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Abstract

Cases of invasive group B streptococcal infection in the adult UK population have steadily increased over recent years, with the 
most common serotypes being V, III and Ia, but less is known of the genetic background of these strains. We have carried out 
in-depth analysis of the whole-genome sequences of 193 clinically important group B Streptococcus (GBS) isolates (184 were 
from invasive infection, 8 were from non-invasive infection and 1 had no information on isolation site) isolated from adults 
and submitted to the National Reference Laboratory at the UK Health Security Agency between January 2014 and December 
2015. We have determined that capsular serotypes III (26.9%), Ia (26.4%) and V (15.0%) were most commonly identified, with 
slight differences in gender and age distribution. Most isolates (n=182) grouped to five clonal complexes (CCs), CC1, CC8/CC10, 
CC17, CC19 and CC23, with common associations between specific serotypes and virulence genes. Additionally, we have identi-
fied large recombination events mediating potential capsular switching events between sequence type (ST)1 serotype V and 
serotypes Ib (n=2 isolates), II (n=2 isolates) and VI (n=2 isolates); between ST19 serotype III and serotype V (n=5 isolates); and 
between CC17 serotype III and serotype IV (n=1 isolate). The high genetic diversity of disease-causing isolates and multiple 
recombination events reported in this study highlight the need for routine surveillance of the circulating disease-causing GBS 
strains. This information is crucial to better understand the global spread of GBS serotypes and genotypes, and will form the 
baseline information for any future GBS vaccine research in the UK and worldwide.

Data Summary
The raw sequencing reads from the 193 group B Streptococcus (GBS) isolates used in this study are available from the European 
Nucleotide Archive under the project accession number PRJEB18093, and genome assemblies are available under project acces-
sion number PRJEB48955. Accession numbers for individual GBS isolates are provided in Table S1 (available with the online 
version of this article).

Introduction
Streptococcus agalactiae (or group B Streptococcus, GBS) is a Gram-positive encapsulated commensal pathogen of the human 
genitourinary and gastrointestinal tract, which can cause disease under certain circumstances (e.g. reduced immune function). 
GBS is well established as a leading cause of bacterial sepsis and meningitis in neonates [1], and is increasingly associated with 
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invasive infections in adults [2–4]. In the UK, cases of invasive GBS (iGBS) in the adult population, particularly the elderly and 
women of childbearing age, have increased over the last 15 years; with previous studies reporting annual incidences from 0.92 to 
2.39 per 100 000 population during 1991–2010 [3], increasing to 3.48 per 100 000 population during 2015–2016 [5].

GBS is sub-divided into ten serotypes (Ia, Ib, II–IX) based on capsular polysaccharides. However, only five serotypes, Ia, Ib, 
II, III and V, account for 93–99% of cases of neonatal and adult infections globally [6]; with serotypes V and Ia accounting for 
58% of elderly iGBS, and serotype III dominating in neonatal iGBS cases [6]. Currently, there are three main GBS vaccines in 
development: two multi-capsular polysaccharide vaccines, trivalent, covering serotypes Ia, Ib and III [7] and hexavalent, covering 
serotypes Ia, Ib, II, III, IV and V [8, 9]; and a multivalent adjuvanted protein vaccine (NCT03807245). With these GBS vaccines 
on the horizon, questions arise whether implementation of GBS polysaccharide-based vaccines will drive serotype replacement, or 
capsular switching, which has been reported for other vaccine-preventable bacterial pathogens, such as Streptococcus pneumoniae 
[10, 11]. Increasing numbers of GBS genomic epidemiology studies allow us to get an insight into capsular switching events. To 
date, a higher frequency of capsular switching events has been recorded in the sequence type (ST)1 GBS lineage [12, 13], which 
is dominated by serotype V and commonly found in non-pregnant adult iGBS cases, and recombination of capsular sites for 
serotypes Ib, II and IV have been reported for this lineage [14, 15]. On the contrary, the ST17 lineage is uniformly dominated 
by serotype III and recombination events that have been reported include members of clonal complex (CC)17 [16] rather than 
the ST17 lineage. As GBS has the potential to achieve capsular switching, there is possibility for the less common serotypes to 
become established in iGBS. Therefore, structured longitudinal surveillance of carriage and clinical GBS strains is important to 
help underpin the prevalence and conditions required for capsular switching events in the GBS population, and the implications 
of such events on clinical disease incidence and the GBS vaccine implementation policy. In the UK, recently, a detailed genomic 
surveillance of GBS isolates causing early onset and late-onset GBS disease in infants has been carried out that uncovered clusters 
of infection [17]; however, detailed information on genomic features of adult GBS isolates in the UK is lacking. Here, we used 
whole-genome sequencing to characterize disease-causing GBS strains from the adult population in the UK and report putative 
capsular switching events that occurred in this GBS population.

Methods
Genomic sequences of clinical GBS isolates
Sterile site GBS isolates from adults are, where possible, routinely submitted to the UK Health Security Agency (UKHSA) reference 
laboratory as part of national surveillance. In 2014 to 2015, isolates were mainly submitted from laboratories in England, with 
a small proportion of submissions from elsewhere in the UK. Isolates received are from patients of all ages, with the majority 
from neonates (estimated >90%) and women of child-bearing age, with an estimated total adult isolate submission proportion 
of less than 10% of all invasive cases. All available GBS isolates from invasive and non-invasive adult disease cases submitted to 
UKHSA between January 2014 and December 2015 were whole-genome sequenced and used in this study. Available anonymised 
clinical data included information on age range and sex of the patient, year, and sample type where GBS was isolated. DNA was 
extracted using a Wizard genomic DNA purification kit (Promega). A Nextera XT DNA library preparation kit (Illumina) was 
used to prepare multiplexed DNA sequencing libraries. Whole-genome sequencing was undertaken using the Illumina HiSeq 
2500 system (Illumina) and 2×100 bp paired-end mode.

Assembly and annotation
High-quality reads were de novo assembled using Spades v3.9.0 [18]. Pilon v1.22 [19] and flash v1.2.11 [20] were used to improve 
draft genome assemblies by correcting bases, fixing mis-assemblies and gap filling. quast v2.1 [21] was used to summarize 
statistics for genome assemblies (Table S1). Genome annotation was performed using Prokka v1.12 [22] and Geneious v11.0.5 
(Biomatters) [23].

Capsular serotyping and multilocus sequence typing (MLST)
GBS capsular serotype was assigned in silico as described previously [24]. Further validation of capsular serotype was performed 
using the blast tool in Geneious v11.0.5 (Biomatters) and sequence-based serotype allocation using serotype references as 
follows: serotype Ia (AB028896.2) [25], serotype Ib (AB050723.1) [26], serotype II (LT671985.1) [24], serotype III (AF163833.1) 

Impact Statement

This study is, to the best of our knowledge, the first study to report on in-depth genomic analysis of the disease-causing group 
B Streptococcus (GBS) in the adult population in the UK. We describe the most common serotype–genotype combinations, 
including multilocus sequence types and major virulence gene combinations for the specific serotypes, found in our dataset. 
Importantly, we report on various potential capsular type switching events caused by recombination for certain GBS genotypes.
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[27], serotype IV (AF355776.1) [28], serotype V (AF349539.1) [28], serotype VI (AF337958.1) [28], serotype IX (LT671992.1) 
[24]. MLST ST was assigned using srst2 v0.2.0 [29]. Alleles and STs not previously described were deposited in the S. agalactiae 
MLST database (https://pubmlst.org/sagalactiae/) [30]. PHYLOViZ v2.0 [31] and the goeBURST algorithm were used to establish 
relationships between STs using ‘3’ as the minimum single locus variant (SLV) count for subgroup definition and ‘6’ as the 
minimum number of identical loci for group definition.

Genes for pilus island, hvgA and surface proteins
The presence of surface protein genes, alp2 and alp3, the hvgA gene, and the pilus island PI-1, PI-2a and PI-2b genes were 
determined in silico using oligonucleotide primers published elsewhere [32, 33]. Presence and absence of virulence genes alpha 
and alpha-like surface protein (bca, cba, rib) and bacterial adhesin, bibA, was evaluated using srst2 v0.2.0 [29] and Geneious 
11.0.5 [23].

Phylogenetic analysis
Raw reads were mapped to a reference genome and SNPs were called using snippy v3.2 (https://github.com/tseemann/snippy). 
For the SNP-based genomic analysis, we have selected the genetically closest closed reference genome available from the National 
Center for Biotechnology Information (NCBI) (available from: https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/​
186/) that matched our isolates by the most common MLST genotype and serotype observed within the CCs as follows: for the 
analysis of CC1 isolates, reference sequence SS1 (NZ_CP010867.1) was used; for the CC17 reference sequence COH1 (NZ_
HG939456.1); for the CC19 reference sequence SG-M25 (CP021867); for the CC8 reference sequence Sag37 (NZ_CP019978.1); 
and for the CC23 reference sequence FDAARGO_512 (NZ_CP033822.1). Gubbins v.2.3.4 [34] was used to identify and remove 
recombination regions prior to reconstructing a maximum-likelihood phylogenetic tree using core SNP alignment and RAxML 
[35]. Phylogenetic trees were visualized using the Interactive Tree of Life (iTOL) (https://itol.embl.de/) [36].

Recombination analysis to detect potential capsular switching events
Gubbins [34] was used to detect recombination hotspots and the blast ring image generator (brig) [37] was used to visualize 
these recombination events. Recombination analysis was performed against a reference genome: in non-serotype V ST1 isolates 
(n=6) using reference sequence SS1 (NZ_CP010867.1), for CC17 serotype IV hvgA positive isolate (n=1) reference sequence 
COH1 (NZ_HG939456.1) was used, for serotype V ST19 isolates (n=5) reference sequence SG-M25 (CP021867) was used, and 
for serotype V ST498 isolates (n=2) reference sequence FDAARGO_512 (NZ_CP033822.1) was used.

Statistical analysis
Chi-square and Fisher’s exact tests were used to assess associations between GBS serotype and patient gender. Data were visualized 
using ggplot2 [38] and R version 4.0.2 [39].

Results
Population characteristics and serotype distribution
In total, 193 GBS isolates, 184 from iGBS disease cases (isolates from blood, n=178; cerebrospinal fluid, n=1; aortic valve, n=1; 
amniotic membrane, n=1; placenta, n=3), and 8 from non-invasive cases (isolates from pus, n=2; throat swab, n=1; tissue, n=2; 
vaginal swab, n=1; wound swab, n=1; abscess, n=1) and 1 isolate had no information on isolation site, were available for analysis 
(Table S2). In this dataset, age of the patients ranged from 20 to 100 years (median age 59 years) with 63.7% (n=123/193) of GBS 
isolates from female adult patients. As expected, due to the potential for post-partum infection in females, a lower median age 
group was observed (median age 38 years old, interquartile range 41, 31.5–72.5) (Fig. 1a) compared to males (median age 72.5 
years old, interquartile range 19.75, 61.25–81). In total, 58.5% (n=72/123) of GBS strains from female patients were isolated from 
younger women aged 18 to 44 years old, relative to women over 44 years of age (41.5%, n=51/123) (Fig. 1b), whereas only 11.4% 
(n=8/70) were isolated from male patients 18–44 years old (Fig. 1c).

In total, eight serotypes were identified: III (26.9%, n=52/193), Ia (26.4%, n=51/193), V (15%, n=29/193), II (14.0%, n=27/193), 
Ib (11.4%, n=22/193), IV (3.1%, n=6/193), VI (1.6%, n=3/193) and IX (1.6%, n=3/193). We have observed that serotype III 
was the dominant serotype in female patients with 43 isolates reported from this group compared to 9 isolates reported in the 
male patient group (Fig. 1b, c), this suggested that serotype III is more likely to be associated with female patients [X2(1, n=193) 
=11.07; P=0.0009]. Serotype Ia was the second most common serotype identified in female patients (n=30/123; Fig. 1b) and it 
was the top serotype identified in male patients (n=21/70; Fig. 1c). Serotype V was the second most common serotype in male 
patients (n=16/70; Fig. 1c), while in female patients serotype V ranked as the fourth most common serotype (n=13/123; Fig. 1b), 
this suggested that serotype V was potentially more commonly causing infections in male patients [X2(1, n=193)=5.3; P=0.02]. 
Serotypes III and Ia were more common among female patients, especially in the younger age group (18–44 years old), with the 
exception for the 45–64 years age group, where serotypes II and Ib pre-dominated, though this group contains a small number 

https://pubmlst.org/sagalactiae/
https://github.com/tseemann/snippy
https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/186/
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Fig. 1. Summary of demographic information available for 193 S. agalactiae strains submitted to the UKHSA between January 2014 and December 
2015. (a) Overall number of GBS serotypes observed in the dataset segregated by sex; (b) graphical distribution of GBS serotypes identified in female 
patients, segregated by age group; (c) graphical distribution of GBS serotypes identified in male patients, segregated by age group.

of isolates in comparison to other age groups (Fig. 1b). To confirm these observed serotype and gender or age group associations, 
further analysis on a larger longitudinal adult GBS dataset is needed.

Genotypes and virulence genes
Of the 47 STs found, 5 were predominant: ST23 (n=40/193), ST8 (n=29/193), ST17 (n=29/193), ST1 (n=23/193) and ST19 
(n=20/193). Additionally, 15 novel STs were identified (Table S2). The STs were further grouped into five main CCs: CC23 (27.5%, 
n=53/193), CC1 (18.1%, n=35/193), CC8/CC10 (15.0%, n=29/193), CC17 (16.6%, n=32/193) and CC19 (17.1%, n=33/193) (Table 
S2). The majority of CC23 strains were serotype Ia (90.6%, n=48/53), while CC1 isolates were mainly serotype V (57.1%, n=20/35) 
and predominantly ST1/alp3-positive (n=17/20). Serotypes Ib and II were mainly grouped within CC8/CC10, with a majority of 
the isolates being ST8 (n=9/29) and ST12 (n=13/29) (Table S2). Most serotype III isolates aligned either with CC19 (n=17/33) 
isolates or hypervirulent clone CC17 (n=31/32) isolates, all of which, bar one isolate of ST1220 serotype Ib, possessed the hvgA 
gene (Table S2). All 193 GBS isolates harboured at least one pilus island, PI-1+PI-2a was the most frequent combination observed 
(81.9%, n=158/193), with only CC17 being dominated by the presence of the PI-1+PI-2b gene (96.9%, n=31/32) combination. 
The rib gene was found mainly in CC17 (96.9%, n=31/32) and CC19 (81.8%, n=27/33) isolates (Table S2).

Phylogenetic relationship between GBS strains
Maximum-likelihood phylogenetic analysis has clearly shown GBS isolates falling into five main CCs (Fig. 2). The largest CC, 
CC23 (n=53), included isolates of ST23 (serotype Ia, n=38, and serotype III, n=2) and an additional seven STs of serotypes Ia and 
V (Fig. 3a). Serotype III ST23 isolates formed a separate clade with one isolate of serotype Ia ST1214, while serotypes Ia and V 
were intermixed (Fig. 3a). All CC23 isolates, bar two, carried the tetM gene, and only seven isolates had a combination of tetM 
and a macrolide-resistance gene (Fig. 3a). The isolates with tetracycline- and macrolide-resistance determinants did not form a 
cluster, suggesting random acquisition of acquired antimicrobial resistance rather than clonal expansion in the CC23 adult GBS 
population.

Of the 35 CC1 isolates in the study, the majority were ST1 (65.7%, n=23/35) and serotype V (17/23), while the remaining were 
serotype Ib (n=2), II (n=2) and VI (n=2). Ninety-one per cent (n=32/35) of CC1 isolates carried tetracycline-resistance genes 
(tetM, n=29; tetS, n=1; tetO, n=1; and tetW, n=1; Fig. 3b). Eleven CC1 GBS isolates carried ermA or ermB genes conferring resist-
ance to macrolides, and one isolate carried additional genes conferring resistance to aminoglycosides; this isolate PHEGBS0662 
(serotype IV, ST1) had tetS, ermB, aph(3′-III) and ant(6-Ia) genes and clustered closely with another serotype IV, ST1, with no 
acquired antimicrobial-resistance genes (ARGs) detected (Fig. 3b). This sporadic array of ARG presence is not reflective of clonal 
spread of resistance within the current limited dataset.

We observed two main sub-clades within CC8/CC10 (n=29), one of the clades was dominated by serotype Ib ST8 and another 
was dominated by serotypes Ib and II ST12 (Fig. 3c). All ST8 (n=9) isolates had tetM genes with one isolate also carrying the tetO 
gene, while a large sub-clade of ST12 (n=10) isolates carried the tetracycline-resistance gene tetO (Fig. 3c). Tetracycline resistance 
genes were common, yet diverse [tet(M), tet(O) and tet(L)]. Seven isolates also carried the macrolide-resistance genes ermB (n=6) 
and ermA (n=1). Phylogenetic separation of the isolates, bar from two isolates, PHEGBS0091 and PHEGBS0509, and the array 
of co-clustering ARGs is not indicative of clonal spread of resistance within the current limited dataset.
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Fig. 2. Phylogenetic relationship between GBS isolates causing disease in the adult population in the UK. A total of 193 genomes was analysed for 
the study. Mid-point rooted maximum-likelihood phylogeny tree built using SNPs after correcting for recombination. The inner ring indicates one of 
the eight serotypes identified amongst 193 GBS isolates in this study. The outer ring indicates five major CCs, CC23, CC1, CC19, CC17 and CC8/CC10, 
identified in the study; purple indicates CC22/CC1213, brown indicates CC24/CC498, dark grey indicates CC130/CC1216, and light grey colour indicates 
isolates identified as singletons based on goeBURST SLV analysis. The scale bar represents a distance of 10000 point mutations.

The CC19 (n=33) phylogeny tree showed three main clusters dominated by serotype II ST28 isolates forming a cluster together, 
some of the serotype III ST 19 isolates were separated in different clusters, with serotype V ST19 isolates clustering closer with 
serotype III ST19 isolates, PHEGBS0372 and PHEGBS0359 (Fig. 3d). The presence of tetracycline-resistance genes was almost 
universal (tetM was carried by 24 isolates and tetO gene was carried by 5 isolates). Eleven isolates additionally had macrolide 
resistance genes – ermA (n=3/33), ermB (n=6/33), mefA+msrD (n=3/33), lnuC (n=1/33) and lsaC (n=4/33) – five of these had 
more than one macrolide-resistance gene present (Fig. 3d). Three isolates also had additional aminoglycoside-resistance genes: 
aph(3′-III) and ant(6-Ia) carried by two isolates, one serotype III ST19 and one serotype V ST19; and another isolate serotype V 
ST19 carried the aac(6’)-aph(2’) gene (Fig. 3d). This was the only CC in the study to contain isolates carrying chloramphenicol-
resistance genes [n=3 catQ, n=1 cat(pC194)], which were found in serotype V (n=3) ST19 and III (n=1) ST1316 isolates (Fig. 3d).

Phylogenetic analysis of CC17 (n=32) indicated an intermix of the SLVs of ST17, within the serotype III ST17 isolates (Fig. 3e). 
Isolate ST1351 (a novel ST assigned in this study) was a serotype IV strain, not the expected serotype III, which is dominant in 
CC17, and additionally carried the hvgA hypervirulence gene, but similar non-serotype III members of CC17 have been reported 
elsewhere [15, 33, 40]. All isolates of CC17 carried the tetM gene (except for three, PHEGBS0207, PHEGBS0288 and PHEGBS0577, 
that carried the tetO gene instead), with five isolates carrying resistance genes that confer resistance to macrolides (one isolate 
carried ermA gene, two isolates carried ermB gene, and two isolates had both ermB and mefA+msrD genes). Four isolates had genes 
conferring resistance to aminoglycosides [aadE, aph(3′-III) and ant(6-Ia)], in addition to tetracycline and macrolide resistance 
genes (Fig. 3e). Overall, none of the other CCs had specific clustering observed in isolates based on geographical origin, patient 
age group or antimicrobial profile.
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Fig. 3. Phylogenetic relationship between GBS isolates within major CCs causing disease in the adult population in the UK. Phylogenetic analysis 
indicates strains belong to the five major CCs identified in this study. (a) Phylogenetic relationship between GBS isolates belonging to CC23. Fifty-three 
isolates grouped to CC23 and are represented by a mid-point rooted maximum-likelihood phylogeny tree using 1570 core SNPs called from reference 
sequence FDAARGOS 512 (NZ_CP033822.1). (b)  Phylogenetic relationship between GBS isolates belonging to CC1. Thirty-five isolates grouped to 
CC1 and are represented by a mid-point rooted maximum-likelihood phylogeny tree using 1108 core SNPs determined using reference sequence 
SS1 (NZ CP010867). (c) Phylogenetic relationship between GBS isolates belonging to CC8/CC10. Twenty-nine isolates belonged to CC8/CC10 and are 
represented by a mid-point rooted maximum-likelihood phylogeny tree using 2552 core SNPs called using reference sequence Sag37 (NZ CP019978.1). 
(d) Phylogenetic relationship between GBS isolates belonging to CC19. Thirty-three isolates belonged to CC19 and are represented by a mid-point rooted 
maximum-likelihood phylogeny tree using 2423 core SNPs called using reference sequence SG-M25 (NZ_CP021867.1). (e) Phylogenetic relationship 
between GBS isolates belonging to CC17. Thirty-two isolates belonged to CC17 and are represented by a mid-point rooted maximum-likelihood 
phylogeny tree using 2456 core SNPs relative to reference sequence COH1 (NZ HG9394456.1). Additional information for the isolates presented 
includes isolate (strain) unique identifier, capsular serotype, ST, age group (18–44 years, orange; 45–64 years, blue; 65–84 years, green; ≥85 years of 
age, purple; information not available, black). Where relevant, presence or absence of ARGs is shown. If none of the CC members had a particular gene 
present, the gene name was not added to the description column, otherwise genes were indicated as follows: tetracycline resistance gene (tetM, tetS, 
tetW, tetL or tetO gene is present, light green; absent, blank), macrolide-resistance genes (ermA, ermT, lunC, lsaC or mefA+msrD gene present, pink; 
absent, blank), aminoglycoside-resistance genes [ant(6-Ia), aph(3′-III), aac(6’)-aph(2’) or aadE gene present, salmon; absent, blank], chloramphenicol-
resistance genes [catQ or cat(pC194) gene present, black; absent, blank]. Strains indicated by an asterisk (*) highlight an uncommon combination of 
capsular serotype and ST. Scale bar, represents a distance of 100 point mutations.

Recombination events detected uncommon serotypes within specific genotypes
Among this collection, serotypes were associated with specific CCs, as expected (Fig. 2, Table S2). However, several exceptions 
were notable, where closely related strains sharing the same genotype were found to have a different capsular type (asterisks in 
Fig. 3), these combinations have been documented [12, 14, 16, 41], but not always investigated in detail.

Six isolates of the ST1 lineage were identified in this study that carried a ST1 core genome that is more consistent with serotype 
V but show a potential capsular switching event with serotypes Ib, II and VI (Fig. 4). PHEGBS0670 and PHEGBS0450 (both 
serotype Ib, ST1) acquired DNA regions of 217 and 209 kb, respectively, including the cpsIb locus (Fig. 4a); PHEGBS0549 and 
PHEGBS0568 (both serotype II) acquired DNA regions of 232 and 144 kb, respectively, including the cpsII locus (Fig. 4b). In 
contrast, serotype VI ST1 isolates PHEGBS0662 and PHEGBS0446 had larger-scale recombination events (including the cpsIV 
locus) of 883 and 884 kb, respectively, involving approximately 45% of the genomes, with the resultant genomes containing all of 
the ST1 MLST determinants (Fig. 4c); similar large-scale recombination events of ST1 isolates have previously led to the conclu-
sion that these are unlikely to have been capsular switching events [12], which is applicable to the two serotype VI ST1 isolates 
reported in our study as well. Otherwise, all six isolates retained high similarity to reference strain SS1 and all contained the alp3 
gene and PI-1 and PI-2a pilus combination common to serotype V strains [42, 43]. To confirm the identified capsular switching 
events, ST1 isolates in this study were compared to previously published ST1 isolates with recombination events: ST1-serotype Ib 
(SH5446) from Portugal [32], and ST1-serotype II (NGBS748) and ST1-serotype VI (NGBS209) from Canada [12]. Phylogenetic 
analysis of these three GBS isolates with ST1 isolates in this study showed dispersal throughout the UK of the ST1 phylogenetic 
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Fig. 4. Recombination leading to serotype switching for ST1 and CC17 GBS strains from adult patients isolated from January 2014 and December 
2015. Polymorphisms determined in unexpected serotypes within ST1 – serotype Ib ST1 strains PHEGBS0670 and PHEGBS0450 (a);  serotype II 
ST1 strains PHEGBS0549 and PHEGBS0568 (b); and serotype VI ST1 strains PHEGBS0662 and PHEGBS0446 (c) are plotted against the reference 
serotype V ST1 strain SS1 (NZ_CP010867). Serotype IV ST1351 (CC17) PHEGBS0476 strain (d)  is plotted against serotype III ST17 reference strain 
COH1 (NZ_HG9394456.1). Serotype V CC23-ST498 isolates PHEGBS0337 and PHEGBS0630 (e) are plotted against ST23 serotype Ia reference strain 
FDAARGOS_512 (NZ_CP033822.1). The innermost (black circle) represents the respective reference SS1, COH1 or FDAARGO_512. The following 
genome landmarks are shown in the outermost circle: cps locus, capsular polysaccharide locus, in orange; alp3, alpha-like surface protein-encoding 
gene in green; hvgA, hypervirulent surface-anchored adhesin gene in aqua; seven MLST genes (adhP, atr, tkt, glcK, sdhA, glnA and pheS) in purple; 
MGE, mobile genetic element, in black; PI-1 and PI-2a, pilus island genes also in black. Polymorphisms mapping to MGE identified in the various non–
serotype V ST1 strains were not included in the analysis.

cluster, with a mean of 207 and 583 SNPs per serotype Ib and VI ST1 isolate, respectively (Fig. S1). The recombination borders 
were nearly identical for all isolates, confirming the potential capsular switching events have taken place between serotypes V 
and Ib and serotype V and II (Fig. S2a).

On examination of the potential capsular switch event in serotype IV isolate ST1351 within CC17 (ST1351 is a SLV of ST17), 
this isolate carried hvgA, which is commonly associated with hypervirulent ST17 strains. Recombination analysis indicated 
a PHEGBS0476 potential for capsular switching could be attributed to an event with a 31.3 kb DNA fragment exchange that 
contained the entire cpsIV operon, comparable to the DNA transfer of 35.5 kb reported in a serotype IV/ST17 isolate from France 
(CC209361) [16] (Figs 4d and S3). Comparison of this isolate to other IV isolates from CC1 revealed the potential transfer of 
cpsE-cpsG and neuB-neuA genes was highly conserved, irrespective of whether they were present in isolates with determinants 
designating them CC1 or CC17, not only in isolates from this study, but also in isolates previously reported to undergo capsular 
switching in CC1 and CC17 serotype IV isolates from France (CC209361 [16]) and Ireland (GBS148, GBS150 and GBS175 [44]), 
where two SNPs, one in each of the cpsE and cpsF genes (PHEGBS0476) were observed (Fig. S3).

We have noted that three ST498 (CC23) isolates were serotypes Ia (n=1, most common serotype within CC23) and V (n=2). 
Further genomic investigation of the two serotype V isolates identified large recombination blocks (353 kb in isolate PHEGBS0337 
and 352 kb in PHEGBS0630) that were spanning across the whole capsular locus, indicating a potential capsular switch between 
serotype Ia and V (Fig. 4e). We investigated potential recombination events between five serotype V ST19 isolates (PHEGBS139, 
PHEGBS595, PHEGBS608, PHEGBS657 and PHEGBS738), which formed a cluster in the CC19 clade (Fig. 3d). These isolates 
were compared to a serotype III ST19 reference. Recombinant DNA regions identified included the cpsV locus in PHEGBS139, 
PHEGBS595, PHEGBS608 of 301 kb in size, and in PHEGBS657 and PHEGBS738 acquisition of 334 kb and 344 kb regions, 
respectively (Fig. S2b). We have not detected any of the transposons present in close vicinity of the identified recombination 
blocks within the capsular region in any of the isolates analysed in this study.



8

Khan et al., Microbial Genomics 2022;8:000783

Discussion
Previous reports noted an increase of GBS infections in adults between 1991–2010 and 2015–2016 in England and Wales [3, 5]. 
Our study demonstrates the serotype and genotype distribution of GBS infections reported in adults between 2014 and 2015 
in the UK. Serotypes III, Ia and V predominate in this data set, indicating no change in the three predominant serotypes the 
UK population since 2010 [3]. Despite this, a high genomic diversity has been identified with 47 different MLST genotypes 
determined, including 15 new STs, all clustering into five major clonal clusters (CC1, CC8, CC17, CC19 and CC23) as expected. 
Of importance, no geographical nor phylogenetic clusters of isolates were noted, indicating that in this limited dataset evidence 
of transmission events was not found.

In this study, we have noted four potential capsular switching events involving isolates of ST1, CC17, CC23 and ST19 genotypes. 
Recombination leading to capsular switching involved isolates exhibiting serotypes Ib (n=2, both ST1 genetic background), II 
(n=2, ST1 genetic background), IV (n=1, ST1351/CC17 genetic background) and V (n=7, 2 isolates of ST498/CC23 and 5 isolates 
of ST19 genetic background). Interestingly, ST1 serotypes Ib and II isolates did not cluster together in the phylogenetic tree after 
recombination removal, suggesting distinct recombination events within the ST1 GBS population. For the ST498 and ST19 
isolates, with respective genotype backgrounds serotype Ia and III, recombination resulted in co-clustered serotype V isolates 
in each of the lineages during phylogenetic analysis, suggesting a common or single capsular switching event to serotype V with 
expansion.

Some of the capsular switching events identified in this study have been previously reported in Portugal [32], Canada [12] and 
France [16]. However, to the best of our knowledge, investigations into recombination for CC23 and ST19 isolates have not 
been reported. We have observed novel capsular switching events in ST1 isolates, with isolates of serotype Ib and II showing 
recombined capsular regions compared to the reference sequence of serotype V ST1, confirming findings from a previous study 
[12]. CC17 isolates have been reported to be mostly clonal and only one capsular switching event to serotype IV [16] has been 
reported to date, which we observed also in a ST1351 (CC17) serotype IV isolate. With increasing studies pertaining to GBS 
genomic epidemiology, we gain further understanding of the diversity of serotype–genotype combinations, the spread of AMR 
determinants within GBS populations, the global distribution of clones of interest, their associations with specific host popula-
tions, and disease or carriage status.

Genes encoding the most abundant GBS surface Alp family proteins, such as Alp2, Alp3, Alpha C (bca) and Rib, were readily 
identified in this GBS dataset. Alpha C protein in GBS is important for interactions with cervical and epithelial cells to promote 
intracellular invasion and dissemination [45, 46]. The other Alp family surface proteins are also of great interest as they provide 
immunological reaction and potentially protection against GBS disease [47]. Due to this, studies report associations observed 
between GBS serotypes and genotypes. A recent meta-analysis study on global GBS isolates has reported that 79% of invasive 
adult GBS had at least one of the Alp2, Alp3, Alpha C (bca) or Rib protein genes [6]; a similar distribution has been observed 
in our study as well, with 72.5% (n=140/193) of the isolates carrying one of the mentioned Alp family proteins. We have found 
serotype III isolates were reported to be more commonly associated with Rib protein and serotype V isolates to be associated with 
Alp3, which concurs with previous reports [6]; and the Alpha C protein (bca gene) was found to be associated with serotype Ib 
in our study, though it has been reported to be associated with serotypes Ib and Ia [6].

Due to their antigenic properties, Alp family proteins have been proposed as potential targets for protein-based GBS vaccines, 
one such vaccine using the N-terminal domain of AlphaC and Rib has been studied in Clinical Trials Phase I (NCT02459262) 
already. Vaccines targeting GBS pilus proteins have been also proposed, considering that these proteins are present universally 
in GBS strains, with PI-1+PI-2a being the most common [6], and were identified in this study also. However, there is a lack of 
data supporting their potential as vaccine candidates at this time and further analysis is needed [48, 49].

This study has several limitations; the sample set is a cross-sectional observational study limited to only referred isolates within 
adults over the time period in question. It does not represent an accurate number of isolates from cases with disease burden nor 
include isolates from screening adults. However, though this dataset is not representative of all GBS infection in adults during 
the study period, isolates analysed here are likely to be representative of infection of greatest severity, which are more likely to 
be sent to the reference laboratory. Irrespective, this study highlights the need for continuous genomic surveillance to monitor 
genotype, genotypic capsular serotype, and genes associated with hypervirulence and antibiotic resistance to help inform future 
treatment of cases and potential vaccination programmes, including polysaccharide- or protein-based GBS vaccines.
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