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Abstract. The question of whether it is possible to compute scattering resonances of Schrödinger
operators – independently of the particular potential – is addressed. A positive answer is given, with
the potential merely required to be C1 and have compact support. The proof is constructive, pro-
viding a universal algorithm which only needs to access the values of the potential at any requested
point. Numerical examples are provided and compared with known results.
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1. Introduction and main result

This paper provides an affirmative answer to the following question:

Does there exist a universal algorithm for computing the resonances of Schrö-
dinger operators with complex potentials?

To the authors’ best knowledge this is the first time this question is addressed. Further-
more, the proof of existence provides an actual algorithm (that is, the proof is construc-
tive). We test this algorithm on some standard examples, and compare to known results.

The framework required for this analysis is furnished by the Solvability Complexity
Index (SCI), which is an abstract theory for the classification of the computational com-
plexity and limitations of algorithms. This framework has been developed over the last
decade by Hansen and collaborators (cf. [5, 6, 19]).
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1.1. Quantum resonances

Let us first define what a quantum resonance is. Let q W Rd ! C be compactly supported,
let

Hq WD ��C q

be the associated Schrödinger operator inL2.Rd / and let � WRd !R be some compactly
supported function with � � 1 on supp.q/. It follows from the explicit form of the free
fundamental solution (cf. (2.1) below) that the map

z 7! I C q.�� � z2/�1�

is an analytic operator-valued function on C n ¹0º, where q and � are viewed as multipli-
cation operators. We define:

Definition 1.1 (Resonance). A resonance of Hq is defined to be a pole of the meromor-
phic operator-valued function z 7! .I C q.�� � z2/�1�/�1.

This definition is independent of the specific choice of � (so long as �� 1 on supp.q/),
and coincides with the poles of the scattering matrix of q ([23, Prop. 8] and [20, III.5]).

Resonances can be regarded as states whose wave function disperses very slowly in
time, and can therefore be considered as “almost bound states”. In physics, such phenom-
ena arise in the description of unstable particles and radioactive decay. Resonant states,
just like eigenfunctions, can only exist at certain energies. The slow-dispersal-in-time
approach to resonances motivates one of the earlier definitions of resonances used in the
computational physics literature, namely maximization of the so-called time delay func-
tion – see, e.g., Le Roy and Liu [22] and Smith [29]. This approach leads to real resonance
energies for real-valued potentials and, in the one dimensional case at least, is closely
related to the concept of spectral concentration – see, e.g., Eastham [18], which describes
one mechanism by which such concentrations may arise. For additional discussion we
refer to the review article [32] and the book [17].

It is widely accepted that the reliable computation of resonances is a challenging task.
This is not usually due to the intrinsic ill-posedness of analytic continuation, since that
step is usually done explicitly, but rather due to the fact that complex scaling changes reso-
nance problems either into non-selfadjoint spectral problems, for which the pseudospectra
may be far from the spectrum [31], or into problems with a nonlinear dependence on the
spectral parameter, for which sensitivity to perturbations may also be problematic. In this
context we refer to [12] (including the references and discussion therein) where interval-
arithmetic was used to compute resonances.

We show that resonances can be computed as the limit of a sequence of approxima-
tions, each of which can be computed precisely using finitely many arithmetic operations.
The proof is constructive: we define an algorithm and prove its convergence. We empha-
size that this single algorithm is valid for any Schrödinger operator Hq as defined above,
so long as q is compactly supported. We implement this algorithm in one dimension and
compare its performance to that of Bindel and Zworski [10].
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1.2. The Solvability Complexity Index hierarchy

The Solvability Complexity Index (SCI) hierarchy addresses questions which are at the
nexus of pure and applied mathematics, as well as computer science:

How do we compute objects that are “infinite” in nature if we can only handle a
finite amount of information and perform finitely many mathematical operations?
Indeed, what do we even mean by “computing” such an object?

These broad topics are addressed in the sequence of papers [5, 6, 19]. Let us summarize
the main definitions:

Definition 1.2 (Computational problem). A computational problem is a quadruple
.�;ƒ;„;M/, where

(i) � is a set, called the primary set,

(ii) ƒ is a set of complex-valued functions on �, called the evaluation set,

(iii) M is a metric space,

(iv) „ W �!M is a map, called the problem function.

Definition 1.3 (General algorithm). Let .�; ƒ; „;M/ be a computational problem. A
general algorithm is a mapping � W �!M such that for each T 2 � there exists a finite
subset ƒ�.T / � ƒ such that

(i) the action of � on T depends only on ¹f .T /ºf 2ƒ� .T /,

(ii) for every S 2 � with f .T / D f .S/ for all f 2 ƒ�.T / one has ƒ�.S/ D ƒ�.T /.

Definition 1.4 (Tower of general algorithms). Let .�; ƒ; „;M/ be a computational
problem. A tower of general algorithms of height k for .�; ƒ; „; M/ is a family
�nk ;nk�1;:::;n1

W �!M of general algorithms (where ni 2 N for 1 � i � k) such that
for all T 2 �,

„.T / D lim
nk!C1

� � � lim
n1!C1

�nk ;:::;n1
.T /:

Definition 1.5 (Recursiveness). Suppose that for all f 2 ƒ and for all T 2 � we have
f .T / 2 R or C. We say that �nk ;nk�1;:::;n1

.¹f .T /ºf 2ƒ/ is recursive if it can be executed
by a Blum–Shub–Smale (BSS) machine [11] that takes .n1; : : : ; nk/ as input and that has
an oracle that can access f .T / for any f 2 ƒ.

Definition 1.6 (Tower of arithmetic algorithms). Given a computational problem
.�;ƒ;„;M/, where ƒ is countable, a tower of arithmetic algorithms for .�;ƒ;„;M/

is a general tower of algorithms where the lowest mappings �nk ;:::;n1
W � ! M sat-

isfy the following: For each T 2 � the mapping Nk 3 .n1; : : : ; nk/ 7! �nk ;:::;n1
.T / D

�nk ;:::;n1
.¹f .T /ºf 2ƒ.T // is recursive, and �nk ;:::;n1

.T / is a finite string of complex num-
bers that can be identified with an element in M.

Remark 1.7 (Types of towers). One can define many types of towers [5]. In this paper
we write type G as shorthand for a tower of general algorithms, and type A as shorthand
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for a tower of arithmetic algorithms. If a tower ¹�nk ;nk�1;:::;n1
ºni2N; 1�i�k is of type �

(where � 2 ¹A;Gº in this paper) then we write

¹�nk ;nk�1;:::;n1
º 2 �:

Remark 1.8 (Computations over the reals). The computations in this paper are assumed
to take place over the real numbers, hence the appearance of a BSS machine in Defini-
tion 1.5. One could attempt to adapt our results to Turing machines – and this indeed
appears to be plausible – but that is not the purpose of the present paper.

Definition 1.9 (SCI). A computational problem .�;ƒ;„;M/ is said to have a Solvability
Complexity Index .SCI/ of k with respect to a tower of algorithms of type � if k is the
smallest integer for which there exists a tower of algorithms of type � of height k for
.�;ƒ;„;M/. We then write

SCI.�;ƒ;„;M/� D k:

If there exists a tower ¹�nºn2N 2 � and N1 2 N such that „ D �N1
then we define

SCI.�;ƒ;„;M/� D 0.

Definition 1.10 (The SCI hierarchy). The SCI hierarchy is a hierarchy ¹��
k
ºk2N0

of
classes of computational problems .�;ƒ;„;M/, where each��

k
is defined as the collec-

tion of all computational problems satisfying

.�;ƒ;„;M/ 2 ��0 ” SCI.�;ƒ;„;M/� D 0;

.�;ƒ;„;M/ 2 ��kC1 ” SCI.�;ƒ;„;M/� � k; k 2 N;

with the special class ��1 defined as the class of all computational problems in ��2 with
known error bounds:

.�;ƒ;„;M/ 2 ��1 ”
9¹�nºn2N 2 �; 9"n & 0 8T 2 � W

d.�n.T /;„.T // � "n:

Hence we have ��0 � �
�
1 � �

�
2 � � � � :

Remark 1.11. The definition of ��1 above (using an arbitrary null sequence "n) is
equivalent to [5, Def. 6.10] where the explicit sequence 2�n is used. In fact, given that
d.�n.T /;„.T // � "n for some "n& 0 one can always achieve d.�nk

.T /;„.T // � 2�k

by choosing an appropriate subsequence nk .

When the metric space M has certain ordering properties, one can define further
classes that take into account convergence from below/above and associated error bounds.
In order not to burden the reader with unnecessary definitions, we provide the definition
that is relevant to the case where M is the space of closed (and bounded) subsets of Rd

together with the Attouch–Wets distance [4] (for a more comprehensive and abstract def-
inition we refer to [5]), which is defined as follows:
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Definition 1.12 (Attouch–Wets distance). Let A;B be closed, nonempty sets in Rd . The
Attouch–Wets distance between them is defined as

dAW.A;B/ D

1X
kD1

2�k min
°
1; sup
jxj<k

jdist.x; A/ � dist.x; B/j
±
:

Note that if A;B � Rd are bounded, then dAW is equivalent to the Hausdorff distance.

Remark 1.13. It can be shown (cf. [27, Prop. 2.8]) that a sequence of sets An � Rd

converges to A in the Attouch–Wets metric if the following two conditions are satisfied:

� If �n 2 An and �n ! �, then � 2 A.

� If � 2 A, then there exist �n 2 An with �n ! �.

Definition 1.14 (The SCI hierarchy (Attouch–Wets metric)). Consider the setup in Defi-
nition 1.10 assuming further that M D .cl.Rd /; dAW/. Then we define

†�0 D …
�
0 WD �

�
0

and for k D 1; 2; : : : we can define the following subsets of ��
kC1

:

†�k D
°
.�;ƒ;„;M/ 2 ��kC1

ˇ̌̌
9"k & 0 9¹�nk ;:::;n1

º 2 � 8T 2 � 9¹Xnk
.T /º �M W

lim
nk!1

� � � lim
n1!1

�nk ;:::;n1
.T / D „.T /;

lim
nk�1!1

� � � lim
n1!1

�nk ;:::;n1
.T / � Xnk

.T /;

d.Xnk
.T /;„.T // � "k

±
;

…�
k D

°
.�;ƒ;„;M/ 2 ��kC1

ˇ̌̌
9"k & 0 9¹�nk ;:::;n1

º 2 � 8T 2 � 9¹Xnk
.T /º �M W

lim
nk!1

� � � lim
n1!1

�nk ;:::;n1
.T / D „.T /;

„.T / � Xnk
.T /;

d
�
Xnk

.T /; lim
nk�1!1

� � � lim
n1!1

�nk ;:::;n1
.T /

�
� "k

±
:

It can be shown that ��
k
D †�

k
\…�

k
for k 2 ¹1; 2; 3º (see Figure 1). We refer to [5] for a

detailed treatment.

†�
k

…�
k

��
kC1
D ¹SCI� � kº

��
k

Fig. 1. The SCI hierarchy for k 2 ¹1; 2; 3º.
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Remark 1.15. For the same reasons mentioned in Remark 1.11, the above definition is
equivalent to [5, Def. 6.12].

Informally, these sets can be characterized as follows:

��
k

: For k � 2, ��
k

is the class of problems that require at most k � 1 successive limits
to solve with a tower of type � . We also say that these problem have an SCI value of
at most k � 1. Problems in��1 can be solved in one limit with a tower of type � with
known error bounds.

†�
k

: For all k 2N,†�
k
���

kC1
is the class of problems in��

kC1
that can be approximated

from “below” with known error bounds.

…�
k

: For all k 2 N, …�
k
� ��

kC1
is the class of problems in ��

kC1
that can be approxi-

mated from “above” with known error bounds.

By an approximation from “above” (resp. “below”) we mean that the output of the algo-
rithm is a superset (resp. subset) of the object we are computing (this clearly requires
that this object and its approximations belong to a certain topological space) up to the
controllable error bound "n.

1.3. Main results

We start by defining the computational problems which we shall study.

Primary sets. Let d 2 N, fix M;N > 0 and let QM denote the cube of edge length M
centered at the origin. Define the following primary sets:

(1) �cpt denotes the class of Schrödinger operators

Hq WD ��C q on L2.Rd /

with q 2 C10 .R
d IC/.

(2) �M;N ��cpt denotes the class of Schrödinger operators in�cpt with supp.q/ �QM
and kqkL1 � N .

Evaluation set. We define the evaluation set ƒ to be

ƒ WD ¹q 7! q.x/ j x 2 Qd
º: (1.1)

Metric space. M is the space .cl.C/; dAW/ of all closed subsets of C equipped with the
Attouch–Wets metric.

Problem function. „ W � ! M is the map that associates to a particular Schrödinger
operator its set of resonances, and we denote it by Res.Hq/.

Then the quadruples .�;ƒ;Res.�/; cl.C//, where� 2 ¹�cpt;�M;N º, both pose com-
putational problems in the sense of Definition 1.2. Since the evaluation set, metric space
and problem function are always the same, we shall omit them in what follows. The main
result of the present article is the following.
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Theorem 1.16. The computation of quantum resonances requires

(1) one limit for operators belonging to �cpt: SCI.�cpt/A D 1, i.e.

�cpt 2 �
A
2 I

(2) one limit with error bounds from above for operators belonging to �M;N :

�M;N 2 …
A
1 :

We prove this theorem by explicitly constructing an algorithm which computes the
set of resonances in one limit for operators in �cpt. This algorithm can be implemented
numerically; some numerical experiments are provided in Section 5.

Remark 1.17. Our computations will involve not only the values q.x/, but also the values
of Hankel functions H .1/

� .z/, z 2 C, � 2 1
2
N, as well as the exponential ez , z 2 C, and

taking square roots. These do not have to be included as part of the evaluation set because
they can be approximated to arbitrary precision with explicit error bounds. In order to
keep the presentation clear and concise, we will assume the valuesH .1/

� .z/, ez are known
and not track these explicit errors in our estimates.

The proof of Theorem 1.16 is divided into several steps. First, we obtain quantitative
resolvent norm estimates for the operator K.z/ WD q.�� � z2/�1� from Definition 1.1.
These are then used to bound the error between K.z/ itself and a discretized version
Kn.z/, obtained by replacing the potential q by a piecewise constant approximation.
Finally, the poles of .I CK.z//�1 are identified through a thresholding of the discretized
operator function .I CKn.z//�1.

1.4. Comparison to previous results

This paper applies the ideas on complexity of infinite-dimensional problems developed
in [5, 6, 19] to the problem of computing quantum resonances. In a separate paper [7] we
studied obstacle scattering resonances. Recent years have seen a flurry of activity in this
direction. We point out [8, 15, 16] where some of the theory of spectral computations has
been further developed; [27] where this has been applied to certain classes of unbounded
operators; [3] where solutions of PDEs were considered; and [14] where the authors give
further examples of how to perform certain spectral computations with error bounds.

The approach developed in [12] for resonances in 1D uses interval arithmetic and
automatic differentiation to solve initial value problems with guaranteed error bounds.
An interval arithmetic implementation of the argument principle allows the number of
resonances to be counted in any user-specified rectangle in the complex plane. Compared
to the PDE methods, the most significant difference is that the input required is not just
a black box providing point values of the potential, but source code in a form which is
amenable to automatic differentiation pre-processing. This includes all cases with sym-
bolically defined potentials.
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Organization of the paper. Section 2 contains a short discussion of Definition 1.1 and
meromorphic continuation. In Section 3 we prove some estimates for convergence of
finite-dimensional approximations of linear operators, which are then used in Section 4 to
construct an explicit algorithm which computes resonances in one limit, thereby proving
Theorem 1.16. Section 5 is dedicated to numerical experiments. In Appendix A we review
some properties of the fundamental solution to the free Helmholtz operator �� � z2

which plays an important role throughout this paper.

2. Analytic continuation

We use this section for a more detailed discussion of Definition 1.1 and to fix some nota-
tions and conventions. First, for x 2 Rd and z 2 C let

G.x; z/ WD

´
i
4

�
z

2�jxj

�.d�2/=2
H
.1/

.d�2/=2
.zjxj/; d � 2;

i
2z
eizjxj; d D 1;

(2.1)

where H .1/
� denotes the Hankel function of the first kind. For Im.z/ > 0 the Green func-

tion G.x; z/ is the fundamental solution to the free Helmholtz operator ��� z2 (cf. [28,
Ch. 22]) satisfying

.��x � z
2/G D ıxD0:

For the sake of self-containedness, we prove the existence of z 7! .ICq.���z2/�1�/�1

as a meromorphic operator-valued function on the domain

Cext
WD

´
C if d is odd;

logarithmic cover of C if d is even:

This result follows from the classical analytic Fredholm theorem (cf. e.g. [25, Sec. VI.5]):

Theorem 2.1 (Analytic Fredholm theorem). Let D � C be open and connected and let
F W D ! L.H / be an analytic operator-valued function such that F.z/ is compact for
all z 2 D. Then, either

(i) .I C F.z//�1 exists for no z 2 D, or

(ii) .I CF.z//�1 exists for all z 2D nS , where S is a discrete subset ofD. In this case,
z 7! .I CF.z//�1 is meromorphic in D, analytic in D n S , the residues at the poles
are finite rank operators, and if z 2 S then ker.I C F.z// ¤ ¹0º.

Next, recall that QM denotes the cube of edge length M in Rd centered at the origin.
Let � WD �QM

be the indicator function of QM . Note that the operator-valued function
z 7! q.��� z2/�1� is an analytic function on Cext n ¹0º. This follows from the explicit
representation of the free fundamental solution (2.1) (cf. Remark A.2).

Lemma 2.2. The function CC 3 z 7! .I C q.��� z2/�1�/�1 has a meromorphic con-
tinuation to Cext. Moreover, the residues at the poles are finite rank operators.
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Proof. The operator q.�� � z2/�1� is compact by the Fréchet–Kolmogorov theorem
and the inverse .I C q.�� � z2/�1�/�1 exists for Im.z/ > 0 large enough, by the Neu-
mann series. Hence, the claim follows from the analytic Fredholm theorem, together with
Remark A.2 in the appendix.

The above observations lead us to study the spectrum of the compact operator

K.z/ WD q.�� � z2/�1�; z 2 Cext: (2.2)

Since the integral kernel for the free resolvent is given explicitly by (2.1) as an analytic
function of z 2Cextn¹0º, we have an explicit representation of (2.2) as an integral operator
on L2.Rd /:

.q.��� z2/�1�f /.x/ D q.x/

Z
Rd

G.x � y; z/�.y/f .y/ dy; z 2 Cext
n ¹0º: (2.3)

3. Abstract error estimates

We recall that the resonances of Hq D ��C q are defined to be the poles of Cext 3 z

7! .I CK.z//�1 whereK.z/D q.���z2/�1� is a compact operator. In this section we
prove general abstract estimates for approximations of families of linear operators. These
are largely independent of the rest of this paper and will be applied in the proof of Theo-
rem 1.16. Abusing notation, our generic abstract analytic operator family is denotedK.z/.

Let H be a separable Hilbert space and denote by L.H / the space of bounded opera-
tors on H . Let Hn � H be a finite-dimensional subspace, Pn W H ! Hn the orthogonal
projection andK WCext!L.H / continuous in operator norm. Moreover, letKn WCext!

L.Hn/ be analytic for every n 2 N. Assume that for any compact subset B � Cext there
exist a sequence an # 0 and a constant C > 0 such that for all z 2 B ,

kK.z/ �Kn.z/PnkL.H/ � Can; (3.1)

kPnK.z/jHn
�Kn.z/kL.Hn/ � Can; (3.2)

kK.z/ � PnK.z/PnkL.H/ � Can: (3.3)

3.1. Error estimates

With the above setup, and assuming (3.1)–(3.3) to hold true, we now prove a sequence of
abstract lemmas which then allow us to define an abstract algorithm for computing poles,
and prove its convergence (cf. Lemma 3.5).

Lemma 3.1. If z 2 Cext is such that �1 … �.K.z//, then

.1 � Cank.I CK.z//
�1
kL.H//k.I CKn.z//

�1
kL.Hn/ � k.I CK.z//

�1
kL.H/;

where we use the convention that k.I CKn.z//�1kL.H/ D C1 if �1 2 �.Kn.z//.
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Proof. Whenever the left hand side is non-positive the assertion is trivially true, so we
may assume that 1�Cank.I CK.z//�1kL.H/ > 0. In this case, the assertion follows by
a Neumann series argument, as follows. We have

I CKn.z/Pn D I CK.z/C .Kn.z/Pn �K.z//

D .I CK.z//ŒI C .I CK.z//�1.Kn.z/Pn �K.z//�: (3.4)

Because Can < 1
k.ICK.z//�1k

, the second factor in (3.4) is invertible by the Neumann
series and

ŒI C .I CK.z//�1.Kn.z/Pn �K.z//�
�1
D

1X
jD0

�
.I CK.z//�1.Kn.z/Pn �K.z//

�j
:

Hence,

k.I CKn.z/Pn/
�1
kL.H/

�

 1X
jD0

�
.I CK.z//�1.Kn.z/ �K.z//

�j
L.H/
k.I CK.z//�1kL.H/

�

1X
jD0

k.I CK.z//�1k
jC1

L.H/
kKn.z/Pn �K.z/k

j

L.H/

�

1X
jD0

k.I CK.z//�1k
jC1

L.H/
.Can/

j

D k.I CK.z//�1kL.H/

1X
jD0

k.I CK.z//�1k
j

L.H/
.Can/

j

D
k.I CK.z//�1kL.H/

1 � k.I CK.z//�1kL.H/Can

for any n 2 N. It remains to replace the L.H / norm on the left hand side by the L.Hn/

norm. This follows from Claim 3.2, completing the proof.

Claim 3.2. We have k.I CKn.z//�1kL.Hn/ � k.I CKn.z/Pn/
�1kL.H/ for all z for

which both operators are boundedly invertible.

Proof. For x 2 Hn we have .I CKnPn/�1x D .I CKn/�1x, because if u 2 Hn solves
.I CKn/u D x, then .I CKnPn/u D x and by invertibility u D .I CKnPn/�1x. We
conclude that

sup
x2Hn; kxkD1

k.I CKnPn/
�1xkH D sup

x2Hn; kxkD1

k.I CKn/
�1xkHn

and therefore

sup
x2H ; kxkD1

k.I CKnPn/
�1xkH � sup

x2Hn; kxkD1

k.I CKn/
�1xkHn

:
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Lemma 3.3. If z 2Cext is such that either�1 2 �.K.z// or k.ICK.z//�1kL.H/ �
1
Can

,
then either �1 2 �.PnK.z/Pn/ or

k.I C PnK.z/Pn/
�1
kL.H/ �

1

2Can
:

Proof. If �1 2 �.K.z//, then unless �1 2 �.PnK.z/Pn/, we have

I CK.z/ D I C PnK.z/Pn C .K.z/ � PnK.z/Pn/

D .I C PnK.z/Pn/ŒI C .I C PnK.z/Pn/
�1.K.z/ � PnK.z/Pn/�:

We now argue by contradiction. If we had k.I C PnK.z/Pn/�1kL.H/ <
1

2Can
, then we

would have k.I CPnK.z/Pn/�1.K.z/�PnK.z/Pn/kL.H/ < 1 and I CK.z/ would be
invertible by the Neumann series, contradicting our assumption that �1 2 �.K.z//. Thus
we must have k.I C PnK.z/Pn/�1kL.H/ �

1
2Can

.
Now let us turn to the case where �1 … �.K.z// and k.I CK.z//�1kL.H/ �

1
Can

.
The same calculation as in the proof of Lemma 3.1 shows that�
1 � Cank.I C PnK.z/Pn/

�1
kL.H/

�
k.ICK.z//�1kL.H/ � k.ICPnK.z/Pn/

�1
kL.H/

from which it follows easily that 1
2Can

� k.I C PnK.z/Pn/
�1kL.H/.

Lemma 3.4. Let B � Cext be compact and assume that kK.z/�K.w/k � C jz �wj for
some C > 0 for all z; w 2 B . If �1 2 �.K.z//, then k.I CK.w//�1k � 1

C jz�wj
.

Proof. Assume that I CK.w/ is invertible. Then

I CK.z/ D .I CK.w//ŒI C .I CK.w//�1.K.z/ �K.w///�: (3.5)

If we had k.I CK.w//�1kk.K.z/�K.w//k < 1, then the right hand side of (3.5) would
be invertible by the Neumann series – a contradiction. Hence one must have

k.I CK.w//�1k � k.K.z/ �K.w//k�1 �
1

C jz � wj
:

3.2. An abstract algorithm for computing poles

We now demonstrate how the assumptions (3.1)–(3.3) allow us to construct an abstract
algorithm that computes the poles of .I CK.z//�1. By an abstract algorithm we mean
a sequence of subsets of Cext, which is constructed from Kn and which converges in
Attouch–Wets metric to ¹z 2 Cext j �1 2 �.K.z//º. Note that this is not yet an arithmetic
algorithm in the sense of Definition 1.3, since the sets are not computed from a finite
amount of information in finitely many steps.

Let B � Cext be compact and define the lattice Ln WD a
�1
n .ZC iZ/ \ B . Since we

assume that an is explicitly known andKn.z/ can be computed in finitely many steps, we
can define the set

‚Bn .K/ D

²
z 2 Ln

ˇ̌̌̌
k.I CKn.z//

�1
kL.Hn/ �

1

2
p
an

³
: (3.6)
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Moreover, by [5, Prop. 10.1], determining whether k.ICKn.z//�1kL.Hn/ �
1

2
p
an

can be
done with finitely many arithmetic operations on the matrix elements of Kn.z/ for each
z 2 Ln.

Lemma 3.5. The assumptions (3.1)–(3.3) imply the convergence

‚Bn .K/! ¹z 2 B j � 1 2 �.K.z//º

in the Attouch–Wets metric.

Proof. I. Excluding spectral pollution. Assume that zn 2 ‚Bn .K/ with zn ! z0 for
some z0 2 B . Then for each n we have k.I CKn.zn//�1kL.Hn/ �

1
2
p
an

and hence by
Lemma 3.1,

k.I CK.zn//
�1
kL.H/ �

�
1 � Cank.I CK.zn//

�1
kL.H/

�1
2
a�1=2n

(with the convention that k.I CK.zn//�1kL.H/ D C1 if �1 2 �.K.zn//). Whenever
p
an � 2=C this leads to

k.I CK.zn//
�1
kL.H/ �

1

2

a
�1=2
n

1C C
p
an=2

�
1

4
a�1=2n :

It follows that k.I CK.zn//�1kL.H/ ! C1 as n! C1 and hence I CK.z0/ is not
invertible (this follows by yet another Neumann series argument, together with norm con-
tinuity of K). Hence z0 is a pole.

II. Spectral inclusion. Assume now that z is a pole, i.e. �1 2 �.K.z//. Our reasoning
will have the structure

�1 2 �.K.z//

+

9zn 2 Ln W k.I CK.zn//
�1
kL.H/ large

+

k.I C PnK.zn/Pn/
�1
kL.H/ large

+

k.I C PnK.zn/jHn
/�1kL.Hn/ large

+

k.I CKn.zn//
�1
kL.Hn/ large,

with a quantitative estimate in each step. To this end, note first that if �1 2 �.K.z//
for some z 2 B , then there exist �; c; " > 0 (independent of n) such that for all � in an
"-neighborhood of z,

k.I CK.�//�1kL.H/ � cjz � �j
�� : (3.7)

Indeed, since all singularities of .I CK.z//�1 are of finite order by the analytic Fred-
holm theorem, this follows from the Laurent expansion of meromorphic operator-valued
functions.



Computing scattering resonances 3645

It follows from (3.7) that for any zn such that jz � znj � an one will have, for all n
with an < 1,

k.I CK.zn//
�1
kL.H/ � cjz � znj

��
� ca��n � ca

�1
n :

We conclude that for any pole z there exists a sequence zn 2 Ln such that zn ! z as
n!C1 and k.I CK.zn//�1kL.H/ > c=an for all but finitely many n 2 N.

Next, Lemma 3.3 shows that k.I CPnK.zn/Pn/�1kL.H/ >
c
2an

. Studying this norm
further, we have

.IH C PnK.zn/Pn/
�1
D .IHn

C PnK.zn/jHn
/�1 ˚ IH?n

and thus

k.IH C PnK.zn/Pn/
�1
kL.H/ D max ¹k.IHn

C PnK.zn/jHn
/�1kL.Hn/; 1º:

Hence, as long as an < c=2, we have

k.I C PnK.zn/Pn/
�1
kL.H/ D k.I C PnK.zn/jHn

/�1kL.Hn/:

We conclude that if z is a pole, then there exists zn 2 Ln such that

k.I C PnK.zn/jHn
/�1kL.Hn/ >

c

2an
(3.8)

(n large enough). A similar reasoning to that in Lemma 3.1 (using (3.2)) shows that now

.1 � Cank.I CKn.zn//
�1
kL.Hn//k.I C PnK.zn/jHn

/�1kL.Hn/

� k.I CKn.zn//
�1
kL.Hn/;

and rearranging terms, together with (3.8), gives

k.I CKn.zn//
�1
kL.Hn/ �

c

2.1C Cc/an

and therefore zn 2‚Bn .K/ for large enough n. The assertion about Attouch–Wets conver-
gence now follows from Remark 1.13.

4. Definition of the algorithm

In this section we apply the abstract results of Section 3 to our resonance problem and
prove Theorem 1.16. The proof (contained in Sections 4.3 and 4.4) relies on the following
weaker result which is proved in Section 4.2:

Theorem 4.1. Let QM denote the cube of edge length M centered at the origin. Let
�M � �cpt denote the class of Schrödinger operators Hq in �cpt with supp.q/ � QM .
Then �M 2 �A2 .
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We first define
K.z/ WD q.�� � z2/�1�

to be the operator appearing in Definition 1.1. We recall that it is given by the expression

.q.�� � z2/�1�f /.x/ D q.x/

Z
Rd

G.x � y; z/�.y/f .y/ dy; z 2 Cext
n ¹0º:

With a slight abuse of notation and where there is no risk of confusion, we retain the
symbol K for the integral kernel of K.z/, that is,

K.x; y/ WD q.x/G.x � y; z/�.y/

for any fixed z. Since the supports of both q and � are contained within the cube QM ,
we have supp.K/ � QM �QM . We will construct an operator approximation Kn of K,
which satisfies (3.1)–(3.3) and in addition

(H1) the matrix elements of Kn can be computed in finitely many steps from a finite
subset ƒn � ƒ (cf. (1.1) and Def. 1.3);

(H2) the convergence rate an is explicitly known (i.e. the sequence an can be used to
define the algorithm).

To this end, let us define Hn and Pn as follows:

Rd D
[

i2 1
n Zd

Sn;i WD
[

i2 1
n Zd

�
Œ0; 1=n/d C i

�
; (4.1)

Hn D
®
f 2 L2.QM /

ˇ̌
f jSn;i

constant 8i 2 1
n

Zd \QM
¯
;

Pnf .x/ D
X

i2 1
n Zd\QM

�
nd
Z
Sn;i

f .t/ dt

�
�Sn;i

.x/: (4.2)

Furthermore, we have to make a concrete choice for the approximation Kn. An obvious
choice is the integral kernel

Kn.x; y/ WD
X

i;j2 1
n Zd\QM

K.i; j /�Sn;i
.x/�Sn;j

.y/;

i.e. a piecewise constant approximation ofK.�; �/ which can be computed from the values
of K on the lattice n�1Zd (in dimensions greater than 1, the fundamental solution G has
a singularity at x D y; hence, we put Kn WD 0 for i D j in this case). As in (3.6), our
algorithm is

‚Bn .q/ D

²
z 2 Ln

ˇ̌̌̌
k.I CKn.�; �//

�1
kL.Hn/ �

1

2
p
an

³
where we abuse notation and write ‚Bn .q/ rather than ‚Bn .K/ to emphasize that the sole
input of this problem is the particular potential q.
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4.1. Error estimates

We will now show that the operators K;Kn satisfy (3.1)–(3.3). To streamline the presen-
tation, we will restrict ourselves to d � 3 in our computations, the cases d � 2 being
entirely analogous with minor changes in the formulas. Constants independent of n will
be denoted C and their value may change from line to line.

Proof of (3.3). Using the definitions (4.1)–(4.2), we have

Kf .x/ � PnKPnf .x/ D

Z
Rd

K.x; y/f .y/ dy �

Z
Rd

P xnK.x; y/Pnf .y/ dy;

where P xnK.x; y/ means .PnK.�; y//.x/. Using L2-selfadjointness of Pn, we conclude
that

Kf .x/ � PnKPnf .x/ D

Z
Rd

K.x; y/f .y/ dy �

Z
Rd

P yn P
x
nK.x; y/f .y/ dy

D

Z
Rd

.K.x; y/ � P yn P
x
nK.x; y//f .y/ dy:

Note that P yn P xnK.x; y/ simply yields a step function approximation of K.x; y/ like
(4.2), but in dimension 2d . By applying Young’s inequality [30, Th. 0.3.1] we conclude
that

kKf � PnKPnf kL2.Rd / � �nkf kL2.Rd /;

where

�n D max
²

sup
x2Rd

Z
Rd

jK.x; y/ � P yn P
x
nK.x; y/j dy;

sup
y2Rd

Z
Rd

jK.x; y/ � P yn P
x
nK.x; y/j dx

³
: (4.3)

Thus, all we have to do is estimate the L1-L1 difference between K and its projection
onto step functions. To this end, fix x 2 QM , let " > 2=n and decompose the integrals as
follows:Z

Rd

jK.x; y/ � P yn P
x
nK.x; y/j dy D

Z
QM

jK.x; y/ � P yn P
x
nK.x; y/j dy

D

Z
QM nB".x/

jK.x; y/ � P yn P
x
nK.x; y/j dy C

Z
B".x/

jK.x; y/ � P yn P
x
nK.x; y/j dy:

(4.4)

The integral overB".x/ can be estimated by
R
B".x/

2jK.x;y/jdy, while for the remaining
integral we can use the fact that the derivative of K is bounded, as follows. Let j 2 1

n
Zd

be such that x 2 Sn;j (see Figure 2). Let i 2 1
n

Zd be such that ji � j j > "=2. Then
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x

B "
2
.x/

j

B".x/1
n

Fig. 2. Sketch of the geometry in the calculation leading to (4.5). The sum over i includes all cells
whose nodes are outside the dashed ball centered at j .

Z
Sn;i

jK.x; y/ � P yn P
x
nK.x; y/j dy D

Z
Sn;i

ˇ̌̌̌
K.x; y/ � �

Z
Sn;i�Sn;j

K.s; t/ ds dt

ˇ̌̌̌
dy

�

Z
Sn;i

�

Z
Sn;i�Sn;j

jK.x; y/ �K.s; t/j ds dt dy

D

Z
Sn;i

�

Z
Sn;i�Sn;j

ˇ̌̌̌Z 1

0

rK.�. xy /C .1 � �/.
s
t // � ..

x
y / � .

s
t // d�

ˇ̌̌̌
ds dt dy

�

Z
Sn;i

�

Z
Sn;i�Sn;j

Z 1

0

jrK.�. xy /C .1 � �/.
s
t //j j.

x
y / � .

s
t /j d� ds dt dy

�

Z
Sn;i

�

Z
Sn;i�Sn;j

Z 1

0

krKkL1.Sn;i�Sn;j /

2
p
d

n
d� ds dt dy:

Summing over i , we finally obtain (cf. Figure 2)Z
Rd nB".x/

jK.x;y/�P yn P
x
nK.x;y/jdy �

X
i W ji�j j>"=2

Z
Sn;i

jK.x;y/�P yn P
x
nK.x;y/jdy

�

X
i W ji�j j>"=2

Z
Sn;i

�

Z
Sn;i�Sn;j

Z 1

0

krKkL1.Sn;i�Sn;j /

2
p
d

n
d� ds dt dy

�
2
p
d

n
krKkL1.QM nB"=2.x//

Z
QM nB"=4.x/

dy

D jQM j
2
p
d

n
krKkL1.QM nB"=2.x//

� jQM j
2
p
d

n
kqkC1C

�
"

2

�1�d
� C
jQM j

n
"1�d ; (4.5)
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where the fifth line follows from (A.2) in the appendix, and the bound kqkC1 < C1.
Using (4.5) in (4.4), we conclude thatZ

Rd

jK.x; y/ � P yn P
x
nK.x; y/j dy � C

jQM j

n
"1�d C

Z
B".x/

2jK.x; y/j dy;

so

sup
x2Rd

Z
Rd

jK.x; y/ � P yn P
x
nK.x; y/j dy � C

jQM j

n
"1�d C C 0"2;

where in the last line we have used (A.1) and the boundedness of q again.
With an analogous calculation for supy2Rd

R
Rd jK.x;y/�P

y
n P

x
nK.x;y/jdx (which

we omit here), and recalling that �n was defined by (4.3), we conclude that for all " > 0,

�n �
1

n
C"1�d C C 0"2:

Choosing " WD n�1=.dC1/, we conclude that

kKf � PnKPnf kL2.Rd / �
C C C 0

n2=.dC1/
kf kL2.Rd / (4.6)

and hence kK �PnKPnkL.L2.Rd //! 0 as n!C1 with rate (at least) an D n�2=.dC1/

� n�1=d .

Remark 4.2. Note that the constants C; C 0 all depend on the spectral parameter z, but
are bounded for z in compact subsets of Cext, because K depends continuously on z.

Proof of (3.2) and (H1). An orthonormal basis of Hn is given by the functions

ei WD n
d=2�Sn;i

; i 2 1
n

Zd \QM ;

so that
Pnf D

X
j2 1

n Z\QM

hf; ej iL2ej

in this basis. It is then easily seen that in this basis Kn has the matrix elements

.Kn/ij D n
�dK.i; j /:

Note that this proves (H1): The matrix elements of Kn can be calculated in finitely many
arithmetic operations from the finite setƒn WD ¹K.i;j / j i; j 2 1nZ\QM º �ƒ. Similarly,
it can be seen that the matrix elements of PnKjHn

in this basis are given by

.PnK/ij D n
d

Z
Sn;i

Z
Sn;j

K.x; y/ dx dy DW n�d hKiij ;

where we have introduced the notation h�iij for the mean value on Sn;i � Sn;j . Let f DP
j fj ej 2 Hn. From the above, and Young’s inequality, we conclude that

k.PnK �Kn/f k
2
L2 D

X
i2 1

n Zd\QM

ˇ̌̌ X
j2 1

n Zd\QM

n�d .K.i; j / � hKiij /fj

ˇ̌̌2
� Q�2nkf k

2
L2 ;



J. Ben-Artzi, M. Marletta, F. Rösler 3650

where

Q�n WD max
°

sup
i2 1

n Zd\QM

X
j2 1

n Zd\QM

n�d jK.i; j / � hKiij j;

sup
j2 1

n Zd\QM

X
i2 1

n Zd\QM

n�d jK.i; j / � hKiij j
±
:

Hence, we have reduced the problem to estimating these `1-`1 differences. This can be
done similarly to (4.4), by separating .QM �QM /\ . 1nZ� 1

n
Z/ into an "-region around

i D j and the rest:X
j2 1

n Zd\QM

n�d jK.i; j / � hKiij j

D

X
jj�i j>"

n�d jK.i; j / � hKiij j C
X
jj�i j�"

n�d jK.i; j / � hKiij j

� Cn�1
X
jj�i j>"

n�dkrKkL1.¹jx�yj>"º/ C
X
jj�i j�"

n�d jK.i; j / � hKiij j

� Cn�1"�dC1 C
X
jj�i j�"

n�d jK.i; j / � hKiij j; (4.7)

where we have used (A.2) and the C1-boundedness of q in the last line. To estimate
the last term on the right hand side, note that jK.i; j / � hKiij j � C jj � i j�.d�2/ near
i D j (cf. (A.1)). Next, note that the sum n�d

P
j W jj�i j�"

1

jj�i jd�2 can be interpreted as

an integral over a piecewise constant function, which approximates .x; y/ 7! jx � yj2�d .
But this function is dominated by .x;y/ 7! jx�yj1�d when jx�yj is small, and therefore
we have

n�d
X

j W jj�i j�"

1

jj � i jd�2
� C

Z
B2".x/

jx � yj1�d dy D C

Z 2"

0

r1�d !d r
d�1 dr

D 2C!d"; (4.8)

where !d denotes the volume of the unit sphere in Rd . Note that the above calculation is
uniform in i , because q is bounded. Plugging (4.8) into (4.7), we arrive atX

j2 1
n Zd\QM

n�d jK.i; j / � hKiij j � Cn
�1"�dC1 C 2C!d ":

Choosing " D n�1=d yieldsX
j2 1

n Zd\QM

n�d jK.i; j / � hKiij j � C
0n�1=d : (4.9)

Finally, swapping i and j will give an analogous estimate and we can conclude that
Q�n ! 0 with rate an D n�1=d .



Computing scattering resonances 3651

Remark 4.3. Note again that the constants C; C 0 depend on z, but are bounded for z in
compact subsets of Cext, since K depends continuously on z.

Proof of (3.1) and (H2). Estimate (3.1) in fact follows from (3.3) and (3.2). Indeed,
writing Kn and K as block operator matrices with respect to the decomposition H D

Hn ˚H?n , we have

K D

�
PnKjHn

D1
D2 D3

�
with some operators D1;D2;D3. Estimate (3.3) shows that� 0 D1

D2 D3

�
L.H/

< Can; (4.10)

whereas estimate (3.2) shows that

kPnKjHn
�KnkL.Hn/ D

�PnKjHn
�Kn 0

0 0

�
L.H/

< Can: (4.11)

Together, (4.10) and (4.11) imply that

kK.z/ �Kn.z/PnkL.H/ D

�PnKjHn
�Kn D1

D2 D3

�
L.H/

< 2Can:

The explicit rates obtained in (4.6) and (4.9) prove that our approximation scheme satis-
fies (H2).

4.2. Proof of Theorem 4.1

The results of Section 4.1 imply that for any compact B � Cext, ‚Bn .q/! Res.Hq/\B
in the Attouch–Wets metric. It remains to extend the algorithm‚Bn from a single compact
set B � Cext to the entire complex plane. This is done via a diagonal-type argument.

4.2.1. Odd dimensions. We choose a tiling of C, where we start with a square B1 D
¹z 2 C j jRe.z/j � 1=2; �1 � jIm.z/j � 0º and then add squares in a counterclockwise
spiral manner as shown in Figure 3. Next, we define our algorithm as follows. We let

�1.q/ WD ‚
B1

1 .q/;

�2.q/ WD ‚
B1

2 .q/ [‚
B2

2 .q/;

�3.q/ WD ‚
B1

3 .q/ [‚
B2

3 .q/ [‚
B3

3 .q/;

:::

�n.q/ WD

n[
jD1

‚
Bj
n .q/:

Lemma 3.5 ensures that each ‚Bk
n converges to Res.Hq/ \ Bk for fixed k and since the

¹Bkº form a tiling of C, it follows that �n.q/! Res.Hq/ in the Attouch–Wets metric.
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Re z

Im z

B1B1

B2B2 B3

B4

B5B6B6B7

:::
:::

Fig. 3. Tiling of the complex plane.

4.2.2. Even dimensions. In even dimensions we have to cover not only the complex
plane C, but its logarithmic covering space, which is equivalent to covering infinitely
many copies of the complex plane. A similar strategy to the odd-dimensional case,
together with a diagonal-type argument, does the job in this case. Indeed, we can con-
struct a cover by boxes Bn as follows (cf. Figure 4):

(1) Start with boxB1 (defined as in the odd-dimensional case) on the first Riemann sheet.

(2) Add a box B2 below B1 on sheet number 1 and add a box B1 on sheet number 2.

(3) Add a box B3 on sheet number 1, add a box B2 on sheet number 2 and a box B1 on
sheet number 3.

(4) . . .

Next, define again

�1.q/ WD ‚
B

.1/
1

1 .q/;

�2.q/ WD ‚
B

.1/
1

2 .q/ [‚
B

.1/
2

2 .q/ [‚
B

.2/
1

2 .q/;

�3.q/ WD ‚
B

.1/
1

3 .q/ [‚
B

.1/
2

3 .q/ [‚
B

.1/
3

3 .q/ [‚
B

.2/
1

3 .q/ [‚
B

.2/
2

3 .q/ [‚
B

.1/
3

3 .q/;

:::

�n.q/ WD

n[
kD1

n�kC1[
jD1

‚
B

.k/

j
n .q/:

Lemma 3.5 ensures that each ‚
B

.k/

j
n converges to Res.Hq/ \ B

.k/
j for fixed k and since

the ¹B.k/j º form a tiling of Cext, it follows that �n.q/! Res.Hq/ in the Attouch–Wets
metric.

Having proved convergence for all dimensions d 2 N, it follows that �M 2 �A2 and
therefore the proof of Theorem 4.1 is complete.
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Fig. 4. Tiling of the logarithmic Riemann surface.

4.3. Proof of Theorem 1.16 (1)

Given M > 0, recall that QM D Œ�M=2;M=2�d � Rd . We denote the d -dimensional
grid introduced in (4.1) by GM;n WD

1
n

Zd \QM . For n 2 N let �M;n be the algorithm
defined in Section 4.2 (i.e. the discretization in �M;n is based on GM;n). For any element
Hq 2 �cpt, consider the algorithm defined by the following pseudocode.

Algorithm 1: Compute resonances on �cpt

Initialize M;n WD 1 and m WDM C 1;
while True do

if q.j / D 0 for all j 2 Gm;n n GM;n, then
define �n.q/ WD �M;n.q/;
increment m by 1 and proceed to nC 1;

else
increment m by 1, set M WD m � 1 and repeat the current step;

end
end
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Algorithm 1 defines sequences ¹Mnºn2N and ¹mnºn2N and an algorithm �n W �cpt !

cl.C/. Note that mn %C1, because it gets incremented by at least 1 in every step.
By Lemma 4.4 below, the sequence ¹Mnºn2N is eventually constant, i.e. there exists

N 2 N such that Mn D MN for all n � N and one has Hq 2 �MN
. Hence �n.q/ D

�MN ;n.q/ for all n � N and

lim
n!C1

�n.q/ D lim
n!C1

�MN ;n.q/ D Res.Hq/;

where the last equality follows from the convergence of the algorithm �MN ;n.q/ and the
fact that Hq 2 �MN

. This completes the proof of Theorem 1.16 (1): �cpt 2 �
A
2 .

Lemma 4.4. The sequence ¹Mnºn2N is eventually constant and if N > 0 is such that
Mn DMN for all n > N , then Hq 2 �MN

.

Proof. The fact that ¹Mnºn2N is eventually constant follows immediately from the
boundedness of supp.q/ and Algorithm 1. Now letN 2N be as in the assertion. To prove
that Hq 2 �MN

, assume for contradiction that q.x/ ¤ 0 for some x … QMN
. Then by

continuity q ¤ 0 on a ballB".x/. Hence, as long as n�1 < " one would have q.jn/¤ 0 for
some lattice point jn 2 1

n
Z\B".x/. In particular, q would be nonzero on Gm;nnGM;n. But

then, as long asmn > jxjC", Algorithm 1 would forceMn to increase by 1, contradicting
the fact that Mn is constant for n � N .

4.4. Proof of Theorem 1.16 (2)

To prove that �M;N 2 …A
1 , we need to construct sets Xn.q/ � C such that Res.Hq/ �

Xn.q/ and dAW.Xn.q/; �n.q// � "n for some explicit error "n for all q 2 �M;N (cf. Def-
inition 1.14). These involve estimates of the Green function which was defined in (2.1).
We begin with two lemmas.

Lemma 4.5. One has kK.z/�K.w/kL2!L2 � kqk1kG.�; z/�G.�; w/kL1.Q3M .0// for
all z; w 2 C.

Proof. For f 2 L2.Rd / and z; w 2 C a direct calculation with Young’s inequality gives

k.K.z/ �K.w//f kL2.Rd / D kq � Œ.G.�; z/ �G.�; w// � .�f /�kL2.QM /

� kqk1k.G.�; z/ �G.�; w// � .�f /kL2.QM /

� kqk1kG.�; z/ �G.�; w/kL1.BR/
kf kL2.Rd /;

where the second line follows from Hölder’s inequality, and the third follows from
Young’s inequality. The radius R must be large enough such that QM C x � BR for
all x 2 QM (which is satisfied by R D 3M ).

Lemma 4.6. For any compact set B � C and for any R > 0 there exists an explicit
constant CB;R > 0 such that kG.�; z/�G.�;w/kL1.BR.0//

�CB;Rjz�wj for any z;w 2B .
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The proof of Lemma 4.6 is postponed to Appendix A.2. Now to construct Xn.q/,
suppose that B � C is compact and z 2 B is a resonance of q, i.e. �1 2 �.K.z//. Then
combining Lemmas 3.4, 4.5, 4.6 we conclude that for any zn 2 Ln with jz � znj < an D
n�1=d one has

k.I CK.zn//
�1
k � .CB;3Mkqk1an/

�1

(with explicit CB;R, R D 3M as in Lemma 4.6). This explicit bound replaces (3.7) in the
proof of Lemma 3.5. Proceeding as in the proof of Lemma 3.5, we obtain the following. If
�1 2 �.K.z//, then k.ICKn.zn//�1k � 1

2CB;3M kqk1C2C
a�1n , hence zn 2 �n.q/ as long

as .2CB;3Mkqk1 C 2C /an � 2
p
an (inserting an D n�1=d and using kqk1 � N yields

an explicit value n D n.B/ for which this inequality is satisfied). Because jz � znj < an
(by choice) and zn 2 �n.q/, we conclude that

Res.Hq/ \ B � Ban
.‚Bn .q// (4.12)

for compact subsets B � C as long as n > n.B/.
Next, fix � > 0. According to our choice of numbering ¹Bj ºj2N (cf. Section 4.2.1)

we have jzj � � for all z 2 Bj , j � 4�2 and thus

B�.0/ �
[

j�4�2

Bj (4.13)

(with similar formulas for B.k/j if d is even). Combining (4.12) and (4.13) we have

Res.Hq/ \ B�.0/ � Ban
.�n.q// (4.14)

as long as n � max ¹4�2; n.B�.0//º.

Lemma 4.7. There exists an explicitly computable sequence ¹�nºn2N of nonnegative
numbers with �n %C1 such that n � max ¹4�2n; n.B�n

.0//º for all n 2 N.

Proof. Let �1 WD 0. Then trivially Res.Hq/ \ B�1
.0/ � Ban

.�n.q// for all n, so
n.B�1

.0// D 1. Consequently, 1 � max ¹4�21; n.B�1
.0//º. The remaining �k are con-

structed inductively as follows. Assume �k�1 has been constructed. Compute m WD
max ¹4.�k�1 C 1/2; n.B�k�1C1.0//º. If m � k let �k WD �k�1 C 1, otherwise let
�k WD �k�1.

To show that �k % C1, note that by definition for any k the only two possibilities
are �kC1 D �k or �kC1 D �k C 1. This proves monotonicity. Moreover, the divergence
�k%C1 could only fail if for all k larger than some k0 2N one had �kC1 � �k . This is
not possible, however, because for k �m the definition of �k enforces �kC1 D �kC1.

This motivates the following definition. Choose a sequence �n as in Lemma 4.7. Then
define

Xn.q/ WD Ban
.�n.q// [ .C n B�n

.0//:
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Then by the definition of the Attouch–Wets distance dAW one has

dAW.�n.q/; Xn.q// D

1X
jD1

2�j min
°
1; sup

p2C
jpj<j

ˇ̌̌
inf

a2�n.q/
ja � pj � inf

b2Xn.q/
jb � pj

ˇ̌̌±

�

�nX
jD1

2�j min
°
1; sup

p2C
jpj<j

ˇ̌̌
inf

a2�n.q/
ja � pj � inf

b2Xn.q/
jb � pj

ˇ̌̌±
C

1X
jD�nC1

2�j

� an

�nX
jD1

2�j C 2��n � an C 2
��n (4.15)

where the second inequality follows from the definition of Xn.q/. Moreover, by (4.14)
we have

Res.Hq/ � Xn.q/: (4.16)

Together, (4.15) and (4.16) imply �M;N 2 …A
1 with explicit error "n D an C 2��n .

5. Numerical results

Software to compute resonances has been in existence for decades [1,13,26]. The authors
of [9] recently proposed a collection of MATLAB codes to compute resonance poles and
scattering of plane waves efficiently (“MatScat” [10]). In this section we compare the
results of our algorithm to that of MatScat.

In order to study the actual numerical performance of our algorithm, we coded a MAT-
LAB routine for the one-dimensional case with supp.q/� Œa; b� (for some known a < b),
which computes the set®

z 2 Ln \ B
ˇ̌ �1n�n C .K.i; j //i;j2 b�a

n Z\Œa;b�

��1 > C ¯;
where the region B in the complex plane, the lattice distance of Ln and the cutoff thresh-
old C were treated as independent parameters.

Comparison of results. Figures 5 and 6 show the output of MatScat (black dots) versus
the output of our algorithm (blue regions) for a Gaussian well and trapping potential,
respectively. As the plots show, there is agreement between the two.

Limitations. As mentioned before, MatScat has been developed with the goal to create
an efficient algorithm to compute resonances fast. Indeed, the computation of the black
dots in Figure 5 takes less than a second, while computing the regions with our algorithm
takes several hours on a personal computer. We stress that our MATLAB code was written
mainly for illustration purposes and that there is considerable room for improvement in
numerical efficiency. Moreover, considering rounding errors and storage limitations of
actual computers, our algorithm can only yield reliable results in a certain region, as the
following heuristic calculations make clear.
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Fig. 5. Comparison of the result of [10] (black) and our algorithm (blue) for a Gaussian well sup-
ported between�1 and 1. The chosen parameter values: nD 100; threshold for resolvent norm:C D
200; number of lattice points in the shown region of the complex plane: M � 4M D 1000 � 4000.
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Fig. 6. Comparison of the result of [10] (black) and our algorithm (blue) for a smooth trapping
potential supported between �1:2 and 1:2. The chosen parameter values: n D 100; threshold for
resolvent norm: C D 200; number of lattice points in the shown region of the complex plane:
M � 10M D 1000 � 10000.
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� Imaginary part of z: Since the fundamental solution G.x; z/ D 1
2iz
eizjxj grows expo-

nentially with � Im.z/ and x 2 Œ�a; a�, a limit is reached when jIm.z/j � log.2M/
2a

,
where M is the largest number the machine can store with adequate precision1 (for the
interval Œ�a; a� D Œ�1; 1� and M D 1016 this bound yields Im.z/ ≳ �18:8).

� Real part of z: Similarly, a natural bound on Re.z/ is reached when the period of eizjxj

is less than twice the lattice spacing 2=n, i.e. when jRe.z/j≲ �n (for nD 30 this bound
yields jRe.z/j ≲ 94).

Numerical experiments have confirmed the above bounds (see Figure 7). Note that the
bound on Im.z/ is fixed by the machine precision, while the bound on jRe.z/j can be
raised by increasing n.

10 20 30 40 50 60 70 80 90 100
�10

�5

0

Re

Im n D 15 W

Algorithm output

10 20 30 40 50 60 70 80 90 100
�10

�5

0

Re

Im n D 30 W

Algorithm output

Fig. 7. Numerical artefacts for large real part of z. Top: Output of our algorithm for Gaussian well
potential on the interval Œ�1; 1� with n D 15. Bottom: Output for the same problem with n D 30.
The locations of the spurious peaks agree with the bound jRe.z/j � �n in each case.

Remark 5.1. We note that our algorithm is not restricted to one dimension or real-valued
potentials. Indeed, the algorithm �n only uses the bound supp.q/ � QM , and higher-
dimensional implementations of �n can be coded similarly to the one-dimensional one.

Appendix A. Fundamental solution

In this appendix we gather some well-known results about the fundamental solution for
the Helmholtz equation. These facts are used to show that the abstract framework of Sec-
tion 3 holds in the context of our algorithm as defined in Section 4, namely that (3.1)–(3.3)

1This means that M is the largest number such that M C 1 > M in machine arithmetic.
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hold. We remind the reader of the definition of the fundamental solution:

G.x; z/ D

´
i
4

�
z

2�jxj

�.d�2/=2
H
.1/

.d�2/=2
.zjxj/; d � 2;

i
2z
eizjxj; d D 1:

A.1. Asymptotics near 0

We start by obtaining some asymptotic expressions for G.x; z/. We adopt the notation of
[2] and write f .�/� �� if f and �� are asymptotically equal, i.e. jf .�/��� j DO.j�j�C1/
as j�j ! 0.

Remark A.1. By the asymptotic expansion of the Hankel functions

H .1/
� .�/ �

´
�
�.�/
�

�
�
2

���
; � > 0;

2i
�

log.�/; � D 0;

where � denotes the Gamma function and log denotes the principal branch of the log-
arithm (cf. [2, Ch. 9.1.9]), we find that the fundamental solution satisfies the small jxj
asymptotics

G.x; z/ � �
i�
�
d�2
2

�
�

�
zjxj

2

��.d�2/=2 i
4

�
z

2�jxj

�.d�2/=2
D
�
�
d�2
2

�
4�d=2

1

jxjd�2
as jxj ! 0;

for d � 3, and

G.x; z/ � �
1

2�
log.zjxj/ as jxj ! 0;

for d D 2. Hence

jG.x; z/j � Cz �

´
1

jxjd�2 ; d � 3;

log.jxj/; d D 2;
(A.1)

for all x in a neighborhood of 0, where Cz > 0 is uniformly bounded for z in a compact
subset of C. Similar formulas hold for the derivatives of G. Indeed, identities for Hankel
functions (cf. [2, Ch. 9.1.30]) show that

jrG.x; z/j �
Cz

jxjd�1
for d � 2: (A.2)

Remark A.2. From the representation of G.x; z/ in terms of Hankel functions it follows
that G can be continued analytically in z through the branch cut RC. In fact, it can be
shown that G can be continued to

� the Riemann surface of the complex square root if d is odd,

� the Riemann surface of the complex logarithm if d is even

(cf. [17, Ch. 3.1.4]). The estimates (A.1) and (A.2) remain valid in either case.
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A.2. Lipschitz bounds

In this section we give the proof of Lemma 4.6. For the reader’s convenience, some long
calculations are omitted.

Proof of Lemma 4.6. We recall that the lemma states that for any compact set B � C
and for any R > 0 there exists an explicit constant CB;R > 0 such that kG.�; z/ �
G.�; w/kL1.BR.0//

� CB;Rjz � wj for any z; w 2 B . We focus on the case d � 3, the
other cases being similar. Introducing � WD zjxj, we write

G.x; z/ D
i
4

�
1

2�

�.d�2/=2
jxj�.d�2/�.d�2/=2H

.1/

.d�2/=2
.�/:

From the recurrence relations for Bessel functions it follows that

d

d�
.��H .1/

� .�// D ��H
.1/
��1.�/: (A.3)

Now consider some compact set B � C and let z;w 2 B . For any fixed x 2 Rd n ¹0º we
have, by (A.3),

jG.x; z/ �G.x;w/j � jz � wj

dG.x; �/dz


L1.B/

D jz � wj
1

4

�
1

2�

�.d�2/=2
jxj�.d�2/

 ddz �.d�2/=2H .1/

.d�2/=2
.�/


L1.B/

D jz � wj
1

4

�
1

2�

�.d�2/=2
jxj�.d�3/

 dd� �.d�2/=2H .1/

.d�2/=2
.�/


L1.B/

D jz � wj
1

4

�
1

2�

�.d�2/=2
jxj�.d�3/k�.d�2/=2H

.1/

.d�4/=2
.�/kL1.B/:

Integrating both sides in x over BR.0/ we obtain

kG.�; z/ �G.�; w/kL1.BR.0//

� jz � wj

�
1

2�

�.d�2/=2
Sd�1R

3

12
k�.d�2/=2H

.1/

.d�4/=2
.�/kL1.B/;

where Sd�1 denotes the .d � 1/-dimensional measure of the unit sphere. Hence it is
enough to find an explicit bound for k�.d�2/=2H .1/

.d�4/=2
.�/kL1.B/. This will be sketched

in the following. We will write � WD .d � 2/=2 to simplify notation.

Even dimension .� 2 N/: By definition, H .1/
� D J� C iY� (where Y� denote the Bessel

functions of the second kind), hence jH .1/
� j � jJ� j C jY� j. For � > �1=2 one has the

bound

jJ�.�/j �
.�=2/�ejIm.�/j

�.� C 1/
(A.4)
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(cf. [24, (10.14.4)]). To bound jY� j, consider the following series expansion, which holds
for � D n 2 N [21, (5.5.1)]:

Yn.�/ D �
1

�

n�1X
kD0

.n � k � 1/Š

kŠ

�
�

2

�2k�n
C
1

�

1X
jD0

.�1/j
.�=2/nC2j

j Š.nC j /Š

�
2 log

�
�

2

�
�  .j C 1/ �  .nC j C 1/

�
; (A.5)

where  .m/ D � C
Pm
jD1

1
j

and  is the Euler–Mascheroni constant. The expansion
(A.5) shows that the highest order term in Yn.�/ is ��n. Thus, j�nYn�1.�/j is bounded
for � in compact subsets of C. A tedious calculation using (A.5) yields an explicit bound
j�nYn�1.�/j � C .

Odd dimension .� 2NC1=2/: For � 2NC1=2 one hasH .1/
� D .�1/

�C1i.J���ei��J�/

(cf. [21, (5.6.4)]). For positive �, jJ�.�/j can be bounded by (A.4). The summand J�� can
be expressed in terms of J� with � > 0 by successive application of the relation

J��1.�/ D
2�

�
J�.�/ � J�C1.�/: (A.6)

The highest power of ��1 that appears after d�e applications of (A.6) is ��d�e; hence
j��J�.��1/.�/j is bounded on compact sets by an explicit constant.
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