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In this paper, an analytical model based on the modified couple stress theory and Timoshenko beam theory 

is developed to study the vibrational power flow of a microbeam with a crack. The open edge crack on the 

microbeam is modeled as a rotational spring, which connects the two segments of the microbeam separated by 

the crack location. The governing equations of the cracked microbeam are derived from Hamilton's principle. 

By introducing the differential operator method, the differential equations are transformed into algebraic 

equations, and the governing equations are decoupled. The wave propagation method is applied to solve the 

vibrational problem of a cracked microbeam under a transverse harmonic excitation. Both the input power 

flow and the transmitted power flow in the cracked microbeam are computed and analyzed. The size effect of 

the cracked microbeam in terms of material length scale is firstly analyzed. Subsequently, the effects of crack 

depth and crack location on the input and transmitted power flows are investigated. It is found that the 

existence of crack significantly changes the transmission characteristics of the power flow. 
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1. Introduction 

With the advanced development of modern manufacturing technology, miniaturized devices, such as 

micro- and nano-electro-mechanical system (MEMS, NEMS) etc., has been rapidly applied in many 

engineering areas. Energy dissipation in micro-/nano-resonators has always been a key problem and a major 

handicap that restricts their performance and applications. When micro- and nano-structures are subjected to 

internal or external excitation forces, damages may occur in some parts of the structural elements [1-6]. 

Therefore, there remains ongoing interests to study the vibration energy transmission mechanism of micro-

/nano- devices. 

Mechanical structures subjected to internal or external loads will inevitably produce a certain degree of 

structure-borne noise, which may induce damages to the structures. To analyze such structure-borne noise and 

structural damage, it is necessary to evaluate the vibration intensity for each part of the structure. The 

vibrational power flow not only includes amplitudes of velocity and force but also establishes a relationship 

between them. It thus provides a new perspective and powerful tool for researchers to study the vibration 

energy transfer mechanism. Up to now, a large number of research works had been focused on the analysis of 

vibration power flow of macrostructures. However, to the best of authors’ knowledge, no work had been 

reported on the vibration power flow analysis of micro-/nano-structures. Liu et al. [7] studied the vibrational 

power flow in a cylindrical shell filled with fluid under a dynamic force loading. Cho et al. [8] developed the 

structural intensity technique to analyze the vibrational energy flow in plates that are under a harmonic 

excitation. Liu and Niu [9] established an energy flow model for functionally graded Euler-Bernoulli beams. 

Sheng et al. [10] analyzed the effect of the distributive mass of spring on the vibrational power flow from 

experimental tests. Zheng et al. [11] predicted the energy contribution of the interior vibrational noise in a 

high-speed train using finite element method. Wang and Chen [12] studied the energy intensity of plates 

subjected to thermal load. Ma et al. [13] applied the structural intensity method to analyze the energy flow 

transmission behaviors in aero-engine casing structures. Li et al. [14] performed the vibrational power flow 

analysis of the circular plate with a surface crack using the structure-borne sound method. Zhu et al. [15] 

investigated the wave and power flow in a cylindrical shell with a surface circumferential crack. Xu et al. [16] 

adopted the vibrational power flow to study nonlinear dynamic behaviors of the rotating blade with a 

breathing crack. Zhu et al. [17] analyzed the vibrational power flow of cracked functionally graded beams and 

highlighted the influence of crack location, crack depth and gradient index to the power flow. Zheng et al. [18] 
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analyzed the dynamic response of the cracked fluid-filled cylindrical shell and presented a damage detection 

method based on the energy flow. 

Although no research works had been reported for the power flow analysis of microscale and nanoscale 

structures, there have been many works that were performed on the vibration and wave propagation analysis 

of microscale and nanoscale structures. The vibrations of micro-/nano- beams [20-26], plates [27-31] and 

shells [32-34] have being analyzed by using nonlocal theories. Based on the modified couple stress theory 

[19], Ma et al. [20] developed a model for Timoshenko microbeams and analyzed the size effects on the 

vibration response, furthermore, the size effect on vibration of the functionally graded microbeams [21], 

composite microbeams [22], and multiple-layer microbeams [23] were analyzed by various non-calssical 

theories. Giannakopoulos and Stamoulis [24] analyzed the size effects of beam bending and cracked bar 

tension by the gradient elasticity theory. Zhao et al. [25] proposed the analytical solution of coupled 

thermoelastic forced vibration of nonlocal beams utilizing Green's functions. Kumar and Kumar [26] analyzed 

the effect of temperature parameters on thermoelastic vibration in micro-/nano-beam resonators. The free 

vibration analysis of Mindlin nanoplates [27], functionally graded micro-/nano-plates [28], graded porous 

microplates [29], and three-layered microplates [30, 31] were analyzed in detail. Zhou and Wang [32] 

analyzed the vibration behaviour of a cylindrical microshell filled with fluid based on the modified couple 

stress theory. Gholami et al. [33] developed a size-dependent shear deformable shell model based on the strain 

gradient elasticity theory and analyzed the size-dependent buckling and vibration of micro-/nano-shells. 

Ghasemi and Mohandes [34] analyzed the frequencies of fiber-metal laminated cylindrical micro-/nano-shells.     

All the reports listed above are for intact structures, and vibration analysis of cracked structures has also 

been reported [35-39]. The vibration models of microbeams with crack by modified couple stress theory were 

established and studied in references [35, 36]. Zhou et al. [37] studied the characteristics of vibrations of 

electrostatically actuated microbeams with slant crack. Akbas [38] investigated the vibration of a cracked 

functionally graded microbeam with damping effect. Ziaee [39] analyzed the thermal effect on the vibration of 

micro-/nano-plates with a cut-out by the Ritz method. Wave propagation and reflection is a hot topic in the 

analysis of energy transfer in micro-/nano-structures. Most recently, Bahrami and his co-authors studied the 

wave propagation and reflection in intact nanobeams and nanoplates [40, 41, 42], cracked nanobeams [43] and 

nanorods [44]. Ilkhani et al. [45] considered wave propagation in rectangular thin nanoplates. Ebrahimi et al. 

[46] studied energy reflection and transmission in thermoelastic nanoplates using a novel nonlocal strain 
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gradient theory. Zeighampour et al. [47] presented wave propagation in fluid-conveying nanotubes by using 

the nonlocal strain gradient theory. The introduction of the concept of power flow will overcome the 

shortcoming that energy alone cannot reflect the vibration intensity of each part of the structure. The influence 

of size effects on power flow will be presented for the first time in this paper. 

In this paper, vibrational power flow in a cracked microbeam is studied based on the Timoshenko beam 

theory and modified couple stress theory. The open edge crack is modelled as a rotational spring. The 

Hamilton's principle is employed to derive the governing equations, which are six-order coupled partial 

differential equations. By introducing the differential operator, the governing equations are decoupled, and the 

analytical solution are obtained. The wave propagation method is applied to analyze the vibrational response 

of the cracked microbeam under a harmonic excitation. Both the input and transmitted power flows are 

derived and analyzed. The influences of the scale parameter, crack location and crack depth on the input and 

transmitted power flows are investigated in detail. 

2. The modified couple stress theory 

In 2002, Yang and his co-authors first proposed the modified couple stress theory, from which we have the 

following equations [19] 

 ( ), ,

1

2
ij i j j iu u = + , (1) 

 ( ), ,

1

2
ij i j j i  = + , (2) 

 
,

1

2
i ijk k je u = , (3) 

 2ij ij ijkk   = + , (4) 

 
22ij ijm l = , (5) 

where σ and ε are Cauchy stress tensor and strain tensor, respectively; u and θ are displacement and rotation 

angle, respectively; χ is the symmetric curvature tensor; m is the deviatoric part of the couple stress tensor; λ 

and μ are Lame’s constants; l is material length scale parameter. 

3. The cracked beam model 

A cracked microbeam subjected to an excitation force F=F0 eiΩt is shown in Fig. 1 where   is the 

vibrational frequency. The open edge crack with depth a is located away L from the location of the excitation 
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force. The thickness and width of the microbeam are h and b, respectively. External excitation is applied at the 

origin of the coordinate system. The coordinate system (x, z) is established with respect to that z-axis is 

oriented vertically downward, and x-axis is along the mid-plane of the microbeam. 

As shown in Fig. 2, the crack position is modeled as a rotational spring. For beam structures with 

transverse bending vibration, the bending moment dominates the vibrational behavior, therefore the bending 

stiffness at the crack section can be approximated by the stiffness of the rotating spring [17]. The premises of 

this spring modelling approach are that the crack does not propagate, always remains open and is 

perpendicular to the upper surface of the beam. Taking the crack as a dividing point, the beam is separated 

into two segments, which are connected by a rotating spring. The bending stiffness ST of the spring is defined 

as 

 
1

,TS
W

=  (6) 

where W is the flexibility. The differential relationship between the crack depth a and the flexibility W is given 

by 

 
( )2 2 2

11 d
.

2 d

K M W

E a

−
=  (7) 

In Eq. (7), M is the bending moment at the cracked section; K1 denotes the stress intensity factor subjected to 

the bending load. In the present analysis, we employ the stress intensity factors (SIFs) of the cracked 

macroscale beam to approximately evaluate the SIFs of the cracked microbeam. Therefore, the relation 

between SIFs and crack depth is expressed as [17] 

 1 2

6
( ),  ,

M h a
K f

h h

 
 = =  (8) 

where 

( ) 2 3 4

5 6 7

1.150 1.662 21.667 192.451 909.3

.

75

2124.310 2395.830 1031.750

f     

  

= − + − +

− + −
 

Then, the flexibility W is obtained from Eqs. (7)-(8) 

 
( )

( )
2

2

2 0

72 1
d .W f

Eh

 
  

−
=   (9) 

4. Timoshenko beam model 
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In the Timoshenko beam theory, the displacement of an arbitrary point in the beam along the x- and z-axes, 

represented as u  and w  respectively, are expressed as 

 ( , , ) ( , ),   ( , , ) ( , ),u x z t z x t w x z t w x t= =  (10) 

where w(x, t) is the displacement component in the mid-plane; ψ(x, t) is the rotation of beam cross-section; t is 

time. The linear strain-displacement relation is defined as 

 
1

,  ,  0.
2

xx xz yy zz xy yz

w
z

x x


      

  
= = + = = = = 

  
 (11) 

From Eq. (4), the normal stress σxx and shear stress σxz are given by 

 
( )2

,  ,
1 2 1

xx xx xz xz

E E
   

 
= =

− +
 (12) 

where E is Young’s modulus, υ is Poisson’s ratio. Substituting Eq. (10) into Eq. (3) gives 

 
1

,  0.
2

y x z

w

x
   

 
= − = = 

 
 (13) 

Applying Eqs. (2) and (13) leads to 

 
2

2

1
,  0.

4
xy xx yy zz xz yz

w

x x


     

  
= − = = = = = 

  
 (14) 

Considering the locations of the external excitation force and crack, the microbeam can be separated into 

three segments along the axial direction, which are ( ,0]− , [0, ]L , [ , )+L , respectively. 

The strain energy ПS of the cracked Timoshenko microbeam over the entire domain Λ of the infinite long 

beam is expressed as 

 

( ) ( )

( )  

0

0

2

1 1
2 2 d d 2 2 d d

2 2

1 1
2 2 d d ( ) ,

2 2

L

S xx xx xz xz xy xy xx xx xz xz xy xy
A A

xx xx xz xz xy xy T
A

L

m A x m A x

m A x S L

         

     

−

+

 = + + + + +

+ + + +

   

 

 (15) 

where A is the cross-section area of the beam. The first and last terms in Eq. (15) are improper integral, and 

the third term denotes the elastic potential energy of a rotational spring. Herein, δψ(L) denotes the angle 

variational between the two sides of the section at the crack.  

From the energy point of view, the wave propagation will eventually dissipate the strain energy of the 

beam. Therefore, ( )lim 2 2 d 0xx xx xz xz xy xy
Ax

m A    
→

+ + = , which indicates that the improper integrals in Eq. 
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(15) are integrable. Substituting Eqs. (11) and (14) into Eq. (15) gives 

  

0 2

1 1 1 1
1 1 1 1 2

2
22 2 2 2

2 2 2 2 2

0

2

3 3 3 3
3 3 3 3 2

1 1
 d

2 2

1 1 1
 d ( )

2 2 2

1 1

2 2

S y z xy

L

y z xy T

y z xy

w w
M Q Y x

x x x x

w w
M Q Y x S L

x x x x

w w
M Q Y

x x x x

 


 
 

 


−

      
 = + + + −   

       

      
+ + + + − +   

       

    
+ + + + − 

     





 d ,
L

x

  
 

 


 (16) 

where A represents the area of the beam cross-section. The subscripts “1”, “2” and “3” in My1, My2, My3, Qz1, 

Qz2, Qz3 and Yxy1, Yxy2, Yxy3 are used to denote the variable for each section. In general, the bending moment My, 

transverse shear force Qz and couple moment Yxy are given by 

 11d ,y x
A

M z A D
x





= =

  (17) 

 55d ,z xz s
A

w
Q A k A

x
 

 
= = + 

 
  (18) 

 
2

2

55 2

1
d ,

2
xy xy

A

w
Y m A l A

x x

  
= = − 

  
  (19) 

where ks = 5 / 6 represents the shear correction factor. A11, D11 and A55 are given by 

  
( )

3

11 11 2 2
, , ,

1 12 1

Ebh Ebh
A D

 

  
=  

− −   ( )
55 .

2 1

Ebh
A


=

+
 (20) 

The kinetic energy ПT is given by 

 

2 2 2 20

1 1 2 2
3 1 3 1

0

2 2

3 3
3 1

1 1
 d  d

2 2

1
 d ,

2

L

T

L

w w
I I x I I x

t t t t

w
I I x

t t

 



−

+

             
 = + + +          

                

     
+ +    

      

 



 (21) 

where 

   
3

2

1 3, 1, d , .
12A

bh
I I z A bh


 

 
= =  

 
  

The work done by the force F = F0 eiΩt is written by ПP 

 iΩ

0

1
e ( ) d .

2

t

P F x w x


−

 =   (22) 
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Applying the Hamilton’s principle 

 
0

( )d 0,

t

S P T t   +  −  =  (23) 

and substituting Eqs. (16), (21) and (22) into Eq. (23) yields 

 

0

iΩ

1 2 3 0 1

0 0 0 0 0 0

0

iΩ

1 2 3 0 1

0 0 0 0 0

0

1 2

1 1 2 2 3

0

0  d d  d d  d d e d ( ) ( )d

 d d  d d  d d e d

1 1 1
+ + +

2 2 2

t t L t t t

t

T

L

t t L t t

t

L

L

xy xy xy

z z z

x t x t x t F w t S L L t

x t x t x t F w t

Y Y Y
Q w Q w Q

x x

  



 

+

−

+

−

−

=  +  +  + +

=  +  +  +

     
+ + +   

    

       

      

 

3

3

0

0

1 1 1 2 2 2 3 3 3

0 0

0

31 2
1 2 3 2 3

0

d

1 1 1
+ + + d

2 2 2

1
2 ( ) ( ) ( )

2

t

L

Lt

y xy y xy y xy

L

L

xy xy xy T

L

w t
x

M Y M Y M Y t

ww w
Y Y Y S L L L

x x x



  

 
   

+

+

−

+

−

   
  

   

       
+ + +      

       

       
− + + − −      

       





0

d ,

t

t






 (24) 

where 

2

3 1 2

1
,

2

i i i i i i i i
i yi zi i xyi

w w w w
I I M Q Y

t t t t x x x x

      


         
 + − + + + −  

          
＝  

( )
22 2

3 12 2 2

1 1
, 1,2,3 .

2 2

yi xyi xyii i zi
i zi i i

M Y Yw Q
I Q I w i

t x x t x x


 

      
 − + − + − − =            

＝  

Setting the coefficients of δψi and δwi (i = 1, 2, 3) to zero, the governing equations of the three sub-beams are 

expressed as 

 

2 2

12 2

1
,

2

xyizi i
YQ w

I
x x t

 
+ =

  
 (25) 

 
2

3 2

1
.

2

yi xyi i
zi

M Y
Q I

x x t

  
− + =

  
 (26) 

The continuous conditions at the location of the excitation force x = 0 are 

1 2iΩ

1 2 1 0 2

1 1
, e ,

2 2

xy xyt

z z

Y Y
w w Q F Q

x x

 
= + + = +

 
                                              (27a) 

1 2 1 1 2 2

1 1
, ,

2 2
y xy y xyM Y M Y = + = +                                                           (27b) 
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1 2
1 2, .xy xy

w w
Y Y

x x

 
= =

 
                                                                 (27c) 

The continuous conditions at the crack location x = L are 

 
2 3

2 3 2 3 2 3

1 1
, ,  ,

2 2

xy xy

z z y y

Y Y
Q Q w w M M

x x

 
+ = + = =

 
 (28a) 

( )3 2 3 3

1
,

2
T y xyS M Y − = + 32

2 3,  .xy xy

ww
Y Y

x x


= =

 
                                   (28b) 

Substituting Eqs. (17)-(19) into Eqs. (25) and (26) yields 

 
2 2 3 4 2

55
55 12 3 4 2

,
4

i i i i i
s

w l A w w
k A I

x x x x t

        
+ + − =   

       
 (29) 

 
2 2 2 3 2

55
11 55 32 2 3 2

.
4

i i i i i
s i

w l A w
D k A I

x x x x t

  


      
− + + − =  

       
 (30) 

Introducing the dimensionless quantities 

 ( ) 3
1 3 02

1

,  ,  , 1, ,  ,  ,
Ix w l

w I I l
h h I h h

  
 

= = = = = 
 

 (31a) 

( ) 55 11 11 1
55 11 2

11 11 1 11

, , ,  ,  ,
A D A It

a d h
A A h h I A

 
 

= = =  
 

                                       (31b) 

Eqs. (29) and (30) are expressed in dimensionless forms as 

 
2 2 3 4 2

0 55
55 12 3 4 2

,
4

i i i i i
s

w l a w w
k a I

 

    

       
+ + − =   

       
 (32) 

 
2 2 2 3 2

0 55
11 55 32 2 3 2

.
4

i i i i i
s i

w l a w
d k a I

  


    

       
− + + − =  

       
 (33) 

According to the wave propagation theory [42], the displacement and rotation of the microbeam under a 

harmonic excitation are expressed as 

 i i( , ) ( )e ,  ( , ) ( )e .i i i iw W        = =  (34) 

With the method of variable separation, the following amplitude equations are obtained by substituting Eq. 

(34) into Eqs. (32) and (33) 

 ( ) ( )
2

2 3 4 255 0
55 1 ,

4
s i i i i i

a l
k a D W D D D W I W  + + − = −  (35) 
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 ( ) ( )
2

2 2 3 255 0
11 55 3 ,

4
i s i i i i i

a l
d D k a DW D D W I    − + + − = −  (36) 

where the differential operator D = d / dζ. The introduction of differential operator transforms the differential 

equation into “algebraic equation”, Eq. (35) can be further rewritten as 

 
2 2

2 4 2 355 0 55 0
55 1 55 0.

4 4
s i s i

a l a l
k a D D I W k a D D 
   

− + + + =   
   

 (37) 

Substituting Eq. (37) into Eq. (36), we have 

 

( )

2 2 2
6 2 2 455 11 0 55 0 3

55 0 55 11

2 2
2 2 2 4 255 0 1

55 3 1 11 1 3 1 55

4 4

0,
4

i s s i

s i s i

a d l a l I
D W k a l a k d D W

a l I
k a I I d D W I I k I a W




   

 
+ − − 
 

 
− + + − − = 
 

 (38) 

 

( )

2 2 2
6 2 2 455 11 0 55 0 3

55 0 55 11

2 2
2 2 2 4 255 0 1

55 3 1 11 1 3 1 55

4 4

0.
4

i s s i

s i s i

a d l a l I
D k a l a k d D

a l I
k a I I d D I I k I a


 


     

 
+ − − 
 

 
− + + − − = 
 

 (39) 

By introducing differential operators, the complex high-order differential equations are decoupled, which 

makes it very convenient to obtain their analytical solutions. This method was also originally applied by 

Lekhnitskii to obtain analytical solutions for anisotropic plates [48]. The characteristic equation of the 

ordinary differential equations (38) and (39) is 

 6 4 2

1 2 3 4+ + =0,a a a a  +  (40) 

where 

 

2 2 2
2 255 11 0 55 0 3

1 2 55 0 55 11

2 2
2 2 4 255 0 1

3 55 3 1 11 4 1 3 1 55

, ,
4 4

, .
4

s s

s s

a d l a l I
a a k a l a k d

a l I
a k a I I d a I I k I a




   

= = − −

= − − − = − +

  

The general solutions for Eqs. (35) and (36) are assumed as 

 3 31 1 2 2

1 2 3 4 5 6e e e e e e ,
k kk k k k

i i i i i i iW f f f f f f
     −− −

= + + + + +  (41) 

 3 31 1 2 2

1 1 1 2 2 3 2 4 3 5 3 6e e e e e e ,
k kk k k k

i i i i i i iq f q f q f q f q f q f
     −− −

= − + − + −  (42) 

where 
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1 1 1 1 1 1
3 3 3 3 3 32 22 2 2

1 1 2 2 1 2 3 1 2

1 1 1

,  ,  ,
3 3 3

a a a
k Y Y k Y Y k Y Y

a a a
   = + − = + − = + −  (43) 

 

1
2 3 22 3 2 3 2

1 1 2 3 1 4 2 1 2 3 1 4 2 1 3 2

3 3 2

2 1 1 1

9 27 2 9 27 2 3
,

54 54 9

Y a a a a a a a a a a a a a a a

Y a a a

      − − − − −
 =  +    
       

 (44) 

 
1 3i

.
2


− +

=  (45) 

Substituting Eqs. (41) and (42) into Eq. (35), we can get 

 
2 4 2 2

55 0 55

2 3

55 0 55

4 4
,  1,2,3.

4

i s i i
i

i s i

a l k k a k I
q i

a l k k a k

− −
= =

+
 (46) 

5. The intact microbeam 

As shown in Fig. 3(a), an infinite intact microbeam subjected to a transverse harmonic excitation F0 eiΩt is 

firstly studied. There are two kinds of waves diffused away from the excitation force. The intact microbeam is 

separated into two segments at the location of the driving source. The rotation and transverse responses of 

each segment are expressed in the following dimensionless form 

 

1

2

3

31 511 11

2 31 3 511 1 11

e

e ,

e

k

k

k

f fW f

q f q fq f








 
   

=     
    

 

 (47) 

for ζ ≤ 0 and 

 

1

2

3

622 22 42

3 622 1 22 2 42

e

e ,

e

k

k

k

fW f f

q fq f q f








−

−

−

 
    

=     −− −    
 

 (48) 

for ζ ﹥0. 

The subscripts “1” and “2” in W1, W2 and Ψ1, Ψ2 are used to distinguish between sections. When the 

wavenumber ki (i= 1, 2, 3) is a real number, the vibration of the microbeam is a decaying motion, while if the 

wavenumber is a pure imaginary number, it indicates that the microbeam is a propagating motion with the 

constant amplitude. The continuity conditions for intact microbeam at the point ζ = 0 can be given as 

 1 2
1 2 1 2, , ,

W W
W W  

 

 
= = =

 
 (49a) 
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2 2 3

0 55 01 1 1
55 1 2 3

11

2 2 3

0 552 2 2
55 2 2 3

4

,
4

s

s

l a FW W
k a

A

l aW W
k a




  




  

    
+ + − + =  
     

    
+ + −  
     

                                       (49b) 

2 22 2

0 55 0 551 1 2 2
11 1 11 22 2

,
4 4

l a l aW W
d d

 
 

   

      
+ − = + −   

      
                          (49c) 

2 22 2

0 55 0 551 1 2 2

2 2
.

2 2

l a l aW W 

   

      
− = −   

      
                                       (49d) 

Substituting Eqs. (47) and (48) into Eqs. (49), we have 

 Cf = Q , (50) 

where 

 ( )
T

11 22 31 42 51 62, , , , , ,f f f f f f=f   

 ( )
T

0 110,0,0, ,0,0 ,F A=Q   

 

3 31 1 2 2

3 31 1 2 2

31 3111 11 21 21

12 12 22 22 32 32

13 13 23 23 33 33

1 11 1 1 1

,

q qq q q q

k kk k k k

    

     

     

−− − 
 
 
 

=  
 
 − − −
 

− − −  

C   

with 

( ) ( ) ( ) ( )
2 2

2 3 2 20 55 0 55
1 55 2 11 3,  ,  , 1,2,3 .

4 4
i s i i i i i i i i i i i i i i i

l a l a
k a k q k q k d k q k q k k q k i  = + + − = + − = − =  

Then, the unknown coefficients f11, f22, f31, f42, f51, f62 can be obtained by solving Eq. (50). 

6. The cracked microbeam 

The forced waves and reflected waves around crack location in the cracked microbeam that is driven by the 

external force are illustrated in Fig. 3(b). The crack changes the propagation path of traveling waves, some of 

which are reflected when they arrive the crack. The cracked beam is divided into three segments with respect 

to locations of the crack and excitation position. The characteristics of wave propagation in each section are 

different. Segment “1” only contains the wave propagating to the left from the location of excitation; segment 
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“2” contains both the wave propagating to the right from the location of excitation and part of the wave 

reflected by the crack; and segment “3” only contains part of the wave propagating to the right through the 

crack.  

For each segment, the vibration response of the microbeam is assumed in a dimensionless form as 

  1 2 3 4 5 6

1 1 1 2 2 3 2 4 3 5 3 6

,
i i i i i i i

i i i i i i i

W f f f f f f

q f q f q f q f q f q f

   
=   

− − −   
  (51) 

where 

    3 31 1 2 2
T

e ,e ,e ,e ,e ,e ,  1,2,3.
k kk k k k

i
     −− −

= =  (52) 

The dimensionless forms of the continuous conditions at the crack location (ζ = L / h = L1) are 

 
2 2 2 32 3

0 55 3 0 55 3 32 2 2
55 2 55 32 3 2 3

,
4 4

s s

l a W l a WW W
k a k a


 

     

          
+ + − = + + −     
           

 (53a) 

2 2 22

0 55 3 0 55 3 32 2 2
2 3 11 112 2

, ,
4 4

l a l a WW
W W d d

  

     

       
= + − = + −  

        
                 (53b) 

( )
2 2

3 0 55 3 3
3 2 11 2

11

,
4

T
l a WS

d
A h

 
 

  

   
− = + − 

   
                                         (53c) 

2 2 22

0 55 0 55 3 3 32 2 2

2 2
, .

2 2

l a l a W WW W

     

       
− = − =  

        
                                  (53d) 

Since the beam is assumed to be infinitely long, there are no reflected waves at infinity on each side. As a 

result, f21 = f41 = f61 = 0 and f13 = f33 = f53 = 0. Thus, the vector of unknown coefficients is written as 

 ( )
T

11 31 51 12 22 32 42 52 62 23 43 63, , , , , , , , , , ,f f f f f f f f f f f f=f . (54) 

Substituting Eqs. (51) and (52) into Eq. (53), we have 

 =Cf Q , (55) 

where 
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1 1 231 2

1 1 231 2

11 11 2111 21 31

12 12 2212 22 32

13 13 2313 23 33

11 11 21

1 1 2

13 13 23

1 1 1 1 2

1 1

1 1 111 1

0 0 0

10 0 0

0 0 0

0 0 0

0 0 0

0 0 0

a a b

a a b

t a t a t b

a a b

a a

a a

q q qqq q

k k kkk k

g g g

g g g

k q g k q g k q g

g g g

k q g k q g k

k g k g

− − −

− −

− −

− −

− − −

− − −
=

−

− −

−

C

    

    

    

  

  

3 32

3 32

21 31 31

22 32 32

23 33 33

11 2121 31 31

1 12 22 3 3

1323 33 33

1 12 2 2 3 3 3 3

12 2 3 3

1 11 0 0

0 0

0 0

0 0

0 0

0 0

1 11 1

b c c

b c c

t tt b t c t c

b c c

b b c c

b b c c

q qq

k kk

g g g

g g g

k q k qk q g k q g k q g

g g g

k qq g k q g k q g k q g

kk g k g k g k g

− −−

−

−

−

− − −

− − −

− −

− −

− − −−

−

−

− −

  

  

  

   



  

31

3 3222

3323

3 32 2

32

0

0

0

0

0

0
,

1

tk q

k qk q

kk

 
 
 
 
 
 
 
 
 
 
 
 −
 

− −− 
 −−
 

−− 
 
 







 

 ( )
T

0 110,0,0, ,0,0,0,0,0,0,0,0 ,F A=Q   

where the elements γi1, γi2, γi3, ga, gb, gc in C  are given by, 

 ( ) ( )
2

2 30 55
1 55

11

= , ,
4

T
t i s i i i i i

l aS
k k a k q k q k

A h
 = + + −  

( ) ( )
2

2 20 55
2 11 3, , 1, 2,3 ,

4
i i i i i i i i i i

l a
d k q k q k k q k i = + − = − =  

3 11 1 2 1e , e , e .
k Lk L k L

a b cg g g= = =  

7. Vibrational power flow analysis 

As a new measurement method of vibration intensity, the power flow has been widely concerned by 

scientists. In the vibration of structures, the existence of cracks disturbs the propagation path of original waves, 

which will change the vibrational power flow accordingly. By means of analyzing the changes of vibrational 

power flow, it can enable us to estimate the characteristics and distribution of cracks, and even for structural 

damage identification. 

If the force and velocity of excitation accompanied by response are both in harmonic forms, the variations 

of force and velocity can be expressed as 

 

 

 

i

i

( ) Re e ,

( ) Re e .

t

t

F t F

V t V





= 

= 

 (56) 

The time-averaged power flow is given by 
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    i i

0

1
= Re e Re e d ,

T
t tP F V t

T

    (57) 

where T = 2π / Ω; F  and V  are complex numbers which contain the phase angle; (﹡) denotes the complex 

conjugate; (～) denotes the complex form. The real part and the imaginary part of F  and V  are expressed as 

 
* *

i , i ,

i , i ,

a b a b

a b a b

F F F V V V

F F F V V V

= + = +

= − = −

 (58) 

where the subscripts “a” and “b” represent the real part and imaginary part, respectively. Therefore, 

 

( )    

0

* *

1
[ cos sin ] [ cos sin ]d

1 1 1
Re Re .

2 2 2

T

a b a b

a a b b

P F t F t V t V t t
T

F V F V F V F V

=  −    − 

= + =  = 


 (59) 

Based on the conversion relation ( i )V = Y   between displacement and velocity under the harmonic 

excitation, the time-averaged input power flow is given by 

  
1

Re i .
2

inP FY = −   (60) 

The input power flow is given by 

  0

1
Re i ,

2
inP F w


= −   (61) 

where (|·|) denotes the norm. 

The transmitted power flow propagates in three forms: the shear force, couple moment and bending 

moment: 

 
1 1 1 1 1 1

Re i Re i Re i .
2 2 2 2 2 2

xy

tr y xy z xy

Y w
P M Y Q w Y

x x



          

= −  +  + −  +  +       
        

 (62) 

Substituting Eqs. (17)-(19) into Eq. (62), the transmitted power flow is expressed as 

javascript:;
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2
2

11 55 2

2 3
2

55 55 2 3

2
2

55 2

1 1
Re i

2 4

1 1
Re i

2 4

1 1
Re i .

2 4

tr

s

w
P D l A

x x x

w w
k A l A w

x x x

w w
l A

x x x

 













     
= −  + −   

     

      
+ −  + + −    

       

   
+  −  

    

 (63) 

Substituting (47) or (48), (51) into Eqs. (61) and (63), the input and transmitted power flows of intact and 

cracked microbeams are derived which are showed in appendix A. 

8. Numerical results 

Both input and transmitted power flows of cracked microbeams are computed in this section. The beam is 

made of aluminum with the material properties: E = 70 GPa, ρ = 2780 kg/m3 and υ = 0.33. Unless otherwise 

stated, the beam thickness takes h = 200 μm and the amplitude of the excitation force is F0 = 1 N. The input 

and transmitted power flows are expressed in dimensionless forms of 10 log (Pin / F0
2) and Ptr / Pin , 

respectively. 

Up to now, to the best of the authors’ knowledge, there is no research that has analyzed the vibrational 

power flow of microbeams. To verify the proposed microbeam model, we degrade our model to an isotropic 

homogeneous macroscale beam by setting the scale parameter as zero. The parameters of the cracked beam 

are given as: h = 0.1 m, E = 70 GPa, ρ = 2780 kg/m3, F0 = 100 N, L / h = 20 and a / h = 0.3. Fig. 4 compares 

the present results of the input power flow with the results obtained by Zhu et al. [17]. It shows a perfect 

agreement between Zhu et al.’s results and the present results. 

8.1 Input power flow analysis 

Fig. 5 shows the input power flow in both the intact and cracked microbeams, which have L / h = 100, a / 

h = 0.5 and h / l = 2. The frequency range of excitation varies from 1 Hz to 20000 Hz. The increase of 

excitation frequency leads to a decrease of the input power flow for both intact and cracked microbeams. It is 

observed that the crack does not significantly change the input power flow of the microbeam. Indeed, it is not 

observed the obvious fluctuation of the input power flow in cracked microbeams. 

It had been well known that the change of the excitation frequency will lead to the fluctuation of the input 

power flow for macroscale cracked beams [17]. This is because the crack can interrupt the original wave 
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propagation path, that is, a part of traveling waves will be reflected when they meet the crack. This reflection 

wave results in a variation of the beam displacement at the excitation position, and in turn changes the 

characteristics of the input power flow. However, different with the macroscale cracked beam, the input power 

flow in cracked microbeams has barely fluctuation when the excitation frequency changes. To further study 

this fluctuation in input power flow, we introduce a value ε to quantify the difference of input power flow 

between intact and cracked beams: 

 ( ) ( )2 2

10 0 10 010 log / log / ,i c

in inP F P F =  
 

−  (64) 

where i

inP  denotes the input power flow in an intact microbeam; c

inP  is the input power flow in a cracked 

microbeam. Fig. 6 presents the relation of the difference value ε versus the excitation frequency for the 

microbeam with a / h = 0.5 and h / l = 2. Interestingly, it is observed that the fluctuation of the difference 

value ε becomes clearly with the increase of frequency. Moreover, the fluctuation amplitude of ε is increased 

and the fluctuation frequency decreases with the increase of the excitation frequency. 

Fig. 7 illustrates the influences of the scale parameter h / l on the input power flow (Fig. 7(a)) and the 

difference value ε (Fig. 7(b)) in cracked microbeams with L / h = 100 and a / h = 0.5. In Fig. 7(a), larger scale 

parameters lead to higher input power flows for a given frequency. As shown in Fig. 7(b), larger scale 

parameters will decrease the amplitude and the wavelength of the ε curve. 

Fig. 8 shows the influences of the crack depth on the input power flow (Fig. 8(a)) and the difference value 

ε (Fig. 8(b)) in cracked microbeams with L / h = 100 and h / l = 2. In Fig. 8(a), it was found that the crack 

depth does not lead to any obvious change to the input power flow. As shown in Fig. 8(b), the increase of the 

crack depth leads to larger fluctuation amplitude of the ε curve. We can observe that there are many 

intersections among the ε curves with different crack depths, such as at 425Hz, 1706Hz, 3837Hz, 6820 Hz, 

10652Hz and 15330Hz. At these intersection frequencies, one can conclude the power flow is not influenced 

by the variation of the crack depth due to ε = 0. However, the change of the crack depth does not affect the 

frequency of the ε curves. 

Fig. 9 presents the influences of the crack location on the input power flow and the difference value ε in 

cracked microbeams with h / l = 2 and a / h = 0.5. The fluctuation frequency and amplitude of the ε curve are 

enlarged when the distance between the crack location and the excitation position increases. 

Figs. 10-12 illustrate the correlation between the crack location and input power flow by considering 

different scale parameters, crack depths, crack locations and excitation frequencies, respectively. It was 



18 

 

observed in Figs. 10-12 that the input power flow with crack location L / h is a periodic fluctuant function. In 

Fig. 10, a larger scale parameter h / l will lead to a smaller input power flow for a given crack location. The 

increase of the scale parameter can cause the increase of the fluctuation amplitude and frequency. The increase 

of crack depth leads to the increase of the fluctuation amplitude of curves, as shown in Fig. 11. Interestingly, 

the crack depth does not affect the frequency of curves, as illustrated by Fig. 11. In Fig. 12, a larger driving 

frequency will lead to a smaller input power flow for a given crack location. The increase of the excitation 

frequency causes the increase of the fluctuation amplitude and frequency of the curve. 

8.2 Transmitted power flow analysis 

Fig. 13 shows the influence of the scale parameter h / l on the transmitted power flow Ptr / Pin in the 

cracked microbeams with L / h = 100 and a / h = 0.5. Different with the input power flow, the transmitted 

power flow exhibits the fluctuation much obviously. It is found that a large scale parameter will lead to the 

decrease of the amplitude and wavelength of the transmitted power flow curve. 

Fig. 14 presents the influence of the crack depth on the transmitted power flow Ptr / Pin in cracked 

microbeam with L / h = 100 and h / l = 2. The transmitted power flow Ptr / Pin remains unchanged at 0.5 for an 

intact microbeam. It implies that the energy input into the microbeam from the external excitation is equally 

divided according to the direction of propagation. The transmitted power flow curves of the cracked 

microbeam fluctuate around the constant 0.5 of the intact microbeam. The amplitude of the curves increases 

with the increase of the crack depth. The crack depth does not affect the wave frequencies of transmitted 

power flow, as illustrated by cracked curves. Similar with the input power flow, the transmitted power flow is 

not influenced by the crack depth at some frequencies, such as 425Hz, 1706Hz, 3837Hz, 6820 Hz, 10652Hz 

and 15330Hz. 

The influences of the crack location on the transmitted power flow in cracked microbeams with a / h = 0.5 

and h / l = 2 are shown in Fig. 15. The crack location has a significant influence on the transmitted power flow. 

It is indicated that the increase of the crack location leads to the increase of fluctuation frequency of 

transmitted power flow curves. 

Figs. 16-18 show the influences of the scale parameters, the excitation frequencies, and the crack depths 

on the curves of transmitted power flow vs. crack location, respectively. It is revealed that the transmitted 

power flow is a periodic function as the same with the input power flow. As shown in Fig. 16, the increase of 

the scale parameter pulls down the amplitude and wavelength of transmitted power flow curves. Fig. 17 shows 
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that the increase of the crack depth leads to the increase of the amplitude of transmitted power flow curves. In 

Fig. 18, the increase of the frequency enlarges the amplitude of transmitted power flow curves, while reduces 

the wavelength of transmitted power flow curves. 

9. Conclusions 

In this paper, an analytical model is developed for the analysis of vibrational power flow in cracked 

microbeams based on the Timoshenko beam theory and modified couple stress theory. The crack is modelled 

as a rotational spring, the stiffness of which is determined using the stress intensity factors. The vibrational 

response of a cracked microbeam under a transverse harmonic excitation is solved by the wave propagation 

method. The influences of the scale parameter, the crack location and the crack depth on the input and 

transmitted power flows are discussed. The following points are arrived from our simulation and analysis: 

(1) The input and transmitted power flows are the periodic functions with respect to the crack location. 

(2) The input power flow of cracked microbeams has barely fluctuations with the variation of the excitation 

frequency. However, the difference value ε of the input power flow between intact and cracked 

microbeams exhibits obvious fluctuations. 

(3) The transmitted power flow of cracked microbeams exhibits the obvious fluctuation. 

(4) A large scale parameter will lead to the decrease of the amplitude and wavelength of transmitted power 

flow curves. 

(5) With the increase of the crack depth, the amplitude of the transmitted power flow curve increases, while it 

does not affect the wavelength of curves. 
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Appendix A. Expression of power flow 
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Fig. 1. A cracked microbeam subjected to an excitation force. 
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Fig. 2. The massless elastic rotational spring model. 
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Fig. 3. The propagating and evanescent waves under a harmonic excitation 

 in a microbeam without a crack (a) and with a crack (b). 
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Fig. 4. The relation between the input power flow and frequency for the intact and cracked macrobeams. 
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Fig. 5. The relation between the input power flow and frequency for microbeams with L / h = 100, a / h = 0.5 

and h / l = 2. 
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Fig. 6. The difference value ε of the input power flow between intact and cracked microbeams with L / h = 

100, a / h = 0.5 and h / l = 2. 
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Fig. 7. Influence of h / l on the input power flow (a) and ε (b) versus frequency curves of cracked microbeams 

with a / h = 0.5 and L / h = 100. 
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Fig. 8. Influence of a/ h on the input power flow (a) and ε (b) versus frequency curves of cracked microbeams 

with L / h = 100 and h / l = 2. 
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Fig. 9. Influence of L / h on the input power flow (a) and ε (b) versus frequency curves of cracked microbeams 

with h / l = 2 and a / h = 0.5. 
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Fig. 10. Influence of h / l on the input power flow versus crack location curves of cracked microbeams with f 

= 12000 Hz and a / h = 0.5: h / l = 0.5 (a), h / l = 1 (b), h / l = 2 (c) and h / l = 3 (d). 
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Fig. 11. Influence of a / h on the input power flow versus crack location curves with f = 12000 Hz and h / l = 2. 
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Fig. 12. Influence of f on the input power flow versus crack location curves with h / l = 2 and a / h = 0.5: f = 

8000 Hz (a), f = 12000 Hz (b), f = 16000 Hz (c) and f = 20000 Hz (d). 
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Fig. 13. Influence of h / l on the transmitted power flow versus frequency curves with L / h= 100 and a / h = 

0.5. 
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Fig. 14. Influence of a / h on the transmitted power flow versus frequency curves with L / h = 100 and h / l = 2. 
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Fig. 15. Influence of L / h on the transmitted power flow versus frequency curves with h / l = 2 and a / h = 0.5. 
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Fig. 16. Influence of h / l on the transmitted power flow versus crack location curves with f = 12000 Hz, L / h 

= 100 and a / h = 0.5. 
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Fig. 17. Influence of a / h on the transmitted power flow versus crack location curves with f = 12000 Hz, h / l 

= 2 and L / h = 100. 
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Fig. 18. Influence of f on the transmitted power flow versus crack location curves with h / l = 2, L / h = 100 

and a / h = 0.5. 

 


