
����������
�������

Citation: Poudevigne-Durance, T.;

Jones, O.D.; Qin, Y. MaWGAN: A

Generative Adversarial Network to

Create Synthetic Data from Datasets

with Missing Data. Electronics 2022,

11, 837. https://doi.org/10.3390/

electronics11060837

Academic Editors: Gorka Epelde

Unanue and Darryl Charles

Received: 31 January 2022

Accepted: 4 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MaWGAN: A Generative Adversarial Network to Create
Synthetic Data from Datasets with Missing Data
Thomas Poudevigne-Durance 1, Owen Dafydd Jones 1,* and Yipeng Qin 2

1 School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK; poudevigne-durancet@cardiff.ac.uk
2 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK; qiny16@cardiff.ac.uk
* Correspondence: joneso18@cardiff.ac.uk

Abstract: The creation of synthetic data are important for a range of applications, for example,
to anonymise sensitive datasets or to increase the volume of data in a dataset. When the target
dataset has missing data, then it is common to just discard incomplete observations, even though
this necessarily means some loss of information. However, when the proportion of missing data are
large, discarding incomplete observations may not leave enough data to accurately estimate their
joint distribution. Thus, there is a need for data synthesis methods capable of using datasets with
missing data, to improve accuracy and, in more extreme cases, to make data synthesis possible. To
achieve this, we propose a novel generative adversarial network (GAN) called MaWGAN (for masked
Wasserstein GAN), which creates synthetic data directly from datasets with missing values. As with
existing GAN approaches, the MaWGAN synthetic data generator generates samples from the full
joint distribution. We introduce a novel methodology for comparing the generator output with the
original data that does not require us to discard incomplete observations, based on a modification
of the Wasserstein distance and easily implemented using masks generated from the pattern of
missing data in the original dataset. Numerical experiments are used to demonstrate the superior
performance of MaWGAN compared to (a) discarding incomplete observations before using a GAN,
and (b) imputing missing values (using the GAIN algorithm) before using a GAN.

Keywords: synthetic data; missing data; generative adversarial network; Wasserstein distance

1. Introduction

Missing data is a common problem and can arise due to a variety of reasons. Rubin [1]
defines three types of missing data: missing completely at random (MCAR), missing at
random (MAR), and not missing at random (NMAR). Suppose that we have independent
observations xi = (xi1, . . . , xid)

T and put mij = 0 if xij is missing and 1 if it is present (we
call mi = (mi1, . . . , mid)

T the mask corresponding to xi). The data are MCAR if for any j, mij
is independent of xi, it is MAR if mij is independent of xij but dependent on some xik for
k 6= j, and NMAR if it is dependent on xij. We will assume that our dataset is MCAR.

A range of imputation methods exist to fill in missing values. Suppose that mij = 0
(so variable j is missing from observation i), different methods for imputing xij include

• Using the mean of the non-missing xhj, h 6= i [2].
• Using a neighbourhood of xi to impute xij. KNN uses the mean of non-missing xhj in

the neighbourhood [3]. Hot deck imputation samples randomly from the non-missing
xhj in the neighbourhood [4].

• Using a (parametric) regression model for xij given xik, k 6= j, built using complete
observations. If the regression model includes a distribution for the error term, then
we can use it to randomly impute xij (see stochastic regression imputation [5]).

• Using a (non-parametric) estimate of the conditional distribution of xij given xik, k 6= j,
to sample from. The GAIN methodology (generative adversarial imputation nets [6])
is an example of this approach using a GAN architecture.

Electronics 2022, 11, 837. https://doi.org/10.3390/electronics11060837 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11060837
https://doi.org/10.3390/electronics11060837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7300-5510
https://orcid.org/0000-0002-1551-9126
https://doi.org/10.3390/electronics11060837
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11060837?type=check_update&version=1


Electronics 2022, 11, 837 2 of 10

An advantage of random imputation methods is that they allow the subsequent
application of multivariate imputation methods such as MICE [7]. Table 1 lists the tech-
niques mentioned above with a qualitative assessment of their relative accuracy and
computational cost.

Table 1. Overview of the advantages and disadvantages of some existing strategies for missing data
imputation.

Imputation Method Accuracy Computational Costs

Mean Low Low
KNN Low Med

Hot-Deck Med Med
Stochastic regression Low-Med Low

GAIN High High

While there have been recent advances in synthetic data generation due to the applica-
tion of machine-learning models, missing data have not received much attention. Synthetic
data generation is increasingly important in a range of applications, for example, to increase
dataset volume or to anonymise sensitive datasets [8,9], and in practice often has to deal
with missing data. A promising development for data synthesis has been the advent of
generative adversarial networks (GANs) [10]. GANs use two neural nets, one to generate
synthetic data, and the other to build a critic, which is used to train the generator (also called
a discriminator). The generator and critic are trained iteratively, so that as the generator
improves the critic becomes more discerning, allowing further refinement of the generator.
Until now, missing data have been a problem for GANs as existing algorithms require
complete observations, so users have to either first impute the missing data or just discard
incomplete observations. In this paper, we propose a novel GAN algorithm that can directly
train a synthetic data generator from datasets with missing values; to our knowledge this
is the first such attempt. We called it MaWGAN (for Masked Wasserstein GAN). As with
existing GAN approaches, the MaWGAN synthetic data generator generates samples from
the full joint distribution. The novelty of our approach is a methodology for comparing
the generator output with the original data that does not require us to discard incomplete
observations, based on a modification of the Wasserstein distance. Moreover, our approach
is easily implemented by incorporating into the critic masks generated from the pattern of
missing data in the original dataset.

2. Theoretical Basis

MaWGAN builds on the WGAN-GP algorithm [11,12]. Let x1, . . . , xn ∈ Rd be an i.i.d.
sample from some (unknown) distribution P , and let G : (0, 1)d → Rd be our generator.
G takes a vector of i.i.d. U(0, 1) random variates and returns a vector with distribution
Q say. The WGAN-GP critic calculates an estimate of the Wasserstein distance, so that
the generator is trained to minimise the distance between P and Q as measured by the
Wasserstein distance.

Let Π(P ,Q) be the set of measures on Rd × Rd with marginals P and Q, then the
Wasserstein distance is

W(P ,Q) = inf
Γ∈Π(P ,Q)

E(X,Y)∼Γ‖X−Y‖2

= sup
‖ f ‖L≤1

(EX∼P f (X)−EY∼Q f (Y))



Electronics 2022, 11, 837 3 of 10

where ‖ f ‖L is the Lipschitz constant of f . Let C : Rd → R+ be our critic. Let y1, . . . , yn be a
sample from the generator G, and for εi ∼ U(0, 1) put zi = εixi + (1− εi)yi, then we train
the critic to maximise

1
n ∑

i
C(xi)−

1
n ∑

i
C(yi)− λ

1
n ∑

i
(‖∇C(zi)‖2 − 1)2. (1)

The key idea here is that the regularisation term will restrict the critic C to be close
to a Lipschitz function with Lipschitz constant 1. Here, λ > 0 controls the degree of
regularisation and can be tuned to improve the convergence of the critic.

We introduce a variation of the Wasserstein distance that incorporates a random mask
to capture the effect of MCAR missing data. For our purposes a mask m = (m1, . . . , md)

T

is an element of {0, 1}d and a random mask is just a measureM on {0, 1}d. Given a data
point x = (x1, . . . , xd)

T and a mask m, xj is treated as missing if and only if mj = 0. We
define theM-Wasserstein distance as

WM(P ,Q) = sup
‖ f ‖L≤1

EM∼M(EX∼P f (X�M)−EY∼Q f (Y�M))

where � represents pointwise multiplication. The following lemma shows that WM is
equivalent to W in the topological sense (meaning they generate the same topology on the
space of measures on Rd). The practical consequence of the lemma is that a sequence of
measuresQi (representing a sequence of improving generators) will converge to P w.r.t. the
Wasserstein distance if and only if they converge to P w.r.t. theM-Wasserstein distance.

Lemma 1. LetM be a random mask, then providedM((1, . . . , 1)) > 0, there exists a constant
c ∈ (0, 1], such that

c W(P ,Q) ≤WM(P ,Q) ≤W(P ,Q).

Proof. Upper bound. For any M ∈ {0, 1}d and x ∈ Rd we have ‖x‖2 ≥ ‖x�M‖2, so

inf
Γ∈Π(P ,Q)

E(X,Y)∼Γ‖X−Y‖2 ≥ inf
Γ∈Π(P ,Q)

E(X,Y)∼Γ‖(X−Y)�M‖2

and, thus, integrating M w.r.t.M, we get

W(P ,Q) ≥ EM∼M inf
Γ∈Π(P ,Q)

E(X,Y)∼Γ‖(X−Y)�M‖2

= EM∼M sup
‖ f ‖L≤1

(EX∼P f (X�M)−EY∼Q f (Y�M))

≥ sup
‖ f ‖L≤1

EM∼M(EX∼P f (X�M)−EY∼Q f (Y�M))

= WM(P ,Q).

Here, the second line follows because we can view X � M as a realisation of P
projected onto the subspace corresponding to the non-zero co-ordinates of M, and similarly
for Y�M.

Lower bound. For any function f , we have

EM∼M(EX∼P f (X�M)−EY∼Q f (Y�M))

= ∑
M∈{0,1}d

M(M)(EX∼P f (X�M)−EY∼Q f (Y�M))

≥ M((1, . . . , 1))(EX∼P f (X)−EY∼Q f (Y))

whence WM(P ,Q) ≥M((1, . . . , 1))W(P ,Q).



Electronics 2022, 11, 837 4 of 10

We approximate the M-Wasserstein distance analogously to the WGAN-GP ap-
proach (1). Let mi be the mask corresponding to data point xi, then using our previous
notation, we train the critic to maximise

1
n ∑

i
C(xi �mi)−

1
n ∑

i
C(yi �mi)− λ

1
n ∑

i
(‖∇C(zi �mi)‖2 − 1)2. (2)

Here, we interpret xi �mi as replacing the missing values in xi with zeros, and yi �mi
replaces the corresponding values of yi with zeros.

3. Implementation

In this section, we explain the details of our MaWGAN implementation. Figures 1 and 2
illustrate the flow of information in a single training step for the generator and critic re-
spectively. In both cases, we calculate a loss that measures the performance of the gener-
ator/critic. Given the loss we calculate its gradient w.r.t. the weights (parameters) of the
generator/critic, then update the weights in the direction of the gradient. Note that the
generator is minimising its loss, so takes steps in the direction of the negative gradient,
while the critic is maximising its loss, so take steps in the direction of the gradient.

Given the current critic, updating the generator is straightforward. We feed an array
of random numbers into the generator one row at a time, to obtain an array of synthetic
data (each row represents an independent realisation). We then feed the synthetic data
into the critic, one row at a time, to obtain a vector of performance evaluations, which we
average to obtain our loss.

Update weights 

Generator Loss
(LG)

Critic network
Noise vector Generator network

Synthetic data

V1 4 5 6 4
V2 9 7 8 7
V3 2 2 1 3

V1 0.35789 0.71195 0.49378 0.30882

V2 0.19701 0.13365 0.47717 0.22868

V3 0.05298 0.38807 0.15971 0.44432

Figure 1. Flowchart for a single training step of the generator.

Full data set

Sample data

Sample mask

Sample masked 
data

Noise vector
Generator network

Synthetic masked data

Synthetic data

Interpolate 
masked data

Critic network

Critic Loss
(Lc)

Update weights 

V1 5 6 4
V2 7 9 6
V3 2 3

V1 5 6 0 4
V2 7 0 9 6
V3 2 0 3 0

V1 4.5 5.5 0 4
V2 8 0 8.5 6.5
V3 2 0 2 0

V1 4 5 6 4
V2 9 7 8 7
V3 2 2 1 3

V1 4 5 0 4
V2 9 0 8 7
V3 2 0 1 0

V1 1 1 0 1
V2 1 0 1 1
V3 1 0 1 0

V1 0.35789 0.71195 0.49378 0.30882

V2 0.19701 0.13365 0.47717 0.22868

V3 0.05298 0.38807 0.15971 0.44432

Figure 2. Flowchart for a single training step of the critic.

To train the critic we need two sets of inputs: a sample (or batch) from the original
dataset and a synthetic dataset of the same size produced by the generator. From the
original dataset, we generate a mask indicating which data are missing, which we use
to both replace the missing data with zeros, and replace the corresponding entries in the
synthetic data array with zeros. We also generate an interpolated data array, which is just a



Electronics 2022, 11, 837 5 of 10

linear combination of the masked original and masked synthetic data. The relative weights
given to the original and synthetic data are chosen independently for each row. Each row
of the original and synthetic data are fed into the critic, each row of the interpolated data
array is fed into the gradient of the critic, and these are averaged as per Equation (2) to give
the loss.

The pseudocode (Algorithm 1) shows how the generator and critic steps are interwo-
ven. Note that for each update step of the gradient, we perform several updates of the
critic, as we wish to keep the critic as a good approximation of theM-Wasserstein distance.

Algorithm 1 MaWGAN

Require: initial generator weights θG and critic weights θC, learning rate α
Require: num. epochs tG, critic iterations tC, batch size k, critic regularisation λ

1: for s = 1, . . . , tG do . update the generator
2: for t = 1, . . . , tC do . update the critic
3: choose a batch σ of size k from {1, . . . , n}
4: for i = 1, . . . , k do . calculate critic loss
5: x̄i ← xσ(i) �mσ(i)

6: sample u ∼ U(0, 1)d

7: yi ← G(u)�mσ(i)
8: sample ε ∼ U(0, 1)
9: zi ← εx̄i + (1− ε)yi

10: Li
C ← C(x̄i)− C(yi)− λ(‖∇C(zi)‖2 − 1)2

11: end for
12: LC ← 1

k ∑k
i=1 Li

C
13: update θC using gradient of LC (increasing LC)
14: end for
15: for i = 1, . . . , k do . calculate generator loss
16: sample u ∼ U(0, 1)d

17: Li
G ← C(G(u))

18: end for
19: LG ← 1

k ∑k
i=1 Li

G
20: update θG using negative gradient of LG (decreasing LG)
21: end for

We have observations xi ∈ Rd for i = 1, . . . , n, which we collect into an n× d matrix
X, where the i-th row of X is xT

i . Let mi be the mask corresponding to xi and let M be the
n× d matrix whose i-th row is mT

i . G : (0, 1)d → Rd is our generator and C : Rd → R+

our critic. Write θG for the weights that parameterise the generator G, and θC for the critic
weights. It is θG and θC that we update when training G and C. The update steps require a
learning rate α, which we don’t explicitly include in our pseudocode.

In our algorithm we update the generator tG times, which we call epochs. For each
epoch, the critic is updated tC times, and we use a batch of data size k. We will write
σ ⊂ {1, . . . , n} for the batch and σ(i) for its i-th element. λ > 0 is the regularisation
parameter for the critic loss, which also needs to be set before hand.

4. Numerical Testing

Datasets. To test the performance of MaWGAN, we used three datasets of varying
sizes and complexities. The Iris and Letter datasets are well known and can be found,
for example, in the UCI Machine Learning Repository [13]. The Welsh Index of Multiple
Deprivation is less well known, but was used because it has a flavour of the sort of official
data that users want to synthesise for data-privacy reasons:

• The Iris dataset records the length and width of the sepals and petals of the flowers of
three different iris species [14,15]. There were 150 observations of 4 numerical and 1
categorical variable (not used in this study).



Electronics 2022, 11, 837 6 of 10

• The Welsh Index of Multiple Deprivation (WIMD) is the Welsh Government’s offi-
cial measure of relative deprivation in Wales (UK); we used the 2014 figures [16]. For
1904 separate regions, the WIMD has measures of income, employment, education,
and health. One region had a missing value and was removed from the dataset,
leaving 1903 observations of 11 numerical variables.

• The Letter dataset was generated by Frey and Slate [17] and records 16 measured
characteristics of images of the capital letters in the English alphabet. Letters were
selected from 20 different fonts and randomly distorted a number of times; there were
20,000 observations of 16 numerical variables.

Simulated MCAR datasets. We generated eight additional versions of each dataset with
10%, 20%, . . . , 90% missing data. Points were removed at random with equal probability
until the required percentage was reached. The additional datasets are nested in the sense
that if an element is missing from one then it is missing from all versions with higher levels
of missing data. By artificially removing data, we are able to compare the performance
of our synthetic data generator with the complete dataset, even when it is trained with
missing data.

Competing methodologies. MaWGAN was compared to two other approaches. The first
is a two-step process where we apply the GAIN imputation method and then use WGAN-
GP to train a generator on the completed data. The second alternative was to discard
incomplete observations then use a WGAN-GP to train a generator on what remained.
The number of remaining observations at the different levels of missingness are given in
Table 2.

Table 2. Number of complete observations remaining in each dataset after different proportions of
data were removed at random.

Percentage Dataset
Missing Iris WIMD Letter

0% 150 1093 20,000
10% 95 666 3723
20% 57 218 564
30% 35 59 67
40% 16 11 5
50% 5 2 0
60% 1 0 0
70% 0 0 0
80% 0 0 0
90% 0 0 0

Performance metrics. To assess the performance of the three methods, we used two
metrics, the Fréchet distance F and the likeness score L introduced by Guan and Loew [18].
To evaluate the performance of a data synthesis method, we need a metric that compares
the distributions of the real and synthetic data, rather than single observations. There is
no single best way of doing this and a number of approaches have been suggested in the
literature (see for example the reviews of Borji [19,20]). Most of these are tailored to image
data; however, the two we chose are very general in application. We found that metrics
for comparing distributions need a lot of data to give really consistent results, though the
likeness score has proved better in this regard than the others we have looked at.

Suppose we have observations x1, . . . , xn from some distribution and observations
y1, . . . , ym from a second distribution, then to calculate L, we first generate three auxiliary
sets of information

Sx = {‖xi − xj‖2}i 6=j

Sy = {‖yi − yj‖2}i 6=j

Sx,y = {‖xi − yj‖2}i,j



Electronics 2022, 11, 837 7 of 10

For A, B ⊂ R let κ(A, B) ∈ [0, 1] be the Kolmogorov–Smirnov distance between A and
B, namely the maximum absolute difference between the empirical cumulative distribution
functions of A and B. The likeness score for our two sets of observations is then

L = 1− κ(Sx, Sx,y) ∨ κ(Sy, Sx,y).

Note that L ∈ [0, 1] and the two sets of observations have likeness one if and only if
they are identical, with lower scores indicating greater dissimilarity.

The Fréchet distance F is given by

F = ‖µx − µy‖
2
2 + Tr

(
Σx + Σy − 2(ΣxΣy)

1/2
)

where µx and Σx are the sample mean and sample covariance matrix of x1, . . . , xn, and
similarly for µy and Σy. Smaller values indicate greater similarity, with F = 0 if and only if
the means and covariances are the same (which does not imply the samples are identical).
It is common to calculate F not using the xi and yi directly but instead by first applying a
feature extracting transform; in particular if the inception network is used then the resulting
metric is called the Fréchet inception distance [21]. We do not do this in our case.

In our application the x1, . . . , xn will always be one of the original three datasets, and
the y1, . . . , ym will be synthetic data generated by one of our three methods—subject to
varying degrees of missing data—with m = n. To reduce the variation due to sampling
from the generator, we calculate F and L 100 times using different sets of synthetic data,
then take the average for each.

4.1. Algorithmic Details

The MaWGAN, GAIN, and WGAN-GP algorithms were implemented in Python using
the PyTorch library [22]. The MaWGAN and WGAN-GP implementations incorporated
code publicly available on GitHub [23], and the GAIN implementation used the code
provided by the original authors [6]. For both MaWGAN and WGAN-GP, the neural
network architecture of both the generator and critic had five layers. For the generators,
the input and output layers had nodes equal to the number of variables, and we used
150 nodes per hidden layer. For the critic, the input layer had nodes equal to the number of
variables, output layer size 1, and we used 150 nodes per hidden layer. For training, we
used tG = 15,000 epochs with tC = 5 training steps for the critic each time. We used a batch
size of k = 30, a learning rate of α = 0.0001, and critic regularisation λ = 10.

An important practical observation is that when training a MaWGAN, the optimal
tuning depends on the level of missing data. We found that as the level of missing data
increases, the number of training steps for the critic in each epoch needs to increase (tC
in the pseudo-code above). Formally, considering Li

C (the component of the critic loss
corresponding to observation i), we see that the variables that are masked do not contribute
to the gradient of Li

C w.r.t. the critic weights θC. That is, the masking means that when
updating θC, observation i only contributes information about the distribution of its non-
missing variables. Thus, as is intuitively clear, the level of information available in each
observation reduces as the level of missingness increases, and so we need to do more
work to train the critic. If the critic does not get sufficient training in each epoch then
the generator can converge too quickly to a lower-dimensional projection of the target
distribution (so-called mode collapse).

4.2. Results

Because GAN training is stochastic, the performance of the resulting generator can
vary. Accordingly for each combination of method, dataset and missingness we fitted the
generator 20 times, calculating the likeness score and the Fréchet distance each time. The
results are summarised in Figures 3 and 4. For each combination of method, dataset, and
missingness, we give the average performance and a 95% confidence interval for the mean.



Electronics 2022, 11, 837 8 of 10

Figure 3. Likeness scores for each method on the three datasets with different levels of missingness
(higher is better).

Figure 4. Fréchet distances for each method on the three datasets with different levels of missingness
(lower is better).

Looking at the likeness score, the results show that for these datasets MaWGAN
performs consistently well with levels of missing data up to 50%. MaWGAN also per-
forms significantly better than both the two-step method and the complete observations
method with moderate to high levels of missing data, and never performed any worse than
either alternative.

With respect to the Fréchet distance, the picture is not as one-sided, though overall,
MaWGAN still performs best. All three methods give similar levels of performance with up
to 30% missing data. For higher levels of missing data the complete observations method is
poor, while MaWGAN usually outperforms the two-step method, but not always.

To get a better feel for the behaviour of each method, it is useful to directly compare
the original data with a synthetic sample. In Figure 5, we feature the Iris dataset and use
methods trained with 50% missing data. On the left, we have output from the MaWGAN,
and on the right—from the two-step method. For each plot, we overlay the original data
with a synthetic sample of the same size. We have four variables, and on the diagonal, we
have for each a marginal density plot using a kernel smoother, and off the diagonal, we
have pairs plots. Both methods have captured the location and scale of the data; however,
the MaWGAN is noticeably better at picking up the bimodality.



Electronics 2022, 11, 837 9 of 10

Figure 5. Original data compared with synthetic data from methods trained with 50% missing data:
MaWGAN on the left and the two-step method on the right. In both cases, we overlay the original
data with a synthetic sample of the same size. Marginal densities are given on the diagonals and
pairs plots off the diagonal.

5. Discussion

MaWGAN is a proper generalisation of WGAN-GP, since in the absence of missing
data it is exactly a WGAN-GP, yet it requires no more parameter tuning than a WGAN-GP.
Moreover the masking step that implements MaWGAN is simple to add to existing code,
and has a marginal impact on the running time (calculating the weight-gradient for the
generator and critic remains the most expensive steps). In particular, MaWGAN can use
existing GPU-optimised code, such as the Torch library. We note that our theory and
implementation apply equally well to the original WGAN formulation as the WGAN-GP
approach, though we would always recommend the latter, as we have found its approach
to training the critic much more stable.

Our experimental results indicate that compared to WGAN-GP, for dealing with data
missing completely at random (MCAR), MaWGAN has a superior performance to the
alternatives of separately imputing missing data or discarding incomplete observations,
particularly with high levels of missing data. The two-step method of using GAIN to
impute missing data, then WGAN-GP to synthesise data, performed essentially the same
as MaWGAN with low levels of missing data. However the two-step method requires
the fitting and tuning of two models, so it is slower, more prone to fitting error, and
inherently more variable due to the additional variability introduced in the training of—
and subsequent sampling from—the GAIN.

Clearly the performance of MaWGAN on data missing at random (MAR) is of interest
and will require further testing.

Author Contributions: Methodology, T.P.-D. and O.D.J.; software, T.P.-D.; supervision, O.D.J. and
Y.Q.; writing—original draft, T.P.-D.; writing—review and editing, O.D.J. and Y.Q. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by a European Union KESS2 scholarship with support from Dŵr
Cymru Welsh Water.

Informed Consent Statement: Not applicable.

Data Availability Statement: Iris dataset: https://archive.ics.uci.edu/ml/datasets/iris (accessed on
31 January 2022); WIMD dataset: https://gov.wales/welsh-index-multiple-deprivation-full-index-
update-ranks-2019 (accessed on 31 January 2022); letter dataset: https://archive.ics.uci.edu/ml/
datasets/letter+recognition (accessed on 31 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/datasets/iris
https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2019
https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2019
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition


Electronics 2022, 11, 837 10 of 10

References
1. Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592. [CrossRef]
2. Pigott, T.D. A review of methods for missing data. Educ. Res. Eval. 2001, 7, 353–383. [CrossRef]
3. Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation

methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [CrossRef] [PubMed]
4. Andridge, R.R.; Little, R.J.A. A review of hot deck imputation for survey non-response. Int. Stat. Rev. 2010, 78, 40–64. [CrossRef]

[PubMed]
5. Gold, M.S.; Bentler, P.M. Treatments of missing data: A Monte Carlo comparison of RBHDI, Iterative Stochastic Regression

Imputation, and Expectation-Maximization. Struct. Equ. Model. 2000, 7, 319–355. [CrossRef]
6. Yoon, J.; Jordon, J.; van der Schaar, M. GAIN: Missing data imputation using Generative Adversarial Nets. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698.
7. Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int.

J. Methods Psychiatr. Res. 2011, 20, 40–49. [CrossRef] [PubMed]
8. Campbell, M. Synthetic data: How AI is transitioning from data consumer to data producer. . . and why that’s important.

Computer 2019, 52, 89–91. [CrossRef]
9. Hitawala, S. Comparative Study on Generative Adversarial Networks. arXiv 2018, arXiv:1801.04271.
10. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, ON, Canada, 8–13 December
2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q., Eds.; Neural Information Processing Systems: La
Jola, CA, USA, 2014; Volume 27 of Advances in Neural Information Processing Systems.

11. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.

12. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of Wasserstein GANs. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Neural Information Processing
Systems: La Jola, CA, USA, 2017; Volume 30 of Advances in Neural Information Processing Systems.

13. Dua, D.; Graff, C. UCI Machine Learning Repository; School of Information and Computer Science, University of California:
Berkeley, CA, USA, 2022. Available online: http://archive.ics.uci.edu/ml (accessed on 31 January 2022).

14. Anderson, E. The irises of the Gaspe Peninsula. Bull. Am. Iris Soc. 1935, 59, 2–5.
15. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
16. Welsh Government. Welsh Index of Multiple Deprivation (Full Index Update with Ranks). 2014. Available online: https:

//gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2014 (accessed on 31 January 2022).
17. Frey, P.W.; Slate, D.J. Letter recognition using Holland-style adaptive classifiers. Mach. Learn. 1991, 6, 161–182. [CrossRef]
18. Guan, S.; Loew, M.H. Measures to evaluate Generative Adversarial Networks based on direct analysis of generated images. arXiv

2020, arXiv:2002.12345.
19. Borji, A. Pros and cons of GAN evaluation measures. Comput. Vis. Image Underst. 2019, 179, 41–65. [CrossRef]
20. Borji, A. Pros and cons of GAN evaluation measures: New developments. Comput. Vis. Image Underst. 2022, 215, 103329.

[CrossRef]
21. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a

local Nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30, 6629–6640.
22. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

differentiation in PyTorch. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Neural Information Processing Systems: La Jola, CA, USA, 2017; Volume 30 of Advances in Neural Information
Processing Systems.

23. Pytorch-Wgan. Available online: https://github.com/Zeleni9/pytorch-wgan (accessed on 31 January 2022).

http://doi.org/10.1093/biomet/63.3.581
http://dx.doi.org/10.1076/edre.7.4.353.8937
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://www.ncbi.nlm.nih.gov/pubmed/11395428
http://dx.doi.org/10.1111/j.1751-5823.2010.00103.x
http://www.ncbi.nlm.nih.gov/pubmed/21743766
http://dx.doi.org/10.1207/S15328007SEM0703_1
http://dx.doi.org/10.1002/mpr.329
http://www.ncbi.nlm.nih.gov/pubmed/21499542
http://dx.doi.org/10.1109/MC.2019.2930097
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2014
https://gov.wales/welsh-index-multiple-deprivation-full-index-update-ranks-2014
http://dx.doi.org/10.1007/BF00114162
http://dx.doi.org/10.1016/j.cviu.2018.10.009
http://dx.doi.org/10.1016/j.cviu.2021.103329
https://github.com/Zeleni9/pytorch-wgan

	Introduction
	Theoretical Basis
	Implementation
	Numerical Testing
	Algorithmic Details
	Results

	Discussion
	References

