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Abstract 

In this paper, an equivalent linearization method considering higher order statistics 

based on nonlinear reduced order modeling techniques is proposed for the geometrically 

nonlinear random vibration problems of complex structures. Nonlinear reduced order 

models of the structures are constructed by leveraging the nonlinear analysis capabilities 

of commercial finite element codes, and an improvement to the Stiffness Evaluation 

Procedure method for determining the stiffness coefficients is achieved through the 

equivalence relation, leading to a notable reduction in computational cost with no further 

requirements for commercial finite element codes. The nonlinear terms are twice 

regulated equivalent, and then a regulated form of the stiffness coefficients is derived 

to introduce higher order statistics into the equations of motion. Then a linearized system 

obtained by the criterion of force error minimization is used to predict the random 

response of the original nonlinear system. The nonlinear problems are solved by the 

linearized system in the modal space, increasing computational efficiency significantly. 

Higher order statistical information of the response is introduced to improve the accuracy. 

Typical examples are used to verify the effectiveness of the proposed method, while its 

applicability is further demonstrated via the analysis of turbulence-excited composite 

laminates. 

Keywords: Geometric nonlinearity; Nonlinear reduced order model; Equivalent 

linearization; Turbulent boundary layer excitation; Higher order statistics 
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1 Introduction 

In the process of high speed flight, components of aerospace vehicles are impacted 

by high intensity jets or turbulent boundary layers [1], resulting in severe vibration in 

which the geometrically nonlinear effects are significant and cannot be ignored. On the 

one hand, the severe vibration leads to fatigue damage to the structure and affects the 

service life of vehicles. On the other hand, it also has adverse effects on the operation of 

the vehicles, such as interference with the flight attitude or the normal operation of an 

attached pipeline. 

Perturbation [2], the Fokker-Planck equation [3], [4], time-domain numerical 

simulation [5] -[7] and equivalent linearization (EL) [8], [9] are the main methods 

currently used to predict geometrically nonlinear random response [10]. The EL method 

equivalences the nonlinear system to a linear system by a linearization criterion, and then 

the mature linear random vibration method is applied to solve the nonlinear problem. This 

is the most popular among all approximation methods for the dynamics of a nonlinear 

system under random excitation [11], it can accurately capture response statistics over a 

wide range of response levels while maintaining a relatively light computational burden 

[12]. However, replacing the nonlinear terms by linear terms will yield some error and 

affect the computational accuracy [13]. In order to reduce the error, Anh and Di Paola [14] 

proposed a regulated equivalent linearization (REL) method, where the nonlinear terms 

are firstly equivalenced to higher order terms, and are then equivalenced to linear terms 
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in several steps. The REL method considers higher order statistics and can predict the 

motion behavior of the nonlinear system more accurately than the classical EL method. 

Elishakoff [13] further developed the REL method and applied it to a variety of single-

degree-of-freedom systems, comparing with exact solutions and the results of the 

classical EL method. It was verified that the REL method has a notable advantage in 

accuracy. Subsequently, Anh and Elishakoff [15], [16] adopted the REL method to 

investigate the dynamic behavior of a Bernoulli-Euler beam and Seide’s problem. The 

cost of the EL and REL methods is still unacceptable when applied to engineering 

structures with a considerable number of degrees of freedom. 

Nonlinear reduced order modeling (NLROM) techniques reduce finite element 

models with a large number of degrees of freedom to a low order system of modal 

equations. Mignolet and Soize [17] gave a formula to directly determine the nonlinear 

stiffness coefficients in the reduced order models, but it requires specific finite element 

codes and is not conducive to complex structures. Rizzi and Muravyov [18] proposed a 

Stiffness Evaluation Procedure (STEP) method to indirectly determine the nonlinear 

stiffness coefficients by leveraging the nonlinear analysis capabilities of commercial 

finite element codes. This approach can easily reduce the order of complex structures. 

Muravyov and Rizzi [10] developed an EL method based on NLROM techniques, and 

successfully predicted the vibration response of a metal plate under band-limited white 

noise. This method is referred to as the NLROM-EL method in this paper. Yang and Yang 
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[19] investigated the random response of composite laminates under band-limited white 

noise using the NLROM-EL method. The reduced order modeling techniques reduce the 

order of the nonlinear system, and then the computational cost of response analysis is 

significantly reduced. In contrast, the cost of determining the nonlinear stiffness 

coefficients is more notable. Prerez et al. [20] developed an improved form of the  

method by using commercial finite element software that allows the output of tangent 

stiffness matrix, such as NASTRAN and ABAQUS, so reducing the cost. 

The computational efficiency and accuracy should be considered comprehensively 

when solving geometrically nonlinear random vibration problems of complex 

engineering structures, at the same time, simulating the dynamics of a full finite element 

model using direct time integration presents a high computational cost [21]. This paper 

develops an EL method based on the NLROM and modified by higher order statistics. 

The EL and NLROM techniques effectively reduce the computational cost of predicting 

the geometrically nonlinear random response, while the higher order statistics improve 

the computational accuracy. Firstly, according to the nonlinear potential energy and 

nonlinear restoring force, the equivalent relationships between the stiffness coefficients 

are obtained, and the STEP method to determine the stiffness coefficients is optimized to 

construct reduced order models of the geometrically nonlinear structures with less cost. 

Then, referring to the REL method, the nonlinear terms of the reduced order equations of 

motion are twice regulated equivalent to derive a regulated form of the nonlinear stiffness 
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coefficients, so that the higher order statistics of the response can be introduced into the 

modal equations of motion. Finally, a linearized form of the nonlinear system is 

constructed by the criterion of force error minimization for the prediction of random 

response. Compared with the traditional EL method, the proposed method does not 

introduce new assumptions, so it keeps the same application scope as the former, that is, 

weakly nonlinear systems. The NLROM-EL method, time-domain numerical simulation 

and the proposed method are used to investigate a metal plate and a composite laminated 

plate under band-limited white noise in the literature. Considering that the turbulent 

boundary layer has a more complex expression in spatial correlation, the composite 

laminate under the turbulent boundary layer is further investigated. It is observed that the 

proposed method maintains the same iterative convergence and computational cost as the 

NLROM-EL method, but provides a significant improvement in computational accuracy 

over the NLROM-EL method for the same effort. 

 

Fig. 1  Thin-walled structure subjected to random excitation 
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2 EL method for geometrically nonlinear structures 

Thin-walled structures are common components in aerospace vehicles. When 

subjected to random excitation, as shown in Fig. 1, the geometrically nonlinear equations 

of motion for this kind of structure can be expressed as [12] 

 

 𝑴�̈� + 𝑪�̇� + 𝑲𝑿 + 𝜞(𝑿2, 𝑿3) = 𝑭 (1) 

 

where 𝑴,𝑪,𝑲 are the mass, damping and linear stiffness matrices, respectively, 𝑿 is 

the displacement response vector and 𝑭  is the random excitation vector. 𝜞  is the 

nonlinear restoring force vector which, when the material nonlinearity is not considered, 

can be expressed as a function of the quadratic and cubic terms of the displacement vector 

[12]. 

 

According to the EL method, an approximate solution to Eq. (1) can be obtained by 

an EL system [22] 

 

 𝑴�̈� + 𝑪�̇� + (𝑲 + 𝑲e)𝑿 = 𝑭 (2) 

 

where 𝑲e is the equivalent linear stiffness matrix. The most commonly used method 

for determining 𝑲e  is the force error minimization criterion, which requires the 

minimization of the difference between the nonlinear restoring force vector of the 

original system and the stiffness force vector of the equivalent system [12]. 

Defining ∆ as 
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 ∆= 𝜞 − 𝑲e𝑿 (3) 

 

then 

 

 E[∆T∆] → min (4) 

 

where E[ ]  represents the mathematical expectation, and superscript T  represents 

transpose. Eq. (4) implies that 

 

 
𝜕[∆T∆]

𝜕𝐾e𝑖𝑗
= 0   𝑖, 𝑗 = 1,2, … ,𝑁 (5) 

 

Substituting Eq. (3) into Eq. (5) gives 

 

 E[𝜞𝑿T] = E[𝑿T𝑿]𝑲e (6) 

 

It is generally assumed that a weakly nonlinear system has a Gaussian response 𝑿 when 

a Gaussian excitation 𝑭  is applied. By using the following formula for the expected 

value of Gaussian vector 𝜼 [12] 

 

 E[𝑓(𝜼)𝜼T] = E[𝜼T𝜼]E [
𝜕𝑓(𝜼)

𝜕𝜼
] (7) 

 

Eq. (6) can be further expressed as 

 

 E[𝑿T𝑿] [E (
𝜕𝜞

𝜕𝑿
) − 𝑲e] = 𝟎 (8) 
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and the equivalent stiffness matrix of the nonlinear system can be written as 

 

 𝑲e = E [
𝜕𝜞

𝜕𝑿
] (9) 

 

The expectation operator in Eq. (9) requires knowledge of the probability density function 

of the random response vector, which is unknown. Therefore, the equivalent linear 

solution procedure is programmed in an iterative fashion and some additional 

assumptions regarding the expectations of the response vector are required [12]. 

 

3 NLROM techniques and stiffness coefficients 

There is a high computational cost to carry out EL analysis when considering 

structures with a large number of degrees of freedom. Muravyov and Rizzi [10] 

introduced NLROM techniques to drastically reduce the order of the models and 

effectively improve the computational efficiency of EL analysis. This approach also 

simplifies the expression of the nonlinear restoring force, which is beneficial to the 

formula derivation. In this section, referring to [10], NLROM techniques are introduced 

to reduce the computational cost of nonlinear random vibration problems. Also the 

process of the STEP method is optimized to determine nonlinear stiffness coefficients 

efficiently, according to the equivalence relationship. 
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3.1 Nonlinear reduced order modeling techniques 

The following modal coordinate transformation is introduced into Eq. (1) 

 

 𝑿 = 𝜱𝒒 (10) 

 

where 𝜱 = [𝝓1, 𝝓2, … ,𝝓𝐿] is the mass normalized modal matrix, 𝐿 is the number of 

modal vectors and 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝐿]
T  is the vector of modal coordinates. A set of 

coupled modal motion equations with reduced degrees of freedom is obtained as 

 

 �̃��̈� + �̃��̇� + �̃�𝒒 + 𝜸(𝑞1, 𝑞2, … , 𝑞𝐿) = �̃� (11) 

 

where 

 

 

�̃� = 𝜱T𝑴𝜱 = ⌈𝑰⌋ 

�̃� = 𝜱T𝑪𝜱 = ⌈2𝜁𝑟𝜔𝑟⌋ 

�̃� = 𝜱T𝑲𝜱 = ⌈𝜔𝑟
2⌋ 

𝜸 = 𝜱T𝜞 

�̃� = 𝜱T𝑭 

(12) 

 

⌈𝑰⌋  is the identity matrix. 𝜁𝑟  and 𝜔𝑟  are the damping ratio and undamped natural 

frequency corresponding to the rth mode, respectively. 𝜸 = [𝛾1, 𝛾2, … , 𝛾𝐿]
T  is the 

nonlinear restoring force vector in modal space. According to Eq. (1) and Eq. (10), 𝛾𝑟 

can be expressed as [10] 
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𝛾𝑟(𝑞1, 𝑞2, … , 𝑞𝐿) = ∑∑𝑎𝑗𝑘
𝑟 𝑞𝑗𝑞𝑘

𝐿

𝑘=𝑗

𝐿

𝑗=1

+ ∑∑∑𝑏𝑗𝑘𝑙
𝑟 𝑞𝑗𝑞𝑘𝑞𝑙

𝐿

𝑙=𝑘

𝐿

𝑘=𝑗

𝐿

𝑗=1

 

𝑟 = 1,2, … , 𝐿 

(13) 

 

where 𝑎𝑗𝑘
𝑟   and 𝑏𝑗𝑘𝑙

𝑟   are the nonlinear stiffness coefficients corresponding to the 

quadratic term 𝑞𝑗𝑞𝑘 and the cubic term 𝑞𝑗𝑞𝑘𝑞𝑙 of the modal displacement, respectively,  

and the superscript r indicates the rth component 𝛾𝑟 of the modal nonlinear restoring 

force. 

The considerable reduction in the number of degrees of freedom leads to a significant 

reduction in the computational cost of the response simulation. Determining the stiffness 

coefficients in Eq. (13) from a structural model is the core task of constructing a nonlinear 

reduced order model. Directly determining the nonlinear stiffness coefficients by the 

formula requires a specific finite element program and is not easily applied to complex 

engineering structures [24].Reference [18] proposed a STEP method to indirectly 

determine the nonlinear stiffness coefficients which does not require any internal 

information about the governing equations or the detailed formula for the system. This 

method enables the straightforward use of commercial codes such as NASTRAN and 

ABAQUS, and determines the nonlinear stiffness coefficients of complex engineering 

structures conveniently. However, the STEP method requires a series of static solutions 

to obtain the structural reaction forces, so there will be a massive cost if the number of 

modes is large. 
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3.2 STEP method and reduction in static solutions 

The STEP method divides the nonlinear stiffness coefficients in Eq. (13) into three 

categories according to subscripts. By prescribing the displacement fields and obtaining 

the restoring forces using commercial codes, the equations satisfying these three 

categories of nonlinear stiffness coefficients are established, successively, to determine 

the respective nonlinear stiffness coefficients. First, the displacement fields are prescribed 

through the 𝑗th  mode, so that only the stiffness coefficients with three identical 

subscripts (NCI) 𝑎𝑗𝑗
𝑟  and 𝑏𝑗𝑗𝑗

𝑟  are retained in Eq. (13). Then, the displacement fields are 

prescribed by the 𝑗th and 𝑘th modes and equations satisfying the nonlinear stiffness 

coefficients with two different subscripts (NCD2) 𝑎𝑗𝑘
𝑟 , 𝑏𝑗𝑗𝑘

𝑟  and 𝑏𝑗𝑘𝑘
𝑟  are established. 

Finally, the displacement field is prescribed by the 𝑗th, 𝑘th and 𝑙th modes, to establish 

a series of linear equations of the nonlinear stiffness coefficients with three different 

subscripts (NCD3) 𝑏𝑗𝑘𝑙
𝑟  . By prescribing forced displacement fields using modes and 

solving the three types of stiffness coefficients successively, the STEP method 

decomposes a large set of simultaneous equations in Eq. (13) into mutually independent 

equations determining all the stiffness coefficients with less effort. The detailed process 

of the STEP method is as follows. 

1) Prescribing two displacement fields using the 𝑗th  order mode as follows for 

(1 ≤ 𝑗 ≤ 𝐿) 

 

 𝝓𝑗�̅�𝑗 , −𝝓𝑗�̅�𝑗 (14) 
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where �̅�𝑗  is a known non-zero scalar which is large enough to induce significant 

geometrically nonlinear effects but small enough to stay within the convergence limits of 

the finite element code [17]. Note that only the NCI related to the 𝑗th  order mode 

appears in Eq. (13). The linear nodal restoring forces and the total nodal restoring forces 

of the structure under the forced displacement fields of Eq. (14) are obtained using a 

commercial finite element code, and then modal nonlinear restoring forces 𝜸𝑗
(1)

 and 

𝜸𝑗
(2)

 are given by Eq.(1) and Eq. (12). Defining 𝑨𝑗 as a matrix of NCI related to the 𝑗th 

order mode, Eq. (13) gives 

 

 𝑨𝑗 = 𝑹𝑗𝑸𝑗 (15) 

 

where 

 

 𝑸𝑗 =
1

2𝑞𝑗
2 [

1 𝑞𝑗
−1

1 −𝑞𝑗
−1] , 𝑨𝑗 =

[
 
 
 
 
𝑎𝑗𝑗

1

𝑎𝑗𝑗
2

⋮
𝑎𝑗𝑗

𝐿

𝑏𝑗𝑗𝑗
1

𝑏𝑗𝑗𝑗
2

⋮
𝑏𝑗𝑗𝑗

𝐿
]
 
 
 
 

, 𝑹𝑗 = {𝜸𝑗
(1)

𝜸𝑗
(2)

} (16) 

 

2) Prescribing three displacement fields using the 𝑗th  and 𝑘th  order modes for 

(1 ≤ 𝑗 < 𝑘 ≤ 𝐿) 

 

 𝝓𝑗�̅�𝑗 + 𝝓𝑘�̅�𝑘, −𝝓𝑗�̅�𝑗 − 𝝓𝑘�̅�𝑘, 𝝓𝑗�̅�𝑗 − 𝝓𝑘�̅�𝑘 (17) 

 

let 𝜸𝑗𝑘
(1)

, 𝜸𝑗𝑘
(2)

 and 𝜸𝑗𝑘
(3)

 be the modal nonlinear restoring forces of the structure under 

those three forced displacement fields. Defining 𝑩𝑗𝑘 as a matrix of NCD2 related to the 
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𝑗th and 𝑘th order modes, then 

 

 𝑩𝑗𝑘 = (𝑷𝑗𝑘 − ∑ 𝑨𝑖𝑼𝑖

𝑖=𝑗,𝑘

)𝑺𝑗𝑘 (18) 

 

where 𝑨𝑖 has been obtained in Eq. (15), 

 

 

𝑷𝑗𝑘 = {𝜸𝑗𝑘
(1)

𝜸𝑗𝑘
(2)

𝜸𝑗𝑘
(3)

},   𝑼𝑖 = �̅�𝑖
2 [

 1  1 1 
�̅�𝑖 −�̅�𝑖 �̅�𝑖

] 

𝑺𝑗𝑘 =
1

2𝑞𝑗𝑞𝑘
[

1 0 𝑞𝑘
−1

1 −𝑞𝑗
−1 0

0 −𝑞𝑗
−1 𝑞𝑘

−1

],   𝑩𝑗𝑘 =

[
 
 
 
 
𝑎𝑗𝑘

1

𝑎𝑗𝑘
2

⋮
𝑎𝑗𝑘

𝐿

𝑏𝑗𝑗𝑘
1

𝑏𝑗𝑗𝑘
2

⋮
𝑏𝑗𝑗𝑘

𝐿

𝑏𝑗𝑘𝑘
1

𝑏𝑗𝑘𝑘
2

⋮
𝑏𝑗𝑘𝑘

𝐿
]
 
 
 
 

 

(19) 

 

3) Prescribing a displacement field as follows using the 𝑗th , 𝑘th  and 𝑙th  order 

modes for (1 ≤ 𝑗 < 𝑘 < 𝑙 ≤ 𝐿) 

 

 𝝓𝑗�̅�𝑗 + 𝝓𝑘�̅�𝑘 + 𝝓𝑙�̅�𝑙 (20) 

 

is the modal nonlinear restoring force of the structure under the forced displacement field. 

Defining 𝑪𝑗𝑘𝑙 as a matrix of NCD3 related to the 𝑗th, 𝑘th and 𝑙th order modes, then 

 

 𝑪𝑗𝑘𝑙 =
1

𝑞𝑗𝑞𝑘𝑞𝑙
(𝜸𝑗𝑘𝑙 − ∑ 𝑨𝑖𝑽𝑖

𝑖=𝑗,𝑘,𝑙

− ∑ 𝑩𝑖𝑛𝑾𝑖𝑛

𝑖𝑛=𝑗𝑘,𝑗𝑙,𝑘𝑙

) (21) 

 

where 𝑨𝑖 and 𝑩𝑖𝑛 have been obtained in Eq. (15) and Eq. (18), respectively, 

 

 𝑪𝑗𝑘𝑙 =

[
 
 
 
 
𝑏𝑗𝑘𝑙

1

𝑏𝑗𝑘𝑙
2

⋮
𝑏𝑗𝑘𝑙

𝐿
]
 
 
 
 

, 𝑽𝑖 = �̅�𝑖
2 {

1
�̅�𝑖

},   𝑾𝑖𝑛 = �̅�𝑖�̅�𝑛 {
1
�̅�𝑖

�̅�𝑛

} (22) 
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All nonlinear stiffness coefficients in the reduced order models are classified and 

successively determined by the above three steps. 

The STEP method directly determines all the nonlinear stiffness coefficients in the 

reduced order models with little effort. It is worthwhile to note that the nonlinear elastic 

potential is related to the nonlinear elastic forces via the expression [10] 

 

 𝛾𝑟 =
𝜕𝑈

𝜕𝑞𝑟
, 𝑟 = 1,2, … , 𝐿 (23) 

 

Substituting Eq. (13) gives 

 

 
𝜕𝛾𝑗

𝜕𝑞𝑘
=

𝜕𝛾𝑘

𝜕𝑞𝑗
=

𝜕2𝑈

𝜕𝑞𝑗𝑞𝑘
 (24) 

 

The symmetry relations were used to assess how well the identification had been 

performed, but in practice, the STEP method rarely gives wrong stiffness coefficients 

results. At the same time, when the number of reduced modes is large, it is cumbersome 

to determine the matching of specific two coefficients in a large number of stiffness 

coefficients. Therefore, in this paper, the symmetry relations in Eq. (24) are taken as 

constraints to reduce the calculation cost. 

The ranges of the subscript of the NCD2 and NCD3 are divided into several intervals, 

and a set of partial intervals is given. If the stiffness coefficients in the given intervals are 

determined directly by Eqs. (14)-(22), all the stiffness coefficients in the remaining 
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intervals can be determined indirectly by the equivalence relationship of Eq. (24). Then, 

an improved process for determining the stiffness coefficients is developed based on the 

STEP method, which automatically identifies the optimized interval for any number of 

modes, directly determines the stiffness coefficients in the given intervals and indirectly 

determines the remainders. The improved method avoids part of the static solutions by 

taking advantage of the properties of Eq. (24), and a notable reduction in the 

computational cost in determining the nonlinear stiffness coefficients is achieved. The 

improved process includes six steps as follows. 

1) Determining all of NCI using Eq. (14) and Eq. (15). 

2) The value range of NCD2 subscripts is divided into three intervals by 𝐿 2⁄ , 1 ≤

𝑗 < 𝑘 ≤ 𝐿 2⁄ , 𝐿 2⁄ ≤ 𝑗 < 𝑘 ≤ 𝐿 and 1 ≤ 𝑗 < 𝐿 2⁄ ≤ 𝑘 ≤ 𝐿 . On the one hand, it keeps 

the symmetry of the intervals and facilitates the implementation of equivalence relations 

in Eq. (24). On the other hand, fewer intervals simplify the calculation process. The 

displacement fields in Eq. (17) are prescribed using the 𝑗th and 𝑘th modes for (1 ≤

𝑗 < 𝑘 ≤ 𝐿 2⁄  or 𝐿 2⁄ ≤ 𝑗 < 𝑘 ≤ 𝐿) , and NCD2 in the first and second intervals are 

determined using Eq. (18). 

3) 𝑎𝑗𝑘
𝑟   for (1 ≤ 𝑟 < 𝐿) , 𝑏𝑗𝑗𝑘

𝑟   for (1 ≤ 𝑟 < 𝐿 2⁄ )  and 𝑏𝑗𝑘𝑘
𝑟   for (𝐿 2⁄ ≤ 𝑟 ≤ 𝐿) 

in the third interval are determined indirectly by NCI in step 1) and NCD2 in step 2) using 

the equivalence relations. 

4) Prescribing the first displacement fields in Eq. (17) using the 𝑗th  and 𝑘th 
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modes for (1 ≤ 𝑗 < 𝑘 ≤ 𝐿 2⁄  or 𝐿 2⁄ ≤ 𝑗 < 𝑘 ≤ 𝐿) , then 𝑏𝑗𝑗𝑘
𝑟   for 1 ≤ 𝑟 < 𝐿 2⁄   and 

𝑏𝑗𝑘𝑘
𝑟  for 𝐿 2⁄ ≤ 𝑟 ≤ 𝐿 in the third interval are determined. It is worth noting that all of 

the NCD2 are determined in steps 2) to 4). 

5) The range of values of NCD3 subscripts is divided into four intervals, 1 ≤ 𝑗 <

𝑘 < 𝑙 ≤ 𝐿 2⁄ , 1 ≤ 𝑗 < 𝑘 ≤ 𝐿 2⁄ < 𝑙 ≤ 𝐿, 1 ≤ 𝑗 ≤ 𝐿 2⁄ < 𝑘 < 𝑙 ≤ 𝐿 and 𝐿 2⁄ ≤ 𝑗 <

𝑘 < 𝑙 ≤ 𝐿. Prescribing the displacement field in the Eq. (20) using the 𝑗th, 𝑘th and 𝑙th 

modes for (1 ≤ 𝑗 < 𝑘 < 𝑙 ≤ 𝐿/2 or 1 ≤ 𝑗 < 𝑘 ≤ 𝐿 2⁄ < 𝑙 ≤ 𝐿 or 𝐿/2 ≤ 𝑗 < 𝑘 < 𝑙 ≤

𝐿), the NCD3 in the first, second and fourth intervals are determined using Eq. (21). 

6) The NCD3 in the third interval is determined indirectly by the NCD2 in steps 2) 

to 4) and NCD3 in step 5). All nonlinear stiffness coefficients are determined directly or 

indirectly by the above six steps. 

Fig. 2 and Fig. 3 show comparisons for the static solutions of the STEP method and 

the improved STEP method in determining the stiffness coefficients. The orange parts of 

the figures represent that three static solutions under prescribed displacement fields are 

required for each cycle, while the blue parts require only one. 

The derivation of Eq. (24) is accurate, thus there is little inaccuracy in determining 

stiffness coefficients. The total number of static solutions of the STEP method is 

 

 𝑁s =
𝐿3 + 6𝐿2 + 5𝐿

3
 (25) 
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Fig. 2  Comparison of the static solutions in determining NCD2 

(a) STEP method; (b) Improved STEP method 

 

Fig. 3  Comparison of the static solutions in determining NCD3 

(a) STEP method; (b) Improved STEP method 

 

while that of the improved STEP method proposed in this paper is 

 

 

𝑁s =
5𝐿3 + 30𝐿2 + 40𝐿

24
,    𝐿 even 

𝑁s =
5𝐿3 + 27𝐿2 + 27𝐿 + 21

24
,    𝐿 odd 

(26) 
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Fig. 4  Comparison for total number of static solutions 

Fig. 4 shows the comparison of the total number of static calculations required for the 

STEP method and the improved STEP method. In cases where a considerable number of 

modes are employed, such as the reduced order models in [25], [26], the improved STEP 

method achieves a notable computational saving and never requires a deep insight into 

calculation core of commercial finite element software. 

4 EL method modified by higher order statistics 

The NLROM-EL method replaces the nonlinear terms by the linear terms directly. 

As a result, the linearized system does not contain statistical information higher than the 

second-order, which yields some error. The REL method was proposed to improve the 

accuracy of the EL method and has been applied for the vibration problems of the Duffing 

oscillator [13] and a beam model [15], [16]. The reduced order models introduced in 

Section 3 include nonlinear terms 𝑞𝑗𝑞𝑘
2, 𝑞𝑗

2𝑞𝑘 and 𝑞𝑗𝑞𝑘𝑞𝑙, so the REL method leads to 
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different equivalent results, increasing the complexity of the solution. To solve this 

problem, this paper proposes a new scheme based on references [15],[16] to unify the 

equivalent results of nonlinear terms. Besides, the new scheme has a concise and regular 

form giving the equivalent result of Eq. (14) with less effort. 

4.1 Modal motion equation with higher order statistics 

The difference of the powers of 𝑞𝑗𝑞𝑘
2 and 𝑞𝑗

2𝑞𝑘 are 2 and 1 when replaced by the 

linear term 𝑞𝑗, while those are the opposite when replaced by 𝑞𝑘. Therefore the same 

nonlinear terms are equivalent to different higher order terms according to the chosen 

scheme of the REL method. To resolve the difference, a new regulated scheme is proposed, 

in which the nonlinear terms in Eq. (13) are equivalent to 

 

 

𝛾𝑟(𝑞1, 𝑞2, … , 𝑞𝐿)

= ∑∑𝑎𝑗𝑘
𝑟 𝑞𝑗𝑞𝑘

𝐿

𝑘=𝑗

𝐿

𝑗=1

+ ∑ �̂�𝑗𝑗𝑗
𝑟 𝑞𝑗

5

𝐿

𝑗=1

+ ∑ ∑ �̂�𝑗𝑗𝑘
𝑟 𝑞𝑗

4𝑞𝑘

𝐿

𝑘=𝑗+1

𝐿−1

𝑗=1

+ ∑ ∑ �̂�𝑗𝑘𝑘
𝑟 𝑞𝑗𝑞𝑘

4

𝐿

𝑘=𝑗+1

𝐿−1

𝑗=1

+ ∑ ∑ ∑ 𝑏𝑗𝑘𝑙
𝑟

𝐿

𝑙=𝑘+1

𝐿−1

𝑘=𝑗+1

𝐿−2

𝑗=1

𝑞𝑗𝑞𝑘𝑞𝑙 

(27) 

 

The scheme requires that the minimization of the difference between Eq. (13) and Eq. 

(27). If D[𝑧] represents the mean square value of 𝑧, 

 

 

D[�̂�𝑗𝑗𝑗
𝑟 𝑞𝑗

5 − 𝑏𝑗𝑗𝑗
𝑟 𝑞𝑗

3] → min 

D[�̂�𝑗𝑗𝑘
𝑟 𝑞𝑗

4𝑞𝑘 − 𝑏𝑗𝑗𝑘
𝑟 𝑞𝑗

2𝑞𝑘] → min,   D[�̂�𝑗𝑘𝑘
𝑟 𝑞𝑗𝑞𝑘

4 − 𝑏𝑗𝑘𝑘
𝑟 𝑞𝑗𝑞𝑘

2] → min 

(28) 
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Defining 

 

 ℱ[𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑛] =
(E[𝑧0])

𝑛

E[𝑧1]E[𝑧2]⋯E[𝑧𝑛]
 (29) 

 

then Eq. (28) gives 

 

 

�̂�𝑗𝑗𝑗
𝑟 = 𝑏𝑗𝑗𝑗

𝑟 ℱ[𝑞𝑗
8, 𝑞𝑗

10] 

�̂�𝑗𝑗𝑘
𝑟 = 𝑏𝑗𝑗𝑘

𝑟 ℱ[𝑞𝑗
6𝑞𝑘

2, 𝑞𝑗
8𝑞𝑘

2],   �̂�𝑗𝑘𝑘
𝑟 = 𝑏𝑗𝑘𝑘

𝑟 ℱ[𝑞𝑗
2𝑞𝑘

6, 𝑞𝑗
2𝑞𝑘

8] 

(30) 

 

and 𝛾𝑟 are replaced by cubic nonlinear terms 

 

 �̅�𝑟(𝑞1, 𝑞2, … , 𝑞𝐿) = ∑∑𝑎𝑗𝑘
𝑟 𝑞𝑗𝑞𝑘

𝐿

𝑘=𝑗

𝐿

𝑗=1

+ ∑∑∑�̅�𝑗𝑘𝑙
𝑟 𝑞𝑗𝑞𝑘𝑞𝑙

𝐿

𝑙=𝑘

𝐿

𝑘=𝑗

𝐿

𝑗=1

 (31) 

 

By performing operations similar to Eq. (28) and Eq. (30), a regulated form of the 

nonlinear stiffness coefficients is obtained, 

 

 

�̅�𝑗𝑘𝑙
𝑟 = 𝑏𝑗𝑘𝑙

𝑟 ,   for 1 ≤ 𝑗 < 𝑘 < 𝑙 ≤ 𝐿 

�̅�𝑗𝑘𝑙
𝑟 = 𝑏𝑗𝑘𝑙

𝑟 ℱ[𝑞𝑗
8, 𝑞𝑗

10, 𝑞𝑗
6],   for 1 ≤ 𝑗 = 𝑘 = 𝑙 ≤ 𝐿 

�̅�𝑗𝑘𝑙
𝑟 = 𝑏𝑗𝑘𝑙

𝑟 ℱ[𝑞𝑗
6𝑞𝑘

2, 𝑞𝑗
8𝑞𝑘

2, 𝑞𝑗
4𝑞𝑘

2],   for 1 ≤ 𝑗 = 𝑘 < 𝑙 ≤ 𝐿 

�̅�𝑗𝑘𝑙
𝑟 = 𝑏𝑗𝑘𝑙

𝑟 ℱ[𝑞𝑗
2𝑞𝑘

6, 𝑞𝑗
2𝑞𝑘

8, 𝑞𝑗
2𝑞𝑘

4],   for 1 ≤ 𝑗 < 𝑘 = 𝑙 ≤ 𝐿 

(32) 

 

For a series of zero-mean Gaussian random processes 𝑧𝑖(𝑖 = 1,2, … ), the following 

relationship holds [15] 
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 E[𝑧1𝑧2 …𝑧2𝑚] = ∑ [∏E[𝑧𝑗𝑧𝑘]

𝑗≠𝑘

]

all independent pairs

 (33) 

 

where 𝑚 is a positive integer, the number of independent pairs is 2𝑚! (2𝑚𝑚!)⁄  and 

 

 E[𝑧1𝑧2 …𝑧2𝑚−1] = 0 (34) 

 

For the weakly nonlinear system to which the classical EL method is applied, the response 

𝒒  is considered to obey the zero-mean Gaussian distribution. Therefore, higher order 

statistics in Eq. (32) can be expressed by the second-order statistics of response, and 

reduced order equations of motion with improved nonlinear terms are obtained as 

 

 �̃��̈� + �̃��̇� + �̃�𝒒 + �̅�(𝑞1, 𝑞2, … , 𝑞𝐿) = �̃� (35) 

 

4.2 Equivalent linearization analysis 

The reduced order equation of motion in Eq. (35) can also be equivalenced to a 

linearized system, according to the derivation in Section 2 

 

 �̃��̈� + �̃��̇� + (�̃� + �̃�e)𝒒 = �̃� (36) 

 

where �̃�e is the fully populated modal equivalent linear stiffness matrix. Applying Eqs. 

(3)-(9) gives 

 

 �̃�e = E [
𝜕�̅�

𝜕𝒒
] (37) 
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Define 𝒜(𝑚, 𝑛) = ∑ 𝑎𝑗𝑛
𝑚E[𝑞𝑗]

𝐿
𝑗=1   and ℬ(𝑚, 𝑛) = ∑ ∑ �̅�𝑗𝑘𝑛

𝑚𝐿
𝑘=𝑗

𝐿
𝑗=1 E[𝑞𝑗𝑞𝑘] . 

Substituting Eq. (35) into the Eq. (36) gives 

 

 �̃�e = [
𝒜(1,1) + ℬ(1,1) … 𝒜(1, 𝐿) + ℬ(1, 𝐿)

⋮ ⋱ ⋮
𝒜(𝐿, 1) + ℬ(𝐿, 1) ⋯ 𝒜(𝐿, 𝐿) + ℬ(𝐿, 𝐿)

] (38) 

 

Since a zero-mean response is assumed, 𝒜(𝑚, 𝑛) = 0 for any 𝑚, 𝑛, so that 

 

 �̃�e = [
ℬ(1,1) … ℬ(1, 𝐿)

⋮ ⋱ ⋮
ℬ(𝐿, 1) ⋯ ℬ(𝐿, 𝐿)

] (39) 

 

The equivalent linear stiffness matrix is a function of the unknown modal 

displacement response. The solution to Eq. (36) takes an iterative form, i.e., 

 

 �̃��̈�𝑚 + �̃��̇�𝑚 + (�̃� + �̃�e
𝑚−1)𝒒𝑚 = �̃� (40) 

 

where superscript 𝑚 is the iteration number. At the start of the first iteration �̃�e
0 = 𝟎. 

Assuming a stationary system and excitation, the random response of Eq. (40) is 

 

 �̃�𝑞𝑞
𝑚 (𝜔) = �̃�𝑚−1(𝜔)�̃�𝑓𝑓(𝜔)[�̃�𝑚−1(𝜔)]

T
 (41) 

 

where �̃�𝑞𝑞 and �̃�𝑓𝑓 are the power spectral density (PSD) of the modal displacement and 

excitation, respectively. �̃� is the frequency response matrix given by 

 

 �̃�𝑚−1(𝜔) = (−𝜔2�̃� + i𝜔�̃� + �̃� + [𝛼�̃�e
𝑚−1 + 𝛽�̃�e

𝑚−2]) (42) 
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where 𝛼 and 𝛽 are weightings to aid the convergence of the solution with 𝛼 + 𝛽 = 1, 

generally 𝛼 = 𝛽 = 0.5. Note that, in modal coordinates, the order of the matrices in Eq. 

(42) is not large, so it is not difficult to calculate the frequency response matrix. The 

covariance matrix of the modal displacement response is given by the Wiener-Khinchin 

formula as 

 

 E[𝑞𝑟𝑞𝑠]
𝑚 = 𝑅𝑞𝑟𝑞𝑠

𝑚 (0) = ∫ �̃�𝑞𝑟𝑞𝑠
𝑚 (𝜔)d𝜔

𝜔u

𝜔l

 (43) 

 

where 𝜔l  and 𝜔u  are the lower and upper limits of the excitation frequency band. 

Especially, when subjected to white noise, the covariance moment can be obtained from 

the Lyapunov equations instead of integration. The iterations continue until convergence 

of the modal equivalent linear stiffness matrix is achieved, such that 

 

 
∑ ∑ |�̃�e𝑗𝑘

𝑚 − �̃�e𝑗𝑘
𝑚−1|𝐿

𝑘=𝑗
𝐿
𝑗=1

𝐿2|�̃�e
𝑚|

max

< 𝜀 (44) 

 

where |�̃�e
𝑚|

max
 is the entry of �̃�e with the largest absolute value, and typically 𝜀 =

0.001 . Following convergence of �̃�e , the covariance matrix of the displacement in 

physical coordinates is recovered from 

 

 E[𝑥𝑖𝑥𝑗] = 𝜱E[𝑞𝑟𝑞𝑠]𝜱
𝑇 (45) 

 

Only a few basic operations are added to the proposed method to calculate the regulated 
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form of the stiffness coefficients, and therefore there is little increase in the computational 

cost compared with the NLROM-EL method. At the same time, it is worthwhile to note 

that the zero mean Gaussian assumption introduced in Eq. (33) is also used in the 

traditional EL method, that is, Eq. (6) and Eq. (7). Therefore, the proposed method is also 

applicable to the solution of random vibration problems of weakly nonlinear systems. 

 

5 Numerical examples 

First, the efficiency and accuracy of the improved STEP method and the EL method 

improved by the higher order statistics proposed in this paper are verified using examples 

from reference [10]. Then the random response of composite laminated plates under band-

limited white noise or a turbulent boundary layer is predicted using the NLROM-EL 

method, time-domain numerical simulation and the EL method proposed in this paper. A 

flowchart for the solution procedure of the proposed method is shown in Fig. 5. 

 

5.1 Verification of methods 

Consider the simply supported rectangular aluminum plate model shown in Fig. 1. 

The plate measures 0.3556m in length, 0.254m in width, 0.00102m in thickness, and the 

Young’s modulus, Poisson’s ratio and mass density are 7.3×1010Pa, 0.3 and 2763kg/m3, 

respectively. A NASTRAN model of the full plate was built with a uniform 56×40 mesh 

of 2240 CQUAD4 elements. 
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Fig. 5  Flowchart for the solution procedure of the proposed method 

 

Although the derivation of Eq.(24) is analytical, a large number of nonlinear static 

problems need to be solved in the actual operation process. Thus the error caused by 

iterative calculations means that the stiffness coefficients determined by the improved 

STEP method and the STEP method will not be exactly the same. Therefore, it is 

necessary to evaluate the improved STEP method to verify the quality and efficiency of 
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establishing NLROM. Considering the example of a metal plate under uniformly 

distributed pressure in reference [10], the reduced order model of the plate was 

constructed using the first eight symmetrical modes. The total number of static solutions 

required to determine the stiffness coefficients was 312 by the STEP method and 200 by 

the improved STEP, a reduction of 36%. The deflection of the midpoint of the plate was 

calculated by NASTRAN SOL106 and the STEP method, and the results are shown in 

Fig. 6. It can be observed that the results of NLROM constructed by the two methods are 

very similar, indicating that the stiffness coefficients determined by the improved STEP 

method can be used to replace those determined by the STEP method while ensuring the 

quality of the constructed NLROM and achieving high computational efficiency. 

 

 

Fig. 6  Deflection at midpoint of the plate 
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Next, an example of a metal plate subjected to band-limited white noise is considered. 

The frequency band of the excitation is 𝜔l = 0Hz  to 𝜔u = 1024Hz  and the sound 

pressure level (SPL) ranges from 106dB to 160dB, in 6dB increments. The one-sided 

PSD function of Gaussian band-limited white noise is given as follows [19] 

 

 𝑆𝑓𝑓(𝜔) = {
𝑝0

2

∆𝜔
10SPL/10,   𝜔l ≤ 𝜔 ≤ 𝜔u

0,            otherwise   

 (46) 

 

where 𝑝0 = 2 × 10−5Pa is the reference pressure, 𝜔 is the frequency and ∆𝜔 = 𝜔u −

𝜔l is the bandwidth of the excitation. 

As in [10], the first two symmetrical modes of the structure are selected to participate 

in the EL analysis. The corresponding damping ratios are 2% and 0.54%, respectively. 

The NLROM-EL method, time-domain numerical simulation and the proposed method 

are used to predict the root mean square (RMS) value of the midpoint displacement 

response of the plate, where the time-domain numerical simulation results are directly 

taken from [10], and the RMS results are shown in Fig. 7. Furthermore, the error of the 

NLROM-EL method and the proposed method with respect to the time-domain numerical 

simulation is given in Fig. 8. It can be observed that the accuracy of the proposed method 

is better than that of the NLROM-EL method in most cases. However, it is slightly worse 

in the case of 124dB, but the error is still less than 5% and is entirely acceptable. 

Comparisons of the computational time and iteration counts are given in Fig. 9. 
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Fig. 7  Comparison of RMS value of midpoint displacement response 

 

 

Fig. 8  Comparison of computational error 
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Fig. 9  Comparisons of computational time and iteration counts 

5.2 Random response of laminated plates 

Two rectangular, simply supported eight-layered laminated plates taken from [19] 

were investigated, including symmetric [0°/90°/0°/90°/90°/0°/90°/0°] and antisymmetric 

[0°/90°/0°/90°/0°/90°/0°/90°] cross-ply laminated plates. The laminated plates keep the 

same geometric dimension and mesh size as the metal plate in Section 5.1, and have mass 

density 1600kg/m3, Young’s moduli E11=1.81×1011Pa, E22=1.03×1010Pa, shear moduli 

G12=G13=7.17×109Pa, G23=5×109Pa and Poisson’s ratio 0.28. The first five modes were 

selected for EL analysis. The damping ratio of the first mode is 𝜁1 = 0.02 and those of 

the first five modes meet the requirement that 2𝜔1𝜁1 = 2𝜔2𝜁2 = ⋯ = 2𝜔5𝜁5. The result 

in reference [19] also shows that the response of an antisymmetric cross-ply laminated 
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plate subjected to band-limited white noise can still be approximately considered to obey 

the zero mean Gaussian distribution. 

First, consider the load case investigated in [19] where the laminated plates were 

subjected to band-limited white noise, whose bandwidth and SPL are the same as the 

excitation used in Section 5.1. Since [19] does not give the reference solutions, in this 

paper, the RMS value of the random response of laminated plates under the band-limited 

white noise is obtained in a series of time-domain numerical simulation, which were 

carried out by ABAQUS referring to [5] -[7]. The laminated plates were modeled with a 

uniform 28×20 mesh of 560 S4R elements, twice the size as those of the NASTRAN 

model, to reduce the computational time referring to [10]. The time series of the band-

limited white noise is simulated by [27] 

 

 𝑓(𝑡𝑚) = √2 ∑[𝑆𝑓𝑓∆𝜔]
1
2 cos(𝜔𝑛𝑡𝑚 − 𝜙𝑛)

𝑁−1

𝑛=0

 (47) 

 

where 𝑆𝑓𝑓 is the one-sided PSD function, 𝑓 is the simulated series of the excitation, 

𝑡𝑚 = 𝑚∆𝑡 is the discrete time series, ∆𝑡 is the length of the time step, 𝑀 is the number 

of discrete time steps, 𝜙𝑛  is a uniformly distributed random number on the interval (0 −

2𝜋), 𝜔𝑛 = 𝑛∆𝜔 is the discrete frequency series, ∆𝜔 = (𝜔u − 𝜔l)/𝑁 is the length of 

the frequency step, 𝑁 is the number of discrete frequency steps. 𝑀 and 𝑁 should be 

large integers. A total of 10 independent time-domain simulations were carried out, with 

𝑀 = 216, ∆𝑡 = 5 × 10−5s, ∆𝜔 = 2𝜋. 
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(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 10  Comparison of RMS value of midpoint displacement response 



33 

 

 

(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 11  Comparison of computational error 
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(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 12 Comparisons of computational time and iteration counts 
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The NLROM-EL method, time-domain numerical simulation, and the proposed 

method were used to calculate the RMS of the midpoint displacement response of the 

laminated plates, and the results are shown in Fig. 10. The errors of the NLROM-EL 

method and the proposed method with respect to the time-domain numerical simulation 

are given in Fig. 11. Comparisons of the computational time and iteration counts of the 

NLROM-EL method and the proposed method are given in Fig. 12. It can be observed 

that the accuracy of this method is better than that of NLROM-EL method in all the cases, 

and the computational time of the proposed method is almost the same as that of NLROM-

EL method. 

Next consider the load case where the laminated plates are subjected to a turbulent 

boundary layer, whose one-sided PSD is expressed as [28] 

 

 𝑆𝑓𝑓(𝒔1, 𝒔2, 𝜔) = 𝛷𝑓𝑓(𝜔)𝛩(𝜔; 𝒔1, 𝒔2) (48) 

 

where 𝒔 = (𝑥, 𝑦) is the coordinate vector, 𝛷𝑓𝑓 is the auto PSD of the wall pressure, the 

geometrical function 𝛩 is expressed as [29] 

 

 𝛩(𝜔; 𝒔1, 𝒔2) = exp (−𝑐𝑥 |
𝜔𝜉𝑥

𝑈𝑐
|) exp (−𝑐𝑦 |

𝜔𝜉𝑦

𝑈𝑐
|) exp (

−i𝜔𝜉𝑥

𝑈𝑐
) (49) 

 

where 𝑐𝑥  and 𝑐𝑦  are constants describing the spatial coherence of the wall pressure 

field in the longitudinal and transversal directions, respectively, 𝜉𝑥 = 𝑥1 − 𝑥2 and 𝜉𝑦 =
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𝑦1 − 𝑦2 represent the distance between two points, and 𝑈𝑐 is the convection velocity. 

The parameters recommended in [28] are adopted 

 

 𝑐𝑥 = 0.15, 𝑐𝑦 = 0.75, 𝑈𝑐 = 75m/s (50) 

 

The auto PSD of point wall pressure 𝛷𝑓𝑓(𝜔) is a band-limited white noise covering a 

frequency range from 10Hz to 1000Hz, and the SPL ranges from 94dB to 142dB, in 6dB 

increments. The time-domain series simulation of the turbulent boundary layer refers to 

[30]. 

The NLROM-EL method, time-domain numerical simulation and the proposed 

method were used to calculate the RMS of the midpoint displacement response of the 

laminated plates, and the results are shown in Fig. 13. Fig. 14 gives the error of the 

NLROM-EL method and the proposed method with respect to the time-domain numerical 

simulation. Fig. 15 shows comparisons of the computational time and iteration counts of 

the NLROM-EL method and the proposed method. Finally, Fig. 16 shows the distribution 

of computational error of the NLROM-EL and the proposed method across the plate. This 

example is an antisymmetric cross-ply laminated plate subjected to a turbulent boundary 

layer, where the SPL of the wall pressure is 130dB. It can be observed that the proposed 

method has a significant advantage in accuracy at any position in the plate. 
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(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 13  Comparison of RMS value of midpoint displacement response 
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(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 14  Comparison of computational error 

 



39 

 

(a) Symmetric cross-ply laminated plate 

 

(b) Antisymmetric cross-ply laminated plate 

Fig. 15  Comparisons of computational time and iteration counts 
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b 

Fig. 16  Distribution of computational error in plate 

It can be observed from Fig. 9, Fig. 12 and Fig. 15 that when calculating nonlinear 

random problems, the iteration counts of the NLROM-EL method and the proposed 

method are very close. At the same time, the proposed method only adds a few basic 

operations in each iteration calculation, with little additional computational burden, 

resulting in no increase in the calculation time of the proposed method. It can be 

concluded from the above examples that the cost of the proposed method is the same as 

that of the NLROM-EL method. It is worth noting that it took 586s to construct the 

reduced order model of the laminated plates using the STEP method, while the improved 

STEP method took 396s, a reduction of 32%. Compared with the EL method, the 

construction of a reduced order model takes a considerable proportion of the overall 

computational time, and it is necessary to improve the STEP method. Fig. 6 shows that 
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the improved STEP method is highly consistent with the NLROM constructed by the 

STEP method. Further, the cost and results of REL analysis based on the above two 

methods are given in Table 1. It can be observed that the improved STEP method will 

hardly affect the iteration convergence and calculation results of nonlinear random 

problems. Finally, comparisons between the proposed method and the NLROM-EL 

method are given in Table 2. 

6 Conclusions 

In this paper, the STEP method is improved by the symmetry relationship of 

nonlinear stiffness coefficients, and an EL method based on NLROM techniques and 

modified by higher-order statistics is proposed to predict the response of geometrically 

nonlinear structures under random excitation. The nonlinear system is regulated and 

linearized successively to obtain an EL system considering higher order statistics to 

capture the nonlinear random response efficiently and accurately. The static examples 

show that the improved STEP method can effectively reduce the cost of stiffness 

coefficients on the premise of ensuring the quality of NLROM. Subsequent dynamic 

examples show that the proposed method has the same iterative convergence and cost as 

the NLROM-EL method, but significantly improves the computational accuracy of 

nonlinear random response. It is necessary to further extend the proposed method to  

vibration systems with asymmetric structure or non-zero mean excitation, since only 

weak nonlinear systems with zero mean are considered in this paper. 
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Table 1  Comparisons of cost and results of antisymmetric cross-ply laminated plate 

under band-limited white noise 

 STEP method Improved STEP method 

SPL 
Number of 

iterations 

Calculation 

time(s) 

RMS of 

midpoint(m) 

Number of 

iterations 

Calculation 

time(s) 

RMS of 

midpoint (m) 

106 3 1.630974 3.6665e-05 3 1.595720 3.6664e-05 

112 4 2.036782 7.2222e-05 4 1.711190 7.2220e-05 

118 5 2.239053 1.3809e-04 5 1.764534 1.3790e-04 

124 7 1.834199 2.4624e-04 7 1.896202 2.4619e-04 

130 10 2.180997 4.0237e-04 10 2.182879 4.0332e-04 

136 15 2.725978 6.1500e-04 13 2.525368 6.1578e-04 

142 20 2.725978 9.0320e-04 14 2.605017 9.0254e-04 

148 34 6.778507 1.2959e-03 30 5.467464 1.2953e-03 

154 23 4.523223 1.8576e-03 25 4.609441 1.8543e-03 

 

Table 2  Comparisons between the proposed method and the NLROM-EL method 

 Comparison Reason/Result 

NLROM 

The NLROM-EL method uses the STEP 

method to construct the NLROM, while the 

improved STEP method is used in the 

proposed method 

The computational cost is 

reduced by about 30%, and 

the proportion increases 

with the increase of the 

number of reduced modes 

Accuracy 

Compared with NLROM-EL method, the 

calculation accuracy of the proposed method is 

obviously improved 

Higher order statistics are 

introduced to improve the 

calculation accuracy 

Cost 
The proposed method has the same cost as 

NLROM-EL method in iteration calculation 

Each iteration adds only a 

few basic operations 

Iteration 

convergence 

The proposed method has the same 

convergence level as NLROM-EL method 

REL has no effect on the 

convergence of iterative 

calculation 

Application 

scope 

The proposed method has the same application 

scope as NLROM-EL method, that is, weak 

nonlinear systems 

The proposed method does 

not introduce new 

computational assumption 
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Figure Captions 

Fig. 1  Thin-walled structure subjected to random excitation 

Fig. 2  Comparison of the static solutions in determining NCD2 

Fig. 3  Comparison of the static solutions in determining NCD3  

Fig. 4  Comparison for total number of static solutions 

Fig. 5  Flowchart for the solution procedure of the proposed methodFig. 5  Flowchart 

for the solution procedure of the proposed method 

Fig. 6  Deflection at midpoint of the plateFig. 6  Deflection at midpoint of the plate 

Fig. 7  Comparison of RMS value of midpoint displacement responseFig. 7  

Comparison of RMS value of midpoint displacement response 

Fig. 8  Comparison of computational errorFig. 8  Comparison of computational error 

Fig. 9  Comparisons of computational time and iteration countsFig. 9  Comparisons of 

computational time and iteration counts 

Fig. 10  Comparison of RMS value of midpoint displacement responseFig. 10  

Comparison of RMS value of midpoint displacement response 

Fig. 11  Comparison of computational errorFig. 11  Comparison of computational error 

Fig. 12  Comparisons of computational time and iteration counts 

Fig. 13  Comparison of RMS value of midpoint displacement responseFig. 13  

Comparison of RMS value of midpoint displacement response 

Fig. 14  Comparison of computational errorFig. 14  Comparison of computational 

error 

Fig. 17  Comparisons of computational time and iteration counts 

Fig. 16  Distribution of computational error in plateFig. 16  Distribution of 

computational error in plate 

 

Table Captions 

Table 1  Comparisons of cost and results of antisymmetric cross-ply laminated plate 

under band-limited white noise 

Table 2  Comparisons between the proposed method and the NLROM-EL method 
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