
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04324-x
Commun. Math. Phys. Communications in

Mathematical
Physics

Deformations of Half-Sided Modular Inclusions and
Non-local Chiral Field Theories

Gandalf Lechner1 , Charley Scotford2

1 DepartmentMathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. E-mail:
gandalf.lechner@fau.de

2 School of Mathematics, Cardiff University, Cardiff, UK. E-mail: scotfordc@cardiff.ac.uk

Received: 15 November 2021 / Accepted: 28 December 2021
© The Author(s) 2022

Abstract: We construct explicit examples of half-sided modular inclusionsN ⊂ M of
von Neumann algebras with trivial relative commutants. After stating a general criterion
for triviality of the relative commutant in terms of an algebra localized at infinity, we
consider a second quantization inclusion N ⊂ M with large relative commutant and
construct a one-parameter family Nκ ⊂ Mκ , κ ≥ 0, of half-sided inclusions such that
N0 = N ,M0 = M andN ′

κ ∩Mκ = C1 for κ > 0. The technique we use is an explicit
deformation procedure (warped convolution), and we explain the relation of this result
to the construction of chiral conformal quantum field theories on the real line and on the
circle.

1. Introduction

In the operator-algebraic approach to quantum field theory [Haa96,Ara99], models of
quantumfield theories on a spacetimeM are described by assigning to open regionsO ⊂
M von Neumann algebrasA(O) that act on a common Hilbert space and are subject to
various interrelated inclusion, commutation, covariance, and spectral properties. While
this setup implements the physical principles underlying quantumfield theory clearly and
rigorously, it is usually difficult to find examples of models that satisfy the axioms and
are non-trivial. This is especially the case if “non-trivial” is understood to mean that the
considered quantum field theory should describe particles with non-trivial interaction.

In view of this problem, several researchers have considered indirect descriptions
of quantum field theories by simpler data. A possible point of view is to fix one of the
local algebras M = A(O0), typically isomorphic [BFD87] to the unique hyperfinite
factor of type III1 [Haa87] and then aim at constructing the net O �→ A(O) of all
local algebras with the help of group actions, generating von Neumann algebras, and
relative commutants – see [BW92,GLW98,BL04,BLS11,Tan14,BJM21] for various
implementations of this and related ideas.
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In these approaches, it is often of central importance to make sure that the relative
commutant of an inclusion A(O) ⊂ A(Õ) is large in some sense or at least non-
trivial. However, such an analysis of relative commutants of von Neumann algebras
is often a delicate problem as there are basically no means to directly construct any
of its elements. Moreover, the inclusions encountered in quantum field theory are not
of the form typically studied in operator algebras: The algebras involved are type III1
factors, and usually no meaningful notion of index or conditional expectation exists. It
is therefore important to find manageable examples in which the structure of the relative
commutant can be determined.

In this article we investigate quantum field theories on one of the simplest spacetimes,
namely the real line M = R, to be thought of as a chiral half of a conformal field
theory on a light ray R ⊂ R

2. Such QFTs are closely related to so-called half-sided
modular inclusions of von Neumann algebras (Definition 2.1) which, under favourable
circumstances, encode the full structure of the field theory. As we will recall in Sect. 2,
half-sided modular inclusions N ⊂ M (or, equivalently, one-dimensional Borchers
triples) can be grouped into three broad families (A), (B), (C) according to the size of
their relative commutantN ′ ∩M. Here case (C) corresponds to triviality of the relative
commutantN ′ ∩M = C. Whereas examples of case (A) and (B) are long since known,
the first example of a singular (case (C)) inclusion was found only very recently by
Longo, Tanimoto, and Ueda with methods from free probability [LTU19].

The main purpose of this article is to give new examples of singular half-sided inclu-
sions that can be analyzed in detail. To do so, we proceed as follows: In Sect. 3, we give
a general criterion for determining case (C) which is based on the algebra localized at
the point at infinity of the netA associated with the inclusionN ⊂ M (Definition 2.3),
and quite simple in its own right (Proposition 3.4).

In Sect. 4, we introduce our examples. The starting point of our strategy is a sec-
ond quantization half-sided modular inclusion N ⊂ M, described in terms of simpler
“one-particle” data (an irreducible standard pair) and corresponding Weyl operators.
In Sect. 4.1 we perturb a set of generating Weyl operators in a particular and explicit
manner depending on a deformation parameter κ ≥ 0. These deformed operators de-
fine half-sided inclusions Nκ ⊂ Mκ that coincide with the original second quantized
situation for κ = 0. Our main result is Theorem 4.3, stating that for any κ > 0, these
inclusions have trivial relative commutant.

Our method is put into a broader context in Sect. 4.2. We explain how our initial
inclusion can be viewed as arising from a free “bulk QFT” on R

2 by restriction to a
light ray. The deformed inclusion then amounts to carrying out a warped convolution
deformation [BLS11] in R

2 and restrict the resulting QFT back to the light ray.
In Sect. 4.3 we prove Theorem 4.3. This is done by verifying the criterion developed

in Sect. 3, which amounts to controlling certain weak limits w-lim
t→−∞ σt (S) of operators S

localized away from0 ∈ R under themodular groupσt ofMw.r.t. the vacuumvector.We
proceed in two steps, first analyzing such limits for unboundedfield operator polynomials
(Theorem 4.5), and then for bounded operators (Theorem 4.6). Our conclusions and an
outlook are presented in Sect. 5.

2. Three Types of Half-Sided Modular Inclusions

Definition 2.1. A half-sided modular inclusion is an inclusion of two von Neumann
algebras N ⊂ M on a Hilbert space H with a vector � that is cyclic and separating
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for both N and M and such that the modular group σt = ad�i t of (M,�) acts on N
according to σt (N ) ⊂ N for all t ≤ 0.

Definition 2.2. A one-dimensional Borchers triple (M, T,�) consists of a von Neu-
mann algebra M on a Hilbert space H, a strongly continuous unitary one-parameter
group T with positive generator P, and a unit vector � ∈ H such that

a) � is cyclic and separating forM, and T (x)� = � for all x ∈ R,
b) T (x)MT (x)−1 ⊂ M for x ≥ 0.

We recall that in the situation of a one-dimensional Borchers triple (M, T,�),
Borchers’ Theorem [Bor92] asserts that

�i t T (x)�−i t = T (e−2π t x), JT (x)J = T (−x), t, x ∈ R, (2.1)

where J,� are the modular data of (M,�). Thus T extends to a (anti)unitary repre-
sentation U of the affine group G of R (the “ax + b group”).

As a consequence of (2.1), the inclusion N := T (1)MT (−1) ⊂ M is half-sided
modular. Conversely, given a half-sided modular inclusion (N ⊂ M,�), there exists
a strongly continuous unitary one-parameter group T such that (M, T,�) is a one-
dimensional Borchers triple, andN = T (1)MT (−1) [Wie93,AZ05].Wewill therefore
use the terms half-sided modular inclusion and one-dimensional Borchers triple inter-
changeably to describe this structure. In addition toN ,M,�, T,U , we will constantly
use the notations

σt = ad�i t , αx = ad T (x), ω = 〈�, ·�〉. (2.2)

To avoid confusion, we also emphasize that the modular data �, J will always be the
ones of (M,�), so that no further subscript like �M will be necessary.

We will ask in addition that the vacuum vector � is uniquely characterized (up to
multiples) by the condition that it is invariant under T , namely ker P = C�. We will
refer to this condition as “uniqueness of the vacuum”. In this case, M is a factor, more
specifically a type III1 factor [Lon79,Wie93] (disregarding the trivial case dimH = 1).

The physical interpretation of these data is as follows: � denotes the vacuum state of
a chiral half of a conformal QFT on a light ray, and T corresponds to translations along
that light ray. The algebra M is generated by all observables localized in the right half
ray R+ as expressed by the half-sided invariance under translations in Definition 2.2.
Similarly, the commutantM′ contains the observables localized in the left half ray R−.
Observables localized in bounded intervals I ⊂ R (We denote the set of all open bounded
intervals I ⊂ R by I) can be extracted from this setting by forming appropriate relative
commutants.

Definition 2.3. Let (N ⊂ M,�) be a half-sided modular inclusion with associated
representation T of R. For bounded intervals (a, b) ⊂ R, we define

A(a, b) := αa(M) ∩ αb(M)′, (2.3)

and call the resulting map I  I �→ A(I ) ⊂ B(H) from bounded intervals of R to von
Neumann algebras in B(H) the local net associated with (N ⊂ M,�).

As is well known, the local net I �→ A(I ) associated with any half-sided modular
inclusion has many physically relevant properties: (i) It is a net, i.e. preserves inclusions,
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(ii) it is local in the sense that A(I1) and A(I2) commute if the intervals I1 and I2 are
disjoint, and (iii) it is covariant in the sense that

U (g)A(I )U (g)−1 = A(gI ), g ∈ G, I ∈ I . (2.4)

The data (A(I ))I∈I ,U,� are therefore quite close to satisfying all axioms of chiral
conformal field theory [Lon08]. However, while it is clear from the definition that � is
separating for anyA(I ), I ∈ I, it is in general not cyclic. Since the selfadjoint elements
of A(I ) are interpreted as the observables measurable in I , this is a point that needs to
be investigated carefully.

As a rough notion of “size” of the local observable content, we define the local
subspace as

Hloc := A(I )� ⊂ H, I ∈ I. (2.5)

The following statement is well known but of crucial importance here, so we briefly
recall its (Reeh-Schlieder type) proof (see, for example [BLM11, Lemma 5.1]).

Lemma 2.4. The subspace (2.5) is independent of the choice of interval I ∈ I.
Proof. We will show that for an arbitrary interval I ∈ I, a vector 	 ⊥ A(I )� satisfies
	 ⊥ A( Ĩ )� for all Ĩ ∈ I; this implies the claim.

Having fixed I and 	 in this manner, pick I0 ⊂ I such that I0 ⊂ I , so that f (x) :=
〈	, T (x)A�〉, A ∈ A(I0), vanishes for small enough |x |. Since the generator of T is
positive, f analytically continues to the complex upper half plane. Hence, by the edge
of the wedge theorem, f (x) = 0 for all x , i.e. 	 ⊥ A(I0 + x)� for all x ∈ R. Choosing
x such that I0 + x = (0, a) for some a > 0, we next consider g(t) := 〈	,�i t B�〉, B ∈
A(0, a). As themodular group acts by dilations, we haveσt (A(0, a)) = A(0, e−2π t a) ⊂
A(0, a) for t > 0; this yields g(t) = 0 for t > 0. On the other hand, A(0, a) ⊂ M
implies that the vector B� lies in the domain of�1/2. Hence g has an analytic extension
to the strip − 1

2 < Im t < 0, and we may again apply the edge of the wedge theorem to
conclude g(t) = 0 for all t .

As any interval Ĩ arises from I0 by dilation and translation, the claim follows. ��
We denote the orthogonal projection onto Hloc by Ploc. Note that we always have

� ∈ Hloc, so the projection P� onto C� is always a subprojection of Ploc. Each half-
sided inclusion therefore belongs to exactly one of the following three cases:

(A) The standard case: Ploc = 1.1

(B) The intermediate case: P� � Ploc � 1.
(C) The singular case: Ploc = P�.

As the algebraA((0, 1)) of the unit interval (0, 1) coincides with the relative commu-
tantN ′ ∩M ofN ⊂ M, andHloc = A((0, 1))�, the three cases can also be described
in terms of N ′ ∩ M. Namely, the standard case (A) is equivalent to N ′ ∩ M having
� as a cyclic vector, the intermediate case (B) is equivalent to N ′ ∩ M �= C1 being
non-trivial but not having � as a cyclic vector, and the singular case (C) is equivalent to
N ′ ∩ M = C1 being trivial, i.e. the inclusion N ⊂ M being singular.

1 This terminology is justified by the fact that in this case, � is a standard (cyclic and separating) vector for
the relative commutant N ′ ∩ M = A(0, 1), but it is not “standard” in the sense of representing the generic
situation.
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(A) From the point of view of applications to conformal quantum field theory,
the standard case (A) is the desired situation. In this case, U extends to
a strongly continuous representation of the Möbius group PSL(2, R) and
A can be formulated as a net on the unit circle which transforms covari-
antly under thisMöbius action. Indeed, Guido, Longo, andWiesbrock have
shown that there is a bijection between (isomorphism classes of) standard
(case (A)) half-sided modular inclusions and strongly additive local con-
formal nets on the circle [GLW98, Cor. 1.9]. Many examples of case (A)
are known, for instance half-sided inclusions generated by chiral Wight-
man fields and all half-sided inclusions arising from second quantization
of standard pairs (see Sect. 4).

(B) The intermediate case (B) is closely related to the standard case (A). In
fact, since the algebras A(I ), I ∈ I, and the G-representation U leave
Hloc invariant, one can in case (B) restrict all data toHloc and then obtain
a standard one-dimensional Borchers triple

Mloc :=
∨

I∈I,I⊂R+

A(I )|Hloc ⊂ B(Hloc), Tloc := T |Hloc, �. (2.6)

The above comments about case (A) apply to the triple (Mloc, Tloc,�)

on Hloc without changes.
Several examples of case (B) are known, see for example [BLM11]. Further
examples can be constructed by taking tensor products of case (A) and (C).

(C) From the point of view of quantum field theory, the singular case (C) is patho-
logical as it describes a net without any (non-trivial) local observables. In case
(C), N ⊂ M is an irreducible subfactor coming from a half-sided modular
inclusion.
Only very recently a first example of case (C) has been found: Longo, Tani-
moto, and Ueda [LTU19] use methods of free probability to construct singular
half-sided modular inclusions.

Summarizing the above discussion, it is known that all three cases occur. However,
there exist also many undecided examples for which it is currently unclear to which
of the cases (A),(B),(C) they belong. For example, the short distance scaling limits of
integrable quantum field theories considered in [BLM11] fall into two infinite families
(+) and (−) depending on the sign of the limit of the scattering function at infinite rapidity
transfer. Examples from family (+) could be of case (A), (B), or (C), and examples from
family (−) could be of case (B) or (C), but in all but two special examples, the exact
case is not known. In field theories with several particle species and internal degrees of
freedom the spectrum of possibilities is even much wider [Sco].

Given the similarity of cases (A) and (B), it is therefore an important question to
develop tools that allow to decide whether a given half-sided inclusion is singular or not.

As mentioned before, half-sided modular inclusions with unique vacuum are ex-
amples of type III1 subfactors which do not allow for the application of well-known
techniques for investigating their relative commutant. For instance, such a subfactor
does not allow for a normal conditional expectation M → N , and no meaningful no-
tion of index exists. These inclusions can also never be split [DL84] so that the ideas
relating to modular compactness/nuclearity [BDL90,BL04] do not apply here. This lack
of tools explains the many undecided examples.
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3. Half-Sided Inclusions and the Algebra at Infinity

Our condition for detecting the singular case (C) is based on the notion of an algebra
at infinity, familiar from the study of quasilocal algebras [BR87]. For our purposes, the
right definition is the following.

Definition 3.1. Let (N ⊂ M,�) be a half-sided modular inclusion andA its associated
local net. Its algebra at infinity is the von Neumann algebra

A∞ :=
⋂

I∈I
A(I )′. (3.1)

Equivalent formulations of the algebra at infinity are

A∞ =
⋂

x>0

(
αx (M) ∨ α−x (M′)

) =
⋂

t<0

σt (N ∨ JN J ). (3.2)

Indeed, since αx (M) ∨ α−x (M′) = A(Ix )′, where Ix = (−x, x), x > 0, we have the
inclusion ⊂ at the first equality sign, and the opposite inclusion follows by isotony. By
Borchers’ Theorem, we have σt (N ∨ JN J ) = σt (α1(M)∨α−1(M′)) = αe−2π t (M)∨
α−e−2π t (M′), which implies the last formula for A∞.

It is instructive to compare A∞ with the algebras at left/right infinity, namely

A∞right =
⋂

t<0

σt (N ), A∞left =
⋂

t<0

σt (JN J ). (3.3)

If the vacuum is unique, one always hasA∞right = A∞left = C1 because the translations
act trivial on them [Lon84]. The algebra A∞ at (left and right) infinity can however be
large:

Proposition 3.2. Let (N ⊂ M,�) be a half-sided modular inclusion with algebra at
infinity A∞. The following are equivalent:

(a) N ⊂ M is singular (case (C)), i.e. Ploc = P�.
(b) A∞ = B(H).
(c) P� ∈ A∞.

Proof. a)⇒b) In the singular case (C),wehaveA(I )′ = (C1)′ = B(H) for all I ∈ I and
thereforeA∞ = B(H). b)⇒ c) is trivial. For c)⇒ a) we take A ∈ A((0, 1)) = N ′∩M.
Then P� ∈ A((0, 1))′, i.e. A� = AP�� = P�A� = ω(A)�. Since � separates
A((0, 1)), we get A = ω(A)1 and hence a). ��

Every element X ∈ A∞ can be understood as an obstruction to the existence of local
observables A ∈ A(I ) because A has to commute with X .

We next discuss how to obtain elements of A∞. The idea is to consider an operator
A ∈ N ∨ JN J , i.e. localized in (−∞,−1]∪[1,∞), and scale it with the modular group
to operators σt (A) localized in (−∞,−e−2π t ] ∪ [e−2π t ,∞). In the limit t → −∞ we
then obtain elements of A∞.

Before we explain this further, let us recall that the uniqueness of the vacuum implies
the weak limits

w-lim
x→±∞ T (x) = P�, w-lim

t→±∞ �i t = P�. (3.4)

This is the case because as a consequence of the representation theory of G, the restric-
tions of the selfadjoint generators P and log� to the orthogonal complement P⊥

� H of
C� have purely absolutely continuous spectrum, see e.g. [Lon08]. The limits (3.4) then
follow by application of the Riemann-Lebesgue Lemma.
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Lemma 3.3. Let A ∈ N ∨ JN J be such that σt (A) converges weakly to L ∈ B(H) as
t → −∞. Then a) L ∈ A∞, b) [L ,�i t ] = 0 for all t ∈ R, c) L� = ω(A)�.

Proof. a) Atfixed t ∈ R,wehaveσt (A) ∈ σt (N∨JN J ) = αe−2π t (M)∨α−e−2π t (M′) =:
Mt . SinceMt ⊂ Ms for t < s, the weak limit L is an element of

⋂
t<0 Mt = A∞.

b) By assumption, σt (A) → L weakly as t → −∞. Thus also σt+s(A) → L weakly.
But σt+s(A) = �isσt (A)�−is → σs(L) as t → −∞, so σs(L) = L follows.

c) By assumption, σt (A) → L weakly as t → −∞, and hence �i t A� = σt (A)� →
L� weakly. But on the other hand, �i t A� → P�A� = ω(A)� by (3.4). Thus
L� = ω(A)�.

��
By the Banach-Alaoglu Theorem, the bounded sequence σt (A), t → −∞, has weak

limit points. So the above lemma could be reformulated in terms of weak limit points
to avoid the assumption of existence of the weak limit. However, for us the above form
will be sufficient.

Our criterion for singular inclusions now follows by combining Proposition 3.2 and
Lemma 3.3.

Proposition 3.4. Let (N ⊂ M,�) be a half-sided modular inclusion with unique vac-
uum. The following are equivalent:

a) N ⊂ M is singular (case (C)).
b) There exists T ∈ N ∨ JN J such that T� �= 0 and s-lim

t→−∞ T�−i t exists.

c) There exist S ∈ N ∨ JN J such that

w-lim
t→−∞ σt (S) = P�. (3.5)

Proof. a) ⇒ b) IfN ⊂ M is singular, we haveN ∨ JN J = B(H) and hence we may
choose T = P� to satisfy the assumptions in b).

b) ⇒ c) Let L ∈ B(H) denote the strong limit of T�−i t as t → −∞. Then in
particular T�−i t → L weakly. But �−i t → P� weakly, so we conclude L = T P�.
This implies σt (T ∗T ) = (T�−i t )∗ · T�−i t → L∗L = P�T ∗T P� = ‖T�‖2P�

weakly. Since T� �= 0 by assumption, we may consider S = T ∗T/‖T�‖2 which
satisfies the assumption in c).

c) ⇒ a) The weak limit w-lim
t→−∞ σt (S) = P� lies inA∞ by Lemma 3.3, which implies

a) by Proposition 3.2. ��
In the next section, we will give examples of half-sided modular inclusions which

we will demonstrate to be singular by verifying Proposition 3.4 c).

4. Second Quantization Inclusions and Their Deformations

4.1. Definition of the deformed and undeformed inclusions. In this section we describe
the particular half-sided modular inclusions that we will investigate. Our starting point
is a standard subspace version of a Borchers triple, namely a non-degenerate standard
pair (T1, H) [LW11].

Definition 4.1. A standard pair (T1, H) on a complex Hilbert space H1 consists of

a) a closed real subspace H ⊂ H1 that is standard, namely cyclic in the sense that
H + i H is dense inH, and separating in the sense H ∩ i H = {0},
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b) a strongly continuous unitary one-parameter group T1(x) = eixP1 with positive
non-singular generator P1 > 0, ker P1 = {0},

such that

T1(x)H ⊂ H, x ≥ 0. (4.1)

As is well known, a standard pair gives rise to a half-sided modular inclusion / one-
dimensional Borchers triple by second quantization. Namely, consider the Bose Fock
spaceH overH1 with its canonical vacuum vector � and Weyl unitaries V (h), h ∈ H1.
Then the von Neumann algebra

M(H) := {V (h) : h ∈ H}′′ ⊂ B(H), (4.2)

the second quantized representation T (x) = eixP, P = 
(P1), and the Fock vacuum �

form a one-dimensional Borchers triple (M(H), T,�)with unique vacuum. It is known
that such triples always belong to the standard case (A) (see [LL15, Proposition 2.3],
related to [BGL02, Thm. 4.5]). The modular data �, J of (M(H),�) arise from the
modular data�1, J1 of H (defined by polar decomposition of S1 : H+i H → H+i H, h+
ih �→ h − ih) by second quantization. The commutant ofM(H) isM(H)′ = M(H ′),
where H ′ = {ψ ∈ H1 : Im〈ψ, h〉 = 0 ∀h ∈ H} = J1H is the symplectic complement
of H [LRT78].

A standard pair (T1, H) is called irreducible iff the G-representation generated by
the one-parameter groups T1(x) and �i t is irreducible. In this case, the pair is unique
up to unitary equivalence and can be presented in the form [LL15, p. 40, case (i)]

H1 = L2(R, dθ), (T1(x)ψ)(θ) = eixe
θ

ψ(θ), (4.3)

with standard subspace [LL15, Lemma 4.1]

H = {ψ ∈ H
2(Sπ ) : ψ(θ + iπ) = ψ(θ) a.e.}. (4.4)

Here H
2(Sπ ) denotes the Hardy space on the strip Sπ = {ζ ∈ C : 0 < Im ζ < π},

namely all thoseψ ∈ L2(R) that are boundary values of analytic functionsψ : Sπ → C

with sup0<λ<π

∫
R

|ψ(θ + iλ)|2dθ < ∞. The modular data of H are

(�i t
1 ψ)(θ) = ψ(θ − 2π t), (J1ψ)(θ) = ψ(θ). (4.5)

It should be noted that elements in H can be obtained from real functions on R+ by
Fourier transform, namely the map

S (R) → H1, f �→ f̂ , f̂ (θ) :=
∫

R

f ′(x)eixeθ

dx (4.6)

carries C∞
c,R(R+) into a dense subspace of H ,

H = { f̂ : f ∈ C∞
c,R(R+)}−. (4.7)

We now explain the structure of the deformed versions of (M, T,�) which will
depend on a real deformation parameter κ . To that end, we introduce explicit generating
operators on Fock space H. In the following, D ⊂ H will always denote the dense
subspace of finite particle number, and for 	 ∈ H, its n-particle component will be
denoted 	n , n ∈ N.
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Given κ ∈ R and ψ ∈ H1 we define an annihilation type operator by [GL07]

aκ(ψ) : D → D

(aκ(ψ)	)n(θ1, . . . , θn) = √
n + 1

∫

R

dθ ψ(θ)

n∏

k=1

eiκ sinh(θ−θk )	n+1(θ, θ1, . . . , θn).

(4.8)

For κ = 0, the operator a0(ψ) reduces to the familiar Bose annihilation operator. The
reason for the exponential factors eiκ sinh(θ−θk ) in (4.8) will be explained below.

We then define a field operator as

ϕκ(ξ) = aκ(ξ)∗ + aκ(S1ξ), ξ ∈ H + i H, (4.9)

which is a well-defined closable operator on D depending linearly on ξ . Let us recall
the following facts [Lec12]:

• ϕκ(h) is essentially selfadjoint on D for h ∈ H . (The selfadjoint closure will be
denoted by the same symbol.)

• For κ ≥ 0, we have [eiϕκ (h), eiϕ−κ (h′)] = 0 for all h ∈ H , h′ ∈ H ′.
• U (x, t)ϕκ(ξ)U (x, t)−1 = ϕκ(U1(x, t)ξ) for any x ≥ 0 and any t ∈ R.
• Jϕκ(ξ)J = ϕ−κ(J1ξ).
• � is cyclic for the algebra of all polynomials in ϕκ(h), h ∈ H .

These structures are summarized in the following proposition.

Proposition 4.2. Let κ ≥ 0 and

Mκ := {eiϕκ (h) : h ∈ H}′′ ⊂ B(H). (4.10)

Then (Mκ , T,�) is a one-dimensional Borchers triple with unique vacuum on the Bose
Fock space H over H1. For κ = 0 we have M0 = M(H), the second quantization of
the irreducible standard pair (H, T1).

In the following, we will use a subscript κ to refer to the “deformed” von Neumann
algebra Mκ , its subalgebra Nκ = T (1)MκT (−1), algebra at infinity A∞κ , local sub-
spaceHlocκ , etc. Note, however, that independently of κ , we are always working on the
same Hilbert spacesH1 andH, using the same vacuum vector � and the same standard
subspace H .

By definition, the translations T (x) are the same for all (Nκ ⊂ Mκ ,�), κ ≥ 0.
We remark that also the modular data of (Mκ ,�) are independent of κ , and that the
commutant of Mκ is given by [BLS11]

Mκ
′ = {eiϕ−κ (h′) : h′ ∈ H ′}′′ = M′−κ . (4.11)

Our main result is the following theorem.

Theorem 4.3. Consider the family of one-dimensional Borchers triples (Mκ , T,�),
κ ≥ 0, defined in (4.10). For κ = 0, this inclusion is standard (case (A)), and for any
κ > 0, this inclusion is singular (case (C)).
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This results highlights that despite the properties that the triples (Mκ , T,�) share
for all κ ≥ 0, there are also essential differences between the undeformed (κ = 0) and
deformed (κ > 0) cases. Not only are the von Neumann algebras Mκ not of second
quantization form for κ > 0, but their local subspaces Hlocκ and relative commutants
Nκ

′ ∩ Mκ depends on κ in a “discontinuous” manner. Whereas the triple for κ = 0
describes a (chiral half of) a local QFT, the local observable content becomes trivial for
κ > 0.

It is also interesting to consider this situation from the point of view of the represen-
tations of the affine and Möbius groups. In the situation encountered here, the modular
data�, J of (Mκ ,�) are independent of the deformation parameter κ . So the represen-
tationU ofG (“ax +b group”) extends to a representation Û0 of theMöbius group under
which the netA0 associated with (N0 ⊂ M0,�) transforms covariantly; this extension
can be realized with the modular data of A0(I ), I ∈ I. But the net associated with
(Nκ ⊂ Mκ ,�), κ > 0, is trivial, in particular Û0(g) does not mapMκ ontoAκ((0, 1))
for g(x) = 1

x+1 . Hence, contrary to a statement sometimes found in the literature, ex-
tension of G to a Möbius group representation is not sufficient for the existence of local
observables – one also has to ensure that the extended representation acts correctly on
the net.

This circle of ideas might connect to ongoing research relating modular theory of
standard subspaces and representation theory [NÓ17,NÓ21].

4.2. Two-dimensional nets and warped convolution. In this subsection we describe the
deformations from a different perspective that highlights their structural properties and
explains the formula (4.8). The main point is that we may view the one-dimensional
Borchers triple (M(H), T,�) also as a two-dimensional one. This point of view will
give us sufficient room to work with a deformation scheme (warped convolution) that
requires a suitable action of R

2, see also [Tan12,LST13] for related constructions.
By definition, every one-dimensional Borchers triple (M, T,�) comes with a repre-

sentationT of theone-dimensional translationgroup that acts according toT (x)MT (−x)
⊂ M for x ≥ 0 (Definition 2.2). In comparison, a two-dimensional Borchers triple
(M, T ,�) is defined as a von Neumann algebra M with standard vector � and a uni-
tary representation T of the two-dimensional translation group, such that � is invariant
under T ,

T (x, y)MT (x, y)−1 ⊂ M, x ≥ 0, y ≤ 0, (4.12)

and both one-parameter groups T (x, 0) and T (0, y) have positive generators.
The parameters x, y should be thought of as the light ray coordinates of vectors

ξ ∈ R
2, namely x = ξ−, y = ξ+ with ξ± = 1

2 (ξ0 ± ξ1), where ξ0 is the temporal and ξ1
the spatial coordinate of ξ . Then T is a positive energy representation and the inequalities
x > 0, y < 0 describe the right wedge in R

2, namely WR = {ξ ∈ R
2 : ±ξ± > 0}.



Deformations of Half-Sided Modular Inclusions and Non-local Chiral Field Theories

Clearly, any two-dimensional Borchers triple is also a one-dimensional one by set-
ting T (x) := T (x, 0). Conversely, a one-dimensional Borchers triple is also a two-
dimensional one by making the trivial choice T (x, y) := T (x).

For one-dimensional Borchers triples (M, T,�) arising from second quantization
of standard pairs (H, T1), there exist however always non-trivial extensions of T to
a representation T of R

2. In [LW11, Cor. 2.5], all strongly continuous one-parameter
groups T̃1(y) commuting with T1(x) and satisfying T̃1(y)H ⊂ H for y ≤ 0 have been
classified. These one-parameter groups include in particular2

T̃1(y) = eim
2 yP−1

1 , (4.13)

where P1 is the generator of T1, and m2 ≥ 0 a parameter with the interpretation of
mass square. We remark that (4.13) are the only possibilities with positive generator
in case (H, T1) is irreducible: In fact, assuming that the generator P̃1 of T̃1 is positive,
Borchers’ commutation relations imply that the product P1P̃1 commutes with U and is
thus a multiple of the identity by irreducibility.

Since the value of m2 > 0 in (4.13) plays no role for our investigations, we will set
it to m2 = 1.

In the case of the presentation (4.4) of the irreducible standard pair, T̃1 takes the form

(T̃1(y)ψ)(θ) = eiye
−θ

ψ(θ), (4.14)

and we can summarize our discussion as follows.

Lemma 4.4. a) The unitary R
2-representation on L2(R, dθ) given by3

(T 1(ξ)ψ)(θ) = eip(θ)·ξψ(θ), ξ ∈ R
2, p(θ) := (cosh θ, sinh θ) (4.15)

has positive energy and satisfies

T 1(ξ)H ⊂ H, ξ ∈ WR . (4.16)

It is related to T1 by T 1(ξ) = T1(ξ−)T̃1(ξ+), where ξ± = 1
2 (ξ0 ± ξ1).

2 This is also easily checked directly in case of the standard pair (4.4).
3 Here, “·” denotes the Minkowski inner product.
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b) The second quantization vonNeumann algebraM(H) (4.2), the second quantization
T of T 1, and the Fock vacuum � form a two-dimensional Borchers triple.

Proof. a) Formula (4.15) follows from (4.14) by using light ray coordinates, and posi-
tivity is clear. b) follows immediately from a) by second quantization. ��

In the setting of a two-dimensional Borchers triple, T (ξ), ξ ∈ R
2 and �i t , t ∈ R,

generate a representation of the Poincaré groupP on two-dimensional Minkowski space
R
2. The one-parameter group of Lorentz boosts in P will be denoted �t , i.e. (�tξ)± =

e±tξ±.
Once we are in a situation of a two-dimensional Borchers triple (M, T ,�), we are

in position to apply the warped convolution deformation [BLS11]. This is a deformation
procedure for two- (or higher-) dimensional Borchers triples based on a deformation of
smooth operators A ∈ B(H). Here we call an operator A ∈ B(H) smooth if the functions
x �→ T (x)AT (−x) are smooth in the norm topology ofB(H). A vector	 ∈ H is called
smooth if x �→ T (x)	 is smooth in the norm topology of H.

Choosing a real (2 × 2) matrix Q that is antisymmetric w.r.t. the Minkowski inner
product, i.e. necessarily of the form

Q = Qκ =
(
0 κ

κ 0

)
,

for some κ ∈ R, one then considers the integral expression (for smooth A and 	)

Aκ	 := (2π)−2
∫

dp dx e−i p·x T (Qκ p)AT (−Qκ p) T (x)	. (4.17)

Interpreted in an oscillatory sense, this integral defines a map Aκ : H∞ → H∞ that can
be extended to a bounded operator, still denoted Aκ . It is easy to see that A0 = A and
Aκ� = A�; for further properties we refer to [BLS11].

In the context of the Borchers triple (M, T ,�), one then defines

Mκ := {Aκ : A ∈ M smooth}′′. (4.18)

Note that as A �→ Aκ is not an algebra homomorphism, this algebra contains also
elements that are not of the form Bκ , B ∈ M.

By exploiting the positivity of the joint spectrum S ⊂ R
2 of the generators of T

one can then show: If Qκ S lies in the right wedge WR , then � is standard for Mκ .
This condition is equivalent to κ ≥ 0 and explains this restriction on the parameter in
Proposition 4.2. Furthermore, one can show that the commutant of Mκ is given by the
opposite deformation of the commutant ofM (4.11). Since the action of the translations
on deformed operators Aκ is easy to control, it then follows that also (Mκ , T ,�) is a
Borchers triple [BLS11].

The initial deformation formula (4.8) for the annihilation operator aκ(ξ) amounts to
using the representation T in the warped convolution and checking aκ(ξ) = a0(ξ)κ . The
exponential factors involving sinh appear in (4.8) because

p(θ) · Qκ p(θ
′) = κ sinh(θ ′ − θ). (4.19)

We also recall that elements of H can be generated from test functions on R
2, com-

pleting the two-dimensional picture. Namely, the maps

S (R2)  f �→ f ± ∈ H1, f ±(θ) =
∫

R2
f (ξ)e±i p(θ)·ξdξ (4.20)
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generate H according to

H = { f + : f ∈ C∞
c,R(WR)}−. (4.21)

The operator-valued distribution φ0 on R
2 defined by

φ0( f ) := a∗
0( f

+) + a0( f −), f ∈ S (R2), (4.22)

is nothing but the free scalar Klein Gordon field of unit mass on two-dimensional
Minkowski space; it coincides with ϕ0( f +) for f ∈ Cc,R(WR). For any κ ≥ 0, the
operators φκ( f ), f ∈ C∞

c (WR), are affiliated withMκ .
To summarize, the definition (4.10) amounts to considering the free Klein-Gordon

field in two dimensions, performing a warped convolution deformation with parameter
Qκ , and restricting the deformed quantum field theory to the light ray. For physical
interpretations of such a light ray holography (in a somewhat different context), see for
instance [Sch02]. It should also be noted that the deformed field theory (and related
models, including models in higher dimensions) are interacting in the sense of having a
non-trivial S-matrix; see [GL07] for two-particle scattering and [Due18,Due19] for an
analysis of n-particle scattering.

4.3. Analysis of the deformed inclusions. This section is devoted to the proof of Theo-
rem 4.3 by verifying the weak limit criterion in Proposition 3.4 c), namely the existence
of S ∈ Nκ ∨ JNκ J such that σt (S) → P� weakly as t → −∞. We will proceed in two
steps: In a first step, we will consider field polynomials as an unbounded analogue of S,
and prove a corresponding limit formula by investigating their correlation functions. In
the second step, we will pass to bounded S.

In preparation for the first step we recall Wightman type properties of the fields φκ ,
κ ∈ R, see [GL08] for details.

We will use the vectors 	(F), F ∈ S ((R2)n), that are defined by linear and
continuous extension (kernel theorem) of 	( f1 ⊗ . . . ⊗ fn) := φ0( f1) · · · φ0( fn)�,
f1, . . . , fn ∈ S (R2). On these vectors, φκ acts according to [Sol08,GL08]

φκ(g)	(F) = 	(g ⊗κ F), g ∈ S (R2), F ∈ S (R2n), (4.23)

where the deformed tensor product ⊗κ between two test functions G ∈ S (R2m), F ∈
S (R2n), n,m ∈ N, is defined in Fourier space by

˜(G ⊗κ F)(p1, . . . , pm; q1, . . . , qn) = e
i

m∑
l=1

pl ·Qκ

n∑
r=1

qr · G̃(p1, . . . , pm)F̃(q1, . . . , qn).
(4.24)

For κ = 0, this reduces to the ordinary tensor product ⊗ = ⊗0. For every κ ∈ R, the
deformed tensor product ⊗κ is an associative continuous product on the tensor algebra
over S (R2) which is Poincaré-covariant in the sense

λ∗(G ⊗κ F) = λ∗G ⊗κ λ∗F, λ ∈ P, F ∈ S (R2n),G ∈ S (R2m). (4.25)

While translation covariance is obvious from (4.24), covariance under boosts�t follows
because Qκ is boost invariant [GL07].
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As a consequence of translation covariance of ⊗κ and translation invariance of the
vacuum state, we have in particular

ω(F ⊗κ G) = ω(F ⊗ G) . (4.26)

We also recall that the vacuum state is given by n-point functions the structure of
which is fixed by Wick’s Theorem. Namely, we have

〈�,	(F)〉 = 〈	(F∗),�〉 = Wn(F), F ∈ S (R2n), (4.27)

where F∗(x1, . . . , xn) = F(xn, . . . , x1) and the n-point functionWn ∈ S ′(R2n) is best
described by its Fourier transform

W̃n(p1, . . . , pn) =

⎧
⎪⎨

⎪⎩

0 n odd
∑

(λ,μ)

n/2∏
k=1

W̃2(pλk , pμk ) n even
. (4.28)

Here the two-point function is given by, p = (p0, p1), q = (q0, q1) ∈ R
2

W̃2(p, q) = 1

ε(p1)
δ(p0 − ε(p1)) δ(p + q), ε(p1) =

√
(p1)2 + 1 (4.29)

The sum
∑

(λ,μ) in (4.28) runs over all partitions (λ, μ) of {1, . . . , n} into n
2 dis-

joint pairs (λk, μk), k = 1, . . . , n/2, with λk < μk . We will refer to the partitions
(λ, μ) = {(λ1, μ1), . . . , (λn/2, μn/2)} and their parts (λk, μk) as contractions. Given an
orthogonal projection P , we will also use the standard notation P⊥ = 1 − P .

Theorem 4.5. Let κ �= 0. Let X be a polynomial in the field operators φκ( f ), f ∈
S (R2) and Y ′ a polynomial in the field operators φ−κ(g), g ∈ S (R2). Then, for any
vectors 	,	 ′ of finite particle number, we have

lim
t→±∞〈	 ′, σt (XY ′)	〉 = 〈	 ′, (ω(XY ′)P� + ω(X)ω(Y ′)P⊥

� )	〉. (4.30)

Proof. As the left and right hand sides of (4.30) are linear in X and Y ′, it is sufficient to
consider field monomials, namely

X = φκ( f1) · · · φκ( fn), Y ′ = φ−κ(g1) · · · φ−κ(gm), (4.31)

where n,m ∈ N0, and the functions f1, . . . , fn, g1, . . . , gm ∈ C∞
c (R2) are arbitrary.

Furthermore, it is sufficient to consider vectors	,	 ′ that are not only of finite particle
number but also in the Wightman domain DW of the undeformed field φ0, namely

	 ′ = 	(l∗), 	 = 	(r), (4.32)

where l ∈ S (R2a), r ∈ S (R2b), and a, b ∈ N0 are arbitrary.
Since the intersectionDW ∩Hk with any k-particle space is dense inHk , and σt (XY ′)

is uniformly bounded on Hk , it follows that (4.30) holds for arbitrary finite particle
number vectors 	,	 ′ if we can establish it for 	,	 ′ of the form (4.32).

In the interest of a compact formula for the scalar product 〈	 ′, σt (XY ′)	〉 in question
(4.30), we introduce shorthand notations for the following Schwartz functions:

f κ,t := �∗
t f1 ⊗κ . . . ⊗κ �∗

t fn, g−κ,t := �∗
t g1 ⊗−κ . . . ⊗−κ �∗

t gm
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as well as f κ = f κ,0, g−κ = g−κ,0. With these notations, we may repeatedly apply
(4.23), the associativity of ⊗κ , and (4.26), to get

〈	 ′, σt (XY ′)	〉 = 〈	(l∗), φκ(�∗
t f1) · · · φκ(�∗

t fn)φ−κ(�∗
t g1) · · · φ−κ(�∗

t gm)	(r)〉
= Wn+m+a+b(l ⊗ ( f κ,t ⊗κ (g−κ,t ⊗−κ r)))

= Wn+m+a+b((l ⊗κ f κ,t ) ⊗ (g−κ,t ⊗−κ r))). (4.33)

For odd N := n +m + a + b, (4.33) vanishes. By distinguishing a few even/odd cases it
is easy to see that in this case, the right hand side of (4.30) also vanishes. For example,
〈	 ′,�〉〈�,	〉ω(XY ′) can only be non-zero if n + m, a, and b are all even, which is
incompatible with N being odd; and similar for the other terms in the right hand side of
(4.30).

For even N , (4.33) equals a sum over contractions, namely

〈	, σt (XY
′)	 ′〉 =

∑

(λ,μ)

W(λ,μ)(t),

W(λ,μ)(t) :=
∫

(R2)N
dp l̃(p1, . . . , pa) f̃ κ(�t pa+1, . . . , �t pa+n)

× g̃−κ(�t pa+n+1, . . . , �t pa+n+m)r̃(pa+n+m+1, . . . , pN )

× eip(l)·Qκ p( f )e−i p(g)·Qκ p(r)
N/2∏

k=1

W̃2(−pλk ,−pμk ). (4.34)

The exponential terms originate from the deformed tensor products (4.24), and as a
shorthand notation, we have introduced the sums of the momenta pk ∈ R

2 appearing in
the four functions,

p(l) =
a∑

k=1

pk, p( f ) =
a+n∑

k=a+1

pk, p(g) =
a+n+m∑

k=a+n+1

pk, p(r) =
N∑

k=a+n+m+1

pk .

(4.35)

For any contraction (λ, μ), the above integrand goes to zero pointwise as t → ±∞. The
t-dependence of the integrals W(λ,μ)(t) depends however on the structure of (λ, μ), so
that we have to distinguish a few different cases.

To this end, we introduce the index sets

I(l) := {1, . . . , a},
I( f ) := {a + 1, . . . , a + n},
I(g) := {a + n + 1, . . . , a + n + m},
I(r) := {a + n + m + 1, . . . , a + n + m + b},

corresponding to variables of l̃, f̃ κ , g̃−κ , and r̃ , respectively.

(I) A contraction (λ, μ) is of type (I) if there exists k ∈ {1, . . . , N/2} such that either
λk or μk (but not both) lie in I(l) ∪ I(r). In this case, the contraction connects a
variable of f̃ κ or g̃−κ to a variable of l̃ or r̃ .
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(II) A contraction (λ, μ) is of type (II) if it is not of type (I) and if for all k ∈
{1, . . . , N/2}, the statement λk ∈ I( f ) is equivalent to μk ∈ I( f ). Then also
λk ∈ I(g) is equivalent to μk ∈ I(g). In this case, we call the contraction (λk, μk)

f -internal and g-internal, respectively.
(III) A contraction (λ, μ) is of type (III) if it is not of type (I) or type (II), and if there

exists k ∈ {1, . . . , N/2} such that λk ∈ I(l) and μk ∈ I(r). In this case, (λ, μ)

connects f̃ κ and g̃−κ , and also l̃ and r̃ , but there are no contractions between l̃, r̃
and f̃ κ , g̃−κ as in type (I).

(IV) A contraction (λ, μ) is of type (IV) if it is not of type (I), (II), or (III). In this
case (λ, μ) connects f̃ κ and g̃−κ , but all variables of l̃ are contracted amongst
themselves, and likewise for r̃ .

Clearly these cases are mutually exclusive and exhaust all possibilities.
(I) Beginning our analysis of the four cases, we claim that

lim
t→±∞ W(λ,μ)(t) = 0, (λ, μ) of type (I). (4.36)

In this case, the exponential factors eip(l)·Qκ p( f )e−i p(g)·Qκ p(r) in (4.34) are irrelevant and
wemay estimate (4.34) by triangle inequality. After carrying out all integrations over the
delta distributions in the two-point functions W̃2(p, q) = ε(p1)−1δ(p0−ε(p1))δ(p+q),
setting the momenta pλk , k = 1, . . . , N/2, equal to −pμk and restricting the pμk to the
upper mass shell, i.e. constraining them to the form pμk = (ε(p1μk

), p1μk
), we may then

substitute sinh θk := p1μk
, dp1μk

/dθk = ε(p1μk
). Since the boosts �t act by shifts in the

rapidities θk , this shows that we have

|W(λ,μ)(t)| ≤
∫

RN

F(θ, θ ′ − t, θ ′′ − t, θ ′′′)
N/2∏

k=1

δ(θλk − θμk )dθλk dθμk , (4.37)

where F ∈ S (RN ) is a Schwartz function, θ , θ ′, θ ′′, and θ ′′′ are the rapidity transforms
of the variables of l̃, f̃ κ , g̃−κ , and r̃ , respectively, and the shorthand notations θ ′ − t :=
(θ ′

1 − t, . . . , θ ′
n − t) and θ ′′ − t := (θ ′′

1 − t, . . . , θ ′′
m − t) have been introduced.

We now estimate F in terms of Schwartz seminorms in order to obtain

|W(λ,μ)(t)| ≤ C
∫

RN/2

∏

α

(1 + θ2α)−1(1 + (θα − t)2)−1 ·
∏

β

(1 + θ2β)−2 dθ .

Here the first product arises from those contractions (λk, μk) that link t-dependent and
t-independent variables; by the type (I) assumption this product is not empty. The second
product arises from those contractions (λk, μk) that link either two t-independent or two
t-dependent variables. In the above form, it is then clear that dominated convergence
can be applied, and we arrive at the claimed limit lim

t→±∞ W(λ,μ)(t) = 0.

(II)We move on to type (II) contractions, and claim that in this case W(λ,μ)(t) does not
depend on t .

By definition of type (II), all variables of f̃ κ are contracted amongst themselves, and
likewise for g̃−κ . In view of the energy momentum delta distributions δ(p + q) in the
two-point function, in this case we observe that on the support of

∏N/2
k=1 W̃2(pλk , pμk ),

the sums p( f ) and p(g) (4.35) vanish. Thus the exponential terms in (4.34) drop
out and the integrand becomes a factor of three functions in independent variables: a)
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l̃(p1, . . . , pa)r̃(pa+n+m+1, . . . , pN ), b) f̃ κ(�t pa+1, . . . , �t pa+n), and c) g̃−κ(�t pa+n+1,
. . . , �t pa+n+m). In viewof the structure of a type (II) contraction, also

∏N/2
k=1 W̃2(pλk , pμk )

splits in the same manner so that W(λ,μ)(t) factors into a product of three integrals.
Now the substitutions p j �→ �−t p j in the integrals over f̃ κ and g̃−κ eliminate all
t-dependence, i.e. W(λ,μ)(t) is given by

∫
l̃(p1, . . . , pa)r̃(pa+n+m+1, . . . , pN )

∏

k
{λk ,μk }⊂I(l)∪I(r)

W̃2(−pλk ,−pμk )dpλk dpμk

×
∫

f̃ κ(pa+1, . . . , pa+n)
∏

k
{λk ,μk }⊂I( f )

W̃2(−pλk ,−pμk )dpλk dpμk

×
∫

˜g−κ(pa+1, . . . , pa+n)
∏

k
{λk ,μk }⊂I(g)

W̃2(−pλk ,−pμk )dpλk dpμk

By this factorization, the sum over all type (II) contractions decomposes into a product
of three sums, running over all contractions of I(l)∪I(r), I( f ), and I(g), respectively.

According to Wick’s Theorem, the first sum (contractions of I(l) ∪ I(r)) coincides
with ω(φ0(l)φ0(r)) = 〈	(l∗),	(r)〉 = 〈	 ′, 	〉. The contractions of I( f ) sum to
Wn( f κ) = ω(φκ( f1) · · · φκ( fn)) = ω(X), and analogously the contractions of I(g)
sum to ω(Y ′).

Hence we obtain
∑

(λ,μ) type (II)

W(λ,μ)(t) = ω(X)ω(Y ′)〈	 ′, 	〉.

(III)We claim

lim
t→±∞ W(λ,μ)(t) = 0, (λ, μ) of type (III). (4.38)

The initial part of the following arguments works for both, type (III) and type (IV). As
there are no contractions connecting f̃ κ , g̃−κ with l̃, r̃ for these types, we can again
remove the t-dependence in the variables of f̃ κ and g̃−κ by substituting p j �→ �−t p j .
This substitution does not introduce t-dependence in the variables of l̃ and r̃ , but only
in the exponentials, resulting in the factor exp(i p(l) · Qκ�−t p( f )) exp(−i�−t p(g) ·
Qκ p(r)). Since all variables pk with k ∈ I( f )∪I(g) are contracted amongst themselves,
we have p( f ) + p(g) = 0 and p(l) + p(r) = 0 on the support of the delta distributions.
Taking into account the antisymmetry of Qκ , this simplifies the exponential factor to
exp(2i p(l) · Qκ�−t p( f )).

After these remarks, we switch again to rapidity parameterization as for type (I) and
obtain

W(λ,μ)(t) =
∫

dθdθ ′ L(θ1, . . . , θ(a+b)/2)F(θ ′
1, . . . , θ

′
(n+m)/2)

∏

j,k

e2iκ sinh(θ j−θ ′
k+t).

(4.39)
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Here L ∈ S (R(a+b)/2) arises from l̃⊗ r̃ by rapidity parameterization and identifying
variables via integration of delta distributions (hence only half of the original a+bmany
variables remain). The function F ∈ S (R(n+m)/2) arises from f̃ κ ⊗ g̃−κ in the same
way.

The exponential factor
∏

j,k e
2iκ sinh(θ j−θ ′

k+t) in (4.39) is obtained from the previously
described exp(2i p(l)Q�−t p( f )) as follows: First we note that contractions (λk, μk)

that are f -internal (i.e. {λk, μk} ⊂ I( f )) have the effect that the partial summand
pλk + pμk = 0 vanishes from p( f ) (4.35), and analogously for l-internal contractions
and p(l). Hence the exponential term takes the form exp(2i p′(l)Qκ�−t p′( f )), where
the primes indicate that the sums (4.35) run only over thosemomenta that are not removed
by l-internal or f -internal contractions.

As p(θ) · Qκ�−t p(θ ′) = κ sinh(θ − θ ′ + t), this explains the product
∏

j,k in (4.39)
which runs over the remaining not self-contracted variables.

Since we are not in type (II), at least one such variable of f̃ κ is contracted with a
variable of g̃−κ , i.e. the product over k is not empty.

Now we distinguish between type (III) and (IV). In type (III), the product over j is
also not empty (that is, (λ, μ) connects l̃ and r̃ ). We claim that

lim
t→±∞ W(λ,μ)(t) = 0, (λ, μ) of type (III). (4.40)

To show this, we use a Riemann-Lebesgue type argument and use integration by parts to
exploit the oscillatory term

∏
j,k e

2iκ sinh(θ j−θ ′
k+t); this is the point were κ �= 0 enters the

proof of the theorem.We pick some j occuring in this product, and rewrite the preceding
integral as

|W(λ,μ)(t)| =
∣∣∣∣∣∣

∫
dθdθ ′ L(θ1, . . . , θ(a+b)/2)F(θ ′

1, . . . , θ
′
(n+m)/2)∑

k 2iκ cosh(θ j − θk + t)

∂

∂θ j

∏

j,k

e2iκ sinh(θ j−θ ′
k+t)

∣∣∣∣∣∣

≤
∫

dθdθ ′
∣∣∣∣F(θ ′

1, . . . , θ
′
(n+m)/2)

∂

∂θ j

L(θ1, . . . , θ(a+b)/2)∑
k 2iκ cosh(θ j − θ ′

k + t)

∣∣∣∣

Expanding the derivatives and using
∣∣∣ ∂
∂θ j

1
cosh(θ j−θ ′

k+t)

∣∣∣ ≤ 1
cosh(θ j−θk+t)

, it is then easy to

see that the integrand goes to zero pointwise as t → ±∞. Since cosh x ≥ 1, we have
an integrable majorant and may apply dominated convergence to conclude the claimed
limit (4.40).
(IV) Type (IV) contributions are also described by (4.39). But in contrast to type (III),
there is no contraction between l̃ and r̃ in this case, which results in the product

∏
j,k

in (4.39) dropping out. So as in type (II), it follows that W(λ,μ)(t) is independent of t
in type (IV), and the sum over all type (IV) contractions splits into three sums: a) the
contractions of all variables of l̃, b) the contractions of all variables of r̃ , and c) the
contractions of all variables of f̃ κ and g̃−κ .

The sum a) yields ω(φ0(l1) · · · φ0(la)) = 〈	(l∗),�〉 = 〈	 ′,�〉, and similarly the
sum b) results in 〈	(r),�〉 = 〈	,�〉.

To evaluate the sumc), note thatwe are here summingonly those contractions between
f̃ κ and g̃−κ that are connecting f̃ κ and g̃−κ and not those contractions that are f -internal
and g-internal. Hence the sum c) yields

ω(φκ( f1) · · · φκ( fn)φ−κ(g1) · · · φ−κ(gm))

− ω(φκ( f1) · · · φκ( fn)) · ω(φ−κ(g1) · · · φ−κ(gm)) = ω(XY ′) − ω(X)ω(Y ′),
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and we obtain
∑

(λ,μ) type (IV)

W(λ,μ)(t) = (ω(XY ′) − ω(X)ω(Y ′))〈	,�〉〈�,	 ′〉.

Summing all types (I)–(IV), we arrive at

lim
t→±∞〈	 ′, σt (XY ′)	〉 = 〈	 ′,

(
(ω(XY ′) − ω(X)ω(Y ′))P� + ω(X)ω(Y ′)1

)
	〉

= 〈	 ′,
(
ω(XY ′)P� + ω(X)ω(Y ′)(1 − P�)

)
	〉.

This finishes the proof of the theorem. ��
It should be noted that the proof of Theorem 4.5 did not use any specific support

properties of f and g, i.e. strict localization of the operators X,Y ′ was not required.
Also we did not only evaluate the limit t → −∞, corresponding to scaling points in
x ∈ R\{0} to ∞ (as in Proposition 3.4), but also the opposite limit t → +∞, which
corresponds to scaling x to 0.

We next transfer the limiting behaviour established in Theorem 4.5 to arbitrary
(bounded) operators in the von Neumann algebras Mκ , Mκ

′ (4.10).

Theorem 4.6. Consider the Borchers triple (Mκ , T,�) defined in (4.10) and let κ > 0.
Then, for any A ∈ Mκ , B ∈ Mκ

′,

w-lim
t→±∞ σt (AB) = ω(AB)P� + ω(A)ω(B)P⊥

� . (4.41)

Remark: Note that by setting A = 1 or B = 1, (4.41) reproduces σt (A) → ω(A)1 and
σt (B) → ω(B)1 in accordance with the fact that these limits are contained in the type
III1 factors M and M′ and fixed points of the modular group, thus trivial.

Proof. As shorthand notations, we will write 	A = A� and PAB = ω(AB)P� +
ω(A)ω(B)P⊥

� for the expression appearing in (4.41), and similarly for various other
operators. Note that PAB = σt (PAB) is invariant under the modular group.

The idea of the proof is to consider expectation values 〈	 ′, σt (AB − PAB)	〉 in
special vectors, namely vectors of the form 	 ′ = 	L∗ , 	 = 	R , where L , R are
closed operators affiliated with Mκ

′ (“left”) and Mκ (“right”), respectively, and with
domains such that � ∈ D(L∗) ∩ D(R). As Mκ and M′

κ are stable under the modular
group, this implies σt (A∗)� ∈ D(L∗), σt (B) ∈ D(R), and L∗σt (A∗)� = σt (A∗)L∗�,
Rσt (B)� = σt (B)R�, so that we may rewrite the expectation value in question as

〈σt (A∗)	L∗ , σt (B)	R〉 = 〈L∗σt (A∗)�, Rσt (B)�〉 = 〈σ−t (L
∗)	A∗ , σ−t (R)	B〉.

This symmetry in the roles of A, B and L , R also holds for the claimed limit 〈	 ′, PAB	〉,
namely

〈	L∗ , PAB	R�〉 = ω(AB)ω(L)ω(R) + ω(A)ω(B)ω(LR) − ω(A)ω(B)ω(L)ω(R)

= 〈	A∗ , PLR	B〉.
Hence

〈σt (A∗)	L∗ , σt (B)	R〉−〈	L∗ , PAB	R�〉 = 〈σ−t (L
∗)	A∗ , σ−t (R)	B〉

− 〈	A∗ , PLR	B〉. (4.42)
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We mention as an aside that this symmetric formula implies that in case the limit (4.41)
holds for t → −∞, then it also holds for t → +∞, and vice versa.

In a first step, we will choose L , R to be field operator polynomials as in Proposi-
tion 4.5, but smeared with test functions supported on the left and right, so that L is
affiliated with Mκ

′ and R is affiliated with Mκ . The operators A, B are taken to be
bounded and (for technical reasons) smooth, i.e. A ∈ Mκ

∞, B ∈ Mκ
′∞. We mention

in passing that due to the localization properties of Mκ ,Mκ
′, the smooth elements of

these von Neumann algebras form strongly dense ∗-subalgebras [BLS11]. Generalizing
the limit formula (4.30) of Proposition 4.5 to vectors 	 ′, 	 that are not necessarily of
finite particle number, but rather of the form 	 ′ = 	A∗ , 	 = 	B , we will show below
that the right hand side of (4.42) converges to 0 as t → ±∞.

Postponing the proof of this part for a moment, let us explain how it implies the
conclusion of the theorem. Taking into account (4.42) and the fact that the vectors 	L∗ ,
	R range over dense subspaces ofH as L , R vary within the limitations explained above
(Reeh-Schlieder property), and σt (AB− PAB), t ∈ R, is uniformly bounded in operator
norm, the claimed weak limit σt (AB) → PAB follows immediately for smooth A, B.

To eliminate the assumption of smoothness, we then consider (4.42) once more,
this time with smooth A, B as before, and bounded, not necessarily smooth L ∈ Mκ

′,
R ∈ Mκ . At this stagewe know that the left hand side of (4.42) goes to zero as t → ±∞,
and hence the desired limit 〈	A∗ , σ−t (LR − PLR)	B〉 → 0 holds (right hand side of
(4.42)). But as the smooth subalgebras Mκ

∞ ⊂ Mκ and Mκ
′∞ ⊂ Mκ

′ are strongly
dense, they have � as a cyclic vector. Hence the limit carries over to arbitrary vectors
on the left and right hand sides of the scalar product, and the proof is finished.

It remains to show that the right hand side of (4.42) converges to 0 for field operator
polynomials L , R as in Proposition 4.5 and arbitrary smooth A ∈ Mκ

∞, B ∈ M′
κ
∞.

To that end, let Qn := P0 ⊕ . . .⊕ Pn denote the orthogonal projection onto the subspace
of particle number at most n in our Fock spaceH. The projections Q⊥

n leave the domain
of L∗ invariant, and we may estimate according to

|〈σt (L∗)	A∗ ,σt (R)	B〉 − 〈	A∗ , PLR	B〉|
≤ |〈Qn	A∗ , σt (LR − PLR)	A〉| + |〈Q⊥

n 	A∗ , (σt (LR) − PLR)	B〉|.
Since L , R are field operator polynomials, they change particle number only by a finite
amount, i.e. there exists m ∈ N such that for all n ∈ N, t ∈ R

|〈Qn	A∗ , σt (LR − PLR)	B〉| + |〈Q⊥
n 	A∗ , σt (LR − PLR)	B〉|

= |〈Qn	A∗ , σt (LR − PLR)Qn+m	B〉| + |〈Q⊥
n 	A∗ , σt (LR − PLR)Q⊥

n−m	B〉|
≤ |〈Qn	A∗ , σt (LR − PLR)Qn+m	B〉|
+ ‖σt (L∗)Q⊥

n 	A∗‖‖σt (R)Q⊥
n−m	B‖ + ‖Q⊥

n 	A∗‖‖PLR‖‖Q⊥
n−m	B‖.

The first term contains only vectors of finite particle number on the left and right and
therefore converges to 0 as t → ±∞ by Proposition 4.5. The third term goes to zero
as n → ∞ because Q⊥

n , Q⊥
n−m → 0 strongly in this limit. Hence it is sufficient to

show that the two norms ‖σt (L∗)Q⊥
n 	A∗‖, ‖σt (R)Q⊥

n−m	B‖ go to zero as n → ∞,
uniformly in t ∈ R.

At this point, our smoothness assumption on A and B enters. Namely, since A, B are
smooth, the vectors 	A∗ , 	B lie in particular in

⋂
k≥0 D(Pk0), where P0 is the generator

of the time translations, i.e. the second quantization of 1
2 (P + P−1) ≥ 1. This implies

P0 ≥ N (the particle number operator, the second quantization of the identity), and hence
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	A∗ , 	B ∈ ⋂
k≥0 D(Nk). On the other hand, there exists k ∈ N such that L∗N−k and

RN−k are bounded because each single field operator φ±κ( f ), f ∈ S (R2), satisfies
‖φ±κ( f )N−1/2‖ < ∞. Choosing k large enough in this manner, and observing that Q⊥

n
and �i t commute with N , we can estimate according to

‖σt (L∗)Q⊥
n 	A∗‖ = ‖L∗N−k�−i t Q⊥

n N
k	A∗‖ ≤ ‖L∗N−k‖‖Q⊥

n N
k	A∗‖,

whichgoes to zero asn → ∞, uniformly in t , as required. The secondnorm‖σt (R)Q⊥
n−m

	B‖ can be estimated analogously. ��
To conclude singularity of the relative commutant N ′

κ ∩ Mκ from this we need the
following simple lemma.

Lemma 4.7. Let (N ⊂ M,�) be a half-sided modular inclusion on a Hilbert spaceH
of dimension dimH > 1. Then ω = 〈�, ·�〉 is not a product state on N ∨ JN J .

Proof. Let A ∈ N , B ∈ JN J . Then also αx (A) ∈ N for any x > 0. If ω was a product
state, we would therefore have 〈A∗�, T (−x)B�〉 = ω(αx (A)B) = ω(A)ω(B) =
〈A∗�, P�B�〉 for x > 0. As � is cyclic for N and JN J , this would imply T (−x) =
P�, which is only possible if P� = 1, i.e. H = C� is one-dimensional. ��
Proof of Theorem 4.3. As recalled earlier, the statement for κ = 0 is a consequence
of the second quantization structure of M0 = M(H). For κ > 0, we pick A ∈ Nκ ,
B ∈ JNκ J . According to Lemma 3.3 and Theorem 4.6,

PAB = (ω(AB) − ω(A)ω(B))P� + ω(A)ω(B)1 ∈ A∞κ

lies in the algebra at infinity. In view of Lemma 4.7, we may choose A, B in such a way
that the coefficient ω(AB) − ω(A)ω(B) in front of P� is not zero. Then

S = AB − ω(A)ω(B)1

ω(AB) − ω(A)ω(B)
∈ Nκ ∨ JNκ J

satisfies σt (S) → P� weakly as t → −∞, and Proposition 3.4 c) gives the result. ��

5. Conclusion and Outlook

After the free product construction of Longo, Tanimoto and Ueda [LTU19], the half-
sided inclusions constructed in this paper provide further and arguably simpler examples
of singular Borchers triples, giving further insight into the structure of the family of all
half-sided modular inclusions.

Although Proposition 3.4 provides a necessary and sufficient condition for a half-
sided inclusion to be singular, it seems difficult to use it in order to prove non-singularity.
So the ideas presented here consist first and foremost in a method for constructing
“counterexamples” to the preferred standard case (A). However, this method might well
inform complementary methods that are designed to exclude the singular case (C), or
help settle the status of the various undecided examples.

In this work, it became apparent that half-sided inclusions are very sensitive to de-
formations and their relative commutant can vary “discontinuously” with a deformation
parameter. It also seems likely that there exist many singular half-sided inclusions. In
view of the weak limit formula (4.41) that is generic for any A ∈ Mκ , B ∈ Mκ

′, it is
not unreasonable to expect that any standard half-sided inclusion � = (N ⊂ M,�),
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not necessarily arising from a standard pair by second quantization, can be deformed to
a one-parameter family of half-sided inclusions (�κ)κ≥0 such that4 �0 = � and �κ is
singular for every κ > 0.
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