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Summary of thesis

Since the first detection in 2015, gravitational-wave astronomy has progressed hugely.
Several observing runs have been completed, resulting in many more confirmed de-
tections of compact binary coalescence. As the number of detections grows larger,
the potential for exciting science also increases, however, this is not without chal-
lenges. Specifically efficiently analyzing growing data will present many computa-
tional problems going forward. In order to properly interpret and understand this
growing data, we must develop new ways to approach these computational problems.

When seeking to tackle a difficult problem there are broadly two ways to do this.
One can tackle the problem using some physical or mathematical insight, this under-
standing can then be translated into a simpler formulation or good approximation
which makes the problem tractable. This has been the standard way to tackle prob-
lems since the beginning of science, recently, however, data-driven methods have
become hugely popular. These data-driven methods such as machine learning gen-
erally do not use physical insight but make use of large amounts of data efficiently
to produce solutions to these intractable problems.

This thesis draws on both of these approaches and presents several new methods
to analyze gravitational-wave data. In chapters 2 - 3 we derive a way to describe a
precessing waveform as a harmonic decomposition, where each harmonic is a simple
non-precessing waveform. With this formulation, we are able to obtain a simple pic-
ture of precession as the beating of two waveforms. We then use this understanding
to answer questions such as when will we observe precessing waveforms? And where
in parameter space will we be able to observe precessing waveforms?

The remaining chapters look at data-driven approaches, using machine learning
techniques to improve different aspects of gravitational-wave data analysis. Chapter
5uses Gaussian Processes to interpolate posterior samples, this allows us to have
a smooth continuous representation of our posterior as opposed to histograms for
example. Chapter 6 uses using advances in waveform modeling and GPUs to poten-
tially make parameter estimation more efficient. In chapters 7 and 8we look at how
reliable machine learning techniques are, we show that often they do not incorpo-
rate uncertainty properly into their predictions. We then present a simple algorithm
for both classification and regression pipelines that can be used with any machine
learning model to address this.

Finally, in the conclusions, we review the work presented as a whole and dis-
cuss ways in which these two approaches can be combined to get the best of both.
We suggest that using our physical insights to guide and constrain our data-driven
methods will eventually provide the best path forward for gravitational-wave data
analysis.
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Chapter 1

Introduction

1.1 General Relativity and Gravitational Waves

In 1915 Einstein completed his theory of General Relativity. This work unified

space and time into the four-dimensional quantity known as spacetime [4]. One of

the insights from this work was that spacetime is curved by all matter and this cur-

vature can be described using the mathematical framework of differential geometry

developed by Reimann and others. Shortly after this theory was developed, many

consequences were discovered by probing these equations.

Gravitational waves were initially proposed by Poincaré in 1905 [5] he suggested

analogously to electromagnetic waves that gravitational waves would be produced by

accelerating masses. When the framework of General Relativity was developed, this

description could be formalized as gravitational waves producing ripples in the 4d

spacetime. The controversy and skepticism (even from Einstein himself) surrounding

the acceptance of gravitational waves is well documented [6] but eventually, they

became an accepted consequence of General Relativity [7]. It is now accepted that

gravitational waves are produced by the aspherical acceleration of mass. However,

the measurable effect of them on spacetime is generally very small and therefore the

only feasible way to currently detect them is to observe gravitational waves from

very massive, dense objects such as black holes and neutron stars.

The gravitational wave emission from binary mergers can be obtained by solving

Einstein’s equations. It’s generally not possible to do this analytically however

so we must resort to either approximate methods such as Post-Newtonian [8] or

computational ones such as Numerical relativity [9]. These methods allowed us to

understand the types of signals that could be produced and therefore allowed us to

understand that it would be possible to detect gravitational-waves on Earth. This

then led to the development on gravitational-wave detectors that would in theory

be sensitive enough to observe the signals emitted by these objects.
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1.2. Gravitational Wave Detectors

1.2 Gravitational Wave Detectors

One of the first investigations into observing gravitational-waves carried out was

by Joseph Weber, he developed an instrument known as Weber bars [10]. These

weber bars were used in an experiment to probe gravitational waves produced by

the Galactic Centre. Weber claimed to have discovered gravitational waves in the

1970s however these claims were never reproduced by other experimental efforts

and have therefore never been accepted by the scientific community [11]. Despite

this, these pioneering investigations began the era of searching experimentally for

gravitational waves.

In the same decade that Weber was attempting to find gravitational waves exper-

imentally, Russell Hulse and Joseph Taylor were gathering observational evidence of

their existence. They discovered the first binary pulsar an observation which would

eventually earn the Nobel prize. They observed that the orbital decay for the binary

pulsar [12, 13] matched the energy that would be emitted as gravitational waves for

the system. This observational evidence generated more interest and work in this

field and experimental work, pioneered by Rainer Weiss, Ron Drever, and many

others [14, 15, 16, 17], began focusing on the idea of using laser interferometers as a

means to detect GWs.

A gravitational wave effectively stretches and squeezes spacetime. These interfer-

ometers work by detecting the very small changes in spacetime caused by a passing

gravitational wave. This small change is detected by splitting a laser beam in per-

pendicular directions, these beams travel along the interferometer arms and are

reflected back along the interferometer arms to the origin of the split and are then

re-combined. If the length of the arms are exactly the same, the beams should inter-

fere with one another destructively. If there is a difference between the arm lengths

caused by a passing gravitational wave then there will be an interference pattern

that will be dependent on the source of the gravitational wave.

Though the fundamental principle of detecting the differential arm length with

an interference pattern is the same as this simple description, modern detectors

have several enhancements such as “Fabry Pérot cavities” which effectively increase

the distance the laser travels which then has a similar effect to having longer arms,

power recycling to produce a much more powerful laser and many more [18]. As well

as this, to ensure these detectors are sensitive enough many sources of noise must

be reduced. At low frequencies (0-20Hz) the dominant source of noise comes from

Seismic activity, at high frequencies (> 100Hz) quantum noise at due to the un-

certainty in photon counting dominates and between these thermal noise dominates

[19]. The combination of these noise sources produce a noise budget which limits our

sensitivity, more formally these noise sources determine our PSD, see section 1.3a,

and our strain sensitivity is the square root of this, see figure 1.1 for an example

PSD.
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Figure 1.1: An example PSD. This is the welch average of the data taken the Hanford
detector using 32s around the time of the detection [1]

The principles outlined above have been developed and refined over many years,

culminating in a (growing) network of incredibly sophisticated interferometers spread

across the globe [18, 20, 21, 22]. As well as the current detectors, several next

generation detectors have been suggested such as the Einstein Telescope (ET) and

the Laser Interferometer Space Antenna (LISA) [23, 24]. This growing network as

well as the future generation of detectors, means that gravitational-wave astronomy

is very much still in its infancy and points to an exciting future where it will continue

to progress for decades to come.

1.3 Data Analysis

Now that theoretical and experimental foundations had been laid for gravitational-

wave astronomy, the final problem to be addressed is that of efficient data analysis;

A GW observed at a detector will be a weak signal buried in noise. We need to

confidently extract it from the data and extract the properties of the source from

the observed signal

a The Power Spectrum Density and the natural inner product

The data collected at a gravitational wave observatory is a time series, if there is

a signal present in the data it is likely to be relatively weak compared to the noise

in the detector therefore one must use statistical methods to extract these signals

from the noise. Following [25, 26, 27, 28] we will now derive the optimal method

to extract these signals from the time series given the assumed properties of our

detector.

We first assume the output of our detector (in the absence of a gravitational-wave)

follows a stationary random process i.e.:
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⟨x⟩ = lim
T→∞

1

T

∫ T
2

T
2

x(t)dt (1.1)

If we further assume that our time series is windowed and zero-mean, such that

the expectation of x is zero, then the average power for a stationary process such as

this can then be written as :

⟨x2⟩ = lim
T→∞

1

T

∫ ∞

−∞
|x(t)2|dt (1.2)

Then by invoking Parseval’s Theorem, we can describe the average power in the

frequency domain as:

⟨x2⟩ = lim
T→∞

1

T

∫ ∞

−∞
|x̃(f)2|df (1.3)

Where x̃(f) is the Fourier transform of our time series, x(t), using the following

convention for our transform.

x̃(f) =

∫ ∞

−∞
x(t)e−2πiftdt (1.4)

Then with the knowledge that our signal is real, we know that the postive and

negative frequencies will be symmetric we than have:

⟨x2⟩ = 2

T

∫ ∞

0
|x̃(f)2|df (1.5)

=

∫ ∞

0
Sx(f)df (1.6)

The integrand Sx(f) =
2

T
|x̃(f)2| is referred to as the power spectral density as

it reflects the distribution of power across the range of frequencies. Equivalently by

noting that the power spectrum density is twice the auto-correlation function of a

stationary process we have that

Sx(f) = 2

∫ ∞

−∞
Rx(τ)e

−2πfτdτ , (1.7)

where Rx(τ) = ⟨x(t)(x(t−τ)⟩. The probability of observing a time series, x(t), from

this process is therefore:

px(x(t)) ∝ exp

[
−1

2
4

∫ ∞

0

|x̃(f)|2

Sx(f)
df

]
(1.8)

This then leads to a natural inner product to determine how similar any two time

series are in the space defined by our power spectrum density, we define this inner

product as:
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(a, b) = 4Re

∫ ∞

0

ã(f)b̃∗(f)

S(f)
df, (1.9)

such that we now now define the probability of a given time series as:

px(x(t)) ∝ exp

[
−1

2
(x, x)

]
(1.10)

As the inner product defines the similarity between two time series, it can be

shown that it is the optimal detection statistic when trying to determine whether

the data contains a signal.

In order to compute this detection statistic, we must however have very accurate

models of a gravitational-wave signal. To produce exact waveforms one must solve

the Einstein equations in full, this is not possible analytically and to solve them

numerically is computationally prohibitive for most data analysis applications. One

must therefore produce approximate waveform models often called approximants

[29, 30, 31, 32]. These approximants all take a given set of physical parameters and

then either produce a time or frequency domain representation of the waveform that

would be produced.

The detection statistic defined above shows us the natural way to compare the

data to our waveform models. This detection statistic will only be large if our

waveform model parameters match the true source parameters that produced the

signal in the data. This means that we must compare the data to a very large sample

of models across the eight dimensional mass and spin space to ensure that we are

not missing possible detections. This leads to the notion of template banks, which

are banks of waveform models which cover the entire space densely enough to ensure

that any point in this hyper-surface has a sensitivity above some minimum threshold

[33, 34]. The data recorded at the detectors is then continuously compared to each

of the models in these template banks, in principle if any of the templates has a

signal to noise ratio (SNR) higher than some minimum detection threshold we can

confidently claim there is a signal in the data.

This theoretical detection pipeline is generally an idealised picture of what must

be done when working with the real detector data however. Due to effects such as

glitches and other non-Gaussian noise characteristics several additional data qual-

ity steps such as detector characterisation, signal consistency etc, [35, 36, 19] are

required to confidently detection GWs in practise. These additional checks are in-

corporated into sophisticated detection pipelines such as PyCBC and GstLal [37, 38]

which go well beyond simple matched filtering.

b The Inverse Problem

Once we have detected a signal in the data, for most of the science we would like

to do we need to estimate the parameters of the source. Estimating the source

– 5 –



1.3. Data Analysis

parameters for a given signal observed at a detector is, therefore, a key objective for

gravitational-wave data analysis. This is a classic case of an inverse, problem i.e.

given an observation of a signal in the data one must solve the inverse mapping to

estimate parameters that produced the signal

h(·) = F (θ⃗) (1.11)

Where h(·) is the waveform, the dot signifies that this can be a function of either

time or frequency, and F (θ⃗) is some function of the latent physical parameters. At

its most simple this problem, assuming F can be thought of as a linear operator,

reduces to :

h(·) = F θ⃗ (1.12)

⇒ θ⃗ = F−1h(·) (1.13)

An important but challenging aspect of inverse problems is that often (and cer-

tainly the case here in gravitational-wave analysis) the map is not simply bijective,

different combinations of parameters may generate the same (or extremely similar)

signal with our models. When you also consider additional noise in the signals that

we observe, it is clear that this becomes even more difficult as any small differ-

ences between signals may be masked by different noise realisations. The problem,

therefore, becomes to estimate a range of plausible parameters, along with their

associated probabilities, that produced the signal seen in the data.

This range of plausible parameters must therefore reflect our uncertainty around

any estimated parameters. The most natural framework to describe uncertainty for

this type of problem is Bayesian Inference.

Bayesian inference is one framework in which to tackle inverse problems. Philo-

sophically, from a Bayesian perspective, one starts with a set of prior assumptions

about the problem, which are then updated once data has been observed. The in-

troduction of the data (via the likelihood) transforms these prior assumptions into

a posterior probability.

p(θ⃗|d) = p(d|θ⃗)p(θ⃗)
p(d)

∝ p(d|θ⃗)p(θ⃗)
(1.14)

In equation 1.14 we formalize this and can consider each of these parts individu-

ally, the left-hand term on the numerator is the likelihood p(d|θ), this term is defined

by your assumptions about the noise. It generally can be thought of as how well

a particular model of a system fits the data. We will describe this in more detail

when we consider the gravitational wave likelihood specifically. The second term in
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the numerator are the priors p(θ), these priors quantify your assumptions about a

system before observing any data. Finally, we have the denominator, this term is

known as the evidence p(d). The evidence quantifies the probability of observing the

data under all possible configurations of your model. In the gravitational-wave ex-

ample, this means that for a given model it is the probability of observing the source

under all possible parameter configurations. Generally, this term is intractable but

as it is a constant we can still estimate the relative probabilities between different

points in parameter space and therefore can still perform estimate the posterior up

to a normalization constant.

From equation 1.14 one can then marginalize out other parameters to obtain

posterior distributions for individual parameters

p(θi|d) =
∫
p(θ⃗|d)dθ1...dθi−1dθi+1...dθN . (1.15)

c The GW likelihood and GW priors

Here we make the assumption of gaussian noise, for a frequency domain signal (FFT

of the original time series observed at a detector) we then have data which contains

a signal plus noise;

d(f) = h(θ⃗, f) + ϵ(f) (1.16)

Where h(θ⃗, f) is a frequency domain template waveform for a given set of param-

eters, θ, and epsilon is our noise distribution, which we assume to be a zero mean

Gaussian distribution, where the noise level at a given frequency is determined by

the PSD, i.e. ϵ ∼ N (0, σ⃗), where σ⃗ is the noise level. We then rearrange as follows

to obtain our likelihood [39, 40]:

ϵ(f) = d(f)− h(θ⃗, f)

N (0, σ⃗) = d(f)− h(θ⃗, f) (1.17)

We see here then that the assumptions about the noise distribution then defines

our likelihood. Using the assumptions about the PSD when considering a single

frequency bin we then have.

L(di|θ⃗) =
1

2πσi
exp

(
−2∆f

|di − hi(θ⃗)|2

σi

)
(1.18)

Where σi is the expected noise level as defined by the PSD. We generally want

to consider many frequency bins. If we assume stationary noise then the covariance

matrix across our range of frequencies is diagonal. Therefore the likelihood for the

entire signal across n frequency bins is:
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L(d|θ⃗) =
n∏
i=1

L(di|θ⃗) (1.19)

For simplicity we generally work with the log-likelihood. Relating this to matched

filtering. We see that our log likelihood resembles the inner product and therefore

can be most naturally written in these terms i.e.

lnL(di|θ⃗) = −1

2

n∑
i=1

ln(2πσi)− 2∆f
n∑
i=1

|di − h(θ⃗)|2

σi

= Φ− 1

2
(d− h(θ⃗), d− h(θ⃗)) (1.20)

Where Φ =
1

2

∑n
i=1 ln(2πσi) and the right hand term is the inner product (defined

in section a) between the data and a template waveform.

As well as the likelihood, in order to to compute the posterior probability we

need priors. These should define our expectations about a parameter in the absence

of data. In the strong signal limit where signals have a very high SNR then the like-

lihood dominates our posterior probability, however for ground-based gravitational-

wave detectors we generally have relatively low SNR signals and therefore our priors

can have significant effects on our posteriors.

There is no such thing as a correct prior and it is completely acceptable in a

Bayesian philosophy to define your priors differently to others, conduct an analysis

and obtain different results without either of the results technically being incorrect.

In practise however many of our priors are determined naturally by geometric re-

lationships such as those for sky localisation and orientation or by physical bounds

such as the limits of extremal spins(though you could of course define different valid

priors within these ranges e.g. [41, 42]). For details of the priors generally used in

gravitational-wave analysis see Appendix B.1 of [2].

d Stochastic Tools for Bayesian inference

We now have the theoretical framework to estimate our source parameters, θ⃗, how-

ever, the integrals required to evaluate equation 1.14 are generally intractable. The

problem then becomes a computational problem of how to approximate this equa-

tion numerically. In simple cases, it may be possible to evaluate the integrals by

sampling on a grid, here one would try many points on a very dense grid to estimate

the best-fit parameters. If the spaces between points on the grid are small then

in principle one could estimate the source parameters this way, this becomes expo-

nentially inefficient as the number of dimensions increase however. In gravitational

wave parameter estimation, we are usually dealing with n > 15 dimensions, so we

need to use alternative methods.
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The common solution to this problem has been to use stochastic samplers, these

fall very broadly (and not exclusively as often nested samplers use MCMC in the

algorithm) into two techniques:

1. Markov Chain Monte Carlo (MCMC) [43, 44]

2. Nested sampling [45]

Monte Carlo methods generally refer to methods that obtain approximate numer-

ical results (such as integrals and expectations) by randomly simulating a system

many times and exploiting the convergence properties to obtain good estimates to

the underlying system. A Markov chain is a stochastic process where a chain moves

through possible states of a system, for a chain to be Markovian it must be memo-

ryless. This property means that the chain can have no knowledge of its past. More

formally conditional on the current state of a chain, the future states are indepen-

dent of the past states [46]. Combining Markow chains with Monte Carlo simulation

allows one to draw samples from a posterior distribution in a way that guarantees

that the chain will asymptotically converge to the true distribution [43, 44].

The most common MCMC algorithm is known as the Metropolis-Hastings al-

gorithm [47, 48]. This algorithm works by proposing new positions in parameter

space according to some proposal distribution, one then simulates the system at this

new state and calculates the ratio of probabilities between the current state and the

proposed state. If the proposed state has a higher probability then this position is

accepted and the chain continues from this new position. If the proposed state has a

lower probability then the point is only accepted if the ratio of probabilities is larger

than a draw from a random uniform distribution, i.e. the acceptance probability is:

α(θ, θ∗) = min

(
1,
Q(θ∗|θ)p(θ∗|d)
Q(θ|θ∗)p(θ|d)

)
(1.21)

Where Q is our transition kernel that determines how we move from one position

in parameter space to another and p is the probability density there.

As mentioned above, MCMC methods have asymptotic guarantees. These are

by definition only then true with infinite samples, often a practical problem when

performing parameter estimation with MCMC methods is how many samples are

enough to provide reasonable approximations. This problem is particularly difficult

due to the geometry of high-dimensional surfaces. I will briefly outline problems

associated with sampling from the typical set [49] for a more in-depth explanation.

The typical set can be thought of as the region in parameter space that has a

non-negligible contribution to any expectations. In high dimensional surfaces, the

neighborhood around the mode of the distribution contains very large densities rel-

ative to areas outside of it. This means that the areas outside of this neighborhood

will not have a significant contribution to any expectations, however the neighbor-

hood around the mode has a very low volume relative to the area outside of it.
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This results in the mode itself having increasingly negligible contribution to any

expectations as the dimensionality of the problem increases. This means that there

is generally a very small region of parameter space where these two quantities (the

volume and the density) are balanced such that there will be any significant con-

tribution. This region is known as the typical set and is the region of parameter

space where one should focus the computation resources and draw samples from.

In practice, this means designing samplers that can find and explore the typical set

efficiently.

Exploring the typical set is generally difficult when the parameter space is com-

plicated, e.g. if there are non-trivial correlations between parameters or there are

many distant local optima (known as a multi-modal problem). In the case of non-

trivial correlations, the sampler may propose many either bad points, i.e. ones that

are unlikely to be from the typical set if it does not walk along these correlation,

or propose points very near to the current position which makes the positions cor-

related and hence breaks the memoryless condition. This manifests in producing a

large integrated auto-correlation time is longer, and hence, it takes the chain longer

to move to a statistically independent point. In this case, one must accept many of

these points before one independent sample has been generated. In the case of multi-

modal of these cases, the chains may spend a long time stuck in a local optimum

before moving on to find the global minima.

Therefore the key to designing a good sampler is to create a proposal distribution

that is able to both explore the typical set, (with multiple chains this is often referred

to as mixing) and collect many independent samples as quickly as possible.

Nested sampling [45] has also been a popular method for parameter estimation

in the field of gravitational-waves. Nested sampling is primarily an algorithm to es-

timate the evidence term, i.e. the denominator in 1.14. It can however be utilised to

draw samples from the posterior. The algorithm works by distributing a set of points

across the posterior surface according to the prior, an evidence is then computed

by the contour created with these initial points. This first estimate is gradually

refined by removing the point on the contour edge with the lowest likelihood value

and drawing a new point subject to the constraint that the likelihood is larger than

the previous. This procedure is carried out literately until the evidence estimate

converges to a stable contour which should encapsulate the typical set as long as

the initial points are sufficient to contain the typical set. Posterior distributions

can be created by storing the discarded points, these will be drawn according to

the posterior as long as they are weighted by the relative stages at which they are

discarded.

The gravitational wave parameter space is generally a difficult parameter space

to sample from the typical set has non-trivial correlations, multi-modal distribu-

tions and moderately high dimensionality (∼ 15 dimensions depending upon the

approximant). Because of this difficulty, much work has been done on designing
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software that is able to reliably produce source parameter estimates for the de-

tections [50, 51]. Bayesian inference packages such as LALinference, Bilby and

PyCBCInference [52, 53, 54] have been developed to address this problem and im-

plement techniques such as gravitational-wave specific proposal distributions and

parallel tempering [55, 56]. These tools have proven to be incredibly powerful and

have been vital components of the gravitational-wave data analysis efforts in the

previous decade as well as much of the analysis presented in this Thesis.

1.4 Summary of Thesis

At the time of writing, gravitational-wave astronomy is progressing rapidly, there

have been three successful observing runs which have produces several catalogs of

GW events [2, 57]. The number of detections means that gravitational-wave as-

tronomy is now moving towards an era where it can provide answers to many open

questions such as the validity/limits of General Relativity [58], astrophysical popu-

lation properties [59], and many others in physics and astrophysics [60, 61]. Looking

forward to the fourth observing run (O4) and beyond, and as the number of events

grows, these questions are most likely to be answered by combining the information

from many events. This however brings challenges, in particular, the computational

and data analysis techniques will have to become more efficient to accommodate the

growing number of detections.

This thesis attempts to tackle some of these computational problems, the work

can be broadly broken down into two sections which look at two different ways of

making a difficult computational challenge tractable; we look at specific examples

but we address these problems using broader themes that may have applications

beyond the examples shown here.

If a problem is intractable then one way to address this is to re-frame the problem

as an easier one using approximations that lose very little information, in the first

section we use traditional analytical insights into the mathematics of the problem

and re-frame the problem of measuring precession into a considerably easier one the

two harmonic approximation.

If it is not clear how to make a problem simpler then one must resort to data-

driven methods, this could include using more efficient algorithms or using optimized

hardware. In the later sections, we exploit state-of-the-art machine learning methods

and apply these to gravitation-wave data analysis. These methods generally provide

tools that can either give us new information and insight from the data or provide

the same information considerably more efficiently.

First, we look at the problem of measuring a phenomenon known as precession in

compact binary coalescence (CBCs), this is a direct prediction of GR which has not

clearly been detected in any of the events thus far. Precession is well understood from

a theoretical perspective [62] however prior to this work it was not well understood
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exactly where in the parameter space we were likely to see precession when we

were likely to see precession and more importantly there was no simple metric to

determine whether a signal was precessing. The standard way to do this prior to

this work was to use a Bayes factor between a precessing and non-precessing model.

This significantly increases the computational cost of carrying out any large-scale

studies into precession.

In chapter 2, we first discuss a method to describe a precessing waveform as a

harmonic decomposition, where each harmonic is a simple non-precessing waveform.

We then show that for the vast majority of signals we can well approximate a

processing waveform using only the first two leading order harmonics. This then

motivates the two harmonic approximations. With this approximation we are able to

re-frame much of the existing analysis in a simpler way, if there is measurable power

in the sub-dominant harmonic then the waveform is not well described by a non-

precessing waveform and therefore this suggests that there is measurable precession

in the system.

In chapters 3 and 4 we then use the two harmonic decomposition to carry out

in-depth studies into the measurability of precession, we look at where we are likely

to measure precession and also carry out a population analysis which predicts how

often we are likely to measure precession. Both of these studies would not have been

practical prior to the two harmonic formulation of the problem.

Machine learning has advanced rapidly in the previous decades, these methods

have revolutionized many fields and are now starting to make significant advances in

the natural sciences and astronomy [63, 64, 65]. The remaining chapters in this thesis

apply several different machine learning methods to tackle data analysis problems

in gravitational-wave astronomy.

As mentioned above, much of the exciting science in gravitational-wave astron-

omy will be derived from combining the information from many detections. The

sampling routines produce this information in the form of discrete samples from the

posterior surface. These samples can be combined to produce uncertainty estimates

about source parameters however they are often not suitable for population analy-

sis. For analysis like that, we need to derive a continuous density surface from these

discrete samples. In chapter 5, we propose a method that uses Gaussian Processes

to interpolate these samples and obtain a continuous density estimate across this

surface. As well as producing a point estimate for the density, we show that we are

able to incorporate uncertainty into our analysis. This can then be incorporated

into downstream analysis such as population studies.

In chapter 6 we exploit recent developments in waveform surrogate modeling

[66, 67] to make Bayesian inference more efficient. We show that using advances in

waveform modelling and GPUs, we can potentially perform parameter estimation

much more quickly. We present two methods to do this, firstly we use simple random

walk MCMC but run this in large batches as a vectorised operation. This batching
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can produce huge speed ups in efficiency, meaning we are able to produce many

more samples per second than is possible otherwise. We then present a method to

perform Hamiltonian Monte Carlo, [68, 49], which uses Automatic Differentiation

[69, 70] to compute the gradient of the likelihood surface using no approximate or

numerical gradient calculations. This provides a slower (in terms of samples per

second) but more efficient (in terms of effective samples per likelihood evaluation)

sampler. We briefly compare these methods and then point to future directions that

would likely improve this further.

Finally in chapters 7 and 8 we look at very important questions when using

machine learning algorithms; can we trust them? And can we trust the confidence

and uncertainty estimates that they provide? Having reliable uncertainty estimates

is essential if these data analysis techniques are to be adopted into the field of

gravitational-wave astronomy. A closely related problem is the question of whether

a model understands its domain of validity and it is able to understand situations

where it is not able to produce reliable predictions. In this section I show that often

machine learning methods do not incorporate uncertainty properly and therefore

are not able to produce reliable and trustworthy predictions. I then present a novel

algorithm which can be applied (with some slight differences) for both classification

and regression problems and allows one to properly account for uncertainty when

using ML methods for prediction.
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Chapter 2

Precession and the Harmonic

Decomposition

2.1 Introduction

For completeness and in order to cover the relevant background material for later

chapters, this chapter reviews the theory of precession, in particular focusing on the

harmonic decomposition that was presented in [3].

When the spins of black holes in a binary system are mis-aligned with the bi-

nary’s orbital angular momentum, both the spins and orbital angular momentum

will precess [62, 71, 72, 73]. We therefore expect that most astrophysical binaries

will undergo precession, but to date there has been no evidence of precession in

gravitational-wave (GW) observations from the Advanced LIGO and Virgo detec-

tors [2, 74]. This is not necessarily surprising, because precession often leaves only

a weak imprint on the observable signal, particularly when the black holes are of

comparable mass and the binary’s orbit is face-on to the detector, which are the

most likely configurations that have been observed so far. Despite this heuristic pic-

ture, there is no simple means to estimate the measurability of precession of a given

binary configuration, and as such it is difficult to predict when precession effects will

be conclusively observed in GW events.

Detailed parameter estimation techniques have been developed, which enable the

reconstruction of the parameters of observed signals [50, 51, 52, 54, 75], in addition

to approximate Fisher-matrix methods [76, 77]. In parallel, techniques have been

developed that provide an intuitive understanding of the measurement accuracy of

certain parameters (or parameter combinations) [78, 79, 80, 81, 82, 83]. These

have typically involved either approximations (such as leading order, Fisher Matrix

type calculations), restriction to a subset of system parameters (for example masses

and spins; timing and sky location; binary orientation). Combined, these give an

understanding of the accuracy of parameter estimation for non-precessing systems.

In parallel, there have been significant developments in understanding the impli-
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cations of precession, starting with the early work in Refs. [62, 72, 73] which provided

insights into the impact of precession on the gravitational waveform emitted during

the inspiral of compact binaries. Subsequently, black hole binary waveforms which

incorporate precession through merger have been developed [84, 85, 86, 87, 88]; large

scale parameter estimation studies of precession have been performed to identify the

regions of parameter space where precession will be observable [89, 90, 91, 92, 93, 94,

95, 96]; and new theoretical insights into the impact of precession on both detection

and parameter estimation have been obtained [97, 98, 99]. Complementary to this,

there have been several efforts to understand the impact of precession on searches

[100, 97], and to implement searches for precessing signals [72, 101, 102, 103, 73].

This has led to an increasingly clear picture of the impact of precession: it is most

significant for binaries with large mass ratios, where the in-plane spin components

are large and for systems where the total angular momentum is mis-aligned with

the line of sight.

At leading order, the gravitational waveform emitted by a precessing binary is

composed of five harmonics, which are offset by multiples of the precession frequency

[84, 99]. We show that these harmonics form a natural hierarchy with the amplitude

of the sub-leading harmonics suppressed by a factor that depends upon the open-

ing angle (the angle between the orbital and total angular momenta). Using this

approximation, and restricting to the two leading harmonics, we are able to obtain

relatively simple expressions for the precession waveform. Each harmonic takes the

form of a non-precessing-binary waveform (i.e., with monotonic amplitude and fre-

quency evolution during the inspiral of non-eccentric systems), and the amplitude

and phase modulations of the complete precessing-binary waveform arise as beating

between the two harmonics.

The purpose of this chapter is to introduce this decomposition (Sec. 2.3), with an

alternative derivation given in the Appendix, and the two-harmonic approximation

(Sec. 2.4), and to identify its range of validity and accuracy (Sec. 2.5). Then a

proposed search for precessing binaries is discussed using the two-harmonic approx-

imation (Sec. 2.6) and finally introduce the notion of a “precession SNR” that can

be used to determine whether precession effects are observable in a given system

(Sec. 2.7). We begin in the next section with a summary of precession in black-hole

binaries.

2.2 Black hole Spin Induced Precession

In the general theory of relativity a binary consisting of two objects of masses, m1

and m2 (where we choose m1 ≥ m2 and denote q = m1/m2, so that q ≥ 1), with

spin angular momenta S1 and S2, orbiting each other with angular momentum L,

will slowly inspiral due to the loss of energy and momentum through the emission

of gravitational waves. If S1 ∥ S2 ∥ L, then the plane of the orbit remains fixed and
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in non-eccentric binaries the amplitude and frequency of the emitted gravitational

wave increases as the orbital separation decreases. The system eventually merges

and forms a single perturbed black hole that emits gravitational radiation as a

superposition of quasinormal ringdown multipoles, until the system settles down to

its final state [104].

For the case where the total spin is not aligned with the total orbital angular

momentum, (S1 + S2) × L ̸= 0, in most cases the orbital plane of the binary will

precess around the approximately constant total angular momentum J = S1+S2+L,

i.e., L precesses around J, and the spins precess such that Ṡ = −L̇ [62]. For

configurations where J ≈ 0, the system undergoes “transitional precession”, this

results in the binary losing its gyroscopic axis and tumbling chaotically through

space [62, 71], but these dynamics are generally short lived (it is a transitional

phase between simple precession phases) and are expected to be rare in LIGO-Virgo

detections. The angle between L and J is denoted by β. In simple precession cases

β slowly increases during inspiral as L decreases (recall that in the Newtonian limit

L ∝
√
r, where r is the orbital separation), but the spin magnitudes S1 and S2

remain fixed, and, to a good approximation, so do their orbit-averaged components

parallel and perpendicular to L, Si|| and Si⊥. The opening angle β typically varies

very little over the portion of a binary’s inspiral that is visible in a GW detector,

and so it is often possible to make the approximation that β is constant. This

approximation has been used to good effect in Ref. [97], and we will also use it in

some of the discussion in this chapter.

Adopting the notation that the inclination angle of the binary as seen by an

observer, ι, is the angle between the orbital angular momentum and the line of sight

(see Fig.2.1), cos ι = L̂ · N̂, where a caret denotes a unit vector (e.g. â = a/|a|),
the binary’s orbital inclination becomes times dependent. As a result the energy

emitted in GWs in the N̂ direction will also be time dependent, where the maximum

instantaneous energy emission is approximately in the direction of L̂. If N̂ is aligned

with Ĵ, then ι ≈ β and varies slowly and with minimal oscillations due only to orbital

nutation. If N̂ is in some other direction, then the energy emission will be modulated

on the precession timescale. In the following we will not use the inclination ι, but

rather combinations of β and the angle between J and N̂, denoted by θJN. As noted

previously, Ĵ is approximately constant for simple precession cases, and we will treat

it as a constant in the analysis in Sec. 2.3.

The signal measured in a detector will exhibit modulations in phase and ampli-

tude that depend on β, θJN, the precession angle of L around J, denoted by α, and

the polarisation ψ of the observed signal. These angles are illustrated in Fig. 2.1,

and discussed further in Sec. 2.3. For now we note several well-known features of

precession waveforms [62, 71], which will be further sharpened in the discussion later

in the chapter. The strength of precession in a system is characterised by the degree

of tilt of the binary’s orbit, given by β, and by the precession frequency ΩP of L
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Figure 2.1: Plot showing how the precession angles used in this study are defined
in the J-aligned frame. The normal vector here indicates the line of sight of the
observer, L̂ and Ĵ are the orbital angular momentum and total angular momentum
vectors respectively, S1x, S1y and S1z are the x, y and z components of the spin on
the larger black hole.

around J, which is given by

Ωp = α̇ . (2.1)

The angle β is determined primarily by the total spin in the plane, and binary’s mass

ratio and separation. At leading order we can write the orbital angular momentum

of the system as L = µ
√
Mr, where µ is the reduced mass, µ = m1m2/M =

qM/(1 + q)2, and so to first approximation,

tanβ =
S⊥

µ
√
Mr + S∥

, (2.2)

which provides us with the basic dependence of β on the binary configuration. At

leading order the precession frequency can be written as,

Ωp ≈
(
2 +

3

2q

)
J

r3
, (2.3)

meaning that to first approximation it does not depend on the spins (or therefore the

opening angle β), but only on the binary’s total mass, mass-ratio, and separation

(or equivalently orbital frequency). The number of precession cycles over a certain

time or frequency range (e.g., over the course of an observation), depends on the

total mass and mass-ratio of the binary. In a GW observation there is a partial
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degeneracy between the mass ratio and the aligned spin S|| [105, 76, 79], meaning

that one of the chief effects of a measurement of precession will be to improve the

measurement of these two physical properties [92].

In the remainder of this chapter we choose to describe the gravitational wave

signal, precessing or non-precessing, with the IMRPhenomPv2 phenomenological

model presented in Ref. [84]. This model exploits the phenomenology of sim-

ply precessing binaries described earlier, with the additional approximation that

a precessing-binary waveform can be factorised into an underlying non-precessing

waveform, and the precessional dynamics [106]. The underlying non-precessing-

binary model is IMRPhenomD [107, 108], using only the spin components aligned

with L. In IMRPhenomD both aligned spin components are used to generate an ap-

proximate post-Newtonian phasing and amplitude, with corrections provided by fits

to numerical-relativity waveforms, that are parameterised by two different combina-

tions of the two spin components. Although IMRPhenomD has been found to model

well two-spin systems [109], its dominant spin dependence can be characterised well

by the effective spin,

χeff =
1

M

(
S1

m1
+

S2

m2

)
· L̂, (2.4)

which takes values between −1 (both maximal anti-aligned spins) and +1 (both

maximal aligned spins) to describe the magnitude of spin aligned with the total an-

gular momentum. For a given configuration IMRPhenomPv2 uses the corresponding

IMRPhenomD waveform, but with the final spin modified to take into account the

in-plane spin components. A frequency-dependent rotation is then applied to the

non-precessing waveform to introduce the precession dynamics, which are modelled

by frequency-domain post-Newonian expressions for the precession angles for an ap-

proximately equivalent single-spin system [110, 84], where the large black hole has

spin,

χp =
1

A1m2
1

max (A1S1⊥, A2S2⊥) , (2.5)

where A1 = 2 + 3q/2 and A2 = 2 + 3/(2q) and Si⊥ is the component of the spin

perpendicular to L. The effective precession spin parameter is obtained by averaging

the relative in-plane spin orientation over a precession cycle, and so more accurate

for a system that undergoes many precession cycles. There are several important

features which are not incorporated in the IMRPhenomPv2 waveform. These include

two-spin effects [85, 111, 112], gravitational wave multipoles other than the leading

22 mode [86], significant precession during merger [113], and spin alignment due

to spin-orbit resonances during inspiral [114, 115]. Some of these effects will have

an impact upon the distributions of black hole spin orientations when the binaries

enter the LIGO or Virgo sensitivity band while others can leave imprints on the

waveform which may be observable, particularly close to the merger. Nonetheless,

the IMRPhenomPv2 has been used in the analysis of all LIGO-Virgo observations
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during the first two observing runs [116, 117, 74, 2], and it captures much of the

dominant phenomenology of precessing-binary waveforms. In addition, the decom-

position presented in the next section is in no way tied to the particular waveform

used and could be equally well applied to other waveform models for precessing bina-

ries which, for example, incorporate two-spin effects and precession during merger.

The current formalism does not include additional gravitational wave multipoles,

and we will investigate this in a future work. We expect the broad features of many

of the results presented in the remainder of the chapter to be relatively unaffected

by the specific waveform choice, but the details for any specific signal could change.

2.3 Harmonic decomposition of the waveform from a

precessing binary

The gravitational waveform emitted by a precessing system, as observed at a gravi-

tational wave detector, can be expressed approximately as [73, 97]

h(t) = −
(
do
dL

)
Ao(t)Re

[
e2iΦS(t)

(
F+(C+ − iS+) + F×(C× − iS×)

)]
. (2.6)

Here, Ao(t) denotes the amplitude of the gravitational wave signal in a (time-varying)

frame aligned with the orbital angular momentum of the binary, and depends upon

the masses and spins of the binary. Since the amplitude scales linearly with the

luminosity distance, we have chosen to introduce a fiducial normalization Ao(t) for

a waveform at a distance do and explicitly extract the distance dependence.1 ΦS is

the phase evolution in the frame aligned with the total angular momentum J of the

binary. The phase evolution, ΦS , is related to the orbital phase, ϕorb, as

ΦS(t) = ϕorb(t)− ϵ(t) (2.7)

where [118]

ϵ̇(t) := α̇(t) cosβ(t) (2.8)

and, as before, β is the opening angle and α gives the phase of the precession of

L around J as shown in Fig. 2.1. F+ and F× give the detector response relative

to the J-aligned frame and C+,×, S+,× encode the time-varying response to the

gravitational wave due to the evolution of the binary’s orbit relative to the detector.

They depend upon the three angles introduced previously: the precession opening

angle β and phase α and the angle between the total orbital angular momentum

1Of course, the observed waveform is also affected by the redshifting of frequencies. For the
calculation discussed here, we work in the detector frame and consider the observed masses, which
are (1 + z) times the source frame masses.
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and the line of sight θJN. In terms of these angles, we can express C+,× and S+,×

as2

C+ = −
(
1 + cos2 θJN

2

)(
1 + cos2 β

2

)
cos 2α

−sin 2θJN
2

sin 2β

2
cosα− 3

4
sin2 θJN sin2 β,

S+ =

(
1 + cos2 θJN

2

)
cosβ sin 2α+

sin 2θJN
2

sinβ sinα,

C× = − cos θJN

(
1 + cos2 β

2

)
sin 2α− sin θJN

sin 2β

2
sinα,

S× = − cos θJN cosβ cos 2α− sin θJN sinβ cosα. (2.9)

The non-precessing expressions can be recovered in the limit of β → 0 and α →
constant (which is then degenerate with the polarization of the system). When β is

non-zero, the effect of precession is to modulate the detector response at frequencies

ΩP and 2ΩP . To make the harmonic content of C+,× and S+,× more explicit, we

first introduce the parameter,

b = tan (β/2) , (2.10)

and write the response functions in terms of it. The terms involving β can be

expressed as

1 + cos2 β

2
=

1 + b4

(1 + b2)2
,

cosβ =
1− b4

(1 + b2)2
,

sin 2β

2
=

2b(1− b2)

(1 + b2)2
,

sinβ =
2b(1 + b2)

(1 + b2)2
,

sin2 β =
4b2

(1 + b2)2
. (2.11)

Substituting the trigonometric identities from Eq. (2.11) into the expressions for C+

and S+ in Eq. (2.9) we obtain,

(
do
dL

)
(C+ − iS+) = −e2iα

4∑
k=0

A+
k

[
bke−ikα

(1 + b2)2

]
,

(
do
dL

)
(C× − iS×) = ie2iα

4∑
k=0

A×
k

[
bke−ikα

(1 + b2)2

]
, (2.12)

2We have re-written the C+ term relative to what is normally given in the literature, e.g. [73, 97],
to group terms with the same α dependence.
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where we have introduced A+
k and A×

k as

A+
0 = A+

4 =
do
dL

(
1 + cos2 θJN

2

)
,

A×
0 = −A×

4 =
do
dL

cos θJN,

A+
1 = −A+

3 = 2
do
dL

sin θJN cos θJN,

A×
1 = A×

3 = 2
do
dL

sin θJN,

A+
2 = 3

do
dL

sin2 θJN,

A×
2 = 0 . (2.13)

In the approximation where the direction of total angular momentum is constant, the

A+,×
k are time independent amplitudes, and the time dependence of the amplitude

functions is captured as a power series in the parameter b = tan(β/2).

Finally, we can use the harmonic decomposition in Eq. (2.12) to obtain a decom-

position of the waveform, Eq. (2.6),

h(t) = Re

[(
Ao(t)e

2i(ΦS+α)

(1 + b2)2

)
4∑

k=0

(be−iα)k(F+A+
k − iF×A×

k )

]
. (2.14)

This allows us to clearly identify the impact of precession on the waveform. First

leads to an additional phase evolution, 2α (which is related to the frequency ΩP using

equation 2.1) and a decrease in the amplitude by a factor (1 + b2)2. The precessing

waveform contains five harmonics that form a power series in b, whose amplitude

depends upon the detector response, distance and viewing angle of the binary. The

frequency of each harmonic is offset from the next by the precession frequency ΩP .

Similar results have been obtained previously, by manipulating the spin-weighted

spherical harmonic decomposition of the waveform, e.g. [98, 99]. However, it was not

previously observed that the relative amplitudes of the harmonics were related in a

straightforward manner. In the Appendix, we present an alternative derivation of the

result in Eq. (2.14) in terms of this spin-weighted spherical harmonic decomposition

of the waveform, as is customary when producing waveform models for precessing

binaries [84].

As a final step, we would like to explicitly extract three more time-independent

angles that characterize the waveform, namely the polarization angle ψ, the initial

phase ϕo and the initial polarization phase αo.
3

The unknown polarization ψ is currently folded into the detector response func-

3The initial polarization phase αo is sometimes denoted in the literature as ϕJL.
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tions F+,×. It is more useful to extract ψ and then consider the detector response

to be a known quantity dependent upon only the details of the detector and the

direction to the source. Thus, we write the detector response as,

F+ = w+ cos 2ψ + w× sin 2ψ,

F× = −w+ sin 2ψ + w× cos 2ψ, (2.15)

where w+ and w× are the detector response functions in a fixed frame — for a single

detector it is natural to choose w× = 0 and for a network to work in the dominant

polarization for which w+ is maximized [119]. The unknown polarization of the

source relative to this preferred frame is denoted ψ.

To isolate the initial orbital and precession phases, we explicitly extract them

from the binary’s phase evolution by introducing,

Φ(t) := ΦS(t)− ϕo + α(t)− αo

= ϕorb(t)− ϕo +

∫ α(t)

αo

2b2

1 + b2
dα . (2.16)

Thus Φ(t) vanishes at t = 0 and evolves as the sum of the orbital phase and an

additional, precession dependent, contribution.

We then substitute the expressions for F+,×, Eq. (2.15), and Φ, Eq. (2.16), into

the expression for h(t) given in Eq. (2.14), and isolate the time-varying terms from

the constant, orientation dependent angles. The waveform can be written as the sum

of five precessing harmonics, the amplitudes of which are constants that depend upon

the binary’s sky location, distance and orientation:

h =
4∑

k=0

w+(h
k
0A1

k + hkπ
2
A3
k) + w×(h

k
0A2

k + hkπ
2
A4
k), (2.17)

where hk0,π
2
are the waveform harmonics and Aµ

k are constants. The waveform har-

monics are

hk0(t) = Re

[
Ao(t)e

2iΦ

(
bke−ik(α−αo)

(1 + b2)2

)]
,

hkπ
2
(t) = Im

[
Ao(t)e

2iΦ

(
bke−ik(α−αo)

(1 + b2)2

)]
. (2.18)

The harmonics form a simple power series in be−iα, so the amplitude of each suc-

cessive harmonic is reduced by a factor of b, and the frequency is reduced by ΩP .
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The amplitudes for the harmonics are given by

A1
k = A+

k cosϕk cos 2ψ −A×
k sinϕk sin 2ψ,

A2
k = A+

k cosϕk sin 2ψ +A× sinϕk cos 2ψ,

A3
k = −A+

k sinϕk cos 2ψ −A×
k cosϕk sin 2ψ,

A4
k = −A+

k sinϕk sin 2ψ +A×
k cosϕk cos 2ψ, (2.19)

where the A+,× were introduced in Eq. (2.13), ψ is the polarization and the phase

angle for each harmonic is,

ϕk = 2ϕo + (2− k)αo . (2.20)

These amplitudes form a generalization of the F-statistic decomposition of the non-

precessing binary waveform (see e.g. [119]). In the limit that b → 0, the precessing

decomposition reduces to the standard expression for the non-precessing waveform

as the amplitude for all harmonics other than k = 0 vanish.

The precessing waveform can equally well be written in the frequency domain by

performing a Fourier transform of the time-domain expressions given above [120]. In

this case, Eq. (2.17) is unchanged, as are the constant amplitude terms in Eq. (2.19).

The frequency dependent harmonics are simply the Fourier transform of the time-

domain modes given in Eq. (2.18), and naturally satisfy hkπ
2
= ihk0.

The expansion above is most natural when b < 1, which corresponds to opening

angles of β < 90◦. In cases where the opening angle is greater than 90◦ it is natural to

re-express the waveform in terms of c = b−1 = cot(β/2) in which case the waveform

can be expressed as a power series in c. We will not discuss the large opening angle

calculation further in this chapter, but note that many of the arguments presented

below would extend in a straightforward manner to this case.

a Obtaining the harmonics

Here, we give an explicit prescription to obtain the five harmonics for the waveform,

introduced in Eq. (2.17). To do so, we generate waveforms for orientations that con-

tain only a subset of the harmonics, and combine them to isolate a single harmonic.

For simplicity, we restrict attention to the + polarization by fixing w+ = 1, w× = 0

and consider a binary at a distance dL = do.

Harmonics k = 0 and k = 4. When the viewing angle of the signal is aligned

with the total angular momentum, θJN = 0, the observed waveform contains only

the zeroth and fourth harmonics as A+,×
1,2,3 vanish for θJN = 0. We also fix αo = 0,
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to obtain,

hϕo=0;ψ=0 = h00 + h40,

hϕo=π4 ;ψ=
π
4

= −h00 + h40. (2.21)

From these, we can extract the k = 0 and 4 harmonics,

h00 = 1
2

(
hϕo=0,ψ=0 − hϕo=π4 ,ψ=

π
4

)
,

h40 = 1
2

(
hϕo=0,ψ=0 + hϕo=π4 ,ψ=

π
4

)
. (2.22)

The π
2 phases of the harmonics can be obtained in an identical way.

Harmonics k = 1 and k = 3. When the signal is edge on, the × polarization

contains only the first and third harmonics. Then, fixing θJN = π
2 and ψ = π

4 , we

have,

hαo=0;ϕo=
π
4

= −2
(
h10 + h30

)
,

hαo=
π
2 ;ϕo=0 = −2

(
h10 − h30

)
, (2.23)

so that,

h10 = −1
4

(
hαo=0;ϕo=

π
4
+ hαo=

π
2 ,ϕo=0

)
,

h30 = −1
4

(
hαo=0;ϕo=

π
4
− hαo=

π
2 ,ϕo=0

)
. (2.24)

Harmonic k = 2. Finally, from the + polarization of the edge-on waveform, we

can extract the second harmonic — in principle we could also get k = 0 and k = 4,

but we have already described a method to obtain them. Fixing θJN = π
2 and ψ = 0

we have,

hαo=0,ϕo=0 = 1
2h

0
0 + 3h20 +

1
2h

4
0,

hαo=
π
2 ,ϕo=0 = −1

2h
0
0 + 3h20 − 1

2h
4
0, (2.25)

so that,

h20 = 1
6

(
hαo=0,ϕo=0 + hαo=

π
2 ,ϕo=0

)
. (2.26)

b Precession with varying orientation

The observable effect of precession will vary significantly with the binary orientation,

as has been discussed in many previous works, for example [62, 97]. Interestingly,

both the amplitude and frequency of the observed precession depends upon the view-

ing angle. The harmonic decomposition derived above provides a straightforward

way to understand this effect. The observed amplitude and phase modulations can
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Figure 2.2: The observed waveform from a 40M⊙ binary with mass ratio q = 6,
χeff = 0 and χp = 0.6. The waveform is shown for four different binary orientations:
θJN = 0 (top; θJN = 45◦, × polarization (upper middle); θJN = 90◦, + polariza-
tion (lower middle); θJN = 90◦, × polarization (bottom). For each waveform, the
harmonics that contribute to the signal, their sum and the envelope of the full pre-
cessing waveform are shown. The insets show a zoom of a portion of the waveform
to more clearly demonstrate that precession arises as a beating between the different
harmonics.

be understood as the beating of the different harmonics against each other, with the

amplitude of the composite waveform being maximum when the harmonics are in

phase and minimum when they are out of phase.

In Fig. 2.2, we show the waveform for four different orientations: a) along J, b)

× polarization at 45◦ to J, c/d) +/× polarization orthogonal to J. In all cases, we

show the last two seconds of the waveform (from around 25 Hz) for a 40M⊙ binary,

with q = 6, and in-plane spin on the larger black hole of χP = 0.6. This configuration
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2.3. Harmonic decomposition of the waveform from a precessing binary

gives an opening angle of β ≈ 45◦ (and b ≈ 0.4) which leads to significant precession

effects in the waveform.

When viewed along J, there is minimal precession as only the k = 0 and 4

harmonics are present in the system and the k = 4 harmonic is down-weighted by a

factor of b4 ≈ 0.03 relative to the leading harmonic. Furthermore, the modulation

comes from the beating of the k = 0 and k = 4 harmonics and occurs at four times

the precession frequency. When the line of sight is orthogonal to the total angular

momentum, the k = 0, 2, 4 harmonics are present in the + polarized waveform and

k = 1, 3 in the × polarization. The k = 0 and 2 harmonics have close to equal

amplitude (although k = 2 is down-weighted by b2 ≈ 0.17, the amplitude as given in

Eq. (2.13) is maximal). Consequently the observed waveform has maximal amplitude

and phase modulation due to precession. For the × polarized signal, it is the k = 1, 3

harmonics that contribute, with k = 3 a factor of b2 ≈ 0.17 smaller than k = 1.

Consequently, precession effects are less significant. In both cases, precession occurs

at twice the precession frequency as it is from the beating of the the k = 0 and k = 2

(+ polarization) or k = 1 and k = 3 (× polarization). For the × polarized signal

with θJN = 45◦, the k = 0, 1, 3, 4 harmonics are present, with k = 0, 1 dominating

and having approximately equal amplitude. For this signal, the binary precesses

from a face-on orientation, ι = 0 to edge-on, ι = 90◦, and the waveform amplitude

oscillates from the maximum to zero. Here, modulations occur at the precession

frequency.

c Importance of precession over parameter space

From the intuitive discussion of precession presented in [62, 73, 97] and summarized

in Section 2.2, it is straightforward to identify regions of parameter space where

precession is most likely to have a significant impact upon the binary dynamics

and, consequently, the observed waveform. Specifically, we expect that higher mass

ratios, larger in-plane spins and negative aligned spin components will all lead to

a larger opening angle and more significant precession [97]. Here we briefly revisit

this discussion, framing our results in terms of the parameter b introduced earlier.

Explicitly, we introduce the waveform-averaged value of b as,

b :=
|h1|
|h0|

=

√√√√√∫ df |h1|2
Sn(f)∫

df |h0|2
Sn(f)

, (2.27)

where h0,1 are the harmonics of the waveform introduced in Eq. (2.18) and Sn(f)

is the noise power spectrum of the detector. For this work, we choose Sn(f) to be

the design-sensitivity Advanced LIGO noise curve [2] and evaluate the integral over
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Figure 2.3: The value of b across the parameter space of total mass, mass ratio, χeff

and χp. In each figure, two of the parameters are varied while the other two are fixed
to their fiducial values ofM = 40M⊙, q = 4, χeff = 0, χp = 0.6 (this point is marked
with a ⋆ in all the plots). The total mass has a limited impact on the value of b, for
masses over M ≈ 40M⊙; below this the b increases with mass, as the later parts of
the merger are brought into the most sensitive band of the detector. The value of b
is seen to increase as the mass ratio or precessing spin χp are increased and decrease
as the aligned component of the spin χeff increases. Thus, the value of b is largest for
a binary with unequal masses, a large spin on the more massive component which
has significant components both in the plane of the orbit and anti-aligned with the
orbital angular momentum.

the frequency range f ∈ [20, 1024]Hz 4. For binaries where the opening angle β is

approximately constant, b ≈ tan(β/2).

4Using a realistic noise curve similar to the observed curves during 01 and O2 would change
the reported values slightly, as these noise curves are less sensitive than design, particularly at low
frequencies. The qualitative patterns seen in the figure would remain the same however
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2.3. Harmonic decomposition of the waveform from a precessing binary

Figure 2.4: The distribution of b for a 3 different populations of binary black holes.
Each population assumes either a low-isotropic, low-aligned or a flat precessing spin
distribution. A power-law distribution in masses is assumed in all cases (see text for
details).

Fig. 2.3 shows the value of b on several two-dimensional slices through the four

dimensional parameter space of total mass M , mass ratio q, effective spin χeff and

precessing spin χp. Keeping other quantities fixed, the value of b increases with total

mass. For higher masses, the late inspiral and merger occur in the sensitive band

of the detectors and, close to merger, the opening angle increases as orbital angular

momentum is radiated. For masses above 40M⊙ the mass dependence of b is small,

with only a 10% decrease from 40M⊙ to 100M⊙. Thus, for the other figures, we fix

M = 40M⊙ and investigate the dependence of b on q, χeff and χp. The dependence

of b follows directly from Eq. (2.2). The opening angle will increase with mass ratio,

as the orbital angular momentum decreases. The opening angle, and also b, increase

with χp. It follows directly from the definition that tanβ scales linearly with χp, and

hence approximately linearly for b = tan(β/2). Finally, the opening angle decreases

as the effective spin χeff increases, so that the largest value of b is obtained with

significant spin anti-aligned with J.

Over much of the parameter space we have explored, b ≲ 0.3. This includes

binaries with mass ratio up to 4:1, with precessing spin χp ≲ 0.6, and zero or positive

aligned spin, χeff ≥ 0. Only a small part of parameter space has b > 0.4, the value

used in generating the waveforms in Figure 2.2, and b > 0.5 is only achieved with

at least two of: a) close to maximal χp, b) high mass ratio, q ≳ 5 or c) significant

spin anti-aligned with the orbital angular momentum χeff ≲ −0.4.

Next, we consider the importance of precession for an astrophysically motivated

population. In Fig. 2.4, we show the distribution of b for three distributions of

black hole masses and spins. For each population, we generate 100,000 binaries
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uniformly in co-moving distance, with masses drawn from a power law distribution

— p(m1) ∝ m−α
1 , with α = 2.35 — and different spin distributions, which are the

same as those used in Refs. [121, 122, 123]. We consider populations where the spins

are preferentially low and aligned with the binary orbit; low and isotropically aligned

or drawn from a flat distribution and preferentially leading to precession. A low spin

distribution is a triangular distribution peaked at zero spin and dropping to zero

at maximal spin while a flat distribution is a uniform between zero and maximal

spin. The aligned distribution is strongly peaked towards aligned spins, while the

isotropic distribution assumes a uniform distribution of spin orientations over the

sphere. The precessing distribution is strongly peaked towards spins orthogonal to

the orbital angular momentum, i.e., with significant orbital precession [124, 125]. To

account for observational biases, we keep only those signals that would be observable

above a fixed threshold in a gravitational wave detector. We find that even for the

most extreme precessing population considered, the mean value of b is 0.15 with over

90% of binaries having b < 0.3. This result is obviously sensitive to the assumptions

on the mass and spin distribution. In Ref. [123] we investigate a larger number of

spin distributions, including ones which allow for large spin magnitudes, and we find

that the peak of the b distribution is below 0.2 and that over 90% of binaries have

b < 0.4 in all cases.

Fig. 2.5 shows b for a range of neutron star–neutron star and neutron star–black

hole binaries. For neutron star–black hole binaries, the picture is similar to that for

black hole binaries, with large values of b observed for high mass ratios and large

χP . However, as an earlier part of the waveform is in the detector’s sensitive band,

the impact of precession is less observable at fixed mass ratio than for higher mass

black hole binaries. For neutron star binaries, the value of b remains below 0.15

across the parameter space, and is less than 0.05 for reasonable neutron star spins,

χ ≲ 0.4.

2.4 The two-harmonic approximation

The precessing waveform can be expressed as the sum of five harmonics whose

amplitudes form a power series in b = tan(β/2). Furthermore, over the majority of

the space of binary mergers, the value of b is less than 0.3. In addition, for b ≤ 0.4

the dominant harmonic — the one containing the most power — must be either

k = 0 or 1. Thus, for the vast majority of binary mergers, we expect that these two

harmonics will be the most significant.

This motivates us to introduce the two-harmonic approximation, in which we

generate a waveform containing only the k = 0 and k = 1 harmonics, i.e.,

h =
∑
k=0,1

w+(h
k
0A1

k + hkπ
2
A3
k) + w×(h

k
0A2

k + hkπ
2
A4
k) . (2.28)
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Figure 2.5: The value of b across the binary neutron star and neutron-star–black-
hole space. The left figure shows the variation of b for an NSBH system with a
1.4M⊙ neutron star, χeff = 0 and varying black hole mass and χp. The right figure
shows the variation of b against mass ratio and χp for a binary neutron star system
of total mass 2.7M⊙ and χeff = 0.

The expression for the two-harmonic waveform can be simplified by restricting to

the single detector case (i.e., setting w+ = 1 and w× = 0), explicitly working with

the waveform in the frequency domain, for which hkπ
2
(f) = ihk0(f), and dropping the

subscript 0 on the zero-phase waveform, so that hk(f) := hk0(f). The two harmonics

of interest are,

h0(f) = Ao(f)e
2iΦ(f)

(
1

(1 + b(f)2)2

)
, (2.29)

h1(f) = Ao(f)e
2iΦ(f)

(
b(f)e−i(α(f)−αo)

(1 + b(f)2)2

)
, (2.30)

and the two-harmonic waveform then becomes,

h2harm = A0h
0 +A1h

1 , (2.31)
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where,

A0 =
d0
dL

(
1 + cos2 θJN

2
cos 2ψ − i cos θJN sin 2ψ

)
×

e−i(2ϕo+2αo),

A1 =
d0
dL

(sin 2θJN cos 2ψ − 2i sin θJN sin 2ψ)×

e−i(2ϕo+αo). (2.32)

Thus, the two-harmonic waveform is composed of two components that have fre-

quencies offset by ΩP , and any observed amplitude and phase modulation of the

waveform is caused by the beating of one waveform against the other. The relative

amplitude and phase of the two harmonics is encoded by

ζ :=
bA1

A0
(2.33)

= beiαo

(
sin 2θJN cos 2ψ − 2i sin θJN sin 2ψ

1
2(1 + cos2 θJN) cos 2ψ − i cos θJN sin 2ψ

)
.

The value of ζ depends upon the viewing angle, encoded in θJN and ψ, and the

initial precession phase αo. It is not difficult to show that ζ can take any value as

the parameters θJN, ψ, αo are varied. For example, at θJN = 0, A1 vanishes and so

does ζ, while at θJN = π/2 and ψ = π/4, A0 vanishes and ζ → ∞. Since the initial

precession phase αo is a free parameter, the phase of ζ also can take any value.

The overall amplitude and phase of the signal also depends upon the distance and

coalescence phase so that any values of the amplitude and phase of the signal in the

two harmonics are consistent with a signal.

2.5 Validity of the two-harmonic waveform

To investigate the validity of the two-harmonic approximation, we compare the

approximate waveform with the full, five-harmonic, precessing waveform across the

parameter space. The error will be of order b2, which is small over much of the

parameter space, and for the majority of orientations.

Fig. 2.6 shows the overlap between the full waveform and a subset of the harmon-

ics for a binary with M = 40M⊙, q = 4 and χeff = 0, while varying the orientation

and value of χP . In each case, we calculate,

O(h, h′) =
maxϕo(h|h′)

|h||h′|
, (2.34)

where,

(a|b) = 4Re

∫ ∞

fo

a⋆(f)b(f)

S(f)
df, (2.35)
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Figure 2.6: The overlap between a precessing waveform and a subset of the harmon-
ics, as a function of the precessing spin and binary orientation for a 40M⊙ binary
with mass ratio q = 4 and χeff = 0. The top row shows the overlap between the
leading, k = 0, harmonic and the full waveform; the second row shows the overlap
between the dominant harmonic and the full waveform; the bottom row shows the
overlap between our two-harmonic precessing waveform and the full waveform. The
first column is for the + polarization, second for × and third for fixed χP = 0.6 and
varying polarization.

and S(f) is the power spectral density of the detector data. Thus the overlap is

maximized over the phase, but not over time or any of the mass and spin parameters.

An overlap of close to unity shows that the two waveforms are very similar, while

a lower value of overlap implies significant deviations between the waveforms. As a

rule of thumb, an overlap O(h, h′) ≲ 1− 3/ρ2 will be observable at a signal to noise

ratio ρ [126, 127, 79].

We calculate the overlap of the full waveform, h, against

1. the leading order waveform in the precession expansion, h0;

2. the dominant harmonic, i.e. the harmonic of h0 and h1 which contains the

largest fraction of the power in the full waveform;

3. the two-harmonic waveform with the appropriate values of A0 and A1.

For the + polarized waveform (left column), the k = 0 harmonic is dominant

for all values of θJN and χP , so that the observed overlap with the full waveform is

above 0.8 across the parameter space. For θJN ≈ 0 or small values of χP , the other

harmonics make a minimal contribution and the overlap is close to unity. For larger

values of θJN and χP the other harmonics are more significant and the overlap drops

to 0.9 or less. The two-harmonic waveform is a significantly better match to the

full waveform, with an overlap greater than 0.99 for much of the parameter space,
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and only below 0.9 for edge-on systems with high χP where the k = 2 harmonic

contributes most strongly (and the k = 1 contribution vanishes).

For the × polarized waveform (center column), the effect of incorporating the

k = 1 harmonic is dramatic. For θJN = 90◦ the k = 0 contribution vanishes and

only the k = 1, 3 harmonics are present. Thus, the overlap with harmonic k = 0

is essentially zero. Using the best of k = 0, 1 provides a good overlap with the

edge-on waveform, but there is still a poor overlap at θJN ≈ 60◦ where both the

k = 0 and 1 harmonics contribute significantly to the waveform. This effect has

been observed previously, for example in [97, 98] and a geometric understanding of

its origin provided. The two-harmonic waveform matches remarkably well to the full

waveform, with the largest differences for θJN = 90◦ and χP ≈ 1 where the overlap

drops to 0.99 due to the contribution from the k = 3 harmonic.

The right column shows the overlap as the orientation of the binary changes. As

expected, at points where the k = 0 harmonic vanishes (θJN = 90◦ and ψ = 45◦), the

overlap with this harmonic drops to zero. The dominant harmonic is a good match

to the waveform, except for orientations where two harmonics contribute signifi-

cantly. As discussed in detail in Ref. [97], this corresponds to configurations where

the binary orientation passes through the null of the detector response (i.e. the signal

goes to zero) once per precession cycle. Thus, the radius of the circle with poor over-

laps is approximately equal to the opening angle of the binary. The two-harmonic

approximation provides an excellent fit to the full waveform over the majority of ori-

entations, only dropping below 0.95 for orientations where θJN → 90◦ and ψ ≈ 0, 90◦,

where the k = 2 harmonic is most significant.

Next, we investigate the validity of the two-harmonic approximation for a popu-

lation of binaries. To begin with, let us fix the masses and spins and just consider

the effect of binary orientation. As before, we choose M = 40M⊙, q = 4, χeff = 0

and χP = 0.6, corresponding to b ≈ 0.3, with the binary orientation distributed

uniformly over cos(θJN), ϕo, αo, ψ. Fig. 2.7 shows the distribution of the overlap be-

tween the full waveform and 1) the k = 0 harmonic, 2) the dominant harmonic and

3) the two-harmonic approximation. The results are shown for both a uniformly dis-

tributed population, and a population of signals observable above a fixed threshold

in the detector — thereby favoring orientations that produce the largest amplitude

gravitational wave. The median overlap with either the k = 0 or dominant har-

monic is ≲ 0.9, while the two-harmonic approximation improves the median overlap

to 0.99. Using the dominant harmonic, there are a small fraction of signals with

overlaps of 0.7 or lower (and for the k = 0 harmonic, this tail extends to overlaps of

0.2), while for the two harmonic approximation, the worst overlap is 0.88.

We can use these results to obtain a rough sense of the benefits of performing

a search using the two-harmonic approximation. Previous, more detailed, inves-

tigations of this question have been carried out in, e.g. [103, 97, 128]. Current

gravitational wave searches make use of spin-aligned waveforms [129, 130], and a
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Figure 2.7: The distribution of the overlap of the precessing waveform with the
k = 0, dominant and two-harmonic waveforms for a population of signals with
M = 40M⊙, q = 4, χeff = 0. The top plot shows the overlap distribution for
χP = 0.6, with random orientation of the signal. The lighter shaded regions give the
distribution for a randomly oriented population of sources and the darker regions
for the expected observed distribution (for a uniform-in-volume source). The lower
plot shows the overlap between full and approximate waveforms as a function of b.
The lines on the plot show the value of the overlap for the median (solid line), worst
10% (dashed) and worst 1% (dot-dashed) of signals.

precessing waveform will naturally be identified by a spin-aligned waveform which

matches well the dominant harmonic. Thus, we can use the overlaps between the

precessing waveforms and dominant harmonics as a proxy for the performance of

an aligned spin search. Since the median overlap is 0.9 we would expect to recover

approximately 70% as many signals (≈ 0.93 for a population uniform in volume)

as with a full precessing search, above a fixed threshold. A search based upon the

two-harmonic approximation would recover around 97% of these signals, indicating

an improvement of over 30% in sensitivity to such systems.
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We also show how the distribution of overlaps varies across the mass and spin

parameter space, as encoded by the parameter b and plotted for three choices of spin

distribution in Figure 2.4.5 For b ≲ 0.13 — accounting for three quarters of signals in

the low-isotropic population — the median overlap between the dominant harmonic

and the full waveform is above 0.97. Thus, for the majority of expected signals, the

spin-aligned search will have good sensitivity. However, even for low values of b̄ there

will be some orientations of signals where two dominant harmonics will not match

the waveform well, while the two-harmonic waveform still provides an essentially

perfect representation of the waveform for all orientations. At b ≈ 0.25 the median

overlap with the dominant harmonic waveform drops to 0.9, and it is here that a

search with the two-harmonic approximation could provide a 30% improvement. We

note, however, that for the low-isotropic distribution this accounts for only 5% of

systems. While systems with such significant precession may be rare they would

come from interesting areas of parameter space, with high mass ratios and spins. It

is only at b = 0.4 that the median overlap for the two harmonic waveform drops to

0.97, indicating a 10% loss relative to an ideal search, but also 70% improvement

over a spin-aligned search.

2.6 Searching for precessing binaries

The two-harmonic approximation provides an ideal basis to develop a search for

binaries with precession. The typical approach to searching for binary coalescences

has been to generate a template-bank of waveforms that covers the parameter space

[131, 132, 133]. These templates comprise discrete points in the mass and spin space

chosen so that the waveform produced by a binary anywhere in the parameter space

of interest has a match of at least 97% with one of the templates. The waveform for

each template is then match-filtered against the data to identify peaks of high SNR,

and various signal consistency and coincidence tests are used to differentiate signals

from non-stationary noise transients [134, 135, 136, 129, 130]. Current searches make

use of a template bank covering the four dimensional mass and aligned-spin space

[137, 138].6 The search takes advantage of the fact that changing the sky location,

distance and orientation of the binary only changes the overall amplitude and phase

5While these plots were made with fixed masses and χeff , they should give a reasonable indica-
tion of the accuracy of the two-harmonic waveform across the mass and spin parameter space, as a
function of b. For different masses and spins, the evolution of the precession angle during the coa-
lescence can have a slight impact upon the relative importance of the modes but, as b typically does
not change significantly over the observable waveform, this effect is likely to be small. Furthermore,
as different modes are not perfectly orthogonal, the degree to which they are not will also have a
small effect upon the results. As shown in Section 2.7, the harmonics are close to orthogonal for
M ≲ 40M⊙ so that the results shown here will be representative, at least at lower masses.

6As we have discussed, the most significant effect on the observed waveform arises due to the
effective spin χeff , which is a combination of the aligned spin components of the two waveforms.
Thus, although the template space is four dimensional, one of the spin directions provides limited
variation to the waveforms, and thus is relatively straightforward to cover.
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of the signal, and these quantities can be maximized over in a simple manner.

When developing a search for precessing binaries, the search becomes more chal-

lenging due to the increasing number of parameters. In principle, it is necessary

to search over two masses and six spin components, although, in practice it will

probably be sufficient to restrict to the masses, χeff and χP . The second complica-

tion is that the observed morphology of the waveform varies as the orientation of

the binary changes, and it becomes necessary to search over binary orientation θJN,

polarization ψ and precession phase αo, although methods have been developed to

straightforwardly handle a subset of these parameters [139, 103].

The two-harmonic waveform can be used to maximize the SNR over the binary

orientation in a simple way. The two complex amplitudes A0 and A1, defined in

Eq. (2.32), are dependent upon five variables: the distance, dL, binary orientation,

θJN, ψ, and the initial orbital and precession phases, ϕo, αo. Since A0 and A1 can

take any value in the complex plane, it is possible to construct the two-harmonic

SNR by filtering the two harmonics h0 and h1 against the data and then freely

maximizing the amplitudes so that,

ρ22harm = ρ20 + ρ21 . (2.36)

If the harmonics are not orthogonal, the two-harmonic SNR should be calculated

using h0 and h1⊥ — the k = 1 harmonic with any component proportional to h0

removed. The extrinsic parameters of the binary (distance, sky location, orientation,

orbital and precession phase) can be searched over through maximization over the

amplitudes of the two harmonics, leaving only the masses and spins as dimensions

to search using a bank of waveforms.

We must still construct a bank of waveforms to cover the four-dimensional pa-

rameter space of masses, the effective aligned χeff and precessing χP components of

the spins. The amplitude and phase evolution of a single harmonic does not carry

the tell-tale amplitude and phase modulation caused by precession, but does have

a different phase evolution due to precession [99, 84]. Since the phase evolution of

each precessing harmonic is degenerate with a non-precessing waveform with dif-

ferent mass-ratio or effective spin, the bank of templates will essentially be a bank

of non-precessing waveforms. This may allow us to reduce the size of the template

bank.

The k=0 harmonic of the precessing waveform has an additional phase (see

Eq. (2.16)) of,

δϕ0(t) =

∫ t

to

2b2

1 + b2
α̇ dt′ . (2.37)

For systems in which orbital angular momentum dominates over spin angular mo-

mentum, the precession frequency is inversely proportional to orbital frequency,

ΩP = α̇ ∝ f−1 [62, 73, 97]. This is the same frequency dependence as the 1PN
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Figure 2.8: The mismatch between the k = 0 (left) and k = 1 (right) harmonic of
two precessing signals as the effective spin χeff and precessing spin χP are varied.
For all waveforms, the total mass is fixed to 40M⊙ and the mass ratio to 4. One
waveform has χeff = 0 and χP = 0.6 (the point marked by a star), while the spins
of the second waveform are varied. The blue and green lines show the value of χeff ,
for the k = 0 and k = 1 harmonics respectively, which gives the largest match with
the fiducial waveform; the red line is the average of these values.

contribution to the waveform, whose amplitude depends upon the mass ratio. Con-

sequently, it is reasonable to expect that the precession-induced phase will be indis-

tinguishable from a systematic offset in the binary mass ratio, or the effective spin

[80]. Similarly, the k = 1 harmonic has essentially the same amplitude evolution as

the non-precessing waveform, but with a phase difference of,

δϕ1(t) = −
∫ t

to

1− b2

1 + b2
α̇ dt′ , (2.38)

which will also, in many cases, be degenerate with a change in the mass ratio or

aligned spin.

In Figure 2.8, we investigate the degeneracy in the spin (χeff–χP ) space of the two

leading precession harmonics. We consider a system with masses, M = 40M⊙ and

q = 4, and spins χeff = 0, χp = 0.6 and investigate how the two waveform harmonics

vary as the spins are changed. The figure shows the match — the overlap maximized

over time-offsets — between our fiducial waveform and one with the same masses

but different spins. For both harmonics, there is a band in the χeff–χP plane where
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the is mismatch is small — the different phase evolution of each harmonic caused by

varying χP can be offset by a suitable change in χeff . The relation is approximately

quadratic, ∆χeff ∝ (∆χP )
2, which is to be expected. Recall, from Eq. (2.37), that

the the change in phase due to precession is quadratic in b, and therefore also in

χP at least for small values of b. Meanwhile the phasing of the waveform varies, at

leading order, linearly with χeff .

This degeneracy in the χeff–χP plane suggests that a single template waveform

could be used to search over an extended region corresponding, for example, to

the region of mismatch < 0.03 in Figure 2.8. However, this will only work if the

degenerate region for the k = 0 and k = 1 harmonics is the same. It is clear from

Equations (2.37) and (2.38) and Figure 2.8 that they are not identical. Nonetheless,7

for the example we have considered, the two degenerate regions are similar, and along

the line that traces the mid-point between the the best fit values of χeff for the two

harmonics, both harmonics have a match above 0.97 with the initial point. Thus,

to an accuracy appropriate for generating a template bank, we can use the two

harmonics from a single waveform to cover a band in the χeff–χP plane which spans

all values of χP . This effectively reduces the dimensionality of the parameter space

to three dimensions: mass, mass ratio and one spin parameter.

Our proposal to develop a precessing search is as follows. First, generate a bank

of templates to cover the space of non-precessing binaries. At each M , q, χeff point

in the template bank, construct the two-harmonic waveform for a fixed value of

χP . Then, filter the data against the two harmonics and calculate the two-harmonic

SNR, as defined in Eq. (2.36) to identify candidate events in a single detector. It

will be necessary to extend the existing χ2 signal consistency test [135] to each

harmonic, taking into account the presence of the other harmonics, to reduce the

impact of non-stationarity in the data. Next, perform coincidence between detectors

by requiring a signal in the same template at the same time, up to the allowed time

delays based upon speed of propagation. For a non-precessing signal observed in

two detectors, the relative amplitude and phase of the SNR in each detector can

take any value, even though some are astrophysically more likely [140] (and this can

be used to increase search sensitivity). However, for the two-harmonic waveform

not every signal observed in two detectors will be compatible with an astrophysical

source. This can be seen through simple parameter counting: there are ten measured

quantities (two complex amplitudes and a time of arrival in each detector), which

depend upon eight parameters, the five orientation parameters (dL, θJN, ψ, ϕo, αo),

sky location and merger time. An additional coincidence test to check for consistency

between parameters will likely be necessary to reduce the search background. A

similar problem arises already in extending the amplitude and phase consistency of

7Strictly, when doing this comparison, we must use the same time offset for the two harmonics,
whereas the figure allows for an independent maximization of the time delay for each harmonic.
Fixing a single time delay does slightly decrease the matches, but not significantly enough to change
the conclusions.
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[140] to three or more detectors and methods developed for that purpose may be

helpful for the precessing search.

We can estimate the likely sensitivity improvement from a precessing search,

as we have briefly discussed in Section 2.5. A non-precessing search will typically

find the dominant harmonic of the waveform. Thus, for signals where two harmonics

provide a significant contribution, a search based on the two-harmonic waveform has

the potential to out-perform the non-precessing search. The two-harmonic waveform

has four degrees of freedom, encoded in A0 and A1, compared to two for the non-

precessing search. Thus, the noise background is higher for the two-harmonic search

and, based upon a comparison of the tails of the χ2 distribution with 2 and 4 degrees

of freedom, an increase of around 5% in SNR is required to obtain the same false

alarm rate (see e.g., Ref. [103] for a discussion of this issue). Thus, a signal will

be observed as more significant in the two-harmonic search than a non-precessing

search if the SNR can be increased by 5% or more. Fig. 2.7 shows that this occurs

for b ≳ 0.15, and for binaries with b above this value the two-harmonic search has

the potential to outperform a non-precessing search. We note, however, that a given

template will cover a range of spin values and consequently a range of b, so it may be

more appropriate to deploy the two-harmonic search for templates with an average

of b which is greater than 0.15.

Another challenge of searches for precessing systems is the associated compu-

tational cost [103], which can be prohibitive. The maximum computational cost

for the two-harmonic search would be double that of a comparable non-precessing

search: it becomes necessary to filter both the k = 0 and 1 harmonics, and com-

putational time is dominated by this matched filtering. However, since both the

k = 0 and k = 1 harmonics are essentially non-precessing waveforms, there may

be waveforms associated with the k = 1 harmonics are already in the set of k = 0

waveforms, but associated with different parameters. If so, this could further reduce

the computational cost.

2.7 Observability of precession

The two-harmonic approximation allows us to easily identify regions of the binary

merger parameter space for which precession will leave an observable imprint on

the waveform. Since the amplitude and phase evolution of a single harmonic is

generally consistent with that of a non-precessing waveform (see above and [99, 98]),

it is only when two harmonics can be observed that we are able to clearly identify

precession in the system. We are therefore interested in deriving an expression for

the precession SNR, ρp, defined as the SNR in the second most significant harmonic,

and determining when it will be observable. If the two harmonics h0 and h1 in

– 39 –



2.7. Observability of precession

Figure 2.9: The overlap O(h0, h1) between the k = 0 and k = 1 harmonics across
two-dimensional slices in the parameter space of total mass, mass ratio, χeff and χp.
In each plot, two of the parameters are varied while the other two are fixed to their
fiducial values of M = 40M⊙, q = 4, χeff = 0, χp = 0.6 .

Eq. (2.31) are orthogonal, then the precession SNR is simply,

ρp = min(|A0h
0|, |A1h

1|),

= ρ2harm

(
min(1, |ζ|)√

1 + |ζ|2

)
, (2.39)

where ζ, defined in Eq. (2.33), gives the ratio of the SNR in the k = 1 and k = 0

harmonics and ρ2harm is the total SNR in the two-harmonic waveform.
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Let us briefly examine where in parameter space the two harmonics are close to

orthogonal. Where there are sufficient precession cycles we expect the two harmon-

ics, h0 and h1, will be close to orthogonal, and the overlap to be close to zero [99].

The overlap between the two harmonics for various two-dimensional slices through

the parameter space is shown in Fig. 2.9. At higher masses, where the binary com-

pletes one, or fewer, precession cycles in the detector’s sensitive band, there is a

larger overlap between the harmonics. At negative χeff and minimal χp, the overlap

is also significant. However, providing the mass of the system is below 50M⊙, for

the much of the parameter space the overlap is less than 0.1 and simple expression

in Eq. (2.39) will be applicable.

Taking into account the overlap between harmonics, the total power in the two-

harmonic waveform is,

ρ22harm = |A0h
0|2
(
1 + 2Re[ζ o1,0] + |ζ|2

)
. (2.40)

where o1,0 is complex overlap between the two harmonics:

o1,0 =
(h1|h0) + i(h1|ih0)

|h1||h0|
. (2.41)

We can project the SNR onto directions parallel and perpendicular to the h0 wave-

form to obtain the SNR in these two directions as,

ρ20 = |A0h
0|2
(
1 + 2Re[ζ o1,0] + |ζ o1,0|2

)
,

ρ2⊥,0 = |A0h
0|2|ζ|2

(
1− |o1,0|2

)
. (2.42)

Similarly, the power parallel to and perpendicular to the k = 1 harmonic is,

ρ21 = |A0h
0|2
(
|o1,0|2 + 2Re[ζ o1,0] + |ζ|2

)
,

ρ2⊥,1 = |A0h
0|2
(
1− |o1,0|2

)
. (2.43)

The precession SNR is defined as the power orthogonal to the dominant har-

monic,8

ρp := min(ρ⊥,0, ρ⊥,1), (2.44)

= ρ2harmmin(1, |ζ|)
(

1− |o1,0|2

1 + 2Re[ζ o1,0] + |ζ|2

) 1
2

.

As expected, the precession SNR scales with the total SNR of the signal, so that

precession will be more easily observed for louder events. If there is significant de-

8In exceptional circumstances, where the overlap is large and ζo1,0 is close to −1, there can
be more power in ρ⊥,i than ρi. In such cases, it is natural to use ρi to determine if precession is
present, although this is not ideal as ρ⊥,i need not resemble a non-precessing waveform.
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generacy between the harmonics, the numerator will be reduced, making the obser-

vation of precession more difficult. Finally, in the limit that o1,0 → 0, the expression

simplifies to the one given earlier for orthogonal harmonics in (2.39), as expected.

What value of ρp will be required to observe precession? This will happen if the

evidence for a signal with χp ̸= 0 in the data is greater than that for a non-precessing

source. This can be evaluated through Bayesian model selection, by considering the

Bayes factor between the hypotheses. However, such a calculation requires a full

exploration of the parameter space. We can, instead, obtain an approximate answer

by considering the maximum likelihood. Since the two-harmonic waveform is more

general than the non-precessing waveform, it will always give a larger maximum

likelihood even in the absence of precession due to its ability to fit the detector

noise. Thus, we are interested in examining the expected increase in SNR due to

the inclusion of the second harmonic, in the absence of any power in it.

The two-harmonic SNR can be written as

ρ22harm = ρ2np + ρ2p . (2.45)

where ρnp is the non-precessing SNR or, equivalently, the SNR in the dominant

harmonic. In the absence of precession, ρp will be χ2 distributed with 2 degrees

of freedom, as we are able to freely maximize over the amplitude and phase of the

two harmonics independently. Consequently, in 90% of cases, noise alone will give a

value of ρp < 2.1. Therefore, as a simple criterion, we require that,

ρp ≥ 2.1, (2.46)

for precession to be observable. In Ref. [141] we use this definition to investigate in

detail the observability of precession over the parameter space.

2.8 Discussion

We have presented a new, intuitive way to understand the observability of precession

in GW observations. By keeping only the leading precession term, we have derived a

precession SNR and argued that this can be used to determine when precession will

be observable. Before discussing applications we point out the main limitations of

this analysis. As is clear from the formulation, this analysis works best for binaries

where b = tan(β/2) is small. This typically corresponds to situations where the

masses are comparable, the precessing spin is small and any aligned component of

the spin is aligned (rather than anti-aligned) with the orbital angular momentum.

We have shown above that this assumption is valid for a reasonable population.

We now point to several advantages and applications of this formulation:

First, it gives new understanding of the observability of precession, and also of the

origin of precession as the beating of two waveform components with slightly differing
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frequencies (also discussed in [99]). It is difficult to identify the presence of precession

in a GW observation directly from χP , since the prior astrophysical expectation

disfavours χP = 0. While the deviation from the prior can be determined through

the Bayes factor, the precession SNR ρP has the advantage of providing a direct

measure of whether precession has been measured in a signal. This will be illustrated

in more detail in chapter 4, where we probe the measurability of precession across

the gravitational wave parameter space. The precession SNR has also been used for

just this purpose in the interpretation of the recent GW observation GW190412 [1].

There exist a number of detailed population analyses which extract the features

of the underlying population of gravitational waves from the set of observed grav-

itational wave events, for example [142, 143, 144, 74]. These typically use the full

posterior distributions recovered from the gravitational wave signal [52, 145] to infer

the population and, as such, naturally account for precession effects in the observed

signals when inferring the black hole mass and spin populations. Nonetheless, there

have been a number of studies performed which investigate the population proper-

ties using a subset of the recovered parameters, see e.g. [146, 121, 147, 148, 122, 74],

and have been successfully used to infer interesting properties of the mass and spin

distributions. The majority of these studies have restricted attention to the aligned

components of the spins. The precession SNR provides a straightforward method to

determine the significance of precession, and provides away to probe observability of

precession in populations of binaries. In using this method we have been able to de-

rive constraints on the preferred spin distribution including precession effects [123].

Both of the applications highlighted above are currently possible using other more

sophisticated but computationally expensive methods such as Bayesian model com-

parison. This is, of course, a more general method that makes fewer assumptions

than we do in computing ρp, however the computational costs associated with cal-

culating the marginal likelihood over multiple, e.g. precessing and non-precessing,

models per binary are not feasible for a large number of binaries. For example

the analysis in [123] involved calculating ρp for 1 million binaries, and computing

the Bayes factor for 1 million binaries would certainly not be practical. Similar,

lightweight analyses, could also be developed using the formalism introduced in, e.g.

[97], and if this is done,it would be interesting to compare them with the results

from the two harmonic analysis.

Finally, we have outlined a method by which the two-harmonic approximation

could be used to develop a search for precessing binaries. We have shown that in

principle that this approach could result in a significant increase in sensitivity with-

out the computational overheads associated with other precessing search methods.

In addition, the formalism should provide a way to identify the parts of parameter

space where a precessing search is likely to increase sensitivity. We plan a detailed

investigation into the feasibility of a precessing search based upon the two-harmonic

approximation in future work.
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Appendix: Derivation using spin-weighted spherical har-

monics

In this appendix, we provide an alternative derivation of the power series decom-

position of the precessing waveform, given in Section 2.3, based upon the spin-

weighted spherical harmonic decomposition of the waveform [149] and its applica-

tion to precession as described in [84, 118]. Specifically, we wish to obtain the result

in Eq. (2.14). Throughout, we follow the notation used in [86].

The gravitational waveform emitted during a binary merger,

h := h+ − ih× (2.47)

can naturally be decomposed into a set of spin-weighted spherical harmonics as

h(t, λ⃗, θ, αo) =
∑
ℓ≥2

∑
−ℓ≤m≤ℓ

hℓ,m(t, λ⃗)
−2Yℓ,m(θ, ϕ) (2.48)

where θ and ϕ give the orientation of the observer relative to a co-ordinate system

used to identify the spherical harmonics, λ⃗ encodes the physical parameters of the

system (masses, spins, etc) and t is the time.

The multipoles for a precessing system are approximated by “twisting up” [84,

118] the multipoles of the non-precessing counterpart based upon the orientation of

the orbital angular momentum given by the opening angle β, precession angle α and

the third Euler angle ϵ defined via

ϵ̇ = α̇ cosβ . (2.49)

Then, the precessing multipoles are given by

hprecℓ,m (t) =
∑

−ℓ≤n≤ℓ
hNP
ℓ,nD

ℓ
n,m(α(t), β(t), ϵ(t)) (2.50)

where the Wigner D-matrix is

Dℓ
n,m(α, β, ϵ) = eimαdℓn,m(−β)e−inϵ (2.51)

and the Wigner d-matrix given, for example, in [150].

Combining these decompositions gives the waveform for a precessing binary as

h =
∑
ℓ,m,n

−2Yℓ,m(θ, ϕ)D
ℓ
n,m(α, β, ϵ)hℓ,n(t, λ⃗) . (2.52)

In performing the twisting, it’s natural that the precessing waveform is described in

a coordinate system aligned with the orbital angular momentum, so that θ = θJN.
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Furthermore, the orientation of the x-axis will be specified relative to the (initial)

precession phase so that ϕ = −αo.

In this work, we restrict attention to the case where the non-precessing model

contains only the ℓ = 2 and n = ±2 modes, and require symmetry in gravitational

wave emission above and below the plane of the binary so that hℓ,n = (−1)ℓh⋆ℓ,−n.

This eliminates the sum over ℓ and m from Eq. (2.52). Furthermore, we can expand

the spherical harmonics using

−2Y2,m(θJN,−αo) =
√

5

4π
d2m,2(θJN)e

−imαo (2.53)

to obtain

hprec =
∑

−2≤m≤2

√
5

4π
d22,m(θJN)e

im(α−αo) × (2.54)

[
hNP
22 d

2
2,m(−β)e−2iϵ + (hNP

22 )⋆d2−2,m(−β)e2iϵ
]

We now wish to re-write the above to show that the waveform can be decomposed

in modes whose amplitudes form a power series in b = tan(β/2). To do so, we note

that the Wigner d-matrices can be evaluated as powers of sin(β/2) and cos(β/2), so

that if we are able to group terms with the same indices we will arrive at the desired

expression. We do this by using the d-matrix identities:

dℓn,m = (−1)m−ndℓm,n = (−1)m−ndℓ−n,−m (2.55)

and relabelling the dummy index m → −m in the second term of Eq. (2.54) to

obtain:

hprec =
∑

−2≤m≤2

√
5

4π
d22,m(−β)× (2.56)[

(−1)md22,m(θ)
(
hNP
22 (t)e−2iϵeim(α−αo)

)
+d22,−m(θ)

(
hNP
22 (t)e−2iϵeim(α−αo)

)⋆]

Finally, we can evaluate the Wigner d-matrices as

d22,m(−β) := Cm cos2+m(β/2) sin2−m(β/2)

=
Cmb

2−m

(1 + b2)2
(2.57)

where C±2 = 1, C±1 = 2, C0 =
√
6 and, as before, b = tan(β/2). Similarly, we
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introduce τ = tan θJN/2, and evaluate the d-matrices for the angle θJN. This gives

hprec =
∑

−2≤m≤2

√
5

4π

(Cm)
2b2−m

(1 + b2)2
× (2.58)

[
τ2−m

(1 + τ2)2

(
hNP
22 (t)e−2iϵeim(α−αo)

)
+
(−τ)2+m

(1 + τ2)2

(
hNP
22 (t)e−2iϵeim(α−αo)

)⋆]

This is close to the desired form and, in particular, we have obtained an decom-

position where the relative strength of each mode is decreased by a factor of b. To

obtain an expression comparable to Eq. (2.14) we must evaluate the waveform ob-

served at a detector with response F+ and F× to the two gravitational polarizations.

h(t) = Re [(F+ + iF×)h
prec] (2.59)

= Re

[(√
5

4π

(hNP
22 )⋆e2i(ϵ+α−αo)

(1 + b2)2

)
2∑

m=−2

(Cm)
2

(1 + τ2)2
(be−i(α−αo))2−m(

F+[τ
2−m + (−τ)2+m]− iF×[τ

2−m − (−τ)2+m]
) ]

Then, to finally equate this with the desired expression, we must make the identifi-

cation √
5

4π
(hNP

22 )⋆e2iϵ =
do
dL
Ao(t)e

2iΦS , (2.60)

where ΦS is defined in Eq. (2.7). Thus the amplitude of the waveform, Ao(t) is the

same as the scaled 22 mode while the phase of the 22 mode is the (negative) of the

orbital phase. Furthermore, it is straightforward to show that the A+,×
k coefficients

are given by

A+
(2−m) =

do
dL

(Cm)
2

(
τ2−m + (−τ)2+m

(1 + τ2)2

)
,

A×
(2−m) =

do
dL

(Cm)
2

(
τ2−m − (−τ)2+m

(1 + τ2)2

)
.

(2.61)

Substituting these identifications, we obtain the desired expression for the waveform
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observed at a detector,

h(t) = Re

[(
Ao(t)e

2i(ΦS+α)

(1 + b2)2

)
4∑

k=0

(be−iα)k(F+A+
k − iF×A×

k )

]
. (2.62)
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Chapter 3

Population Analysis using the

Two Hamornic Approximation

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [151]

and Advanced Virgo (AdV) [152], provide a unique method of observing mergers

of black holes and/or neutron stars. Observations to date already provide insights

into the mass and spin distributions of black holes [2, 74]. This chapter applies

the methods presented in chapter 2 to carry out a population study looking at the

relative probabilities of different spin population models.

One important general relativistic effect that has not yet been observed is orbital

precession. This arises when the black-hole spins are not aligned with the binary’s

orbital angular momentum. In contrast to Newtonian mechanics, where all angular

momenta are individually conserved, in general relativity the binary’s total angular

momentum is (approximately) conserved, and the orbital angular momentum (and

hence the orbital plane) and spins precess around it [62, 72]. This leads to mod-

ulations in the amplitude and phase of the gravitational wave (GW) signal. These

are in general small effects and, in addition, whether they can be measured depends

not only on the black-hole masses and spin magnitudes and directions, but also on

the binary’s orientation relative to the detector, and the observed GW polarization.

For this reason, until the introduction of the precession SNR presented in chapter 2

there was no straightforward way to determine how significantly precession would be

imprinted onto a given waveform. The usual approach is to perform computationally

expensive Bayesian analyses (see e.g. [2, 52]), but even then, the misaligned spin

components (which signify whether the binary is precessing) are degenerate with

other parameters, and do not provide a direct measure of precession features in the

signal. This makes it difficult to infer the impact of precession measurements on the

properties of astrophysical binary populations and their formation mechanisms.
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3.1 Observability of precession:

Since the individual harmonics are indistinguishable from non-precessing waveforms,

it is only when two precession harmonics can be independently observed that preces-

sion can be unambiguously identified. For precession to be observable, we therefore

require that the expected signal-to-noise ratio (SNR) in both of the harmonics is

above some threshold.

It remains to determine a threshold above which ρp can be considered as evi-

dence for precession, this question is discussed in detail in chapter 4. For a simple

approximation for this threshold, consider the situation where an event has been

observed, so there is significant SNR in at least one harmonic. In the absence of

measurable precession, and assuming well-modelled Gaussian noise, the SNR in the

second harmonic will be χ2 distributed with two degrees of freedom, where the two

degrees of freedom correspond to the real and imaginary parts of the complex ampli-

tude. Therefore, in the absence of precession, ρp > 2.1 is expected in less than 10%

of cases, and ρp > 3 in approximately 1% of cases. We therefore use these simple

thresholds as a measure of the strength of evidence for observable precession.

In Fig. 3.1 we show the recovered distribution of χp and ρp for a number of signals,

both real and simulated. For each signal, we use a nested sampling routine within

the LALInference code [51, 52] to obtain posterior probability distributions for the

parameters. This is the same infrastructure that was used to measure the properties

of the LIGO-Virgo observations, and we present our results in the same form as in,

for example, the GWTC-1 catalogue [2], by using the PESummary library [153].

The new feature is our calculation of ρp.

First, we show the recovered χp and ρp distributions for a set of simulated signals,

generated using the IMRPhenomPv2 model [84], each with the same choices of

masses and spins — total mass M = 40M⊙, mass ratio 2:1, and an in-plane spin

of χp = 0.4 on the large black hole only — but varying orientation, encoded by the

angle θ between the total angular momentum and the line of sight. The distance to

each signal is chosen to ensure a fixed expected SNR of 20 in the aLIGO detectors at

the sensitivity of the second observing run (O2) [2], resulting in a distance variation

by a factor of ≈ 3.5 between the least and most inclined systems.

For binaries with total angular momentum closely aligned with the line of sight,

θ < 45°, the precessing SNR is consistent with no power in the h1. The posterior

on χp is consistent with the prior at low χp but excludes χp ≳ 0.7. When θ > 45°,
the angular momentum is significantly mis-aligned with the line of sight and there

is significant power in both harmonics, leading to a value of ρp inconsistent with

noise alone and little support for values of χp ≲ 0.1. However, using χp alone, even

after performing the parameter recovery there are no simple criteria to determine

when precession is observed. A natural choice might require that the 90% confidence

interval for χp exclude zero, but this will always be the case, primarily due to the
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Figure 3.1: For a set of simulated signals with fixed masses and spins (see text),
we show the posterior and prior (white) distributions for χp (top), and posterior
distributions for ρp (middle) for a range of different binary orientations, θ. The grey
lines show the 90% confidence regions, the solid red lines show the true values of
χp and ρp respectively and the dashed black and grey lines indicates the thresholds
for observable precession at ρp = 2.1 and ρp = 3. The bottom panel shows the ρp
distribution for the ten binary-black-hole observations in O1 and O2 [2].

shape of the prior. Furthermore, even though we know all of the parameters a

priori, it is impossible to determine whether precession will be observable without
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generating the waveform and performing the parameter recovery.

The precession SNR solves these problems. A value of ρp > 2.1 tells us immedi-

ately that there is evidence of observable precession. Most significantly, the expected

precession SNR ρp (red lines on the middle plot) can be calculated directly from the

signal parameters; no detailed parameter estimation analysis is necessary. Thus,

for the first time, we are able to identify immediately whether precession would be

measurable in a given configuration. We see in Fig. 3.1 that for each inclination,

the true value for ρp lies within the recovered 90% credible interval however the

posterior is not centred around the true value. This is due to selection and prior

effects. In chapter 4, we investigate these selection effects as well as providing a

detailed exploration of the observability of precession over the parameter space of

masses, spins and binary orientation.

Fig. 3.1 also shows the distribution of ρp for the BBH merger signals that were

observed in the aLIGO and AdV O1 and O2 runs [2]. No evidence of precession

was found in these signals [74], as is made clear from the recovery of ρp. There are

several cases where the distribution extends to higher values, but the median never

exceeds the 2.1 threshold. These results demonstrate the efficacy of ρp.

3.2 When will we observe precession?

We can use the observation of precession to distinguish different binary formation

scenarios. The precession SNR makes it straightforward to perform an in-depth

investigation of various models and identify the fraction of signals for which preces-

sion effects will be observable. Such a study was not previously possible, due to the

difficulty in classifying observability of precession. Instead, limited investigations

of the parameter space have been performed [89], or inferences of the distributions

for the spin magnitudes and orientations obtained [144, 142], again with a limited

sample size.

We investigate nine astrophysically-motivated populations of black hole binaries,

comprised of three distributions of spin magnitude, and three distributions of spin

orientation for the individual black holes in the binary. The spin-magnitude distri-

butions are those used in Refs. [121, 146, 122]: low and high are triangular, peaked

either at zero or extremal spin, and flat is a uniform distribution between zero and

one. The spin-orientation is characterized by the distribution for the angle σ between

each black hole’s spin and the orbital angular momentum: aligned is a triangular dis-

tribution in cosσ, which peaks at 1 and can take values 0.85 < cosσ < 1.0, (σ ≲ 30°);
precessing is triangular in cosσ peaked at 0, with values −0.15 < cosσ < 0.15,

(80° ≲ σ ≲ 100°); isotropic is uniform in cosσ between −1 and 1. For each popula-

tion, we generate 105 binaries with masses drawn from a power law mass distribution

with p(m1) ∝ m−2.35, and p(m2) uniform in m2 between 5M⊙ and m1 (as in [122]),
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Aligned Isotropic Precessing

Low 0.043 0.644 0.151 0.194 0.173 0.150

Flat 0.077 0.448 0.276 0.040 0.327 0.019

High 0.105 0.331 0.354 0.013 0.412 0.005

Table 3.1: The probability of observing precession, ρp > 3, for an observed binary
(white) from each spin distribution and the probability of not observing precession
in 10 random draws (grey) from each spin distribution.

and distributed uniformly in volume and binary orientation.

Table 3.1 shows the probability of observing precession in a single event drawn

from each of the nine populations, observed with O2 sensitivity while assuming that

the PSD corresponds to the special case of the zero realisation from this process,

this can also be thought of as the mean PSD of infinite draws from the underlying

process. This noise realisation is often referred to as a zero noise realisation. For

this study, we use the higher threshold of ρp > 3, corresponding to a 1% false rate,

to indicate strong evidence for observed precession. When observing a population

of events, the number of events exceeding this threshold when there is no precession

in the system remains low.1

As expected, we are most likely to observe precession when the black holes have

high spins that lie preferentially in the orbital plane 2 (high-precessing configura-

tions) and least likely for black holes with low spins, or with spins preferentially

aligned with the orbital angular momentum (low-aligned configurations). Given

that precession has not been observed in GW detections to date, we are able to

restrict the spin distribution. Table 3.1 shows the probability of detecting ten sig-

nals with no observable precession from each of the nine spin distributions. Based

on precession measurements alone, we strongly disfavour all precessing distributions.

Although these are already considered astrophysically unlikely, there are models that

predict preferentially in-plane spins [124, 125]. We also disfavour isotropic spins with

flat or high magnitudes. Thus, the lack of observed precession points towards low

spins, or spins preferentially aligned with the orbital angular momentum.

Previous constraints on spins have primarily been provided by considering the

measurable aligned-spin component [121, 146, 122, 2] and provide strong evidence

against all but low aligned or iostropic distributions, with low isotropic spins pre-

ferred. Combining the aligned spin and precession results will further restrict the

spin distribution consistent with GW observations, and will likely require spin mag-

1As our analysis assumes zero noise, the fraction of binaries with observable precession will be
slightly underestimated. At a threshold of ρp > 2.1, the effect would be significant while at a
threshold of ρp > 3, the difference is small.

2We note here than under many astrophysical models these systems are thought to be unusual,
especially by the time that they would be observable in the current LIGO/VIRG0 frequency ranges.
There are however some models such as triples [124] where one might expect these high in-plane
spins
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Figure 3.2: The distribution of χp, θ and q for observable binaries (grey), and those
with measurable precession (blue), assuming a low isotropic spin distribution. θ is
the inclination angle folded to [0, π/2]. The y-axis labels the number of observed
events in each bin, out of 105 simulated signals with low isotropic spins.

nitudes even smaller than our low distribution (see also Ref. [74]).

3.3 Where will we observe precession?

We are able to identify, for the first time, the regions of parameter space that lead to

signals with observable precession. In Fig. 3.2, we show the expected distribution of

the precessing spin χp, binary orientation θ and mass ratio q for observable binaries

and binaries with observable precession, ρp > 3, assuming a low isotropic distribution

of spins. We identify clear regions of the parameter space where precession is more

likely to be observed: large values of χp, binaries that are close to edge-on, θ > 45◦,

and systems with high mass ratio. Regions where the chance of observing precession

is close to zero include binaries with χp < 0.2 or where the total angular momentum

is within 20° of the line of sight. These results are consistent with expectations

based upon smaller studies using detailed parameter estimation techniques [89]. We

also note that most observations of precession will be in comparable-mass binaries,

i.e., q ≤ 2. This is a surprising, new result. It is well known that precession is

more easily measured at higher mass ratios [62], which is confirmed by our study:

precession is observed in <12% of detections with q < 2, but >35% for q > 2.

However, with ∼ 90% of observations expected to have q < 2, these low mass ratio

observations vastly outnumber the higher-mass-ratio observations. This means that

despite the probability for any single precession observation being lower for smaller

mass ratios, as a population the many low probability observations will in aggregate

produce more observations of measurable precession than higher mass ratio events (of

which we expect considerably fewer). In this study we find that ∼75% of precession

observations will come from detections of binaries with q < 2.
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3.4 Discussion:

In this letter we have used a simple method to identify when precession is measurable

in a compact binary GW signal. The gravitational waveform is well approximated by

the first two harmonics in a power series expansion in the tangent of the half-opening

angle [3], and the unambiguous observation of precession requires the identification

of both of these harmonics in the data. The precession SNR ρp is a simple measure

of this observability. We have demonstrated the efficacy of ρp through parameter

estimation studies and also provided the distributions of ρp for the aLIGO-AdV ob-

servations to date. Using our definition of precession SNR, we have identified how

often precession will be observed for a variety of potential astrophysical spin distribu-

tions. For the most likely distribution, based on current observations (low-aligned)

there is a 83% chance that precession will be measured after ∼40 observations, and

is therefore likely to be observed during the current third aLIGO-AdV observing

run (O3). The non-measurement of precession by the end of O3 would place much

stronger constraints on spin orientations and magnitudes.

The precession SNR has many applications. Most immediately, it allows us to

determine the measurability of precession in a system without performing computa-

tionally expensive parameter estimation. This allows us to, e.g., easily fold precession

information into population analyses of black-hole binaries. In future work, we will

explore whether the value of ρp can be used to predict the measured χp distribution.

The precessing SNR also gives us a simple way to identify regions of the parameter

space where precession is important, a necessary first step in extending existing GW

searches to explicitly use precessing waveforms [103].
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Chapter 4

Identifying where precession is

Measurable

4.1 Introduction

In September 2015, the first direct detection of gravitational-waves (GWs) marked

the beginning of GW astronomy [116]. Another 14 detections have been announced

by the LIGO Scientific and Virgo collaborations (LVC), the vast majority of which

were due to black-hole (BH) mergers [2, 154, 1, 155, 156, 157]. Additional events have

also been reported by independent groups [158, 159, 160, 161]. These GW observa-

tions have already provided significant insights into gravitational physics, cosmology,

astronomy, nuclear physics and fundamental physics (see e.g. Refs. [162, 163, 164,

165, 166, 167, 168, 74]). With an order of magnitude more observations expected

over the next 5-10 years, as the sensitivities of the LIGO [169, 151], Virgo [21] and

KAGRA [170] detectors improve and additional detectors come online, GW astron-

omy from compact-binary mergers has the potential to transform our understanding

of gravitational and fundamental physics [171, 172, 173].

Everything we learn from GW binary-black-hole (BBH) observations is a con-

sequence of a detailed parameter estimation analysis that extracts the source pa-

rameters of the binary. While some parameters are extracted with good precision,

inspiral dominanted signals show strong correlations between certain parameters

which means that they cannot be measured so accurately, for example correlations

between the binary’s distance and inclination [105, 174, 83], the two masses [105, 76],

and the mass-ratio and spin components aligned to the binary’s orbital angular mo-

mentum [76, 79, 175, 176]. As well as studies of the inspiral, work has been done

to extract the source properties for high mass signals dominated by the merger

ringdown, see e.g. [177, 178, 91, 179].

Spin components misaligned with the binary’s orbital angular momentum, leading

to a precession of the binary’s orbital plane and hence modulations of the ampli-

tude and phase, have not yet been unambiguously measured in GW observations [2],
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see Fig. 3.1. Precession effects and correlations with other parameters are under-

stood in principle [62, 71] but since theoretical signal models of precessing binaries

that include the merger and ringdown date from only shortly before the first detec-

tions [84, 180], we have less experience of when precession will be measurable, and

what the impact will be on other parameter measurements.

The purpose of this chapter is to explore when precession will be measurable,

and its impact on other parameter measurements, in the kind of configurations

that are representative of expectations from binary populations based on LIGO-

Virgo-KAGRA observations to date [2]. By utilizing the precession signal-to-noise

ratio (SNR) ρp [3, 123] as a quantifier for the measurability of precession, we also

verify that ρp is indeed a good metric for the measurability of precession across

the vast majority of the parameter space, and relate it to the standard means to

identify the presence of precession, the Bayes factor. In doing so, we show that

computationally expensive parameter estimation runs can be avoided by simply

calculating the precession SNR.

Previous work has explored the general phenomenology of precession effects:

its increased measurability with large in-plane spins [181, 77, 182], large mass ra-

tios [181, 77], high inclination [62, 97, 183, 184, 123, 91], and of course high SNR [181,

77, 185]. Beyond these general expectations, the quantitative behaviour of parameter

measurements in the presence of precession has not been studied in great detail for

typical LIGO-Virgo-KAGRA observations. The measurability of precession for high

mass ratio LIGO-Virgo-KAGRA observations like GW190814 has been investigated

in recent work [186].

In this chapter, we focus on the region of parameter space most likely to yield

binaries with observable precession: binaries of comparable mass, with moderate in-

plane and aligned-spin components [123]. We perform a series of one-dimensional

investigations of the parameter space, in which we vary one parameter at a time:

total mass, mass ratio, spins (both in-plane as characterized by χp, and the aligned

spin combination χeff), the binary orientation (both the inclination of the orbit and

also binary polarization), and the sky location and show the impact of varying each of

the binary parameters individually. These investigations serve to confirm that much

of the known phenomenology is apparent even at relatively low SNR, while also

demonstrating that the precession SNR can be effectively used across a significant

fraction of the parameter space to predict the observable consequences of precession

without the need for computationally costly parameter estimation analyses.

This chapter is structured as follows: Sec. 4.2 provides an introduction to the pa-

rameter estimation techniques used here, and parameter estimation results and inter-

pretation for our fiducial system. In Sec. 4.3 we perform a series of one-dimensional

explorations of the parameter space. In Sec. 4.6 we compare the predicted precession

SNR with observations and in Sec. 4.5 we compare precession SNR with the Bayes

factors between precessing and non-precessing runs. We conclude with a summary
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and discussion of future directions.

a Observability of precession

The strength of the modulations in the GW signal depend primarily on the opening

angle, β, and this is reflected in the expansion parameter b in the two-harmonic

approximation; the precession frequency α̇ also plays a role. The strength of the

modulations in the observed signal also depend on the binary’s inclination to the

observer, θJN, and the detector polarisation ψ, and these are all incorporated into

the precession SNR ρp, through Eqs. (2.33) and (2.39). From these we can draw

immediate conclusions about the scenarios in which precession will be most easily

measured. These observations are in general not new (see, as always, the pioneering

discussions in Refs. [62, 71]), but we summarise them here and, where salient, present

them in terms of the two harmonic formalism, which highlights the insights and

intuition that are simplified in this formulation. We then compare these expectations

with the quantitative results that we find in our full parameter estimation study.

Our first basic picture of the strength of precession effects comes from Eq. (2.2),

which gives the dominant effect on β during the inspiral. If we first consider cases

where the spin is entirely in the orbital plane, i.e., S|| = 0, we see that the opening

angle β will be zero if S⊥ = 0 (as we would expect), and increases linearly for

small S⊥. The opening angle also increases as µ decreases, i.e., as the mass ratio is

increased. Eq. (2.2) is no longer accurate near merger, and for equal-mass systems

β does not become large, but for large mass ratios the opening angle can approach

90◦.

If we now consider non-zero S||, we see that the level of precession will be reduced

for systems with a positive aligned-spin component, and will be increased for systems

with a negative aligned-spin component. The importance of this effect will depend

on the other terms, but we can see that for a high-mass-ratio system where µ is very

small, and close to merger, so rM is also small, the aligned-spin component will

have a strong effect on β, and therefore the measurability of precession. A negative

S|| is necessary to achieve β > 90◦, and for large mass-ratio systems near merger

(small µ and rM) and large negative S||, β can approach 180◦, but such systems

will be rare.

The measurability of precession also depends on the orientation of the binary

with respect to the detector, θJN. As we see in Eq. (2.33), precession effects will be

minimal if θJN ∼ 0◦ or 180◦, i.e., the observer views the system from the direction of

Ĵ. We expect precession to be strongest in the observed waveform for orientations

close to θJN ∼ 90◦. Additionally, when the detector, or network is primarily sensitive

to the × polarization, precession effects will be more significant. The amplitude of

the k = 1 harmonic vanishes in the + polarization for both face on θJN = 0◦ and

180◦ and edge-on θJN = 90◦ systems, while the × polarization is maximal for edge-
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on systems. Additionally, the × polarization for the k = 0 harmonic vanishes for

edge on systems, while the + polarization is only reduced by a factor of two. Thus,

even when b is small, there can be observable precession when the system is close

to edge on and the network is preferentially sensitive to the × polarization. For a

given choice of masses and spins, the maximum precession SNR is ρp = ρ/
√
2.

4.2 Parameter Estimation Results

a Standard configuration

We begin by describing the results of the parameter recovery routine for a specific

simulated signal. The details of the signal are given in Tab. 4.1. These parameters

were chosen so that precession effects would be significant in the observed waveform

while still being consistent with the observed population of BBHs. In the following

sections, we vary over the parameters of the signal one-by-one to investigate the

impact of each parameter on the observability of precession and the accuracy of

parameter recovery. For each parameter, we are able to both increase and decrease

the significance of precession.

Using the first, second and third observing runs [57] to infer the mass for distri-

bution of the BBHs observed in the it is predicted that 90% of detected binaries will

have mass ratios q < 4 and ∼ 97% of BHs in these binaries will have masses less

than 45M⊙ [59]. Our “standard” simulated signal was chosen to have total mass

M = 40M⊙ and mass ratio q = 2 inclined at an angle of θJN = 60°. This corresponds

to component masses of 26.7M⊙ and 13.3M⊙. This mass ratio and inclination was

chosen to increase the observability of precession.

Of the 50 events reported by the LIGO/Virgo, 13 exclude the aligned-spin mea-

sure χeff = 0 at 90% confidence [187, 2, 57]. The other 37 observations peak at

χeff = 0 [2, 57]. Based on this, studies have shown that it is likely BHs in binaries

have low spin magnitudes [74, 121, 122, 123]. For this reason, in our standard con-

figuration the BH spins were chosen such that there is zero spin aligned with the

binary’s orbital angular momentum, χeff = 0. We introduce precession by giving the

more massive BH a spin of 0.4 in-plane and leaving the second BH with zero spin;

two-spin effects are generally far weaker than the dominant precession effect, which

exhibits the same phenomenology as a single-spin system [188, 110]. From Eq. (2.5)

we see that this gives us a system with χp = 0.4. The opening angle for the binary

when the signal enters the detector’s sensitivity band is 10◦ and the average value

of the parameter b = tan(β/2) is b = 0.11, from Eq . (2.27). The signal is simulated

using the IMRPhenomPv2 waveform model that incorporates precession effects, but

not higher harmonics (ℓ > 2) in the signal [84, 189].

Our “standard” simulated signal was chosen to be more favourable to preces-

sion measurements than typical LIGO-Virgo observations. Assuming systems are
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distributed uniformly in binary orientation, masses drawn from a power law distri-

bution and spins drawn from a low isotropic distribution (see Ref. [123] for details),

we expect that 4 in every 100 binaries detected by LIGO-Virgo will be inclined at

angles greater than 60° and have b > 0.11.

The sky location of the binary was chosen to have RA = 1.88 rad,DEC = 1.19 rad

(we investigate the effect of this choice in 4.4 c). The coalescence time is t =

1186741861 GPS (corresponding to the merger time of GW170814 [190]). The po-

larization angle, defined by the orientation of the orbital plane when entering the

sensitive band at 20Hz, is ψ = 40°. The two harmonic approximation is calculated

in the J-aligned frame (ẑ = Ĵ). In this frame, the polarization angle is ψJ = 120°,
which gives antenna factors for H1 of F+ = 0.34 and F× = 0.53 and for L1 of

F+ = −0.45 and F× = −0.30, thus both detectors are roughly equally sensitive to

the two GW polarizations.

We injected the signals into zero noise. The zero-noise analysis results will be

similar to those obtained from the average results of multiple identical injections in

different Gaussian noise realisations. The simulated signal is recovered using the

LIGO Livingston and Hanford detectors with sensitivities matching those achieved

in the second observing run (O2) [2]. A low frequency cut-off of 20Hz was used for

likelihood evaluations, this frequency is also used as the reference frequency when

defining all frequency dependent parameters such as θJN . Both the LIGO Livingston

and Hanford sensitivities improved prior to the third observing run (O3) [191] and

are expected to improve further prior to the fourth observing run (O4) [192]. The

results presented in this work are unlikely to be affected significantly by these changes

and therefore we expect the main conclusions to be valid for O4 and beyond.

The SNR of the signal is fixed to be 20, corresponding to a moderately loud signal

for aLIGO and AdV observations [192]. This sets the distance to dL = 223Mpc.

The simulated SNR in the two detectors is 16.2 in L1 and 11.7 in H1. The simulated

precession SNR in each of the detectors is 3.7 and 3.4 respectively, giving a network

precession SNR of 5.0. Thus, we expect that precession will be clearly observable in

this signal.

b Parameter Estimation Techniques

We will adopt a parameter estimation methodology that uses matched filtering with

phenomenological gravitational waveforms and Markov Chain Monte Carlo (MCMC)

techniques to sample the posterior.

We begin by introducing the matched filtering formalisation for parameter esti-

mation. We assume that the time series received from the GW detectors can be

decomposed as a sum of the GW signal, h(t), plus noise, n(t), which is assumed

stationary and Gaussian with zero mean,

d(t) = h(t) + n(t). (4.1)
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Under the assumption of Gaussian noise, the probability of observing data d given a

signal h(λ) parameterised by λ = {λ1, λ2, ..., λN}, otherwise known as the likelihood,

is [27],

p(d|λ) ∝ / exp

(
−1

2
⟨d− h(λ)|d− h(λ)⟩

)
, (4.2)

where ⟨a|b⟩ denotes the inner product between two waveforms a and b and is defined

as in Eq. 1.9

The posterior probability density function (PDF) can then be computed through

a simple application of Bayes’ theorem,

p(λ|d) = p(λ)p(d|λ)
p(d)

,

∝ p(λ) exp

(
−1

2
⟨d− h(λ)|d− h(λ)⟩

)
,

(4.3)

where p(λ|d) is the posterior distribution for the parameters λ, p(λ) is the prior

probability distribution where
∫
p(λ)dλ = 1, and p(d) is the marginalised likelihood

where p(d) =
∫
p(λi)p(d|λi)dλi. Posterior distributions for specific parameters can

then be found by marginalising over all other parameters,

p(λi|d) =
∫
p(λ|d)dλ1...dλi−1dλi+1...dλN . (4.4)

In the idealised situation of zero noise, Eq. (4.2) has a maximum at h(λ) = h(λ0).

However, as can be seen in Eq. (4.3) the posterior also includes priors, this means

that, as well as effects due to noise, certain priors may cause the maxima to be

deflected away from h(λ) = h(λ0). This would then lead to Eq. (4.4) recovering a

biased posterior. In this work, we consider the effect of three closely related priors,

• Global : the prior used during the parameter estimation analysis. This reflects

our prior belief before observing any data,

• Conditioned : the global prior conditioned upon the posterior distributions of

other parameters from the same analysis. For example since χeff and χp are

correlated, any informative measurement of χeff restricts the range of plausible

values for χp and therefore modifies our prior beliefs about χp. The most simple

case of this would be if the z components of spin for both black boles were

1 (the maximum value for spin in a black hole) then we know there can be

no in-plane spin components for those black holes and as such our prior belief

conditioned on a measurement of χeff is that χp = 0.This prior has been used

in previous LVC publications, see e.g. [2],

• Informed : the global prior conditioned upon the posterior distributions from

a different analysis. Here, we use this to inform our expectations of the degree
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Simulated Median maxL

Precessing Non-Precessing Precessing Non-Precessing Precessing

Total mass M/M⊙ 40.0 40+3
−2 40+4

−2 40.161 40.507

Chirp mass M/M⊙ 16.22 16.5+0.3
−0.2 16.3+0.3

−0.3 16.459 16.113

Mass ratio q 2.0 1.8+0.8
−0.7 1.9+0.9

−0.7 1.895 2.191

Inclination angle θJN/
◦ 60.0 110+50

−100 120+40
−90 30.0 40.0

Precession phase ϕJL/
◦ 45.0 – 200+100

−200 – 80.0

Effective aligned spin, χeff 0.0 0.044+0.099
−0.084 −0.005+0.098

−0.092 0.06 −0.011

Effective precessing spin, χp 0.4 – 0.5+0.4
−0.3 – 0.554

Right ascension RA/rad 1.88 3+3
−3 3+3

−3 1.418 1.325

Declination DEC/rad 1.19 0.2+1.0
−1.2 0.2+1.0

−1.2 1.229 1.221

Luminosity distance dL/Mpc 223 500+200
−200 400+200

−200 451.834 372.706

Network SNR ρ 20.0 19.3+0.1
−0.2 19.7+0.2

−0.2 19.52 19.936

Precessing SNR ρp 5.05 – 4+2
−2 – 4.649

Table 4.1: Table showing the simulated and inferred parameters for the “stan-
dard” injection when recovered by a non-precessing (IMRPhenomD) and a precessing
(IMRPhenomPv2) waveform model. We report the median values along with the
90% symmetric credible intervals and the maximum likelihood (maxL) value.

of precession given the results from a non-precessing analysis. See Section 4.6

for details.

c Parameter recovery

We performed parameter estimation on the signal using the LALInference [52]

and LALSimulation libraries within LALSuite [193]. Parameter recovery was

performed with the IMRPhenomPv2 model [189, 84], which matches the simulated

signal to remove any systematic error caused by waveform uncertainty, and the

corresponding IMRPhenomD aligned-spin waveform model [108, 107], which does

not include any precession effects. Additionally, all analyses used exactly the same

priors as those used in the LIGO-Virgo discovery papers, for details, see Appendix

B.1 of [2]. All post-processing was handled by the PESummary python package[153].

Tab. 4.1 summarises the key results for the standard configuration. All uncer-

tainties are the 90% symmetric credible intervals.

We begin by comparing the overall differences between parameter recovery with

the precessing, IMRPhenomPv2, and non-precessing, IMRPhenomD, runs. From the

table, we see that the maximum likelihood SNR for the non-precessing model is,

as expected, lower than for the precessing waveforms. This can be easily under-

stood from the two-harmonic approximation. Since the precessing waveform is well

approximated by the sum of two non-precessing harmonics, we would expect the

non-precessing recovery to accurately recover the more significant of these two. If

that were the case, the we would expect that,

ρ2D ≈ ρ2 − ρ2p, (4.5)

and this is indeed the case, as ρD = 19.52, ρ = 19.94 and the recovered power in the

second harmonic is ρp = 4.6. Furthermore, we see that the recovered waveforms con-
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Figure 4.1: Comparison of the simulated precessing (green), non-precessing maxi-
mum likelihood (red), precessing maximum likelihood (black) and dominant precess-
ing harmonic (blue) waveforms as a function of frequency. Waveforms are projected
onto the LIGO Hanford detector.

firm this expectation: the recovered waveform when we include precession matches

well with the simulated signal, while the non-precessing run recovers a waveform

that matches the dominant harmonic, as show in Fig. 4.1.

We first consider the accuracy with which the masses and (aligned) spins are

recovered. As expected, the chirp mass of the system is well recovered, in that it

matches the simulated value with only a 2% uncertainty, which remains constant for

both precessing and non-precessing runs. As is well known, there is a degeneracy

between mass-ratio and spin, particularly during the inspiral part of the waveform

[76, 79, 175, 176], which leads to significant uncertainty in both parameters. In

Fig. 4.2 we show the recovery of the mass ratio and spin, for both precessing and

non-precessing runs. When the model used to recover includes precession effects, the

peak of the posteriors is located close to the simulated value (χeff = 0 and q = 2.0)

and, while the degeneracy leads to significant uncertainty in both parameters, the

mass-ratio distribution is clearly peaked away from q = 1. Interestingly, when we

recover with a non-precessing waveform model, the inferred aligned spin component

is systematically offset, with a peak at χeff ≈ 0.05. This can be understood by

recalling that precession induces a secular drift in the phase evolution of the binary,

and this can be mimicked by a change in the value of the aligned spin [62, 3].

This discrepancy has not been seen in LIGO/Virgo observations [2] as we have not

observed any systems with significant ρp (see Fig. 3.1). We investigate this further

in Sec. b, where we study the effect of varying the mass ratio.

For non-precessing binaries, it is generally not possible to accurately recover the

distance and orientation of the source, due to a well known degeneracy (see e.g.,

Ref. [83] for details), although the observation of higher signal harmonics can break
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Figure 4.2: 2d contour comparing q–χeff (left) and distance–inclination (right) de-
generacies when precession effects are included. Contours show the 90% confidence
interval. Bounded two-dimensional kernel density estimates (KDEs) are used for
estimating the joint probability density. The black circle indicates the simulated
values.

this degeneracy through an independent measurement of the source inclination [105,

83, 194]. Similarly, the observation of precession can break this degeneracy [195].

Precession causes an oscillation of the orbital plane leading to a time-dependence of

the orientation of the orbital plane relative to the line of sight. Equivalently, in the

two-harmonic picture, precession leads to the observation of a second harmonic and,

consequently, additional constraints on the binary orientation as the amplitudes of

the harmonics depend upon the viewing angle. In Fig. 4.2, we show the inferred two-

dimensional distance and inclination posteriors for the precessing and non-precessing

runs. As expected, the precessing run constrains the source to be away from face-on,

while the non-precessing run simply returns the prior. However, even with observable

precession, the simulated distance and orientation are not accurately recovered —

a significant fraction of the posterior support is for a system at a greater distance

and oriented closer to face-on. We will see how these measurements improve with

stronger precession in Sec. a.

The sky location of the source is not well recovered. The analysis was performed

with only the two LIGO detectors, and therefore we expect to recover the source

restricted to a ring on the sky, which corresponds to a fixed time delay between the

detectors [78, 81]. The location along the ring cannot be well constrained and, as

expected the inferred location is preferentially associated with sky positions where

the detector network is more sensitive. Thus, while the simulated sky location is

within the 90% region, it is not at or close to the peak. This impacts the recovery

of the distance, with the signal being recovered at larger distances, although the

simulated distance remains within the 90% range. In Section c, we show results
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from a set of runs with varying sky location, and verify that at sky locations where

the network is more sensitive, the distance posterior is more consistent with the

simulated value.
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Figure 4.3: A corner plot showing the recovered values of binary orientation θJN ,
precessing spin χp, precession phase ϕJL and precession SNR ρp. Shading shows
the 1σ, 3σ and 5σ confidence intervals. Black dots show the simulated values. The
grey histograms show the informed prior, see Sec. 4.6. There is a clear correlation
between the binary orientation and inferred precession spin, with signals which are
close to face on (cos θ ≈ ±1) having larger values of precessing spin, while those
which are more inclined having less precessing spin. The precession SNR only weakly
correlated with χp.

Lastly, we turn to measurement of precession. In Fig. 4.3 we show the recovered

distributions for binary orientation, θJN , precessing spin χp, initial precession phase,

ϕJL, and precession SNR, ρp. There is a clear correlation between the inferred

orientation and χp, with binaries that are more inclined having lower values of χp.

Neither of these quantities are directly observable, it is only the amount of observable

precession in the system, encoded by ρp, that can be measured. Thus the orientation

and spin must combine to give the right amount of power in precession, and we see

that this is the case — there is little correlation between the recovered values of
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ρp and the precessing spin χp. The inferred value of the precessing spin χp and

precession SNR ρp are both consistent with the simulated values. Specifically, the

signal has χp = 0.4 and this is consistent with the recovered value, although the

posterior distribution is broad, with support over essentially the entire range from

0 to 1. The precession SNR peaks well away from zero, giving clear indication of

precession in the system. However, the peak of the distribution occurs at 3.5, while

the simulated value is 5.0. We have deliberately chosen an event with significant

observable precession. Only a small fraction of the parameter-space volume leads

to such significant precession as shown by the informed prior on Fig. 4.3. This is

calculated by estimating the allowed values of ρp conditioned on the measurements

from a non-precessing analysis. See Sec. 4.6 for further details.

The precession phase, ϕJL, while not measured with great accuracy, does show

two peaks, which are consistent with the simulated value of 45° (0.8 rad). The pre-

cession phase can be inferred from the relative phase of the two precessing harmonics

using Eq. (2.33), provided the binary orientation is well measured. There is a clear

dependence with the binary orientation: if θJN < 90° then the peak is in ϕJL at the

simulated value and if it is greater then ϕJL is offset by 180°, to compensate for the

change in sign of the cos θJN terms in Eq. (2.33).

4.3 Impact of Varying Parameters

We now look at the effect of varying individual parameters one at a time on the

recovered posteriors, in particular focusing on the measurement of precession as

described by the posterior distributions of ρp and χp. All subsequent one-dimensional

investigations of the parameter space maintain a constant SNR (except for Sec.a

where the effect of the SNR is investigated). This is achieved by varying the distance

to the source.

Primary results presented in this section will be displayed in the form of violin

plots. We show the χp posterior distribution (left hand side, colored) compared

to the global prior (right hand side, white) unless otherwise stated. We show the

ρp posterior distribution as a single violin. Horizontal grey lines show the 90%

symmetric credible interval. Horizontal red lines show the simulated value. A solid

black line corresponds to the ρp = 2.1 threshold. Bounded kernel density estimates

(KDEs)are used for estimating the probability density. We use the same 2d contour

plots and multi-dimensional corner plots as described in Sec. c. Plots were generated

with the PESummary [153] python package.

a In-plane spin components

We first look at the effect of varying the amount of precession in the system, varying

χp from 0 to 1 in steps of 0.25. At χp = 1 we have maximal spin, all in the plane
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Figure 4.4: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp (right). Distributions are plotted for varying
χp. Parameters other than χp match the “standard injection” (see Table 4.1)

of the binary. The inferred values of precessing spin and precession SNR are shown

in Fig. 4.4. We observe, as expected, that increasing the in-plane spin leads to an

increase in the magnitude of precession effects observable in the system. With zero

precessing spin, there is no evidence for precession in the system; the recovered χp is

consistent with zero1. Similarly, there is no support for significant precession SNR,

with ρp constrained near zero. As χp increases, the amount of precession in the

system grows and the measurement of χp becomes both more accurate and more

precise. Fig. 4.4 shows the relationship between ρp and χp, and a larger value for ρp

enables a better measurement for χp.

Fig. 4.5 shows how the inferred mass ratio–aligned spin and distance–orientation

contours change as the magnitude of the in-plane spins change. When there is

no observable precession in the system, there is a clear degeneracy in both cases.

However, as precession effects become stronger the degeneracy between both pairs

of parameters is broken. If ρp is small then this can be explained by both a small

amount of precession observed at almost any inclination angle, or a large χp observed

close to face on, as seen in Fig. 4.3. Since precession effects are not strong enough

to provide an accurate measurement of the orientation, the degeneracy between

distance and θJN persists. When ρp clearly excludes small values, there is no support

for close to face-on signals, allowing a more precise measurement of the inclination

angle θJN , breaking the degeneracy with distance.

Stronger precession also allows for improved measurement of the mass ratio. The

opening angle β, and consequently the precession parameter b̄, increases as the mass-

ratio is increased, as can be seen from Eq. (2.2). Thus, when strong precession effects

are observed, the signal is inconsistent with an equal mass system. In addition, the

difference in frequency between the two leading precession harmonics depends upon

the mass-ratio [3], and this may also improve our measurement of q. This can also

1We do not expect the χp posterior to contain χp = 0 as there is no prior support there, however
the posterior is relatively well constrained at low precession.
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Figure 4.5: Two dimensional posteriors for (left) mass ratio and aligned spin, χeff ,
(right) binary orientation and distance. Contours show the 90% confidence interval.
Bounded two-dimensional KDEs are used for estimating the joint probability den-
sity. The black circle with corresponding horizontal and vertical lines indicates the
simulated values. For the simulated distance, a solid horizontal band indicates the
maximum and minimum simulated values.

be seen from the precession dynamics, where the precession rate of L around J , α̇,

depends the mass ratio, and the number of observable precession cycles corresponds

to improved accuracy in the measurement of the mass ratio [92].

As χp is increased, the peak of the recovered ρp distribution is closer to the

simulated value. This is likely due to a better measurement of the binary orientation

as shown in Fig. 4.5.

b Inclination

It is well known that the inclination angle will affect our ability to measure preces-

sion. In particular, from Eq. (2.33) we see that in the two-harmonic approximation

the second harmonic vanishes when θJN = 0◦ or 180◦. In this section we consider the

effect of changing the orientation of our standard configuration, which allows us to

quantify how it will manifest in realistic LIGO-Virgo signals. A related study has

looked at the effect at higher mass ratios [186].

The effect of varying θJN is shown in Fig. 4.6. For binaries where the total

angular momentum is nearly aligned with the line of sight, precession effects are not

observable, as is clear from both the ρp and χp posteriors. It is not until θJN ≥ 40°
that we begin to be able to see that the median value for ρp is larger than 2.1

which is the 90% value for the χ2 distribution. For 90% of the probability density

to be larger than 2.1, we need inclinations around 70°, this is then however a very

stringent threshold for detection. Although the accuracy of the measurement clearly

improves as we increase θJN , the uncertainty in the measurement of χp remains

large and even at θJN = 90° the posterior is very broad. This can be understood
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Figure 4.6: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp (right). Distributions are plotted for varying
θJN . Parameters other than θJN match the “standard injection” (see Table 4.1)

by considering the degeneracies shown in Fig. 4.3 for the standard signal and in

Fig. 4.7 for the θJN = 90◦ signal. In both cases, the measured quantity, ρp, is

relatively well constrained but neither the binary orientation nor χp are accurately

measured. The observed precession is consistent with both a highly inclined system

with lower precessing spin (i.e., low χp and large θJN ) or by a less inclined system

with higher precessing spin (i.e., high χp and small θJN ). Both of these will produce

similar observable effects in the waveform.

This allows us to explain the measured posterior for χp. At low inclination the

posterior is consistent with small values of χp. While we are unable to rule out

large χp, there is limited support as it would require the system to be observed very

close to face-on, otherwise precession effects become significant. At large values of

θJN , when precession is clearly observable in the signal, χp = 0 is excluded but the

distribution remains broad and extends to χp = 1.

c Total mass

We now vary the total mass of the system, keeping all other parameters including

mass ratio fixed, in steps of 20M⊙. As before, we keep the SNR of the system

constant at 20, so the higher mass systems are generated at a greater distance. The

inferred distributions for χp and ρp are shown in Fig. 4.8.

As the total mass of the source increases, the length of the waveform decreases,

as does the number of precession cycles, with the number scaling approximately in-

versely to the total mass (see Eq. (45) of [62]). From the two-harmonic perspective,

a small number of precession cycles leads to a large overlap between the harmon-

ics. Specifically, for the M = 100M⊙ system the overlap between the normalised

harmonics is ⟨ĥ0|ĥ1⟩ = 0.77, where ĥ = h/|h| and the inner product is defined in

Eq. (1.9). AtM = 20M⊙, the harmonics are close to orthogonal with ⟨ĥ0|ĥ1⟩ = 0.15.

The opening angle doesn’t change significantly, with b̄ = 0.14 at M = 20M⊙ and

b̄ = 0.21 at M = 100M⊙.
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Figure 4.7: A corner plot showing the recovered values of binary orientation θJN ,
precessing spin χp and precession SNR ρp for a system simulated at edge on. Shading
shows the 1σ, 3σ and 5σ confidence intervals. Black dots show the simulated values,
We see the strong correlation between θJN and χp reflecting the measurement of a
certain ρp

At lower masses,M ≤ 40M⊙, while the precessing spin is not tightly constrained,

it is clearly restricted to be non-zero and the precession SNR has essentially no

support for ρp = 0. For the 60M⊙ and 80M⊙ mergers, the precessing spin is still

peaked close to the simulated value while ρp peaks above 2.1 showing evidence for

observable precession, although both ρp and χp distributions do extend to zero.

For the high-mass system, M = 100M⊙, the χp posterior more closely matches

the prior and we are unable to exclude χp = 0. The inferred ρp distribution peaks

close to zero, and is consistent with no precession, even though the precession SNR

in the simulated signal is similar to the lower mass signals. This is likely due to the

breakdown of the two-harmonic approximation for this short signal. In particular,

for a high-mass system, the power orthogonal to the leading harmonic will depend

sensitively upon the initial precession phase ϕJL. The fact that the recovered value

of ρp is inconsistent with the simulated value may be due to this fact: the value of

ϕJL = 45◦ used in the simulation leads to maximal observable precession. Across the

full parameter space there are very few configurations with significant precession, so

this observation is dis-favoured by our priors. We explore the prior effects such as

this in detail in Sec. b.

d Polarization

The effect of changing the relative sensitivity to the two GW polarizations is clear

from Eq. (2.33). Recalling that b̄ = 0.11 and θJN = 60◦, we can express ζ (the ratio
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Figure 4.8: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp (right). Distributions are plotted for
varying total mass. Parameters other than the total mass of the signal match the
“standard injection” (see Table 4.1)
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Figure 4.9: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp (right). Distributions are plotted for varying
ψJ . Parameters other than ψJ match the “standard injection” (see Table 4.1)

of the amplitudes of the two harmonics) as

|ζ| = 0.15

∣∣∣∣ F+ + 2iF×
1F+ + 0.8iF×

∣∣∣∣ ,
Thus, ζ, and consequently the imprint of precession on the waveform, will be max-

imized when the detector network is primarily sensitive to the × polarization and

minimized when the network is sensitive to the + polarization. We can investigate

this by varying the polarization angle of the simulated signal, in steps of 10° from
the “standard” value of 40°. At ψ = 40°, the sensitivity to the two polarizations is

approximately equal, |F×|/|F+| = 0.9. It is largest for ψ = 20° where |F×|/|F+| = 25

and smallest for ψ = 60° where |F×|/|F+| = 0.04. This leads to a variation in the

precession SNR from ρp ≈ 3 to ρp ≈ 7.

In Fig. 4.9 we show the recovered posteriors for χp and ρp for a set of runs where

the precession is varied. The precession SNR varies in accordance with expectation

— it is largest at ψ = 20°, where the median of the posterior is at ρp = 6 and there
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is no support for non-precessing systems, and smallest at 60° where the posterior

extends down to ρp = 0. The amount of observable precesssion directly impacts the

inferred distribution for ρp. For the ψ = 60° signal, the posterior for χp is consistent
with zero, or small in-plane spins, and large values are excluded. Meanwhile for

ψ = 20°, χp < 0.1 is excluded while extremal in-plane spins are consistent with the

observation.

It is well known that precession leaves a stronger imprint upon the × polarization.

However, we are not aware of previous results showing how simply changing the po-

larization of the system can so dramatically change the observable consequences of

precession — from being barely observable when the observed signal is primarily the

+ polarization to being strongly observed in ×. Using the two-harmonic approxi-

mation, we are able to straightforwardly predict this effect and then verify it with

detailed parameter estimation studies.

4.4 Additional Results

In this section I present results from [141] which are relevant to the work but were

produced by other authors on the paper

a SNR

We now start with the fiducial run configuration described above and vary the SNR

of the simulated signal.

In the strong-signal limit, where the likelihood surface can be well approximated

by a multivariate gaussian, it is well known that the accuracy with which parameters

can be measured is generally inversely proportional to the SNR [105, 76]. However,

this is not always the case due to, for example, degeneracies between parameters

(see Ref. [196] for a discussion of the limits of this approximation).

Fig. 4.10 shows that as the SNR of the simulated signal increases, the accuracy

and precision of the inferred χp posterior distribution improves. As expected the

width of the 90% credible interval decreases approximately linearly with increasing

SNR. The improvement in the χp posterior distribution can be mapped to a linear

increase in ρp.

When the simulated signal has low SNR (ρ = 10), the recovered χp posterior dis-

tribution resembles the prior, implying that there is no information about precession

in the data. For this case, ρp matches the expected distribution in the absence of any

measurable precession — a χ distribution with 2 degrees of freedom. As the SNR

increases (ρ = 20-30), the 5th percentile of the the ρp distribution is comparable or

greater than the ρp = 2.1 threshold. This maps to the χp posterior distribution re-

moving all support for near-zero χp (χp ≲ 0.1). For larger SNRs (ρ > 40), the entire

ρp distribution is greater than the 2.1 threshold. This implies significant power from
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Figure 4.10: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp compared to a non-central χ distribution
with 2 degrees of freedom and non-centrality equal to the median of the ρp distribu-
tion (right). Distributions are plotted for varying SNR. Parameters other than the
SNR of the signal match the “standard injection” (see Table 4.1).
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Figure 4.11: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (left) and ρp (right). Distributions are plotted for varying
mass ratio. Parameters other than the mass ratio of the signal match the “standard
injection” (see Table 4.1).

precession. For these cases, we remove support for maximal precession χp ∼ 1.

As expected we find good agreement between ρp and a non-central χ distribution

with 2 degrees of freedom and non-centrality equal to the inferred power in the

second harmonic (median of the ρp distribution).

b Mass ratio and aligned spin

Fig. 4.11 shows how the inferred precessing spin and precession SNR varies with the

mass ratio of the system. As expected the mass ratio increases, an in-plane spin

on the larger BH leads to a larger opening angle and more significant precession

effects. For near equal-mass systems (q ≲ 1.5), the inferred χp posterior distribution

resembles its prior, and there is not significant power in precession, as shown by

the value of ρp. As the mass ratio increases, the inferred power in precession also

increases and for q ≳ 2.5, the 90% credible interval of the inferred ρp distribution is
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Figure 4.12: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior conditioned on the χeff and mass ratio posterior distri-
butions (left) and ρp (right). Distributions are plotted for varying χeff . Parameters
other than the χeff of the signal match the “standard injection” (see Table 4.1).

entirely above ρp = 2.1. At this stage, precession is clearly identified and χp ≈ 0 is

clearly excluded. In addition, the maximum value of χp is also bounded away from

maximal.

Fig. 4.12 shows how varying χeff affects our ability to measure precession. A

system with a large negative χeff results in a larger opening angle compared to an

equivalent system with a large positive χeff . Thus, based upon Eq. (2.2), we expect

the observable impact of precession to be greater for negative values of χeff and

smaller for positive values. The results are consistent with this expectation, in that

the precession SNR decreases with increasing χeff and the width of the recovered

χp distribution increases. However, for the χeff = 0.4 analysis, we find that the

range of χp is restricted, with both χp = 0 and χp = 1 excluded. This is not due

to the measurement of precession, but is actually due to the measured non-zero

aligned-spin component.

A non-zero measurement of χeff forces χp < 1 as the primary and secondary spin

magnitudes must be less than unity. For example, in the χeff = 0.4 analysis, we

measure χeff = 0.38+0.07
−0.07. Under the single spin assumption, this limits χp < 0.95.

Similarly, since we are using prior distributions that are uniform in spin magnitude

and orientation, the observation of a large aligned spin component leads to greater

support for a large in-plane spin component. This is shown in Fig. 4.13, where we

plot both the uninformed prior on the primary spin as well as the prior conditioned

on χeff = 0.4, which removes all support for χp ≈ 0.

The χp measurement for the χeff = 0.27 and 0.4 analyses are similar to the

conditional prior but do restrict the lower χp bound beyond prior effects. Although

the distribution for ρp does extend to zero, it still peaks above ρp = 2.1 indicating

some evidence, although not particularly strong, for precession.

As we vary the mass ratio and aligned spin, the length of the waveform will

change. In particular, the aligned spin and high mass ratio configurations produce
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Figure 4.13: 2d contours showing the prior 90% credible interval over the primary
spin magnitude and spin direction parameter space. Blue shows the global prior and
red shows the global prior conditioned on the χeff = 0.4 mass ratio and χeff posterior
distributions

longer waveforms than those with anti-aligned spins and equal masses [197]. In

principle, this will impact the measurability of precession, as longer waveforms allow

for a greater number of precession cycles in the detectors’ sensitive band. For very

short signals, with less than one precession cycle in band, the two leading harmonics

are no longer orthogonal (or even approximately so), which make it more challenging

to unambiguously identify the second harmonic. This is not an issue for the signals

considered here, but does become important when we vary the mass of the binary in

Section c. With a greater number of precession cycles, we will also be able to more

accurately measure the precession frequency (the frequency difference between the

harmonics), which may improve the measurement of mass ratio [92]. However, it is

still the precession SNR that determines the observability of precession. Finally, we

note that changing the mass ratio and aligned spin will change the overall amplitude

of the waveform. Since our study is performed at a fixed SNR, this simply leads to

the signals being placed at a larger or smaller distance and therefore doesn’t impact

the results presented here.

c Sky Location

We performed a series of runs where we altered the sky location of the signal,

keeping the masses and spins of the components fixed. We also maintained the

binary orientation θJN = 60°, but varied the distance and polarization of the source

to ensure that the SNR remained constant and that the relative contribution of

the + and × polarizations was consistent with the standard run. Furthermore, sky

locations were restricted to those for which the relative time of arrival between the

Hanford and Livingston detectors remains the same (i.e., we were sampling from the
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Label RA/rad DEC/rad ψ/◦ dL/MPc ρp dL/MPc

A 0.31 0.92 320 370 5.02 480+130
−180

B 0.80 1.15 345 320 5.09 470+140
−160

C 1.31 1.22 10 280 5.11 450+150
−160

D 1.88 1.19 40 220 5.05 430+160
−160

E 6.11 0.21 40 310 5.09 440+150
−170

Table 4.2: Table showing the simulated parameters for the sky location set (see
Sec. c). All other parameters match the “standard injection” (see Table 4.1). The
recovered luminosity distance (far right column) is also shown.
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Figure 4.14: Skymap showing the different simulated sky positions, see Table 4.2.
The solid lines show the 90% credible intervals and the markers show the simulated
sky position. Their respective colors matches their corresponding credible intervals.
We vary the distance and polarization of the source to ensure that the SNR remains
consistent with the standard injection in Table 4.1.

nearly degenerate ring on the sky of constant time delays). Details of the runs are

given in Tab. 4.2.

Table 4.2 shows that the inferred luminosity distance remains approximately con-

stant despite the simulated luminosity distance varying by almost a factor of two.

In addition, the recovered ρp distribution remains consistent with the “standard”

injection. Fig. 4.14 shows that the inferred sky position of the source remains essen-

tially unchanged, and consistent with locations of the detectors’ greatest sensitivity.

We note here that for this study we only considered the two detector LIGO net-

work. Including VIRGO would likely have considerably improved the precision of

the inferred sky location. We do not expect that this would affect any of the inferred

physical parameters or any of the main conclusions in this work.

4.5 Relating the precessing SNR to Bayes Factors

An alternative method for identifying evidence for precession can be calculated

within the Bayesian framework. We can calculate the Bayes factor, B, by com-

paring the marginalized likelihoods (see Eq. (4.3)) from two competing hypotheses

(A, B) [198],

lnB = ln p(dA)− ln p(dB). (4.6)
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Figure 4.15: Plot comparing the Bayes factor in favour of precession to the in-
ferred ρp distribution. Bayes factors were calculated by comparing the evidences
for a precessing analysis and a non-precessing analysis. The uncertainties on the
Bayes factors are calculated by taking the 90% confidence interval across multiple
LALInferenceNest chains. The solid line uses the median of the ρp distribution.
The shading gives the 1σ and 2σ uncertainties on the ρp measurement. The solid
black lines shows the ρp = 2.1 threshold.

Bayes factors have thus far been the gold standard for identifying evidence for pre-

cession within the GW community and have been used extensively in previous works,

see e.g., Ref. [186].

In the same way that Bayes factors can be used to quantify evidence for preces-

sion, it is also possible to quantify the significance of a GW signal by calculating the

Bayes factor for signal verses noise [51]. It has been shown that the log Bayes factor

for signal versus noise scales approximately with ρ2 [199]. Here, we investigate the

relationship between the Bayes factor in favour of precession and the precession SNR

ρp. Both of these quantities have been used together in recent works when assessing

the evidence for observable precession [1, 155, 186]

For a subset of the runs described in Section. b, we reran the analysis using the

aligned-spin waveform model IMRPhenomD. Bayes factors in favour of precession

could then be calculated and compared to the derived ρp posterior distributions.

Fig. 4.15 shows an approximately linear relationship between the log Bayes factor

(lnBF) and the square of the precession SNR (ρ2p). This is expected given that the

likelihoods recovered from the precessing waveform model will be larger than the

likelihoods recovered from the aligned-spin waveform model by a factor of exp(ρ2p/2).

The commonly used heuristic when assessing the strength of evidence using Bayes

factors is that 1 ≤ lnBF ≥ 3 is marginal evidence and lnBF > 3 is strong evidence in

favour of a hypothesis. From the line of best fit in the plots above we conclude that

if 90% (50%) of the ρp posterior distribution is above the ρp = 2.1 threshold, this

corresponds to a lnBF ≈ 3.5 (lnBF ≈ 0.8) and is therefore very strong (marginal)
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evidence for precession. The posterior distribution on ρp can therefore be approx-

imately mapped to the commonly used lnBF. We note here that the mapping,

although clearly linear, is relatively uncertain at the moment and all quantitative

maps contain a large amount of uncertainty. This uncertainty could be reduced by

including more runs in the analysis, however for computational reasons we avoided

multiple Bayes factor calculations. If one wantes to map them precisely then it

would be simple enough to increase the sample size, this would allow for precisely

assessing the strength of evidence for precession using ρp and would reduce the need

for additional parameter estimation runs using non-precessing models, which are

necessary to compute the Bayes factor. This reduction in computational cost will

not be significant for a single event, but for population analyses and large scale PE

studies this alternative metric could be extremely useful.

4.6 Predicting the Precession SNR Posterior

For the majority of simulations presented in this chapter, the distribution for the

precession SNR, ρp, has been peaked significantly below the simulated value, al-

though in nearly every case the simulated value does lie within the 90% confidence

region. While the naive expectation is that the recovered posterior will peak at the

simulated value, for complex parameter recovery where there are dependencies and

degeneracies between the different parameters, this is often not the case. We have

already seen that the distance is typically over-estimated in the simulations we have

performed — this is a well-known effect and arises for two reasons, first that the

network is less sensitive to sources from the chosen sky location than from other

locations consistent with the observed signal (as discussed in Sec. c), and second

that the signal was simulated significantly inclined from face-on, yet preferentially

recovered close to face-on (as discussed in Sec. b). Similarly, it seems likely that

the signals we have simulated have more significant precession effects (deliberately,

as we wish to understand the observability of precession) than the vast majority of

possible sources. Thus, our conjecture is that the likelihood peaks at the simulated

value of ρp but the posterior distribution will be biased to recover a smaller value

owing to the much larger volume of parameter space consistent with low ρp. To

demonstrate this, we calculate a prior distribution for ρp which uses the information

gleaned from a non-precessing analysis to take into consideration the much larger

volume of parameter space consistent with low ρp. We then show that when multi-

plying the likelihood by the prior, the predicted posterior for ρp agrees well with the

inferred posterior from a fully precessing parameter estimation analysis.

Let us first show that the likelihood peaks at the simulated value of ρp. The

two-harmonic approximation allows us to factorize the likelihood in Eq. (4.7) into

two terms: a non-precessing component (dependent on h0) Λnp(λ) and precessing

component (dependent on h1) Λp(λ),
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p(d|λ) ∝ exp

(
−1

2
⟨d− (A0(λ)h

0(λ) +A1(λ)h
1(λ))|d− (A0(λ)h

0(λ) +A1(λ)h
1(λ)⟩

)
∝ exp

(
⟨d|A0(λ)h

0(λ)⟩ − |A0(λ)|2

2
⟨h0(λ)|h0(λ)⟩

)
×

exp

(
⟨d|A1(λ)h

1(λ)⟩ − |A1(λ)|2

2
⟨h1(λ)|h1(λ)⟩

)
∝ Λnp(λ)× Λp(λ), (4.7)

For simplicity we use the approximations that ⟨h0|h1⟩ = 0 and that h0 is the dom-

inant harmonic, i.e., that the SNR in the h0 harmonic is larger than in h1. The

calculation proceeds analogously when h1 is dominant, and can be extended to the

general case by replacing h1 by its projection onto the space orthogonal to h0.

We can re-express the precessing contribution to the likelihood Λp in terms of the

precession SNR using Eq. (2.39). To do so, we introduce ρ̂p which is the simulated

value of ρp, and ρp(λ) which is the precession SNR for the set of parameters λ.

Furthermore, we define the simulated phase (as given in Eq. (2.32)) of the precession

harmonic as ϕ̂1 and the phase associated with the parameters λ as ϕ1(λ). Following

the procedure described in, e.g. Ref. [200], we can rewrite the precession likelihood

as

Λp(ρp, ϕ1) ∝ exp
(
−1

2

(
ρ2p(λ)− 2ρ̂pρp(λ) cos(ϕ̂1 − ϕ1) + ρ̂2p

))
. (4.8)

In general, we have no prior knowledge of the precession phase, so it is natural to

assume a uniform prior on ϕ1. We may then analytically marginalise Λp(ρp, ϕ1) over

ϕ1 to obtain,

Λp(ρp) ∝
∫ 2π

0
Λp(ρp, ϕ1) p(ϕ1) dϕ1 (4.9)

∝ I0(ρ̂p ρp) exp

(
−
ρ̂2p + ρ2p

2

)
.

We therefore see that the precession likelihood peaks at ρ̂p. We may then calculate

the posterior distribution for ρp using Bayes’ Theorem,

p(ρp|d) ∝ p(ρp)Λp(ρp) , (4.10)

where p(ρp) is the prior for the precession SNR.

Previously, in Ref. [3], we obtained a distribution for p(ρp|d) by maximising the

likelihood over A1. This is equivalent to assuming uniform priors for the real and

imaginary components of A1, and leads to a prior p(ρp) ∝ ρp. It follows from

Eq. 4.10 that this results in a χ2 distribution with 2 degrees of freedom. Here,

we instead use a prior for ρp which is informed by the information obtained from
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a non-precessing analysis, we refer to this as the informed prior. This informed

prior better represents our prior knowledge about ρp before explicitly accounting for

precession in our analysis.

The majority of parameters required to calculate the informed prior are already

given in the non-precessing results. The two exceptions are the amplitude of the

precessing spin χp and the initial precession phase ϕJL. As discussed in Section b,

we can obtain a prior for χp conditioned upon the other parameters, specifically the

mass ratio and aligned spin χeff , and this can be used to generate the informed prior

on ρp. The initial precession phase is unconstrained by the non-precessing parameter

recovery, this then allows us to assume it to be uniformly distributed. By calculating

the predicted posterior distribution for ρp based upon a set of non-precessing samples,

we may examine the effect of other measured parameters on the final ρp distribution.

For example, if the aligned-spin run favours a binary that is close to equal mass and

an orientation consistent with a face-on system, then our prior belief will be that the

precessing SNR will be low — it is only with unequal masses and systems misaligned

with the line of sight that there are significant precession effects in the observed

waveform. A prior belief of ρp peaking at low values will cause the predicted ρp

to peak at values lower than the simulated one and consequently so too will the

inferred posterior distribution for ρp inferred from a full 15-dimensional parameter

estimation analysis.

a Precessing signal

We now apply this conjecture to a precessing signal by attempting to predict the

posterior distributions for ρp. This allows us to investigate how much our recovered

posterior distributions may differ from the idealised case of a precession likelihood

function distributed about the simulated (true) value. In Fig. 4.16 we show the

results of this for the q = 4 simulation presented in Sec. b. This specific simulation

was chosen since this case has the largest ρp and corresponds to a simulation where

a non-precessing analysis is less justified. It is therefore a good case to show how the

combination of the informed prior and the additional likelihood from precession Λp

correctly estimates the large ρp. In Fig. 4.17, we show how the predicted posterior

distribution compares to the inferred distribution over the full range of mass ratio

simulations presented in Sec. b.

In Fig. 4.16 we show this predicted distribution, the informed prior, the χ2 like-

lihood function and the posterior distribution obtained from a full parameter esti-

mation analysis. By explicitly calculating the informed prior and likelihood terms

separately for ρp, we can see the effect of the prior on the ρp posterior. The prior

strongly disfavours large observable precession and therefore pulls the posterior to-

wards smaller values than the simulated value i.e. where the likelihood function

peaks.
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Figure 4.16: The predicted distribution for the precession SNR ρp (dashed orange)
calculated as the product of the precessing contribution to the likelihood (black
dotted line) and the informed prior of ρp (blue) for the q = 4 simulation presented
in Sec. b. For comparison, we show the inferred ρp posterior distribution from the full
15 dimensional parameter estimation analysis (solid orange) and ρp for the injection
(red line). The informed prior is peaked at low values of ρp causing the peak of the
posterior to be smaller than the maximum likelihood value.
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Figure 4.17: Violin plot comparing the observed ρp distribution (colored) from
a precessing analysis, and the predicted distribution (white) based on the aligned-
spin results and simulated value of ρp for the set of varying mass ratio simulations
presented in Sec. b. The predicted and observed distributions for precession SNR
are in good agreement, even though the ρp in the simulated signal (red lines) lies
above the peak of either distribution.

– 80 –



Chapter 4. Identifying where precession is Measurable

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
De

ns
ity

Informed Prior
Likelihood
Predicted Posterior
Inferred Posterior

 Distribution

Figure 4.18: Distribution of ρp in the absence of precession for the “standard in-
jection”. The inferred ρp distribution using the IMRPhenomPv2 approximant for
recovery is shown by the solid orange line. The dashed orange line shows the pre-
dicted distribution using samples collected from an aligned-spin analysis and setting
the simulated precession SNR to be 0. We also shows the χ2 distribution used pre-
viously ([3]) as a red dashed line

In Fig. 4.17, we show a comparison between the predicted and measured ρp

distributions for the set of runs with varying mass ratio presented in Sec. b. When

we calculate the posterior, explicitly accounting for the parameter space weighting

encoded in the informed prior on ρp, we find good agreement between the predicted

and the inferred ρp distributions and note that neither predicted nor inferred are

centred around the true value for the set of signals that we have simulated. Of

course, if we were to draw signals uniformly from the prior distribution, we would

expect to observe the inferred distributions of ρp matching with the simulated values.

b Non-precessing signal

We now look at the expected posterior distribution for ρp when there is no precession

in the the signal. As explained in Sec.4.6, previously a χ2 distribution with two

degrees of freedom was used to model the ρp distribution in the absence of any

precession (see Ref. [3]). This then led to the natural heuristic that ρp = 2.1 should

be the threshold for observable precession. Using Eq. (4.10) we can now use a

more informative prior on ρ̃p and obtain a more accurate estimate of the expected

posterior distribution in the absence of precession. We do this by using parameter

estimation samples from an aligned-spin model and setting the simulated precession

SNR to be 0, this then allows us to account for the effects of priors and different

noise realisations.
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In Fig. 4.18 we show the predicted and observed distributions for the preces-

sion SNR for a non-precessing signal. We use a non-precessing equivalent of the

“standard” injection as our simulated signal (i.e., we set χp = 0 while ensuring all

other parameters match those in Tab. 4.1). We inject with zero noise and use the

IMRPhenomPv2 model for parameter recovery.

The inferred ρp distribution is peaked at lower values that the χ2 distribution as

shown in Fig. 4.18. However using the prediction from the likelihood (Eq.4.7) and

the informed prior we are able to obtain a better estimate of the posterior in the

absence of precession. This estimate can be obtained without performing parameter

estimation incorporating precession, this therefore allows for a better metric for

determining whether or not there is measurable precession in the system.

The distribution for the informed prior on precession SNR will depend upon

the details of the signal. In particular, it will be strongly peaked near zero for

events that are likely to have small opening angle (eqivalently b̄), i.e., events that

are close to equal mass and have significant spin aligned with the orbital angular

momentum, while high mass-ratio events and those with large anti-aligned spins will

lead to greater support for large values of ρp. Furthermore, for binaries where the

orientation can be well measured, without precession information, for example where

higher modes are important, those that are close to face-on will lead to predictions

of smaller ρp while those that are edge-on will give larger values. Given that the

majority of signals observed to date are consistent with equal mass binaries, in most

cases the prior on ρp will tend to be peaked at low values. Consequently, the simple

threshold of ρp ≳ 2.1 as evidence for precession, remains appropriate and is likely

more stringent than suggested by the simple likelihood calculation.

4.7 Discussion

In most candidate astrophysical binary distributions, precession is likely to be first

measured in a comparable-mass binary [123]. We have considered a fiducial example

of such a possible signal (mass-ratio q = 2, SNR ρ = 20, and in-plane spin χp = 0.4,

such that the precession contribution to the total SNR is ρp = 5), and performed an

extensive parameter-estimation study that has systematically explored the impact on

parameter measurements of changes in each of the key source parameters: the SNR,

the in-plane spin magnitude, binary inclination, the binary mass ratio and aligned-

spin contribution, the binary’s total mass, the polarisation, and sky location. These

examples illustrate well-known features of precession signals [181, 77, 62, 97, 183,

184, 123, 185], and quantify their effect on both the measurement of precession, and

their impact on the measurement accuracy and precision of other parameters.

We have also verified that ρp provides a suitable and intuitive metric for deter-

mining whether or not we have measured precession, and shown that there is an

approximate mapping between ρp and the use of the Bayes factor to assess the ev-
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idence of precession. We suggest that given these results, future large scale studies

of precession can be made considerably computationally cheaper by computing ρp,

rather than a full Bayesian analysis.

We note that as ρp captures precession by identifying additional power beyond

a simple non-precessing waveform model, it could therefore be effected by phenom-

ena such as eccentricity and higher order multipoles. As BFs simply compare the

evidence for two models, one precessing and one non-precessing, using BFs as the

sole metric would also be biased by properties like eccentricity and higher order

multipoles.

However, a similar approach to the 2-harmonic decomposition for precessing sig-

nals has recently been applied to GWs including the effects of higher harmonics [200].

In future work, we will combine these approaches and explore the measurability of

precession in systems with significant evidence for higher harmonics, and the impact

of the combination of higher modes and precession upon parameter accuracy. It may

also be possible to account for eccentricity through a similar decomposition.

As highlighted in section 4.6 these decompositions provide powerful insights into

how the addition of physical phenomena introduce information into the analysis.

Here we show that the likelihood can be simply factored into precessing and non-

precessing contributions. This then allows us quantify the extra information that can

be gained from a precessing analysis and even predict the recovered ρp distribution

with or without these effects taken into consideration in the analysis.

The current study does not include higher harmonics, and uses a signal model

(IMRPhenomPv2) that neglects two-spin precession effects, mode asymmetries that

lead to out-of-plane recoil [201], and detailed modelling of precession effects through

merger and ringdown. Although these effects are typically small, so is the imprint

of precession on the signal, and it would be interesting in future to investigate the

impact of these additional features on our results. We also emphasize that, although

we consider it to be extremely useful to provide quantitative examples of the effects

of each of the binary parameters, these will necessarily depend on the location in

parameter space of our fiducial example. However, having chosen a configuration

from amongst what we expect to be the most likely signals, we hope that these

examples will act as a useful guide in interpreting precession measurements when

they arise in future gravitational-wave observations.
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Chapter 5

Density Estimation with

Gaussian Process

5.1 Introduction

The first detection of gravitational waves (GW) in 2015 [202] sparked a new era

of Astronomy. Several years on from that event the number of detected gravita-

tional waves keeps increasing and within this decade we expect to observe O(103)

signals [203] from compact binaries coalescences (CBCs). This huge progress brings

with it the challenge of efficiently analysing a large number of events. To address

these computational challenges, machine learning techniques are being increasingly

investigated within the field of gravitational-wave physics [63]. Many studies have fo-

cused on speeding parameter estimation of the source parameters of the signals with

various techniques, such as deep learning [204], variational autoencoders [205] and

autoregressive neural flows [206]. Other work has focused on combining detection

and parameter estimation with deep neural networks [207] as well as using neural

networks to perform the interpolation step in reduced order modeling to rapidly

generate surrogate waveforms [67, 66].

While the research efforts to speed up or completely revolutionise parameter esti-

mation are ongoing, the issue of how to effectively deal with a large number of results

from different events remains. In particular, how to streamline the analysis of the

results, while maintaining accuracy. In this work, we demonstrate the efficiency and

usefulness of using Gaussian processes (GP) for post-processing parameter estima-

tion results of CBCs. Applications of GPs in the field of gravitational waves span

a wide range of use-cases, such as marginalising waveform errors [208], regression of

analytical waveforms [209], predictions of population synthesis simulations [210], hi-

erarchical population inference [211] and Equation of State (EOS) calculations [212].

They have also been exploited for the development of fast parameter estimation with

RIFT sampler [213].

Here we exploit GPs to estimate probability density functions (PDFs) from pa-
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rameter estimation of gravitational-wave signals. Non-parametric density estimation

from a finite set of samples is an active research field in machine learning and statis-

tics [214, 215, 216].

For most GW analysis, histograms are usually the preferred estimators to visu-

alise the marginal posterior PDFs and to avoid over-smoothing sharp features, but

often are not convenient for post-processing analyses such as population inference.

These sorts of analyses either re-weight the posterior samples directly [217] or need

to estimate a continuous representation of the gravitational-wave posterior density

surface. Several density estimation methods such as Dirichlet processes [218], Gaus-

sian Mixture Models [219] and others have been employed to address this problem

specifically for gravitational-waves. As well as these, A closely related method to

GPs [220], Gaussian Kernel Density Estimators (KDEs) are sometimes employed in

gravitational waves’ analyses [221, 222, 223].

These KDEs are often effective but they assume correlations between parameters

to be linear and smooth, making this method sometimes limited in flexibility. There

exist many variations of the KDE algorithm to take into account specific interpo-

lations problems, but there isn’t a single implementation that is guaranteed to be

robust against all possibilities. A specific KDE implementation might solve an issue

in one case and be the cause of some inaccuracies in another [224].

We implement a single technique that can interpolate arbitrary multi-dimensional

slices in parameter space, which can handle both simple and difficult space morphol-

ogy, such as sharp bounds and non-Gaussian correlations. Our modelling tool is

based on the histogram density estimate, combining the histogram’s accurate treat-

ment of the samples’ features with the predictive capabilities of GPs. An additional

advantage of this technique is that it can provide a Bayesian measure of uncertainty

from the finite (and sometimes small) number of samples for post-processing analy-

sis. This measure of model uncertainty could then be incorporated into any analysis

where the marginalised posterior density is used.

In Sec. 5.2 we describe our density estimation technique in the context of gravitational-

wave parameter estimation and machine learning. We propose a series of example

applications in Sec. 5.3, which allows us to discuss the advantageous features of our

method. Finally, in Sec. 5.4 we summarise our findings and suggest future extensions

of this work.

5.2 Methods

In this section, we introduce the mathematical framework of the techniques dis-

cussed. In subsection a we discuss the Bayesian inference problem for gravitational

waves and the density estimation techniques currently employed in the field. In

subsection b, we outline the fundamentals of GPs and their interpretation for in-

terpolating a posterior density surface. We then describe the details of our GP
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implementation and how to model probability densities from parameter estimation.

a Bayesian inference and density estimators

The posterior probability we consider is generally a 15-dimensional surface for a

circular binary black hole (BBH) merger but can be 17-dimensional in the case

of a binary neutron star (BNS) merger due to the inclusion of parameters that

describe the physical structure of the neutron stars. The dimensionality depends on

the physical parameters describing the signals. Generally, these are distinguished

between extrinsic parameters, such as sky localisation, and intrinsic parameters,

such as the masses of the sources.

The posterior is however generally intractable and therefore must be evaluated

via stochastic methods such as Markov Chain Monte Carlo (MCMC) and nested

sampling, these are implemented (and specifically tuned for the gravitational wave

problem) in Bayesian inference packages such as LALInference [225] and bilby [53].

b Density estimation with Gaussian Processes

Definition and interpretation

GPs are interpolation methods with a probabilistic interpretation, they are built on

a Bayesian philosophy, which allows you to update your beliefs based on new ob-

servations. The process can be understood as an infinite-dimensional generalization

of multivariate normal distributions, such that any finite collection of points within

the domain of the process are related by a multivariate Gaussian distribution. As

data is observed, the GP is conditioned and the range of possible functions that can

explain the observations is constrained. As such a GP is defined by a mean, which

represents the expectation value for the best fitting function, and by a covariance

matrix, called a kernel, which measures the correlations between observations [226].

In the absence of observations, the GP predictions will revert to a prior mean func-

tion, which is usually chosen to be zero, and which properties are determined by the

kernel architecture. Mathematically this is written as:

f(x⃗) ∼ GP(m(x⃗), κ(x⃗, x⃗′)) (5.1)

where the mean and covariance are denoted as:

m(x⃗) = E [f(x⃗)]

κ(x⃗, x⃗′) = E
[
(f(x⃗)−m(x⃗))(f(x⃗′)−m(x⃗′))

]
(5.2)

We can then model any point on the surface as a Normal distribution where the

mean and standard deviation are defined by our process conditional on previous
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observations:

y∗|f, x ∼ N (µ(x∗), σ
2
∗) (5.3)

where we have that the predictive mean, µ(x∗), and variance σ2∗ are defined as:

µ(x∗) = κ(x⃗∗, x⃗
)κ(x⃗, x⃗)f (5.4)

σ2∗ = κ(x⃗∗, x⃗∗)− κ(x⃗∗, x⃗)κ(x⃗, x⃗)
−1κ(x⃗∗, x⃗

) (5.5)

These equations have a simple interpretation, the predictive mean is given as a

weighted combination of the previous function values. Where the weightings are

given by the similarity, as defined by the kernel response, between the new point x∗

and the previously seen values x. The uncertainty again has a similar interpretation,

it has a maximum at κ(x⃗∗, x⃗∗), which is the prior uncertainty. This uncertainty is

then reduced when there is a kernel response e.g. the more similar the training points

are to the point you are predicting then the more information you have about the

point and therefore the uncertainty is reduced.

The non-parametric nature of GPs makes this technique flexible, but it can be

computationally expensive as the whole training set needs to be taken into account

at each prediction. The standard implementation has O(N3) computations and

O(N2) storage, this then becomes prohibitive for ∼ 10k data observations or more.

To tackle this issue it is common to use sparse inference methods, which approximate

the conditioning of the GP over a set of M ≪ N ‘inducing’ points. The evaluation

over the inducing pointsM is then much cheaper than for an ‘exact’ GP resulting in

O(NM2) computations rather thanO(N3) [227, 228]. As well as sparse methods one

can exploit multi-GPU parallelization and methods like linear conjugate gradients

to distribute the kernel matrix evaluations which then allows for exact inference to

be performed on a short time scale [229]. In this work, however, we find that sparse

approximations were accurate enough to effectively model the marginalised posterior

surfaces that we were interested in. Moreover, once a GP has been ‘trained’ over

the data, it is possible to draw infinitely many function realisations from it without

recomputing the expensive covariance matrix.

A recognised advantage of GPs is reliable uncertainty estimate when making

predictions over unseen data. In this application, we are not interested in predicting

the value of the posterior in unexplored regions of the parameter space, but only in

generating a faithful model where we have posterior samples. In regions within the

space of parameters, the GP variance depends on our choice of training points, which

is useful to assess the accuracy of our density estimation. In terms of uncertainty

estimation this can be explained as our model having very low epistemic uncertainty

everywhere, we then seek to estimate the aleatoric uncertainty due to our model fit
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around the random fluctuations in the histogram densities which are used to train

the GP.

Model construction

In this application, we want to use a GP to estimate the marginalised posterior den-

sity for any subset of parameters. We train our GP using the normalised histogram

counts over a grid of points, i.e. the centroids of the histogram bins, that cover the

marginalised parameter space. This gives us a non-smooth, noisy (due to Poisson

errors) estimate of the density, we then use the GP to fit this this discrete set of

points to generate a smooth,continuous representation of the density surface.

An important choice when modeling a system using GPs is the choice of kernel,

this encodes your assumptions about the relationship or covariance between data

points. For all examples presented in this work we used a combination of the RBF

and Matern(12 or 5
2) kernels. Further technical details regarding this choice and

our data pre-processing scheme (which also had a significant impact on our model

accuracy) are included in Appendix 5.5 b.

We employ TensorFlow and GPFlow to implement our GP training infras-

tructure, which includes two inference schemes: exact inference for 1-2 dimensional

problems (O ∼ 1000 samples) and sparse inference for higher dimensionality due to

computational costs. As well as a difference in the inference scheme, when extending

this method to higher dimensions, our choice of training data changes. When creat-

ing the grid over four dimensions, due to the sparsity of the parameter space, we find

that the typical set has a volume of O(1%) relative to the total prior volume (this is

a common problem associated with the curse of dimensionality [49]). We, therefore,

choose to discard the empty bins and encode our knowledge of these points through

the choice of prior over our GP.

Since the model is constructed with converged posterior samples, there is no

probability support where the histogram bins are empty. To encode this, we set the

mean of the GP to be equal to zero, such that far away from the training data the

model will have a high variance but a mean of zero.

To estimate the density for a given region of parameter space we then simply

evaluate the GP at those parameters, i.e.

p(θ⃗ = x⃗∗|d) ≈ y∗|f, x
∼ N (f(x⃗∗), σ

2
∗)

(5.6)

The choice to set the GP prior to zero means that we would be allowing for

negative probaility densities, to avoid this we apply the ReLU function [230] as a

layer on top of the density evaluation. This sets all negative values to zero meaning

that some points in parameter space will be distributed as a truncated-Gaussian.

Due to bounded priors (e.g at mass ratio m2/m1 := q = 1), the posterior sur-
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face often presents sharp discontinuities and therefore the surface is only piece-wise

continuous. GPs are in principle flexible enough to model any surface including

piece-wise continuous ones, however, we found in practice that it is more favourable

to decompose our density function into two components, one smooth, continuous

function, and one step function. We do this by multiplying the density and our GP

estimate by a step function, which is zero at any discontinuities and 1 otherwise.

π(x⃗∗) =

1 if xmin < x⃗∗ < xmax

0 otherwise

Multiplying by this step function is then analogous to imposing a prior over our

posterior surface, i.e. it allows us to rewrite the equation 5.6 as

p(θ⃗ = x⃗∗|d)π(x⃗∗) ≈ (y∗|f, x)π(x⃗∗)
p(θ⃗ = x⃗∗|d) ∼ N (f(x⃗∗), σ

2
∗)π(x⃗∗)

(5.7)

We are free to encode our knowledge in this way and perform the decomposition

as we do not change the original posterior surface that we would like to model in any

way. This enhances the robustness of the model against all discontinuities, including

artificial cuts in parameter space that might be required for post-processing analysis.

The variance of the GP depends on the kernel, but also on the noise variance

parameter of the likelihood. Usually, the noise variance is given by a single number,

i.e. homoskedastic noise, which reflects the random fluctuations of the posterior

samples. In low-dimensional examples, where we employ an exact inference scheme,

we can assign multiple values to the noise variance, i.e. heteroskedastic noise [231].

In such instances, we are then able to propagate the error from the histogram on

the density estimate, which is simply given by the Poisson noise in each bin σbin ∼
√
Ncounts. Incorporating heteroskedastic errors within a sparse inference scheme is

an area of current research in the field of machine learning [232].

It is common practice to build an interpolation of a posterior surface in order to

draw more samples from it. As our model is implemented in TensorFlow we can

quickly draw more samples from the marginalised posteriors using the many samplers

available in the package library, such as Hamiltonian Monte Carlo (HMC) [49].

5.3 Results

In this section, we present our model and a series of example applications for gravita-

tional waves. In Sec. a we illustrate the method on a simple 1-dimensional analytical

example. In Sec. b we show examples of common post-processing applications for

our density estimation tool. Finally, we discuss our treatment of GP model uncer-

tainty and how we propagate it to produce uncertainty on the marginalised posterior
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Figure 5.1: Interpolation of a bounded one-dimensional inverse gamma density func-
tion (in solid black) with our GP-based method (in solid orange). The histogram
points used to generate the model and its uncertainty are shown as black points with
error bars. Alternative KDE methods are shown for comparison as coloured dashed
lines.

distributions.

a Analytical 1D example

Our proposed GP modelling technique is by construction flexible and robust against

all distribution morphologies. To illustrate this, we construct a non-trivial 1-dimensional

example: an inverse gamma function f(x, α) = x−α−1

Γ(a) exp(− 1
x), with α = 2 and a

sharp bound at x = 0.75.

In Figure 5.1 we show our GP model mean prediction and uncertainty, com-

pared to a Gaussian KDE from scipy.stats [233] and two KDE transformations

implemented in PESummary [234], a commonly used post-processing package in

gravitational-wave astronomy. The reflection and transform KDEs, are examples of

augmentations on the standard (Gaussian) KDE, and are generally used to model

difficult features introduced at the boundaries of posterior distributions. Both of

these improvements to the standard KDE apply a transformation at the boundary

which implicitly assumes some distributional features (see [234] for more details). A

Gaussian Process on the other hand makes no assumptions about the distributional

shape and can in principle fit any distribution.

We show an example in Fig 5.1 where our GP is able to well model the posterior

and the reflection KDE provides a better fit than the other KDE methods. The GP
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is slightly too high, relative to the underlying function, this is seen with both the

KDEs and is due to random poisson errors in the samples from the function that

we use to fit the models. This highlights a useful feature of the GP however as the

uncertainty region captures the true model despite the mean being too high.

The transform KDE is more sensitive to noisy features in the samples and can

present artifacts, while the Gaussian KDE over-smooths the sharp cut at 0.75. Fol-

lowing this illustrative example, there are others where the reflection KDE is less

appropriate. This example was chosen to highlight a case where the choice of KDE

is important to fit the distribution well. While synthetic and not representative,

it does illustrate features that can and do happen in gravitational-wave astronomy

when analysing posteriors. In examples such as this our GP model provides an al-

ternative method to KDEs, requires less hand-tuning, and also provides a Bayesian

estimate of the error on the density estimate, as propagated from the histogram

errors.

b GW Applications

We now look at a few important post-processing problems in gravitational-wave

astrophysics. The training time required to generate the models presented in this

section is of the order O(2mins), with variations due to the dimensionality of the

surface and to the inference scheme employed. To assess the quality of the model

in more than one dimension we decide to re-sample the surrogate surface and com-

pare the new samples to the original set, part of which has been used for training.

All samples used in the following sections are taken from the Bilby GWTC-1 cata-

log [235].

Catalogue of gravitational-wave properties

Gravitational-wave detection parameters can be distinguished between those intrin-

sic to the sources, such as the component masses, and those extrinsic to them, such

as the sky location. Interpolating the marginal posteriors of combinations of these

parameters is often necessary for post-processing. The following example illustrates

a simple case where one can use a GP to interpolate the intrinsic parameters for a

given detection. In practice, this could then be repeated for entire GW catalogues

so that these interpolated posterior surfaces are then combined for population infer-

ences on the sources of GWs.

For this example, we interpolate the marginal posterior distribution of the intrin-

sic parameters of the first BBH detection GW150914 [236], parametrised as follows:

chirp mass M, mass ratio q = m2/m1 (where m1 > m2), effective inspiral spin com-

ponent χeff and effective precession spin χp, defined by the spin components that

lie in the orbital plane [237]. In Figure 5.2 we compare the marginal distributions

sampled from our GP model to the original PE samples. We can visually assess that
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Figure 5.2: Corner plot of the intrinsic parameters of GW150914, drawn from our
GP surrogate (in orange) compared to the original PE samples (in black).

GP samples PE samples

Chirp mass M/M⊙ 30.95+0.93
−0.97 30.96+0.86

−0.89

Mass ratio q 0.87+0.09
−0.12 0.87+0.09

−0.12

Effective precession
spin component χp

0.33+0.26
−0.19 0.32+0.27

−0.19

Effective inspiral
spin component χeff

−0.04+0.07
−0.07 −0.04+0.06

−0.07

Table 5.1: Source properties of the intrinsic parameters of GW150914, original sam-
ples and samples from the GP interpolation.

the correlations between parameters are accurately reconstructed as the 50% and

90% contour lines overlap for each pair of parameters. In Table 5.1 we report the

mean and 90% confidence intervals of the samples drawn from our model and which

we find in agreement to the values from the original samples within the expected

uncertainty.

Accurate interpolation for conditional integrals

Many astrophysical inquiries in gravitational-wave astronomy require evaluating con-

ditional integrals across parameter space, which in turns require sampling additional

posterior points constrained to a hyperplane. This is for instance the case when

estimating the Equation of State (EOS) from BNS collisions, an important post-

processing analysis that allows us to probe extreme conditions of matter [165]. This

is possible because the compactness of the objects is imprinted in the gravitational

waveform and can be measured by the tidal deformability parameters. The EOS inte-

gral involves evaluating the marginal posterior distribution over the masses (M, η)

– 92 –



Chapter 5. Density Estimation with Gaussian Process

Figure 5.3: Corner plot of the mass and tidal parameters of GW170817, drawn from
our GP model (in orange), compared to original PE samples in black.

and tidal parameters (Λ̃, δΛ̃), subject to constraints between those parameters as

parametrised by the EOS.

There are instances where the marginal posterior for these parameters contain

non-linear correlations, as is the case for the first BNS event GW170817 [238]. We

test our interpolation model over this 4-dimensional surface. In Figure 5.3 we com-

pare the marginal distributions sampled from our GP model to the original PE

samples. We see that our GP is able to faithfully represent the marginalised pos-

terior surface, in particular, we see that there is good agreement between the 90%

credible intervals. When looking at the 2d contours see that the 50% and 90% levels

agree very well and that the GP model is able to capture degenerate features and

bi-modalities. Finally, our interpolation of the surface can be re-sampled efficiently

and for this example, we obtained 750k samples in a few O(5mins) (depending on

hardware) using an HMC sampler. Hence this method can be advantageous over

traditional methods, where the interpolation is generally performed with a Gaussian

KDE by transforming the symmetric mass ratio parameter to be log(0.25− η) [222]

and there is no measure of uncertainty over the fit.

Propagating GP uncertainty

GPs provide a fully Bayesian estimation of the uncertainty over model predictions,

as the full covariance matrix between posterior samples is computed. In each of the

GW applications shown so far we have utilised the mean prediction of the GP func-

tion. This uncertainty measurement can be very important in many cases, however

here we illustrate with a single example how one can extract the uncertainty from

the modelling. Accurate localisation of a gravitational signal can be of fundamental
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importance for multi-messenger astronomy [239, 240] and for measurements of cos-

mological parameters with dark sirens [241]. As the localisation accuracy decreases,

the marginal posteriors for the sky location parameters can look degenerate and

non-Gaussian. We build an interpolation of the sky location parameters, right as-

cension (ra) and declination (dec), of GW150914. This event was observed by only

two detectors, so albeit its high SNR, its sky location presents a typical ring-like

shape.

The uncertainty measure produced by the GP is a Gaussian distribution about

any given point on the surface, when considering the entire surface the combination

of these Gaussians can be interpreted as a range of plausible density surfaces for any

given confidence level (e.g. 2σ). The uncertainty on the 1D marginal distributions

can then be obtained from an upper and lower bound for each point in the surface

(given by the GP error σ, equation 5.3) and then marginalising these across one

of the dimensions to obtain an uncertainty estimate about the mean 1D predicted

posterior density. For brevity let ra = α, dec = δ.

p(α|d) =
∫
δ p(α, δ|d) δ

p(α|d)± σ(α) =
∫
δ(p(α)± σ(α, δ)) dδ

(5.8)

In 2D and especially when considering sky localisation, we are also interested

in the contours that enclose a given volume of probability density to plan optimal

observation strategies in the search for electromagnetic counterparts. We propagate

the uncertainty estimate produced by the GP (in the space of all realisations from

the GP) to the physical parameter space on credible interval contour levels. We

define a function, fq, which truncates the posterior density function as follows:

fq(α) =

p((α, δ|d) if p((α, δ|d) ≥ q

0 otherwise

Such that the integral of fq contains a given proportion of the total probability

mass determined by the desired confidence level i.e.∫
α,δ
fq(α, δ|d) dδ dα = cl (5.9)

For a given a confidence level cl (usually the 50% and 90% levels), solving equation

5.9 for q gives qcl, the value of the posterior density of the relevant contour. We

obtain the contour, and the error on the contour, by plotting the (ra,dec) values for

which:

p(α, δ|d) = qcl

p(α, δ|d)± σ(α, δ) = qcl
(5.10)
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Figure 5.4: Central panel: contours of the 2D sky-location of GW150914, the GP
model mean prediction and uncertainty (in orange) is compared to the points used to
construct the fit (black crosses). Top and left panels show the GP model projections
in 1D, compared to the original PE samples. All plots show the 2σ uncertainty
around the density estimate as a shaded band

Geometrically, we are building an uncertainty envelope around the mean GP

prediction. The uncertainty on the contour is then given by the location in physical

parameter space where the edges of that envelope intersect the plane defined by the

mean prediction contour.

In the central panel of Fig 5.4 we show the samples used to construct the model

as well as the 50% and 90%, contours of the GP interpolation in 2D with their

respective 2σ uncertainty (the shaded regions). The top and left panels of Fig. 5.4

show the mean prediction and its 2σ uncertainty marginalised over each parameter

by a simple integration of the density over its projection.

The inclusion of the uncertainty highlights several features. On the central inset

in Fig 5.4 we see that the lower bound on the 50% contour is composed of three

islands which correspond to peaks, while for both the mean and the upper bound

these islands are connected to obtain a smooth surface at this contour level. For the

outer 90% contour we see that the differences mainly manifest in the tails, where

as expected the upper bound follows the well known ring around the sky slightly

further. This matches our intuition that there is possibly more density around the

ring than around the edges of the contour in the middle of the plot.

The ra and dec parameter space highlights several interesting features which are

in principle difficult to model, such as their highly curved correlation. For this
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particular example the simple kernels used throughout the study were appropriate.

However it is important to note that in general this may not be the case, and possible

enhancements include simply encoding the 2π wrapping formaly using a periodic

kernel, or in order to account for the non-trivial correlations between parameters a

non-stationary kernels such as deep kernels [242] which would effectively allow for

position dependent length scales.”

5.4 Conclusions

We have presented an alternative method for density estimation of marginal PDFs

for gravitational-wave parameters. Our method combines the desirable features of

histograms to the extrapolation capabilities of KDEs, within a Bayesian framework.

The choice of histogram binning determines the resolution of the PDF, while the

kernel of the GP allows the interpolation to be flexible over non-Gaussian correlations

and yet smooth. The noise variance parameter of the GP ensures that sources

of stochastic noise from the histogram density estimation are taken into account.

In cases where we employ an exact inference scheme, this noise variance can be

evaluated for each histogram bin and it is equivalent to heteroskedastic errors over

the density estimation. This allows to fully propagate the uncertainty from the PE

samples. We plan to extend this method and fully incorporate uncertainties, as

we showed in this work for the sky localisation example, over higher-dimensional

posterior surfaces in future work.

This method may be preferable to other methods such as KDEs, a closely re-

lated method which is sometimes adopted in the field, depending upon the use-case

requirements. It comes with three main advantages: it is suitable for most interpo-

lation problems commonly encountered for gravitational-wave marginal posteriors;

it provides a Bayesian measure of uncertainty over the model predictions; it allows

to quickly re-sample the interpolation using HMC and other samplers available in

TensorFlow . We presented a series of examples where we know the accuracy of

the interpolation is important, such as EOS calculations and sky localisation. As

the number of events will increase in the next observing run (O4), we need reliable

tools to post-process the large volume of results.

This work has highlighted the power of GPs to fit a gravitational-wave posterior

surface, a natural extension of this work is to generate a surrogate for the entire

likelihood surface, similar to what was done by the authors of [243] using a random

forest regressor. Such use of GPs has been already investigated in the field of

cosmology to model the Planck18 posterior distribution [244]. This work has laid the

foundation for us to apply a similar methodology to the gravitational-wave problem

in a future work which is currently in preparation [245]. This has applications such as

Bayesian quadrature [246], efficient jump proposals [247, 248] and more general use

of the GP variance to guide the sampling process. The surface learned by the GP can
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be evaluated directly for a given set of parameters, therefore, avoiding the need to

compute expensive waveforms. An example where such likelihood surrogates could

be exploited is fast re-sampling with new astrophysical priors. This could replace

an often difficult re-weighting procedure, especially when a prior assumption limits

the number of available samples in a region of interest [249].
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5.5 Appendix: Technical details of the GP model

a Data pre-processing

Data pre-processing, often referred to as data-set standardisation, is a common

practice within the realm of machine learning and it can have a very high impact on

the accuracy of the model. Our posterior samples have a wide range of values, some

having bounds [−1, 1] and some reaching O(103). We re-scale our posterior samples

such that each parameter ranges between [0, 1] by using the following transformation:

⃗̃
θd =

(θ⃗d −min(θ⃗d))

(max(θ⃗d)−min(θ⃗d))
(5.11)

where
⃗̃
θd is the vector of transformed samples and the min and max are evaluated

for each parameter (i.e. each dimension of the posterior samples vector). The

approximate marginalised posterior is scaled according to the z-score, such that it

has zero mean and unit variance:

p̃(θi|d) =
p(θi|d)− µp(θi|d)

σp(θi|d)
(5.12)

where p̃(θi|d) is the transformed marginalised posterior, µp(θi|d) and σp(θi|d) are re-

spectively the mean and standard deviation of the marginalised posterior points. All

pre-processing in this work is performed using Scikit-Learn [250].

b Kernel design

The kernel is defined as the prior covariance between any two function values. Our

prior knowledge about the morphology of the posterior can be encoded via this

covariance, as it determines the space of functions that the GP sample paths live

in. The radial basis function (RBF) or squared exponential kernel is the most basic

kernel and it’s given as:

κRBF(x, x
′) = σ2 exp(−1(x− x′)2

2ℓ2
) (5.13)

where the Euclidian distance between (x, x′) is scaled by the length-scale parameter

ℓ (measure of deviations between points) and the overall variance is denoted by σ2

(average distance of the function away from its mean). Functions drawn from a GP

with this kernel are infinitely differentiable.

For our application, a more complex kernel architecture that can capture the

correlations between parameters is needed. We need smoothness over small scale

features, such that we don’t model random noise fluctuations of samples, and flex-

ibility over the large scale characteristics of the posterior. For this purpose we
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employ a combination of RBF and Matern, which is a generalisation of the RBF

kernel with an additional smoothness parameter ν. The smaller ν, the less smooth

the approximated function is:

κMν(x, x
′) = σ2

21−ν

Γ(ν)

(√
2ν

(x− x′)

ℓ

)ν
Kν

(√
2ν

(x− x′)

ℓ

)
(5.14)

We choose ν = (12 ,
5
2) depending on the specific morphology of the posterior,

as this kernel is responsible for encoding its overall shape such as sharp boundary

features. The resulting kernel equation is given by:

κGP (θ⃗d, θ⃗d
′
) = κRBF × κM52

The kernel multiplication is equivalent to an AND operation, as it corresponds to an

element-wise multiplication of their corresponding covariance matrices. This means

that the resulting covariance matrix will only have a high value if both covariances

have a high value. We also apply automatic relevance determination (ARD), which

modifies the kernel such that for each dimension an appropriate length scale is chosen

[251].
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Exploiting GPU and Autodiff

capabilities to rapidly sample

gravitational-wave posteriors

distributions

6.1 Introduction

Gravitational-wave astronomy is progressing rapidly. There have currently been

three successful observing runs, resulting in around fifty confirmed observations (de-

pending upon the choice of threshold for a detection) of Compact Binary Coalescence

(CBCs)[2, 57, 252, 158, 159]. With a planned fourth observing run using upgraded

detectors on the horizon, as well as further future improvements, we expect the num-

ber of detections to grow rapidly over the next decade, potentially reaching around

event a day [203]. This increase in detections will provide new insights and allow us

to understand the universe as never before, however the computational challenges

associated with analysing the growing number of detections will become a major

data analysis problem.

One of the major bottlenecks in the data analysis pipeline is estimating the source

parameters of detections which pass the detection threshold, to do this one must run

computationally expensive sampling routines which can often take O(days-weeks)

to converge depending on the source parameters [52, 253]

These parameter estimation routines involve running stochastic samplers which

numerically approximate the posterior by drawing many samples from it . This pro-

cess is computationally expensive for two reasons, the first is that calculating a single

likelihood evaluation requires generating a template waveform which is relatively ex-

pensive. A waveform which does include precession can take between 1-2000 ms to

generate a single template [67], adding in more physics such as precesion or higher
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modes can increase this considerably. The second reason is that gravitational-wave

posterior surfaces are generally complex and are therefore difficult to sample from.

Where difficult to sample from means that to draw a single independent sample

from the posterior may require taking many likelihood evaluations [253]. This ineffi-

ciency in the sampling effectively means that we must do a relatively slow operation,

waveform generation, a huge number of times resulting in large computational costs

.

In this work we show two approaches to addressing this problem, either of which

can in principle reduce the wall time required to complete a parameter estimation

analysis. Both of these methods make use of recent developments in hardware and

in waveform surrogate modelling[67], The first approach is effectively a brute force

method in which we run random-walk metropolis MCMC to draw samples. This

method is inefficient in terms of samples per likelihood evaluations however we are

able to rapidly evaluate the likelihood in large batches, meaning that it is efficient in

terms of wall time. The second approach we show in this work is to use the automatic

differentiation (Autodiff ) [70, 69] capabilities of Tensorflow to compute the gradient

of the likelihood which then allows us to perform gradient based sampling such as

Hamiltonian Monte Carlo (HMC) [68, 49].

HMC has been proposed in the gravitational-wave community as a way to re-

duce the computational cost of parameter estimation, however previously it required

performing some approximation or fit to the gradient which adds additional costs

[254, 255]. The method presented here requires no additional steps, we use a neu-

ral network surrogate model1,implemented in Tensorflow and are therefore able to

trivially compute the gradients using Autodiff

Recently a lot of work has been carried out which looks at replacing sampling

using a variety of machine learning methods such as, [206, 256]. These methods

generally involve learning the inverse likelihood function in such a way that allows

one to produce samples very efficiently. Currently the adoption of these methods

in production analysis has been slow, mostly due to the lack of asymptotic guaran-

tees that are implicitly present when using stochastic methods. These asymptotic

guarantees, along with years of experience which have resulted in useful sampling

diagnostics ensure that the results produced by them are reliable and well under-

stood. In this work we argue that sampling should not be abandoned as the primary

method for performing parameter estimation and show that using modern hardware

and techniques, we may be able to produce a parameter estimation analysis using

stochastic sampling in a practical timescale.

We show an example of this where using these methods we are able to produce

a converged parameter estimation analysis in tens of minutes. We find that for the

1We are not necessarily restricted to using surrogate models, if the waveform model can be evalu-
ated in Tensorflow (or any other language such as PyTorch that allows for automatic differentiation)
then it is trivial to use gradient based sampling.
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examples presented here the brute force method is faster than gradient based sam-

pling, however it is likely that as the dimensionality and difficulty of the parameter

space increases gradient based methods will be more important and therefore this

may be an important tool going forward.

6.2 MCMC methods

The most common MCMC algorithm is known as the Metropolis-Hastings algorithm.

This algorithm works by proposing new positions in parameter space according to

some proposal distribution, Q. One then simulates the system at this new state and

calculates the ratio of probabilities between the current state and the proposed state.

The point is accepted according to the acceptance probability,

α(θ, θ∗) = min

(
1,
Q(θ∗|θ)p(θ∗|d)
Q(θ|θ∗)p(θ|d)

)
(6.1)

Where Q is our transition kernel that determines how we move from one position

in parameter space to another and p is the probability density there.

Heuristically this algorithm ensures that in general we are mostly moving toward

the regions of larger probability but allowing some probability of exploration. If

this chain is run for infinite time then the chain will explore all regions of non-zero

probability within our parameter space and will draw samples exactly according to

the relative probabilities.

As mentioned above, MCMC methods have asymptotic guarantees. These are

by definition only then true with infinite samples, often a practical problem when

performing parameter estimation with MCMC methods is how many samples are

enough to provide reasonable approximations. This problem is particularly difficult

due to the geometry of high-dimensional surfaces. I will briefly outline problems

associated with sampling from the typical set but see [49] for a more in-depth ex-

planation.

The typical set can be thought of as the region in parameter space that has a

non-negligible contribution to any expectations. In high dimensional surfaces, the

neighborhood around the mode of the distribution contains very large densities rel-

ative to areas outside of it. This means that the areas outside of this neighborhood

will not have a significant contribution to any expectations, however the neighbor-

hood around the mode has a very low volume relative to the area outside of it. As

we increase the dimensionality of the problem, the neighborhood around the mode

tends to a singular point therefore the mode itself has an increasingly negligible

contribution to any expectations. This means that there is generally a very small

region of parameter space where these two quantities (the volume and the density)

are balanced such that there will be any significant contribution to expectations.

This region is known as the typical set and is the region of parameter space where
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one should focus the computation resources. This balance means that efficient com-

putational Bayesian Inference generally involves designing samplers that can find

and explore the typical set efficiently.

a Vectorised MCMC

Often when performing MCMC in practise one uses several chains in parallel, this in

principle makes it easier to diagnose behaviour such as finding local minima as well

as allowing for diagnostics such as the split R̂ which checks for global convergence

between chains. As well as these diagnostics, using multiple chains in parallel allows

one to produce samples quickly by distributing the computation. This increase in

efficiency is not guaranteed as by using multiple chains the burn in costs increase

relative to a single long chain, however using multiple chains is usually the standard

practise. Traditionally this could only be parallelised by computing multiple chains

separately on multiple CPUs, this allows for almost perfect parallelisation however

this can be computationally expensive if you want to run lots of chains. As well as

the cost of using many CPUs, paralelising in this way fails to exploit “single instruc-

tion, multiple data” (SIMD) parallelisation which effectively allows for efficiency

savings when doing calculations in batches [257, 258]. The SIMD speed ups can

be particularly significant when trying to perform linear algebra heavy compuations

such as matrix calculations on GPUs

In [257], they showed how to vectorise MCMC by treating the entire operation

with matrix algebra. We have an initial matrix which is (nchains × ndimensions) all

transition operations are applied to the matrix as a whole which allows for sampling

to be carried out in large batches on GPUs with a much less than linear increase

in wall time. The results of doing this are equivalent to running nchains indepen-

dently as is often done by doing n cpus however the computational costs are reduced

massively due to SIMD savings.

b HMC

Hamiltonian Monte Carlo involves redefining the problem of sampling from a poste-

rior in terms of classical physics, where the exploration of the typical set is analogous

to traversing a potential about the mode. By framing the problem in this way, we

see that the natural way to efficiently explore the space is to incorporate the gradient

of the posterior surface into our calculation and for our chains follow trajectories

that are dictated by this gradient. To do this we first introduce some momentum

variables, ρ and define a joint density over our parameters θ and our momenta ρ;

p(ρ, θ) = p(ρ|θ)p(θ) (6.2)

Generally we take ρ to be draws from a multivariate Gaussian, i.e. ρ ∼ N (0,Σ)

where the covariance, Σ should reflect your assumption about the covariance be-
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tween the physical parameters. Often this is assumed to be a diagonal matrix or

is estimated using the initial warm up or burn in phase at the start of the analy-

sis. These draws introduce the stochasticity into our draws and ensure that we will

traverse all regions of the parameter space.

The density defined in 6.2 then defines the Hamiltonian of our system.

H(ρ, θ) = − log p(ρ, θ)

= − log p(ρ|θ)− logp(θ)

= T (ρ, θ) + V (θ)

(6.3)

Where T (ρ, θ) is the kinetic energy and V (θ) is the potential energy of the sys-

tem. Using the standard Hamiltonian equations we can then draw some momentum

variable from our pre-defined distribution and evolve the system as:

∂θ

∂t
=
∂T

∂ρ
(6.4)

∂ρ

∂t
= −∂T

∂θ
− ∂V

∂θ

= −∂V
∂θ

(6.5)

Where the derivative of T with respect to θ is zero because the kinetic energy term

is independent of the parameters θ, it depends only on the draws for the momenta

ρ.

We now have two differential equations which can be solved numerically, in most

software packages such as [259, 257], this is done using the Leaprfrog integrator.

This integrator takes a step size δ and a number of steps, L, and then moves Lδ

steps along the path derived by the integrator to a new position (ρ∗, θ∗).The step

size,δ and number of leapfrog steps, L, are hyper-parameters that can significantly

affect the efficiency when sampling using HMC. We discuss this further in c.

As with all numerical integrators there is a small error introduced however this

can be corrected using the Metropolis acceptance condition, this then guarantees

that our chains will asymptocially converge to the true posterior. The Metropolis

condition here is min(1, exp(H((ρ, θ)−H(ρ∗, θ∗)).

In this work we use the ANN-SUR waveform model presented in [67]. This is

a reduced order surrogate model for SEOBNRv4 [260] which uses neural networks

to perform the difficult interpolation step required for fast and accurate reduced

order surrogates. In [67] it was shown that this model can produce very accurate

surrogate models and also provide huge speed-ups in waveform generation time

relative to the original model. As well as this and more importantly for this work
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using ANN-SUR waveform approximants can be evaluated efficiently in very large

batches. In the ANN-SUR model the expensive computation is carried out using a

neural network which means that the gradient of this computation can be calculated

using Autodiff [70, 69]. This allows us to compute derivatives relatively cheaply

compared to numerical methods and means that this waveform model is compatible

with gradient-based samplers such as HMC. Using Autodiff allows us to overcome

the computational challenges that have meant that HMC has not been widely used

in gravitational-wave parameter estimation.

c Implementation

To make use of the methods described above, we designed a gravitational wave sam-

pling code that is compatible with these techniques. This leads to several differences

when compared to codes such as LALinference or bilby . Firstly we had to ensure

that all calculations were compatible with Batching, this means that the waveform

generation, likelihood calculation and sampling must all be coded up using vectorised

operations which preserve both batch and shape semantics. The waveform genera-

tion can be trivially batched if we use the ANN-SUR model, we just have to ensure

that we pass the physical parameters in batches of shape (nchains, ndimensions). Cur-

rently ANN-SUR is the only waveform model which is compatible with this method-

ology, however due to the potential computational benefits it is hoped that other

waveforms may adopt the batching philosophy going forward.

Next we must ensure that the likelihood calculation can also be computed in

large batches, the implementations in LALinference or bilby are not compatible

with this. To allow us to do this we implemented the gravitational wave likelihood

function using Tensorflow [261], this means that all calculations such as FFTs,

multiplications, etc are handled as matrix operations which can be efficiently batched

to produce a vectorised likelihood function. Finally we had to ensure that the

sampling itself could be batched, we again make use of recent software developments

and use Tensorflow probability [258, 257]. This allows for sampling in batches of

nchains, as well as this we can make use of their off the shelf implementations of

gradient based sampling algorithms which are again all trivially batched.

In this work we use the standard HMC algorithm and Gaussian Random-walk

mcmc, for both algorithms we have per-parameter step sizes which are adapted

in the burn-in phase to ensure a pre-defined target acceptance rate(0.7 for HMC,

0.25 for MCMC). These optimum target acceptance rates are derived by minimising

the cost in terms of rejected steps for a given proposal distribution, see e.g. [262].

However for complicated posteriors it may be preferable to optimise explicitly for the

effective sample size (and therefore the integrated auto-correlation time indirectly)

which would likely mean that our target acceptance rates would be smaller. When

using HMC we manually tune the number of leapfrog steps based on several runs.
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If the number of leapfrog steps is too low then we are less likely to generate effective

samples because the new location is not independent of the previous, this then

becomes similar to the expected random-walk behaviour. If it is too large then

we are wasting computation because we could have generated a sample without

computing extra integration steps. In the most extreme case a very long trajectory

could result in a closed orbit in phase space, meaning the end point could be close

to the start point, giving a random walk chain as in the case where the step size is

too small. The current hand-tuning procedure is clearly not optimal and in future

we would move towards algorithms which do this automatically such as NUTS [263]

or ChEES-HMC [264].

The other hyper-parameter in HMC is the mass matrix, we use the simple imple-

mentation which assumes a diagonal covariance matrix, where the relative scalings

are estimated using a Fisher matrix approximation and then hand-tuned over serval

runs. This assumption does not therefore incorporate any correlations between pa-

rameters, this is again clearly a sub-optimal assumption for gravitational-wave data,

therefore is likely a major source of inefficiency for our implementation. For exam-

ple the distance inclination degeneracy that we see in figure 6.1, is well understood

from a physical perspective, the amplitude of the waveform is proportional to both

the distance and the inclination angle, therefore a face on binary which is further

away could have the same amplitude as a binary which is much closer but more

inclined. If we could encode this knowledge into our samplers we could move along

the degenerate lines and therefore traverse the space much more efficiently. As well

as encoding physical knowledge we could estimate the covariance matrix as is done

in the STAN [259] HMC implementation. There the mass matrix is adapted on the

fly during the warm-up phase, this is also something we would like to implement in

future.

To summarise the implementation, we have for the first time constructed vec-

torized MCMC and HMC analyses for GW parameter estimation. These are both

very simple, generic versions of these algorithms which lack many features such as

an appropriate estimate for the covariance matrix. We also only currently use a sin-

gle detector and ignore some physics such as precession and higher modes, however

despite these simplifications and limitations, we are still able to produce sensible

parameter estimates very quickly. We are also able to run initial tests and identify

potential performance improvements that could be incorporated into a full param-

eter estimation analysis in the future.

6.3 Results

As an example of this method we injected a fiducial signal into Gaussian noise

and perform a single detector parameter estimation analysis. We inject a non-

spinning M=70 (solar mass, defined in the detector frame), q = 1.2 ANN-SUR
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signal into Gaussian Noise at SNR=18, we use the H1 design sensitivity PSD and

use a start frequency of 30 Hz. Other parameters are shown in table 6.1. ANN-SUR

waveforms ignores precession and higher modes, this leaves us with the two masses

(m1,m2), two spins (χ1, χ2), the binary inclination angle (θ), the orbital phase (ϕ),

the coalescence phase, (ϕc), the luminosity distance (DL), the right ascension ra

and declination (dec), and the binary polarization angle (ψ) and the time of arrival

tc.

This results in an eleven dimensional posterior surface that we would like to

sample from, when sampling we parameterise the masses as M = m1 + m2 and

q = m1
m2 . We also analytically marginalise over time and phase (see the appendix

of [40]). This means we are in effect only sampling over nine dimensions. We will

use this fiducial example to verify that both samplers converge to the expected

parameters, we then move on to look at the increased efficiency due to batching and

finally we highlight key differences between the results obtained using our MCMC

and HMC implementations.

a Comparison between sampling methods

In table 6.1 see that using both methods we are able to produce a set of samples

which converge to distributions which contain the true parameters at the 90% level.

Quantitatively we defined our convergence threshold to to be at least 1000 effective

samples for each parameter and an R̂ < 1.01 The parameters ψ, θ, ϕ, ra and dec

recover uninformative priors because we are only using a single detector and a non-

precessing signal therefore there is no information about these parameters in the

data.

When using the random walk MCMC the analysis takes around 15-30 minutes,

if using HMC this is around 60-90 minutes. The corner plot shown in figure 6.1

shows a six dimensional corner plot for the injection (we also sample in ra, dec, ψ

and ϕ but exclude them from the plot). We see that the sampler was able to find

the true values as well as the expected non-trivial correlations such as in distance

and inclination.

We now look at the benefits that are gained by our vectorised sampling approach

using GPUs and then look differences in terms of speed and efficiency between the

methods, highlighting the key differences between the two approaches.

b Computational Efficiency

In figure 6.2, we show the number of samples per second generated by each of the

sampling methods as a function of batch size. Here we ignore the effective sample size

as we are purely looking at the computational benefits of batching the calculation.

We use an NVIDIA Tesla V100-SXM2-16GB GPU and run the samplers for 2000

iterations per chain. We see MCMC produces many more samples per second, this
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HMC MCMC Injected

M 68.8+5.9
−6.4 69.2+5.8

−4.4 70

q 1.5+0.6
−0.5 1.39+0.4

−0.4 1.2

χ1 −0.08+0.6
−0.8 0.04+0.7

−0.7 0

χ2 −0.06+0.7
−1.0 −0.15+0.7

−1.0 0

θ 3.21+3.1
−2.7 3.20+3.1

−2.7 π

ϕ 3.10+2.5
−3.1 3.18+3.1

−2.5 π

DL 349+210
−140 373+221

−239 500

ra 3.20+2.5
−3.1 3.17+2.6

−3.1 1

dec 0.04+1.5
−1.2 −0.04+1.4

−1.3 1

ψ 3.20+3.1
−2.6 3.15+3.1

−2.5 1

Table 6.1: Summary of the posterior distributions obtained by both MCMC and
HMC, numbers shown are the median and then the upper and lower bounds for the
90% highest density interval.

Figure 6.1: Results from a single detector MCMC analysis, the injected value is
shown as the red star
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Figure 6.2: Comparing the number of likelihood evaluations per second as a function
of the batch size, we see that up to 32 chains we get a better than linear scaling, a
linear scaling would be shown here as a horizontal line.

is expected because HMC does more computation before taking a step, this extra

computation means that samples are less likely to be rejected and/or correlated

compared to MCMC. HMC is then in principle a a slower but more efficient sampler.

For both methods we see that the effect of batching is huge, the gradient of the curves

show the increase when adding a new chain, going from 2-32 chains in both cases

gives an increase in samples per second of around 10x for both sampling methods,

this speed-up can be translated exactly into an overall speed up of a parameter

estimation analysis.

If we were to reproduce this plot without batching and used a single CPU we

would expect to see a linear scaling which would correspond to a roughly horizontal

line on the plot, if we double the chains we could get double the samples but it

would take approximately double the time. This is why multiple chains are generally

parallelised across CPUs. If we were batching but using a CPU we would expect to

see similar pattern, i.e. some some SIMD efficiencies, but these would likely not be

as large.

The numbers shown above are for the raw numbers of samples produces per sec-

ond however, due to the often correlated sequences of samples produced an MCMC

analysis, the number of samples generated per second is not a particularly good

metric when comparing samplers. One must also consider how many samples are

needed to generate an independent or effective sample. Where we define the number
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of effective samples, neff as:

n⃗eff =
Mn∑∞
t=−∞ P⃗t

=
Mn

1 + 2
∑∞

t=1 P⃗t

(6.6)

Where M is the number of chains, n is the number of samples per chain, Pt is the

estimated auto-correlation2 at lag t. In practise we do not sum to infinity we sum

up to some k, where k is the is the largest integer for which Pk = P2k′ + P2k+1 is

positive. The number of effective samples corresponds to the number of independent

samples in our chains. neff is a vector because the autocorrelation length will vary

between parameters, we therefore have an effective sample size per parameter.

In figure 6.3, we show the number of samples required to generate an effective

sample3, we calculate this as n
neff

. The error-bars on the barplot indicate the per

parameter spread in this metric, We can see that for this particular example HMC

is around a factor of 2-5 more efficient that our random walk MCMC. We would

expect the efficiency improvement to be considerably larger than this, for a well

tuned HMC sampler we would expect the efficiency to be around D times better for

a D dimensional problem (we sample in nine dimensions in this case) [267, 254]. This

suggests that our HMC implementation is not optimally tuned. We have mentioned

several reasons why this might be the case throughout the paper, also see section

6.4 for more discussion on this.

Combining the sampling efficiency we produce here this information with the

figure 6.2, we can estimate the relative time difference between the two samplers for

this particular problem. To produce the same number of effective samples, then the

random walk sampler around 10 times as fast, but needs 3 times as many samples

for an independent sample, so it should be roughly 3 times as fast overall. This

agrees with our experience when running the code and also accounting for effects

such as burn-in and variance between runs. The relative benefits between efficiency

in terms of effective samples and samples produced per second may become more

significant as we move to higher dimensional problems and include more complicated

parameter spaces, for example if we include precession.In these examples we expect

random walk samplers to become considerably less efficient, it would then be likely

that a slower but more efficient sampler would actually produce effective samples

more quickly.

2Following STAN [259] and ArviZ [265] we use the definition of autocorrelation from [266]
3note we are ignoring the burn-in efficiency in this section, see [253] for a discussion on this
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Figure 6.3: Comparing number of samples per effective samples generated, we see
that HMC is generally more efficient, the error bars are due to the spread in effective
sample size across the different parameters.

6.4 Discussion

This work has developed a framework in which gravitational-wave astronomy can

exploit developments in software (batched sampling), hardware (GPUs) and wave-

form modelling to perform parameter estimation efficiently. We’ve presented two

methods which both show promising results however the current implementation

astrophysically. We have only used a single detector which means we are unable to

recover informative sky localisation. We also do not make use of the gravitational-

wave specific jump proposals which have been shown to make samplers considerably

more efficient. Combining these with either strategy would likely make the samplers

considerably more efficient. Both of these limitations are currently just practical,

there is no reason why any of the arguments presented in this chapter would be

effected by them, it is in fact likely that the sampling would become even faster.

The other major limitation of this work is that we also ignore higher modes and

precession, this is because currently there are no waveform models which contain

these and are compatible with the batching methodology which is essential here.

Including these effects generally makes the parameter space more complicated and

would therefore increase the amount of time required to fully explore the typical set.

This would likely make HMC more efficient relative to random walk MCMC as the

guess and check strategy would rapidly produce less effective samples per likelihood

evaluation.

Outside of methods that are currently used in gravitational-wave data analy-

sis, there are several improvements that could easily be implemented to improve

this work further. Firstly we currently use a diagonal mass matrix, this implicitly
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assumes that parameters are not correlated, this is clearly a bad assumption as-

sumption for gravitational-wave data. In the Stan HMC implementation this can

be estimated on the fly using a warm-up phase, doing something similar here would

likely lead to large improvements in efficiency. As well as estimating this on the fly

we could provide good estimates analytically based upon the Fisher matrix and/or

physical insights about the parameter space. An interesting enhancement when

including precession would be to use ρp and encode our understanding about the

precessing parameter space into our Mass matrix.

Another improvement that would now be feasible would be to follow the ap-

proach presented in [268] and use Neural Networks to learn a bijective map between

some simple parameter space and the true complicated gravitational-wave param-

eter space. A similar method was proposed in [269], where they used normalising

flows to learn the contour geometry in nested sampling. This step could be added

on at the beginning of an analysis and in principle would be able to remedy some

of the sampling difficulties due to the non-trivial geometry of the gravitational wave

parameter space.

It is hard to draw conclusions when comparing these methods to existing packages

such as [52, 253] because of the difficulty in obtaining an apples to apples comparison

between the implementations. These packages benefit from years of gravitational-

wave specific knowledge that has resulted in samplers which are very well tuned to

the problem. This work has presented simple generic methods but make extensive

use of modern hardware and developments in waveform modeling, it does however

highlight promising techniques such as batching and more efficient gradient based

sampling which could be incorporated into these software packages and provide

major benefits in the future. By combining the methods presented with the current

knowledge already in the parameter estimation community, it is feasible that we

will bring the analysis down to a practical timescale and will not have to abandon

stochastic sampling as the primary method for parameter estimation.
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Chapter 7

Model Agnostic Confidence

Estimation - Classification

7.1 Introduction

Over recent decades a huge amount of progress have been made on improving the

global accuracy of machine learning models, however calculating how likely a single

prediction is to be correct has seen considerably less attention. In some fields, where

making a single bad prediction can have major consequences, having trustworthy

confidence estimates may be the limiting factor before introducing AI. It is important

in these situations that a model is able to understand how likely any prediction it

makes is to be correct before acting upon it; being able to do this well requires

satisfying two closely related conditions:

1. Confidence estimates must approximate the true frequency of being correct,

i.e. if a model estimates a confidence of 80% it should be correct roughly 80%

of the time.

2. Confidence estimates should also indicate ignorance, i.e. the model must know

what it doesn’t know so that it will not blindly make bad predictions.

A similar way to think about confidence estimation is to say that any estimate

must account for any uncertainty that is present. Uncertainty can be split into two

forms ([270, 271]):

1. Aleatoric Uncertainty: this refers to the intrinsic variance or randomness in-

herent in any process, i.e. even with unlimited data there will always be errors

in any modelling and therefore aleatoric uncertainty cannot be reduced by

collecting more data.

2. Epistemic Uncertainty: this refers to the uncertainty due to the lack of knowl-

edge of a model, the knowledge of any model comes from data, so does the
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Figure 7.1: A simple example illustrating the two types of uncertainty: Aleatoric
refers to the uncertainty due to the intrinsic randomness inherent in any system.
This is shown by the spread of observed data about the learnt model which is a
good approximation to the true model in the region we have observed data. Epis-
temic uncertainty is the uncertainty due to a lack of knowledge (i.e data) to inform
the model prediction. This is shown above when the model becomes a worse ap-
proximation to the true function as we move further away from the observed data.
(e.g x> 1)

model have the relevant data to predict something? Epistemic Uncertainty

can always be reduced by collecting more or different data.

Understanding and accounting for uncertainty is crucial to understanding the

capabilities and limitations of any machine learning model but it is especially crucial

if one wants to produce a confidence estimate. Therefore confidence estimation for a

prediction is most naturally expressed in a Bayesian language where uncertainty can

be explicitly accounted for in both the data and the model. Once we have accounted

for this uncertainty we can then reason about the effect it has upon a prediction; this

is in general done by marginalising out our uncertainty to produce a distribution of

outputs for any prediction which will then reflect our confidence ([272]).

Despite the Bayesian framework being the natural way to tackle the problem

of confidence estimation, it is often prohibitively computationally expensive in its

application. It also does not naturally lend itself to being combined with popular

machine learning algorithms which result in a large number of parameters or non-

linearities such as Decision trees, Random Forest, support vector machine etc. ([273,

274, 275])

Most popular machine learning algorithms adopt methods to produce an esti-

mate of how likely a prediction is to be correct, for example a random forest model

([274]) estimates the confidence score by the fraction of trees that predict a certain

class. Each of these techniques are in effect heuristics which correspond to ordering
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predictions that are more or less likely, however they certainly cannot be interpreted

as true probability or confidence estimates.

Although these heuristics can be useful, and when calibrated can estimate the

aleatoric uncertainty well (see a), we argue that they will always be fundamentally

flawed when estimating confidence due to using the classification model estimate as

a starting point. See Section 7.5 for a more detailed analysis of this claim.

In [276] the authors present a method which provides Trust scores that attempt

to quantify how much one can trust a classifier, this is very closely related to the

notion of our confidence in being correct. These scores are computed explicitly by

calculating the relative distance to a set of k nearest neighbours from each class.

This can be seen as quantifying the epistemic uncertainty for a given prediction.

In this work we highlight the fundamental problem with using point prediction

algorithms (even if well calibrated to data) and present an alternative model MACE

(Model Agnostic Confidence Estimator) that seeks to bridge the gap between trust

scores and the current state of the art for confidence calibration. We show that for

many tasks our method is competitive with state of the art and, as it can directly

account for both aleatoric and epistemic uncertainty, is more robust to problems

such as extrapolation and out of sample bias.

The original contributions of this work are as follows:

• We compare trust scores and confidence calibration highlighting key similari-

ties and differences between these methods.

• We show that generally calibration methods do not properly account for epis-

temic uncertainty and therefore can return high confidence but a low trust

score.

• We present a novel algorithm called MACE, which is agnostic to the model

which produces point predictions and which explicitly models both aleatoric

and epistemic uncertainty.

• We then demonstrate that MACE is competitive with popular calibration

methods across several metrics, and also addresses the problems other models

have when epistemic uncertainty is large.

7.2 Confidence Estimation

The general approach of classification involves using labelled pairs of training data

(X,y) where each xi ∈ X is a vector corresponding to the features, and each yi ∈ Y

is an associated class for the element i: the goal being to learn a transformation

function ψ(X) that maps any new unseen data point x∗ to an estimated label ŷ∗.
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The problem can then be interpreted as wanting to estimate the class label y∗

of x∗ given a learnt model ψ(X) from training data X. It is important to highlight

that, although somewhat obvious, any prediction explicitly depends upon the specific

model which has been trained using a specific set of training dataX. The importance

of this statement becomes more obvious when one looks at confidence estimation.

For a given point x∗ we estimate the confidence as:

C(ŷ∗ = y∗|x∗, ψ(x∗),X) = p̂∗ (7.1)

Where y∗ is the true class label, ŷ∗ is the predicted class label for a point x∗ and p̂∗

is the estimated confidence associated with that prediction. This then corresponds

to estimating the probability that our prediction ŷ is correct given a model, ψ learnt

from the training data (X,y).

Note that in this work we will be looking at Confidence estimation, therefore we

only look at the confidence of a point prediction being correct rather than estimating

the full distribution across all classes (these are equivalent for binary classification

but not multi-class) - this is similar to the definitions in [277]. We argue this is the

more natural question to be answered by a confidence estimator given an already

trained point prediction model, it is also more similar to the notion of Trust Scores

defined in [276] to which we would like to draw parallels.

The confidence estimator C defined above must also explicitly account for the

training data and, more importantly, how informative the training data is when

trying to classify a specific point, x∗. This notion is the foundation of Gaussian

Process modelling ([278, 226]) where the confidence on any prediction is calculated

by explicitly considering the kernel (or co-variance) function K(x∗,X), the kernel

can also be interpreted as a measure of similarity between a point x∗ and the training

data X. Here, the confidence of any prediction is conditioned upon the similarity

between the predicted point and the training data: if a point is not similar to what

we have seen during training we therefore cannot be confident when predicting it.

Having set out what we mean by a confidence estimate (equation 7.1), for brevity

and ease of comparison of notation with other literature we will also henceforth

adopt the convention of (whilst of course not ignoring) leaving the dependence upon

training data and model implicit. We therefore define the confidence of a given point

prediction being correct as:

C(ŷ∗ = y∗) = p̂∗ (7.2)

where again we define p as the confidence of being correct, y∗ as the true label, and

ŷ∗i as the predicted label.
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7.3 Performance Metrics

a Calibration Metrics

The calibration of a confidence estimator is the degree to which the estimates match

the empirical accuracy of a classifier, i.e. if a confidence estimator estimates a

probability of 75%, this should correct approximately 75% of the time. We say that

it is perfectly calibrated if this is true for all estimated probabilities, p ∈ [0, 1]. If

this is not the case the case then we say that the confidence estimator is either

over or under confident: if it is correct less often than the estimated probability an

estimator is said to be over-confident and vice versa.

Formally this can be defined as needing to satisfy the following condition:

P (ŷi = yi|p̂i = pi) = p ∀p[0, 1] (7.3)

As the true probability of an event is an unknown random variable, it is generally

not possible to calculate this exactly, so the standard technique is to convert the con-

tinuous confidence space into a set of n discrete bins, Bn (e.g [0.5, 0.6, 0.7, 0.8, 0.9, 1.])

and compare the average confidence estimate p̄ for each bin to the empirical accuracy

in each bin.

That is:

Acc(Bn) =
1

|Bn|
∑
i∈Bn

δŷi,yi (7.4)

Where,

δŷ,y =

{
1, if ŷ = y

0, otherwise
(7.5)

And,

C(Bn) =
1

|Bn|
∑
i∈Bn

p̄i (7.6)

A perfectly calibrated estimator will then have C(Bn) = Acc(Bn) for each bin.

The standard metric when looking to evaluate the calibration error directly is

Expected Calibration Error (ECE) [279]. This metric measures the difference be-

tween the predicted confidence estimates and the empirical accuracy of each bin.

These residuals are then combined in a sum weighted by the number of points in

each bin:

ECE =
1

|n|

n∑
i=1

|C(Bi)−Acc(Bi)| |Bi| (7.7)

In [280] the authors evaluate this metric and highlight potential problems when

using it. In particular it is shown that many somewhat arbitrary choices in the

metric such as the choice of norm, binning strategy, and class weighting can produce

metrics which are measuring slightly different definitions of calibration error. They
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produce a total of 32 possible variations of this calibration error and when comparing

calibration methods their the ranking is generally not consistent across these 32

metrics.

It is likely that the optimal calibration metric will depend upon the use case in

mind and therefore that general comparisons between calibration methods are likely

to be a difficult problem.

In this work we will evaluate calibration methods using the probability that the

classifier is correct together with adaptive binning schemes and weighted by the

total number of points in each bin rather than also conditioning on the class - this

corresponds to the general calibration metric 20 defined in the appendix of [280].

We chose this metric for ease of comparison with other studies (such as [277, 279])

and because the metric is sufficient to highlight the utility of MACE for confidence

estimation.

b From Scoring Rules to Metrics

As noted previously, in particular in [280], it has been shown that calibration errors

can sometimes be misleading. It is therefore important to have additional criteria

against which to measure estimators. The quality of a set of probabilistic predictions

has been a long-standing issue in many fields such as Meteorology where, as well as

calibration metrics, the notion of proper scoring rules have developed.

Proper scoring rules are metrics which, when minimised, correspond to approx-

imating the ground truth probability distribution [281]. This means that a biased

forecaster will perform worse in these metrics than an honest forecaster - evaluation

by proper scoring rules was advocated by [270]. The two most popular scoring rules

are the Brier Score ([282]) and the Negative log loss ([283]).

As we are looking to draw parallels between trust scores and calibration methods

we are trying to estimate the probability our point prediction is correct, therefore

these scoring rules are also defined with respect to a prediction being correct, i.e.

Oi = δŷi,yi . This is equivalent to giving class probabilities in the binary case but

equates to a one vs. rest strategy in multi-class problems. We therefore use the

Brier Loss as follows:

BL =

n∑
i=1

(pi −Oi)
2 (7.8)

And the Negative Log Likelihood (NLL) as:

NLL = −
n∑
i=1

(Oi log(pi) + (1−Oi) log(1− pi)) (7.9)

Intuitively both of these metrics penalise (via squared loss for Brier and loga-

rithmic loss for NLL) incorrect predictions with high confidence but also correct

predictions with low confidence. Therefore performing well in these metrics gener-
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ally corresponds to predicting correctly with high confidence and predicting incorrect

with low confidence. This differs slightly with respect to calibration metrics where

the only measured quantity is how well the predicted confidence scores approximate

the empirical accuracy of the predictions.

We will estimate all evaluation metrics using K-fold cross-validation, this involves

splitting the data into K sets uniformly, you then use K-1 of these sets for training

(both the point prediction model and the mace parameters see 7.6) and use the Kth

set for evaluating your metrics. You repeat this K times so you have K evaluations

of your model on different subsets of your data. This in principle estimates the

variation in model performance that one might expect to see using the model on

unseen data. We report this error as twice the standard deviation of the K folds;

thereby approximating roughly the 95% error interval (under the assumption of

Gaussian errors). This provides a useful way to evaluate if there are any significant

differences between calibration methods.

7.4 Related Work

a Confidence Calibration

Confidence calibration was first studied in [284], since then there have been many

more calibration techniques developed [285, 286, 279, 277, 287]. Each of these tech-

niques aim to transform the raw scores from the point prediction algorithms into a

confidence score that approximates the empirically derived accuracy. This is gener-

ally by some distributional transformation or scaling, where the parameters required

to do the transformation are learnt using a single hold out set of data.

For example if the point prediction model predicts a confidence score of 80% one

of the techniques above may learn a transformation that down-scales that score to

a 70%. It should be noted here that these transformations are dependent upon the

point prediction algorithm score only, not they are not explicitly dependent upon

the data point, for which they are asked to give a confidence estimate.

These methods have been shown to work very well across a range of machine

learning problems. However, as we will show in section 7.5, they learn a global

representation of uncertainty and are therefore often only actually learning to model

aleatoric uncertainty. This means that they are therefore vulnerable to giving overly

confident predictions due to ignoring epistemic uncertainty.

b Trust Scores

In ([276]) the authors introduce a method which produces a trust score for model

predictions, i.e. a high trust score means that a model is likely to be correct and vice

versa. This notion is very closely related to the confidence one has that a prediction

is correct. They approach the problem of trust by looking at the similarity between
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the point you want to predict and the training data. The relative distances between

a set of k nearest neighbours from the predicted class and from all other classes are

then compared. For example a trust score of 1 corresponds to the prediction being

equally as close to the k nearest neighbours from the predicted class to those of all

other classes; a trust score of 2 means it is twice as close to the predicted class,

etc. The intuition here is that if a data point is similar to previously seen points of

the same class then the prediction is more likely to be correct and therefore more

trustworthy. This can be interpreted as estimating the epistemic uncertainty: when

the trust score is large, the distance to similar points is small and therefore the

epistemic uncertainty is small. One would then expect that there is a greater chance

of the prediction being correct, i.e. more likely to be trustworthy.

c Other related works

Quantifying the uncertainty in a prediction is most naturally considered within a

Bayesian framework. Parametric methods such as Bayesian parametric modelling

([288] [289]) and non-parametric methods such as Gaussian Process (GP) Regression

([278, 226]) and Bayesian Neural Networks ([251]) have proven to be effective for pro-

viding prediction intervals. These methods however suffer from some drawbacks that

MACE attempts to address, generally they are considerably more computationally

expensive at both training and inference time than algorithms that do not include

confidence estimates: this is potentially a major barrier for many applications.

There is in general no method that the authors are aware of to explicitly combine

Bayesian uncertainty estimates with an arbitrary point prediction algorithm. MACE

is not a Bayesian algorithm however, and, as described in the introduction, it is

motivated by some of the underlying Bayesian principles. It seeks to bridge the gap

by combining some of the benefits of Bayesian modelling with less computational

costs and, by being compatible with any point prediction algorithm, considerably

more flexibility.

Outside of the explicitly Bayesian framework there are several methods that have

been utilised for the problem of confidence and uncertainty estimation. Dropouts

method introduced in [290] could potentially be applied to other methods by perturb-

ing or dropping model parameters and generating a range of predictions, however

such Monte Carlo simulation methods used to get a good coverage of the parameter

space where the number of model parameters is large are computationally expensive.

Ensemble methods similar to those introduced for neural networks in [270] could also

be applied for any model, however the cost of training a large enough ensemble to

is often prohibitive for many applications.
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7.5 Calibrated Models Are Not Necessarily Trustwor-

thy

Above we have seen that there are two different approaches to answering very similar

questions, i.e. how confident are we in a prediction (calibration methods)? And how

much can we trust a prediction (Trust scores)? Intuitively these seem to be very

related, yet the two approaches estimate their score very differently. This section

asks the question: can we trust well calibrated estimators?

To answer this question we perform classification on the classic MNIST data

set ([291]), which consists of 60, 000 examples of 28x28 pixel images of handwritten

digits with the task of classifying the digits. As trust scores use a distance metric the

raw pixels are not suitable so we take 50 principal components and use those as our

features. We then train a simple random forest model as the point prediction model

and use a selection of the cited calibration methods described above to compute

confidence estimates. We now look at the correlation between trust scores and these

confidence estimates.

Figure 7.2 shows the joint distributions for the confidence estimates and trust

scores evaluated on an unseen test data set. The point prediction model is generally

very accurate (≈ 95%) and thus, as expected, for each confidence estimator we have

a distribution of confidence which is very high, thereby corresponding to high (≈ 2)

trust scores. We calculate the Spearman rank correlation coefficient between the

confidence predictions and trust scores, and find that for each calibration model the

correlation between them is very strong (Isotonic = 0.797, Platt = 0.803, Temp =

0.814, Dirichlet= 0.773). This is generally what we should expect: the models are

reliable and predicting well and so both the confidence and trust scores are high. In

this situation we see that the standard calibration methods are working well, and

the confidence estimates are reliable.

Next, we simulate 28x28 pixel images using 10, 000 different uniform noise real-

isations and ask our model to make predictions on this data (See figure 7.3 for an

example of this) - after having trained the models on the above MNIST dataset of

labelled samples. As this does not look like any digit, we would expect the confidence

estimates also be very low for any prediction and should, ideally, return something

like a uniform distribution across all classes that would then reflect the minimum

confidence. We can see from Figure 7.4 that although the confidence is considerably

lower than most of the in-sample confidence estimates, it is still often high. Most

predictions are greater than 0.5 and there are a considerable number (∼ 30%) which

are greater than 0.8.

What about the trust scores? We see in Figure 7.5 the trust scores are now much

lower. 95% of trust scores are now ≤ 1.05, this reflects our intuition that noise

should be roughly as close to the predicted class as any other. When comparing to
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Figure 7.2: Pair plots comparing trust scores and confidence predictions when pre-
dicting on an unseen test set for the mnist dataset. Trust scores are correlated
strongly with confidence predictions here

the confidence scores however we see that the correlation between trust scores and

confidence estimates has effectively disappeared (Isotonic = 0.056 , Platt = 0.085,

Temp = 0.108, Dirichlet= 0.089). This example highlights that despite confidence

estimators being calibrated to the data they are not necessarily trustworthy, as

posited by [276].

We argue that this effect is fundamental to the way classification models work

in practice. The classification paradigm is effectively to learn a global decision

boundary and split the features into distinct regions of classes. This is a natural

and incredibly effective way to perform classification, however we argue it is not

a good way to estimate confidence. This is because it does not take into account

the similarity of a given point to the data that the model used to train, resulting

in epistemic uncertainty never being accounted for. If a point falls far away from

the decision boundary it is confidently predicting a label even if it is completely

different to any of the examples that trained a model ([290]). This can be seen

clearly in the simple example shown in Fig. 7.6: here we have an example with a set
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Figure 7.3: An example of the uniform random noise which we asked our model
(which was trained on MNIST) to classify. Confidence estimates calibrated using
Dirichlet, Temperature, Isotonic and Platt all reported > 85% confidence.

Figure 7.4: Example of 104 confidence estimates on random noise similar to Figure
7.3: we show the probability distribution function (top) and the probability den-
sity function (bottom). These distributions should be shifted towards 0.1 thereby
indicating the model’s lack of confidence given the presence of pure noise: instead,
we see for all calibration methods that there are a large number of high confidence
predictions despite the input.

of simulated points in two classes which follow a spiral. There is a good distinction

between the classes and therefore the model is able to clearly split the feature space

into regions where it will predict either red and blue. In the regions close to the

data the confidence is very high because the model is generally predicting very

accurately. As we move away from the training data, we see that the predictions are

extrapolated according to the global boundary which splits the feature space. We

also see however that the confidence estimates are extrapolated, this means that in

regions of the feature space very far away from the training data the model is still

returning very high confidence results. We argue that the confidence estimate should

decrease as we move away from the training data because the epistemic uncertainty

is considerably higher in these regions.

Both of these examples highlight a fundamental problem with using the model

estimates as a starting point for a confidence estimate. Confidence estimates de-

rived from the model estimates can generally be calibrated to estimate the aleatoric
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Figure 7.5: Pair plots comparing trust scores and confidence predictions when pre-
dicting uniform noise: when epistemic uncertainty is large then trust scores and
confidence estimates become uncorrelated. Trust scores are generally low ∼ 1 but
confidence predictions can be high. Note the correlation between the predictions of
the models, this is because they all perform a slightly different transformation on
the same set of original predictions: therefore the ranking of points will not change.

uncertainty well, however the confidence estimates are not reliable when being used

for data which is significantly different from the training set. This can often result

in over-confident predictions, despite a high degree of epistemic uncertainty being

present.

Trust scores, as an estimate of the distance to similar data from the training set,

are an effective way of highlighting cases where the epistemic uncertainty is high,

they however do not have any mechanism to account for aleatoric uncertainty and

are also not easy to interpret as a likelihood or probability of being correct. The

algorithm we now present seeks to bridge the gap between these two approaches

by producing well calibrated confidence estimates which account for both epistemic

and aleatoric uncertainty.
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Figure 7.6: Example illustrating the problem with extrapolating confidence: because
the confidence estimate does not account for the similarity to the training data, the
model confidence will not decrease however far we extrapolate from the data from
which the model learnt.

7.6 MACE

We start with the heuristic that confidence is a local quantity, e.g. if the model

is terrible globally then there are still some predictions for which the model can

be very confident. Similarly if the model is very accurate (even perfect) globally

on a given test set then for any given new prediction there exists the possibility

that the model is not capable of providing a good answer and should therefore have

very low confidence for this point. We also argue above that the point prediction

model may fail to produce good confidence estimates and therefore the confidence

for a prediction should be estimated independently of the model which produced the

classification.

The following assumptions then outline our approach to model the local confi-

dence estimate:

1. If we can define a notion of similarity between data points then members of

the same class should have a similar representation in this feature space.

2. A point that not similar to any training data is an unusual point and predic-

tions on that point should not have a high confidence value associated with

them.
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3. The distance to a set of nearest neighbours from the training data is a good

proxy for how similar any point is to the training data, this can then be used

to estimate the epistemic uncertainty.

4. The accuracy of a set of predictions for a set of k nearest neighbours can be used

as a proxy for the local prediction variance, i.e. the aleatoric uncertainty for

the prediction can be estimated by the accuracy in these k nearest neighbours.

To implement this for a given prediction on a point x∗, we define the local neigh-

bourhood by finding the k nearest neighbours to x∗. The parameter k is learnt during

training when we are seeking to minimise the calibration error. This means we are

in effect learning a parameter, for a given dataset, which defines the size of a local

neighbourhood in terms of data points. We assume that this is a global property for

a given dataset however in future work we would like to drop this assumption and

learn the optimum k given the position in feature space. This assumption however

has worked reasonably well for the examples shown here.

Now that we have defined how many neighbours define our neighbourhood we

can use these nearest neighbours we then attempt to directly estimate proxies for

the Epistemic and Aleatoric uncertainty for predictions in that neighbourhood. The

epistemic uncertainty can be approximated by the distance to these k closest neigh-

bours, the intuition here is that if relative to other points if a given point is not

similar to it’s k closest neighbours then the model has not been trained on points

like this and therefore we cannot be confident in the prediction. We then estimate

the aleatoric uncertainty using the accuracy on the k points, the accuracy on the

closest points should then gives us an idea of how likely our model is to be on points

similar to the one we want to predict.

Once we have estimated these quantities we define a simple parametric function

of them and calibrate the function so that our confidence estimates approximate

the empirical accuracy. By modelling these two effects directly, confidence estimates

produced by MACE are able to encapsulate the local variance accurately whilst

also being aware of when the model is being asked to predict a point that is very

different to those it has been trained on. This makes MACE robust to problems

such as overconfident extrapolations and bad out of sample predictions. We now

describe the algorithm in more detail.

a Algorithm

MACE requires that a given dataset is split into four distinct sets: the standard

labelled training set for the point prediction model, the point prediction model then

generates the underlying prediction as usual in a machine learning pipeline, MACE

then works on top of this as an additional step to work out how confident we are that

our model is correct. We then need a set of labelled data from which MACE finds
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the nearest neighbours for any given point;1and a set of labelled data to optimise the

MACE parameters (see equation 7.10 below) by minimising the expected calibration

error. Finally we have the unseen hold-out data used to test the model, one can use

the same test data for both MACE and the point prediction model.

Next, one must define a notion of similarity, this is equivalent to defining a sensible

distance measure between points. Often choices such as a Euclidean distance will

be sufficient if the co-ordinates are sensible, i.e. not highly correlated, however any

measure of similarity may be suitable depending upon the data one is trying to

model. For difficult problems one can generally improve the performance of MACE

by exploiting techniques such as PCA, Word2Vec, transformers, etc ([292, 293, 294,

295]) to embed the data into a space where the metric better reflects the similarity

between points. In a standard pipeline this would be a modular step, i.e. the

downstream algorithm works with any definition of similarity so one can swap in

any embedding technique depending upon the problem. The calibration of MACE

may then be better or worse depending upon the choice of metric.

Once we have defined a notion of similarity, for any given point x∗, we find

the k most similar points from the known MACE training data. Finding the k

nearest neighbours exactly has O(n2) complexity which is prohibitively expensive

for many situations. Finding Approximate Nearest Neighbours (ANN) can however

be considerably less expensive and is an active area of research. For ANN search in

this work we use the Hierarchical Navigable Small World algorithm [296], this leads

to a complexity of O(n log n) during training in order to build the graph and then

O(log n) at inference once the graph has been built. Due to the simplicity of MACE

these are usually the dominant costs for both training and inference.

We note here that the nearest neighbour search is also a modular step. MACE, in

principle, does not rely on any particular nearest neighbour algorithm so other meth-

ods for example [297, 298] may be more appropriate depending on the application.

See [299] for a comparison of approximate nearest neighbour methods.

Once we have found the k nearest neighbours we use these k points to estimate

proxies for both epistemic and aleatoric uncertainty. The local aleatoric uncertainty

will be the (distance weighted) error, i.e. the number of incorrect predictions on

these k points each weighted by the distance from the point where we would like to

predict. The epistemic uncertainty will be approximated by the average (weighted

by the rank order of closeness) distance to these k neighbours. We define the error

as ϵ(xk) and the average distance to the set of neighbours as K(x∗,xk). The un-

normalised confidence score is then approximated to be a simple function of these

terms as follows:

σ∗ = αϵ(x∗,xk) + βK(x∗,xk) (7.10)

1One could use the point prediction training data for this however this may mean that there is
a bias when estimating the local prediction accuracy due to information leakage when training the
point prediction model. We therefore use an extra split in our dataset to avoid this
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Where we define ϵ(xk) and K(x∗,xk) as:

K(x∗,xk) =

k∑
i=i

d(x∗,xi)

i
(7.11)

And,

ϵ(x∗,xk) =
k∑
i=i

δŷi,yi
d(x∗,xi)

(7.12)

In both definitions, we assume that the k points are ordered by their relative

distances to x∗, and we use the Euclidean distance2 as our distance function:

d(p,q) =

√√√√ D∑
j=1

(pj − qj)2 (7.13)

We can then see that if points are very similar to the training set then βK(x∗,xk) ≪
αϵ(xk) and the uncertainty will be dominated by the local aleatoric uncertainty but

if points are very distant then βK(x∗,xk) ≫ αϵ(xk) and the epistemic uncertainty

will dominate. The coefficients α and β can then be interpreted by the relative

importance of both factors and can be learnt during the MACE training phase.

For the classification problem we repeat these steps for each class and then have

a σ∗ for each class. These scores are then normalised first by dividing by the average

score across all classes for a given point: this can be interpreted as returning a score

for each class which is relative to the average uncertainty across all classes. We then

apply a negative softmax normalisation to these relative scores in order to return

probabilities within the interval [0, 1].

Note that for the purposes of this work we are only concerned with estimating the

probability that the point prediction produced by the original model is correct. We

therefore we minimise the expected calibration error for the predicted class only when

training. This need not necessarily be the largest confidence according to MACE

because the point prediction model and MACE are calculating the relative likelihood

of each class independently. We find empirically that this rarely happens but in cases

where they clearly disagree this suggests that either a point is particularly unusual

and therefore the point prediction algorithm is likely to perform badly on them or

the distance metric used by MACE may not be optimal.

In principle this algorithm could of course be extended to be made more flexible

by adding non-linearities or including higher order effects for each factor however,

in principle, we found that a simple linear model was generally sufficient for the

experiments shown below.

2The euclidean distance may be calculated in an embedded space rather than the euclidean
distance between the data points themselves
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7.7 Results

We now evaluate MACE with three different experiments: in each case we will

compare to some standard calibration methods. The first experiment looks at the

performance of MACE compared to other methods on several standard UCI datasets.

The models will be compared on a hold out test dataset where this test set will be

unseen but from the same dataset which the models were trained on: therefore this

experiment will mostly focus on how the models deal with Aleatoric uncertainty. The

second experiment simulates a situation where data changes after a point prediction

model has been trained: here, standard confidence estimators may fail and highlights

a key difference between the way MACE and other methods deal with epistemic

uncertainty. Finally we repeat the experiment shown in section 7.5 with MACE to

show that MACE is generally robust to problems caused by predicting on out-of-

sample data, we also show that the relationship between Trust scores and MACE

remains highly correlated with both in-sample and out-of-sample data.

a Aleatoric Experiments

For this set of experiments we used seven datasets from the UCI collection ([300]).

As discussed above, the choice of similarity metric will influence the results so for

all datasets we first performed a simple embedding strategy: Principal Component

Analysis for non-text datasets and TF-IDf followed by Neighbourhood Component

analysis [301] for text datasets. Neighbourhood Component Analysis seeks to project

the data into a lower dimensional surface which maximises the performance of a K-

nearest neighbours classifier. This allows one to reduce the dimensionality between

the data whilst still maintaining an effective distance measure between points. Once

we had embedded the data we defined similarity to be the Euclidean distance in this

space. We then trained a Random Forest classifier [274] and calibrated the Random

Forest uncertainty using each of MACE, Platt, Isotonic, Temperature scaling and

Dirichlet Calibration methods. Finally we computed the ECE, Log Loss, and Brier

score using K-fold cross validation with ten folds. We then reported the 95% error

intervals as twice the standard deviation over these ten folds.

Looking first at Tables 7.1 and 7.2, where we are evaluating the models using the

proper scoring rules Negative Log Loss and Brier loss, we see that MACE records

the lowest mean negative log likelihood for two datasets MNIST and EEG. For

these two datasets we see a significant difference between MACE and the other

models. The large difference in negative log likelihood is likely because MACE is

able to reduce the confidence of bad predictions and therefore will have fewer high

confidence predictions which are incorrect. This increases the resolution of the model

as it is able to distinguish between very high and very low confidence predictions to

a greater degree. We see that rankings are broadly consistent across the different
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MACE Platt Isotonic Temperature Dirichlet

EEG 0.147± 0.06 0.217± 0.05 0.228± 0.06 0.225± 0.06 0.221± 0.06
Text Sentiment 0.525± 0.26 0.49± 0.17 0.504± 0.26 0.520± 0.26 0.607± 0.61
Letters 0.199± 0.03 0.20± 0.02 0.187± 0.17 0.168± 0.02 0.170± 0.04
Mnist 0.07± 0.01 0.13± 0.01 0.125± 0.01 0.118± 0.01 0.115± 0.01
Fashion 0.30± 0.01 0.30± 0.01 0.28± 0.01 0.28± 0.01 0.28± 0.01
20 news 0.38± 0.08 0.29± 0.08 0.38± 0.26 0.10± 0.27 0.28± 0.14
Adult 0.43± 0.02 0.42± 0.02 0.40± 0.02 0.49± 0.07 0.49± 0.07

Table 7.1: Negative log likelihoods calculated for each of the benchmark UCI
datasets, error bars are estimated using K-fold validation with 10 folds.

metrics however there are some differences. For example on the Letters dataset

when looking at the mean score MACE is ranked fourth on the negative log loss but

second on the Brier loss.

Looking now at table 7.3 we see similar results, this is expected as calibration

is one part of the proper scoring rules. Again we see some difference between the

rankings of various models on each of the datasets. MACE again is clearly the

lowest on MACE and EEG with the rankings varying across other datasets. In

general across each of the metrics MACE seems to perform less on the NLP tasks,

this is not surprising as the induced similarity metric, i.e. the embedding strategy,

used in this work is relatively simple. It is likely that by using more sophisticated

text embedding methods we would be able to perform better on these datasets.

To summarise the results we find that, as has been seen previously, the differences

between various methods is very problem dependent, we find that the ordering of

methods changes across the experiments as well as across different metrics. Looking

at the error intervals across the three metrics we see that often the distributions are

overlapping meaning that it is difficult to draw statistically significant conclusions

regarding a best model on any of the datasets. We do however see that MACE is

generally competitive with other methods commonly used to tackle the problem of

confidence estimation.

It is likely that for many problems each of the calibration methods generally

performs well and the differences between them are small. We therefore suggest

that for problems where the data is unlikely to differ considerably to the training

data then each of the calibration methods will likely be good enough and that ulti-

mately the choice of method should be based upon other problem-dependent factors

such as computational costs, the specific objective function and whether epistemic

uncertainty is likely to be a problem.

b Epistemic Experiment

Motivated by use cases where models are trained at a fixed moment in time (e.g. each

morning, start of each week) and then used for some period of time after, we split the

data into training and testing: a model is then trained on the former while the latter
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MACE Platt Isotonic Temperature Dirichlet

EEG 0.042± 0.02 0.065± 0.02 0.068± 0.02 0.068± 0.02 0.067± 0.02
Text Sentiment 0.162± 0.07 0.160± 0.07 0.156± 0.07 0.159± 0.08 0.167± 0.06
Letters 0.054± 0.01 0.055± 0.007 0.057± 0.01 0.052± 0.01 0.055± 0.01
Mnist 0.02± 0.003 0.037± 0.003 0.037± 0.002 0.035± 0.003 0.035± 0.003
Fashion 0.095± 0.005 0.09± 0.005 0.089± 0.004 0.0089± 0.03 0.089± 0.03
20 news 0.109± 0.02 0.083± 0.03 0.079± 0.03 0.079± 0.03 0.082± 0.03
Adult 0.13± 0.007 0.13± 0.006 0.13± 0.006 0.13± 0.005 0.13± 0.005

Table 7.2: Brier score calculated for each of the benchmark UCI datasets, error bars
are estimated using K-fold validation with 10 folds

MACE Platt Isotonic Temperature Dirichlet

EEG 0.017± 0.05 0.022± 0.006 0.0222± 0.011 0.023± 0.010 0.24± 0.008
Text Sentiment 0.137± 0.05 0.123± 0.04 0.104± 0.05 0.125± 0.05 0.21± 0.03
Letters 0.03± 0.01 0.05± 0.01 0.04± 0.01 0.02± 0.01 0.02± 0.01
Mnist 0.005± 0.002 0.020± 0.003 0.016± 0.005 0.007± 0.002 0.007± 0.03
Fashion 0.019± 0.08 0.40± 0.005 0.018± 0.003 0.013± 0.004 0.011± 0.003
20 news 0.051± 0.02 0.068± 0.022 0.029± 0.01 0.032± 0.01 0.035± 0.02
Adult 0.045± 0.01 0.058± 0.006 0.022± 0.005 0.024± 0.06 0.026± 0.08

Table 7.3: ECE calculated for each of the benchmark UCI datasets, error bars are
estimated using K-fold validation with 10 folds

set has noise artificially added to its features. This simulates heteroskedastic noise,

i.e. replicating the situation where data often changes throughout the life cycle of a

model. In these cases it is therefore important that a model is able to understand

that the data is changing and adjust the confidence in predictions accordingly. We

consecutively added Gaussian noise to the features in the test data, increasing the

standard deviation of the noise, at each iteration. We then recorded the average

point prediction accuracy and the mean confidence for each calibration model.

The results in Figure 7.7 show the average accuracy of the model and the average

confidence estimate of each confidence estimator. We see that initially all models

respond to the noise in a very similar way, i.e. dropping the mean confidence to

follow the trend in mean prediction accuracy. As the amount of noise increases

the model accuracy continues to decrease, until eventually it is scoring around 10%

which corresponds to a random choice. When we compare the accuracy to the

confidence estimates we see that each of the models, apart from MACE, decreases

the confidence scores but are bounded at around 50% despite the continuous decrease

in model performance. This is likely because the other calibration models, which

have learnt a fixed transformation on the random forest confidence score rather

than producing their confidence as a function of the data itself, have no way of

adapting sufficiently to the extreme changes in the data and therefore have no way

of anticipating such a drastic decrease in model performance.

MACE on the other hand continues to follow the trend in accuracy and generally

indicates a more appropriate level of confidence relative to the performance of the

model. In particular, when the noise becomes large enough, MACE is able to report

that the model is returning predictions which are no better than random guesses.
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Figure 7.7: Here we add zero mean Gaussian noise with a standard deviation defined
by the noise level. This simulates data drift by iteratively making the test set more
different to the training data. We show the mean of the test set confidence distribu-
tion for each model and see that because MACE explicitly calculates the epistemic
uncertainty it is able to track the degradation in model performance considerably
better than the other calibration methods.

This is incredibly important when using models in real-world applications as

often beyond the training data, it is hard to have immediate feedback regarding

the outcome of any given prediction. This means that it is generally non-trivial

to monitor the model performance live, so the model confidence may be the only

metric available in real-time. If one were to use that metric in this example, beyond

the noise level with a standard deviation of 2, then unless MACE was used, there

would be no indication that the data had changed and that the model is getting less

capable at making good predictions.

c Is MACE trustworthy ?

We now turn to our final critique of traditional calibration models. We have shown

that often the correlation between confidence and trust scores can be broken when

data is sufficiently different to the training data. This indicates that traditional cal-

ibration methods are not accounting for epistemic uncertainty and are therefore not

necessarily trustworthy. We now repeat the experiment in section 7.5 with MACE

and compare the behaviour between MACE and traditional calibration methods.

As shown in fig 7.8 when MACE is asked to make predictions on random noise,

the distribution clearly changes relative to the calibration methods. We quantify

this difference with the Kolmogorov–Smirnov (KS) statistic and find that MACE vs.

Isotonic, Platt, Temperature, Dirichlet scores are 0.95±0.02. This significant change

is because MACE’s distribution tends towards very low confidence predictions. We

find that often MACE returns probabilities of around 0.1 indicating that the model
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Figure 7.8: Comparison of the distribution of confidence predictions on random
noise. We show the smoothed cumulative density function for each model. MACE
is shown ton be significantly less confident than the other methods with many pre-
dictions returning ∼ 0.1 corresponding to no clear information and effectively zero
high confident predictions.

In sample test data Out of sample Noise

MACE 0.964 0.841

Isotonic 0.797 0.056

Platt 0.803 0.085

Temperature 0.814 0.108

Dirichlet 0.773 0.089

Table 7.4: Table comparing the Spearman rank correlation between trust scores and
confidence estimates for MNIST data. The first column shows the correlation when
estimating both quantities on an unseen test set. The second column shows the
correlation when calculating each quantity on random noise

is not able to make a clear prediction.

We now compare MACE and trust scores. As expected when we are making

predictions on data that is similar to the training data confidence and trust scores

are generally both very high (Spearman rank correlation = 0.964). In Figure 7.9

of the joint distribution between MACE confidence estimates and trust scores when

making predictions on random noise we see that MACE and trust scores remain

highly correlated (correlation = 0.841). This indicates that MACE is correctly

incorporating epistemic uncertainty and therefore remains trustworthy despite the

data being entirely different to the data which the point prediction model was trained

on. See table 7.4 for a full comparison between each calibration method.
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Figure 7.9: The joint distribution between confidence estimates and trust scores
for MACE. We see that, unlike other methods, there is a very clear correlation
between the two indicating that MACE remains trustworthy under large epistemic
uncertainty.

7.8 Discussion

The results from these experiments suggest that despite MACE being an incredibly

simple model, a linear sum of two derived quantities (there are likely more sophisti-

cated versions based on this philosophy that may be better), MACE is comparable

with the state of the art across a variety of metrics whilst also not suffering from the

flaws highlighted in the methods based upon scaling point prediction scores. We will

first address some caveats and limitations of this method before pointing to several

potential important applications of MACE and looking forward to future work in

this area.

a Potential Limitations

Firstly, MACE relies on the assumption that it is possible to define a notion of

similarity between data points, however the distance between raw features is not

necessarily a good measure of similarity and it is likely that more care will be

needed in the data cleaning and feature engineering steps. This can be equivalently

expressed as the need to embed the data into a sensible co-ordinate space so that a

similarity measure is appropriate. Embedding into a specific distance metric area is

a very active area of research (see [302] for a recent survey).
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The computational costs associated with MACE are predominantly in the neigh-

bour search, yet exact nearest neighbour search is O(n2) which is prohibitively ex-

pensive for any reasonably large dataset. Despite our use of efficient approximate

nearest neighbour search the cost of building an additional nearest neighbour model

may be prohibitive for some applications.

In terms of data efficiency, MACE does not have many parameters to train so

does not require a large amount of data to tune them; however sufficient data is

needed to train the point prediction model, as well as large graph data, and then

the calibration and test sets must be sufficiently large to be useful, i.e. to induce the

graph space and generate representative accuracy estimations. As a very rough rule

of thumb we found that in order to have sufficient data to train both MACE and

the point prediction model well, we required several thousand or more data points

for the above classification tasks.

b Practical Applications

As well as the intrinsic utility of getting good confidence estimates we believe that

the intuitive nature of MACE means that it has other important uses in the data

science community. Firstly, the confidence estimates have a clear interpretation. If

you have low confidence you either don’t have enough relevant data or the model

predictions in this region are noisy or error-prone. This can easily be translated into

useful insights for human in the loop pipelines, i.e. seeking to understand why the

model struggles to predict well and/or collect more data in certain regions.

Anomaly detection is also trivial when using MACE, any anomalous data point

will by definition be very different to the training data. This will mean that MACE

predicts a large uncertainty, and in particular a large epistemic uncertainty. This

could easily be converted into an automated test, for which points with epistemic

uncertainty larger than some threshold are automatically flagged.

Another issue that practitioners face is how to effectively monitor a model and

when a model will need to be re-trained, this is related to the issue of data-drift over

time. This is the notion that over time data will change and models will become less

effective. Models must then be re-trained on new data, however re-training models

can be costly and when to re-train is a somewhat arbitrary choice because there

are generally not good metrics for goodness of data making this choice particularly

difficult ([303]). MACE again provides a very simple solution to this problem, as

shown in section b, as the data becomes more different to the initial training data

the confidence estimates will on average decrease. This means there is a very clear

metric to track when considering how well a model is performing. This is a better

metric than predictive accuracy because the reason for confidence decline will be

more clearly related to the data-drift. This could lead to simple automation rules

such as re-train if average confidence falls below x%.
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c Future work

There are some problems where knowledge of a single feature of many is enough to

be very confident about a prediction, this concept of feature importance and feature

interaction is not explicitly accounted for in MACE currently. Accounting for feature

importance is a common problem in machine learning applications and is an active

area of research ([304, 305]). Pre-processing and feature engineering can somewhat

mitigate these problems, however in future work we plan to explicitly incorporate

feature interactions and feature importance into any similarity metric.

This study has not explicitly looked at applications in deep learning, this is

because MACE is a general method which is supposed to be model agnostic. Deep

learning is effective when tackling problems where the raw features themselves are

not necessarily good predictors, and so the network is able to induce new features.

This of course means the notion of a similarity metric between two data points is

more challenging.

In future work we plan to explore the applications of MACE to deep learning, in

particular we plan to compare methods which will induce a similarity metric such

as Auto-encoders, embeddings, etc. In principle as long as there is, or one can

induce, a good measure of similarity then MACE should be effective. Combining

metric learning and similarity networks [302] with MACE would make this method

applicable to a wider range of problems.

The applications to deep learning are important because many of the problems

highlighted above, in particular decision boundaries and extrapolation are even big-

ger issues for deep learning applications. The most extreme version of this being

adversarial attacks ([306]). In principle MACE will offer a very robust counter-

measure to adversarial attacks for the same reasons that MACE is robust to high

confidence predictions on pure noise.

7.9 Conclusion

Modern Machine learning algorithms are incredibly effective at classification tasks,

we argue here that despite this, these algorithms are not a good starting point for

computing confidence estimates. Our position is that any confidence estimates based

upon this paradigm inevitably fail to account for epistemic uncertainty which is

crucial to producing reliable confidence estimates. This often leads to over-confident

predictions on data points that are dissimilar to the data used to train the point

prediction model. In this work we present a simple alternative, MACE, which is

based upon a fundamentally different paradigm. MACE, using a set of nearest

neighbours, estimates uncertainty locally and explicitly accounts for both epistemic

and aleatoric uncertainty. MACE can be applied as an ad-hoc step in any machine

learning pipeline to provide accurate and robust confidence estimates. We show that
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in many situations the confidence estimates produced by MACE will be more reliable

and are therefore more suitable than other methods for most practical applications.
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Model Agnostic Confidence

Estimation - Regression

As well as applications in classification problems, machine learning techniques have

proved to be an incredibly powerful tool for performing regression and forecasting

using data. Similarly to the classification case, many of these tools despite their

utility fail to properly (if at all) incorporate uncertainty into their predictions. As

Machine learning techniques are used more in critical areas such as healthcare, in-

frastructure, etc the ability for a regression model to be able to indicate both the

range of plausible outcomes and whether or not it has the information to make a

reliable prediction will become crucial. Both of these problems can be solved by

accounting for uncertainty properly.

Incorporating uncertainty into a prediction from a regression results in a predic-

tion interval which along with a point prediction predicts an p% upper and lower

bound for which should then contain the true value p% of the time.

As is the case of confidence estimation when doing classification, a good prediction

interval must encapsulate both epistemic and aleatoric uncertainty, i.e. uncertainty

due to the data previously seen by the model and the uncertainy due to the inherent

variability in the target variable see figure 7.1. Understanding and accounting for

uncertainty is crucial to producing a good prediction interval. Therefore prediction

interval estimation is most naturally expressed in a Bayesian language where un-

certainty about both the model and the data can be explicitly incorporated into a

prediction. However, despite the Bayesian framework it is often prohibitively com-

putationally expensive to be applied. It also does not naturally lend itself to being

combined with large non-linear machine learning regression models, (e..g Random

Forest regression).

This is because these models generally have a large number of correlated param-

eters, therefore the sampling techniques that we have discussed through the thesis

would take too to converge to be practically useful. As well as this, even if we are

able to fit a stochastic model this large, sampling from it to generate an uncertainty
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about the prediction is also likely to be prohibitively slow for most applications.

Here we present a simple method (referred to as MACE-PI for creating prediction

intervals which can be added ad-hoc onto any regression pipeline which makes a point

prediction. MACE is not a Bayesian algorithm however it is motivated by the way

Bayesian models account for epistemic uncertainty. In the absence of relevant data,

Bayesian models revert to the prior indicating heuristically that model is saying the

training data doesn’t provide sufficient information to make this prediction.

MACE estimates Epistemic in a similar way to Gaussian Process regression by

computing the similarity of a given point to the training data. If epistemic un-

certainty is large MACE returns a relatively large prediction interval, this again

indicates that the model does not have sufficient information to make a good pre-

diction. MACE then estimates Aleatoric uncertainty by calculating a local error

rate on a hold out set indicating the variance one should expect for predictions in

that region. See section 8.3 for the details regarding how this is implemented.

This method, for the first time, allows for some of the benefits of Bayesian Mod-

elling, in particular properly accounting for epistemic uncertainty, to be combined

with many incredibly powerful regression algorithms which are unable to account

for uncertainty. The simplicity of MACE means that uncertainty can now be easily

incorporated into many machine learning prediction pipelines where it previously

would not have been feasible.

This chapter first introduces some of the metrics that we will use to evaluate

the quality of a prediction interval, then after reviewing similar work we present the

MACE algorithm and show how it has been adapted to compute prediction intervals

instead of confidence estimates for classification problems. We then apply MACE to

some simple examples before comparing the prediction intervals produced by MACE

and those produced by a Gaussian process on several open source datasets.

8.1 Prediction Interval Estimation

Generally a prediction interval can be defined as an interval within which one expects

a future observation to fall given some previously seen data. if we have a model which

outputs a point prediction µ then the prediction interval (PI) can be expressed as:

PI = µ+σu−σl (8.1)

where σu,l are upper and lower errors respectively. Similarly one could define the

interval in terms of the bounds i.e. [Li, Ui] where:

Ui = µ+ σu

Li = µ− σl
(8.2)
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If our interval is symmetric, then we have

PI = µ± σ (8.3)

Intuitively one can consider the quality of a prediction interval as being the

smallest possible interval that is calibrated. In order to be calibrated we require that

the true value y falls within this interval p% of the time for a specified prediction

interval p i.e. a 90% interval should contain the true value 90% of the time. This is

often described as a metric known as the Prediction Interval Coverage Probability

(PICP). This quantity must be empirically estimated from a hold out data set, i.e. a

set of data which the model has not seen during training. We then define the PICP

for a given set of data as

PICP =
1

n

n∑
i=1

ci (8.4)

Where

ci =

{
1, if t ∈ [Li, Ui]

0, if t /∈ [Li, Ui]
(8.5)

If the PICP matches the desired confidence level, p, for a set of prediction intervals

we say that the model satisfies the PICP condition. This is not the only thing to

consider however as by increasing the bounds across the entire set uniformly we

are able to do this and large uniform intervals are often not particularly useful.

Therefore we can characterise out intuitions and say prediction interval should be as

narrow as possible given that the PICP condition can be satisfied so one may also

consider the mean prediction interval width (MPIW) when considering the quality

of a set of predictions.

MPIW =
1

n

n∑
i=1

Ui − Li (8.6)

When one uses MPIW as a comparison we will ensure that the coverage probabil-

ity is the same for the models being compared, this means one may have to increase

or decrease the reported confidence to match the true coverage probability. In this

work we will ensure compare the MPIW at a coverage probability of 90% (we could

of course choose any other interval however the 90% interval is commonly reported).

The MPIW effectively reports how precise a set of intervals are, if we can satisfy

the PICP condition with a smaller MPIW then we are generating more finely tuned

predition intervals.
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8.2 Related Work

a Bayesian Methods

Quantifying the uncertainty in a prediction is most naturally considered within a

Bayesian framework, parametric methods such as Bayesian parametric modelling

([288] [289]) and non-parametric methods such as Gaussian Process (GP) Regres-

sion ([278, 226]) and Bayesian Neural Networks ([251]) have proven to be effective for

providing prediction intervals. These methods however suffer from some drawbacks

that MACE attempts to address, generally they are considerably more computation-

ally expensive at both training and inference time, this is potentially a major barrier

for many applications. For example exact GP regression is O(n3) to train and O(n2

for prediction. Sparse GPs ([307] use m ≪ n inducing variables to reduce these

computational costs to O(nm2) and O(mn) for training and prediction respectively,

however this still requires considerable computational resources for many problems.

There is in general no method that the authors are aware of to explicitly combine

Bayesian uncertainty estimates with an arbitrary point prediction algorithm. MACE

is not a Bayesian algorithm however, as described in the introduction, it is motivated

by some of the underlying Bayesian principles. It then seeks to bridge the gap

by combining some of the benefits of Bayesian modelling with considerably less

computational costs and, by being compatible with any point prediction algorithm,

considerably more flexible.

b Non-Bayesian methods

Outside of the explicitly Bayesian framework there are several methods that have

been utilised for the problem of prediction intervals. There are methods that specif-

ically address the prediction interval problem for neural networks for example see

[308]. Dropouts method introduced in [290] could potentially be applied to other

methods by perturbing or dropping model parameters and generating a range of

predictions, however monte carlo simulation methods such as this are generally very

computationally expensive to get a good coverage of the parameter space if the num-

ber of model parameters is large. Ensemble methods similar to those introduced for

neural networks in [270] could also be applied for any model however the cost of

training a large enough ensemble to is often prohibitive for many applications.

Outside of the Bayesian framework MACE is most similar to Conformal Learning

([309]), here prediction intervals are generated based upon how much a new data

point conforms to the previously seen data according to some user-defined measure

of conformity. This framework often fails to account properly for local variations

in model accuracy, and often outputs a nearly constant interval across the variable

space. As well as this intervals are set based upon the rank with respect to the

previously seen data point, this means that Conformal intervals generally do not
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extrapolate well beyond the range of conformity seen in the training data. For

example they will generally not be able to identify the areas of exceptionally large

epistemic uncertainty where the point prediction model does not any data in that

region.

c Confidence Calibration

The ah-hoc addition of uncertainty onto an estimate is similar to the notion of confi-

dence calibration for a classification problem, generally here one takes an unreliable

confidence estimate from a point prediction model and calibrates these confidence

estimates with an additional modelling step after the point prediction model has

been trained. MACE-PI adopts a similar philosophy here, we take a point pre-

diction and then estimate the prediction interval with one additional modelling

step. This approach has generated considerable work in the field of classification

([285, 286, 279, 277, 287]) however it has not previously been applied in the context

of regression.

8.3 MACE

a Algorithm - overview

The algorithm for producing prediction intervals follows the same basic principles

as the classification algorithm presented in section 7.6. In this section we will briefly

again outline the algorithm and highlight areas where this algorithms differ to pro-

duce a prediction interval.

The initial steps of the algorithm are the same, one has to split the data into four

distinct sets, the point prediction model training set, MACE training set, MACE

parameter calibration set, unseen hold-out test set. We then must define a notion

of similarity between data points, This definition is an important step that should

be guided by knowledge about the data and may require an embedding step to

improve performance. As well as defining a notion of similarity, the user must

explicitly provide their expectations about the noise distributions, MACE assumes

some distributional form for the prediction intervals, e.g. Gaussian, exponential etc.

In this work for all examples, we use the euclidean distance between data points as

our similarity measure and assume Gaussian errors but in principle any metric and

any distribution which can be described by a mode and a scale parameter would be

suitable.

Once we have defined these, for any given point x∗, we find the k most similar

points from the known MACE training data. For computational reasons we use

the Hierarchical Navigable Small World algorithm [296], an approximate nearest

neighbours algorithm which leads to a complexity of O(n log n) during training in

order to build a graph from the mace training data and then O(log n) at inference
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once the graph has been built. Due to the simplicity of MACE these are usually the

dominant costs for both training and inference.

Using these k points we can then estimate proxies for both epistemic and aleatoric

uncertainty. The local aleatoric uncertainty will be the error i.e. average absolute

error on these k points. The epistemic uncertainty will be approximated by the

average distance to these k neighbours. We define the error as ϵ(xk) and the dis-

tance between points as K(x∗, xk). The un-normalised confidence scores is then

approximated to be a simple function of these terms i.e. :

σ∗ = αϵ(xk) + βK(x∗, xk) (8.7)

Where α and β are then co-efficients which weight the relative importance of both

factors and can be learnt by optimising the PICP for a given distribution. If points

are very similar to the training set then βK(x∗, xk) ≪ αϵ(xk) and the uncertainty

will be dominated by the local aleatoric uncertainty, if points are very distant then

βK(x∗, xk) ≫ αϵ(xk) will grow large and eventually the epistemic uncertainty will

dominate.

In principle this could of course be extended to be made more flexible by adding

non-linearities or learning powers for each factor however in principle we found that

a simple linear model sufficient to model the examples data presented in this work.

After learning our hyper-parameters which define the scale parameter σ our pre-

diction interval for a given point x∗ will be fined by the distribution:

y∗ ∼ D(µ∗, σ∗) (8.8)

Where µ∗ is computed independently of MACE by the model we have chosen for

our point predictions and D is our assumed error distribution about our prediction.

We can then generate our prediction interval by cutting this distribution at our

desired confidence level.

8.4 Experiments

a Simple Examples

In figure 8.1 we see a simple example where the noise is heteroskedastic, i.e. after

0.5 the data becomes considerably less noisy. MACE is able to capture this locality

and the prediction intervals rapidly shrink to reflect the fact that any prediction

between 0.5-1 is considerable more confident than between 0 - 0.5. This reflects

that the model has been able to effectively capture the local aleatoric uncertainty.

At values greater than 1 we see that the MACE prediction intervals becomes more

and more uncertain as we move away from the training data. This reflects the fact
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Figure 8.1: A simple example, where the model captures both local aleatoric and
epistemic uncertainty

that we do not have any relevant data for this region and therefore any prediction

contains a large amount of epistemic uncertainty.

In Fig.8.2 we look at the the California bike sharing data set (first presented in

[310]) where the aim is to use this data predict the usage of shared bikes depending

upon a variety of factors such as time, weather etc. To test how MACE responds to

a changing model we remove variables one at a time from the data and re-train both

the model and MACE-PI, we then compare the effect on the root mean squared

error (RMSE), MPIW and PICP for a 90% confidence interval.

We see that as expected when we remove variables there is less explanatory power

in the data and therefore the predictions become less accurate so the RMSE grows.

Similarly the MPIW grows, this indicates that MACE is on average less confident

in the predictions and therefore predicts a wider interval. Finally we then look at

the calibration of the intervals for a 90% confidence interval, we see that this stays

relatively constant until there are only a few remaining. At this point we highlight

an interesting point about needing a well defined similarity metric. When we have

removed so many variables, the distance between points with the remaining variables

is not a good similarity metric and therefore the performance of MACE suffers. Up

to this point we see the ideal behaviour as even with less information MACE is

still aware of the limitations and is able to compensate for the lack of information

by returning less confident predictions, i.e. wider prediction intervals. After this

point the intervals become too wide suggesting that the missing information is not

allowing MACE to be confident about any predictions.
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Figure 8.2: The effect of removing variables,error and width of the prediction in-
tervals grow quickly but the calibration stays relatively constant until only a few
variables remaining, at which point the noise in the data likely dominates. The
uncertainty bars are obtained using k-fold cross validation for each iteration.

b Comparison with Gaussian Process Regression on benchmark

datasets

Experimental setup

We will compare MACE with Gaussian Process (GP) regression. We will compare

MACE and the GP using PICP, MPIW and root mean squared error (RMSE). For

MACE, in all cases we will use a random forest regressor for the point prediction, im-

plemented with Scikit learn ([274, 311]), the prediction intervals will then be learnt

as described above. For MACE the RMSE is of course derived from the underlying

point prediction model. By looking at this we can see examples where the random

forest is more accurate that the GP and therefore highlight the utility in having the

prediction interval derived independently of the method that generates the predic-

tion. For all experiments we will use K-fold cross validation to generate a range of

scores for each model. K-fold cross validation works by using k different samples of
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train and test data. By evaluating our models on these different realisations this

gives some estimate for the generalisation of the method. Here when stating figures

we report the mean and standard error across the k folds.

For the GP will use the open source implementation from GPytorch ([312]). Due

to the computational costs of using exact GP we will use Stochastic Variational

Gaussian Process (SVGP) regression ([307] (though see [229] for methods to make

exact GP scalabe to datasets of this size). In particular we will use Parametric

Gaussian Process Regressors ([313]) as they can generally provide better prediction

intervals. In all cases we will use the Radial-Basis (also known as Gaussian) kernel

and optimise the GP hyper-parameters using the ADAM optimiser ([314]).

It should be noted that Gaussian Process models are generally sensitive to hyper-

parameters and the choice of kernel so it may be possible to obtain results that are

different to those shown here. For this reason and others such as the different

training strategies, we are not necessarily doing an apples to apples comparison, we

therefore will not claim that either method is superior in terms of performance. We

are presenting MACE as an alternative for providing prediction intervals which can

also generally produce good results as well as providing many other benefits which

are discussed further in section 8.5

Results

We will evaluate our model on several datasets which can be found at the UCI

database [300], these datasets vary in complexity, size (n = O(102 − 105) and di-

mensionality (d = 2-384) (see table 8.1 for more details.). The aim for each of these

datasets is to use the features provided in the data to fit a regression model and

predict some target variable, e.g. the house price in the Boston dataset. For all

datasets we scale the feature space such that all dimensions range between zero and

one and standardise the target variable such that it has zero mean and unit standard

deviation.

We will compare the models using the metrics described in 8.1; the prediction

interval coverage probability (PICP) and the mean prediction interval width as well

as the root mean squared error (RMSE). These three metrics evaluate the accuracy

of the point prediction, the calibration of the intervals and the precision of the

intervals, and therefore should provide a holistic assessment of the intervals.

We summarise these results in table 8.1 and plot the results in figures 8.3, 8.4,

8.5. In all of the figures we plot the distribution of scores, obtained by using the

K folds, as a violin plot. I show each individual score as a dot in the centre of the

violin. This allows us to visualise the range of scores that we might expect for each

of the given datasets.

If we first look at figure 8.3, we have ordered the datasets in ascending order of

the number of points. We can see that when the datasets have size O(104) both
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Table 8.1: Summary table of the comparison between a Gaussian Process and
MACE-PI on our seven datasets, n is the number of data points and d is the dimen-
sionality of the data. We report the Room Mean Squared Error, the Mean Prediciton
Interval Width and the Prediction Interval Coverage Probability (see section 8.1)
for each dataset.

MACE GP

RMSE
PICP

(at 90%)
MPIW
(at 90%)

RMSE
PICP

(at 90%)
MPIW
(at 90%)

Boston:
n=506,d=13

0.17 ± 0.06 89.4 ± 3.3 1.27 ± 0.07 0.07 ± 0.01 81.0 ± 3.7 0.66 ± 0.02

Abalone:˜
n=4177,d=8

0.47 ± 0.05 91.8 ± 1.1 2.1 ± 0.12 0.47 ± 0.06 88.6± 2.9 2.07 ± 0.1

Wine:
n=6497,d=12

0.57 ± 0.04 91.5 ± 1.3 2.6 ± 0.12 0.67 ± 0.05 88.5 ± 1.7 2.6 ± 0.1

Amsterdam:
n=15148, n=16

0.60 ± 0.3 87.5 ± 1.2 1.70 ± 0.07 0.65 ± 0.4 86.9 ± 1.2 1.76 ± 0.1

Bike:
n=17370, d=12

0.07 ± 0.001 89.3 ± 0.8 1.2 ± 0.3 0.16 ± 0.11 89.6± 0.7 1.03 ± 0.15

Slice:
n= 53500, d=384

0.008 ± 0.002 89.6 ± 0.6 0.11 ± 0.01 0.086 ± 0.01 94.7 ± 0.4 0.26 ± 0.01

3d Road:
n=434873, d=2

0.015 ± 0.0002 90.2 ± 0.5 0.29 ± 0.01 0.36± 0.007 91.9 ± 0.7 1.63 ± 0.005

models are performing similarly. The differences between models broadly fall within

the errors obtained from the K-fold validation. This suggests that both models are

learning a broadly similar model of the data, this changes however as the size of

the dataset grows. We see that the random forest model has a considerably lower

RMSE for the two largest datasets. This may be due to the sparse GP model not

being complex enough to fit the data and if we used more inducing points we would

see similar results.

Looking now at figure 8.4 where we are evaluating the PICP we see that generally

MACE has a lower average PICP, which suggests the intervals are calibrated better

to the ground truth probability, e.g. 90% confidence interval contains the truth

closer to 90% of the time. For datasets O(104) we see that the differences between

models are roughly within the k fold errors. We note however that the standard

deviation of the errors is much smaller for MACE suggesting that the model is more

stable to small changes in the data. Again for the two largest datasets we find large

differences, this suggests that MACE is able to better represent the uncertainty,

again this could be due to the number of inducing points not being a complex

enough model to capture the uncertainty accurately. ignoring the comparison we

see that generally the PICP is very close to the target confidence level for MACE

meaning that it is able to learn calibrated and reliable prediction intervals.

Finally when looking at the MPIW in 8.5, we again see that MACE performs

very well relative to the GP given sufficient data, this suggests that the prediction

intervals produced by MACE are precise in that when the model is well calibrated

it is able to produce intervals that adjust well to the data where we can be very

confident, or equivalently where the uncertainty about a prediction is low MACE is

also able to produce restrictive prediction intervals.
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Figure 8.3: Violin plot showing the comparison of the root mean squared error for
both models across the six example datasets, each dot represents the RMSE for one
of the k folds, the violin plot then shows the distribution of these scores.

Figure 8.4: Violin plot showing the comparison of the prediction interval coverage
probability (PICP) for both models across the six example datasets, each dot rep-
resents the PICP for one of the k folds, the violin plot then shows the distribution
of these scores. The blue dotted line represents the coverage the models are aiming
at.

8.5 Discussion

Our method differs from each of the state of the art methods in that it makes no

assumptions about the model used to estimate the point prediction. It only requires

a hold out dataset and a set of model predictions for that dataset. This makes it

incredibly flexible and therefore simple to add onto any regression pipeline ad-hoc.

We show that it is competitive on bench-marking datasets, despite this.

As well as this flexibility and ease of use, as in the case of the classification

algorithm, there are several other benefits that will be added by using MACE. By

directly modelling both types of uncertainty, the prediction interval becomes trivial

to interpret. If the interval is large then either the model is not predicting well for

data points similar to the desired prediction or the model does not have data similar
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Figure 8.5: Violin plot showing the comparison of the mean prediction interval width
for both models across the six example datasets, each dot represents the MPIW for
one of the k folds, the violin plot then shows the distribution of these scores.

to the desired point. This can easily be translated into useful human in the loop

pipelines, i.e. the user could easily seek to understand why the model struggles to

predict well and/or collect more data in certain regions.

Anomaly detection is also trivial when using MACE, any anomalous data point

will by definition be very different to the training data. This will mean that MACE

predicts a large uncertainty, and in particular a large epistemic uncertainty. This

could easily be converted into an automated test, for which points with epistemic

uncertainty larger than some threshold are automatically flagged.

Another application where using MACE is that it can be useful is when consid-

ering the problem of data drift [303]). This is the notion that over time data will

change and models trained at a particular point in time will become less effective.

Models must then be re-trained on new data, however re-training models can be

costly and when to re-train is a somewhat arbitrary choice. MACE can provide a

useful metric here by noting that as data drift occurs the epistemic uncertainty will

increase. One could then consider the previous n predictions and if their mean pre-

diction width is larger than a modeller chosen threshold, this suggests that the data

is sufficiently different and therefore re-training a model will be necessary. This can

become an automated process which can allow models to be used for an extended

period in the wild.

Here we suggest potential guidelines for the application of MACE to one’s prob-

lems and highlight a couple of limitations that may determine whether it is a suitable

method for the reader.

The algorithm requires splitting the dataset into four sets most machine learning

pipelines pipelines involve three, training, validation and testing. These three can

naturally be used for the respective chunks in MACE however there also needs to

be a fairly large dataset not used in point prediction training in order to have a

representative dataset to test for similarity . We have found that for most non-
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trivial problems we need at least O(few × 103 − 104) data points.

The other potential limitation is that MACE is not a black box, it requires a

well defined notion of similarity between data points. This is usually a reasonable

assumption however in some deep learning applications it is not trivial to define

a notion of similarity that maps to reality. Strong correlations and/or many pa-

rameters that are not useful can also affect this may create an artificial similarity

between points. Often the standard data pre-processing techniques will be sufficient

for this to not be a problem, however there are applications where embeddings (e.g.

word2vec , auto-encoders, etc [293, 294] ) may improve performance substantially.

We will extend this work with a specific emphasis on deep learning problems in

future work.

8.6 Conclusion

This work has presented a novel method which can provide prediction intervals

about any point prediction. Our method directly models the two cause of uncer-

tainty, Aleatoric and epistemic, to produce prediction intervals. We have shown that

this method is competitive with several state of the art methods whilst also being

agnostic to the pipeline which produces the point prediction. As well as the utility

of producing good prediction intervals for a given point we have highlighted other

other situations where this method may be useful such as interpret-ability, anomaly

detection, data drift, and human in the loop machine learning.

This method is a general method which is not gravitational-wave specific however

many methods in gravitational-wave data analysis involve an interpolation or regres-

sion step and therefore there are several applications where applying this method

would be useful. Firstly using the MACE-PI algorithm one could repeat the study

shown in chapter 5 with any point prediction model (e.g. random forests) and then

obtain uncertainty estimates using MACE. This would allow the method to be more

flexible as it would not depend upon on the ability of the Gaussian process to fit the

density surface.

Another application where this could be trivially added ad-hoc is in waveform

surrogate modeling work such as [67]. This method involves doing an interpolation

using neural networks, currently the neural networks only produce a point prediction

and hence a single predicted waveform. One could add MACE into this pipeline and

produce a range of plausible waveforms for a given set of parameters, this uncertainty

could then be marginalised over during parameter estimation analysis.
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Concluding Remarks

This thesis was completed almost 18 months after the third observing run ended,

and gravitational-wave astronomy is progressing rapidly. Since the first detection

of gravitational waves [116], groundbreaking science has continued to be produced

on an almost regular basis e.g. the first multi-messenger observation binary neutron

stars [315] and either the heaviest neutron star or lightest black hole ever observed

[155]. Looking to O4 and beyond, this progress shows no sign of slowing down [203].

In the years and decades to come we expect to observe events more frequently and

using the information in these events, we expect to discover new and interesting

physics.

This progress, however, as we have mentioned several times throughout this the-

sis, comes with many challenges. This thesis has mostly focused on the data analysis

challenges that the future will bring and has looked at methods to address some of

these problems. As well as addressing specific problems, this thesis has attempted

to use both traditional mathematical/physics-based techniques as well as modern

techniques such as machine learning to solve data analysis problems. Machine learn-

ing techniques have revolutionized many fields, such as computer vision, and will

likely revolutionize many areas of the natural sciences including gravitational-wave

science in the years to come however there is, of course, no free lunch. When using

these methods we must ensure that they are used appropriately and where possible

are guided by mathematics and physics that are well understood.

This thesis begins by looking at the gravitational waves emitted by precessing

compact binary systems, precession leads to complicated orbital dynamics which

imprint non-trivial changes in the phase and amplitude of the waveform we observe.

We showed that by decomposing a precessing waveform into a power series of five

non-precessing harmonics, the non-trivial characteristics of precessing waveforms

could be easily understood as the combination and superposition of simple non-

precessing harmonics. With this new formulation of the problem, it is clear that for

the vast majority of signals only the first two harmonics contribute significantly to

the overall waveform. This then simplifies the problem further, if we have significant
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power in the sub-dominant precession then we have observed precession, otherwise,

we have not. This motivated to the precession SNR, ρp which we quantifies the

amount of observable precession in a waveform. This metric was subsequently used

in several LVK analsyes such as [155, 1, 57]. The thesis then looks at work which

used the precession SNR to conduct studies that would not have been feasible prior

to its conception.

In chapter 3 a population study was done which looked at the rate at which we

might expect to observe precession under different spin population models. This

then allowed us to evaluate the likelihood of these models being consistent with

no clear observations of precession at the time of writing, providing evidence in

favor of certain models over others. We also predicted that given the most likely

model of the ones we tested, there is around an 80% chance that we will observe

a precessing event. This prediction turned out to potentially be correct with the

marginal evidence for precession [1].

Chapter 4 conducts a large-scale parameter estimation study, looking at where

in parameter space we would expect to observe precessing binaries. By moving

along several dimensions independently we were able to highlight clear trends re-

garding the types of systems that are more likely to have observable precession in

their waveforms. Using these parameter estimation runs we were also able to high-

light interesting degeneracies across the parameter space for example the degeneracy

between the inclination angle θJN and the precession parameter χp can clearly be

explained as a line of constant ρp. Finally, we show that there is a mapping be-

tween the precession SNR and Bayes factors. Bayes Factors have been the standard

measure of evidence for whether there is precession in a system however they are

computationally expensive to compute relative to the precession SNR. This means

that in the future we may be able to save considerable computational resources by

using the precession SNR instead.

The thesis then moves on to look at machine learning applications in gravitational-

wave data analysis, in chapter 5 we use Gaussian Processes to interpolate posterior

samples. This gives us a continuous representation of the parameter space from a

discrete set of samples, having a representation like this is considerably more useful

for population analysis and other downstream applications. We also highlight a fur-

ther benefit of using Gaussian Processes by incorporating the uncertainty estimates

produced by them into sky-maps, this gives us an uncertainty estimate on our 90%

contours which could be useful for electromagnetic follow-up.

In chapter 6, we look at how recent developments in waveform modeling using

machine learning can be used to make parameter estimation faster. We implement

for the first time a vectorized parameter estimation analysis, that can gain large

efficiency gains by doing parameter estimation in large batches. We also present a

method of doing gradient-based sampling where we are able to use Autodiff to cal-

culate the gradient of the likelihood function. This would only previously have been
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possible using approximate or numerical methods, we then highlight the weaknesses

and benefits of this method compared to simple brute force random walk sampling.

In chapters 7 and 8 we move on to look at very important questions which often

limit the practical use of machine learning techniques; can we trust them? And do

they produce reliable uncertainty estimates? Having reliable and trustworthy uncer-

tainty estimates is essential if these techniques are to be used in gravitational-wave

astronomy. In chapter 7 section, I show that often machine learning methods do not

incorporate uncertainty properly and therefore are not able to produce reliable and

trustworthy predictions. I then present a novel algorithm that can be applied to

classification pipelines to address this problem. This algorithm explicitly accounts

for both epistemic (whether your model has the relevant data to make a good pre-

diction) and aleatoric (the intrinsic randomness inherent in a system). I highlight

use-cases where doing this is essential for the model to be useful in real-world appli-

cations. In chapter 8 I then show how to adapt this algorithm for regression models

and compare the prediction intervals produced by this method with Gaussian pro-

cesses.

Much of the work within it could prove to be complimentary, for example having

a better understanding of precession will allow us to better understand the parame-

ter space that we are would like to fit and sample as in chapters 5 and 6 respectively.

If we could incorporate this knowledge using physics based bijectors when sampling

e.g. []. These bijectors would effectively map the complicated gravitational-wave

parameter space to a simple space, allowing the chains to move around a simple

space and collect effective samples quickly. In other fields this has been done previ-

ously with neural networks however combining and guiding these using our physical

understanding would likely prove to be even more efficient. The insights generated

using the precessing SNR we would be a prime candidate for this and would be

able to make precessing parameter analysis considerably more efficient. Techniques

such as this which exploit our physical insights combined with the modern tech-

niques such as HMC, vectorisation, neural networks and exploitation of GPUs could

lead to huge efficiency savings relative to the current parameter estimation routines.

In the conclusion of chapter 8 I point to some future applications for MACE in

gravitational-wave data analysis but as machine learning models become more pop-

ular, the need for reliable uncertainty estimates will become more and more relevant

so there may be many more potential applications in the years to come.

Finally I hope that this thesis presents a body of work that shows how to use

both traditional and data-driven techniques to solve gravitational wave data analysis

problems. I believe the right balance between these two approaches will prove to be

the best way forward in the years to come.
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namique de l’électron; note on” on the dynamics of the electron”. Academie

des Sciences Paris Comptes Rendus, 150:1504–1508, 1906.

[6] Albert Einstein, Max Born, Hedwig Born, et al. Born-einstein letters. 1971.

[7] Albert Einstein and Nathan Rosen. On gravitational waves. Journal of the

Franklin Institute, 223(1):43–54, 1937.

[8] Luc Blanchet. Gravitational radiation from post-newtonian sources and inspi-

ralling compact binaries. Living reviews in relativity, 17(1):1–187, 2014.

[9] Luis Lehner. Numerical relativity: a review. Classical and Quantum Gravity,

18(17):R25, 2001.

[10] Joseph Weber. Detection and generation of gravitational waves. Physical

Review, 117(1):306, 1960.

[11] RWP Drever, J Hough, R Bland, and GW Lessnoff. Search for short bursts of

gravitational radiation. Nature, 246(5432):340–344, 1973.

[12] Russell A Hulse and Joseph H Taylor. Discovery of a pulsar in a binary system.

The Astrophysical Journal, 195:L51–L53, 1975.

– 154 –



Bibliography

[13] Joseph H Taylor and Joel M Weisberg. A new test of general relativity-

gravitational radiation and the binary pulsar psr 1913+ 16. The Astrophysical

Journal, 253:908–920, 1982.

[14] ME Gerstenshtein and VI Pustovoit. On the detection of low frequency grav-

itational waves. Soviet Physics-JETP, 16(2):433–435, 1963.

[15] Rainer Weiss and Dirk Muehlner. Electronically coupled broadband gravita-

tional antenna. Research Laboratory of Electronics (MIT),(105), 54, 1972.

[16] Ronald WP Drever. Interferometric detectors for gravitational radiation. Lec-

ture Notes in Physics, Berlin Springer Verlag, 124:321–338, 1983.

[17] RWP Drever, FJ Raab, KS Thorne, R Vogt, and R Weiss. A laser interferom-

eter gravitational-wave observatory (ligo), 1989.

[18] Junaid Aasi, et al. Advanced ligo. Classical and quantum gravity, 32(7):074001,

2015.

[19] Benjamin P Abbott, et al. A guide to ligo–virgo detector noise and extrac-

tion of transient gravitational-wave signals. Classical and Quantum Gravity,

37(5):055002, 2020.

[20] Benno Willke, et al. The geo 600 gravitational wave detector. Classical and

Quantum Gravity, 19(7):1377, 2002.

[21] F Acernese, et al. Advanced virgo: a second-generation interferometric gravi-

tational wave detector. Classical and Quantum Gravity, 32(2):024001, 2014.

[22] T Akutsu, et al. Kagra: 2.5 generation interferometric gravitational wave

detector. arXiv preprint arXiv:1811.08079, 2018.

[23] Karsten Danzmann, LISA Study Team, et al. Lisa: laser interferometer space

antenna for gravitational wave measurements. Classical and Quantum Gravity,

13(11A):A247, 1996.

[24] M Punturo, et al. The einstein telescope: a third-generation gravitational

wave observatory. Classical and Quantum Gravity, 27(19):194002, 2010.

[25] JDE Creighton and WG Anderson. Gravitational-waves physics and astron-

omy: An introduction to theory, experiment and data analysis, 2011. URL

http://www. wiley-vch. de/publish/dt/books/ISBN3-527-40886-X. II A, 2018.

[26] Michele Maggiore. Gravitational waves: Volume 1: Theory and experiments,

volume 1. Oxford university press, 2008.

[27] Lee S Finn. Detection, measurement, and gravitational radiation. Physical

Review D, 46(12):5236, 1992.

– 155 –



Bibliography

[28] Piotr Jaranowski, Andrzej Krolak, and Bernard F Schutz. Data analysis of

gravitational-wave signals from spinning neutron stars: The signal and its

detection. Physical Review D, 58(6):063001, 1998.

[29] Alessandra Buonanno and Thibault Damour. Effective one-body approach

to general relativistic two-body dynamics. Physical Review D, 59(8):084006,

1999.

[30] Yi Pan, et al. Inspiral-merger-ringdown waveforms of spinning, precessing

black-hole binaries in the effective-one-body formalism. Physical Review D,

89(8):084006, 2014.

[31] Parameswaran Ajith, et al. A phenomenological template family for black-hole

coalescence waveforms. Classical and Quantum Gravity, 24(19):S689, 2007.

[32] Sebastian Khan, Katerina Chatziioannou, Mark Hannam, and Frank Ohme.

Phenomenological model for the gravitational-wave signal from precessing bi-

nary black holes with two-spin effects. Physical Review D, 100(2):024059,

2019.

[33] Benjamin J Owen and Bangalore Suryanarayana Sathyaprakash. Matched

filtering of gravitational waves from inspiraling compact binaries: Computa-

tional cost and template placement. Physical Review D, 60(2):022002, 1999.

[34] Parameswaran Ajith, et al. Template bank for gravitational waveforms from

coalescing binary black holes: Nonspinning binaries. Physical Review D,

77(10):104017, 2008.

[35] Derek Davis, et al. Ligo detector characterization in the second and third

observing runs. Classical and Quantum Gravity, 38(13):135014, 2021.

[36] Bruce Allen, Warren G Anderson, Patrick R Brady, Duncan A Brown, and

Jolien DE Creighton. Findchirp: An algorithm for detection of gravitational

waves from inspiraling compact binaries. Physical Review D, 85(12):122006,

2012.

[37] Samantha A Usman, et al. The pycbc search for gravitational waves from

compact binary coalescence. Classical and Quantum Gravity, 33(21):215004,

2016.

[38] Surabhi Sachdev, et al. The gstlal search analysis methods for compact binary

mergers in advanced ligo’s second and advanced virgo’s first observing runs.

arXiv preprint arXiv:1901.08580, 2019.

[39] Curt Cutler and Eanna E Flanagan. Gravitational waves from merging com-

pact binaries: How accurately can one extract the binary’s parameters from

the inspiral waveform? Physical Review D, 49(6):2658, 1994.

– 156 –



Bibliography

[40] Eric Thrane and Colm Talbot. An introduction to bayesian inference in

gravitational-wave astronomy: parameter estimation, model selection, and hi-

erarchical models. Publications of the Astronomical Society of Australia, 36,

2019.

[41] Ilya Mandel and Tassos Fragos. An alternative interpretation of gw190412 as a

binary black hole merger with a rapidly spinning secondary. The Astrophysical

Journal Letters, 895(2):L28, 2020.

[42] Michael Zevin, Christopher PL Berry, Scott Coughlin, Katerina Chatziioan-

nou, and Salvatore Vitale. You can’t always get what you want: The impact

of prior assumptions on interpreting gw190412. The Astrophysical Journal

Letters, 899(1):L17, 2020.

[43] Charles J Geyer. Markov chain monte carlo maximum likelihood. 1991.

[44] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of

markov chain monte carlo. CRC press, 2011.

[45] John Skilling et al. Nested sampling for general Bayesian computation.

Bayesian analysis, 1(4):833–859, 2006.

[46] James R Norris and John Robert Norris. Markov chains. Number 2. Cambridge

university press, 1998.

[47] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-

gusta H Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[48] W Keith Hastings. Monte carlo sampling methods using markov chains and

their applications. Biometrika, 57(1):97–109, 1970.

[49] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo.

arXiv preprint arXiv:1701.02434, 2017.

[50] Marc van der Sluys, et al. Parameter estimation of spinning binary inspirals

using Markov-chain Monte Carlo. Class. Quant. Grav., 25:184011, 2008.

[51] J. Veitch and A. Vecchio. Bayesian coherent analysis of in-spiral gravitational

wave signals with a detector network. Phys. Rev., D81:062003, 2010.

[52] J. Veitch et al. Parameter estimation for compact binaries with ground-based

gravitational-wave observations using the LALInference software library. Phys.

Rev., D91(4):042003, 2015.

[53] Gregory Ashton, et al. Bilby: A user-friendly bayesian inference library for

gravitational-wave astronomy. The Astrophysical Journal Supplement Series,

241(2):27, 2019.

– 157 –



Bibliography

[54] C. M. Biwer, et al. PyCBC Inference: A Python-based parameter estima-

tion toolkit for compact binary coalescence signals. Publ. Astron. Soc. Pac.,

131(996):024503, 2019.

[55] David J Earl and Michael W Deem. Parallel tempering: Theory, applications,

and new perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916,

2005.

[56] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain

Monte Carlo in practice. CRC press, 1995.

[57] R. Abbott et al. GWTC-2: Compact Binary Coalescences Observed by LIGO

and Virgo During the First Half of the Third Observing Run. 10 2020.

[58] R Abbott, et al. Tests of general relativity with binary black holes from

the second ligo-virgo gravitational-wave transient catalog. Physical Review D,

103(12):122002, 2021.

[59] R. Abbott et al. Population Properties of Compact Objects from the Second

LIGO-Virgo Gravitational-Wave Transient Catalog. 10 2020.

[60] BP Abbott, et al. A gravitational-wave measurement of the hubble constant

following the second observing run of advanced ligo and virgo. The Astrophys-

ical Journal, 909(2):218, 2021.

[61] Bangalore Suryanarayana Sathyaprakash and Bernard F Schutz. Physics, as-

trophysics and cosmology with gravitational waves. Living reviews in relativity,

12(1):1–141, 2009.

[62] Theocharis A. Apostolatos, Curt Cutler, Gerald J. Sussman, and Kip S.

Thorne. Spin induced orbital precession and its modulation of the gravita-

tional wave forms from merging binaries. Phys. Rev., D49:6274–6297, 1994.

[63] Elena Cuoco, et al. Enhancing gravitational-wave science with machine learn-

ing. arXiv preprint arXiv:2005.03745, 2020.

[64] Christopher J Fluke and Colin Jacobs. Surveying the reach and maturity of

machine learning and artificial intelligence in astronomy. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 10(2):e1349, 2020.

[65] John Jumper, et al. Highly accurate protein structure prediction with al-

phafold. Nature, pages 1–11, 2021.

[66] Alvin JK Chua, Chad R Galley, and Michele Vallisneri. Reduced-order mod-

eling with artificial neurons for gravitational-wave inference. Physical review

letters, 122(21):211101, 2019.

– 158 –



Bibliography

[67] Sebastian Khan and Rhys Green. Gravitational-wave surrogate models pow-

ered by artificial neural networks: The ann-sur for waveform generation. arXiv

preprint arXiv:2008.12932, 2020.

[68] Radford M. Neal. MCMC using Hamiltonian dynamics. arXiv:1206.1901

[physics, stat], June 2012.

[69] Andreas Griewank et al. On automatic differentiation. Mathematical Pro-

gramming: recent developments and applications, 6(6):83–107, 1989.

[70] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.

Journal of machine learning research, 18, 2018.

[71] Lawrence E. Kidder. Coalescing binary systems of compact objects to post-

Newtonian 5/2 order. 5. Spin effects. Phys. Rev., D52:821–847, 1995.

[72] T. A. Apostolatos. Search templates for gravitational waves from precessing,

inspiraling binaries. Phys. Rev., D52:605–620, 1995.

[73] Alessandra Buonanno, Yan-bei Chen, and Michele Vallisneri. Detecting gravi-

tational waves from precessing binaries of spinning compact objects: Adiabatic

limit. Phys. Rev., D67:104025, 2003. [Erratum: Phys. Rev.D74,029904(2006)].

[74] B. P. Abbott et al. Binary Black Hole Population Properties Inferred from the

First and Second Observing Runs of Advanced LIGO and Advanced Virgo.

Astrophys. J., 882(2):L24, 2019.

[75] Rory Smith, et al. Fast and accurate inference on gravitational waves from

precessing compact binaries. Phys. Rev., D94(4):044031, 2016.

[76] Eric Poisson and Clifford M. Will. Gravitational waves from inspiraling com-

pact binaries: Parameter estimation using second postNewtonian wave forms.

Phys. Rev., D52:848–855, 1995.

[77] Ryan N. Lang and Scott A. Hughes. Measuring coalescing massive binary

black holes with gravitational waves: The Impact of spin-induced precession.

Phys. Rev., D74:122001, 2006. [Erratum: Phys. Rev.D77,109901(2008)].

[78] Stephen Fairhurst. Triangulation of gravitational wave sources with a net-

work of detectors. New J. Phys., 11:123006, 2009. [Erratum: New J.

Phys.13,069602(2011)].

[79] Emily Baird, Stephen Fairhurst, Mark Hannam, and Patricia Murphy. De-

generacy between mass and spin in black-hole-binary waveforms. Phys. Rev.,

D87(2):024035, 2013.

– 159 –



Bibliography

[80] Mark Hannam, Duncan A. Brown, Stephen Fairhurst, Chris L. Fryer, and

Ian W. Harry. When can gravitational-wave observations distinguish between

black holes and neutron stars? Astrophys. J., 766:L14, 2013.

[81] Leo P. Singer and Larry R. Price. Rapid Bayesian position reconstruction for

gravitational-wave transients. Phys. Rev., D93(2):024013, 2016.

[82] Michele Vallisneri. Testing general relativity with gravitational waves: a reality

check. Phys. Rev., D86:082001, 2012.

[83] Samantha A. Usman, Joseph C. Mills, and Stephen Fairhurst. Constrain-

ing the Inclinations of Binary Mergers from Gravitational-wave Observations.

Astrophys. J., 877(2):82, 2019.

[84] Mark Hannam, et al. Simple Model of Complete Precessing Black-Hole-Binary

Gravitational Waveforms. Phys. Rev. Lett., 113(15):151101, 2014.

[85] Andrea Taracchini et al. Effective-one-body model for black-hole binaries with

generic mass ratios and spins. Phys. Rev., D89(6):061502, 2014.

[86] Sebastian Khan, Frank Ohme, Katerina Chatziioannou, and Mark Hannam.

Including higher order multipoles in gravitational-wave models for precessing

binary black holes. Phys. Rev., D101(2):024056, 2020.

[87] Vijay Varma, et al. Surrogate models for precessing binary black hole simula-

tions with unequal masses. Phys. Rev. Research., 1:033015, 2019.

[88] Geraint Pratten et al. Let’s twist again: computationally efficient models for

the dominant and sub-dominant harmonic modes of precessing binary black

holes. arXiv, 4 2020.

[89] Salvatore Vitale, Ryan Lynch, John Veitch, Vivien Raymond, and Riccardo

Sturani. Measuring the spin of black holes in binary systems using gravitational

waves. Phys. Rev. Lett., 112(25):251101, 2014.
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