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Abstract  

 

BACKGROUND: Over 20 single-nucleotide polymorphisms (SNPs) are associated with 

increased risk of Alzheimer’s disease (AD). We categorised these loci into immunity, lipid 

metabolism and endocytosis pathways, and associated the polygenic risk scores (PRS) 

calculated, with AD biomarkers in mild cognitive impairment (MCI) subjects. OBJECTIVE: 

The aim of this study was to identify associations between pathway-specific PRS and AD 

biomarkers in patients with MCI and healthy controls. METHODS: AD biomarkers 

([18F]Florbetapir-PET SUVR, FDG-PET SUVR, hippocampal volume, CSF tau and amyloid 

beta levels) and neurocognitive tests scores were obtained in 258 healthy controls and 451 MCI 

subjects from the ADNI dataset at baseline and at 24-month follow up. Pathway-related 

(immunity, lipid metabolism and endocytosis) and total polygenic risk scores were calculated 

from 20 SNPs. Multiple linear regression analysis was used to test predictive value of the 

polygenic risk scores over longitudinal biomarker and cognitive changes. 

RESULTS: Higher immune risk score was associated with worse cognitive measures and 

reduced glucose metabolism. Higher lipid risk score was associated with increased amyloid 

deposition and cortical hypometabolism. Total, immune and lipid scores were associated with 

significant changes in cognitive measures, amyloid deposition and brain metabolism. 

CONCLUSION: Polygenic risk scores highlights the influence of specific genes on amyloid-

dependent and independent pathways; and these pathways could be differentially influenced 

by lipid and immune scores respectively. 

 

Key words: genetic risk; polygenic score; Alzheimer’s disease; biomarkers; SNPs;  
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Introduction 

Alzheimer’s Disease (AD) is the most common cause of dementia affecting individuals over 

65 years of age [1]; 50 million people have dementia worldwide, and there are nearly 10 million 

new cases every year [2]. With the ageing population, the burden of AD on healthcare systems 

and society is set to rise [3, 4]. The failure of clinical trials to improve cognitive function and 

halt disease progression in AD, together with the demonstration of a long preclinical phase of 

the disease, highlights the need for early intervention, and indeed challenges our understanding 

of the disease.  

Subjects with mild cognitive impairment (MCI) are at increased risk of developing AD 

dementia with 50% of amyloid positive MCI subjects converting to AD within 2 years [5, 6]. 

Thus, predicting which MCI patients will actually progress is of utmost importance, which is 

now helped by biomarkers including cerebrospinal fluid (CSF) levels of amyloid beta (Aβ) and 

tau, and neuroimaging modalities [7, 8]. 

Individual risk for AD is determined by genetic, environmental and demographic factors, as 

well as interactions among them [9]. Unlike familial AD, where genetic mutations in APP, 

PSEN1 and PSEN2 are mostly fully penetrant and of autosomal dominant inheritance, sporadic 

AD (sAD) also has significant heritability [10]. Inheritance of the ε4 allele of the apolipoprotein 

E (APOE) is the most important genetic risk factor for sAD, increasing risk 3-fold in 

heterozygotes and 15-fold in homozygotes [11].  

Recently, genome wide association studies (GWAS) have been able to identify over 30 risk 

loci associated with the development of sAD [12-18]. Although the effect of the single locus 

might be small, a polygenic risk score (PRS) allows us to evaluate the combined effects of gene 

variants. To date, several studies have used this polygenic approach to estimate the risk of AD 

progression and to evaluate the association of AD genetic risk with endophenotypes of the 

disease. Harrison et al have demonstrated the association between a total PRS and hippocampal 
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thinning in healthy individuals [19]. Other studies have shown that an association exists 

between PRS and CSF biomarkers and disease progression [20], as well as between PRS and 

plasma inflammatory biomarkers [21]. A PRS can improve the diagnostic accuracy of APOE 

alone at identifying AD cases [22], predict the age of AD onset [23] and it can generally 

improve risk prediction in healthy older adults [24, 25]. Moreover, a PRS has been 

demonstrated to predict cognitive decline and neurodegeneration in subjects at risk of AD [26]. 

Recently, pathway-specific PRS have been associated with AD biomarkers, grouping risk loci 

together according to their biological functions [27] and, in some cases, finding that pathway-

specific PRS might hold higher predictive value over total PRS [28]. 

In this study we categorised 20 of the single nucleotide polymorphisms (SNPs) susceptibility 

loci into the three pathways of endocytosis, immunity and lipid metabolism to create a PRS for 

each of them, and also a total PRS. We selected SNPs identified by the International Genomics 

of Alzheimer’s Project (IGAP) [12, 14]. The immune pathway contained nine loci (CR1, 

INPP5D, MEF2C, HLA-DRB5/HLA-DRB1, EPHA1, CLU, MS4A6A, ABCA7, CD33), the 

endocytosis pathway contained six loci (BIN1, CD2AP, EPHA1, PICALM, SORL1, CD33), the 

lipid pathway contained three (CLU, SORL1, ABCA7), with five loci overall contributing to 

more than one pathway. The total PRS comprised all the above plus seven variants that, due to 

lack of strong biological evidence, were not attributed to any of the specific pathways (NME8, 

ZCWPW1, PTK2B, CELF1, FERMT2, SLC24A4/RIN3, CASS4).  These were compared against 

the main pathological substrates of AD: amyloid deposition (CSF Aβ and amyloid PET), tau 

aggregation (CSF phosphorylated tau) and neurodegeneration (CSF total tau, fludeoxyglucose 

(FDG) PET and MRI volumes). The aim was to identify possible associations between 

pathway-specific PRS and AD biomarkers in patients with MCI and healthy controls. To date, 

no previous study has compared PRS to such an extensive range of biomarkers [20, 24, 29]. 
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Methods 

Data collection was downloaded from the Alzheimer’s disease Neuroimaging initiative from 

October 2017 to December 2017 (ADNI). ADNI is an on-going international longitudinal study 

aimed at the identification of markers for the early detection and monitoring of Alzheimer’s 

disease such as proteomics, CSF tau and amyloid, MRI, FDG and tau PET scans, including 

baseline demographics of healthy controls, MCI and AD subjects. According to the ADNI 

guidelines, MCI is defined by a mini mental state examination (MMSE) score of 24-30, an 

education adjusted cut-off on the Logical Memory II subscale from the Wechsler Memory 

Scale clinical dementia rating scale (CDR) of 0.5, and preserved daily functioning at home 

confirmed by a study partner. For this study, we included FDG-PET and amyloid 

([18F]Florbetapir) PET standard uptake value ratio (SUVR), hippocampal volumes, CSF total 

and phosphorylated tau, CSF Aβ, neurocognitive tests (ADAS COG-11 and 13, CDR-SB, 

MMSE), APOE4 status, and level of education, which were obtained from the ADNI dataset. 

We retrieved baseline and 24-months follow up data for 258 healthy controls (HC) and 451 

MCI subjects.  

For Florbetapir scans, 370 MBq (10.0 mCi) ± 10% of tracer was injected, and scans were 

acquired in 4 X 5minute frames with acquisition time of 50-70 min post-injection. For, FDG 

PET, 185 MBq (5.0 mCi) ± 10% of tracer was injected and scans were acquired for 30 min 

(6X5min frames) with an acquisition time of 30-60 min post-injection. For image processing, 

either six five-minute frames (ADNI1) or four five-minute frames (ADNI GO/2) are acquired 

30 to 60 minutes post-injection. Each extracted frame is co-registered to the first extracted 

frame of the raw image file (frame acquired at 30-35 min post-injection). Coregistered image 

is generated simply by averaging different time frames.  

FDG-PET scans were analysed using target to pons ratio as detailed in the ADNI proocol which 

provided SUVR for a set of pre-defined regions of interest (MetaROIs) based on coordinates 
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cited frequently in other FDG studies comparing AD, MCI, and normal subjects and including 

left and right temporal lobe, left and right angular gyrus and the posterior cingulate. SUVR for 

FDG uptake were calculated using a pons/vermis reference region [30]. [18F]Florbetapir-PET 

scans provided SUVR values for the frontal, parietal and temporal lobe, cingulate gyrus, the 

medial temporal lobe (MTL), for both the left and right side and the total cortical amyloid load, 

using the cerebellum as a reference region [31]. All regional values were derived from ADNI 

dataset. Data for hippocampal volume were derived from 3D-MPRAGE MRI scans using a 

semi-automated hippocampal volumetry tool. 

Available genotype data for the ADNI cohort (818 individuals genotyped on the Illumina 

Omni2.5 array) was downloaded from the ADNI website and subjected to quality control. 

Individuals were excluded if they had a call rate <98%, were outliers on principal components 

analysis based on a pairwise identity by descent matrix, or were related to another genotyped 

ADNI participant at the level of first cousin or closer. Variants were excluded if they departed 

from Hardy-Weinberg equilibrium (P<10-4). As not all susceptibility SNPs identified through 

GWAS had been genotyped on the Illumina Omni2.5 array, IMPUTE2 was used to impute 

genotypes for these variants, using 1,000 Genomes haplotypes as a reference panel (Phase I 

integrated variant set release (produced using SHAPEIT2) in NCBI build 37 coordinates). All 

missing variants were successfully imputed with info scores > 0.95. Imputed dosage data was 

converted to hard-called genotypes using GTOOL.  

Immune, endocytotic and lipid risk scores were calculated in PLINK, based on 20 of the SNPs 

common variants identified by the meta-analysis conducted by the IGAP [12, 14] (see 

Supplemental Table 1 for the SNPs assigned to each pathway-specific score). Moreover, a total 

PRS was calculated. Weighted risk scores were calculated per person as the sum of the product 

of the number of risk alleles of the selected SNPs and the natural log of the corresponding odds 

ratio reported in the IGAP meta-analysis [12, 14]. To compare subjects with high or low PRS, 
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the 10th and 90th percentile of each of the scores were calculated, with an approach also used 

by others [26]. 

Statistical analysis was performed using SPSS 25. Normality was evaluated with Kolmogorov-

Smirnov test on the whole population. The total, immune and endocytotic PRS were normally 

distributed, while the lipid PRS did not follow a normal distribution. Independent sample t test 

was used to compare normally distributed variables at baseline and paired sample t tests to 

determine significant difference at follow up. When the sample variable was non-linear, non-

parametric Mann-Whitney U test was used. Simple linear regression was performed for 

normally distributed variables and Spearman’s rank test was used to test correlation between 

the lipid PRS and biomarkers. Multiple linear regression analysis was conducted on the delta 

variables of biomarkers and cognitive measures testing the different PRS as predictors, with or 

without APOE4 status, and adjusting for age and gender.   
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Results 

The baseline characteristics of the HC and MCI groups are shown in Table 1. As expected, the 

MCI group was significantly impaired in the neuropsychometric tests evaluated, compared to 

the HC. The number of APOE4 carriers was similar between HC and MCI. Interestingly, the 

mean total and immune PRS were higher in MCI compared to HC, while the endocytotic and 

lipid metabolism PRS were similar between the two groups. There was no difference between 

males and females in terms of any of the PRSs scores, both in the group as a whole and in HC 

and MCI separately. 

When looking at the baseline biomarkers (Table 2), the MCI showed significantly higher brain 

Aβ deposition compared to HC, as detected by [18F]Florbetapir-PET in all the predefined 

regions. Based on the cut-off of 1.1 for [18F]Florbetapir in composite cortical region [31], 

48/139 HC and 159/297 MCI were Aβ positive. The CSF levels of Aβ, tau and p-tau were not 

significantly different between the two groups, although the CSF data were only available for 

a small subgroup of subjects (16 HC and 27 MCI). The biomarkers of neurodegeneration 

(hippocampal volume and FDG uptake in all the predefined regions) were significantly lower 

in MCI subjects compared to HC, as expected. When stratifying the population according to 

APOE4 and Aβ status, we found that APOE4+/Aβ+ subjects (n=121) had significantly higher 

PRSs compared to APOE4-/Aβ- (n=181) subjects. 

To evaluate the relationship between the PRSs and biomarkers at baseline, we run linear 

regression between the immnune, endocytotic, lipid and total PRS and both CSF and imaging 

biomarkers. As shown in Figure 1, significant inverse association was shown between the 

immune PRS and FDG uptake in the left angular gyrus (r2=.01, p=.019), while direct 

association were shown between the immune PRS and [18F]Florbetapir uptake in frontal, 

temporal, parietal, mid-temporal lobes and cingulate gyrus (correlation with frontal 
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[18F]Florbetapir uptake is shown in Figure 1, r2=.02, p=.00). The total PRS showed significant 

inverse association with FDG uptake in the left angular gyrus (r2=.007, p=.049). The 

endocytotic PRS showed a significant direct association with CSF tau levels (r2=.13, p=.01), 

while the lipid PRS did not show any significant correlations with any of the biomarkers.  

To better clarify which biomarkers can be associated with the pathway-specific PRS, we 

compared the 10th and 90th percentile of each of the four PRS (total, immune, endocytotic and 

lipid) to see how the low and high PRS groups differ in terms of biomarkers. The mean PRS 

values for 10th and 90th percentile and the number of subjects included in the percentile groups 

of each PRS are shown in Supplemental Table 2.  

The 10th and 90th percentile groups of the total PRS differed significantly in terms of cognitive 

measures (CDRSB, ADAS13, MMSE), [18F]Florbetapir uptake and CSF tau levels 

(Supplemental Table 3). The comparison between 10th and 90th percentile of the immune PRS 

indicated that the two groups differed in terms of cognitive measures (CDRSB, ADAS11, 

ADAS13) and FDG uptake in the left angular gyrus (Supplemental Table 4). There were no 

significant differences in any of the biomarkers when comparing the 10th and 90th percentiles 

of the endocytotic PRS. The 10th and 90th percentile groups of the lipid PRS differed 

significantly in terms of [18F]Florbetapir uptake in all the predefined regions and FDG uptake 

in the left temporal lobe (Supplemental Table 5).   

The 10th and 90th percentile groups of total, immune and endocytotic PRS did not differ in 

terms of prevalence of APOE4 carriers, while there were significantly more APOE4 carriers in 

the 90th percentile of lipid PRS compared to the 10th percentile group (56.4% vs 43.6%, 

p=0.044). Moreover, the 10th and 90th percentile groups of total, lipid and endocytotic PRS did 

not differ in terms of prevalence of MCI subjects compared to control subjects. However, there 
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were significantly more MCI subjects in the 90th percentile immune PRS group compared to 

the 10th percentile group (60.4% vs 39.6%, p=0.001).   

In the whole population, the parameters that significantly changed from baseline to follow up 

were: CDRSB, ADAS11, ADAS13, MMSE, CSF Aβ, CSF total Tau, FDG uptake in all the 

predefined regions, [18F]Florbetapir uptake in all the predefined regions, left and right 

hippocampal volume (Supplemental Table 6).  

We calculated delta variables for each of the above using the following formula: ((xf – 

xi)/xi)*100, where xf is the follow up value and xi is the baseline value.  

Then we compared the delta variables between 10th and 90th percentile for each of the 

polygenic scores. The parameters showing significant differences are reported in Figure 2.  

Significant variations from baseline to follow up were observed in ADAS11 and ADAS13 

scores, as well as in temporal FDG between 10th and 90th percentiles of total PRS. 

A significant variation in MMSE scores and in frontal [18F]Florbetapir uptake was observed 

between 10th and 90th percentiles of immune PRS, while 10th and 90th percentiles of lipid PRS 

showed significant longitudinal changes in MMSE scores and FDG uptake in the left angular 

gyrus. 

Moreover, on a subset of 367 subjects, we retrieved information on stability or clinical 

progression at 24 months. Overall, 33 subjects progressed (from HC to MCI or from MCI to 

AD) and 334 remained stable. When looking at baseline PRSs scores in stable subjects versus 

progressing subjects, we did not find significant differences in the scores. 

Finally, we performed multiple regression analysis for each of the delta variables, building two 

models including each of the PRSs as a predictor, with or without APOE4 carrier status. 

Significant associations were observed only for changes in CDRSB and FDG uptake in 
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posterior cingulate and left temporal lobe, as shown in Table 3. Interestingly, the immune PRS 

was an independent predictor of FDG longitudinal change in posterior cingulate and left 

temporal lobe, even when APOE was not included in the model. The immune PRS was not 

significantly associated with changes in amyloid deposition, CSF biomarkers or cognitive 

measures. The total PRS was a significant predictor of CDRSB changes, while the lipid score 

was not independently associated with any changes in the biomarkers. Overall, the variance 

explained by the models, with or without APOE status, was between 1.9% and 3.3%.   
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Discussion 

In this study we have demonstrated the association between PRS for critical molecular 

pathways involved in AD pathogenesis (immunity, endocytosis and lipid metabolism) and 

biomarkers in a cohort of subjects at risk of AD. The calculation of the PRS has been performed 

based on the individual genetic risk from the 20 loci identified by IGAP. Our data indicate that 

higher immune PRS was associated with hypometabolism of the angular gyrus and worse 

cognitive performance at baseline and with increased longitudinal amyloid deposition. 

Moreover, immune PRS was an independent predictor of hypometabolism in the posterior 

cingulate and left temporal lobe. A higher lipid PRS was associated with increased cortical 

amyloid uptake and left temporal hypometabolism at baseline and with longitudinal reduction 

in FDG uptake. The endocytotic PRS correlated with baseline total CSF tau levels but not with 

longitudinal changes in any of the biomarkers, neither with baseline differences between high 

and low PRS. The total PRS, which includes all the 20 SNP scores, was associated with worse 

cognitive performance and higher total CSF tau levels at baseline, and with longitudinal 

changes in cognitive measures and temporal hypometabolism. Moreover, the total PRS was an 

independent predictor of CDRSB longitudinal changes. To our knowledge, this is the first study 

aiming at evaluating all these biomarkers profiles changes in the AD risk trajectory and their 

association with gene variations grouped according to their function. The results of this study 

indicate which AD endophenotypes are more likely to be affected by genes involved in 

immunity, endocytosis and lipid metabolism, shedding further light on the possible 

mechanisms underlying the 20 genes function. Indeed, as an endophenotype is influenced by 

fewer genetic risk factors than the disease as a whole, it can provide important information 

about the biological pathway through which a gene might act [32].  

Other studies have evaluated PRS in AD progression, based on the hypothesis that an 

aggregated genetic risk score could perform better than any individual variant. Escott-Price et 
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al have recently demonstrated that PRS analysis has a good predictive value for AD in 

pathologically confirmed case-control series [33] and PRS have been validated in both Black 

and White populations [34]. PRS analysis has also suggested that sporadic late onset AD and 

familial and early onset forms might share a common genetic architecture and that in early 

onset cohorts the PRS is associated with CSF ptau/Aβ ratio [35]. A PRS has been associated 

with longitudinal hippocampal thinning in older adults [19], with CSF Aβ42 levels [20] and 

with plasma inflammatory biomarkers [21]. It has been demonstrated that PRS is associated 

with younger age of AD onset, worse cognitive performance over time and worse biomarker 

profile [23] and, recently, with longitudinal cognitive decline in preclinical AD and MCI [26].  

However, some authors, when considering a PRS based on nine AD-related risk loci, were not 

able to show a predictive role in progression from MCI to AD in four independent large cohorts 

[9]. Our study does not only explore the relationship between PRS and AD biomarkers but, by 

grouping the 20 risk loci according to their biological role, provides further evidence on the 

pathways underlying biomarkers changes in the AD continuum (Figure 3).      

 Our immune PRS takes into account the cumulative genetic risk given by the known SNP in 

the following genes implicated in immune function: CR1, INPP5D, MEF2C, HLA-DRB5/HLA-

DRB1, EPHA1, CLU, MS4A6A, ABCA7, CD33 [36-41]. In our dataset, higher immune PRS 

was associated with worse cognitive profile and brain hypometabolism in the angular gyrus, as 

well as with longitudinal cortical amyloid accumulation. Moreover, it was a significant 

predictor of brain hypometabolism. Overall, while our data confirm the literature evidence of 

a strong relationship between brain immune function and Aβ accumulation, they also indicate 

an association with biomarkers of neurodegeneration and with cognitive status. In particular, 

while the association between mediators of neuroinflammation and Aβ accumulation and 

aggregation in early AD stages is well established [42], recent preclinical evidence suggest that 
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the same mediators are also associated with markers of neurodegeneration and with cognitive 

decline [43-45].     

The lipid PRS score in our study considers the risk alleles of the following genes: CLU, SORL1 

and ABCA7 [46]. Our subjects with high lipid PRS showed increased cortical Aβ levels at 

baseline and longitudinal brain hypometabolism, indicating that the influence of the three 

genetic risk variants included in our score is mainly exerted onto Aβ accumulation and brain 

metabolism. However, we would also have to consider the higher prevalence of APOE4 

carriers in the 90th percentile group of the lipid score. Moreover, probably because only three 

variants were included in the lipid PRS, its predictive value over longitudinal biomarker 

changes was not significant.  

The endocytotic PRS is made of cumulative risk from gene variants in: BIN1, CD2AP, EPHA1, 

PICALM, SORL1 and CD33 [32, 47, 48]. Probably due to the cumulative effect of the different 

genes on tau pathology, our endocytotic PRS showed a significant direct correlation with 

baseline CSF tau levels in this cohort, despite the small number of subjects for whom CSF data 

was available.    

Some of the known risk variants have not been included in the pathway-specific PRS but are 

part of the total PRS we used in our study. These include: NME8, ZCWPW1, PTK2B, CELF1, 

FERMT2, SLC24A4, CASS4 [36, 38, 49-52]. The total PRS, considering all the genes variants, 

provides with information related to the cumulative effects of the 20 genes. In our cohort, 

higher total PRS was associated with worse cognitive measures, increased [18F]Florbetapir 

uptake and higher CSF tau levels, as well as with longitudinal cognitive decline and brain 

hypometabolism. All the aspects of AD pathology are associated with total PRS, as expected, 

as this score carries risk from all genes, involved in multiple pathways and overlapping 

functions.  
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Although a total PRS can help stratifying patients according to their cumulative genetic risk, 

our data suggest that for enrichment strategies in clinical trials the use of specific PRS looking 

at the different pathways (immunity, lipid metabolism, endocytosis) might be more effective 

in selecting the appropriate populations for specific treatment and thus reducing the number of 

subjects needed to test a specific outcome. Although the associations identified between our 

PRS and biomarkers were small, accounting for 1.9%–3.3% of the variance within the 

population, these effect sizes are consistent with other biomarker studies assessing polygenic 

scores [53]. With an approach widely used by other researchers in different fields [54, 55], we 

stratified our cohort in percentiles of PRS and compared the bottom (10th percentile) and top 

(90th percentile) ends of the distribution of PRS in order to evaluate the differences between 

subjects in low or high risk categories. Because PRS provide a measure of relative risk for a 

condition, the percentile value for the individual subject might be more meaningful [56].  

Indeed, studies utilizing PRS for targeting specific treatments have shown that for highly 

prevalent conditions, precision can be better than one in two for the top decile, and most 

patients will benefit from treatment, so that over half of preventable events can be avoided by 

targeting just the high-risk decile [57].  

While some of the strengths of using the ADNI database are the large sample size, the 

standardised methodology and detailed biomarkers information, one of the limitations of the 

present study is that not all measures were available for all biomarkers at the time of data 

access. In particular, while cognitive data were available on the whole cohort, imaging data 

were available on a varying subset of subjects according to the modality. Moreover, a 2-year 

follow up might be too short to look at significant changes associated with genetic risk variants. 

Indeed, based on available data, 9.5% of the subjects progressed at 2 years and there was no 

difference in baseline PRS between stable and progressing participants. However, a longer 

follow up, as reported by Mormino et al and others, might have outlined significant longitudinal 



16 

 

associations between PRSs and clinical conversion [26, 53]. In addition to that, some of the 20 

genes have overlapping functions, thus the results of one PRS are not independent from another 

PRS. Moreover, replicating these results in larger longitudinal cohorts and expanding the PRS 

calculation to include novel SNPs would allow for a better understanding of the 

endophenotypes associated with early changes in AD biomarkers in presymptomatic subjects.    

In conclusion, this study highlights that polygenic risk scores can be a good indicator of AD-

related changes in biomarkers and cognitive function in a population of HC and MCI subjects 

with varying degrees of AD risk. In particular, specific risk scores based on the function of 

genes are associated with different endophenotypes that characterize the AD continuum. This 

study highlights the influence of different pathways (inflammation, endocytosis and lipid 

metabolism) on different pathological process in AD. This is the first study highlighting that 

immune pathway may influence neurodegeneration affecting amyloid independent pathway, 

while lipid pathway may be influencing AD through amyloid dependent pathway. These 

findings underline the importance of enrichment strategies for clinical trials evaluating specific 

biomarkers for specific treatment. This also highlights the importance of evaluating different 

pathways further to better understand how different therapeutic strategies could be employed 

in subsets of AD populations. This also implies that for an effective therapeutic strategy in AD, 

it may be essential to target immunity, endocytosis and lipid metabolic pathways.    
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Table 1. Baseline characteristics of healthy controls and MCI subjects 

 
HC MCI 

  

 

N  

 

N 

Male n (%) 131 (50.78) 258 271 (60.09) 451 

Age mean (SD) (years) 74.71 (5.49) 258 72.52 (7.41)* 451 

GWS SNP score mean (SD) 1.23 (0.16) 258 1.25 (0.16)* 451 

Immune SNP score mean (SD) 0.42 (0.11) 258 0.44 (0.11)* 451 

Endocytotic SNP score mean (SD) 0.55 (0.11) 258 0.56 (0.10) 451 

Lipid metabolism SNP score mean 

(SD) 

0.36 (0.07) 258 

0.37 (0.08) 451 

CDRSB mean (SD) 0.03 (0.14) 258 1.43 (0.86)* 451 

ADAS11 mean (SD) 5.85 (2.90) 258 9.57 (4.31)* 450 

ADAS13 mean (SD) 9.16 (4.21) 258 15.34 (6.62)* 448 

MMSE mean (SD) 29.07 (1.16) 258 27.92 (1.67)* 451 

ApoE4 Non carrier n (%) 175 (67.8) 258 259 (57.4) 451 

ApoeE4 Heterozygous n (%) 72 (27.9) 258 158 (35.0) 451 

ApoeE4 Homozygous n (%) 11 (4.3) 258 34 (7.5) 451 

Years of Education mean (SD) 16.43 (2.64) 258 16.01 (2.9) 451 

Hx of Smoking n (%) 104 (40.30) 258 182 (40.4)* 451 

Right handed n (%) 240 (93.0) 258 408 (90.5) 451 

*. Significant difference between HC and MCI at p<0.05 
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Data displayed in the table is represented as mean (standard deviation), or number (percentage). N = 

number of total available subjects for which data was available, HC = health controls, MCI = mild 

cognitive impairment; 
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Table 2. Baseline biomarkers of healthy controls and MCI subjects 

 
HC MCI 

  

 

N  

 

N 

[18F]Florbetapir Frontal lobe 

mean (SD) 

1.30 (0.28) 

141 1.39 (0.30)* 

301 

[18F]Florbetapir Parietal lobe 

mean (SD) 

1.32 (0.28) 141 

1.40 (0.30)* 301 

[18F]Florbetapir Temporal lobe 

mean (SD) 

1.23 (0.25) 141 

1.30 (0.27)* 301 

[18F]Florbetapir Cingulate gyrus 

mean (SD) 

1.42 (0.29) 141 

1.50 (0.31)* 301 

[18F]Florbetapir Left MTL mean 

(SD) 

1.22 (0.27) 141 

1.31 (0.28)* 301 

[18F]Florbetapir Right MTL 

mean (SD) 

1.26 (0.25) 141 

1.33 (0.29)* 301 

CSF ABETA mean (SD) 211.61 (59.68) 16 178.07 (55.80) 27 

CSF TAU mean (SD) 78.3 (51.66) 16 93.47 (40.34) 27 

CSF PTAU mean (SD) 33.95 (18.85) 16 45.87 (27.68) 27 

L Hippocampal volume mean (SD) 

(mm3) 

2315.20 (291.02) 19 

1901.01 (361.07)* 19 

R Hippocampal volume mean (SD) 

(mm3) 2253.31 (358.51) 

19 

1909.00 (440.25)* 19 
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FDG Left angular gyrus mean (SD) 1.32 (0.12) 190 1.26 (0.16)* 373 

FDG Right angular gyrus mean 

(SD) 1.31 (0.13) 190 1.26 (0.15)* 

373 

FDG Posterior cingulate gyrus 

mean (SD) 1.39 (0.14) 190 1.36 (0.17)* 

373 

FDG Left Temporal lobe mean 

(SD) 

1.27 (0.13) 190 

1.21 (0.14)* 

373 

FDG Right Temporal lobe mean 

(SD) 

1.24 (0.12) 190 1.20 (0.12)* 373 

*. Significant difference between HC and MCI at p<0.05 

Data displayed in the table is represented as mean (standard deviation), or number (percentage). N = 

number of total available subjects for which data was available, HC = health controls, MCI = mild 

cognitive impairment; 
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Table 3. Effects of PRSs on longitudinal cognitive and biomarker changes 

 Regression coefficients for longitudinal CDRSB variation 

 Model A (without APOE) Model B (with APOE) 

 β 95% CI R2 β 95% CI R2 

Immune 

PRS  

112.56 -30.17, 255.29  101.70 -40.90, 244.29  

Endocytotic 

PRS 

78.28 -71.59, 228.15  62.59 -87.50, 212.68  

Lipid PRS 182.96 -18.36, 384.28  167.47* -33.72, 368.65 0.024 

Total PRS 119.34* 19.48, 219.21 0.020 106.30* 5.72, 206.89 0.028 

 

 Regression coefficients for longitudinal variation in FDG uptake in posterior 

cingulate 

 Model A (without APOE) Model B (with APOE) 

 β 95% CI R2 β 95% CI R2 

Immune 

PRS  

-5.26* -10.31, -0.22 0.020 -4.78† -9.81, 0.25 0.033 

Endocytotic 

PRS 

-1.19 -6.47, 4.09  -0.54 -5.81, 4.74  

Lipid PRS -0.82 -7.94, 6.29  -0.12* -7.21, 6.98 0.025 

Total PRS -3.28* -6.73, 0.18 0.019 -2.76* -6.23, 0.70 0.022 

 

 Regression coefficients for longitudinal variation in FDG uptake in left temporal lobe 

 Model A (without APOE) Model B (with APOE) 

 β 95% CI R2 β 95% CI R2 

Immune 

PRS  

-7.07* -12.8, -1.34 0.020 -6.76* -12.50, -1.02 0.024 

Endocytotic 

PRS 

-2.35 -8.35, 3.66  -1.92 -7.95, 4.11  

Lipid PRS -4.11 -12.20, 3.99  -3.65 -11.75, 4.46  

Total PRS -4.06 -7.99, -0.13  -3.74 -7.70, 0.22  

All models are additionally adjusted for age and gender 

*p< 0.05 and †p<0.01 for the model 

Significant PRS predictors within the model are in bold 
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Figures legend 

Figure 1. Linear regression between PRS and AD biomarkers 

Direct association was shown between the immune PRS and [18F]Florbetapir uptake in frontal 

lobe (panel A) while significant inverse association was shown between the immune PRS and 

FDG uptake in the left angular gyrus (panel B). The endocytotic PRS showed a significant 

direct association with CSF tau levels (panel C). The total PRS showed significant inverse 

association with FDG uptake in the left angular gyrus (panel D). 

Figure 2. Significant delta variables between 10th and 90th percentile of total, immune 

and lipid PRS.   

Significant variations from baseline to follow up were observed in ADAS11 (panel A) and 

ADAS13 scores (panel B), as well as in temporal FDG (panel C) between 10th and 90th 

percentiles of total PRS. A significant variation in MMSE scores (panel D) and in frontal 

[18F]Florbetapir uptake (panel E) was observed between 10th and 90th percentiles of immune 

PRS, while high and low lipid PRS showed significant longitudinal changes in MMSE scores 

(panel F) and FDG uptake in the left angular gyrus (panel G). 

Figure 3. Genes involved in the immune, lipid and endocytotic pathways   

Schematic representation of how the 20 genes grouped into the polygenic risk scores of 

immunity, lipid metabolism and endocytosis might affect the amyloid cascade, neurofibrillary 

tangles (NFT) formation and neuroinflammation in AD (see text for details on genes function). 
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Supplemental Table 1. SNP used to calculate the polygenic risk scores and their implicated 

pathways (data accessed from October 2017 to December 2017) 

SNP Function Risk 

Allele 

Risk effect 

beta 

Gene 

rs6656401 immune   A 0.165514438 CR1 

rs6733839  endo  T 0.198850859 BIN1 

rs35349669 immune   T 0.076961041 INPP5D 

rs190982 immune   A 0.072570693 MEF2C 

rs111418223 immune   C 0.104360015 HLA-

DRB5/HLA-

DRB1 

rs10948363  endo  G 0.09531018 CD2AP 

rs2718058    A 0.072570693 NME8 

rs1476679    T 0.094310679 ZCWPW1 

rs11771145 immune endo  G 0.105360516 EPHA1 

rs28834970    C 0.09531018 PTK2B 

rs9331896 immune  lipid T 0.15082289 CLU 

rs10838725    C 0.076961041 CELF1 

rs983392 immune   A 0.105360516 MS4A6A 

rs10792832  endo  G 0.139262067 PICALM 

rs11218343  endo lipid T 0.261364764 SORL1 

rs17125944    C 0.131028262 FERMT2 

rs10498633    G 0.094310679 SLC24A4/RIN3 

rs4147929 immune  lipid A 0.139761942 ABCA7 
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rs3865444 immune endo  C 0.061875404 CD33 

rs7274581    T 0.127833372 CASS4 

 

CR1: Complement Receptor Type 1; BIN1: Bridging Integrator 1; INPP5D: Inositol 

Polyphosphate-5-Phosphatase D; MEF2C: Myocyte Enhancer Factor 2C; HLA-DRB5/HLA-

DRB1: Major Histocompatibility Complex, Class II, DR Beta 5, Beta 1; CD2AP: CD2 

Associated Protein; NME8: NME/NM23 Family Member 8; ZCWPW1: Zinc Finger CW-Type 

And PWWP Domain Containing 1; EPHA1: EPH Receptor A1; PTK2B: Protein Tyrosine 

Kinase 2 Beta; CLU: Clusterin; CELF1: CUGBP Elav-Like Family Member 1; MS4A6A: 

Membrane Spanning 4-Domains A6A; PICALM: Phosphatidylinositol Binding Clathrin 

Assembly Protein; SORL1: Sortilin Related Receptor 1; FERMT2: Fermitin Family Member 

2; SLC24A4/RIN3: Solute Carrier Family 24 Member 4/ Ras And Rab Interactor 3; ABCA7: 

ATP Binding Cassette Subfamily A Member 7; CD33: CD33 Molecule; CASS4: Cas 

Scaffolding Protein Family Member 4; 
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Supplemental Table 2. 10th and 90th percentiles values of polygenic scores 

 10th percentile 90th percentile 

GWS SNP score  1.05057000 (n=71) 1.45118000 (n=71) 

Immune SNP score .290574000 (n=71) .580297000 (n=71) 

Endocytotic SNP score .42860100 (n=79) .69205700 (n=73) 

Lipid SNP score .26136500 (n=88) .48199300 (n=71) 
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Supplemental Table 3. Significantly different baseline characteristics of the population 

comparing 10th and 90th percentiles values of GWS score 

 
10th percentile 90th percentile 

  

 

N (HC/MCI) 

 

N (HC/MCI) 

CDRSB mean (SD) 0.71 (0.77) 71 (32/39) 1.04 (1.01) 71 (22/49) 

ADAS13 mean (SD) 11.55 (5.66) 71 (32/39) 14.10 (6.41) 70 (22/48) 

MMSE mean (SD) 28.86 (1.19) 71 (32/39) 28.27 (1.57) 71 (22/49) 

[18F]Florbetapir Frontal lobe 

mean (SD) 

1.30 (0.22) 

43 (17/26) 1.49 (0.32) 

47 (13/34) 

[18F]Florbetapir Parietal lobe 

mean (SD) 

1.34 (0.25) 43 (17/26) 

1.51 (0.31) 47 (13/34) 

[18F]Florbetapir Temporal lobe 

mean (SD) 

1.23 (0.20) 43 (17/26) 

1.41 (0.30) 47 (13/34) 

[18F]Florbetapir Cingulate gyrus 

mean (SD) 

1.41 (0.23) 43 (17/26) 

1.62 (0.33) 47 (13/34) 

[18F]Florbetapir Left MTL mean 

(SD) 

1.22 (0.21) 43 (17/26) 

1.43 (0.33) 47 (13/34) 

[18F]Florbetapir Right MTL 

mean (SD) 

1.26 (0.22) 43 (17/26) 

1.46 (0.32) 47 (13/34) 

CSF TAU mean (SD) 48.6 (13.90) 5 (3/2) 111.2 (43.23) 5 (1/4) 

The data shown represent significant differences between 10th and 90th percentiles at p<0.05 
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Supplemental Table 4. Significantly different baseline characteristics of the population 

comparing 10th and 90th percentiles values of Immune score 

 
10th percentile 90th percentile 

  

 

N (HC/MCI) 

 

N (HC/MCI) 

CDRSB mean (SD) 0.69 (0.81) 71 (33/38) 1.21 (0.96) 71 (13/58) 

ADAS11 mean (SD) 8.12 (4.50) 71 (33/38) 9.84 (4.35) 71 (13/58) 

ADAS13 mean (SD) 12.74 (6.88) 71 (33/38) 15.30 (6.79) 71 (13/58) 

FDG Left angular gyrus mean (SD) 1.31 (0.16) 60 (28/32) 1.25 (0.17) 60 (12/48) 

The data shown represent significant differences between 10th and 90th percentiles at p<0.05 
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Supplemental Table 5. Significantly different baseline characteristics of the population 

comparing 10th and 90th percentiles values of Lipid score 

 
10th percentile 90th percentile 

  

 

N (HC/MCI) 

 

N (HC/MCI) 

[18F]Florbetapir Frontal lobe 

mean (SD) 

1.34 (0.29) 

52 (20/32) 1.48 (0.29) 

47 (13/34) 

[18F]Florbetapir Parietal lobe 

mean (SD) 

1.36 (0.30) 52 (20/32) 

1.49 (0.28) 47 (13/34) 

[18F]Florbetapir Temporal lobe 

mean (SD) 

1.27 (0.25) 52 (20/32) 

1.39 (0.26) 47 (13/34) 

[18F]Florbetapir Cingulate gyrus 

mean (SD) 

1.46 (0.30) 52 (20/32) 

1.59 (0.30) 47 (13/34) 

[18F]Florbetapir Left MTL mean 

(SD) 

1.25 (0.26) 52 (20/32) 

1.39 (0.29) 47 (13/34) 

[18F]Florbetapir Right MTL 

mean (SD) 

1.30 (0.29) 52 (20/32) 

1.42 (0.28) 47 (13/34) 

FDG Left Temporal lobe mean 

(SD) 

1.26 (0.12) 68 (27/41) 

1.19 (0.14) 56 (17/39) 

The data shown represent significant differences between 10th and 90th percentiles at p<0.05 
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Supplemental Table 6. Baseline and 24-month characteristics of healthy controls and MCI 

subjects 

 Baseline 24-month Follow up 

CDRSB mean (SD) 0.90 (0.96) 1.40 (1.82) * 

ADAS11 mean (SD) 8.05 (4.10) 8.50 (5.92) * 

ADAS13 mean (SD) 12.80 (6.36) 13.50 (8.62) * 

MMSE mean (SD) 28.39 (1.59) 27.82 (2.71) * 

[18F]Florbetapir Frontal lobe 

mean (SD) 

1.34 (0.28) 1.36 (0.33) * 

[18F]Florbetapir Parietal 

lobe mean (SD) 

1.35 (0.28) 1.38 (0.33) * 

[18F]Florbetapir Temporal 

lobe mean (SD) 

1.26 (0.25) 1.28 (0.29) * 

[18F]Florbetapir Cingulate 

gyrus mean (SD) 

1.45 (0.30) 1.48 (0.35) * 

[18F]Florbetapir Left MTL 

mean (SD) 

1.25 (0.28) 1.28 (0.32) * 

[18F]Florbetapir Right MTL 

mean (SD) 

1.29 (0.27) 1.31 (0.31) * 

CSF ABETA mean (SD) 190.55 (58.89) 182.43 (56.67) * 

CSF TAU mean (SD) 87.83 (44.89) 99.67 (54.89) * 

CSF PTAU mean (SD) 41.44 (25.20) 45.00 (36.57) 

L Hippocampal volume mean 

(SD) (mm3) 

2099. 45 (387.14) 2038.30 (376.52) * 

R Hippocampal volume mean 

(SD) (mm3) 

2076.31 (437.65) 2029.90 (409.70) * 



37 

 

FDG Left angular gyrus mean 

(SD) 

1.29 (0.15) 1.26 (0.16) * 

FDG Right angular gyrus 

mean (SD) 

1.29 (0.14) 1.27 (0.15) * 

FDG Posterior cingulate gyrus 

mean (SD) 

1.38 (0.16) 1.35 (0.17) * 

FDG Left Temporal lobe mean 

(SD) 

1.24 (0.14) 1.21 (0.15) * 

FDG Right Temporal lobe 

mean (SD) 

1.22 (0.12) 1.20 (0.13) * 

* Significant difference between baseline and 24-month follow up at p<0.05 
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