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Abstract: Several queueing systems in heavy traffic regimes are shown to admit a diffusive approxi-
mation in terms of the Reflected Brownian Motion. The latter is defined by solving the Skorokhod
reflection problem on the trajectories of a standard Brownian motion. In recent years, fractional
queueing systems have been introduced to model a class of queueing systems with heavy-tailed
interarrival and service times. In this paper, we consider a subdiffusive approximation for such
processes in the heavy traffic regime. To do this, we introduce the Delayed Reflected Brownian Motion
by either solving the Skorohod reflection problem on the trajectories of the delayed Brownian motion
or by composing the Reflected Brownian Motion with an inverse stable subordinator. The heavy
traffic limit is achieved via the continuous mapping theorem. As a further interesting consequence,
we obtain a simulation algorithm for the Delayed Reflected Brownian Motion via a continuous-time
random walk approximation.

Keywords: stable subordinators; semi-Markov processes; heavy traffic approximation
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1. Introduction

Queueing theory is a widely studied branch of mathematics, thanks to its numerous
applications. Aside from the classical ones in telecommunications [1] and traffic engineer-
ing [2], one can cite the ones in computing [3] (with particular attention to scheduling) and
economics (see, for instance, [4]), together with the fact that such a branch clearly shares
different models with population dynamics (see also [5]). The simplest building block
of such a theory is given by the M/M/1 queue, which is the prototype of a Markovian
queueing model. While, on one hand, the study of this queueing model at its stationary
phase can be achieved without too much effort (see, for instance, [6,7]), the determination
of its distribution during the transient phase is a quite difficult task that requires much
more attention (see, for instance, [8,9]).

The main feature of the M/M/1 queue is the Markov property, which, on one hand,
gives a quite tractable model, while, on the other, it precludes any possibility of including
memory effects. To overcome such a problem, one can extend the study to the class of semi-
Markov processes, introduced by Lévy in [10]. A special class of semi-Markov processes
can be obtained by means of a time change, i.e., the introduction of a non-Markov stochastic
clock in the model. This is done, for instance, by composing a parent Markov process with
the inverse of a subordinator. In the specific case of the α-stable subordinator, one refers to
such a new process as a fractional version of the parent one, due to the link between this
time-change procedure and fractional calculus, as one can see from [11–17], to cite some of
the several works on the topic. Together with a purely mathematical interest, let us stress
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that this procedure leads also to some interesting applications (see, for instance, [18] in
economics, [19] in computing and [20] in computational neurosciences). In the context of
queueing theory, this has been first done in [4], in the case of the M/M/1 queue, and then
extended in [21,22] to the case of M/M/1 queues with catastrophes, [23] in the case of
Erlang queues and [24] for the M/M/∞ queues.

Another quite interesting feature of the classical M/M/1 queue is given by its link
with the Brownian motion. It is well known that the behavior of the queue is widely
influenced by the traffic intensity ρ. In particular, if ρ < 1, the queue is ergodic (and thus
admits a stationary state), while for ρ ≥ 1, this is no longer true. In a certain sense, we can
see the critical value ρ = 1 as a bifurcation of the system (as seen as some sort of integral
curve in the space of probability measures), in which it loses its globally asymptotically
stable equilibrium point. Thus, a natural question one can ask concerns what happens, at a
proper scaling, to the queueing model as ρ is near 1. This is called the heavy traffic regime.
In the case of the M/M/1 queue, it is well known that, up to a proper scaling, the queue
length process in the heavy traffic regime can be approximated by means of a Reflected
Brownian Motion with negative drift (see [25]), i.e., a Brownian motion with negative
drift whose velocity is symmetrically regulated as soon as it touches 0. More precisely,
the Reflected Brownian Motion is the solution of the Skorokhod reflection problem on the
trajectory of a drifted Brownian motion. This process is of independent importance, as it
provides the stochastic representation of the solution of the heat equation with Neumann
boundary condition (see [26]).

The time-change procedure described before has been also applied to the Brownian
motion, obtaining the so-called Delayed Brownian Motion (see [27]). Despite the name, it is
interesting to observe that such a process is not necessarily delayed: it is true that it exhibits
some intervals of constancy; nevertheless, on short times, it can vary faster than the parent
Brownian motion, as evidenced from its expected lifetime in fractal sets (see [28]). Once
this procedure has been applied to the Brownian motion, one could ask what happens as
we adopt a time-change also to the Reflected Brownian Motion.

In this paper, we introduce the Delayed Reflected Brownian Motion (DRBM) as the
solution of the Skorokhod reflection problem for the trajectories of the Delayed Brownian
Motion (DBM). In particular, we prove that the process obtained in this way coincides
with the one achieved by time-changing the Reflected Brownian Motion via an inverse
stable subordinator. As a consequence, we can obtain some alternative representations
of the process as a direct counterpart of the ones in the classical case. Among them, it is
interesting to cite that we are able to exhibit a representation analogous to the one of [29]
in terms of time-changed stochastic differential equations (introduced in [30]). We then
use such a process to characterize the heavy traffic regime of a fractional M/M/1 queue.
The results that we obtain have a twofold interest. One one hand, we achieve a subdiffusive
approximation of the fractional M/M/1 queue in the heavy traffic regime, which is a quite
powerful tool to study the properties of such queueing models. On the other hand, if we
take a look at the results from a different point of view, we have a continuous-time random
walk approximation of the Delayed Reflected Brownian Motion. The latter can be used to
provide simulation algorithms that do not require us to simulate the inverse subordinator or
to provide some inverse Laplace transforms (both of them being expensive computational
tasks in terms of errors and time). The motivation of the paper is indeed in this twofold
result: we want to provide a new tool to study the properties of the fractional M/M/1
queue introduced in [4] in the heavy traffic regime, while, at the same time, exploiting
and better investigating the power of the discrete event simulation algorithm (see [31]) via
continuous-time random walk approximations of a subdiffusive process.

The paper is organized as follows: in Section 2, we introduce the Skorokhod’s reflection
problem and the Reflected Brownian Motion, while in Section 3, we investigate the Delayed
Reflected Brownian Motion, with particular attention to the scaling properties of the
two processes. The heavy traffic approximation for both the classical and the fractional
M/M/1 queues is discussed in Section 4, together with some scaling properties of the
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classical M/M/1 queueing system. In this section, we also refine (and, in a certain sense,
complete) the analysis of the queueing model introduced in [4], by proving the respective
independence of the interarrival and the service times (recall that they are not mutually
independent) and providing their distributions (with a different strategy with respect
to [21] that does not require any further conditioning). Finally, in Section 5, we exhibit
the simulation algorithm for the fractional M/M/1 queue and how to use it to simulate
a Delayed Reflected Brownian motion, together with some heuristic considerations on
stopping criteria.

2. The Reflected Brownian Motion
2.1. Skorokhod’s Reflection Problem

Let us denote by C(R+
0 ) (where R+

0 := [0,+∞)) the space of continuous functions
f : R+

0 → R. In the following, we also need the space of cádlág functions D(R+
0 ), i.e., the

space of functions f : R+
0 → R that are right-continuous and such that the left limits

exist finite. Let us denote, for simplicity, D0(R+
0 ) := {y ∈ D(R+

0 ) : y(0) ≥ 0} and
C0(R+

0 ) := {y ∈ C(R+
0 ) : y(0) ≥ 0}, which are convex cones. Let us also recall that

any monotone function a : R+
0 → R is locally of bounded variation and thus admits a

distributional derivative da that is a Radon measure (see [32]).

Definition 1. Let y ∈ D0(R+
0 ). We say that a pair (z, a) ∈ D(R+

0 )× D(R+
0 ) is a solution of the

one-dimensional Skorokhod reflection problem if

(i) z = y + a;
(ii) z(t) ≥ 0 for any t ≥ 0;
(iii) a is nondecreasing, a(0) = 0 and da is supported on {s ∈ R+

0 : z(s) = 0}

Practically, we are asking if it is possible to construct a path z starting from y by adding
a term a in such a way that whenever y touches 0, it is instantaneously symmetrically
reflected (by using the function a), so that the resulting path z is conditioned to remain
non-negative. For these reasons, the function a is called the regulator, while z is called the
regulated path. Let us emphasize that the problem can be extended to the n-dimensional
setting for any n ∈ N—for instance, asking that the regulated path is conditioned to remain
in a certain orthant (so that the path is symmetrically reflected as soon as it touches a
coordinate hyperplane) or a polyedral region; see [33]. Let us recall that the one-dimensional
Skorokhod problem admits a unique solution.

Theorem 1. Let y ∈ D0(R+
0 ). Then, there exists a unique solution (z, a) ∈ D(R+

0 )× D(R+
0 ) of

the one-dimensional Skorokhod reflection problem (given in Definition 1). In particular,

a(t) = sup
s≤t

y−(s)

where y−(t) = max{−y(t), 0}. Moreover, if y ∈ C0(R+
0 ), then (z, a) ∈ C(R+

0 )× C(R+
0 ).

With the previous theorem in mind, one can define the reflection map as Ψ : D0(R+
0 )→

D(R+
0 ) such that, for any y ∈ D0(R+

0 ), Ψ(y) = z, where (z, a) is the unique solution of the
Skorokhod problem. We also have that Ψ : C0(R+

0 )→ C(R+
0 ) is well defined.

Concerning the continuity of the reflection map on D0(R+
0 ), we first have to consider

some topology on it (see [25] (Chapter 3)).

Definition 2. Let us consider the space D([0, T]) of the cádlág functions f : [0, T] → R. We
denote by U the uniform topology, induced on D([0, T]) by the metric

dU(x1, x2) = sup
t∈[0,T]

|x1(t)− x2(t)|, x1, x2 ∈ D([0, T]).
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Let us denote by ι the identity map on [0, T], i.e., ι(t) = t for any t ∈ [0, T]. Moreover, let

Λ([0, T]) = {λ : [0, T]→ [0, T] : λ is strictly incrasing and λ(0) = 0, λ(T) = T}.

We denote by J1 the topology on D([0, T]) defined by the metric

dJ1(x1, x2) = inf
λ∈Λ([0,T])

max{dU(x1 ◦ λ, x2), dU(λ, ι)}, x1, x2 ∈ D([0, T]),

where ◦ : D([0, T])× D([0, T])→ D([0, T]) is the composition map, i.e.,

(x1 ◦ x2)(t) := ◦(x1, x2)(t) = x1(x2(t)), t ∈ [0, T], x1, x2 ∈ D([0, T]).

We denote by xn
U→ x and xn

J1→ x the convergence in D([0, T]), respectively, in U and J1. It

is clear that if xn
U→ x, then xn

J1→ x. We say that xn
J1→ x in D(R+

0 ) if xn
J1→ x in D([0, Tk]) for a

sequence {Tk}k≥0 of continuity points of x such that Tk → +∞. This topology is metrizable and
we still denote the metric as dJ1 .

In general, if we have a sequence of D(R+
0 )-valued random variables, we denote Xn ⇒ X

whenever Xn converges in distribution to a D(R+
0 )-valued random variable X with respect to the

J1 topology.

Now, we can describe the continuity properties of the reflection map (see [25] (Lemma
13.5.1 and Theorem 13.5.1) for the compact domain case and extend it with [25] (Theorem
12.9.4) to the non-compact domain case).

Theorem 2. The map Ψ : D0([0, T]) → D([0, T]) is Lipschitz-continuous in both U and J1
topology with Lipschitz constant 2, i.e.,

dU(Ψ(x1), Ψ(x2)) ≤ 2dU(x1, x2)

and
dJ1(Ψ(x1), Ψ(x2)) ≤ 2dJ1(x1, x2). (1)

Moreover, Ψ : D0([0,+∞))→ D([0,+∞)) is Lipschitz-continuous in the J1 topology with
Lipschitz constant 2, i.e., Equation (1) still holds in this case.

Let us also denote

Λ̃ = {λ : R+
0 → R+

0 : λ is continuous, nondecreasing and λ(0) = 0}

and observe the following elementary properties of the reflection map (which are particular
cases of [25] (Lemma 13.5.2)).

Lemma 1. The following properties are true:

(i) For any x ∈ D0(R+
0 ) and b > 0, it holds that

Ψ(bx) = bΨ(x);

(ii) For any x ∈ D0(R+
0 ) and λ ∈ Λ̃, it holds that

Ψ(x ◦ λ) = Ψ(x) ◦ λ.

Proof. Let us first observe that, clearly, (bx)− = bx−. Then it holds, for any t ≥ 0, by
Theorem 1, that

Ψ(bx)(t) = bx(t) + sup
s≤t

(bx)−(s) = b(x(t) + sup
s≤t

x−(s)) = bΨ(x)(t),
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proving property (i).
Concerning property (ii), let us observe that (x ◦ λ)− = x− ◦ λ. Define the running

supremum a(x)(t) = sups≤t x(s) for any t ≥ 0. Then, a(x−) ∈ D(R+
0 ) by Theorem 1.

Moreover, we have a(x−) ◦ λ = a(x− ◦ λ). Indeed, let us define the set F of maps f :
R+

0 → 2R and the range map R : D(R+
0 ) → F as R(z)(t) = {y ∈ R : ∃s ≤ t : z(s) = y}

for any t ≥ 0 and any z ∈ D(R+
0 ). Then, λ being increasing and continuous, we have

R(x− ◦ λ)(t) = {y ∈ R : ∃s ≤ t : x−(λ(s)) = y}
= {y ∈ R : ∃λ(s) ≤ λ(t) : x−(λ(s)) = y}
= {y ∈ R : ∃τ ≤ λ(t) : x−(τ) = y} = R(x−)(λ(t)).

Hence,

a(x− ◦ λ)(t) = supR(x− ◦ λ)(t) = supR(x−)(λ(t)) = a(x−)(λ(t))

and finally

Ψ(x ◦ λ)(t) = x(λ(t)) + a(x− ◦ λ)(t)

= x(λ(t)) + a(x−)(λ(t)) = Ψ(x)(λ(t)).

2.2. The Reflected Brownian Motion

Let us fix a complete filtered probability space (Ω,F , {Ft}t≥0,P), supporting all the
following random variables and processes. Let W = {W(t), t ≥ 0} be a standard Brownian
motion and Wη,σ2

= {Wη(t), t ≥ 0} be the Brownian motion with drift η ∈ R and diffusion
parameter σ2 with σ > 0 (we denote it as Wη,σ2 ∼ BM(η, σ2)) defined as

Wη,σ2
(t) = σW(t) + ηt, t ≥ 0.

If σ = 1, we denote Wη ∼ BM(η), and if, additionally, η = 0, we denote W ∼ BM.
In any case, we set P(Wη,σ2

(0) = 0) = 1. It is well known that P(Wη,σ2 ∈ C(R+
0 )) = 1;

thus, we can solve the Skorokhod problem on each sample path of Wη,σ2
.

Definition 3. The Reflected Brownian Motion (RBM) with drift η and diffusion parameter σ2 is
given by the process W̃η,σ2

= {W̃η,σ2
(t), t ≥ 0} defined as

W̃η,σ2
= Ψ(Wη,σ2

),

and we denote W̃η,σ2 ∼ RBM(η, σ2). If σ2 = 1, we denote it by W̃η ∼ RBM(η). If additionally
η = 0, we denote it by W̃ ∼ RBM.

It is clear, by definition, that an RBM is almost surely non-negative. This is achieved
thanks to the regulator, which provides a symmetrization of the velocity with which
the original BM tries to cross 0. This additive component symmetrizes perfectly such
an effort, thus preventing the process from crossing the 0 threshold. However, in this
case, the regulator is a singular function; thus, we cannot properly speak about velocity.
The symmetrizing effect of the regulator is instead clearer in the processes that are linked
to the queueing systems, as will be shown in Section 4. First, we want to prove a simple
scaling property. To do this, let us denote ιb ∈ Λ̃ as ιb(t) = bt. Obviously, ι1 ≡ ι. Extending
the arguments in [25] (Theorem 5.7.9), we have the following result.

Proposition 1. Let W̃η,σ2 ∼ RBM(η, σ2). The following properties hold true.
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(i) For any b, c > 0, it holds that

cW̃η,σ2 ◦ ιb ∼ RBM(ηbc, σ2c2b);

(ii) If η 6= 0, it holds that

W̃η,σ2 d
=

σ2

|η|W̃
sign(η) ◦ ι η2

σ2
;

(iii) If η = 0, it holds that

W̃0,σ2 d
= W̃ ◦ ισ2

(iv) If η = 0, it holds that

W̃0,σ2 d
= σW̃.

Proof. Let us first prove property (i). Consider Wη,σ2 ∼ BM(η, σ2) such that
W̃η,σ2

= Ψ(W̃η,σ2
). The self-similarity of the Brownian motion implies that

cWη,σ2 ◦ ιb = cσW ◦ ιb + ιcηb
d
= cσ

√
bW + ιcηb = Wηbc,σ2c2b.

Applying the reflection map on both sides, we conclude the proof by Lemma 1.

Property (ii) follows from property (i) applied on W̃sign(η) by choosing b = η2

σ2 and

c = σ2

|η| . Property (iii) follows from property (i) applied on W̃ by choosing b = σ2 and c = 1.

Finally, property (iv) follows from (i) applied on W̃ by choosing b = 1 and c = σ.

From now on, we will focus on the case σ2 = 1, as any other case can be deduced from
this one. Let us stress that the one-dimensional distribution of W̃η is well known (see [25]
(Theorem 5.7.7) or [34] (Section 3.6)).

Theorem 3. For W̃η ∼ RBM(η), y ≥ 0 and t > 0, it holds that

P(W̃η(t) > y) = Φ
(
−y + ηt√

t

)
+ e2ηyΦ

(
−y− ηt√

t

)
,

where Φ is the cumulative distribution function (CDF) of a standard normal random variable, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

y2
2 dy, x ∈ R.

Remark 1. It is clear that P(W̃η(t) > y) = 1 for any y < 0 by definition. Let us also observe
that, if η = 0, then the one-dimensional distribution of W̃ is a folded Gaussian distribution. This
will be made clearer in the following subsection.

As a consequence of the previous theorem, we have the following corollary (see [35]
(Corollary 1.1.1)).

Corollary 1. For W̃η ∼ RBM(η) with η < 0 and t > 0, it holds that

E[W̃η(t)] =
1

2|η| −
(η2t + 1)
|η| (1−Φ(|η|

√
t)) +

√
tϕ(|η|

√
t),

where ϕ is the probability density function (PDF) of a standard normal random variable, i.e.,

ϕ(x) = Φ′(x) =
1√
2π

e−
x2
2 , x ∈ R.
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2.3. Alternative Construction of the Reflected Brownian Motion

One can provide a different construction of the Reflected Brownian Motion by means
of the absolute value of an Itô process. To do this, let us observe, as done in [36], that,
whenever y(0) = 0, it holds that

Ψ(y)(t) = sup
s≤t

(y(t)− y(s)).

Using this characterization, together with the fact that Wη(0) = 0, we have

W̃η(t) = sup
s≤t

(ηt + W(t)− ηs−W(s)) = sup
s≤t

(−η(s− t)− (W(s)−W(t))).

It is clear that Ŵ = −W is still a Brownian motion and we can write

W̃η(t) = sup
s≤t

(−η(s− t) + (Ŵ(s)− Ŵ(t))) = M̂−η(t)− Ŵ−η(t),

where Ŵ−η ∼ BM(−η) and M̂−η(t) = maxs≤t Ŵ−η(s) is the running maximum of Ŵ−η .
Combining the previous argument with [29] (Theorem 1), we get the following result.

Theorem 4. For W̃η ∼ RBM(η), the following properties are true.

(i) There exists a process W−η ∼ BM(−η) such that, denoting by M−η(t) = sups≤t W−η(s),
it holds that

W̃η = M−η −W−η .

(ii) Let W ∼ BM and consider Xη the unique strong solution of the stochastic differential equation

dXη(t) = ηsign(Xη(t))dt + dW(t), Xη(0) = 0. (2)

Then, it holds that
W̃η d

= |Xη |.

Remark 2.

• In the case η = 0, the previous theorem tells that W̃ d
= |W|, i.e., it is a folded Gaussian process,

as observed in the previous subsection.

• The equality in law M0 −W d
= |W| has been proven by Lévy prior to [29]; see [37] (Chapter

VI, Theorem 2.3).

The previous characterization of the RBM can be fruitfully used for stochastic sim-
ulation. Indeed, Equation (2) can be discretized by means of the Euler scheme (see [38]),
which is weakly convergent of order 1. On the other hand, one could also simulate W̃η by
means of the reflection map. However, such an algorithm is weakly convergent of order
1/2. In any case, one can provide not only algorithms with improved weak convergence
order, but also exact simulation algorithms for W̃η(t) at some grid points t ≥ 0 (see [39]).
Other approaches to generate the sample paths of the RBM are based on the Gauss–Markov
nature of the Drifted Brownian Motion (see [40,41]). There is also another approximate sim-
ulation method that makes use of a continuous-time random walk (CTRW) approximation.
The latter is made clearer in Section 5.

3. The Reflected Brownian Motion Delayed by the Inverse Stable Subordinator
3.1. Inverse Stable Subordinators and Semi-Markov Processes

Let us first introduce the inverse stable subordinator. To do this, we recall the following
definitions (we refer to [42–44]).
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Definition 4. For any α ∈ (0, 1), a standard α-stable subordinator σα = {σα(t), t ≥ 0} is an
increasing Lévy process with σα(0) = 0 almost surely (a.s.) and such that

E[e−λσα(t)] = etλα
, t ≥ 0, λ ≥ 0. (3)

We call the inverse α-stable subordinator the process Lα = {Lα(t), t ≥ 0} defined as

Lα(t) = inf{y ≥ 0 : σα(y) > t}, t ≥ 0.

We denote by L the Laplace transform operator, i.e., for a function f ∈ L1
loc(R

+
0 ),

L[ f ](λ) =
∫ +∞

0
e−λt f (t)dt,

and
abs( f ) = inf{λ ∈ R : L[ f ](λ) is well-defined and finite},

the abscissa of convergence of f . It is well known that L[ f ](λ) is well defined for any
λ > abs( f ) (see [45] (Proposition 1.4.1)).

In the following proposition, we recall some of the main properties of the stable
subordinator and its inverse (see [44]).

Proposition 2. Let α ∈ (0, 1) and σα an α-stable subordinator with inverse Lα. Then,

(i) σα is a strictly increasing process with a.s. pure jump sample paths;
(ii) Lα is an increasing process with a.s. continuous sample paths;
(iii) For any fixed t > 0, σα(t) is an absolutely continuous random variable with PDF gα(s; t)

satisfying
gα(s; t) = t−

1
α gα(st−

1
α ), s > 0,

where gα(·) := gα(·; 1). This means that σα(t)
d
= t

1
α σα(1);

(iv) For any fixed t > 0, Lα(t) is an absolutely continuous random variable with PDF fα(s; t)
satisfying

fα(s; t) =
t
α

s−1− 1
α gα(ts−

1
α ), s > 0;

(v) For any fixed s > 0, it holds that abs( fα(s; ·)) = 0 and

L[ fα(s, ·)](λ) = λα−1e−sλα
, λ > 0.

Remark 3. Remark that, while σα is a Lévy process and then a strong Markov process, Lα is not
even a Markov process.

As it is clear from the previous proposition, explicit formulae for the one-variable
function gα lead to analogous ones for the density of the stable subordinator and its inverse.
However, such explicit formulae are not so easy to handle. First of all, there are several
integral representations of gα (see [46] and references therein). Among them, let us recall
the so-called Mikusinski representation:

gα(s) =
1
π

α

1− α

1
s

∫ π

0
s−

α
1−α

(
sin(ατ)

sin(τ)

) α
1−α sin((1− α)τ)

sin(τ)
es−

α
1−α

(
sin(ατ)
sin(τ)

) α
1−α sin((1−α)τ)

sin(τ) dτ.

This representation is shown to be quite useful both to determine asymptotic properties
of gα and to evaluate it numerically (see [47]). The function gα can be also expressed in several
ways as a function series (see [48]). Let us refer, among them, to the following formula:

gα(s) =
1
π

∞

∑
j=1

(−1)j+1

j!s1+αj Γ(1 + αj) sin(παj).
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The latter leads to a quite interesting representation of fα(s; t), which can be also used
to prove some regularity results (as, for instance, done in [49]). Further discussion on the
various representations of gα and fα is given, for instance, in the Appendix of [50].

In the following, we want to apply a time-change procedure on W̃ by using as a
stochastic clock the process Lα. Thus, it could be useful to recall the notion of the semi-
Markov process, as introduced in [10].

Definition 5. A real valued cádlág process X = {X(t), t ≥ 0} is semi-Markov if, denoting by
γ = {γ(t), t ≥ 0} its age process, i.e., γ(t) = sup{ε0 > 0 : ∀ε ∈ (0, ε0), X(t− ε) = X(t)},
for any 0 ≤ s < t and any A ∈ B(R), where B(R) is the Borel σ-algebra of R, it holds that

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s), γ(s)).

In particular, if we consider a strong Markov process X = {X(t), t ≥ 0} and an
independent inverse α-stable subordinator Lα, we can define the time-changed process
Xα = X ◦ Lα. In [51], it is shown that, if we define the process V := {V(t), t ≥ 0} as
V(t) = t− σα(Lα(t)−) for any t ≥ 0, the couple (Xα, V) is a strong Markov process. This
implies (actually, it is equivalent) that Xα is a semi-Markov process. The semi-Markov
property of Xα, in particular, follows from the fact that (X, σα) is a Markov additive process
in the sense of [52] (see [51] for details). Finally, let us recall that such a semi-Markov
property actually tells us that the process Xα satisfies a (strong) regenerative property (in
the sense of [53]) with the regenerative set given by

M := {s ≥ 0 : ∃t ≥ 0, σα(t) = s},

i.e., the process Xα satisfies the strong Markov property on any random time T such that
T (ω) ∈ M(ω) for almost any ω ∈ Ω. Actually, a regenerative property is common for any
semi-Markov process and could be informally stated as follows: a semi-Markov process
exhibits the strong Markov property at each time in which it changes its state.

3.2. The Reflected Brownian Motion Delayed by the Inverse Stable Subordinator

We are now ready to introduce the Delayed Reflected Brownian Motion.

Definition 6. Let W̃η,σ2 ∼ RBM(η, σ2), α ∈ (0, 1) and Lα be an inverse stable subordinator
independent of W̃η,σ2

. We define the Reflected Brownian Motion delayed by an inverse α-stable sub-

ordinator (DRBM) as the process W̃η,σ2

α = W̃η,σ2 ◦ Lα, we denote it as W̃η,σ2

α ∼ DRBM(η, σ2; α)

and we call W̃η,σ2
its parent process. As before, if σ = 1, we denote it as W̃η

α ∼ DRBM(η; α), and
if furthermore η = 0, we denote it as W̃α ∼ DRBM(α).

First of all, let us stress that the arguments in the previous subsection tell us that

W̃η,σ2

α is semi-Markov. Together with W̃η,σ2

α , we can define the Delayed Brownian Motion

Wη,σ2

α := Wη,σ2 ◦ Lα, where Wη,σ2 ∼ BM(η, σ2) and Lα is an inverse α-stable subordinator

independent of it (see, for instance, [27]). We denote this as Wη,σ2

α ∼ DBM(η, σ2; α) and we
call Wη,σ2

its parent process.
Another natural definition for the DRBM could be obtained by simply considering

Ψ(Wη,σ2

α ). In the following proposition, we observe that such a definition is equivalent to
the one we have given.

Proposition 3. Let Wη,σ2

α ∼ DBM(η, σ2; α) with parent process Wη,σ2
. Let W̃η,σ2

= Ψ(Wη,σ2
)

and W̃η,σ2

α ∼ DRBM(η, σ2; α) with parent process W̃η,σ2
. Then, W̃η,σ2

α = Ψ(Wη,σ2

α ) almost
surely.
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Proof. This proposition easily follows from property (ii) of Lemma 1 after observing that
P(Lα ∈ Λ̃) = 1.

Remark 4. The couple (W̃η,σ2

α , a((Wη,σ2

α )−)) is the unique solution of the Skorokhod problem in

Definition 1 for the sample paths of Wη,σ2

α .

We can also deduce a scaling property for the DRBM in the spirit of Proposition 1.

Proposition 4. Let W̃η,σ2

α ∼ DRBM(η, σ; α). The following properties hold true.

(i) For any c > 0, it holds that

cW̃η,σ2

α ∼ DRBM(ηc, σ2c2; α);

(ii) It holds that

W̃η,σ2

α
d
= σW̃η/σ

α .

Proof. Let us first show property (i). Let W̃η,σ2 ∼ RBM(η, σ2) be the parent process

of W̃η,σ2

α , and Lα be the involved inverse α-stable subordinator. By Proposition 1 with
b = 1, we get cW̃η,σ2 ∼ RBM

(
ηc, σ2c2). By the Skorokhod representation theorem (see,

for instance, [54]), we can suppose, without loss of generality, that there exists a process
W̃ηc,σ2c2 ∼ RBM

(
ηc, σ2c2) such that W̃ηc,σ2c2

= cW̃η,σ2
almost surely. This clearly implies

that also W̃ηc,σ2c2
is independent of Lα. Thus, composing both sides of the equality with Lα,

we conclude the proof of (i). Property (ii) follows from (i) applied to W̃η/σ
α with c = σ.

Remark 5. Thanks to the previous proposition, we can always reduce to the case σ2 = 1. However,
we cannot reduce to the case η = ±1, 0. This is due to the fact that the composition operator is not
symmetric and Lα ◦ ιb 6= ιb ◦ Lα in general.

Thus, from now on, let us consider σ2 = 1. Concerning the one-dimensional distribu-
tion, we get a subordination principle from a simple conditioning argument.

Proposition 5. For W̃η
α ∼ DRBM(η, α), y ≥ 0 and t > 0, it holds that

P(W̃η
α (t) > y|W̃η

α (0) = x) =
∫ +∞

0

(
Φ
(
−y + ηs√

s

)
+ e2ηyΦ

(
−y− ηs√

s

))
fα(s; t)ds.

Proof. Let us rewrite P(W̃η
α (t) > y|W̃η

α (0) = x) as a conditional expectation. Precisely,
if we let 1A be the indicator function of the set A ∈ B(R), that is to say,

1A(x) =

{
1 x ∈ A
0 x 6∈ A,

it holds that

P(W̃η
α (t) > y) = E[1(y,+∞)(W̃

η
α (t))] = E[1(y,+∞)(W̃

η(Lα(t)))],

where W̃η is the parent process of W̃η
α and Lα is independent of W̃η . Using the tower

property of conditional expectations, we achieve

E[1(y,+∞)(W̃
η(Lα(t)))] = E[E[1(y,+∞)(W̃

η(Lα(t)))|Lα(t)]].

We can set E[1(y,+∞)(W̃η(Lα(t)))|Lα(t)] = F(Lα(t)) with
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F(s) = E[1(y,+∞)(W̃
η(Lα(t)))|Lα(t) = s]

= E[1(y,+∞)(W̃
η(s))]

= Φ
(
−y + ηs√

s

)
+ e2ηyΦ

(
−y− ηs√

s

)
,

where we also use the fact that Lα is independent of W̃η and Theorem 3. Finally, we have

E[1(y,+∞)(W̃
η(Lα(t)))] = E[F(Lα(t))]

=
∫ +∞

0
F(s) fα(s; t)ds,

concluding the proof.

With the same exact argument, we can prove the following statement.

Corollary 2. For W̃η
α ∼ DRBM(η) with η < 0 and t > 0, it holds that

E[W̃η
α (t)] =

1
2|η| −

∫ +∞

0

(
(η2s + 1)
|η| (1−Φ(|η|

√
s)) +

√
sϕ(|η|

√
s)
)

fα(s; t)ds.

As for the classical case, we could ask if there are some alternative representations of
the DRBM in terms of the solution of some particular SDE. This is done by generalizing
Theorem 4.

Theorem 5. For W̃η
α ∼ DRBM(η; α), the following properties are true.

(i) There exists a process W−η
α ∼ DBM(−η; α) such that, denoting by M−η

α (t) = sups≤t W−η
α (s)

its running maximum, it holds that

W̃η
α = M−η

α −W−η
α

almost surely.
(ii) Let Wα ∼ DBM(η; α) and consider Xη

α the unique strong solution of the time-changed
stochastic differential equation (in the sense of [30])

dXη
α(t) = ηsign(Xη

α(t))dLα(t) + dWα(t), Xη
α(0) = 0. (4)

Then, it holds that
W̃η

α
d
= |Xη

α |.

Proof. Let us first prove property (i). Let W̃η be the parent process of W̃η
α . By item (i)

of Theorem 4, we know that there exists W−η ∼ BM(−η) such that, setting M−η(t) =
sups≤t W−η(s), it holds that

W̃η = M−η −W−η (5)

Let W−η
α ∼ DBM(−η; α) with parent process W−η and define M−η

α as in the statement.
Arguing as in Lemma 1, the fact that P(Lα ∈ Λ̃) = 1 implies M−η

α = M−η ◦ Lα almost
surely. Thus, applying the composition with Lα on both sides of equality (5), we conclude
the proof of (i). To prove the second item, let us define Xη as the unique strong solution of
Equation (2), where W is the parent process of Wα. Observe that, Lα being almost surely
continuous, W is in synchronization with Lα (in the sense of [30] (p. 793)) and then we can
use the duality theorem [30] (Theorem 4.2) to state that Xη

α := Xη ◦ Lα is the unique strong
solution of

dXη
α(t) = ηsign(Xη

α(t−))dLα(t) + dWα(t), Xη
α(0) = 0.
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Continuity of Xη
α leads to Equation (4). Vice versa, if Xη

α is the unique strong solution
of Equation (4), then the duality theorem tells us that Xη is the unique strong solution of
Equation (2). Thus, we observe that Xη

α is the unique strong solution of Equation (4) if and
only if Xη

α = Xη ◦ Lα, and the statement directly follows from item (ii) of Theorem 4.

One could try to use the previous characterization to provide an algorithm for the
simulation of the DRBM. Such an approach requires, first of all, the simulation of a stable
subordinator, which can be done by means of the Chambers–Mallow–Stuck algorithm [55],
which is a generalization of the Box–Müller algorithm. As underlined in [43] (Section 5),
one can simulate a time-changed process Xα = X ◦ Lα by setting a grid {tn}n≤N (with
t1 < t2 < · · · < tN), simulating {σα(tn)}n≤N and then the parent process X up to tN .
Finally, an approximate trajectory of the process Xα is obtained by a step plot between the
nodes {(X(tn), σα(tn))}n∈N . Let us stress that such an algorithm can be generalized to any
subordinator, but in this case, Laplace inversion could be required. Moreover, in the case of
the DRBM, this involves the simulation of an RBM. We can bypass such a step by using a
CTRW approximation of W̃η

α , at least for η < 0. This follows from an analogous approach
for the RBM, which will be discussed in the following sections.

4. Heavy Traffic Approximation of the Fractional M/M/1 Queue
4.1. The Heavy Traffic Approximation of the Classical M/M/1 Queue
4.1.1. The Queueing Model

Let us first introduce the M/M/1 queueing model. Consider a system in which, at a
certain average rate λ, a job (client) enters the system to be processed by a server, which
takes a certain amount of time of mean 1/µ to perform. If a job is currently being served
and another job enters the system, it waits in line in a queue. Jobs that are waiting are then
processed, as soon as the server is free, via a First In First Out (FIFO) policy. To model such
a system, we assume in any case that the interarrival times (i.e., the time interval between
the arrival of two jobs) are i.i.d. and so are the service times.

In this first case, i.e., the M/M/1 queueing system, we also suppose that:

• service times and interarrival times are independent of each other;
• the jobs enter the system following a Poisson arrival process;
• service times are exponentially distributed.

Thus, we consider two sequences U = (Uk)k≥1 and V = (Vk)k≥1 of i.i.d. exponential
random variables of parameters, respectively, λ > 0 and µ > 0 that are independent of
each other, representing, respectively, the interarrival and the service times. We can define
the sequence of the arrival times (i.e., the time instants in which the jobs enter the system)
SU = (SU

k )k≥0 as

SU
k =

k

∑
j=1

Uj,

where we set SU
0 = 0. Let A = {A(t), t ≥ 0} be the arrival counting process, i.e., A(t) is

the number of arrivals up to time t. It is defined as

A(t) = max{k ≥ 0 : Su
k ≤ t}.

In the case of a M/M/1 system, as we supposed before, A is a Poisson process
of parameter λ and we denote it by A ∼ Pois(λ). We can also define the sequence
SV = (SV

k )k≥0, which is, for any k ≥ 0, the total amount of time that is necessary to process
the first k-th jobs, as

SV
k =

k

∑
j=1

Vj,

where we set SV
0 = 0, and the cumulative input process C = {C(t), t ≥ 0} as
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C(t) =
A(t)

∑
j=1

Vj = SV
A(t),

i.e., the necessary service times to process all the tasks that entered the system up to time t.
Let us stress that SV

k is not the time of completion of the k-th task, as there could have been
some idle periods. By using the cumulative input process, we can introduce the net input
process X = {X(t), t ≥ 0} as

X(t) = C(t)− t.

The net input process takes, in a certain sense, a balance between the total service
time that is necessary to process all the tasks and the time that has passed since the system
is initialized. By definition, X is a cádlág process that decreases with continuity while it
increases only by jumping. Moreover, X(0) = 0, and thus X ∈ D0(R+

0 ) almost surely, and
we can define the workload process WL = {WL(t), t ≥ 0} via the Skorokhod reflection
map as WL = Ψ(X). One can visualize how WL works: when it is positive, the process
WL decreases linearly with slope −1 until it reaches 0; once 0 has been reached, it remains
constant (while the net input X(t) could be still decreasing); each time X jumps, so does
WL. Thus, it is clear that WL is 0 during idle periods and it is positive while a job is being
served. We can state that WL, in a certain sense, measures how much residual time is
needed to process all the tasks. Here, the effect of the regulator is much clearer than in the
RBM case. Indeed, the process WL(t) tries to cross 0 with a fixed slope of −1. As soon as
WL(t) touches 0, the regulator symmetrizes such a slope, thus adding a linear term with
slope 1 to the process. The sum of the symmetric effects of the proper velocity of WL(t)
(or, in other words, the effort that X(t) puts into driving WL(t) against 0) and the velocity
of the regulator is the main motivation for which the process WL(t) stabilizes on 0 until
it increases jumping away. Such an example actually shows how the threshold 0 works
as a mirror for the velocity of the process and how the regulator provides a symmetric
additional term to such a velocity. Moreover, it is clear that, for any t ≥ 0, it holds that
WL(t) ≤ C(t): they increase together with the same amount, but WL decreases with
continuity in the meantime. As C measures the total amount of necessary service time,
up to time t, to process all the jobs, and WL, the remaining amount of time to process all
the waiting jobs, up to time t, their difference represents the total amount of time, up to
time t, in which the server was actually working. We call such a process the cumulative
busy time process B = {B(t), t ≥ 0}, where B(t) = C(t)−WL(t). The cumulative busy
time process is increasing and piecewise linear. It remains constant during idle periods;
otherwise, it grows with slope 1. Thus, if we consider B as the clock of the process, we
are only neglecting the idle periods. Thus, if we count service times only on this clock,
we obtain the exact number of processed jobs. Hence, we consider a counting process
N = {N(t), t ≥ 0} of the service times, i.e.,

N(t) = max{k ≥ 0 : SV
k ≤ t},

and then we define the departure process D = {D(t), t ≥ 0} as D(t) = N(B(t)). Finally,
the balance between the number of arrivals and the number of departures, i.e., the number of
jobs that are currently in the system, gives us the queue length process Q = {Q(t), t ≥ 0},
i.e., Q(t) = A(t)− D(t). Since we are mainly interested in the process Q, we resume the
full construction with the notation Q ∼ M/M/1(λ, µ). In any case, we will adopt the full
notation that we introduced before, since the previously constructed processes will still
play a role. Moreover, if we write Q(c) ∼ M/M/1(λ, µ), then all the involved processes
will present the same apex.

It is clear that the traffic of the system can be expressed in terms of the constant ρ = λ
µ .

As ρ < 1, Q admits a stationary distribution and, in particular, is ergodic, while ρ ≥ 1
implies that Q is not ergodic. The threshold ρ = 1 thus divides the ergodic behavior with
the non-ergodic one. We are interested in what happens when ρ < 1 but 1− ρ ≈ 0. In this
situation, we say that the queueing system is in the heavy traffic regime.
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4.1.2. The Heavy Traffic Approximation

It is well known that, under a suitable rescaling, a M/M/1 queueing system in the
heavy traffic regime can be approximated (in distribution) with a Reflected Brownian
Motion. The following theorem, which is practically [25] (Section 9.6), resumes the heavy
traffic approximation result.

Theorem 6. Fix λ > 0 and let (ρn)n≥1 be a sequence such that 0 < ρn ≤ 1 for any n ≥ 1, ρn → 1
and
√

n(1− ρn)→ ζ > 0. Set µn = λρ−1
n , η = −λ−1ζ and σ2 = 2

λ2 . Let Q̂n ∼ M/M/1(λ, µn)

and define Q(n) = n−
1
2 Q̂n ◦ ιn. Then, there exists a process Q̃ ∼ RBM(λ2η, λ3σ2) such that,

as n→ +∞,
Q(n) ⇒ Q̃.

Proof. Let (U(n)
k )k≥1 and (V(n)

k )k≥1 be the sequences of interarrival and service times of

Q(n) and (SU,(n)
k )k≥1, and (SV,(n)

k )k≥1 be the arrival and cumulative service times. Observe
that we can construct the n-th sequence of service times by rescaling the ones of the
first model, i.e., we can set (V(n)

k )k≥1 = µn
µ1
(V(1)

k )k≥1, while (U(n)
k )k≥1 is independent

of n and thus can be considered to be equal to (U(1)
k )k≥1. Let us define the processes

S̃U,(n) = {S̃U,(n)(t), t ≥ 0} and S̃V,(n) = {S̃V,(n)(t), t ≥ 0} as

S̃U,(n)(t) = n−
1
2 (SU,(n)
bntc − λ−1nt)

S̃V,(n)(t) = n−
1
2 (SV,(n)
bntc − µ−1

n nt).

Observing that, for any k ≥ 1,

E[U(n)
k ] = λ−1 Var[U(n)

k ] = λ−2

E[V(n)
k ] = µ−1

n Var[V(n)
k ] = µ−2

n ,

and that SU,(n) and SV,(n) are independent of each other, we know, by Donsker’s theorem
(see [25] (Theorem 4.3.2)), that there exist two independent Brownian motions Wi ∼ BM,
i = 1, 2, such that, as n→ +∞,

S̃U,(n) ⇒ λ−1W1

S̃V,(n) ⇒ λ−1W2,

where we also use the fact that µn → λ. Since W1 and W2 are almost surely continuous, we
can use both [25] (Theorems 9.3.3 and 9.3.4) to conclude that Q(n) ⇒ Q̃ with

Q̃ = λ(Φ(W3) ◦ ιλ),

where W3 ∼ BM(η, σ2) and η, σ2 are defined in the statement of the theorem. Denoting
W̃ = Φ(W3), we know that W̃ ∼ RBM(η, σ2), and then, by property (i) of Proposition 1,
we get

Q̃ ∼ RBM(λ2η, λ3σ2),

concluding the proof.

In the previous theorem, we considered a space–time scaling Q(n) = n−
1
2 Q̂n ◦ ιn.

However, in place of the time one, we could consider an appropriate scaling of the arrival
and service rates. From now on, we will denote the fact that a random variable T is
exponentially distributed with parameter λ > 0 with T ∼ Exp(λ). We have the following
scaling property.
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Proposition 6. Let Q ∼ M/M/1(λ, µ) and Q(c) ∼ M/M/1(cλ, cµ). Then, the following
equalities hold:

U(c) d
= c−1U V(c) d

= c−1U

SU,(c) d
= c−1SU SV,(c) d

= c−1SV

A(c) d
= A ◦ ιc N(c) d

= N ◦ ιc

C(c) d
= c−1C ◦ ιc WL(c) d

= c−1WL ◦ ιc B(c) d
= c−1B ◦ ιc

D(c) d
= D ◦ ιc Q(c) d

= Q ◦ ιc.

Proof. Since Uk ∼ Exp(λ) and Vk ∼ Exp(µ), it holds that c−1Uk ∼ Exp(cλ) and c−1Vk ∼
Exp(cλ). This, together with the independence of the involved variables, implies U(c) d

=

c−1U and V(c) d
= c−1V. As a direct consequence, it holds that SU,(c) d

= c−1SU , SV,(c) d
=

c−1SV . By definition, one can easily check that, for the counting processes (which are

Poisson processes), it holds that A(c) d
= A ◦ ιc and N(c) d

= N ◦ ιc. The independence of A(c)

and V(c) leads to

C(ct) =
A(ct)

∑
j=1

Vj = c
A(ct)

∑
j=1

c−1Vj
d
= c

A(c)(t)

∑
j=1

V(c)
j = cC(c)(t),

and, in particular, C ◦ ιc
d
= cC(c). Moving to the net input processes, we clearly get

X ◦ ιc
d
= c(C(c) − ι) = cX(c). Since the Skorokhod reflection mapping is continuous, we

have
WL ◦ ιc = Ψ(X ◦ ιc)

d
= Ψ(cX(c)) = cΨ(X(c)) = cWL(c).

Next, consequently, we have

B ◦ ιc = C ◦ ιc −WL ◦ ιc
d
= c(C(c) − L(c)) = cB(c).

Now, let us focus on the queue length processes. To show the equality in law, we
need to use a different representation of the queue length, due to [56] and widely exploited
in [57]. Precisely, if we consider another sequence Ṽ = (Ṽk)k≥1 of i.i.d. random variables
with Ṽk ∼ Exp(µ), we can define the sequence SṼ = (SṼ

k )k≥0, with SṼ
k = ∑k

j=1 Ṽk and

SṼ
0 = 0, and the counting process Ñ = {Ñ(t), t ≥ 0}, where

Ñ(t) = inf{k ≥ 0 : SṼ
k ≥ t}.

In particular, we obtain that, for the process X̃(t) = A(t)− Ñ(t), one has

Q d
= Ψ(X̃).

Arguing as before, we get

Q ◦ ιc
d
= Ψ(X̃) ◦ ιc = Ψ(X̃ ◦ ιc)

d
Ψ(X̃(c))

d
= Q(c).

Finally, the property of the departure process follows by difference.

Remark 6. The fact that Ṽk is distributed as the service times is typical of the M/M/1 case. If one
considers a multi-channel queue, (Ṽk)k≥1 represents the potential service times, i.e., the service times
one gets if the servers are not shut down when they are idle. This means that, in the multi-channel
case, in place of having a single sequence of service times, each one associated with a job, one has
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many sequences of service times and each sequence is associated with one server (as if the systems
admits as many queues as servers). It is clear that in the M/M/1 queues, this makes no difference
and (Ṽk)k≥1 is really the sequence of service times (Vk)k≥1. In particular, this means that the queue
length process Q can be written as the reflection of the process X̃(t) = A(t)− N(t). In general, Q
can be written as the reflection of the process X̃(t) = A(t)− Ñ(t), which is called the modified
net input process.

We can restate Theorem 6 in terms of such a scaling property.

Corollary 3. Fix λ > 0 and let (ρn)n≥1 be a sequence such that 0 < ρn ≤ 1 for any n ≥ 1,
ρn → 1 and

√
n(1− ρn) → ζ > 0. Set λn = nλ, µn = nλρ−1

n , η = −λ−1ζ and σ2 = 2
λ2 .

Let Q(n) ∼ M/M/1(λn, µn). Then, there exists a process Q̃ ∼ RBM(λ2η, λ3σ2) such that,
as n→ +∞,

n−
1
2 Q(n) ⇒ Q̃.

Proof. The statement follows from Theorem 6 after observing from Proposition 6 that

Q(n) d
= Q̂n ◦ ιn, where Q̂n ∼ M/M/1(n−1λn, n−1µn), n−1λn = λ and n−1µn = λρ−1

n .

4.2. The Heavy Traffic Approximation of the Fractional M/M/1 Queue
4.2.1. The Queueing Model

Now, we need to introduce the model that we are interested in. Precisely, we refer to
the fractional M/M/1 queue, first defined in [4].

Definition 7. Let Q ∼ M/M/1(λ, µ), α ∈ (0, 1) and Lα be an inverse stable subordinator
independent of Q. We define a fractional M/M/1 queue by means of its queue length process
Qα := Q ◦ Lα and we denote it as Qα ∼ M/M/1(λ, µ; α). We call Q its parent process and we
extend the definition to α = 1, by setting Qα as a classical M/M/1 queue length process.

Since the process is defined by means of a time-change procedure, we know that
it is a semi-Markov process. On the other hand, the interpretation of Qα as a queueing
model is unclear unless we define some other quantities. In place of proceeding with a
forward construction as done for the M/M/1 queue, here, we need to consider a backward
construction to define the main quantities of a queueing system. Indeed, we can recognize
the arrival times SUα

= (SUα

k )k≥0 by setting SUα

0 = 0 and then

SUα

k = inf{t ≥ SUα

k−1, Qα(t)−Qα(t−) = 1}, k ≥ 1.

Hence, the interarrival times Uα = (Uα
k )k≥1 are defined by setting

Uα
k = SUα

k − SUα

k−1, k ≥ 1.

Analogously, one can define the departure times DTα = (DTα
k )k≥0 by setting DTα

0 = 0
and

DTα
k = inf{t ≥ DTα

k−1, Qα(t−)−Qα(t) = 1}, k ≥ 1.

To identify the service times, we have to distinguish between two cases. Indeed,
if Qα(DTα

k−1) 6= 0, then, as soon as the k− 1-th job leaves the system, the k-th one is already
being served. Thus, its service time is DTα

k − DTα
k−1. Otherwise, as soon as the k− 1-th job

leaves the system, to identify the service time, we have to wait for the k-th job to enter the
system. Hence, we can define the service times Vα = (Vα

k )k≥1 as

Vα
k =

{
DTα

k − DTα
k−1 Qα(DTα

k−1) 6= 0
DTα

k − SUα

k Qα(DTα
k−1) = 0.
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Once the sequences Uα and Vα are defined, we can reconstruct all the quantities
involved in the queueing model, as done in Section 4.1.1, and thus we will use the same
notation with the apex α to denote the respective fractional counterpart. We are also
interested in the interevent times Tα = (Tα

k )k≥1. To define them, let us first define the
event times STα

= (STα

k )k≥0 by setting STα

0 = 0 and

STα

k = inf{t ≥ STα

k−1, Qα(t)−Qα(t−) 6= 0}, k ≥ 1

and then set
Tα

k = STα

k − STα

k−1, k ≥ 1.

In the case α = 1, the interevent time Tk is exponentially distributed with parameter
λ + µ if Q(ST

k−1) 6= 0, while it is exponentially distributed with parameter λ if Q(ST
k−1) = 0.

In particular, if STα

k−1 = SUα

j−1 for some j ∈ N, then Tα
k is the minimum between the interar-

rival time Uα
j and the residual service time

RVα
k := min{DTα

j : DTα
j ≥ STα

k } − STα

k .

If STα

k−1 = DTα
j−1 for some j ∈ N and Q(SVα

j−1) 6= 0, then Tα
k is the minimum between

the service time Vα
j and the residual interarrival time

RUα
k := min{SUα

j : SUα

j ≥ STα

k } − STα

k .

Clearly, if STα

k−1 = DTα
j−1 for some j ∈ N and Q(SVα

j−1) = 0, then Tα
k = RUα

k . As α = 1,

RV1
k and RU1

k are still independent and exponentially distributed with parameters λ and µ:
this is due to the loss of memory property of the exponential distribution. Thus, the fact that,
in the first two cases, Tk is an exponential with parameter λ+µ can be seen as a consequence
of the fact that it is the minimum of two independent exponential random variables.

This is, in general, not true for α ∈ (0, 1). To describe the distribution of Uα
k , Vα

k and
Tα

k , we need some additional definitions (see [58–60]).

Definition 8. We denote by Eα the Mittag–Leffler function of order α ∈ (0, 1], defined as

Eα(t) =
+∞

∑
j=0

tj

Γ(αj + 1)
, t ∈ R.

For α = 1, it holds that Eα(t) = et.
We say that T is a Mittag–Leffler random variable of order α ∈ (0, 1] and parameter λ > 0 if

P(T > t) =

{
Eα(−λtα) t ≥ 0
1 t < 0

and we denote it by T ∼ ML(λ; α).
We say that T is a generalized Erlang random variable of order α ∈ (0, 1], rate λ > 0 and

shape parameter k = 1, 2, . . . if

P(T > t) =

∑k−1
n=0 ∑+∞

j=1(−1)j(n+j
n ) (λtα)j+1

Γ(α(j+n)+1) t ≥ 0

1 t < 0

and we denote it by T ∼ GE(k, λ; α). In particular, if Ti ∼ ML(λ/k; α), i = 1, . . . , k, are
independent, then ∑k

i=1 Ti ∼ GE(k, λ; α).
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Mittag–Leffler random variables naturally arise from the evaluation of an α-stable
subordinator σα in an independent exponential random variable.

Lemma 2. Let Y ∼ Exp(λ) be independent of σα. Then, σα(Y) ∼ ML(λ; α).

Proof. It is clear that for t < 0, it holds that P(σα(Y) > t) = 1. By using the independence
of Y and σα, we get, for t ≥ 0,

P(σα(Y) > t) = P(Y > Lα(t)) = E[P(Y > Lα(t))|Lα(t)] = E[e−λLα(t)] = Eα(−λtα),

where the last equality follows from the Laplace transform of the inverse α-stable subordi-
nator, as obtained in [61].

In the following, we will specify some distributional properties of Uα, Vα and Tα.
Let us stress that the distribution of Tα has been already exploited in [4]. On the other
hand, the distribution of Uα has been obtained in [21] under the condition that there are
no departures between two arrivals: the conditioning arises from the fact that the proof
is carried on by using the semi-Markov property and a modification of the Kolmogorov
equations for the queueing system. A similar argument holds for Vα in [21]. Here, we use
some different techniques that rely on the fact that σα is a Lévy process. As a consequence,
as will be clear in the following statement, we do not have to consider any conditioning
to obtain the distribution of Uα and Vα. Moreover, we also obtain the independence,
respectively, of the interarrival times and the service times, while the mutual independence
of the two sequences holds only if α = 1, as observed in [4].

Proposition 7. Let Qα ∼ M/M/1(λ, µ; α). Then,

1. The variables Tα
k are independent of each other;

2. For any k ≥ 1, Tα
k ∼ ML(λ + µ; α) conditioned to the event {Qα(Tα

k−1) 6= 0};
3. For any k ≥ 1, Tα

k ∼ ML(λ; α) conditioned to the event {Qα(Tα
k−1) = 0};

4. For any k, h ≥ 1, STα

k+h − STα

k ∼ GE(h, h(λ + µ); α) conditioned to the event {Qα(Tα
j ) 6= 0,

∀j = k, . . . , k + h− 1};
5. The variables Uα

k are independent of each other;
6. For any k ≥ 1, it holds that Uα

k ∼ ML(λ; α);
7. The variables Vα

k are independent of each other;
8. For any k ≥ 1, it holds that Vα

k ∼ ML(µ; α);
9. If α ∈ (0, 1), the sequences Uα and Vα are not independent of each other.

Proof. To prove item (1), let us first observe that STα

0 = 0 = σα(0) = σα(ST
0 ) almost surely.

Now, let us suppose that STα

k−1 = σα(ST
k−1−). Arguing on STα

k , by definition, we get

STα

k = inf{t ≥ STα

k−1, Qα(t−) 6= Qα(t)}
= inf{t ≥ σα(ST

k−1), Q(Lα(t)−) 6= Qα(Lα(t))}.

Since Lα(t) is constant for t ∈ [σα(y−), σα(y)), there exists a random variable Y ≥ 0
such that STα

k = σ(Y−) almost surely. Thus, we can rewrite

STα

1 = inf{σ(y−), y ≥ ST
k−1, Q(Lα(σ(y))−) 6= Qα(Lα(σ(y)))}

= inf{σ(y−), y ≥ ST
k−1, Q(y−) 6= Qα(y)}.

If σα is strictly increasing, we have that, almost surely,

STα

k = σα(inf{y ≥ ST
k−1, Q(y−) 6= Qα(y)}−) = σα(ST

k−).

We conclude, by induction, that STα

k = σα(ST
k−) for any k ≥ 0.
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Now, let us consider two interevent times Tα
k , Tα

j with 1 ≤ k < j. By definition, it holds

that Tα
k = STα

k − STα

k−1 and Tα
j = STα

j − STα

j−1. Fix tk, th ≥ 0 and observe that

P(Tα
k ≤ tk, Tα

j ≤ tj) = P(STα

k − STα

k−1 ≤ tk, STα
j − STα

j−1 ≤ tj)

= P(σα(ST
k−)− σα(ST

k−1−) ≤ tk, σα(ST
j −)− σα(ST

j−1−) ≤ tj)

= E[P(σα(ST
k−)− σα(ST

k−1−) ≤ tk, σα(ST
j −)− σα(ST

j−1−) ≤ tj|ST
k , ST

k−1, ST
j , ST

j−1)]

= E[P(σα(ST
k )− σα(ST

k−1) ≤ tk, σα(ST
j )− σα(ST

j−1) ≤ tj|ST
k , ST

k−1, ST
j , ST

j−1)],

(6)

where the last equality holds due to the fact that σα is stochastically continuous and ST

is independent of σα. Nevertheless, by the fact that ST is independent of σα, if we define
F4(s1, s2, s3, s4; tk, tj) = P(σα(s1)− σα(s2) ≤ tk, σα(s3)− σα(s4) ≤ tj), it holds that

P(Tα
k ≤ tk, Tα

j ≤ tj) = E[F4(ST
k , ST

k−1, ST
j , ST

j−1; tk, tj)].

If σα is a Lévy process, whenever s2 < s1 ≤ s4 < s3, it holds that F4(s1, s2, s3, s4; tk, tj) =

F1(s1 − s2; tk)F1(s3 − s4; tj), where F1(s; t) = P(σα(s) ≤ t). However, ST
k−1 < ST

k ≤ ST
j−1 <

ST
j almost surely; thus,

P(Tα
k ≤ tk, Tα

j ≤ tj) = E[F1(ST
k − ST

k−1; tk)F1(ST
j − ST

j−1; tj)] = E[F1(Tk; tk)]E[F1(Tj; tj)], (7)

where we also use the fact that Tk and Tj are independent. Now, we need to determine
E[F1(Tk; tk)]. To do this, we use again the fact that σα is a Lévy process independent of the
sequence T to obtain that

E[F1(Tk; tk)] = P(σα(ST
k )− σα(ST

k−1) ≤ tk) = P(Tα
k ≤ tk). (8)

Combining Equations (7) and (8), we have

P(Tα
k ≤ tk, Tα

j ≤ tj) = P(Tα
k ≤ tk)P(Tα

j ≤ tj).

Properties (2) and (3) follow from Equation (8), as

P(Tα
k ≤ tk) = E[F1(Tk; tk)] = P(σα(Tk) ≤ tk),

and Lemma 2. Property (4) is a direct consequence of (1), (2) together with the decomposi-
tion property of the generalized Erlang distribution. The proof of item (5) is analogous to

the one of item (1) applied to SUα

k . Item (6) follows from the equality Uα
k

d
= σα(Uk), which

can be proven analogously as in the case of the interevent times, and Lemma 2. The proof
of item (5) is similar to the one of item (1); however, once k, j are fixed, one has to discuss
separately

P(Vα
k ≤ tk, Vα

j ≤ tj, Qα(DTα
k−1) 6= 0, Qα(DTα

j−1) 6= 0),

P(Vα
k ≤ tk, Vα

j ≤ tj, Qα(DTα
k−1) 6= 0, Qα(DTα

j−1) = 0),

P(Vα
k ≤ tk, Vα

j ≤ tj, Qα(DTα
k−1) = 0, Qα(DTα

j−1) 6= 0),

P(Vα
k ≤ tk, Vα

j ≤ tj, Qα(DTα
k−1) = 0, Qα(DTα

j−1) = 0).

Item (8) follows from Vα
k

d
= σ(Vk) and Lemma 2. Finally, item (9) follows from the

fact that, despite Tα
1 = min{Vα

1 , Uα
1 }, P(Tα

1 > t) 6= P(Vα
1 > t)P(Uα

1 > t), as a consequence
of the lack of semigroup property of the Mittag–Leffler function for α < 1 (see [62]).

Remark 7. It is clear from the previous proposition that the arrival counting process Aα is a
fractional Poisson process (see [15,16]) of parameter λ and order α.
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4.2.2. The Heavy Traffic Approximation

Now, we are ready to prove the heavy traffic limit for the fractional M/M/1 queue.
It will be a clear consequence of the definition of the fractional M/M/1 queue, the classic
heavy traffic approximation and the continuous mapping theorem.

Theorem 7. Fix λ and let (ρn)n≥1 be a sequence such that 0 < ρn ≤ 1 for any n ≥ 1, ρn → 1
and
√

n(1 − ρn) → ζ > 0. Set λn = nλ, µn = nλρ−1
n , η = −λ−1ζ and σ2 = 2

λ2 . Let
Qα,(n) ∼ M/M/1(λn, µn; α). Then, there exists a process Q̃α ∼ DRBM(λ2η, λ3σ2; α) such that,
as n→ +∞,

n−
1
2 Qα,(n) ⇒ Q̃α. (9)

Proof. Let Q(n) ∼ M/M/1(λn, µn) be the parent process of Qα,(n) for any n ≥ 1. By Corol-
lary 3, we know that there exists Q̃ ∼ RBM(λ2η, λ3σ2) such that

n−1/2Q(n) ⇒ Q̃.

Without loss of generality, we can suppose that Lα is independent of each n−1/2Q(n)

and Q̃. Then, we have that (n−1/2Q(n), Lα) ⇒ (Q̃, Lα) in D(R+
0 )× D(R+

0 ). Now, let us
denote by Disc(◦) the set of discontinuity points of the composition map ◦ : D(R+

0 )×
D(R+

0 ) → D(R+
0 ) with respect to the J1 topology. Denoting by D↑(R+

0 ) = {x ∈ D(R+
0 ) :

x is nondecreasing}, it holds that (Q̃, Lα) ∈ C(R+
0 ) × D↑(R+

0 ) almost surely. Moreover,
(C(R+

0 )× D↑(R+
0 )) ∩Disc(◦) = ∅ (see [25] (13.2.2) ); thus, P((Q̃, Lα) ∈ Disc(◦)) = 0.

We get Equation (9) with Q̃α = Q̃ ◦ Lα by the continuous mapping theorem (see [25]
(Theorem 3.4.3)).

5. Simulating a DRBM(η; α) with η < 0 via CTRW

In this section, we want to derive a simulation algorithm for the DRBM(η; α) with
η < 0 from the heavy traffic approximation of the fractional M/M/1 queue. To do this, we
first need to investigate how to simulate the fractional M/M/1 queue. Let us anticipate
that we will adapt the well-known Doob–Gillespie algorithm (see [63]) to this case. This has
been already done in [4] and discussed for general discrete event systems in [31] (Chapter II,
Section 6); however, for completeness, let us recall the main steps of such generalization.

5.1. Simulation of the M/M/1(λ, µ; α)

To achieve the simulation algorithm for the fractional M/M/1, we need to exploit
some distributional properties of the α-stable subordinator. First, let us define stable
random variables.

Definition 9. We say that a real random variable S is stable if there exist α ∈ (0, 1), β ∈ [−1, 1],
γ ≥ 0 and δ ∈ R such that

E[eiθS] = eiθδ−γα |θ|α(1−iβsign(θ) tan( π
2 α)) (10)

and we denote it as S ∼ S(α, β, γ, δ). We refer to [64] for the parametrization.

Comparing (3) with (10), it is clear that σα(1) ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

. The latter
observation can be used to state the following lemma (see also [23] (Corollary 7.3)).

Lemma 3. Let Y ∼ Exp(λ) and S ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

be independent of each other. Then,

Y
1
α S ∼ ML(λ; α).
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Proof. Let σα be an α-stable subordinator independent of Y. Thus, it is clear, by simple

conditioning arguments and property (iii) of Proposition 2, that σα(Y)
d
= Y

1
α σα(1)

d
= Y

1
α S.

Finally, Lemma 2 concludes the proof.

Since we know how to simulate an exponential random variable by means of the
inversion method (see [31] (Chapter II, Example 2.3)) and a stable random variable by
means of the Chambers–Mallow–Stuck algorithm (see [55]), we are able to simulate Mittag–
Leffler random variables. Moreover, let us stress that one can easily simulate discrete
random variables (see [31] (Chapter II, Example 2.1)). We only need to understand how to
combine all these simulation procedures to obtain the fractional M/M/1 queue for fixed
λ, µ > 0 and α ∈ (0, 1].

To do this, we define the functions rλ,µ, pλ,µ : N0 → R (where N0 is the set of non-
negative integers) as

rλ,µ(x) =

{
λ x = 0
λ + µ x > 0

pλ,µ(x) =

{
1 x = 0

λ
λ+µ x > 0.

Let us define the sequence X λ,µ = (X λ,µ
k )k≥1 by setting X λ,µ

0 = 0 and X λ,µ
k , for any

k ≥ 1, via the distribution

P(X λ,µ
k −X λ,µ

k−1 = 1|χλ,µ
k−1 = x) = pλ,µ(x), P(X λ,µ

k −X λ,µ
k−1 = −1|χλ,µ

k−1 = x) = 1− pλ,µ(x).

It is clear that X λ,µ is the jump chain of the classical M/M/1 queue. Moreover, let
us stress that the time-change procedure does not change the jump chain of a continuous-
time random walk; thus, X λ,µ is also the jump chain of the fractional M/M/1 queue.
Concerning the interevent times, let us define the sequence T λ,µ,α = (T λ,µ,α

k )k≥1 of i.i.d.
random variables with distribution dictated by the following relation:

P(T λ,µ,α
k > t|χλ,µ

k−1 = x) = Eα(−rλ,µ(x)tα).

In general, we can define the sequence Sλ,µ,α by setting Sλ,µ,α
0 = 0 and Sλ,µ,α

k =

Sλ,µ,α
k−1 + T λ,µ,α

k and the counting process N λ,µ,α = {N λ,µ,α(t), t ≥ 0} given by

N λ,µ,α(t) = max{k ≥ 0 : Sλ,µ,α
k ≤ t}.

Once N λ,µ,α is defined, we can define the process Qλ,µ,α = {Qλ,µ,α(t), t ≥ 0} as
Qλ,µ,α(t) = X λ,µ

N λ,µ,α(t)
. Since, by definition, the process (X λ,µ, T λ,µ,α) is a Markov-additive

process, Qλ,µ,α is a semi-Markov process (see [51]). For α = 1, it is well known that
Qλ,µ,1 ∼ M/M/1(λ, µ) and the Markov-additive decomposition that we exploited before
is the main tool behind the Doob–Gillespie algorithm [63]. Hence, it is clear that, to
generalize the previous algorithm, we only need to show that Qλ,µ,α ∼ M/M/1(λ, µ; α).

Proposition 8. Let Qλ,µ,α and Qλ,µ,1 be two processes as defined before, and let Lα be an inverse

stable subordinator independent of both X λ,µ and T λ,µ,1. Then, Qλ,µ,α d
= Qλ,µ,1 ◦ Lα. As a

consequence, Qλ,µ,α ∼ M/M/1(λ, µ; α).

Proof. First, let us observe that, if T λ,µ,1 is independent of σα, we have σα(T λ,µ,1
k )

d
= T λ,µ,α

k
for any k ≥ 1 by Lemma 2. Arguing as in Proposition 7, one can prove by induction that

Sλ,µ,α
k

d
= σα(Sλ,µ,1

k ) for any k ≥ 0 and that (σα(T λ,µ,1
k ))k≥1 is a sequence of independent

random variables. Thus, we conclude that T λ,µ,α d
= (σ(T λ,µ,α

k ))k≥0. By Skorokhod’s
representation theorem (see, for instance, [54]), we can suppose, without loss of generality,
that the equality holds almost surely. Hence, we obtain that Sλ,µ,α

k ≤ t if and only if
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Sλ,µ,1
k ≤ Lα(t) for any k ≥ 1 and any t ≥ 0; that is to say, N λ,µ,α = N λ,µ,1 ◦ Lα. This

concludes the proof.

Now, we are ready to express the simulation algorithm. It is clear that we only need to
simulate the following arrays:

• The state array X λ,µ, which contains the states of the queue length process;
• The calendar array Sλ,µ,α, which contains the times in which an event happens.

Indeed, in such a case, one can recover Qλ,µ,α(t) by finding k such that Sλ,µ,α
k ≤ t <

Sλ,µ,α
k+1 and then setting Qλ,µ,α(t) = X λ,µ

k , as done in Algorithm 1. Let us stress that all the
algorithms will be given as procedures, so that we can recall each algorithm in other ones.

Algorithm 1 Generation of the queue length process from the state and calendar arrays

procedure GENERATEQUEUE . Input: X λ,µ, Sλ,µ,α

. Output: Qλ,µ,α

function Qλ,µ,α(t)
`← length(Sλ,µ,α) . Recall that the arrays start with 0
tfinal ← S

λ,µ,α
`−1

if tfinal < t then
Error

else
k← 0
while t > Sλ,µ,α

k+1 do
k← k + 1

end while
Qλ,µ,α(t)← X λ,µ

k
end if

end function
end procedure

Once we know how to generate the queue from the arrays, let us state Algorithm 2,
which simulates them up to the N-th event.

Algorithm 2 Simulation of a M/M/1(λ, µ; α) queue up to event nfinal

procedure SIMULATEARRAYSEVENT . Input: λ, µ > 0, α ∈ (0, 1), nfinal ∈ N
. Output: X λ,µ, Sλ,µ,α

X λ,µ
0 ← 0

Sλ,µ,α
0 ← 0

for k = 1, . . . , nfinal do
Simulate U uniform in (0, 1)
if U < pλ,µ(X

λ,µ
k−1) then

X λ,µ
k ← X λ,µ

k−1 + 1
else
X λ,µ

k ← X λ,µ
k−1 − 1

end if
Simulate T ∼ Exp(rλ,µ(X

λ,µ
k−1))

Simulate S ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

Sλ,µ,α
k ← Sλ,µ,α

k−1 + T 1
α S

end for
end procedure

Algorithm 2 can be easily adapted to other stopping conditions. In the following, it will
be useful to express how to simulate a M/M/1(λ, µ; α) queue up to time tstop > 0 (precisely,
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up to the time min{Tα
k ≥ tstop}). This is done in Algorithm 3, and some simulation results

are shown in Figure 1.

Algorithm 3 Simulation of a M/M/1(λ, µ; α) queue up to time tstop > 0

procedure SIMULATEARRAYSTIME . Input: λ, µ > 0, α ∈ (0, 1), tstop > 0
. Output: X λ,µ, Sλ,µ,α

X λ,µ
0 ← 0

Sλ,µ,α
0 ← 0

k← 0
while Sλ,µ,α

k < tstop do
k← k + 1
Simulate U uniform in (0, 1)
if U < pλ,µ(X

λ,µ
k−1) then

X λ,µ
k ← X λ,µ

k−1 + 1
else
X λ,µ

k ← X λ,µ
k−1 − 1

end if
Simulate T ∼ Exp(rλ,µ(X

λ,µ
k−1))

Simulate S ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

Sλ,µ,α
k ← Sλ,µ,α

k−1 + T 1
α S

end while
end procedure
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Figure 1. Cont.
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Figure 1. Simulated sample paths of Q ∼ M/M/1(λ, µ; α) up to time tstop = 100 for different values
of α, λ and µ. Precisely, on the left ρ < 1, while on the right ρ > 1.

5.2. Simulation of the DRBM(η; α) with η < 0

Now, we want to use Algorithm 3 to determine a simulation algorithm for the Delayed
Reflected Brownian Motion with negative η. To do this, let us observe that the limit process
in Theorem 7 is Q̃α ∼ DRBM(λ2η, λ3σ2; α) for some constants η < 0 and σ > 0. Recalling
that σ2 = 2/λ2, we know that, in order to have DRBM(η, 1; α), it must hold that 2λ = 1,
i.e., λ = 1/2, and then η = 4η. Now, set ρn = 1− ζ√

n , where ζ > 0 has to be chosen in a

proper way, precisely ζ = −η/2 = −2η. However, since we need µn = n
2 ρ−1

n > 0, it must
hold that ρn > 0, which is true if and only if ζ <

√
n. Taking into account this requirement,

we can develop an algorithm for the simulation of the DRBM with negative η up to time
tstop > 0 and iteration nit > 4η2. Again, we only need to simulate the state and calendar
arrays of the approximating queue length process and then generate the DRBM from them.
This is done in Algorithms 4 and 5.
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Algorithm 4 Simulation of a DRBM(η; α) for η < 0 up to time tstop > 0 and iteration
nit > 4η2

procedure SIMULATEDRBM . Input: η < 0, α ∈ (0, 1), tstop > 0, nit > 4η2

. Output: W̃η
α

λ← nit
2

ζ ← −2η

ρ← 1− ζ√
nit

µ← λ
ρ

X λ,µ
0 ← 0

Sλ,µ,α
0 ← 0

k← 0
while Sλ,µ,α

k < tstop do
k← k + 1
Simulate U uniform in (0, 1)
if U < pλ,µ(X

λ,µ
k−1) then

X λ,µ
k ← X λ,µ

k−1 + 1
else
X λ,µ

k ← X λ,µ
k−1 − 1

end if
Simulate T ∼ Exp(rλ,µ(X

λ,µ
k−1))

Simulate S ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

Sλ,µ,α
k ← Sλ,µ,α

k−1 + T 1
α S

end while
W̃η

α ←GENERATEDRBM(X λ,µ,Sλ,µ,α, nit)
end procedure

Algorithm 5 Generation of the DRBM process from the state and calendar arrays

procedure GENERATEDRBM . Input: X λ,µ, Sλ,µ,α, nit
. Output: W̃η

α

function W̃η
α (t)

`← length(Sλ,µ,α) . Recall that the arrays start with 0
tfinal ← S

λ,µ,α
`−1

if tfinal < t then
Error

else
k← 0
while t > Sλ,µ,α

k+1 do
k← k + 1

end while
W̃η

α (t)← X
λ,µ
k /
√

nit
end if

end function
end procedure

5.3. Numerical Results

In this section, we want to show some simulation results. However, how can one
visualize the convergence in distribution?
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By the Portmanteau Theorem (see [54] (Chapter 2, Section 3)) and Theorem 7, we
know that, for any bounded functional F : D([0, tstop])→∈ R that is continuous in the J1
topology, it holds that

lim
n→+∞

E
[
F
(

Q(n)
α√
n

)]
= E[F (W̃η

α )]

and thus we could study whether

e(n)F :=

∣∣∣∣∣E
[
F
(

Q(n)
α√
n

)]
−E[F (W̃η

α )]

∣∣∣∣∣
converges to 0. However, to do this, we should know E[F (W̃η

α )] a priori, which is not
always possible. Moreover, let us observe that even the evaluation map x ∈ D([0, tstop]) 7→
x(t) ∈ R is not continuous everywhere in the J1 topology; hence, we need to enlarge the
set of possible functionals F . To do this, we need the following weaker version of the
Portmanteau Theorem.

Proposition 9. Let Xn, X be a random variable with values in a metric spaceM such that Xn ⇒ X.
Let also F :M→ R be a function such that the following properties hold true:

(i) It holds that P(X ∈ Disc(F )) = 0;
(ii) There exist two constants ε, M > 0 such that E[(F (Xn))1+ε] ≤ M for any n ∈ N.

Then,
lim

n→+∞
E[F (Xn)] = E[F (X)].

Proof. By property (i) and the continuous mapping theorem (see [25] (Theorem 3.4.3)),
we know that F (Xn)⇒ F (X). Moreover, property (ii) implies that F (Xn) are uniformly
integrable. We conclude the proof by [54] (Chapter 2, Theorem 3.5).

Now, let us select two particular functionals. The first one is given by

F1(x) = x(tstop), ∀x ∈ D([0, tstop]),

i.e., it is an evaluation functional. To work with such a functional, we need to prove the
following result.

Proposition 10. The functional F1 satisfies the hypotheses of Proposition 9 with respect to the

sequence
(

Q(n)
α√
n

)
n∈N

.

Proof. Let us first observe that if W̃η
α is continuous, it is clear that P(W̃η

α ∈ Disc(F1)) = 0;
see [25] (Proposition 13.2.1). Thus, we only need to prove item (ii). To do this, let us
select ε = 1 and remark that we need to estimate n−1E

[
(Q(n)

α (tstop))2
]
. Let m(2)

n,α(t) =

E
[
(Q(n)

α (t))2
]

and observe that, by a simple conditioning argument,

m(2)
n,α(t) = E[m(2)

n,1(Lα(t))],

where Lα is an inverse α-stable subordinator independent of Q(n)
α (t). By [65], we know that

m(2)
n,1 is increasing. If also Lα is almost surely increasing, it is clear that m(2)

n,α(t) is increasing
and then

m(2)
n,α(t) ≤ lim

t→+∞
m(2)

n,α(t).

Recalling that limt→+∞ Lα(t) = +∞ almost surely, we have, by the monotone conver-
gence theorem,
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m(2)
n,α(t) ≤ lim

t→+∞
m(2)

n,1(t).

If ρn < 1 for any n ∈ N, we can combine Equations (3.24) and (3.25) in [7] to get

m(2)
n,α(t) ≤

ρn(1 + ρn)

(1− ρn)2 ≤
2n
ζ2 ,

where we also use the fact that ρn = 1− ζ√
n . Hence, we finally get

E

(F1

(
Q(n)

α (tstop)√
n

))2 ≤ 2
ζ2 < +∞,

concluding the proof.

The second functional that we consider is the integral functional

F2(x) =
∫ tstop

0
x(t)dt, ∀x ∈ D([0, tstop]).

This time, we will directly prove the limit result.

Proposition 11. It holds that

lim
n→+∞

E
[
F2

(
Q(n)

α√
n

)]
= E[F2(W̃

η
α )].

Proof. Let us first rewrite

E
[
F2

(
Q(n)

α√
n

)]
=
∫ tstop

0

1√
n
E
[

Q(n)
α (t)

]
dt,

where we use Fubini’s theorem, being Q(n)
α (t) ≥ 0 for all t ∈ [0, tstop]. By Propositions 9

and 10, we have that

lim
n→+∞

1√
n
E
[

Q(n)
α (t)

]
= E[W̃η

α (t)], ∀t ∈ [0, tstop].

Furthermore, arguing exactly as in the proof of Proposition 10 and using Equa-
tion (3.24) in [7], we get

1√
n
E
[

Q(n)
α (t)

]
≤ 1

ζ
,

and thus we can use the dominated convergence theorem to conclude the proof.

In particular, E[Fi(W̃
η
α )], i = 1, 2, could be estimated numerically by means of

Corollary 2 and Mikusinski’s representation of gα. However, one still needs to estimate
E
[
Fi(Q

(n)
α /
√

n)
]

for i = 1, 2, which is not an easy task since the distribution (and then
the expected value) of the fractional M/M/1 queue admits some series representations
(see [4,21]), which are not easy to evaluate numerically. To overcome this problem, we
adopt a Monte Carlo method (with 5000 samples) to determine E

[
Fi(Q

(n)
α /
√

n)
]
. However,

this means that we have to consider the fact that the evaluated value randomly oscillates
around the exact one. For this reason, one cannot use the Cauchy-type error

e(n)F ,Cauchy :=

∣∣∣∣∣E
[
F
(

Q(n+1)
α√
n + 1

)]
−
[
F
(

Q(n)
α√
n

)]∣∣∣∣∣
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to estimate the actual approximation error. In any case, a further investigation on the link
between e(n)F ,Cauchy and e(n)Cauchy will be carried out in future works. Let us also underline
that, clearly, the oscillation of the Monte Carlo evaluation depends on the variance of
Fi(Q

(n)
α /
√

n) and, thus, for fixed n, depends on α. This is made clear in the boxplots in
Figure 2. The plots of E[Fi(Q

(n)
α /
√

n)] against n are given in Figure 3. The convergence of
such a sequence is not so clear due the oscillations caused by the Monte Carlo method. An-
other visualization of the convergence of E[Fi(Q

(n)
α /
√

n)] can be obtained by considering
the fact that, for any n0, δ ∈ N, the following Cesaro convergence holds:

lim
N→∞

1
N

N+n0

∑
n=n0

E[Fi(Q
(nδ)
α /

√
nδ)] = E[Fi(W̃

η
α )].

Indeed, the sequence S(i)
N := 1

N ∑N+n0
n=n0 E[Fi(Q

(nδ)
α /

√
nδ)] provides some form of

smoothing of the point plot and the convergence is much clearer in this case, as shown in
Figure 4. As S(i)

N is smoother than the original sequence, one could still use the error

ẽN
F i ,Cauchy = |S(i)

N+1 − S(i)
N |

to impose a stopping criterion of the form ẽN
F i ,Cauchy < εabs for the absolute error or

ẽN
F i ,Cauchy < εrelS

(i)
N+1 for the relative error.
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Figure 2. Boxplots of 100 simulations of E[Fi(Q
(n)
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n)] (resp. i = 1 on the right and i = 2 on the
left) via Monte Carlo method for n = 50, η = −1/2, tstop = 1 and different values of α.
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Figure 3. Point plots of E[Fi(Q
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α /
√

n)] (resp. i = 1 on the right and i = 2 on the left) against n for
η = −1/2, tstop = 1 and different values of α.
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Figure 4. Point plots of S(i)
N (resp. i = 1 on the right and i = 2 on the left) against n for η = −1/2,

tstop = 1 and different values of α.

With the procedure to simulate the DRBM and E[F (Q(n)
α /
√

n)] is given in Algorithm
6, a simulation algorithm that takes into consideration this stopping criterion is exploited
in Algorithm 7. To show some simulated sample paths, we used Algorithm 7 with F2
(which takes into consideration the whole simulated trajectory). The results are illustrated
in Figure 5, while the sequence ẽN

F2,Cauchy is plotted in Figure 6.
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Figure 5. Sample paths of W̃η
α for η = −1/2 and different values of α simulated by means of

Algorithm 7 with n0 = 20, δ = 10, nmax = 5000 and εabs = εrel = 0.001.
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Algorithm 6 Simulation of ntraj ∈ N trajectories of a DRBM(η; α) for η < 0 up to time
tstop > 0 with iteration n > 4η2 and evaluation of the functional E[F (W̃η

α )]

procedure SIMDRBMWFUNC . Input: η < 0, α ∈ (0, 1), n, ntraj ∈ N, n > 4η2

. Output: (X λ,µ)k,j, (Sλ,µ,α)k,j, Fmean
λ← n

2
ζ ← −2η

ρ← 1− ζ√
n

µ← λ
ρ

Fmean ← 0
for j = 1, . . . , ntraj do

X λ,µ
0,j ← 0

Sλ,µ,α
0,j ← 0

k← 0
while Sλ,µ,α

k,j < tstop do
k← k + 1
Simulate U uniform in (0, 1)
if U < pλ,µ(X

λ,µ
k−1,j) then

X λ,µ
k,j ← X

λ,µ
k−1,j + 1

else
X λ,µ

k,j ← X
λ,µ
k−1,j − 1

end if
Simulate T ∼ Exp(rλ,µ(X

λ,µ
k−1,j))

Simulate S ∼ S
(

α, 1, cos
1
α
(

π
2 α
)
, 0
)

Sλ,µ,α
k,j ← Sλ,µ,α

k−1,j + T
1
α S

end while
Fmean ← Fmean +Fn(X λ,µ

·,j ,Sλ,µ,α
·,j )

end for
Fmean ← Fmean/ntraj

end procedure



Symmetry 2022, 14, 615 32 of 35

Algorithm 7 Simulation of ntraj ∈ N trajectories of a DRBM(η; α) for η < 0 up to time
tstop > 0 with tolerance εabs, εrel > 0 and maximum number of iterations nmax ∈ N

procedure SIMDRBMWTOL . Input: α ∈ (0, 1), −η, tstop, εabs, εrel > 0,
ntraj, nmax, n0, δ ∈ N, n0 > 4η2

. Output: ntraj trajectories of W̃η
α , eF ,Cauchy

n← n0
nit ← 0
(X λ,µ)k,j, (Sλ,µ,α)k,j,Fmean ← SIMDRBMWFUNC(n, η, α, ntraj)
Ŝ← Fmean
S0 ← Ŝ
n← n + δ
nit ← nit + 1
(X λ,µ)k,j, (Sλ,µ,α)k,j,Fmean ← SIMDRBMWFUNC(n, η, α, ntraj)
Ŝ← Ŝ +Fmean
S1 ← Ŝ/2
eF ,Cauchy ← |S1 − S0|
while eF ,Cauchy ≥ min{εabs, εrelS1} and nit ≤ nmax do

n← n + δ
nit ← nit + 1
S0 ← S1
(X λ,µ)k,j, (Sλ,µ,α)k,j,Fmean ← SIMDRBMWFUNC(n, η, α, ntraj)
Ŝ← Ŝ +Fmean
S1 ← Ŝ/(nit + 1)
eF ,Cauchy ← |S1 − S0|

end while
for j = 1, . . . , ntraj do

Wη
α,j ← GENERATEDRBM(X λ,µ

·,j ,Sλ,µ,α
·,j , n)

end for
end procedure

6. Conclusions

To summarize the results, we introduced the Delayed Reflected Brownian Motion by
means of a suitable time change of the Reflected Brownian Motion (or, equivalently, by solving
Skorokhod’s reflection problem on the paths of the Delayed Brownian Motion) and recalled
the main properties of fractional M/M/1 queues as defined in [4]. These two processes are
then linked via the heavy traffic approximation result exploited in Theorem 7. As we also
underline in the Introduction, such a theorem can be read in two ways depending on the
process that we want to focus on. If we are interested in the properties of the fractional M/M/1
queues, the theorem provides a subdiffusive approximation of them, in terms of the Delayed
Reflected Brownian Motion, as the traffic intensity ρ is near 1. This is quite useful if one needs
to investigate (approximatively) some distributional property of a fractional M/M/1 queue
in the transient state. Indeed, different formulations of the one-dimensional distribution of the
queue length process in the fractional case are given in [4,21] but they involve nested series of
functions, which can be difficult to evaluate even numerically. However, if ρ is near 1, one can
approximate the one-dimensional distribution of the queue length process with the one of
the Delayed Reflected Brownian Motion given in Proposition 5, which can be numerically
evaluated thanks to Mikusinski’s representation of the density of the stable subordinator.

Vice versa, if we are interested in the properties of the Delayed Reflected Brownian
Motion, Theorem 7 provides a continuous-time random walk approximation of such a
process. This is a quite useful property when combined with the discrete event simulation
procedure (which is a generalization of the well-known Gillespie’s algorithm; see [31,63]).
Indeed, the simulation of an inverse α-stable subordinator is usually done by means
of Laplace inversion, if we start from the Laplace transform of fα, or by inverting the
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subordinator, which is instead simulated via the Chambers–Mallow–Stuck method [55].
The algorithm presented in the paper does not rely at all on the simulation of the inverse
subordinator, thanks to the fact that we are able to simulate Mittag–Leffler random variables
by using the Chambers–Mallow–Stuck method.

This second point of view is investigated with more attention in Section 5. Precisely,
Theorem 7 gives us a limit result, but does not tell us how large we should chose n
to have a suitably good approximation. Moreover, as we observed before, estimating
the distributional properties of a fractional queue is not an easy task, due to the quite
complicated form of the state probabilities. However, some distributional quantities can
be provided by Monte Carlo estimates, which, due to the random nature of the approach,
invalidates the idea of using a form of error based on the Cauchy property of converging
sequences. This problem can be overcome by using the Cesaro convergence of the sequence,
as taking the average smooths in some sense the oscillating simulated data, as one can
observe by comparing Figures 3 and 4. Thus, one can use the sequence of averages in
place of the original one to provide a stopping criterion, as done in Algorithm 7. Such an
approach is supported by the sequence of errors given in Figure 6. Clearly, one could use
other smoothing procedures on data to overcome the oscillations caused by Monte Carlo
estimates. In future works, we aim to discuss the properties of time-changed M/M/1
queues and Reflected Brownian Motions with more general inverse subordinators, trying
to link them via a heavy traffic approximation result. The simulation of such types of
queueing models will require some more sophisticated methods, due to the lack, in general,
of both the self-similarity property and a special algorithm for the subordinator.
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