
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/14812/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Langbein, Frank Curd , Marshall, Andrew David and Martin, Ralph Robert 2002. Numerical methods for
beautification of reverse engineered geometric models. Presented at: Geometric Modeling and Processing,
Wako, Saitama, Japan, 10-12 July 2002. Proceedings of Geometric Modeling and Processing. IEEE, pp.

159-168. 10.1109/GMAP.2002.1027507

Publishers page:

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Numerical Methods for Beautification of Reverse Engineered Geometric Models

F. C. Langbein A. D. Marshall R. R. Martin

Department of Computer Science, Cardiff University
PO Box 916, 5 The Parade, Cardiff, CF24 3XF, UK

{F.C.Langbein,A.D.Marshall,R.R.Martin}@cs.cf.ac.uk

Abstract

Boundary representation models reconstructed from 3D
range data suffer from various inaccuracies caused by noise
in the data and the model building software. The quality of
such models can be improved in a beautification step, which
finds geometric regularities approximately present in the
model and tries to impose a consistent subset of these reg-
ularities on the model. A framework for beautification and
numerical methods to select and solve a consistent set of
constraints deduced from a set of regularities are presented.
For the initial selection of consistent regularities likely to
be part of the model’s ideal design priorities, and rules in-
dicating simple inconsistencies between the regularities are
employed. By adding regularities consecutively to an equa-
tion system and trying to solve it using quasi-Newton op-
timization methods, inconsistencies and redundancies are
detected. The results of experiments are encouraging and
show potential for an expansion of the methods based on
degree of freedom analysis.
Keywords: Reverse Engineering; Beautification; Geomet-
ric Constraints; Numerical Constraint Solver.

1. Introduction

Reverse engineering a physical object is the extraction of
information from the object that is sufficient for a particu-
lar purpose like reproduction or redesign. For an overview
see [18]. Our aim is to reconstruct a boundary representa-
tion (B-rep) model of an engineering part from 3D range
data, which has the desired geometric properties present
in the original, ideal design. Our ultimate goal is an au-
tomated, intelligent 3D scanning system suitable for naive
users and non-engineering applications as well as engineers.

In this paper we consider engineering parts with only
planar, spherical, cylindrical, conical and toroidal surfaces
that either intersect at sharp edges or are connected by fixed
radius rolling ball blends. The blends are treated separately,
and are ignored in the rest of this paper. Valid B-rep mod-

els approximating these objects, referred to as initial mod-
els, can be generated by current reverse engineering sys-
tems [2]. However, the generated models suffer from var-
ious inaccuracies created by sensing errors arising in the
data acquisition phase as well as approximation and nu-
merical errors in the reconstruction process. Improving the
precision of the sensing techniques and the reconstruction
methods may reduce the errors, but some errors will always
remain. As our intention is to create an ideal model for a
physical object, we also have to consider additional errors
introduced by possible wear of the object and the particu-
lar manufacturing method used to make it. To ensure that
certain intended geometric regularities, like aligned cylin-
der axes or orthogonal planes, are present, they have to be
enforced at some stage of the reverse engineering process.

Previous approaches augment the surface fitting step by
constraint solving methods [1, 19] such that, for instance,
two planes are fitted simultaneously under the constraint
that they are orthogonal. Another approach is to identify
features like slots and pockets whose approximate location
and type are provided by a human and use these to drive the
segmentation and surface fitting phase [17].

We propose to improve the initial model in a separate
post-processing step which we call beautification. Improv-
ing the model without further reference to the point data
avoids the computational expense of constrained fitting.
In [8, 9, 10] we presented various methods to find regulari-
ties approximately present in the initial model. This meth-
ods create a large set of potential regularities, which are not
all likely to be consistent with each other. Ideally we wish
to enforce a consistent subset of these regularities on the
initial model which describes the ideal design of the model.

Numerical methods to select and solve a set of consistent
geometric constraints to rebuild an improved B-rep model
are presented. We start by summarizing the regularities con-
sidered and how they are expressed as constraints. For a
general overview of geometric constraint topics see [4]. The
regularities are prioritized according to the likelihood of the
presence of the specific regularity types and the accuracy to
which they are already satisfied in the initial model. The

priority is used to decide which regularities should be re-
moved in case of inconsistencies. Furthermore, we detect
simple inconsistencies between the constraints to determine
selection rules, and select an initial set of regularities which
satisfies these rules to reduce the number of inconsistencies.

To detect inconsistencies we add the regularities one at
a time to the system according to the priority and also con-
sider dependencies on other regularities. We solve the sys-
tem by minimizing the error of the constraints for the reg-
ularities in a least-squares sense employing quasi-Newton
optimization methods. If the system cannot be solved the
newly added regularity is rejected together with any regu-
larities dependent on it. Note that if there are rules indicat-
ing inconsistencies involving the rejected regularity we may
be able to consider previously deselected regularities.

The presented approach is our general framework for
beautification. Experiments show that the methods succeed
in selecting and solving a constraint system suitable for im-
proving models with simple inconsistencies and little inter-
action between major regularities. While these results are
encouraging the algorithm is rather slow due to the large
number of regularities involved. To address this and derive
a practical method for beautification we propose modifica-
tions of the presented methods to improve the speed of the
algorithm and handle more complex cases.

2. Regularities and geometric constraints

We describe the structure of the model and the potential
regularities detected in the initial model in terms of geomet-
ric constraints. As a single regularity usually requires multi-
ple geometric constraints we create a constraint set for each
regularity. The sets can only be added or rejected as a whole
in the selection process and we identify them with the reg-
ularities in the following. We also have required constraints
describing dependencies and the topology of the model. As
we do not consider topological changes they always have to
be part of the constraint system.

The constraints are handled as relations between geomet-
ric objects. The objects are described by a type and a set of
appropriate directional, positional, length and angular fea-
tures represented as scalars and 3D vectors. There are basic
features required to describe the object and extended fea-
tures dependent on other features for additional properties
as listed in Table 1. Root points for planes are created by
taking the average of polygonal edge loops of planar faces.
Furthermore, auxiliary objects (planes, cylinders, lines, di-
rections, positions, lengths, angles) are used to express cer-
tain regularities with simple constraints.

The geometric constraints are represented as equations
listed in Table 2. We require all direction vectors to be nor-
malized. Distance and angle constraints use either a con-
stant value, or a variable length or angle feature. They in-

Geometric Object Basic Features;
Extended Features

Plane Position, direction;
Polygonal loop root points

Sphere Position, radius
Cone Position, direction, semi-angle
Cylinder Position, direction, radius
Torus Position, direction, major radius,

minor radius;
Radii sum, radii difference

Straight Position, direction;
Length

Circle Position, direction, radius;
Circle segment angle

Ellipse Position, direction, major direc-
tion, major radius, minor radius

Vertex Position
Auxiliary line Position, direction
Auxiliary plane Position, direction
Auxiliary cylinder Position, direction, radius
Auxiliary position Position
Auxiliary direction Direction
Auxiliary angle Angle
Auxiliary length Length

Table 1.Geometric objects and their features.

clude equality, parallelism and orthogonality. The linear re-
lations between angles or lengths also include equality.

To enforce necessary dependencies between the base and
extended features, and the topology of the model, we create
various required constraints which must always be part of
the constraint system. Feature dependencies include con-
straints setting the loop root points to be the average of the
vertices in the loop, the length of a straight line to be the
distance between the end-points, the circle segment angle
to be the angle described by the centre and two vertices on
the circle (which can be expressed as the angle between two
auxiliary lines defined by the two position pairs), the major
direction of an ellipse to be orthogonal to the ellipse plane
normal, and appropriate constraints for the radii sum and
difference of tori. Furthermore, for each direction we add a
constraint normalizing its 3D vector.

For the topology of the model we add constraints requir-
ing each vertex to lie on appropriate edges and faces. This
does not fully specify the relation between adjacent faces.
These relations are determined exactly by the regularities,
e.g. constraining a cylinder axis to be parallel to a plane
normal. As the regularity detection phase considers all pos-
sible relations between face features, and suggests multiple
options for special relations, the relations between adjacent
faces are part of the regularities. Furthermore, in order to
solve the constraint system we consider the edges in the

dtd = 1 Normalize direction d.
d1

td2 = cos(α) Angle between normalized directions
d1, d2 is constant or variable angle α.

‖p1 − p2‖ = λ Distance between positions p1, p2 is
constant length λ.

‖p1 − p2‖ = νl Distance between positions p1, p2 is
constant multiple ν of length l.

p = 1/n

n
∑

k=1

pk p is average position of n positions
p1, . . . , pn.

∑

k αksk = 0 Linear relation between lengths or an-
gles sk with constants αk.

s = α Constant value α for length or an-
gle s.

p ∈ O Position p on geometric object O.

Table 2. Geometric constraints.

model as independent of the intersection between adjacent
faces. They become auxiliary objects used to express cer-
tain regularities. When rebuilding the model all intersec-
tions are recomputed. Note that it is possible to add ad-
ditional positions to describe the topology, especially for
cases where there are no natural vertices. In the following
we assume that constraints for the necessary relations be-
tween the features and the topology are always included in
the constraint system.

In [9, 10] we presented various methods to detect local
regularities of reverse engineered geometric models. These
regularities are defined in terms of similarities between fea-
tures derived from the B-rep model elements, and special
values for these features. Besides directional, positional,
length and angle features, we also use derived features such
as axes (a position, direction pair). Similarities between fea-
tures are expressed as cluster hierarchies where each cluster
represents a regularity. Using the clusters we seek regular
arrangements of the features. Instead of setting maximum
tolerances we only use two tolerances setting the minimum
value when two angles or lengths should be considered as
potentially different [8]. For instance, we look for approx-
imately equal lengths by creating a cluster hierarchy, and
also try to find possible special values, like an integer, close
to the average length in each cluster. The hierarchies are
truncated by detecting a large jump in the tolerance values
between the clusters.

The regularities with the priorities (see Section 3) are
listed in Table 3. Each regularity is described by a constraint
set. For the hierarchies the regularities are arranged in a
tree, where a regularity can only be added to the constraint
system if its children are also present. Furthermore, we add
dependencies requiring other regularities to be present be-
fore we can add a particular one, e.g. requiring a parallel
direction regularity to be present before a corresponding

aligned axes regularity is added.
We have separate regularity hierarchies for parallel di-

rections, equal positions, and equal length and angle pa-
rameters. For each cluster of similar features we create a
corresponding auxiliary object and constrain the features in
the set to be equal to this object. To handle the hierarchies
we constrain the auxiliary object of the children to be equal
to the auxiliary object of the parent.

In order to handle regularities for axes of planes (created
by the plane normal and loop root points), cones, cylinders,
tori, circles and ellipses we create auxiliary lines. These are
required to be parallel to the direction of the object and the
corresponding position of the object has to lie on the line.

Aligned axes are also represented as clusters describing
the distances between the axes with respect to a suitable
parallel direction cluster. For each cluster we create an aux-
iliary line and require that the positions of the axes in the
cluster lie on this line. To represent the hierarchy we add an
equal-position and a parallel-direction constraint per child
requiring that the auxiliary line of the child is equal to the
auxiliary line of its parent. The regularities are also marked
as dependent on the parallel direction regularity.

For each cluster of axis intersections we create an auxil-
iary position and constrain it to lie on all axes in the cluster.
For the hierarchy we constrain the auxiliary positions of the
children to be equal to the parent’s auxiliary position.

Furthermore, we have cluster hierarchies of equal po-
sitions when projected onto special planes (2D partially
equal) and lines (1D partially equal). The special plane and
lines are derived from major directions in the model such
as main axes and orthogonal systems. Positions which are
equal when projected on a plane lie on the same line. Hence,
we create an auxiliary line for each cluster and constrain the
positions in the cluster to lie on this line. To express the hi-
erarchy we require the lines of the children to be incident
to the lines of the parent. Positions equal when projected
on a line lie in the same plane. Thus, we create a similar
structure using auxiliary planes. Both types of regularities
are marked as dependent on the parallel direction regularity
for the projection direction.

We also consider regular arrangements of parallel axes
on grids, equidistant arrangements on lines and (partially)
symmetrical arrangements on cylinders. We mark each of
these non-hierarchical regularities as dependent on the reg-
ularity requiring the axes to be parallel. For a symmetrical
arrangement on a cylinder we create an auxiliary cylinder
and require that the positions of the axes lie on that cylin-
der and their directions are parallel to the cylinder direc-
tion. For each of the symmetrically arranged axis locations
on the cylinder we create an auxiliary plane with a normal
constrained to be orthogonal to the cylinder axis. The an-
gles between these planes are set to an appropriate integer
multiple of 2π/n. To enforce the symmetrical arrangement,

the positions of the axes are constrained to lie on one of
these planes. For each of the special value regularity for the
cylinder radius we create a separate special value constraint.

For axes equally spaced along a line we create an aux-
iliary line, a plane p0 with a normal orthogonal to this line
and the direction of the parallel axes, and auxiliary planes
qk orthogonal to this line where the distances between them
are integer multiples of some variable length feature. The
axes are constrained to lie on p0 and an appropriate ql. For
axes arranged on a grid we create a second auxiliary line
and replace the single plane p0 by planes pk arranged in the
same way as the qk on the first line. Each axis is required to
lie on a plane pair ql, pk. Similarly to the auxiliary cylinder
radii we have separate regularities each specifying a spe-
cial value for the length feature indicating the base distance
between the planes along the line.

We distinguish planar and conical cases of symmetri-
cally arranged directions. In the first case we have a set
of directions orthogonal to a direction d0 and the angles be-
tween the directions are integer multiples of π/n for n ∈ N.
In the second case the angle to the direction d0 has some
other value and the angles between the directions projected
on the plane defined by d0 are integer multiples of 2π/n.
To create the constraints for the planar case we create two
orthogonal auxiliary directions d0, d1. For each direction
in the set we add a constraint requiring it to be orthogonal
to d0 and with angle to d1 being a suitable integer multiple
of π/n. In the conical case we have a list of possible spe-
cial values for the angle between the directions and d0. For
each of the special values we create a regularity specifying
the angles between the directions and d0 and d1. Note that
an orthogonal system is a special case of the conical case.

Furthermore, we also have lists of special values for an-
gles between individual directions. For each special value
and direction pair we create a separate constraint.

Finally there are regularities specifying special ratios be-
tween pairs of angle or length features and special values for
these features. We create appropriate linear relations and
constant value constraints.

3. Prioritizing regularities

As we expect to have inconsistent regularities, a mecha-
nism is required to select regularities which are more likely
part of the model’s ideal design. We base the selection on a
priority induced by a merit function. Note that the decision
about which regularities to choose is non-trivial and often
there is more than one choice.

To compute the priority w(r) of a regularity r we take a
weighted average of a measure we(r) of the numerical ac-
curacy to which the regularity’s constraints are satisfied in
the initial model, a merit wq(r) for the quality or desirabil-
ity of the regularity depending on specific arrangements and

constants involved, and a constant wb(r) describing a min-
imum desirability for each regularity type. This average is
weighted by a constant wc(r) indicating how common the
regularity is. We get

w(r) = wc(r) (cewe(r) + cqwq(r) + cbwb(r)) (1)

where all constants and functions are in [0, 1] and cq + ce +
cb = 1, e.g. ce = 3/6, cq = 2/6, cb = 1/6. The maximum
of w(r) is wc(r) and the minimum is wc(r)wb(r)cb.

For we(r) we combine the average angular error er in
radians and the average length error el of the regularity’s
constraints. we should be close to 1 for small errors and
drop quickly towards 0 when the errors become too large.
By converting the angular error to length units using the
maximum length Lm in the model we have

we(r) =
1

1 + cl(Lm sin(er) + el)
(2)

where cl is a user-defined constant indicating the base
length unit for the model, e.g. cl = 1.

wq(r) describes the desirability or quality of the regu-
larity if it could be enforced exactly on the model by con-
sidering the regularity type and geometric objects, their ar-
rangement and special values involved. We first define some
quality factors used to compute wq(r).

All the special values involved in the regularities have
the form v = ±(n/m)1/(r+1)b with integers n, m, and r
and some base value b like π or 1. We evaluate the quality
of special values using the function

wsv(m, r, b) =
3q(b)

3 + c0l + c1

(

m
MK − 1

)

+ c2r
(3)

where q(b) is a constant in [0, 1] evaluating the desirabil-
ity of the base value b (e.g. q(π) = 1, q(π/180) = 0.8,
q(1) = 1, . . .), M is the base used to represent m (usu-
ally 10), l is one less than the number of digits required to
represent m in the base M , and K is the number of consec-
utive zeros in the representation of m in the base M starting
with the lowest valued digit. c0 is a constant indicating the
importance of the length of the representation of m, c1 is a
constant indicating the importance of the non-zero part of m
and c2 indicates the importance of the root r, e.g. c0 = 0.01,
c2 = 0.005, c3 = 0.7. wsv favours special values with a
small non-zero part m/MK , small roots r and short repre-
sentations in the base M .

Another quality factor is the number n(X) in a set X of
B-rep model elements involved in the regularity which have
a common boundary element. It is computed as

wa(X, p) = exp (−(cw(p|X| − n(X)))cp) (4)

with user-defined constants cw and cp (e.g. cw = 0.11,
cp = 4) where the parameter p indicates the most desir-
able number of adjacent objects. We get high priorities for

Regularity r wc(r) wb(r) wq(r)
Parallel directions 1.00 1.00 0.8wsv(0, 1, π) + 0.2wt(O)
Symmetric directions (planar) 1.00 1.00 0.2wsv(2, 1, π) + 0.3wa(F, 1) + 0.1wt(O) + 0.4wra(r)
Symmetric directions (conical) 0.90 0.70 0.3wsv(m, r, b) + 0.3wa(F, 1) + 0.1wt(O) + 0.3wra(r)
Orthogonal system 1.00 1.00 0.6 + 0.3wa(F, 1) + 0.1wt(O)
Special angle between directions 0.90 0.60 0.8wsv(m, r, 1) + 0.2wa(0, 0.5)
Equal positions 0.80 0.55 wt(O)
2D partially equal positions 0.85 0.65 0.5wa(V, 0.5) + 0.5wt(O)
1D partially equal positions 0.83 0.60 0.5wa(V, 0.5) + 0.5wt(O)
Aligned axes 0.97 0.85 wt(O)
Axis intersections 0.90 0.80 0.1wa(F, 1) + 0.9wt(O)
Axes regularly on grid 0.90 0.85 0.3wt(O) + 0.7wra(r)
Axes equispaced on line 0.88 0.75 0.2wt(O) + 0.8wra(r)
Axes symmetrically on cylinder 0.95 0.90 0.3wt(O) + 0.7wra(r)
Equal lengths/angles 0.90 0.75 wt(O)
Special ratio between lengths/angles 0.80 0.55 wsv(m, r, 1)
Special values for lengths/angles 0.85 0.70 wsv(m, r, b)

Table 3. Regularity priorities.

adjacent arrangements close to the desirable arrangement
indicated by p. We can set X to the set of faces F which
should share common edges, the set of vertices V which
should be connected by edges or all geometric elements O
which should have a common boundary element. p is 1 if
we desire arrangements of the elements in loops and 0.5 if
we desire adjacent pairs.

For regular arrangements of directions or axes we have
a base distance which is a special value (n/m)b. For sym-
metrically arranged directions and axes on a cylinder with
base angle π/m we have 2m different positions and for
axes on a line we count the number of positions between
the first and the last occupied position. We prefer arrange-
ments for which most of the possible positions are occu-
pied. If all consecutive positions are occupied the quality
factor wra(r) for this arrangement is wsv(m, 1, b). Oth-
erwise we have a list of smallest integers k for which all
positions (starting with an arbitrary position) with the dis-
tance k(n/m)b between them are occupied. For each k we
add m/(kn)wsv(m/ gcd(m, kn), 1, b) to wra. For axes ar-
ranged regularly on a grid we have two orthogonal direc-
tions. For each of the directions we can project the occupied
positions in the grid on a line and handle the line like equi-
spaced axes along a line. The sum of the quality for both
lines gives the quality of the grid arrangement.

We also count the number c(t) of geometric objects of
the same type t involved in a regularity for the geometric
objects O and compute the quality

wt(O) =
1

|O|

∑

t∈ObjectTypes

c(t) exp
(

−(tw(|O| − c(t)))tp
)

(5)

with constants tw and tp, e.g. tw = 0.05, tp = 2.

Depending on the regularity type we select appropri-
ate quality factors and compute their weighted average.
E.g. for parallel directions we mainly consider the quality
wsv(0, 1, π) of the parallel angle, but also prefer regular-
ities with objects of the same geometric type. For planar
symmetrically arranged directions, we put the main empha-
sis on the number of occupied positions and faces arranged
in a loop as computed by wra(r) and wa(F, 1), but also
consider the special angle value for the planar arrangement
and the geometric types involved.

Table 3 lists the constants for wc and wb, and the way
wq is computed for the regularity types. wq , wc and wb

were derived from a part survey estimating the frequency
of regularities in simple mechanical components [15]. The
constants were in addition refined by the authors to adjust
the priority order of regularities in various example models.
Users may adjust these values depending on a particular ap-
plication or personal preference.

While the ordering can be adjusted by changing the con-
stants, the rather large number of constants makes it hard to
predict the effect of the changes for a user who is not aware
of the internal relations. A method which could choose the
priority depending on a few multiple-choice questions pre-
sented to a user might improve this. Alternatively we might
use neural networks to compute the priorities or use a belief
network to make a decision about which of the inconsistent
regularities to include.

4. Initial constraint selection and rules

The first stage of constraint processing attempts to re-
solve certain simple inconsistencies between the regulari-
ties. There are obvious inconsistencies between sets of reg-

ularities of the same type involving the same geometric ob-
jects but with different special values. These and similar in-
consistencies can easily be detected and eliminated before
we attempt to solve the system. Note that not all inconsis-
tencies can be removed in this way as there are more com-
plicated dependencies induced by multiple regularities be-
tween different geometric objects. As our regularities often
specify multiple potential relations between the same ge-
ometric objects, eliminating simple inconsistencies reduces
the number of constraint systems we have to check for solv-
ability and thus speeds up the algorithm.

By traversing the list of constraints from all regularities
we detect sets of constraints between the same geometric
objects. We first note constraints between the same geomet-
ric objects with the same constants involved to avoid adding
the same constraints more than once to the system. Further
we detect regularities associated with constraints between
the same objects with different constants as these cannot be
added at the same time. For this we create a rule indicating
that only one of the contradictory regularities can be added
at the same time.

Further inconsistencies arise from incidence constraints.
We expand the inconsistency check by considering these in-
cidences when checking if the constraints involve the same
geometric objects. This creates rules with a condition that
the rule only applies if the incidence constraints are present.
We get conditional rules of the form that if certain regu-
larities are part of the constraint system then other combi-
nations of regularities cannot be part of it. In the current
implementation we only consider incidences described by a
single regularity.

Regularities which are part of the currently selected con-
straint system are marked active, and the others are marked
inactive. The rules from the inconsistency detection stage
can in general be expressed as selection rules which involve
two sets of regularities R1, R2 and two non-negative inte-
gers n1, n2. A rule is violated if more than nl elements of
Rl are active for all l = 1, 2 for which Rl 6= ∅. One in-
terpretation of this is, that if at least n1 + 1 elements of R1

are active, then at most n2 elements of R2 are allowed to
be active. In this form R1 and n1 represent the condition,
which is derived from the incidence constraints, and R2 and
n2 represent the regularities creating the inconsistency un-
der this condition. Note that if R1 = ∅ and n1 = 0 we have
an unconditional rule.

Initially all regularities are marked as active. The rules
are enforced one at a time by calling Algorithm 1. The
method is called for each rule r with D = ∅. The algorithm
adjusts the selection status of the regularities such that in
addition to the already enforced rules the new rule is also
satisfied and the regularities with the highest priorities are
active. For this we have to consider deactivating regulari-
ties in R1 or R2 to enforce the new rule r (step I). In case

Method enforce (r,D): Enforce rule r with the regular-
ity sets R1, R2 and integers n1, n2 on the constraint system
without activating any of the regularities in the set D.

I. Deactivate regularities in Rl to satisfy r, if there are
more than nl active regularities in Rl for all l = 1, 2
for which Rl 6= ∅ and note the deactivated regularities
in d:

1. For l = 1, 2 find all active sets Al in Rl and re-
move the nl elements with the highest priority.

2. Find the set Al0 with the smallest largest priority.
3. Call deactivate(c, d) for all c ∈ Al0 .

II. Find a set X of regularities which may be activated due
to the deactivations by checking for each c ∈ d and for
each previously enforced rule e:

1. If before step I for e there were at least n1 + 1
active elements in R1 and now there are less or
R1 is empty and there were n2 active elements in
R2 and now there are less, add all inactive regu-
larities from R2 to X .

2. If before step I for e there were at least n2 + 1
active elements in R2 and now there are less or
R2 is empty and there were n1 active elements in
R1 and now there are less, add all inactive regu-
larities from R1 to X .

III. D = D ∪ d.
IV. Try to activate all regularities in X:

1. Recursively add all inactive children and depen-
dent regularities of the elements in X to X and
remove those which are in D (including those
which depend on them).

2. In order of priority call active(c,X) for each
element c of X .

V. Call enforce(r,D) for all already enforced rules r
which may be affected by the activations in IV.

Algorithm 1. Enforce a selection rule.

of a violation of a rule we have to deactivate elements in
one of the Rl such that at most nl elements are still active.
Let Al be the set of elements we would have to deactivate
in Rl to satisfy the rule and wl be the largest priority in Al.
Then we choose to deactivate the set with the smallest wl.
This way we keep regularities with larger priorities active
rather then trying to maximize the priority sum of all active
regularities. Note that the priorities have been designed to
compare regularities in case of an inconsistency, but not for
a global desirability. Alternative selections are possible, but
also make it harder to influence the selection by adjusting
the constants for the priorities.

The deactivations may allow the activation of other reg-
ularities as it may reduce the number of active elements in
an Rl set of another, already enforced rule (step II and IV).
If we activated any other regularity we have to check al-

ready enforced rules involving these regularities (step IV).
To avoid activating and deactivating regularities over and
over again in the recursive calls of enforce we keep a set
of deactivated regularities and do not allow any of them to
become active again during the recursion. Note that this set
is reset to ∅ for each initial call of enforce for each rule.

The function deactivate(c, d) used in enforce de-
activates a regularity c and adds it to the set d. It also deac-
tivates any regularities depending on it recursively (its par-
ents in the hierarchy and those explicitly marked as depen-
dent) and adds them to d.

The function activate(c,X) tries to activate a regu-
larity c with the option that the regularities in the set X may
also be activated. It first checks if the regularities on which
c depends are active. If one is inactive and in X , it removes
it from X and tries to activate it calling activate recur-
sively. If not all dependencies are active or can be activated,
c cannot be activated. Furthermore, for all already enforced
rules involving c we check if c can be activated. Assume c
is an element of R2 and more than n1 elements of R1 are
active or R1 is empty. In order of highest to lowest priority,
the inactive regularities in R2 which are in X are removed
from X and we try to activate them recursively as long as
less than n2 elements of R2 are active or c is next in the
order (which means the rule allows the activation of c). We
handle the case where c is an element of R1 similarly. If all
the rules involved allow the activation of c, c is activated.
Any previously enforced rule for which the activation of c
caused exactly nl + 1 elements of Rl to be active for either
l = 1 or l = 2 is added to the set of rules which have to be
checked in step V of Algorithm 1.

For instance, assume that we have four regularities A, B,
C, D which are all marked active and for which w(A) <
w(B) < w(C) < w(D). First we add a rule with R1 = ∅,
n1 = 0, R2 = {A,B}, n2 = 1, i.e. either A or B, not both,
can be active. enforce deactivates A due to the lower
priority. We add a second rule with R1 = {B}, n1 = 0,
R2 = {C,D}, n2 = 1, i.e. if B is active, then either C or
D, not both, can be active. We deactivate B in this case.
This influences the selection for the first rule and we can
activate A again. Finally we enforce a third rule with R1 =
{B,D}, n1 = 0, R2 = {A,C}, n2 = 1, i.e. if either B
or D is active, then either A or C, not both, can be active.
We deactivate A to satisfy the rule, leaving only C and D
active. Considering the first rule we have to check if B
can be activated due to the deactivation of A. Activate
initially succeeds in this, but the recursive check deactivates
B again due to the second rule.

5. Numerical constraint solver

We employ numerical optimization methods to solve the
constraint system [5]. After the initial regularity selection

we solve the system using quasi-Newton methods minimiz-
ing the least-squares error of the constraints from Table 2.
The main problem is to resolve all inconsistencies to get
a solution satisfying the selected regularities exactly and
eliminate redundancies to avoid numerical problems.

For quasi-Newton methods [3, 14, 16] we have a choice
for the linear search method and for the approximation
method for the Hessian matrix of the second partial deriva-
tives. For the line-search method we considered Goldstein-
Armijo and PWS [16]. While both methods perform well,
PWS is more stable and more suitable for the BFGS quasi-
Newton update. For the Hessian the BFGS update is a
widely used and suitable method. Instead of the simple
BFGS iteration formula we use a formula based on the
Cholesky decomposition of the Hessian matrix with a con-
dition guard initiating restarts of the iteration [16]. Further
improvements to numerical stability, especially for incon-
sistent cases, were achieved by using a damped version of
the BFGS method [11]. Using a hybrid method switching
between BFGS and a Gauss-Newton step improved the con-
vergence rates and still performed reasonably well with re-
spect to numerical stability [14].

A very simple approach to solving the constraint system
would be to find the minimum of the least-squares error.
If the selected constraints do not contain any inconsisten-
cies this performs well. However, when inconsistencies are
present the solution does not exactly satisfy any constraints
dependent on the inconsistencies, and sometimes the new
model is worse than the initial model, as the optimization
distributes the error over the constraints. One improvement
is to use a weighted least-squares error function where the
weights are the priorities of regularities. In order for the
weights to work well, the errors of all constraints must be
in the same error units. This approach causes the constraint
equations to become more complicated which slows down
the optimization method and also reduces the numerical sta-
bility. While the results are biased towards constraints with
larger weights, the constraints are still not satisfied exactly
as there is still some disturbance from inconsistent con-
straints with smaller weights. In order to satisfy the con-
straints exactly the inconsistencies have to be eliminated.

5.1. Detecting numerical inconsistencies

To detect numerical inconsistencies we add the regular-
ities to the system one at a time in order of priority, and
check if the optimization method still finds a solution. If
so, the regularity did not introduce a (numerical) incon-
sistency and remains active. Otherwise, we permanently
deactivate the regularity (and all regularities depending on
it) and check if we can activate additional regularities due
to the deactivation. Note that the required constraints dis-
cussed in Section 2 are always part of the constraint system.

Method solve(C, x0, R): Find a solvable subset of the
regularities in C and solve the constraint system it de-
scribes. x0 is the vector of feature values derived from the
initial model. R is a set of the required constraints and rules
indicating when to use them.

I. Add the topological constraints in R to the set of ac-
cepted constraints S and set vector x to the values of
features used by the constraints in S.

II. While C contains active regularities:
1. Remove the active element c from C with the

highest priority for which all constraints it de-
pends on are in S.

2. S1 = S ∪ {c} ∪ R(c), where R(c) are the con-
straints from R required by c and set x1 to the
values in x and expand it if new features are
added using the values from x0.

3. Solve x1 = arg minz f(z) with the initial value
x1 and the least-squares error function f for C1

also considering redundancies.
4. If f(x1) ≈ 0, set S to S1 and x to x1.
5. Otherwise, mark c and its dependants as per-

manently removed and check if we can activate
other regularities in C.

Algorithm 2. Select a consistent constraint
system and solve it.

When adding the regularities one at a time we have to
consider the dependencies between them in addition to the
priorities. We add the regularity with the highest priority for
which all dependencies are already part of the system. This
can be implemented efficiently using a priority queue.

Algorithm 2 is the consistent constraint selection and
solving method. It is called with all regularities C marked
as active or inactive according to the initial selection. The
vector x0 contains the values for all features involved in the
constraint system based on the values in the initial model.
When creating the constraint system only some of these val-
ues are actually part of it and we choose an appropriate sub-
set of them to form the vector x. In addition we have a set of
required constraints R. Most of these constraints describe
the topology of the initial model and are always present in
the selected constraint system S (step I). Some required
constraints are only added if certain features or auxiliary
objects are in S, e.g. we only normalize a direction if it is
involved in some other constraint as well.

In step II.3, when consecutively testing regularities, we
also check for redundant constraints which could make the
system numerically unstable. A redundant constraint is one
which can be added to the constraint system without chang-
ing the set of solutions. To identify numerical redundancies
we use the method described in [13]. When a new constraint
in {c} ∪ R(c) is already exactly satisfied by the current so-

lution the constraint may be redundant. In this case we dis-
turb the constant values involved in the constraint and try to
solve the system with the modified values. If the system re-
mains solvable, the constraint is not redundant. Otherwise,
the constraint is redundant and is not added to the constraint
system, but remains active. We first check for redundancy
and then try to solve the system with the original constants
adding all new, non-redundant constraints.

The test if additional regularities can be activated in case
a constraint was permanently disabled in step II.5 is similar
to steps II – V of Algorithm 1 where d consists only of a
single element.

Algorithm 2 selects a numerically consistent constraint
system. Only inconsistencies which cause an overall least-
squares error larger than the tolerance used in step II.4 for
the convergence test are detected. With appropriate param-
eters for the optimization method such that it always con-
verges, no consistent regularities are removed.

6. Examples

We have tested the methods above using various reverse
engineered models with the priority constants given in Sec-
tion 3. In the following we summarize the results using the
models shown in Figure 1 which also lists the number of
regularities (including all clusters and special values) and
the derived constraints in total detected in the initial model,
and those initially selected and accepted for the final sys-
tem.

The parallel and orthogonal relations between the planes
of the cube (model (a)) were favoured by the priorities com-
pared to all other angles only close to 0 or π/2. Hence,
they were added first to the constraint system. Other poten-
tial regularities of (a) relate to equal edge lengths and spe-
cial values for these lengths. As the priority mixed equal-
length and special values the resulting object had only ap-
proximately equal edge lengths. By adjusting the priori-
ties in favour of equal-lengths and wq rather than we all the
equal-length regularities were accepted. The selected spe-
cial value for the edge length was correctly set to 2.0. But
note that if the desired value were only close to 2.0, it is
still likely that the improved model would have an exact
edge length of 2.0.

Model (b) has two symmetrically arranged, planar direc-
tion sets based on the angle π/4. Together with the orthogo-
nal relation between the symmetrically arranged planes and
the blue planes these regularities have the highest priority
and were hence imposed exactly on the model. For the edge
lengths there were similar problems as for the cube. Even
by adjusting the priorities, only the group of short edges
could be forced to have the same length. The values in the
other two groups of lengths were close to each other, but dif-
ferent special values were favoured. Special ratios between

(a) (b) (c)
Reg. Cons. Reg. Cons. Reg. Cons.

Total 89 261 382 1808 216 1263
Initial Selection 34 156 263 1384 156 910

Final System 23 132 117 712 93 586

Figure 1. Example models with number of regularities/constraints at different stages.

these values also supported undesired values. The redun-
dancy and inconsistency checks correctly determined that
only one angle between the groups of red and blue planes
can be set. Choosing its value resulted in problems similar
to the special length values.

In model (c) the green planes are arranged symmetrically
in a plane and the red cylinders are arranged symmetrically
on a cone. Due to the high priorities of these regularities
they were imposed first together with the orthogonality re-
lations. The edge lengths and the angle for the conical ar-
rangement had the same problems as for models (a) and
(b). In addition in this case we had no regularity specify-
ing a direct relation between the group of cylinders and the
planes. Hence, there was a small angle between the cylin-
der directions and the plane normals when projected in the
same plane. The edge length regularities and the topological
constraints avoided that this relation changed the topology
or even broke the model, however.

The tests show that major regularities, independent of
other major regularities, are easily identified and imposed
on the model. Yet specific instances of each model relat-
ing to special values for lengths and angles cannot be guar-
anteed. In general there is always a choice between high
quality regularities and relations close to those in the initial
model. For a more consistent choice the decision method
would have to consider the global structure of the model.
Furthermore, there may be hidden relations in the model
which are broken if they are not detected explicitly as a reg-
ularity.

A major problem is the running time of the algorithm.
On a single AMD Athlon MP 1200MHz with 512MB run-
ning GNU/Linux the algorithm took about 2 hours for ob-
ject (a), 25 hours for object (b) and 23 hours for object (c).
This is due to the large number of redundant and inconsis-
tent constraints caused either by ambiguities or by larger
errors, especially for objects (b) and (c). For each of these

regularities the algorithm tries to solve the complete system
even if no further regularities can be added. At about half
the running time only redundant and inconsistent regulari-
ties were left.

To reduce the number of regularities which have to be
checked we filtered the regularities by setting lower lim-
its for the priorities and the constraint errors in the initial
model. This reduced the time for object (a) to about 10 min-
utes and about 10 hours were required for object (b) and (c).
More detailed interactive selection of constraints could re-
duce the time further. This, however, requires a lot of user
interaction and specific interactive selection of constraints,
which is already quite complex for objects (b) and (c) and
also not our goal as we aim for minimal high-level user in-
teraction.

Most of the time the algorithm requires is spent on solv-
ing the constraint system. As most of the regularities are ap-
proximately present in the model they only cause relatively
small errors. For the optimization methods this means we
have to use a strict convergence test and take a relatively
small step in each iteration to avoid accepting or rejecting
regularities due to numerical instabilities. This combined
with the large number of constraint systems which have to
be checked is the main cause for the long time required.

7. Structural inconsistencies

To improve the algorithm we require a fast solvabil-
ity test when adding a new regularity. We seek a method
which could indicate inconsistencies without solving the
system. Furthermore, we would like to identify solvable
sub-systems, which once a solution for the sub-system has
been found can be replaced by a single rigid object such that
the remaining constraint system becomes simpler. Degree-
of-freedom (dof) analysis methods as, for instance, de-
scribed in [6, 7, 12] address this problem. They detect struc-

tural inconsistencies and redundancies in a constraint graph
derived from the constraint system without solving the sys-
tem. They also identify solvable sub-systems which can be
solved numerically.

Ways to include these methods are currently under in-
vestigation by the authors. We intend to replace step II.3 in
Algorithm 2 by a dof analysis which only calls the numeri-
cal solver if a solvable sub-system has been found. As not
all inconsistencies can be detected by a dof analysis a nu-
merical solvability test is still required, but it is not required
to call it for each regularity.

8. Conclusions

We have presented a method using some simple geo-
metric reasoning and a numerical constraint solver to se-
lect a consistent constraint system from a large set of auto-
matically generated constraints describing desired geomet-
ric regularities of a reverse engineered geometric model.
Weakly related major regularities of simple models can be
identified and imposed correctly on the model. However,
the large number of possible combinations of regularities
is the cause for slow performance of the method. The pre-
sented approach is our general framework for beautification.
For a practical system more sophisticated selection methods
and faster solvability tests are required.

In future work we will investigate methods to detect
structural inconsistencies in the constraint system and com-
bine this with the numerical methods. Furthermore, we will
consider topological changes to the model and alternative
methods for selecting the regularities in the presence of in-
consistencies.

Acknowledgements

This project is supported by the UK EPSRC Grant
GR/M78267. We would like to thank T. Várady and
P. Benkő from the Hungarian Academy of Sciences and
CADMUS Consulting and Development Ltd. for providing
reverse engineering software and helpful discussions.

References

[1] P. Benkő, G. Kós, T. Várady, L. Andor, R. R. Martin. Con-
strained fitting in reverse engineering. Computer–Aided Ge-
ometric Design, 19(3):173–205, 2002.

[2] P. Benkő, R. R. Martin, T. Várady. Algorithms for reverse
engineering boundary representation models. Computer-
Aided Design, 33(11):839–851, 2001.

[3] Å. Björk. Numerical Methods for Least Squares Problems.
SIAM, Philadelphia, 1996.

[4] B. Brüderlin, D. Roller. Geometric Constraint Solving and
Applications. Springer, Heidelberg, New York, 1998.

[5] J.-X. Ge, S.-C. Chou, X.-S. Gao. Geometric constraint sat-
isfaction using optimization methods. Computer–Aided De-
sign, 31:867–879, 1999.

[6] C. M. Hoffmann, A. Lomonosov, M. Sitharam. Decompo-
sition plans for geometric constraint systems, part I: per-
formance measures for CAD. J. Symbolic Computation,
31(4):367–408, 2001.

[7] C. M. Hoffmann, A. Lomonosov, M. Sitharam. Decompo-
sition plans for geometric constraint systems, part II: new
algorithms. J. Symbolic Computation, 31(4):409–427, 2001.

[8] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Martin.
Approximate geometric regularities. Int. J. Shape Modeling,
7(2):129–162, 2001.

[9] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Mar-
tin. Finding approximate shape regularities in reverse en-
gineered solid models bounded by simple surfaces. In
D. C. Anderson, K. Lee (eds.), Proc. 6th ACM Symp. Solid
Modelling and Applications, pp. 206–215. ACM Press, New
York, 2001.

[10] F. C. Langbein, B. I. Mills, A. D. Marshall, R. R. Mar-
tin. Recognizing geometric patterns for beautification of
reconstructed solid models. In Proc. Int. Conf. Shape Mod-
elling and Applications, Genova, Italy, 7–11 May, pp. 10–
19. IEEE Computer Society Press, Los Alamitos, CA, 2001.

[11] D.-H. Li, M. Fukushima. A modified BFGS method and its
global convergence in nonconvex minimization. J. Compu-
tational and Applied Mathematics, 129(1–2):15–35, 2001.

[12] Y.-T. Li, S.-M. Hu, J. G. Sun. A constructive approach to
solving 3D geometric constraint systems using dependence
analysis. Computer-Aided Design, 34(2):97–108, 2002.

[13] Y.-T. Li, S.-M. Hu, J.-G. Sun. On the numerical redun-
dancies of geometric constraint systems. In Proc. Pacific
Graphics, pp. 118–123. IEEE Computer Society Press, Los
Alamitos, CA, 2001.

[14] L. Luksan, E. Spedicato. Variable metric methods for uncon-
strained optimization and nonlinear least squares. J. Com-
putational and Applied Mathematics, 124:61–95, 2000.

[15] B. I. Mills, F. C. Langbein, A. D. Marshall, R. R. Mar-
tin. Estimate of frequencies of geometric regularities for
use in reverse engineering of simple mechanical compo-
nents. Technical Report GVG 2001–1, Geometry and Vi-
sion Group, Dept. of Computer Science, Cardiff Univer-
sity, 2001. <uri: http://ralph.cs.cf.ac.uk/
papers/Geometry/survey.pdf>.

[16] P. Spellucci. Numerische Verfahren der nichtlinearen Opti-
mierung. Birkhäuser, Basel, Boston, Berlin, 1993.

[17] W. B. Thompson, J. C. Owen, J. de St. Germain, S. R. Stark,
T. C. Henderson. Feature–based reverse engineering of
mechanical parts. IEEE Trans. Robotics and Automation,
15(1):57–66, 1999.

[18] T. Várady, R. R. Martin, J. Cox. Reverse engineering of ge-
ometric models – an introduction. Computer–Aided Design,
29(4):255–268, 1997.

[19] N. Werghi, R. Fisher, C. Robertson, A. Ashbrook. Ob-
ject reconstruction by incorporating geometric constraints in
reverse engineering. Computer–Aided Design, 31(6):363–
399, 1999.

