal gradient 
strength Gmax. One lobe lies between the excitation and re-
focusing pulse, with the other between the refocusing pulse 
and the start of the EPI read-out. The spacing between the 
gradient lobes (Δ) determines the diffusion time. In this clas-
sic setup, the b-value is determined by b = �2G2�2(Δ− �∕3), 
a special case of the more generic formulation

where

G(t) = [Gx(t) Gy(t) Gz(t)]
T describes the gradient waveform, 

and � denotes the field-strength-dependent gyromagnetic 
ratio over 2�. Typically the echo time (TE) is minimized, 
which achieves the highest possible SNR. Therefore, the key 

limitations are the length of EPI read-out train before the TE 
(Tpre

RO
 in Figure 3), and the available gradient strength Gmax. 

Figure 3 also illustrates that the diffusion acquisition does not 
happen in isolation, but in parallel to the T2/T

∗

2
 decay. It follows 

that the measured ssEPI signal is influenced both by T2 decay 
and by the effect of diffusion gradients and can be written, as-
suming monoexponential relaxation and diffusion decays

where D is the apparent diffusion coefficient and T2 is the T2 
relaxation time. It follows that the choice of the highest b-value 
in a dMRI acquisition, and hence the minimum TE possible due 
to the restrictions outlined above (assuming fixed TE across all 
volumes), has a direct effect on the signal attenuation for all 
b-values in the acquisition. Therefore, these choices influence 
quantitative diffusion-related metrics derived from dMRI ex-
periments. Two artifacts arising from the influence of the trans-
verse relaxation are T2 shine-through and T2 blackout, where 
variations in the T2 time (eg, in hematomas or myelin water) 
influence the dMRI signal intensity.27

2.1.2  |  Basic combined diffusion-relaxometry 
acquisition

The inherent relationship between diffusion and relaxation 
acquisition sequences, alongside the opportunity to probe tis-
sue microstruture in more detail, motivates MRI acquisition 

(1)b=∫
t

0

q(t�)2dt

(2)q(t)= � ∫
t

0

G(t�)dt.

(3)S(b, TE)=M0e−TE∕T2 e−bD

F I G U R E  2   Separate diffusion and relaxation experiments can confound distinct tissue microenvironments. A,B, display simplified tissue 
structures comprising two and three distinct microenvironments, respectively. Each point denotes a distinct microenvironment with fixed T

2
, 

diffusivity values, and a percentage volume fraction. The projected T
2
 and diffusivity distributions are shown on the top and right-hand sides. The 

1D distributions are equivalent for both (A) and (B) despite the different tissue structures, showing that 1D measurements can confound distinct 
tissue microenvironments. Combined diffusion-relaxometry can disentangle the contributions from the distinct microenvironments due to its ability 
to quantify correlations between multiple contrasts

(A) (B)
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sequences that probe diffusion and relaxation properties and 
their correlations. We will now introduce and review such 
acquisition sequences. For clarity, here and throughout we 
avoid using the terms “multicontrast” and “multimodal”, 
which can refer to any scan (or series of individual scans) 

that measures multiple MR contrasts. Instead we use “com-
bined diffusion-relaxometry,” to mean an experiment where 
diffusion and relaxation encoding parameters are varied in 
a 2D (or higher) acquisition space (eg, a diffusion-prepared 
sequence repeated at multiple TEs), and “simultaneous 

F I G U R E  3   Standard pulsed gradient spin echo (PGSE) ssEPI dMRI acquisition. From top down the pulse diagram shows: the excitation and 
refocusing RF pulses, a standard diffusion preparation in all three directions alongside the EPI read-out train, and the T

2
 and T ∗

2
 decay occurring 

during the spin echo acquisition. A whole dMRI scan comprises multiple repeats of these PGSE ssEPI blocks, one for each slice and each diffusion 
preparation used. The repetition time TR is defined as the time required to sample each slice in one stack. T

RO
 denotes the readout time, G

max
 the 

available gradient strength, � the length of the gradient lobe, and Δ the separation of the gradient pulses

F I G U R E  4   Example T
2
-diffusion acquisitions with three existing techniques. Each color represents a distinct excitation of length TR. A, 

The consecutive approach: repeat diffusion-prepared scans with different TEs (illustrative acquisition time: 50 TRs). B, Simultaneous approach: 
applying techniques allowing multiple samples in the parameter space within the same excitation of length TR (illustrative acquisition time: 10 
TRs). C, MADCO approach58: Fully sampled 1D data are augmented with sparsely sampled multidimensional data (illustrative acquisition time: 
23 TRs). While we only show 2D T

2
-diffusion (or T ∗

2
-diffusion) experiments for convenience, the same principles apply when extending these 

techniques to 3D and higher

(A) (B) (C)
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combined diffusion-relaxometry” for the special case where 
multiple diffusion and relaxation encoding parameters are 
varied within a single repetition time (TR) (eg, diffusion-
prepared sequence where multiple TEs are measured in a 
single TR).

Consecutive acquisitions
The most common way to acquire combined diffusion-
relaxometry data is by repeating a diffusion-weighted scan 
with varying relaxation-encoding parameters. For example, 
since T2 relaxation time can be estimated by acquiring mul-
tiple spin echoes with different TEs,28 typical T2-diffusion 
experiments comprise acquiring multiple diffusion prepared 
spin echoes with varying TEs (eg, Figure 4A). With this 
approach, each sample in the high-dimensional acquisition 
space (eg, Figures 1 and 4) is obtained with its own acquisi-
tion block of length TR. This is inefficient, as the time per 
sample is limited by the time required to achieve the specific 
diffusion preparation. This can lead to large idle times com-
pared to typical dMRI—where TE is minimized subject to the 
constraints of the required b-value and imaging gradients (eg, 
Figure 5A)—as data are acquired at a range of TEs with some 
longer than the minimal TE (eg, Figure 5B). Consequently, 
typical consecutive combined diffusion-relaxometry T2-  
diffusion acquisitions, such as in Figure 4A, have taken 1 

hour to scan the whole brain with around 500 volumes at 2.5 
mm isotropic resolution.26,29 As well as being slow and inef-
ficient, this approach adds to the risk of inconsistencies and 
bias through motion and modifying the diffusion time.

The effect for T1-diffusion experiments is even more drastic. 
A basic T1-diffusion acquisition comprises spin echo acquisi-
tions preceded with a global 180◦ inversion pulse, as in a typical 
inversion recovery sequence,30 with the time between the global 
inversion pulse and the first spin echo pulse (the inversion time, 
TI) varied to yield T1 sensitivity. This introduces significant 
delays compared to typical dMRI sequences, as the time be-
tween inversion and excitation, which sets the achieved TI (see 
Figure 6B), is typically in the range of 0-3000 ms. Moreover, 
the inversion recovery sequence is typically performed slice-by-
slice, with the global inversion pulse followed by reading out a 
single slice. An early in vivo T1-diffusion combined diffusion-
relaxometry experiment gave whole brain T1-diffusion cover-
age with 2 mm isotropic voxels in 1 hour.31

This intrinsic inefficiency in sequences, together with 
the huge number of possible data points—two previous 2D 
diffusion-relaxometry studies using uniform sampling uti-
lized 102432 and 225 00033 data points—hampers multidi-
mensional scanning, and in the past prevented translation 
of such techniques from NMR to imaging. It is therefore 
clear that methods for faster and more efficient combined 

F I G U R E  5   Illustration of separate vs integrated acquisition strategies using the example of multiple diffusion-encoded scans with varying 
TE, that is, T

2
-diffusion. A,B, show separate acquisitions at different TEs, together with the included dead time and change in diffusion preparation. 

Acquiring (A) and (B) to sample the 2D space is a basic ‘consecutive’ acquisition. Integrated multi-echo acquisitions are shown in (C) for spin 
echoes, hence acquiring combined diffusion-relaxometry data ‘simultaneously’
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diffusion-relaxometry acquisition protocols are of paramount 
importance. Two commonly employed strategies for working 
toward this goal are: 

1.	 modifying the pulse sequence to acquire data points 
more efficiently (ie, efficient sampling schemes)

2.	 selecting acquisition parameters that maximize the infor-
mation content for subsequent analysis and interpretation 
(ie, optimized sampling schemes)

2.2  |  Advanced combined diffusion-
relaxometry acquisition

2.2.1  |  Efficient sampling schemes

There are multiple techniques that apply the aforemen-
tioned first strategy, often inspired by efficient simultane-
ous diffusion and relaxation acquisitions pioneered in the 
NMR domain.34-36 These bespoke MR sequences typically 

improve acquisition efficiency by combining multiple con-
trast preparations and multiple read-outs within a single TR. 
In particular, for transverse relaxometry, time can be saved 
by acquiring multiple echoes (either spin or gradient) after 
the initial diffusion preparation and spin echo readout (eg, 
Figure 4B). This is further illustrated for the multiple spin 
echo case, which captures T2 information, in Figure 5C. 
Similarly, additional gradient echoes would capture T∗

2
 in-

formation, akin to a typical multi-echo gradient echo scan 
for measuring T∗

2
 relaxation.37 In both spin and gradient echo 

cases, this approach means that a single diffusion prepara-
tion is shared across multiple echoes, rather than being re-
peated for each echo, with the benefits of a more efficient 
scan and a consistent diffusion preparation across echoes. 
This results in a more complete sampling of the TE-diffusion 
preparation space within a fixed scan time. The exact speed 
up depends on the number of TEs chosen, and the required 
extension of the shot length and the duty cycle requirements 
set by the heating of the gradients. For large b-values, the TR 
might be extended due to this requirement of cooling periods, 

F I G U R E  6   Illustration of several alternatives to the conventional PGSE acquisition. A, Replacing the bipolar gradient pair by free waveforms 
used for q-space sampling. B, Addition of a global inversion pulse to achieve a set inversion time TI. C, STEAM acquisition including and 
depicting the mixing time, introducing T

1
 sensitivity and changing the diffusion time
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potentially offsetting some time gains when acquiring multi-
ple echoes.

For T1 relaxometry experiments where a global inversion 
pulse is inserted before the first excitation (ie, Figure  6B), 
again there are NMR-inspired techniques that more effi-
ciently sample multiple TIs over the imaging volume. Typical 
inversion recovery experiments acquire multiple spatial slices 
sequentially, meaning that each slice has a different effective 
TI value, allowing the measurement of many points on the 
inversion recovery curve, albeit at different spatial locations, 
within a single TR. The addition of slice-shuffling as orig-
inally proposed in 1990 and recently done in a number of 
studies,38-40 where the acquisition order of spatial slices is 
changed in subsequent TRs, allows the efficient sampling of 
each TI at each spatial slice location. Efficient slice shuffling 
has recently been utilized to yield whole brain T1-diffusion 
coverage in 13 minutes for 2.6 mm isotropic voxels.40 An al-
ternative approach avoids inversion recovery altogether by 
only varying TR to yield T1 sensitivity.41

Further acquisition flexibility comes from applying the 
slice shuffling principle to the diffusion preparation, as 
demonstrated recently by Hutter et al42 who, instead of ac-
quiring all spatial slices with the same diffusion preparation in 
a single TR, changed the diffusion preparation on a slice level. 
The ZEBRA (Z-location shuffling, multiple echoes and B-
interleaving for relaxometry-diffusion acquisitions) technique 
combines three strategies42,43—multiple subsequent gradient 
echoes are combined with slice-shuffling and interleaved 
slice-level diffusion encoding. This allows the acquisition pa-
rameter spaces required for T1, T

∗

2
, and diffusion contrast to 

be efficiently sampled in a significantly reduced acquisition 
time—a ZEBRA whole-brain T1-T

∗

2
-diffusion scan with 1344 

volumes at 2.5 mm isotropic resolution was demonstrated in a 
total scan time of 52 minutes.44 However, there are remaining 
challenges and constraints for such pulse sequences: acquisi-
tion times are still too long for clinical translation, the num-
ber of subsequent echoes that can be acquired is constrained 
by the length of the EPI read-out train and crusher gradients, 
and the acquired data cannot be easily split into shells—as 
each gradient direction will have different TIs due to slice 
shuffling—preventing the use of standard analysis techniques.

Stimulated echo (STEAM) techniques, albeit commonly 
employed to alter the diffusion time, also have an inherent 
T1 sensitivity,45 although 50% of the signal is lost compared 
to a spin echo in the conventional setup (see Figure 6C for 
a representative STEAM sequence). However, a recent ex-
ample exploiting stimulated echo pathways, MESMERISED 
(Multiplexed Echo Shifted Multiband Excited and Recalled 
Imaging of STEAM Encoded Diffusion), uses echo-shifting 
to remove the dead time in STEAM acquisitions and hence 
allows more efficient T1-diffusion acquisition.46

Similarly, there are multiple techniques proposed to ac-
quire transverse relaxometry data more efficiently. These 

include echo planar time-resolved imaging (EPTI),47 which 
uses novel sampling strategies to exploit correlations in 
k-space and time to enable faster T2 and T∗

2
 relaxometry. 

This approach was recently demonstrated for diffusion-
relaxometry with PEPTIDE (PROPELLER EPTI with dy-
namic encoding).48 Also related are high strength gradient 
systems, as they can enable lower TEs for the same diffu-
sion weighting 49 although it does remain the case that lower 
minimum TEs are possible in 1D relaxometry experiments 
than combined diffusion-relaxometry acquisitions. This may 
inhibit the ability of diffusion-relaxometry to measure struc-
tures with low T2/T

∗

2
 relaxation times, such as myelin water.2 

magnetic resonance fingerprinting (MRF) is another relevant 
technique. This allows simultaneous quantification of multi-
ple tissue properties by combining a highly accelerated ac-
quisition that varies all relevant parameters, with dictionary 
matching to prior computed signal curves. The simulation of 
the MRF dictionary50 with additional parameters constitutes 
a large computational effort, limiting diffusion MRF so far 
largely to variation of the b-value to allow calculation of the 
ADC value, for example, Ref. [51]. However, recent efforts 
have started to overcome this limitation by supporting this 
step with deep learning techniques, resulting in combined 
diffusion-relaxometry MRF52 including variation of b-value 
and gradient direction. Another proposed alternative is MR 
multitasking, a continuous acquisition that uses using real-
time low-rank modeling to account for motion, relaxation and 
other dynamics and hence efficiently quantify MR proper-
ties,53 and was recently demonstrated for simultaneous T1, T2 , 
and ADC mapping.54

2.2.2  |  Optimized sampling schemes

In addition to sequence efficiency, the choice of acquisi-
tion parameters is of key importance. Sampling the acqui-
sition parameter space (ie, Figures 1 and 4) with a uniform 
grid is the obvious place to start. However, similar to nonu-
niform k-space sampling strategies, this is not required for 
analysis and not necessarily the most efficient approach. 
For example, the Cramer-Rao lower bound (CRLB) is an 
estimation theoretic tool that can be used to quantify the ef-
ficiency of different encoding schemes,55 and CRLB-based 
analysis suggests that there can be many sampling loca-
tions which provide little additional information within a 
uniform diffusion-relaxometry sampling grid.56 Samples 
that do not provide much information can be skipped to 
enable high-quality data from a very small number of 
samples. This approach has enabled estimation of mul-
tidimensional spectra from as few as 12 samples for 2D 
diffusion-relaxation,56 and fitting of a two compartment T2

-diffusion model from a 15 minutes whole brain scan at 2.5 
mm isotropic resolution.57
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The MADCO (marginal distributions constrained op-
timization) framework is another example of the reduced-
sampling approach. It exploits the fact that lower dimensional 
distributions, or spectra, of MR parameters estimated from 
the data are essentially projections of the corresponding 
multidimensional spectra. MADCO utilizes a hierarchical 
encoding scheme: first, fully sampled 1D data is acquired 
for all sampling dimensions; then 2D (or higher) datapoints 
are very sparsely sampled (see Figure 4C). This, when com-
bined with analysis techniques detailed in later sections, 
supports estimation of multidimensional spectra using many 
less data points that would typically be required—MADCO 
was shown to achieve an acceleration factor of up to 50.58,59 
MADCO also has the significant advantage that acquisition 
times do not dramatically increase for higher dimensions, as 
demonstrated for the 3D case.60

Further acceleration techniques that reduce the num-
ber of required samples, all unified by the assumption that 
the data is sparse, have been proposed. While strategies 
like MADCO leverage the marginalized axes to constrain 
where peaks can appear, compressed sensing approaches—
traditionally applied in k-space—impose a presumed basis 
set in which the data is sparse. These methods have been 
used to recover 2D spectra using significantly less data in 
NMR61 and MRI62 contexts. Similarly, a framework based 
on PCA-like optimization has been proposed63 and aims to 
retrieve the sparse basis from the data. Finally, recent frame-
works using machine learning techniques such as SARDU-
net64 have shown excellent ability to retrieve information 
based on fewer samples.44

2.3  |  Combined diffusion-
relaxometry and complementary advanced 
acquisition techniques

The standard PGSE sequence discussed above can be modi-
fied in various ways to alter the sensitivity to specific micro-
structural features. In the following sections, we introduce 
some common modifications, and discuss their influence on 
relaxation properties. Since the temporal profile of diffusion 
gradients is directly linked to the information encoded into 
the signal, different gradient waveforms can expose (or sup-
press) different aspects of diffusive motion, such as restric-
tion,65 flow,66,67 anisotropy68 and exchange.69

2.3.1  |  Tensor-valued diffusion 
encoding schemes

Arbitrary diffusion-weighting gradient waveforms (eg, 
Figure 6A) can be described in terms of a symmetric second-
order b-tensor defined as70

where q is defined in Equation (2).
The tensor-valued diffusion encoding framework de-

scribes protocols where diffusion encoding is executed in 
more than one direction per signal preparation to enable the 
measurement of b-tensors with arbitrary traces (ie, b-values), 
shapes and orientations.70 In contrast, diffusion encoding 
schemes based on the Stejskal–Tanner design can only mod-
ulate the trace and orientation of the b-tensor. Consequently, 
the benefit of tensor-valued encoding is that it unlocks the 
“shape of the b-tensor,” a new encoding dimension that can 
be modulated to control the sensitivity of the detected signal 
to microscopic diffusion anisotropy, as reviewed in detail in 
Ref. [71].

The parallels between novel diffusion gradient waveforms 
and combined diffusion-relaxometry are clear—both are 
acquisition techniques that can precisely quantify and dis-
entangle distinct tissue microenvironments and, excitingly, 
both approaches are complementary. It follows that modi-
fied gradient waveforms are necessary in order to maximize 
the utility of combined diffusion-relaxometry acquisitions 
(and vice versa). For example, a sequence combining tensor-
valued diffusion encoding with multiple TR weighting was 
introduced as a means to establish correlations between T1 
and diffusion properties and thus characterize complex fiber 
orientation layouts.41 However, the combined relaxation and 
b-tensor protocols developed thus far have utilized a rather 
straightforward design, particularly from the relaxation en-
coding perspective, with suboptimal echo and recovery time 
samplings. In this regard, there is potential for improvement 
through combining arbitrary b-tensor shape with acquisi-
tion strategies that encode relaxation information more effi-
ciently. We also note that, particularly when combined with 
relaxometry, the additional degrees of freedom describing an 
advanced diffusion gradient waveform put further emphasis 
on efficiently selecting the acquisition parameters.

2.3.2  |  Varying diffusion time

As well as modifying diffusion gradient shape, we can also 
modify the time scale at which diffusion is observed. In the 
conventional PGSE approach, Δ, the spacing between diffu-
sion encoding pulsed gradients, can be varied for this pur-
pose. Importantly, Δ is closely linked to a change in TE as 
described above, due to the intertwining between the struc-
ture used for the spin echo and the placement of the diffusion 
gradients after the excitation and after the refocusing pulse.

There are a number of advanced acquisition techniques 
which probe the diffusion time. Higher gradients with faster 
slew rates can be used to allow MRI systems to access short 

(4)B=∫
t

0

q(t)qT (t)dt,
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Δ and may be critical for measurement of white matter fea-
tures, such as the axonal diameter.72 Alternative sequences, 
such as the oscillating gradient spin echo (OGSE) are asso-
ciated with significantly shorter effective diffusion times.73 
For structures with larger radii (prostate lumen,74 muscle tis-
sue75), PGSE cannot offer long enough diffusion times, due 
to signal loss from T2-weighting.

The aforementioned STEAM diffusion preparations 
(Figure 6C) can maintain high SNR for diffusion times above 
50 ms. Although STEAM conflates T1 and diffusion time 
dependencies, this may be overcome with a twice-refocused 
STEAM preparation.76 In combination with the appropriate 
models (as discussed in later sections) this approach can in-
vestigate the correlations between the time-dependence of 
diffusivity and relaxation times.

Modifying the diffusion time yields particular sensi-
tivity to porous structures, such as cells.77 Such structures 
also affect relaxation properties, for example, differences 
in magnetic susceptibility between the pores and surround-
ing material cause spatial variations in the B0 field.78 Song 
et al demonstrated that this can be exploited using sequences 
that vary the TE and diffusion time to measure the decay due 
to diffusion in the internal field (DDIF), and hence deter-
mine the characteristic length-scales of a porous structure.79 
Alvarez et al developed a related sequence sensitive to diffu-
sion and relaxation properties to measure internal gradient 
distribution tensors, which probe local magnetic susceptibil-
ity properties.80

These experiments show that incorporating diffusion time 
dependence into combined diffusion-relaxometry models is 
an exciting prospect for quantifying microscopic structures. 
Alongside magnetic susceptibility, future acquisition meth-
ods could also probe T1 and T2 relaxation. These methods can 
potentially detect compartments with small (∼1 μm) and im-
permeable features, which are not experimentally accesible 
with diffusion-only sequences due to the limited diffusion 
times available on clinical MR scanners (20-50 ms).

2.3.3  |  B
0
 field strength

Higher B0 field strength offers significant advantages for 
combined diffusion-relaxometry, including increased SNR, 
contrast, and spatial and temporal resolution.81 However, re-
laxation times vary strongly with B0, and the specific rela-
tionship often depends on the tissue type, such as with T1 in 
the brain.82 Since they are affected by relaxation, diffusion 
metrics may also depend on B0,

83 particularly at ultra-high 
field (ie, 7T and above).84,85 In some cases, it may be im-
portant to account for these dependencies in the clinic, such 
as when setting cut-off values between healthy and diseased 
tissue. There are also likely opportunities to exploit this 

dependency—in some applications distinguishing between 
tissue types may be easier at a certain B0. Ultra-high-field 
MRI seems most promising for revealing and exploiting B0 
dependencies of diffusion metrics. In particular, the reported 
increase of micro-FA at ultra-high-field deserves further in-
vestigation.85,86 Another promising avenue is the B0 depend-
ency of the intravoxel incoherent motion (IVIM) signal curve 
at ultra-high-field,87,88 where the weight of the arterial pool 
should further increase, combining this with additional re-
laxometry information can potentially make “arterial-pool-
weighted” IVIM feasible.89

2.3.4  |  Exchange

During acquisitions, some spins will inevitably move be-
tween microenvironments that have different MR properties. 
Traditional diffusion-relaxometry acquisition techniques do 
not explicitly account for exchange or provide a means to 
modulate its effects, but exchange will affect the signal and 
hence derived diffusion and relaxation parameters. A class of 
related and relevant techniques can detect exchange between 
compartments using sequences incorporating variable mix-
ing times. These include diffusion exchange spectroscopy 
(DEXSY)69 and filter exchange imaging (FEXI)90,91 for dif-
fusion, and relaxation exchange spectroscopy (REXSY) for 
T2

92 and T1
93 relaxation. Such techniques can only meas-

ure the apparent exchange rate, as differences in relaxation 
times (for diffusion exchange) or diffusivities (for relaxation 
exchange) between compartments will affect the measured 
exchange rate.94 Techniques that acquire combined diffusion-
relaxometry data with variable mixing times have the potential 
to account for these differences, and hence measure exchange 
rates more closely related to underlying values. However, na-
ively merging these techniques would lead to prohibitively 
long acquisition times, so novel pulse sequences, such as 
methods that rapidly measure exchange,95 are desirable.

2.3.5  |  Final thoughts

Further improvements will come from combining specific 
multidimensional data acquisition techniques with im-
portant parallel developments in MRI acceleration. These 
include multiband imaging96,97 and compressed sensing ap-
proaches62,98 among others. In summary, the efficient acqui-
sition of combined diffusion-relaxometry data is an exciting 
and ongoing field which will continue to be driven and in-
fluenced by a multitude of developments in both MRI and 
NMR. Such accelerated acquisition techniques are crucial to 
provide data for the appropriate analysis method while avoid-
ing prohibitively long acquisition times.
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3  |   ANALYSIS

3.1  |  Background and motivation

The basic premise of a combined diffusion-relaxometry 
MRI experiment is that we are interested in understanding 
and quantifying the different microenvironments that coex-
ist within an imaging voxel, under the assumption that these 
different microenvironments have distinctive diffusion-
relaxation characteristics that will allow them to be clearly 
discriminated from one another. The main goal of data 
analysis is therefore to identify and quantify different micro-
environments. However, practical limits on the spatial reso-
lution of MRI often mean that the signal from a single voxel 
will represent a partial-volume mixture of multiple distinct 
microenvironments.

In the absence of exchange, the measured data can be 
modeled as the linear superposition of the signals that would 
be observed from each individual component, and data anal-
ysis generally necessitates some form of multicomponent 
modeling so that the contributions of different microenvi-
ronments can be disentangled. One of the main advantages 
of combined diffusion-relaxometry is that the resulting mul-
ticomponent data analysis can be shown to be easier, both 
empirically4,99,100 and theoretically,55 than multicomponent 
diffusion analysis (without relaxation) or multicomponent 
relaxometry (without diffusion). Multiexponential fitting for 
a single parameter such as diffusivity or relaxation time is 
highly ill-posed. However, joint exponential fitting for multi-
ple parameters in 2D (or higher) is better conditioned than the 
corresponding 1D fits.

Separating a mixture of superposed signal components is 
a classical inverse problem that is not only unique to diffu-
sion and relaxation MRI, but also appears commonly in other 
applications like remote sensing, spectroscopy of all kinds 
(including NMR), functional imaging (eg, fMRI, MEG, 
EEG, and PET), and dynamic contrast-enhanced imaging 
(eg, MRI and PET). Due to its ubiquity, this kind of prob-
lem has been widely investigated over many decades, and a 
wide variety of analysis tools have been developed. Due to 
space limitations, the description below focuses on some of 
the most common unmixing approaches that are applicable 
to combined diffusion-relaxometry, and is not intended to be 
comprehensive.

For the sake of concreteness and without loss of gener-
ality, our description will assume a simple MRI experiment 
that combines 1D diffusion encoding with T2 relaxometry 
encoding, where each data sample is associated with one 
diffusion-encoding parameter b, one relaxation-encoding pa-
rameter TE, and one spatial position (ie, voxel) x. If we as-
sume that M components are present in a voxel, the measured 
data d(x, b, TE) can be modeled (in the absence of noise) as

where am(b, TE) is a function describing the contrast variations 
of the mth component, and fm(x) is a spatial map describing 
how much of the mth component is present within each image 
voxel.

Different data analysis methods can be distinguished from 
each other based on the different modeling assumptions that 
they make. Some of the most general unmixing approaches 
(including nonnegative matrix factorization,101,102 indepen-
dent component analysis,103 and low-rank tensor decom-
position104) are sometimes called blind source separation 
methods because they make minimal prior assumptions 
about am(b, TE) and fm(x). Instead, these approaches attempt 
to learn all the model parameters from the data, based only on 
the assumptions that M is relatively small and that the com-
ponents am(b, TE) are simple in an appropriate way. Although 
such methods are straightforward to implement, can be effec-
tive at automatically decomposing the data into seemingly-
meaningful components, and have been successfully used to 
analyze combined diffusion-relaxometry data,105-107 these 
approaches have some potential disadvantages. These include 
that they may decompose data into ambiguous constituent 
parts that are not biologically meaningful, and the decompo-
sition may not be stable and/or reproducible. Such methods 
may also overlook short T2 compartments due to the longer 
TEs required to explore the T2-diffusion space.

A commonly used stronger model assumes that the 
am(b, TE) are not some arbitrary/unknown functions, but can 
instead be described concretely. For example, one common 
assumption, which we make from here onwards, is that each 
component is associated with independent monoexponential 
diffusion and relaxation decays such that

where Dm is an apparent diffusion coefficient and T2m is a 
T2 -relaxation parameter. (Note that analogous assumptions can 
be applied for any experiment, eg, for T1 inversion recovery 
we have

We include this equation here for reference, and note that the 
approaches discussed in the following sections equally apply 
to any signal equation.) Given this assumption, we now ex-
plore three main approaches for analyzing combined diffusion-
relaxometry data: 

1.	 Continuum modeling
2.	 Cumulant expansion

(5)d(x, b, TE)=

M∑

m= 1

fm(x)am(b, TE)

(6)am(b, TE)= e−bDm e−TE∕T2m ,

(7)am(b, TE, TI)= e−bDm e−TE∕T2m (1−2e−TI∕T1).
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3.	 Parsimonious modeling using strong biophysical 
assumptions
In the next section, we discuss these three approaches in 

turn.

3.2  |  Current state-of-the-art: 
Continuum modeling

Thus far, continuum modeling has been the preeminent tech-
nique for analyzing combined diffusion-relaxometry data. 
Under the assumption of monoexponential decays, it is com-
mon to rewrite the data model from Equation (5) as an inte-
gral equation of the first kind 8 according to

where f (x, D, T2) is the diffusion-relaxation correlation spec-
trum for a voxel in spatial location x. The choice to use an 
infinite dimensional integral equation rather than the finite 
discrete sum from Equation (3) is consistent with earlier meth-
ods for 1D multicomponent relaxometry,108,109 and reflects the 
practical reality that we often do not have prior information 
about the number of components M. An alternative approach, 
discussed later, is to incorporate prior assumptions about tissue 
microstructure, enabling techniques more specific to distinct 
tissue types, at the cost of generality. In addition, in complicated 
heterogeneous tissues, the number of distinct decay parameters 
that are present within a voxel might be very large and effec-
tively infinite. In the literature, this integral equation has been 
viewed as a special case of the Laplace transform, causing the 
associated inverse problem to sometimes be called an inverse 
Laplace transform (ILT).

Since the correlation spectrum f (x, D, T2) is infinite di-
mensional and practical MRI experiments only acquire a fi-
nite number of measurements, we should not expect the ILT 
to have a unique solution. In MRI and NMR spectroscopy, 
these problems are usually resolved by choosing the “sim-
plest” solution, ie, the unique solution that fulfills minimum-
norm least-squares (MNLS) criteria.110 However, while it is 
straightforward to formulate the ILT within the framework 
of infinite dimensional Hilbert spaces and derive simple an-
alytic expressions for the unique MNLS solution,111 the ILT 
solutions obtained in this manner are usually not very sat-
isfying or useful. This occurs because, unlike the case for 
MRI and NMR spectroscopy where MNLS solutions are sta-
ble and interpretable, the presence of exponential decays in 
Equation (3) can make the inverse problem severely ill-posed 
and highly unstable. As a result, additional assumptions must 
usually be imposed to get reasonable ILT solutions.

There are several constraints that have been proposed to 
help achieve robust and interpretable correlation spectra. A 

widespread approach, originating in some of the early papers 
on diffusion-relaxometry,8 is to assume that the correlation 
spectrum f (x, D, T2) should be everywhere nonnegative. This 
assumption can be motivated by physics and is inherited from 
earlier work on 1D relaxometry.108,109 To numerically per-
form the inversion and estimate the spectrum, Equation (8) 
is discretized on grids of predefined ranges with ND and NT2

 
nonnegative components in the D and T2 dimensions, respec-
tively. The maximum and minimum grid values are chosen 
such that the solution is physically realistic by excluding neg-
ative fractions. The resulting matrix equation is

where vectors f and d are discretized versions of f (x, D, T2) and 
d(x, b, TE), respectively, and the matrix A is a corresponding 
discretization of the integral equation from Equation (8). A is 
NS by NDNT2

, f has length NDNT2
, and d has length NS, the total 

number of MR-encodings in the experiment. This leads to a 
nonnegative least-squares inverse problem formulation that can 
be written as

using the standard 2-norm. This constrained optimization 
problem does not have an analytic solution, but can still be 
solved iteratively using efficient optimization algorithms.112 
Importantly, nonnegativity constraints have good theoretical 
characteristics, and existence of a unique nonnegative solution 
can sometimes be guaranteed in inverse problems that would 
otherwise have infinitely many solutions.113

In addition to nonnegativity, regularization constraints 
can also be used to stabilize the inverse problem, leading to 
the formulation

where R(.) is a regularization penalty function that is designed 
to prefer solutions that have certain desirable characteristics and 
� is a user-selected regularization parameter. Common choices 
include:

•	 Regularization of the spectrum from each voxel with 
R(f ) = ‖Hf ‖p

p, where H is an appropriately chosen voxel-
wise constraint matrix, p is a user-selected parameter, and 
norm.p denotes the standard p-norm. Common choices of p 
include p = 2 (leading to standard Tikhonov regularization 
and guarantees under specific conditions the existence of 
a unique solution to Equation (11) 8 and p = 1 (leading to 
standard L1 regularization, which often results in sparser 
solutions). Depending on the choice of H, this penalty can 

(8)d(x, b, TE)= ∬ f (x, D, T2)e−bDe−TE∕T2 dDdT2

(9)d=Af ,

(10)f̂ = argmin
f≥0

‖Af −d‖2
2

(11)f̂ = argmin
f≥0

‖Af −d‖2
2
+�R(f )
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be used to enforce the constraints that the reconstructed 
correlation spectrum for each voxel should have small sig-
nal energy or should have relatively smooth spectral vari-
ations. This kind of regularization is popular in combined 
diffusion-relaxometry,8,58,114 and also 1D relaxometry.108,109

•	 Spatial regularization that encourages the reconstructed 
correlation spectrum f (x, D, T2) to be spatially smooth,100 
suited to mapping large structures over a whole image. 
Unlike the previous regularization penalties (which oper-
ate voxelwise and can be used to reconstruct the spectra 
for each voxel separately), the use of spatial regulariza-
tion couples the estimation of correlation spectra from 
neighboring voxels, and necessitates an imaging ac-
quisition. This approach has been used in combined 
diffusion-relaxometry,100 but was also used in earlier 1D 
multicomponent exponential modeling applications.115,116 
Estimation theoretic analysis can be used to show that spa-
tial smoothness constraints can theoretically reduce the ill-
posedness of the ILT by orders of magnitude in both 1D116 
and higher-dimensional55 settings.

•	 Data-driven regularization, where a fixed number of 
correlation spectra f (x, D, T2) are assumed within the 
image.117,118 This approach is related to the previously 
mentioned blind source-separation methods105-107 and 
seeks a lower-dimensional spectral representation of the 
image that is supported by the data, effectively regular-
izing the inversion by sharing information across voxels. 
This approach is appropriate when seeking to discover 
prominent microstructural features, at the expense of esti-
mating spectra in every voxel.

We note that selection of the optimal regularization tuning 
parameter � is an open research question, with many approaches 
and strategies suggested and tested over the course more than 
three decades. Notable methods include the generalized cross-
validation (GCV) method,119 the Butler-Reeds-Dawson (BRD) 
algorithm and the L-curve method112,120 and theoretical regular-
ization parameter selection based on the desired spatial-spectral 
resolution characteristics.55,121,122 A thorough review of some 
of these methods, along with alternative inversion methods, can 
be found here.123

In addition to nonnegativity and regularization, other po-
tentially useful constraints include:
•	 Enforcing consistency between the multidimensional 

correlation spectrum derived from combined diffusion-
relaxometry data and the 1D diffusion and relaxation spectra 
derived from 1D ILTs of subsets of the data.58 For example, 
the MADCO technique—as discussed in the Acquisition 
section—exploits the fact that lower dimensional spectra 
are projections of higher dimensional spectra, for example,

to enforce constraints on the multidimensional spectrum 
estimation.

3.2.1  |  Mapping voxelwise spectra

Unlike modeling methods that calculate a single, or small 
number of, values per voxel (as discussed later), the con-
tinuum modeling approach we describe calculates the spec-
trum, f, in each voxel. The typical way to derive meaningful 
maps from such voxelwise spectra is known as spectral 
integration.60,100,124 In summary, spectral intergration com-
prises first manually identifying prominent regions of the 
spectrum—typically by examining a spectrum derived from 
the signal averaged over a large representative ROI. The 
proportion of each voxelwise spectra that lies within each of 
these prominent regions is then calculated (hence the name 
spectral integration), yielding scalar indices often termed ap-
parent spectral volume fractions. The data-driven regulari-
zation methods described above117,118 provide an alternative 
approach for deriving maps.

In contrast to continuum modeling, a useful and widely 
used constraint in single-contrast diffusion and relaxation ex-
periments is to assume that the number of components M in 
Equation (1) is known in advance and is very small, while 
also assuming simple/parsimonious parametric models for 
the signal observed from each component. This approach has 
been used with combined diffusion-relaxometry data,26,74,125 
and uses modeling assumptions that are substantially more 
restrictive than those previously discussed. However, when 
the modeling assumptions are accurate, they lead to a simpler 
inverse problem that requires substantially lower SNR data 
to solve than the more general formulations described pre-
viously (calculating multidimensional spectra, particularly 
for single voxels, requires very high SNR). We discuss two 
examples of this approach in the next sections.

3.3  |  Current state-of-the-art: Signal 
representations

As previously discussed, a major weakness of continuum 
modeling is that the inversion of the Fredholm integral or 
Laplace transform is ill-posed.126 Naturally, there are repre-
sentations that do not require an ILT. The most commonly 
used representations in diffusion MRI are diffusion tensor 
imaging (DTI)127 and diffusion kurtosis imaging (DKI)128 
(although further techniques have been demonstrated, such 
as a decomposition in the basis of harmonic oscillator ei-
genmodes,129 spherical harmonics, or extended phase graph 
(EPG) formulation.130 DTI and DKI correspond to truncating 
the cumulant expansion,131 which is the Taylor expansion of 
logS(q) for small diffusion wave vector q, at the 2nd order 

(12)f (T2)=∫
∞

0

f (T2, D)dD.
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and 4th order, respectively. Ning et al132 adapted the cumu-
lant expansion approach to diffusion-relaxation experiments, 
hence calculating the joint moments of relaxation rate and 
diffusivity. This allowed the calculation of several novel mi-
crostructural metrics, including estimating diffusion proper-
ties independently from TE without solving an ILT.

Signal representations are a potential starting point to de-
termine the number of degrees of freedom that a future micro-
structural model could have. For instance, the observation of 
bi-exponential decay in S(b) or a nonzero kurtosis necessarily 
indicates that the measurement is sensitive to non-Gaussian 
diffusion.133 The observation of diffusion time dependence 
suggests that this non-Gaussian diffusion occurs in one or 
more compartments.134 Further study of mathematical func-
tional forms would reveal even more information about the 
underlying structure.

3.4  |  Current state-of-the-art: Parsimonious 
modeling using strong biophysical assumptions

Biophysical modeling moves to a biophysical description of 
the signal, where we assume a fixed number of tissue com-
partments, essentially trying to identify the relevant degrees 
of freedom while discarding many others.135 In our nota-
tion we can write the signal as a sum over multiple tissue 
compartments

where we change the index from Equation (5) to reflect the fact 
that we assume a known number of tissue compartments, N. 
The choice of N and the form of each ai(b, TE) is biophysically 
motivated based on our knowledge of the tissue of interest (see 
Ref. [136] for a summary of typical compartments).

Multicompartment biophysical models are prevalent in 
diffusion MRI, particularly in the brain.137,138 However, a 
significant limitation is that due to model identifiability is-
sues, it is common to fix certain parameters to reasonable 
values.139,140 Although this approach can produce high preci-
sion biomarkers, it also introduces biases.141,142 Accounting 
for both the diffusion and relaxometry properties of tissue 
compartments during acquisition and analysis can avoid fix-
ing parameters, as has been demonstrated in the brain57 and 
prostate.143 When combined with rich enough data and robust 
parameter estimation techniques, biophysical models have the 
potential to estimate highly specific physical features—such 
as permeabilities, compartment sizes, orientation dispersion, 
packing correlation length scales.

Metrics obtained from multicompartment diffusion MRI 
models can be directly compared to histology, since it can be 
reasonably assumed that the measured tissue microstructure 

remains reasonably similar in the ex-vivo histology (with the 
caveats of membrane integrity and shrinkage due to tissue 
preparation,144 and the geometric mismatch between 3D MRI 
and 2D histology145). However, the extent to which this gen-
eralizes to diffusion-relaxometry is a question attracting sig-
nificant research interest.

3.5  |  Future promises

As can be seen, there are many different options available 
for the analysis of combined diffusion-relaxometry data that 
have complementary strengths, with different methods being 
more or less powerful in different application contexts. For 
illustration, the effects of using different kinds of estimation 
constraints are shown using synthetic diffusion-relaxometry 
data in Figure 7. This represents a specific toy T2-diffusion 
system where the ground truth for each microenvironment 
is represented by a simple Gaussian distribution. In reality, 
microenvironments will have more complex, and potentially 
overlapping, shapes. In cases where the T2-diffusion ap-
proach cannot disentangle the relevant microenvironments, 
the system could be explored with higher-dimensional acqui-
sition approaches detailed in this review, such as T1-T2-​diffu-
sion, incorporating diffusion time dependence, etc.

While the approaches described above can be quite pow-
erful, it should be emphasized that this is still a developing 
field, and there are many opportunities to make combined 
diffusion-relaxometry data analysis even better. For exam-
ple, recent literature has demonstrated that it is possible to 
quantify the estimation uncertainty associated with combined 
diffusion-relaxometry experiments using Cramer-Rao the-
ory,55,57,146 similar to approaches used in other quantitative 
MRI applications.147-149 While such uncertainty quantifica-
tion is clearly useful for interpreting experimental results, 
this kind of information is also important because it can be 
used to design more efficient data acquisition schemes.57,146 
As further examples, it has recently been shown that a 
nonnegativity-constrained ILT formulation can be combined 
together with statistical resampling methods to enable very 
high-dimensional correlation spectrum estimation with-
out additional regularization constraints.150 We also note 
that we assumed time-independent diffusion with no intra-
compartmental kurtosis in Equation (6). Mean kurtosis 
can be estimated by adding the relevant terms to Equation 
(6),128 or different sources of kurtosis could be decoupled by 
combining with new approaches such as correlation tensor 
imaging.151 There are also potentially many other creative 
approaches that are yet to be developed. Machine learning 
is a promising avenue; this will likely focus on methods that 
learn from simulations (eg, Refs. [152, 153]) or unsupervised 
learning (eg, Ref. [118]), as ground truth information on tis-
sue microstructure is not typically obtainable.

(13)d(x, b, TE)=
∑N

i=1
fi(x)ai(b, TE)
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4  |   APPLICATIONS

4.1  |  Brain

4.1.1  |  Background and motivation: Brain 
applications

There are a wide range of diffusion MRI brain microstruc-
ture imaging techniques, many of which show promise in the 

clinic.154 Compared to relaxometry and more conventional 
DTI, the main advantage offered by these techniques is a more 
direct link between quantitative parametric maps and the un-
derlying tissue microstructure. For example, simple diffu-
sion models have shown remarkable value for imaging acute 
ischemic stroke,155 but the exact microstructural changes 
driving the contrast in ADC and DTI maps remain unclear. 
Moreover, unaccounted for changes in relaxation properties 
of brain tissue due to pathological conditions (eg, increase of 

F I G U R E  7   Illustration of estimating 2D diffusion-relaxation correlation spectra using different kinds of constraints. A, Simulated ground truth 
spectrum from a single voxel, comprised of three spectral peaks with Gaussian lineshapes. (The simulation is identical to that described in previous 
work,100 and we omit the details). B, Simulated noisy combined diffusion-relaxometry data from one voxel (following,100 the SNR for the highest-
SNR image was 200). C-J, Reconstruction results using different kinds of constraints: C, MNLS; D, nonnegative least-squares using Equation 
(4); E-H, regularized solutions using Equation (5), including (E) voxelwise Tikhonov regularization (H is an identity matrix), (F) voxelwise 
Tikhonov regularization (H computes a finite-difference approximation of second-derivatives along the vertical and horizontal dimensions 
of the spectrum), (G) voxelwise L1-norm regularization (H is an identity matrix), and (H) spatially regularized reconstruction (assuming the 
spatial distribution described in previous work100). We also show fits obtained using Equation (1) with known M and the parametric model from 
Equation (2) for each component: (I) M = 3 and (J) M = 4. Note that these spectra can look very different from one another even though they are 
all similarly consistent with the measured data (less than 0.4% data error in all cases). This reflects the severe ill-posedness of the problem and the 
need to choose constraints carefully. As can be seen, the MNLS reconstruction completely fails to capture the true structure of the data, while the 
remaining constrained reconstructions have varying levels of correspondence with the ground truth spectrum. Note that it is very hard for any of 
these methods to estimate the lineshapes of the spectral peaks accurately (some have much sharper peaks while others have much broader peaks), 
and that aside from (H), the rest of the reconstructions have spectral peaks in the wrong locations and potentially incorrect spectral peak integrals. 
Despite these mismatches with the ground truth, many of these estimation methods have been shown to produce consistent spectral decompositions 
of real data that can serve as useful biomarkers for different microstructural characteristics
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T2 relaxation time in ischemic lesion156) may bias parameter 
estimates and lead to misleading or wrong interpretation of 
the ongoing pathological mechanisms. Incorporating relaxa-
tion into diffusion MRI techniques can lead to more specific 
measures of brain microstructure, leading to improved under-
standing of disease and new clinical applications.

4.1.2  |  Current state-of-the-art: Brain 
applications

There are a wide range of brain microstructure models, span-
ning signal representations and biophysical models.138 The 
most common brain microstructure model encompasses 
a large set of white matter models consisting of Gaussian 
compartments, is the so-called “Standard model”.135 This 
describes the measured dMRI signal as the convolution of a 
fiber orientation distribution function (ODF), P(n̂), and a re-
sponse kernel, K(b, ĝ ⋅ n̂) from a straight fiber oriented along 
n̂, where ĝ is the unit gradient direction:

while the Standard model does not fix individual parame-
ters,26,57,157 there are numerous particular cases of this model 
that involve prior assumptions or bounds on the scalar parame-
ters of the kernel K(b, ĝ ⋅ n̂) (diffusivities, volume fractions), in-
clusion of free water compartment, and assumptions relating to 
the functional form of the ODF, most generally represented by 
an expansion of spherical harmonic coefficients. Fixing com-
partment diffusion coefficients and the ODF shape introduces 
an unknown a priori bias141 on the remaining parameters, which 
is particularly problematic in regions with diffusivity changes 
and no change in the volume fractions of tissue compart-
ments.158 On the other hand, without any priors or constraints 
the standard model suffers from degeneracy, that is, multiple 
combinations of the model parameters can provide the same 
indistinguishable signals.141 Simultaneously measuring relax-
ation and diffusion properties can help address this issue and 
relax a number of the priors and constraints. This was recently 
demonstrated in the brain, where an optimized 5D protocol 
comprising multiple TE and b-tensor shapes was shown to en-
able the fit of a minimally constrained white matter model.57

Both T1 and T2 have been utilized to resolve inher-
ent ambiguities in diffusion measurements. De Santis 
et al used combined T1-diffusion acquisition to resolve 
crossing fiber populations31,125 (see Figure 8A). More re-
cently, Leppert et al investigated tract specific T1 mapping.40 
Veraart et al used combined T2-diffusion to improve sepa-
ration of presumed intra- and extra-axonal compartments26 
(Figure 8B), and a similar strategy was later adopted within 

the NODDI model framework29 (Figure 8C). An interesting 
different multidimensional approach has been recently pro-
posed to map intra-axonal T∗

2
 values using the extra-axonal 

water suppression provided by high diffusion-weighting. 
Using a diffusion-filtered asymmetric spin echo, Kleban 
et al jointly estimated diffusion and susceptibility effects in 
major brain white matter tracts, showing that intra-axonal T∗

2
 

is lower in the corticospinal tract than in corpus callosum 
and cingulum.159

Moving away from biophysical model-based approaches, 
more data-driven methods to multidimensional diffusion-
relaxation analysis of the brain tissue have been recently 
proposed, carrying very exciting perspectives (for a more 
comprehensive review of the most recent methods, we refer 
the reader to Refs. [55, 160]). For example, de Almeida 
Martins et al proposed an MRI framework to quantify the mi-
croscopic heterogeneity of the living human brain by spatially 
resolving five-dimensional relaxation-diffusion distributions 
from combined 5D relaxation acquisition,161,162 with experi-
ments on a healthy volunteer demonstrating that the retrieved 
5D T2-D distributions can resolve distinct microscopic tissue 
environments within the living human brain (see Figure 8D). 
It is worthwhile to mention here that these data-driven mul-
tidimensional diffusion-relaxation approaches can be ex-
tremely useful to characterize parts of the central nervous 
system other than the brain, such as the spinal cord100,163 (eg, 
Figure 8E). Recently, in a comprehensive postmortem mul-
tidimensional MRI and histopathology combined study that 
included multiple human subjects ranging in axonal injury 
severities, Benjamini et al showed that axonal injury has a 
multidimensional spectral signature,164 which can be used to 
generate injury biomarker images that closely follow amyloid 
precursor protein (APP, axonal injury marker) histopathol-
ogy, with strong correlation (see Figure 8F).

Of course, more general data-driven multidimensional 
approaches come together with new challenges,160 for exam-
ple, how to improve the robustness (in terms of accuracy and 
precision) of the statistical descriptors that are estimated di-
rectly from the data,165 or how to summarize and visualize in 
an effective and simple way the large amount of information 
that can be retrieved.161,166 A particularly interesting model-
free application of multidimensional relaxation-diffusion ap-
proach to the same problem previously tackled by De Santis 
et al using a model-based approach has been recently pro-
posed for the nonparametric estimation of fiber-specific dif-
fusion-T1 features.41 However, for spinal cord, the application 
of such methods to in vivo clinical settings is hampered by 
challenges involving low SNR and high motion corruption. 
Nevertheless, recently proposed strategies to reduce the num-
ber of samples167 may provide useful tools to address some 
of these limitations, opening exciting possibilities for in vivo 
clinical applications.

(14)Sĝ(b)=∫
∞

−∞

dn̂P(n̂)K(b, ĝ ⋅ n̂)
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4.1.3  |  Future promise: Brain applications

Combined diffusion-relaxometry MRI is quickly evolving 
and moving into more and more clinically feasible applica-
tions.160 As discussed in the previous sections, this new ap-
proach comes with new challenges, but several recent works 
have already highlighted interesting avenues toward the reso-
lution of some of them.161,165,166 Notwithstanding the current 
challenges, the possibilities offered by combined diffusion-
relaxometry for brain microstructure characterization are ex-
citing, especially for pathological conditions. In particular, 
the rich data available from combined diffusion-relaxometry 
lend itself to data-driven analysis (eg, continuum modeling), 

which in principle can better generalize across diseases than 
typical brain microstructure models that make a priori as-
sumptions about tissue structure.

In addition, new acquisition techniques have the ability to 
probe very short TEs,49 paving the way toward very interest-
ing applications, for example, the quantification of combined 
diffusion-relaxation properties of myelin, whose T2 is very 
short (typically <10 ms), raising in turns new challenges for 
the acquisition. Furthermore, advanced MRI hardware, uti-
lizing stronger diffusion gradients such as those available in 
the CONNECTOM scanner,49 may allow the exploration of 
an additional dimension, the diffusion time, that may carry 
unique information about microstructural features such as 

F I G U R E  8   Examples of combined diffusion-relaxometry in brain and spinal cord applications. A, T
1
-diffusion—direction encoded color 

map T
1
 maps of tissue in a fiber crossing phantom from Ref. [125]. B, T

2
-diffusion—TE-dependent diffusion imaging (TEdDI) maps for in vivo 

brain from Ref. [26]. Top row: intra- and extra-axonal T
2
, and mean T

2
; bottom row: diffusivity parameters. C, T

2
-diffusion—Multi-TE NODDI 

parameter maps for in vivo brain from Ref. [29]. Parameters from left to right are: intraneurite fraction, free water volume fraction, and intra- and 
extra-neurite T

2
 values. D, T

2
-diffusion with b-tensor encoding—5D diffusion-relaxation distribution for a selected voxel of in vivo brain scan from 

Ref. [161]. E, T
2
-diffusion—spatially averaged T

2
-D distributions and spectral volume fraction maps in control and injured spinal cord samples 

from Ref. [100]. F, T
1
- T

2
-diffusion—spectral signature of microscopic lesions in the human corpus callosum (top: injured, bottom: control). 

Right panel shows corresponding injury biomarker images, side-by-side with histology.164 Subfigures A, C, and D are reproduced under Creative 
Commons licenses; subfigures B, E, and F are used with permission
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membrane permeability, spatial disorder and more (see fur-
ther the earlier Diffusion Time Section). Promising future 
applications may involve the multidimensional exploration 
of sub-cellular membrane structures168 or the combined 
diffusion-relaxation of brain metabolites.169,170

4.2  |  Prostate

4.2.1  |  Background and motivation: Prostate 
applications

The multiparametric MRI (mp-MRI) examination for diag-
nosis, staging, and risk stratification of prostate cancer relies 
on T2-weighted and diffusion MRI images.171 The synergy 
between modalities is abundantly clear to clinicians; moreo-
ver, decoupling signals from multiple tissue compartments 
promises biomarkers with greater diagnostic value.172 This is 
a monumental modeling challenge, as the prostate is hetero-
geneous at multiple length scales, where each voxel presents 
unknown mixtures of stroma (20 μm), epithelium (10 μm),  
vasculature (10 μm), and lumen (100 μm). The observa-
tion173,174 of a nonmonotonic diffusion time dependence, 
necessarily means that at least 1 compartment falls within 
the short or long-time diffusion limits. For this reason, it is 
incredibly difficult to estimate compartment fractions via dif-
fusion, as this would require definition of higher order cumu-
lants of the Taylor expansion of log(exp − bDn(t)) for each 

compartment. A potential avenue to resolve the model com-
plexity of diffusion is to rely on relaxometry for compartment 
estimation, where separation of signal into cellular (stromal 
+ epithelium) and luminal compartments using T2 alone has 
been performed reliably in prostate tissue as early as 1987175 
and has been reproduced on numerous occasions.145,176,177,178 
The practical challenge remains on how to describe the pros-
tate signal through diffusion-relaxometry, without biasing 
parameter estimates or over complicating the model.

4.2.2  |  Current state-of-the-art: Prostate 
applications

The model of Chatterjee et al179 incorporates relaxometry and 
hypothesizes that prostate diffusion can be described as a sum 
of 3 Gaussian compartments: epithelium, stroma, and lumen 
(see Figure 9A). The model of Lemberskiy et al74 circum-
vents the issue of higher order cumulants, by modeling DWI 
at low-b (where diffusion remains sufficiently Gaussian) and 
performing the assumed compartmental decomposition of the 
diffusion tensor entirely through T2, thereby preserving the 
full diffusion tensor for each compartment (see Figure 9B). 
This approach allowed for the functional validation of dif-
fusion time dependence within putative cellular (epithelium 
and stroma), which was found to agree with random per-
meable barriers, and luminal compartments were found to 
agree with the short-time limit. Though high b-values were 

F I G U R E  9   Examples of combined diffusion-relaxometry in the prostate. A, T
2
-diffusion—MR-derived parameter maps and predicted cancer 

map, and corresponding histologic maps for prostate with Gleason 3+3 cancers.179 B, T
2
-diffusion with varying diffusion time—parameter maps for 

healthy prostate from [74]. C, T
2
-diffusion—and corresponding histology for prostate with Gleason 4+3 cancer from [181]. Subfigures A and C are 

used with permission, and subfigure B under a Creative Commons license
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not considered, exchange/permeability could be measured 
for the cellular compartment via a random permeable barrier 
model.75,180 This approach did not account for vascularity, 
which while small, may be a critical microstructural bio-
marker. VERDICT does account for vascularity,137 it origi-
nally did not include relaxometry but was recently expanded 
to account for T1 and T2 dependence.143 Zhang et al recently 
applied continuum modeling with spatial regularization to 
quantify epithelium, stroma, and lumen compartments, and 
showed that these correlated well with results from histopath-
logy181 (see Figure 9C).

4.2.3  |  Future promise: Prostate applications

The complexity of individual compartments and the potential 
for diffusion time-dependence present a challenge to mod-
eling prostate microstructure. Unlike the mapping of axonal 
diameter in the brain,72 MR gradient systems are sufficiently 
strong to measure various microstructural features. With the 
hardware challenge resolved, the primary challenge is to de-
termine the optimal combined diffusion-relaxometry acqui-
sition and its subsequent interpretation through appropriate 
biophysical modeling.

4.3  |  Placenta

4.3.1  |  Background and motivation: Placenta 
applications

Placental MRI is emerging as a sensitive tool which can 
supplement antenatal ultrasound in the clinic. There are a 
number of MR contrasts which show promise as markers of 

placenta-related pregnancy complications. T∗

2
 relaxometry—

which relates to oxygenation levels—reflects placental 
dysfunction in fetal growth restriction (FGR)182,183 and 
pre-eclampsia.184 Diffusion MRI is also sensitive to these 
changes, with ADC185 and IVIM-derived perfusion frac-
tion186,187 decreased in FGR cases.

The placenta is unique in that it contains two distinct 
and nonmixing circulations: fetal and maternal blood. Fetal 
blood circulates in vasculature within convoluted villous 
tree structures. On the other hand, maternal blood, uniquely, 
does not flow within vasculature, but resides in intervillous 
space surrounding fetal villous trees. This one-of-a-kind 
structure is a leading motivation behind applying combined 
diffusion-relaxometry in the placenta. Melbourne et al make 
the following initial speculations about placental tissue envi-
ronments188: fetal and maternal blood have similar relaxation 
times, and hence their relative fractions cannot be determined 
with relaxometry; However, they can likely be differentiated 
by diffusivity properties, since fetal blood perfusing in vas-
culature travels much faster than maternal blood. Moreover, 
maternal blood cannot be separated from water in tissue by 
diffusivity, but can be separated by relaxation time. It follows 
that diffusion-relaxometry is necessary to adequately disen-
tangle these respective compartments.

4.3.2  |  Current state-of-the-art: Placenta 
applications

The first example of combined diffusion-relaxometry in 
the placenta was presented by Melbourne et al188 (see 
Figure 10A). The DECIDE model contains three putative tis-
sue compartments: fetal blood (characterized by high diffu-
sivity and long T2), maternal blood (low diffusivity, long T2

F I G U R E  1 0   Examples of combined diffusion-relaxometry in the placenta. A, T
2
-diffusion—parameter maps from DECIDE model fit on 

healthy placenta.188 B, T ∗

2
-diffusion—spatially averaged T ∗

2
-D spectra and spectral volume fraction maps in healthy and pre-eclamptic placentas.189 

Both subfigures are used under a Creative Commons license

(A) (B)
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), and tissue (low diffusivity, short T2). This enables estima-
tion of fetal and maternal blood T2 values, and the maternal 
to fetal blood volume ratio. These are potential biomarkers 
of placental dysfunction that are unavailable through single 
contrast measurements.

Slator et al189 simultaneously probed T∗

2
 and diffusivity 

in the placenta (see Figure 10B). The T∗

2
-ADC spectrum was 

calculated with an ILT, and showed multiple separated peaks 
potentially reflecting multiple tissue microenvironments. 
Encouragingly, although the sample size is small, T∗

2
-ADC 

spectra clearly separated normal and dysfunction placentas, 
demonstrating the potential of this approach to quantify and 
predict pregnancy complications.

4.3.3  |  Future promise: Placenta applications

A promising avenue for future work is to account for ani-
sotropy in analysis techniques. It has been shown that 
models incorporating anisotropy—in both perfusion and dif-
fusion regimes—explain the placental dMRI signal well 190. 
Incorporating this into diffusion-relaxometry analysis tech-
niques has the potential to increase sensitivity to pregnancy 
complications since, for example, fetal vascular tree mor-
phology is significantly altered in fetal growth restriction 191. 
The ultimate aim is to develop targeted imaging tools that 
can supplement antenatal ultrasound in the clinic. Such a tool 
should predict and precisely diagnose pregnancy complica-
tions, and hence be beneficial for potential future therapies. 
The extent to which such a tool is sensitive to the fetal to 
maternal blood ratio, oxygenation levels, and placental mi-
crostructure is an open question.

5  |   CONCLUSIONS

All diffusion measurements are influenced to some extent 
by relaxometry properties. Combined diffusion-relaxometry 
measurements can leverage this intrinsic link to reveal infor-
mation on tissue composition and microstructure that is inac-
cessible through typical separate diffusion and relaxometry 
experiments. Despite the challenges, such as long scanning 
times and multidimensional datasets, continually improving 
acquisition and analysis techniques can unlock the full po-
tential of combined diffusion-relaxometry MRI, enabling the 
next generation of microstructure imaging techniques.
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